JP5723615B2 - Graphite crucible for single crystal pulling apparatus and manufacturing method thereof - Google Patents

Graphite crucible for single crystal pulling apparatus and manufacturing method thereof Download PDF

Info

Publication number
JP5723615B2
JP5723615B2 JP2011020814A JP2011020814A JP5723615B2 JP 5723615 B2 JP5723615 B2 JP 5723615B2 JP 2011020814 A JP2011020814 A JP 2011020814A JP 2011020814 A JP2011020814 A JP 2011020814A JP 5723615 B2 JP5723615 B2 JP 5723615B2
Authority
JP
Japan
Prior art keywords
graphite crucible
base material
single crystal
test
pyrolytic carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011020814A
Other languages
Japanese (ja)
Other versions
JP2012158504A (en
Inventor
岡田 修
修 岡田
廣瀬 芳明
芳明 廣瀬
智光 横井
智光 横井
荻田 泰久
泰久 荻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/980,995 priority Critical patent/US20130305984A1/en
Priority to JP2011020814A priority patent/JP5723615B2/en
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to PCT/JP2012/051975 priority patent/WO2012105488A1/en
Priority to KR1020137023197A priority patent/KR101808891B1/en
Priority to KR1020177035272A priority patent/KR101907818B1/en
Priority to CN201280003981.4A priority patent/CN103249876B/en
Priority to TW104132396A priority patent/TWI576472B/en
Priority to TW101103242A priority patent/TWI526585B/en
Publication of JP2012158504A publication Critical patent/JP2012158504A/en
Application granted granted Critical
Publication of JP5723615B2 publication Critical patent/JP5723615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、チョクラルスキー法(以下、「CZ法」という。)によるシリコンなどの単結晶引上げ装置に使用される石英ルツボを支持するために用いられる黒鉛ルツボ及びその製造方法に関する。   The present invention relates to a graphite crucible used to support a quartz crucible used in a single crystal pulling apparatus such as silicon by the Czochralski method (hereinafter referred to as “CZ method”) and a method for producing the same.

ICやLSIなどの製造に用いられるシリコンなどの単結晶は、通常CZ法により製造されている。CZ法は、高純度の石英ルツボの中にシリコン多結晶を入れ、石英ルツボを所定速度で回転させながらヒーターによりシリコン多結晶を加熱溶融し、シリコン多結晶の溶融液の表面に種結晶(シリコン単結晶)を接触させて、所定速度で回転させながらゆっくりと引き上げることによりシリコン多結晶を溶融液凝固させて、シリコン単結晶に成長させるものである。   Single crystals such as silicon used for manufacturing ICs and LSIs are usually manufactured by the CZ method. In the CZ method, a silicon polycrystal is placed in a high-purity quartz crucible, the silicon polycrystal is heated and melted by a heater while rotating the quartz crucible at a predetermined speed, and a seed crystal (silicon) is formed on the surface of the silicon polycrystal melt. Single crystal) is brought into contact and slowly pulled up while rotating at a predetermined speed to solidify the silicon polycrystal into a melt and grow it into a silicon single crystal.

しかしながら、石英ルツボは高温においては軟化し、強度も充分でないので、通常、石英ルツボは黒鉛ルツボ内に嵌合され、黒鉛ルツボで石英ルツボを支持することにより補強して用いられている。   However, since the quartz crucible softens at high temperatures and does not have sufficient strength, the quartz crucible is usually fitted into the graphite crucible and reinforced by supporting the quartz crucible with the graphite crucible.

上記の石英ルツボと黒鉛ルツボとを有するルツボ装置では、高温加熱時には石英ルツボ(SiO)と黒鉛ルツボ(C)とは接触する嵌合面において反応してSiOガスを発生し、発生したSiOガスは黒鉛ルツボと反応し、特に黒鉛ルツボ表層部の開気孔内を浸透しながら黒鉛ルツボ(C)と反応して黒鉛ルツボの開気孔内を次第にSiC化していく。従って、このような加熱処理が繰り返し行われると、黒鉛ルツボが徐々にSiCへと転化して黒鉛ルツボの寸法が変化してしまったり、材質的に脆弱化してミクロンクラックが発生し遂には黒鉛ルツボの割損を招くこととなる。 In the crucible apparatus having the above-described quartz crucible and graphite crucible, the quartz crucible (SiO 2 ) and the graphite crucible (C) react with each other at the fitting surface in contact with each other during high-temperature heating to generate SiO gas, and the generated SiO gas Reacts with the graphite crucible, and in particular, reacts with the graphite crucible (C) while penetrating the open pores in the surface portion of the graphite crucible to gradually convert the open pores of the graphite crucible into SiC. Therefore, when such heat treatment is repeated, the graphite crucible gradually changes to SiC and the dimensions of the graphite crucible change, or the material becomes brittle and micron cracks are generated. Will result in a loss of money.

そこで、かかる問題点を解決するため、従来から石英ルツボと黒鉛ルツボとの間に膨張黒鉛材料からなる保護シートを介在させ、黒鉛ルツボの内面を覆うことにより黒鉛ルツボのSiC)化を抑制して寿命を長く保たせることが提案されている(例えば、特許文献1参照)。   Therefore, in order to solve such a problem, conventionally, a protective sheet made of an expanded graphite material is interposed between the quartz crucible and the graphite crucible, and covering the inner surface of the graphite crucible suppresses the SiC) of the graphite crucible. It has been proposed to keep the life long (see, for example, Patent Document 1).

特許第2528285号公報Japanese Patent No. 2528285

しかしながら、上記従来例のように保護シートを介在させても、現実には黒鉛ルツボのSiC化を十分に抑制することはできなかった。
そこで、従来から長寿命化を可能とした単結晶引き上げ装置用黒鉛ルツボが所望されていた。
However, even if a protective sheet is interposed as in the above-described conventional example, in reality, the conversion of the graphite crucible to SiC could not be sufficiently suppressed.
Therefore, a graphite crucible for a single crystal pulling apparatus that can extend the life has been desired.

本発明は、上記の実情を鑑みて考え出されたものである。その目的は、長寿命化を可能とした単結晶引き上げ装置用黒鉛ルツボ及びその製造方法を提供することである。   The present invention has been devised in view of the above circumstances. The object is to provide a graphite crucible for a single crystal pulling apparatus and a method for producing the same that can extend the life.

上記目的を達成するため本発明は、単結晶引き上げ装置用黒鉛ルツボであって、黒鉛ルツボ基材の特性が、嵩密度が1.65Mg/m 以上、曲げ強さが30MPa以上、ショア硬さ40以上の値を有するものを使用し、黒鉛ルツボ基材の表面の全体又は一部に熱分解炭素の被膜が形成され、該被膜は前記表面に存在する開気孔の内面まで生成されていることを要旨とする。 In order to achieve the above object, the present invention provides a graphite crucible for a single crystal pulling apparatus, wherein the characteristics of the graphite crucible base material are a bulk density of 1.65 Mg / m 3 or more, a bending strength of 30 MPa or more, and a shore hardness. A film having a value of 40 or more is used, and a film of pyrolytic carbon is formed on the whole or part of the surface of the graphite crucible base material, and the film is generated up to the inner surface of the open pores existing on the surface. Is the gist.

ここで熱分解炭素(PyC)とは、炭化水素類、例えば炭素数1〜8特に炭素数3の炭化水素ガスもしくは炭化水素化合物を熱分解させて基材の深層部まで浸透析出せしめる高純度で高結晶化度の黒鉛化物である。
上記構成によれば、黒鉛ルツボ基材の表面に存在する多数の開気孔の内面にまで熱分解炭素が析出、充填されることにより、黒鉛ルツボ基材の表面全体にわたってCとSiOガスとの反応が有効に抑制され、SiC化の進行を抑制することができる。この結果、黒鉛ルツボの使用寿命の長期化を図ることができる。
なお、熱分解炭素の被膜形成は、黒鉛ルツボの表面の全体に限らず、SiC化が進みやすい部分のみであってもよい。例えば、ルツボの内面だけ全体的に析出させるとか、内面のうち湾曲部(小R部)のみに、又は湾曲部と直胴部のみに析出させることも可能である。
Here, pyrolytic carbon (PyC) is a high-purity hydrocarbon that, for example, hydrocarbon gas or hydrocarbon compound having 1 to 8 carbon atoms, especially 3 carbon atoms, is thermally decomposed and permeated to the deep layer of the base material. It is a graphitized material with high crystallinity.
According to the above configuration, the pyrolytic carbon is deposited and filled on the inner surfaces of a large number of open pores existing on the surface of the graphite crucible base material, whereby the reaction between C and SiO gas occurs over the entire surface of the graphite crucible base material. Is effectively suppressed, and progress of SiC formation can be suppressed. As a result, the service life of the graphite crucible can be extended.
Note that the formation of the pyrolytic carbon film is not limited to the entire surface of the graphite crucible, and may be performed only on the portion where the conversion to SiC is likely to proceed. For example, it is possible to deposit only the inner surface of the crucible as a whole, or deposit only on the curved portion (small R portion) of the inner surface, or only on the curved portion and the straight body portion.

本発明において、前記熱分解炭素被膜の厚みの平均は100μm以下であるのが好ましい。100μmを超えると、コスト高となり、100μm以上の熱分解炭素被膜を形成するには極めて長時間の処理が必要となり生産効率が低下する。   In the present invention, the average thickness of the pyrolytic carbon coating is preferably 100 μm or less. If it exceeds 100 μm, the cost increases, and an extremely long treatment is required to form a pyrolytic carbon film having a thickness of 100 μm or more, resulting in a reduction in production efficiency.

本発明において、前記被膜はCVI法によって形成されたものであるのが好ましい。   In the present invention, the coating is preferably formed by a CVI method.

ここで、CVI法(Chemical Vapor Infiltration :化学的気相浸透法)とは前述した熱分解炭素(PyC)を浸透析出させる方法であって、炭化水素類あるいは炭化水素化合物に対して濃度調整用として通常窒素ガスまたは水素ガスを用い、炭化水素濃度3〜30%好ましくは5〜15%とし、全圧を100Torr好ましくは50Torr以下にして反応操作をすればよい。このような操作を行った場合、炭化水素が基材表面付近で脱水素、熱分解、重合などによって巨大炭素化合物を形成し、これが黒鉛ルツボ基材上に沈積、析出し、更に脱水素反応が進み、最終的に緻密なPyC膜が黒鉛ルツボ基材の表面から内部にかけて形成される。   Here, the CVI method (Chemical Vapor Infiltration) is a method for permeating and depositing the pyrolytic carbon (PyC) described above, and for adjusting the concentration of hydrocarbons or hydrocarbon compounds. Usually, nitrogen gas or hydrogen gas is used, the hydrocarbon concentration is 3 to 30%, preferably 5 to 15%, and the total pressure is 100 Torr, preferably 50 Torr or less. When such an operation is performed, the hydrocarbon forms a huge carbon compound near the surface of the base material by dehydrogenation, thermal decomposition, polymerization, etc., which deposits and precipitates on the graphite crucible base material, and further the dehydrogenation reaction occurs. As a result, a dense PyC film is finally formed from the surface of the graphite crucible base material to the inside.

析出の温度範囲は一般に800〜2500℃までの広い範囲であるが、黒鉛ルツボ基材の深部まで析出させるためには1300℃以下の比較的低温領域でPyCを析出させることが望ましい。また析出時間は50時間好ましくは100時間以上の長時間にすることが、100μm以下のように薄いPyCを形成させるのに適している。また熱分解炭素の析出効率を高めるために、いわゆる等温法、温度勾配法、圧力勾配法、パルス法等を適宜使用することも可能である。なお、参考までに述べると、CVD法(化学気相蒸着法)は分解生成する炭素を組織中に直接沈着させるものであって、CVI法のように基材の内部までが含浸成膜させることはできず、短時間に厚い熱分解炭素を沈着させるにとどまる。   The temperature range of precipitation is generally a wide range from 800 to 2500 ° C., but it is desirable to deposit PyC in a relatively low temperature region of 1300 ° C. or lower in order to precipitate it to the deep part of the graphite crucible base material. The deposition time is preferably 50 hours, preferably 100 hours or longer, in order to form thin PyC such as 100 μm or less. In order to increase the deposition efficiency of pyrolytic carbon, a so-called isothermal method, temperature gradient method, pressure gradient method, pulse method, or the like can be used as appropriate. For reference, CVD (Chemical Vapor Deposition) is a method in which carbon that decomposes is directly deposited in the structure, and the inside of the substrate is impregnated into a film as in the CVI method. It is not possible to deposit thick pyrolytic carbon in a short time.

また、本発明は、単結晶引き上げ装置用黒鉛ルツボの製造方法であって、黒鉛ルツボ基材の特性が、嵩密度が1.65Mg/m 以上、曲げ強さが30MPa以上、ショア硬さ40以上の値を有するものを使用し、黒鉛ルツボ基材の表面の全体又は一部に熱分解炭素の被膜が形成され、且つ該被膜が黒鉛ルツボ基材の表面に存在した開気孔の内部表面にまで生成されるように、CVI法によって熱分解炭素の被膜を形成する工程を含むことを要旨とする。
The present invention is also a method for producing a graphite crucible for a single crystal pulling apparatus, wherein the characteristics of the graphite crucible base material are a bulk density of 1.65 Mg / m 3 or more, a bending strength of 30 MPa or more, a Shore hardness of 40 Using a material having the above values, a pyrolytic carbon coating is formed on the whole or part of the surface of the graphite crucible base material, and the coating is formed on the inner surface of the open pores existing on the surface of the graphite crucible base material. The present invention includes a step of forming a pyrolytic carbon film by the CVI method so as to be generated up to

上記構成であれば、黒鉛ルツボ基材の表面に存在する多数の開気孔の内面にまで熱分解炭素が析出、充填された黒鉛ルツボを製造することができ、黒鉛ルツボの使用寿命の長期化を図ることができる。   With the above configuration, it is possible to produce a graphite crucible in which pyrolytic carbon is deposited and filled up to the inner surfaces of a large number of open pores existing on the surface of the graphite crucible base material, thereby extending the service life of the graphite crucible. Can be planned.

本発明において、前記熱分解炭素の被膜形成工程により熱分解炭素の被膜が形成された黒鉛ルツボ基材をハロゲンガス雰囲気下で熱処理して高純度化する工程を含むのが好ましい。黒鉛ルツボから生じる不純物を少なくでき、高品質の金属単結晶が得られることになる。   In the present invention, it is preferable to include a step of heat-treating the graphite crucible base material on which the pyrolytic carbon film has been formed in the pyrolytic carbon film forming process in a halogen gas atmosphere to increase the purity. Impurities generated from the graphite crucible can be reduced, and a high-quality metal single crystal can be obtained.

本発明によれば、黒鉛ルツボ基材の表面に存在する多数の開気孔の内面にまで熱分解炭素が析出、充填されることにより、黒鉛ルツボ基材の表面全体にわたってCとSiOガスとの反応が有効に抑制され、SiC化の進行を抑制することができる。この結果、黒鉛ルツボの使用寿命の長期化を図ることができる。   According to the present invention, the pyrolytic carbon is deposited and filled to the inner surfaces of many open pores existing on the surface of the graphite crucible base material, whereby the reaction between C and SiO gas occurs over the entire surface of the graphite crucible base material. Is effectively suppressed, and the progress of SiC formation can be suppressed. As a result, the service life of the graphite crucible can be extended.

実施の形態に係る単結晶引き上げ装置用黒鉛ルツボの縦断面図。The longitudinal cross-sectional view of the graphite crucible for single crystal pulling apparatuses which concerns on embodiment. 実施の形態に係る黒鉛ルツボ基材の表面の一部拡大断面図。The partial expanded sectional view of the surface of the graphite crucible base material concerning an embodiment. 合成石英製造用に用いられる黒鉛製の型の概略断面図。The schematic sectional drawing of the type | molds made from graphite used for synthetic quartz manufacture. 試験用サンプルCの採取位置を示す図。The figure which shows the collection position of the sample C for a test. SiC化反応試験前後の細孔(開気孔)の分布状態を示すグラフ。The graph which shows the distribution state of the pore (open pore) before and behind a SiC conversion reaction test. SiC化反応試験後の試験用サンプルA(本発明処理品)の灰化後の状態を示す写真。The photograph which shows the state after ashing of the test sample A (this invention processed product) after a SiC conversion reaction test. SiC化反応試験後の試験用サンプルB(本発明処理品)の灰化後の状態を示す写真。The photograph which shows the state after ashing of the test sample B (this invention processed product) after a SiC conversion reaction test. SiC化反応試験後の試験用サンプルA(未処理品)の灰化後の状態を示す写真。The photograph which shows the state after ashing of the test sample A (unprocessed goods) after a SiC conversion reaction test. SiC化反応試験後の試験用サンプルB(未処理品)の灰化後の状態を示す写真。The photograph which shows the state after ashing of the test sample B (unprocessed goods) after a SiC conversion reaction test. SiC化反応試験後の試験用サンプルA(本発明処理品)のSEM写真。The SEM photograph of the sample A for a test (this invention processed product) after a SiC conversion reaction test. SiC化反応試験後の試験用サンプルB(本発明処理品)のSEM写真。The SEM photograph of test sample B (this invention processed product) after a SiC-ized reaction test. SiC化反応試験後の試験用サンプルC(本発明処理品)のSEM写真。The SEM photograph of test sample C (this invention processed product) after SiC conversion reaction test. SiC化反応試験後の試験用サンプルA(未処理品)のSEM写真。The SEM photograph of test sample A (untreated product) after the SiC conversion reaction test. SiC化反応試験後の試験用サンプルC(未処理品)のSEM写真。The SEM photograph of test sample C (untreated product) after the SiC conversion reaction test.

以下、本発明を実施の形態に基づいて詳述する。なお、本発明は、以下の実施の形態に限定されるものではない。   Hereinafter, the present invention will be described in detail based on embodiments. Note that the present invention is not limited to the following embodiments.

(実施の形態1)
図1は本発明に係る単結晶引き上げ装置用黒鉛ルツボの一例についての縦断面図である。石英ルツボ1を保持する黒鉛ルツボ2は、黒鉛ルツボ成形体としての黒鉛ルツボ基材3と、黒鉛ルツボ基材3の表面全体に形成された熱分解炭素被膜4とから構成されている。黒鉛ルツボ基材3は、ルツボに必要な機械的強度を確保すると共に熱分解炭素の析出のし易さを考慮して、その特性として、嵩密度が1.65Mg/m以上、曲げ強さが30MPa以上、ショア硬さ40以上の値を有するものを使用する。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of an example of a graphite crucible for a single crystal pulling apparatus according to the present invention. The graphite crucible 2 holding the quartz crucible 1 is composed of a graphite crucible base material 3 as a graphite crucible molded body and a pyrolytic carbon coating 4 formed on the entire surface of the graphite crucible base material 3. The graphite crucible base material 3 has a bulk density of 1.65 Mg / m 3 or more and a bending strength in consideration of the mechanical strength necessary for the crucible and considering the ease of precipitation of pyrolytic carbon. Have a value of 30 MPa or more and a Shore hardness of 40 or more.

ここで、黒鉛ルツボ2の形状は、一般的にはカップ状であり、底部2aと、底部2aに連続して湾曲しながら上方へ立ち上がる湾曲部(小R部)2bと、湾曲部2bに連続して真っ直ぐ上方に伸び上がる直胴部2cとによって構成されている。黒鉛ルツボ基材3の形状も黒鉛ルツボ2の形状に対応しており、底部3aと、湾曲部(小R部)3bと、直胴部3cとによって構成されている。このような構成の黒鉛ルツボ基材3において、熱分解炭素被膜の形成は、図1に示すように、黒鉛ルツボ基材3の表面の全体に形成してもよいし、SiC化が進みやすい部分のみであってもよい。例えば、ルツボの内面だけ全体的に析出させるとか、内面のうち湾曲部(小R部)3bのみに、又は湾曲部3bと直胴部3cのみに析出させるようにしてもよい。   Here, the shape of the graphite crucible 2 is generally cup-shaped, and continues to the bottom portion 2a, a curved portion (small R portion) 2b that rises upward while being continuously curved to the bottom portion 2a, and a curved portion 2b. And a straight body portion 2c extending straight upward. The shape of the graphite crucible base material 3 also corresponds to the shape of the graphite crucible 2, and is composed of a bottom portion 3a, a curved portion (small R portion) 3b, and a straight body portion 3c. In the graphite crucible base material 3 having such a configuration, the pyrolytic carbon film may be formed on the entire surface of the graphite crucible base material 3 as shown in FIG. It may be only. For example, only the inner surface of the crucible may be deposited as a whole, or may be deposited only on the curved portion (small R portion) 3b or only on the curved portion 3b and the straight body portion 3c.

次いで、黒鉛ルツボ基材3の表面を熱分解炭素被膜4により被覆したものの状態を、図2を用いて説明する。図2は黒鉛ルツボ基材3の表面の一部拡大断面図であり、同図(a)は黒鉛ルツボ基材3の表面全体に熱分解炭素の被膜4が良好に形成されている状況を模式的に示しており、同図(b)、(c)はその形成が良好でない状況を模式的に示している。黒鉛ルツボ基材3には表面に微小な孔が存在し、これは同図に示すように、開気孔5とよばれるが、開気孔5は表面において窪みを形成する。そのため、黒鉛ルツボ基材3の表面積は見かけ以上に大きく、図示のような入口が狭く内部が広い窪みについて図2(a)に示すように窪みの内側まで熱分解炭素膜で十分に被覆する必要がある。   Next, the state of the surface of the graphite crucible base material 3 covered with the pyrolytic carbon coating 4 will be described with reference to FIG. FIG. 2 is a partially enlarged cross-sectional view of the surface of the graphite crucible base material 3, and FIG. 2 (a) schematically shows a situation where the pyrolytic carbon coating 4 is well formed on the entire surface of the graphite crucible base material 3. FIGS. 2B and 2C schematically show a situation where the formation is not good. The graphite crucible base material 3 has minute pores on the surface, which are called open pores 5 as shown in the figure, but the open pores 5 form depressions on the surface. Therefore, the surface area of the graphite crucible base material 3 is larger than the apparent surface, and it is necessary to sufficiently cover the inside of the depression with a pyrolytic carbon film as shown in FIG. There is.

CVD法のような短時間に被膜を形成した場合には、図2(b)に示すように開気孔の開口部を覆うにとどまり、その内部にまで十分に被覆することができない。この場合には強度的に不安定な上記の開口部に亀裂を生じ、熱分解炭素膜で被覆されない内側部分をSiOガス存在下の外部に晒す恐れがある。あるいは開気孔5の開口部を塞ぐことがないとしても、図2(c)に示すように開気孔5の内部にまで十分に被覆することができなくなり、上記の場合と同様に熱分解炭素膜で被覆されない部分をSiOガス存在下の外部に晒すことになる。従って、その表面に多くの開気孔が存在する黒鉛ルツボ基材3を十分に被覆するためには、熱分解炭素膜の析出速度を十分に遅くし、開気孔の内部まで成膜させる必要がある。このような観点からすると、熱分解炭素膜の析出速度は0.2μm/h以下とするのが望ましい。このような析出速度が遅く薄い熱分解炭素膜を得るためには、前記CVI法が適している。   When a film is formed in a short time as in the CVD method, as shown in FIG. 2 (b), it only remains to cover the opening of the open pores, and the inside cannot be sufficiently covered. In this case, there is a possibility that a crack is generated in the opening portion which is unstable in strength, and an inner portion not covered with the pyrolytic carbon film is exposed to the outside in the presence of SiO gas. Or even if it does not block the opening part of the open pore 5, as shown in FIG.2 (c), it becomes impossible to fully coat | cover the inside of the open pore 5, and the pyrolytic carbon film | membrane is similar to said case. The portion not covered with is exposed to the outside in the presence of SiO gas. Therefore, in order to sufficiently cover the graphite crucible base material 3 having many open pores on the surface, it is necessary to sufficiently slow down the deposition rate of the pyrolytic carbon film and to form the film inside the open pores. . From such a viewpoint, it is desirable that the deposition rate of the pyrolytic carbon film be 0.2 μm / h or less. In order to obtain such a thin pyrolytic carbon film with a slow deposition rate, the CVI method is suitable.

本実施の形態においては、上記CVI法を用いることにより基材の内部まで十分に含浸された熱分解炭素被膜で被覆された黒鉛ルツボを得ることができた。
このように黒鉛ルツボ基材の表面に存在する多数の開気孔の内面にまで熱分解炭素が析出、充填されることにより、黒鉛ルツボ基材の表面全体にわたってCとSiOガスとの反応が有効に抑制され、SiC化の進行を抑制することができる。この結果、黒鉛ルツボの使用寿命の長期化を図ることができる。
In the present embodiment, a graphite crucible covered with a pyrolytic carbon film sufficiently impregnated into the inside of the substrate could be obtained by using the CVI method.
In this way, the pyrolytic carbon is deposited and filled to the inner surfaces of many open pores existing on the surface of the graphite crucible base material, so that the reaction between C and SiO gas is effective over the entire surface of the graphite crucible base material. It is suppressed and progress of SiC formation can be suppressed. As a result, the service life of the graphite crucible can be extended.

なお、熱分解炭素被膜で被覆された黒鉛ルツボを、ハロゲンガス雰囲気下で熱処理して高純度化するのが好ましい。黒鉛ルツボから生じる不純物を少なくでき、高品質の金属単結晶が得られるからである。   In addition, it is preferable to heat-treat the graphite crucible coated with the pyrolytic carbon film in a halogen gas atmosphere to increase the purity. This is because impurities generated from the graphite crucible can be reduced and a high-quality metal single crystal can be obtained.

(その他の事項)
上記実施の形態では、単結晶引上げ装置用黒鉛ルツボを表面処理の対象としたが、合成石英製造用に用いられる黒鉛部材、例えば、図3に示すように、合成石英製造用に用いられる黒鉛製の型10や蓋11等について、実施の形態と同様にCVI法によって表面に熱分解炭素被膜を形成するようにしてもよい。合成石英製造用に用いられる黒鉛部材型や蓋は、合成石英と接触した際、発生するSiOガスによりSiC化が進行し、寸法が変化してしまったり、材質的に脆弱化してミクロンクラックが発生し遂には割れを招くことが従来問題となっていたが、CVI法によって表面に熱分解炭素被膜を形成することにより、SiC化を抑制でき、長寿命化を図ることができる。なお、図3中において、12は棒状体、13はヒーター、14は不活性ガス導入口、15は排気口である。
(Other matters)
In the above embodiment, the graphite crucible for a single crystal pulling apparatus is the target of surface treatment. However, as shown in FIG. 3, for example, a graphite member used for synthetic quartz production is used. As for the mold 10 and the lid 11, a pyrolytic carbon film may be formed on the surface by the CVI method as in the embodiment. When graphite member molds and lids used for synthetic quartz manufacture come into contact with synthetic quartz, the SiO 2 gas that is generated causes SiC to progress, the dimensions change, and the material becomes brittle, causing micron cracks. In the past, the occurrence of cracks has been a problem, but by forming a pyrolytic carbon film on the surface by the CVI method, the formation of SiC can be suppressed and the life can be extended. In FIG. 3, 12 is a rod-shaped body, 13 is a heater, 14 is an inert gas introduction port, and 15 is an exhaust port.

以下、実施例により本発明をより具体的に説明する。本発明は以下の実施例によって何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited in any way by the following examples.

[試験例1]
以下の試験用サンプルについて、寸法の変化を調べた。
(試験用サンプル)
黒鉛材を上記実施の形態と同様のCVI法で表面処理し、この表面処理された黒鉛材と、表面処理されていない未処理の黒鉛材の2種類について、試験用として以下の形状のサンプンを作製した。
3分割黒鉛ルツボの分割片 :各1片
以下、表面処理された黒鉛材を用いた分割片を本発明処理品と称し、未処理の黒鉛材を用いた分割片を未処理品と称する。
[Test Example 1]
The following test samples were examined for changes in dimensions.
(Test sample)
The graphite material is surface-treated by the same CVI method as in the above embodiment, and for the two types of the surface-treated graphite material and the untreated graphite material that has not been surface-treated, samples having the following shapes are used for testing. Produced.
Divided pieces of three-part graphite crucible: each one piece Hereinafter, a divided piece using a surface-treated graphite material is referred to as a treated product of the present invention, and a divided piece using an untreated graphite material is referred to as an untreated product.

(CVI処理)
CVI処理としては、以下の要領で行った。即ち、黒鉛材を真空炉内に配置し、1100℃まで昇温した後、CHガスを10(l/min)の流速で流しながら、圧力を10Torrにコントロールしつつ100時間保持した。
(CVI processing)
The CVI process was performed as follows. That is, after placing the graphite material in a vacuum furnace and raising the temperature to 1100 ° C., CH 4 gas was allowed to flow at a flow rate of 10 (l / min) while maintaining the pressure at 10 Torr for 100 hours.

(試験結果)
本発明処理品と未処理品とについて、高さ、ルツボ上端から50mm及び150mmのそれぞれの内径、及び小R部の半径の各寸法の変化を調べたので、その結果を表1に示す。
(Test results)
Table 1 shows the results of changes in the height, inner diameters of 50 mm and 150 mm from the upper end of the crucible, and changes in the radius of the small R portion of the processed and untreated products of the present invention.

(試験結果の評価)
表1より明らかなように、本発明処理品の寸法変化は極めて小さく、実用上何ら問題がないことが確認された。
(Evaluation of test results)
As is apparent from Table 1, the dimensional change of the treated product of the present invention was extremely small, and it was confirmed that there was no problem in practical use.

[試験例2]
以下の試験用サンプルについて、SiC化反応試験を行い、SiC反応前後の物理的特性(嵩密度、硬さ、電気抵抗率、曲げ強さ、細孔(開気孔)分布)の変化を調べた。
[Test Example 2]
The following test samples were subjected to a SiC conversion reaction test to examine changes in physical properties (bulk density, hardness, electrical resistivity, bending strength, pore (open pore) distribution) before and after the SiC reaction.

(試験用サンプル)
形状が異なる以外は、試験例1と同様の本発明処理品と、未処理品の2種類を、試験用サンプンとして作製した。
試験用サンプルとしては、以下の形状のものを用いた。
10×10×60(mm)の棒状サンプル:以下、この棒状サンプルを試験用サンプルAと称する。
100×200×20(mm)の板状サンプル:以下、この板状サンプルを試験用サンプルBと称する。
試験用サンプルBから100×20×厚み20(mm)の試験片を切り出した切断片:(図4に示すように6面中4面が被覆された面で、残り2面が被覆されていない面である。)以下、この切断片を試験用サンプルCと称する。
但し、試験用サンプルA、Bは本試験例2の他に、後述する試験例3、4のそれぞれのサンプルとして使用され、試験用サンプルCは後述する試験例4の走査型電子顕微鏡(SEM)による観察の場合にのみサンプルとして使用される。
なお、試験用サンプルA〜Cのうち、CVI法で表面処理されたものを本発明処理品と称し、表面処理されていない未処理のものを未処理品と称する。
(Test sample)
Except for the difference in shape, two kinds of processed products of the present invention similar to Test Example 1 and untreated products were produced as test samples.
As a test sample, one having the following shape was used.
10 × 10 × 60 (mm) rod-shaped sample: Hereinafter, this rod-shaped sample is referred to as a test sample A.
100 × 200 × 20 (mm) plate-like sample: Hereinafter, this plate-like sample is referred to as a test sample B.
A cut piece obtained by cutting out a test piece of 100 × 20 × thickness 20 (mm) from the test sample B: (As shown in FIG. 4, four of the six surfaces are covered and the remaining two surfaces are not covered. Hereinafter, this cut piece is referred to as a test sample C.
However, test samples A and B are used as respective samples of test examples 3 and 4 to be described later in addition to test example 2, and test sample C is a scanning electron microscope (SEM) of test example 4 to be described later. Used as a sample only for observation by
Of the test samples A to C, those treated by the CVI method are referred to as treated products of the present invention, and untreated samples not subjected to surface treatment are referred to as untreated products.

(SiC化反応試験)
試験用サンプルA〜Cを合成石英(高純度SiO)と高温熱処理し、SiC化の反応性を比較した。この場合の具体的条件は、以下の通りである。
処理炉 :真空炉
処理温度 :1600℃
炉内圧力 :10Torr
処理ガス :Ar 1ml/min
処理時間 :8時間保持
処理方法 :試験用サンプルを合成石英粉末に埋め込み、熱処理する。
(SiC conversion reaction test)
Test samples A to C were subjected to high-temperature heat treatment with synthetic quartz (high purity SiO 2 ), and the reactivity of SiC conversion was compared. Specific conditions in this case are as follows.
Processing furnace: Vacuum furnace Processing temperature: 1600 ° C
Furnace pressure: 10 Torr
Processing gas: Ar 1 ml / min
Treatment time: Hold for 8 hours Treatment method: A test sample is embedded in synthetic quartz powder and heat treated.

(試験結果)
上記試験用サンプルA、Bについて、表面処理前後の物理的特性(嵩密度、硬さ、電気抵抗率、曲げ強さ)を調べたので、その測定結果を表2、表3に示す。また、細孔(開気孔)分布の測定結果を図5に示す。
(Test results)
Since the physical properties (bulk density, hardness, electrical resistivity, bending strength) before and after the surface treatment were examined for the test samples A and B, Tables 2 and 3 show the measurement results. Moreover, the measurement result of pore (open pore) distribution is shown in FIG.

(試験結果の評価)
表2、表3から明らかなように、未処理品に比べて本発明処理品は、嵩密度、硬さ、曲げ強さがいずれも向上しており、高密度化及び高強度化されたことが認められる。なお、表2と表3とでは、サンプルサイズが異なるため、嵩密度の値に差が確認された。
(Evaluation of test results)
As apparent from Tables 2 and 3, the treated product of the present invention has improved bulk density, hardness, and bending strength compared to untreated product, and has been increased in density and strength. Is recognized. In Table 2 and Table 3, since the sample sizes are different, a difference in the bulk density value was confirmed.

また、表面処理前後の物理的特性として、細孔(開気孔)分布について調べたので、その測定結果を図3に示す。なお、測定方法としては、本発明処理品の表層から約2.4mm厚さで測定用試験片を採取し、この測定用試験片について測定した。
図5において、L1は本発明処理品の分布を示し、L2は未処理品の分布を示す。図5から明らかなように、本発明処理品は大きい細孔の容積が小さくなった。CVIは細孔の大きさを小さくしていた。
Further, as physical characteristics before and after the surface treatment, the pore (open pore) distribution was examined, and the measurement result is shown in FIG. In addition, as a measuring method, the test piece for a measurement was extract | collected by about 2.4 mm thickness from the surface layer of this invention processed goods, and it measured about this test piece for a measurement.
In FIG. 5, L1 indicates the distribution of the processed product of the present invention, and L2 indicates the distribution of the unprocessed product. As apparent from FIG. 5, the volume of large pores of the treated product of the present invention was reduced. CVI had a small pore size.

[試験例3]
上記試験例2のSiC化反応試験を行った試験用サンプルA、Bについて、SiC反応前後の質量変化及び体積変化を調べた。
(試験結果)
SiC反応試験前後の質量変化及び体積変化の測定結果を表4に示す。
[Test Example 3]
With respect to test samples A and B for which the SiC conversion reaction test of Test Example 2 was conducted, the mass change and volume change before and after the SiC reaction were examined.
(Test results)
Table 4 shows the measurement results of mass change and volume change before and after the SiC reaction test.

(試験結果の評価)
表4から明らかなように、質量変化率について、サンプルサイズによらず、本発明処理品に比べて未処理品が質量減少が少ないことが認められる。また、体積変化率については、本発明処理品が未処理品に比べ値が低くなった。試験前後では、反応による減肉とSiC化による質量の増加が起こるため、一概に質量変化率と体積変化率で反応性を評価できないが、結果からCVI処理によるSiC化抑制効果があると考えられる。特に、処理時間が8時間という短い時間であったので、顕著な差はでなかったが、処理時間を100時間程度とすれば、顕著な差がでて明確な評価ができたものと考えられる。
(Evaluation of test results)
As is clear from Table 4, regarding the mass change rate, it is recognized that the untreated product has less mass loss than the treated product regardless of the sample size. Moreover, about the volume change rate, the value of this invention processed product became low compared with the untreated product. Before and after the test, the thinning due to the reaction and the increase in the mass due to the SiC conversion occur, so the reactivity cannot be generally evaluated by the mass change rate and the volume change rate, but it is considered that there is an effect of suppressing the SiC conversion by the CVI treatment from the results. . In particular, since the processing time was as short as 8 hours, there was no significant difference. However, when the processing time was about 100 hours, it was considered that there was a significant difference and a clear evaluation could be made. .

[試験例4]
上記試験例4と同様のSiC反応試験を行った試験用サンプルA〜Cについて、反応試験後のSiC層の厚さを以下、(1)灰化後の観察、(2)走査型電子顕微鏡による観察、の2種類の方法で観察した。
[Test Example 4]
For test samples A to C in which the same SiC reaction test as in Test Example 4 was performed, the thickness of the SiC layer after the reaction test was as follows: (1) observation after ashing, (2) by scanning electron microscope Observation was performed by two methods.

(1)灰化後の観察の場合
SiC反応試験後の試験用サンプルA、Bで残存した黒鉛材部位を、800℃の大気雰囲気下で加熱灰化させ残ったSiC層の厚さついて調べたので、その結果を表5に示す。また、試験用サンプルA、Bについての灰化後の状態を図6〜図9に示す。なお、図6は試験用サンプルA(本発明処理品)の灰化後の状態を示す写真、図7は試験用サンプルB(本発明処理品)の灰化後の状態を示す写真、図8は試験用サンプルA(未処理品)の灰化後の状態を示す写真、図9は試験用サンプルB(未処理品)の灰化後の状態を示す写真である。
(1) In the case of observation after ashing The graphite material portions remaining in the test samples A and B after the SiC reaction test were examined for the thickness of the remaining SiC layer by heat ashing in an air atmosphere at 800 ° C. The results are shown in Table 5. Moreover, the state after ashing about the test samples A and B is shown in FIGS. 6 is a photograph showing the state after ashing of test sample A (processed product of the present invention), FIG. 7 is a photograph showing the state of test sample B (processed product of the present invention) after ashing, FIG. Is a photograph showing the state after ashing of test sample A (untreated product), and FIG. 9 is a photograph showing the state after ashing of test sample B (untreated product).

(試験結果の評価)
図6〜図9及び表5から明らかなように、未処理品と比較して、本発明処理品の方がSiC化抑制効果が認められる。サンプルサイズでSiC層の値に差があるものの、未処理品に比べて本発明処理品ではSiC層は約50%薄くなった。
(Evaluation of test results)
As is apparent from FIGS. 6 to 9 and Table 5, the treated product of the present invention has a SiC-inhibiting effect as compared with the untreated product. Although there was a difference in the value of the SiC layer depending on the sample size, the SiC layer was about 50% thinner in the treated product of the present invention than in the untreated product.

(2)走査型電子顕微鏡(SEM)による観察の場合
SiC反応試験後の試験用サンプルA〜Cの表面状態についてのSEM写真を、図10〜図14に示す。なお、図10は試験用サンプルA(本発明処理品)のSEM写真、図11は試験用サンプルB(本発明処理品)のSEM写真、図12は試験用サンプルC(本発明処理品)のSEM写真、図13は試験用サンプルA(未処理品)のSEM写真、図14は試験用サンプルC(未処理品)のSEM写真である。図11〜図14において、「}」はSiC層を示している。
(試験結果の評価)
SEM写真から、SiC層の厚さは灰化の結果と同じ傾向となった。未処理品に比べて本発明処理品による効果が確認できた。
(2) In the case of observation with a scanning electron microscope (SEM) The SEM photograph about the surface state of the test samples AC after a SiC reaction test is shown in FIGS. 10 is a SEM photograph of test sample A (processed product of the present invention), FIG. 11 is a SEM photograph of test sample B (processed product of the present invention), and FIG. 12 is a test sample C (processed product of the present invention). FIG. 13 is a SEM photograph of the test sample A (untreated product), and FIG. 14 is a SEM photograph of the test sample C (untreated product). In FIGS. 11 to 14, “}” indicates a SiC layer.
(Evaluation of test results)
From the SEM photograph, the thickness of the SiC layer showed the same tendency as the result of ashing. The effect of the treated product of the present invention was confirmed compared to the untreated product.

本発明は、単結晶引き上げ装置用黒鉛ルツボ及びその製造方法に適用される。   The present invention is applied to a graphite crucible for a single crystal pulling apparatus and a method for manufacturing the same.

1:石英ルツボ
2:黒鉛ルツボ
3:黒鉛ルツボ基材
4:熱分解炭素被膜
5:開気孔
1: Quartz crucible 2: Graphite crucible 3: Graphite crucible base material 4: Pyrolytic carbon coating 5: Open pores

Claims (5)

単結晶引き上げ装置用黒鉛ルツボであって、
黒鉛ルツボ基材の特性が、嵩密度が1.65Mg/m 以上、曲げ強さが30MPa以上、ショア硬さ40以上の値を有するものを使用し、
黒鉛ルツボ基材の表面の全体又は一部に熱分解炭素の被膜が形成され、該被膜は前記表面に存在する開気孔の内面まで生成されていることを特徴とする単結晶引き上げ装置用黒鉛ルツボ。
A graphite crucible for a single crystal pulling device,
Using the characteristics of the graphite crucible base material, the bulk density is 1.65 Mg / m 3 or more, the bending strength is 30 MPa or more, and the Shore hardness is 40 or more,
A graphite crucible for a single crystal pulling apparatus, characterized in that a pyrolytic carbon film is formed on the whole or a part of the surface of the graphite crucible base material, and the film is formed up to the inner surface of open pores existing on the surface. .
前記被膜の厚みの平均は100μm以下である請求項1記載の単結晶引き上げ装置用黒鉛ルツボ。   The graphite crucible for a single crystal pulling apparatus according to claim 1, wherein the average thickness of the coating is 100 μm or less. 前記被膜はCVI法によって形成されたものである請求項1又は2記載の単結晶引き上げ装置用黒鉛ルツボ。   The graphite crucible for a single crystal pulling apparatus according to claim 1 or 2, wherein the coating is formed by a CVI method. 単結晶引き上げ装置用黒鉛ルツボの製造方法であって、
黒鉛ルツボ基材の特性が、嵩密度が1.65Mg/m 以上、曲げ強さが30MPa以上、ショア硬さ40以上の値を有するものを使用し、
黒鉛ルツボ基材の表面の全体又は一部に熱分解炭素の被膜が形成され、且つ該被膜が黒鉛ルツボ基材の表面に存在した開気孔の内部表面にまで生成されるように、CVI法によって熱分解炭素の被膜を形成する工程を含むことを特徴とする単結晶引き上げ装置用黒鉛ルツボの製造方法。
A method for producing a graphite crucible for a single crystal pulling apparatus,
Using the characteristics of the graphite crucible base material, the bulk density is 1.65 Mg / m 3 or more, the bending strength is 30 MPa or more, and the Shore hardness is 40 or more,
By the CVI method, a pyrolytic carbon film is formed on the whole or a part of the surface of the graphite crucible base material, and the film is generated to the inner surface of the open pores existing on the surface of the graphite crucible base material. A method for producing a graphite crucible for a single crystal pulling apparatus, comprising a step of forming a film of pyrolytic carbon.
前記熱分解炭素の被膜形成工程により熱分解炭素の被膜が形成された黒鉛ルツボ基材をハロゲンガス雰囲気下で熱処理して高純度化する工程を含む請求項4記載の単結晶引き上げ装置用黒鉛ルツボの製造方法。   5. The graphite crucible for a single crystal pulling apparatus according to claim 4, further comprising a step of heat-treating the graphite crucible base material on which the pyrolytic carbon film has been formed by the pyrolytic carbon film forming step in a halogen gas atmosphere to purify the graphite crucible base material. Manufacturing method.
JP2011020814A 2011-02-02 2011-02-02 Graphite crucible for single crystal pulling apparatus and manufacturing method thereof Active JP5723615B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/980,995 US20130305984A1 (en) 2011-02-02 2010-01-30 Graphite crucible for single crystal pulling apparatus and method of manufacturing same
JP2011020814A JP5723615B2 (en) 2011-02-02 2011-02-02 Graphite crucible for single crystal pulling apparatus and manufacturing method thereof
KR1020137023197A KR101808891B1 (en) 2011-02-02 2012-01-30 Graphite crucible for single crystal pulling apparatus, and method for manufacturing the graphite crucible
KR1020177035272A KR101907818B1 (en) 2011-02-02 2012-01-30 Graphite crucible for single crystal pulling apparatus, and method for manufacturing the graphite crucible
PCT/JP2012/051975 WO2012105488A1 (en) 2011-02-02 2012-01-30 Graphite crucible for single crystal pulling apparatus, and method for manufacturing the graphite crucible
CN201280003981.4A CN103249876B (en) 2011-02-02 2012-01-30 Single crystal pulling apparatus graphite crucible and manufacture method thereof
TW104132396A TWI576472B (en) 2011-02-02 2012-02-01 Graphite crucible for single crystal pulling device and method for manufacturing the same
TW101103242A TWI526585B (en) 2011-02-02 2012-02-01 Graphite crucible for single crystal pulling device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011020814A JP5723615B2 (en) 2011-02-02 2011-02-02 Graphite crucible for single crystal pulling apparatus and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012158504A JP2012158504A (en) 2012-08-23
JP5723615B2 true JP5723615B2 (en) 2015-05-27

Family

ID=46839354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011020814A Active JP5723615B2 (en) 2011-02-02 2011-02-02 Graphite crucible for single crystal pulling apparatus and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5723615B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004150A (en) * 2019-06-26 2021-01-14 イビデン株式会社 Carbon-based composite material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4077601B2 (en) * 2000-11-01 2008-04-16 東海カーボン株式会社 Method for producing C / C crucible for pulling single crystal

Also Published As

Publication number Publication date
JP2012158504A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
EP2520691B1 (en) Tantalum carbide-coated carbon material and manufacturing method for same
US12020928B2 (en) SiC semiconductor substrate, method for manufacturing same, and device for manufacturing same
JP3938361B2 (en) Carbon composite material
JP6818776B2 (en) Silicon carbide members and semiconductor manufacturing equipment members
WO2012105488A1 (en) Graphite crucible for single crystal pulling apparatus, and method for manufacturing the graphite crucible
WO2021025085A1 (en) SiC SUBSTRATE, SiC EPITAXIAL SUBSTRATE, SiC INGOT AND PRODUCTION METHODS THEREOF
EP3879010A1 (en) Sic semiconductor substrate, and, production method therefor and production device therefor
WO2021025084A1 (en) SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, SiC INGOT PRODUCED BY GROWING SAID SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, AND SiC WAFER PRODUCED FROM SAID SiC INGOT AND SiC WAFER WITH EPITAXIAL FILM AND METHODS RESPECTIVELY FOR PRODUCING SAID SiC WAFER AND SAID SiC WAFER WITH EPITAXIAL FILM
JP2000302577A (en) Graphite member coated with silicon carbide
JP2002003285A (en) SiC-COATED GRAPHITE MATERIAL AND ITS MANUFACTURING METHOD
WO2021060368A1 (en) Sic single crystal manufacturing method, sic single crystal manufacturing device, and sic single crystal wafer
JP5723615B2 (en) Graphite crucible for single crystal pulling apparatus and manufacturing method thereof
JP2000302576A (en) Graphite material coated with silicon carbide
JP5777897B2 (en) Graphite crucible for single crystal pulling apparatus and manufacturing method thereof
JP2016113338A (en) Thermal decomposition boron nitride member and method for manufacturing the same
WO2021025086A1 (en) SiC SUBSTRATE PRODUCTION METHOD
JP3942158B2 (en) Method for producing cylindrical SiC molded body
JPH053410B2 (en)
JPH09235163A (en) Heat-treatment jig and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150330

R150 Certificate of patent or registration of utility model

Ref document number: 5723615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250