WO2018149411A1 - 数据处理方法及装置 - Google Patents

数据处理方法及装置 Download PDF

Info

Publication number
WO2018149411A1
WO2018149411A1 PCT/CN2018/076793 CN2018076793W WO2018149411A1 WO 2018149411 A1 WO2018149411 A1 WO 2018149411A1 CN 2018076793 W CN2018076793 W CN 2018076793W WO 2018149411 A1 WO2018149411 A1 WO 2018149411A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit sequence
information bit
encoding
polarization code
rate matching
Prior art date
Application number
PCT/CN2018/076793
Other languages
English (en)
French (fr)
Inventor
陈梦竹
许进
徐俊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710184062.6A external-priority patent/CN108429603B/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP23202725.0A priority Critical patent/EP4325727A3/en
Priority to KR1020197026787A priority patent/KR102289928B1/ko
Priority to KR1020217025220A priority patent/KR102419967B1/ko
Priority to EP18754604.9A priority patent/EP3584970A4/en
Priority to JP2019544003A priority patent/JP7030131B2/ja
Publication of WO2018149411A1 publication Critical patent/WO2018149411A1/zh
Priority to US16/542,246 priority patent/US11121724B2/en
Priority to US17/468,606 priority patent/US11683052B2/en
Priority to JP2021172802A priority patent/JP7248762B2/ja
Priority to US17/648,413 priority patent/US11496156B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • H03M13/151Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2906Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using block codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • H03M13/6362Error control coding in combination with rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols

Definitions

  • the present disclosure relates to next generation mobile communication technologies, such as a data processing method and apparatus.
  • the channel coding service is a separate part of the mobile communication system, which ensures the reliability, accuracy and effectiveness of information transmission.
  • the proportional sequence length of the polarization code encoder output is a power series of 2, and the bit sequence of any length cannot be selected from the encoded bit sequence for transmission.
  • a data processing method and apparatus are provided, which are capable of transmitting bit sequences of arbitrary length.
  • An embodiment provides a data processing method, including:
  • K is a positive integer and N is a positive integer greater than or equal to K.
  • the polarization code encoding comprises: parity polarization code encoding, or cyclic redundancy check auxiliary polarization code encoding.
  • the method further comprises selecting the parity polarization code code or the cyclic redundancy check auxiliary polarization code code as the coding method according to the data feature.
  • An embodiment further provides a data processing method, including: the transmitting end performs polarization code encoding on the input information bit sequence to obtain a coded bit sequence;
  • the transmitting end determines the to-be-transmitted bit sequence from the encoded bit sequence according to the data feature of the characterizing information bit sequence and the preset rate matching policy;
  • the transmitting end sends the determined bit sequence to be transmitted to the receiving end.
  • An embodiment further provides a data processing apparatus, including: an encoding module and a matching module, wherein
  • the encoding module is configured to perform polarization code encoding on an input bit sequence of length K bits to obtain a bit sequence of length N bits after encoding;
  • the matching module is configured to determine a to-be-transmitted bit sequence from the encoded bit sequence according to a data feature of the characterizing information bit sequence and a preset rate matching policy;
  • K is a positive integer and N is a positive integer greater than or equal to K.
  • the polarization code encoding comprises: parity polarization code encoding, or cyclic redundancy check auxiliary polarization code encoding.
  • the encoding module is further configured to: select the parity polarization code or the cyclic redundancy check auxiliary polarization code encoding as an encoding method according to the data feature.
  • An embodiment further provides an apparatus for implementing a data processing method, comprising at least a memory and a processor for executing executable instructions stored in the memory, wherein
  • the memory stores a polarization code generation matrix and the following executable instructions: performing polarization coding on the input bit sequence of length K bits to obtain a coded bit sequence of length N bits; according to the data characteristics of the information bit sequence a preset rate matching policy, determining a bit sequence to be transmitted from the encoded bit sequence;
  • K is a positive integer and N is a positive integer greater than or equal to K.
  • An embodiment further provides a computer readable storage medium storing computer executable instructions for performing the methods of any of the above embodiments.
  • the data processing method and device of the foregoing embodiment performs polarization code encoding on a bit sequence of length K bits to obtain a coded bit sequence of length N bits, and determines a bit sequence to be transmitted according to the data feature, and implements the basis Transmission of a bit sequence of any length encoded by a polarization code.
  • FIG. 1 is a flow chart of a data processing method according to an embodiment
  • FIG. 2 is a flow chart of another data processing method according to an embodiment
  • FIG. 3 is a schematic diagram showing the structure of a data processing apparatus according to an embodiment.
  • FIG. 1 is a flowchart of a data processing method according to an embodiment. As shown in FIG. 1, the data processing method includes the following steps.
  • step 100 the input bit sequence of length K bits is subjected to polarization code encoding to obtain a coded bit sequence of length N bits.
  • K is a positive integer and N is a positive integer greater than or equal to K.
  • bit sequence of length K bits comprises one of the following forms:
  • the check bit sequence is encoded by the information bit sequence and the known bit sequence; or the check bit sequence is encoded by the information bit sequence.
  • the coding modes include, but are not limited to, parity coding, cyclic redundancy check coding, BCH (Bose, Ray-Chaudhuri, & Hocquenghem) coding, Hamming code coding, convolutional coding, generator matrix coding, Turbo coding, Low density parity check encoding, Reed Muller encoding, hash encoding, etc.
  • the coding mode is any combination of the above coding modes, or is performed one or more times by the same coding mode.
  • known bit sequences include, but are not limited to, an all-zero sequence, or a full 1-bit sequence, or a pseudo-random sequence of zeros and ones.
  • the known bit sequence can also be any combination of the above.
  • the known bit sequence comprises one or any combination of the following sequences: a full 0 bit sequence; a full 1 bit sequence; a pseudo random sequence consisting of 0 and 1; a partially known bit sequence being 0, the remaining part of the known bit
  • the sequence is a pseudo-random sequence consisting of 0 and 1; the partial known bit sequence is 1, the remaining part of the known bit sequence is a pseudo-random sequence consisting of 0 and 1; and, the partially known bit sequence is 0, the other part is known
  • the bit sequence is 1, and the remaining known bit sequence is a pseudo-random sequence consisting of 0 and 1.
  • the step 100 may include: selecting one or C code blocks for polarization code encoding in the polarization code encoding process according to data characteristics of the information bit sequence, where C is a positive integer greater than 1.
  • K 1 is the length of the information bit sequence to be transmitted
  • K 1max is the length of the set maximum information bit sequence
  • N max is the maximum size of the polarization matrix corresponding to the generation matrix
  • K 1 , K 1max and N max are both A positive integer, 0 ⁇ ⁇ ⁇ 2.
  • selecting one or C code blocks for performing polarization code encoding in the foregoing steps includes:
  • the C code blocks are used for polarization code encoding. If the data feature of the characterizing information bit sequence does not satisfy the threshold condition, it is determined that the code code is encoded using one code block.
  • the polarization code encoding in the step 100 includes, but is not limited to, a Parity-Check Polar code, or a Cyclic Redundancy Check-aided Polar. Code) encoding.
  • the parity polarization code refers to that the parity bit generation manner in the input bit sequence when the polarization code is encoded includes: the information bit code is subjected to parity coding; and the cyclic redundancy check is performed.
  • the auxiliary polarization code refers to a check bit generation manner in the input bit sequence when the polarization code is encoded, including the information bit code and the cyclic redundancy check code, but does not include the parity code.
  • the method further includes: selecting a parity polarization code code or a cyclic redundancy check auxiliary polarization code code as the coding method according to the data feature used to characterize the information bit sequence.
  • selecting the parity polarization code encoding or the cyclic redundancy check auxiliary polarization code encoding as the encoding method according to the data feature for characterizing the information bit sequence comprises: if the data feature of the characterizing information bit sequence is satisfied a threshold condition, selecting an encoding method from the parity polarization code encoding or the cyclic redundancy check auxiliary polarization code encoding; if the data feature of the characterizing information bit sequence does not satisfy the threshold condition, selecting another Coding method.
  • performing the polarization code encoding on the bit sequence of length K bits to obtain a coded bit sequence having a length of N bits includes: generating a matrix of the input bit length of K bits according to a polarization code generation matrix After encoding, an encoded bit sequence of length N bits is obtained.
  • a bit sequence to be transmitted is determined from the encoded bit sequence according to the data characteristics of the characterization information bit sequence and a preset rate matching policy.
  • the step 101 may include: determining a rate matching policy of the to-be-transmitted bit sequence from the plurality of preset rate matching policies according to the data feature of the characterizing information bit sequence; and selecting R pieces from the encoded bit sequence according to the determined rate matching policy.
  • the bit is a bit sequence to be transmitted, where R ⁇ K and R is a positive integer.
  • determining, according to the data feature of the information bit sequence, a rate matching policy for determining a bit sequence to be transmitted from a plurality of preset rate matching policies includes: if the data feature of the characterizing information bit sequence satisfies a threshold condition, Determining, from a plurality of preset rate matching policies, a rate matching policy as a rate matching policy of a bit sequence to be transmitted; if the data feature of the characterizing information bit sequence does not satisfy a threshold condition, from a plurality of preset rate matching policies One of the other rate matching policies is determined as a rate matching policy of the bit sequence to be transmitted.
  • the data characteristics characterizing the information bit sequence include any one or any combination of the following:
  • the working mode of the information bit sequence wherein the working mode may be an in-band mode, an out-band mode or a stand alone mode;
  • the application scenario of the information bit sequence wherein the application scenario may be an enhanced mobile broadband (eMBB) scenario, or an ultra-reliable low latency (URLC) scenario, or a massive machine communication (massive machine type) Communication, mMTC) scenes, etc.
  • eMBB enhanced mobile broadband
  • URLC ultra-reliable low latency
  • mMTC massive machine communication
  • the link direction of the information bit sequence wherein the link direction may refer to a downlink direction from a base station or a relay to a terminal, or an uplink direction from a terminal to a base station or a relay;
  • the type of the user equipment (User Equipment, UE) that receives the bit sequence to be transmitted, where the size of the receiving buffer of the user equipment of different levels (different types) is different;
  • the code rate of the coded block is the code rate of the coded block
  • MCS Modulation Coding Scheme
  • CCE Control Channel Element
  • a type of channel carrying an information bit sequence wherein the type of the channel may refer to a data channel and a control channel;
  • CSI Channel State Information
  • the carrier frequency carrying the sequence of information bits.
  • the preset rate matching policy (ie, selecting R bits from the encoded bit sequence as the rate matching policy according to the to-be-transmitted bit sequence) may include:
  • N 3 , N 2 ⁇ , Q 3 is the remaining index, N/8 ⁇ N 1 ⁇ N 2 ⁇ N/3, N 2 ⁇ N 4 ⁇ N 3 ⁇ 2N/3, N 3 ⁇ N 5 ⁇ N-1 And N 1 , N 2 , N 3 , N 4 , and N 5 are all positive integers, and the set between any of the sequence Q 1 , the sequence Q 2 , and the sequence Q 3 is an empty set;
  • a sixth rate matching strategy when R ⁇ N, the first R bits in the encoded bit sequence are selected as the to-be-transmitted bit sequence according to the index sequence ⁇ I 1 , I 2 , I 3 , I 4 ⁇ , wherein , sequence I 1 is the intersection of the sequence ⁇ BRO(k) ⁇ and the sequence ⁇ 0,1,...,t 1 -1 ⁇ , and the sequence I 2 is the sequence ⁇ 0,1,...,t 1 -1 ⁇ With the difference of I 1 , the sequence I 4 is the intersection of the sequence ⁇ BRO(k) ⁇ and the sequence ⁇ t 1 , t 1 +1, . . .
  • the sequence I 3 is the remaining index value
  • k t 2 , t 2 +1,...,N-1,BRO is a bit reverse order permutation operation, N/8 ⁇ t 1 ⁇ 3N/8, 0 ⁇ t 2 ⁇ N-1, t 1 and t 2 a non-negative integer, the intersection between any of the sequence I 1 , the sequence I 2 , the sequence I 3 , and the sequence I 4 is an empty set;
  • the seventh rate matching strategy when R>N, the (RN) bits are arranged from the encoded bit sequence of length N before or after the encoded bit sequence of length N to obtain a bit of length R.
  • the sequence acts as a sequence of bits to be transmitted.
  • Eighth rate matching policy when R ⁇ N, N-bit encoded bit sequence of R bits selected as the bit sequence to be transmitted according to a sequence index 1 in the preceding P R or R index from the rear length , wherein the index sequence P 1 is the same sequence as the sequence for determining the position of the K bit input bit sequence in the polarization code encoder; or the index sequence P 1 has at least a ratio of q%
  • the order of arrangement of the elements is different from the order of the elements in the sequence for determining the position of the K-bit input bit sequence in the polarization code encoder, wherein q% is one of 5%, 10% or 20%;
  • the coded bit sequence of N bits selected bits arranged in the RN according to the length of consecutive indices. 1 RN P from the index sequence of length N bits encoding: a ninth rate matching strategy Positions before or after the bit sequence, a bit sequence of length R is obtained as the bit sequence to be transmitted, wherein the index sequence P 1 and the input bit sequence for determining the K bit are located in the polarization code encoder
  • the sequence is the same sequence; or, the order of the elements of the index sequence P 1 having at least a proportion of q% and the sequence for determining the position of the input bit sequence of the K bits in the polarization code encoder
  • the order of the elements is different, q% is not more than 70%, wherein q% is one of 5%, 10% or 20%;
  • An eleventh rate matching strategy when R>N, selecting successive RN bits from the encoded bit sequence of length N bits to be arranged before or after the encoded bit sequence of length N bits, Obtaining a bit sequence of length R as the to-be-transmitted bit sequence, wherein the encoding process comprises: interleaving the a-th input bit in the K-bit bit sequence to a position index of a polarization code encoder or a generation matrix
  • ⁇ 1 is at least e% and the order of the elements in ⁇ 2 is different, and e% is 5 One of %, 10% or 20%.
  • the sequence of positions of the K-bit input bit sequence in the polarization code encoder or the interleaver ⁇ 1 may be indexed according to its function value
  • the position of the input bit sequence (including information bits, parity bits, and known bits) needs to be properly arranged, that is, the information bits and the check bits are selected well.
  • a subchannel or a highly reliable index position can achieve better code performance.
  • its arrangement position in the index sequence P 1 , the interleaver ⁇ 1 or the interleaver ⁇ 2 characterizes the reliability of the index.
  • index i is obtained according to its function value.
  • the rate matching policy according to the determining the bit sequence to be transmitted in step 101 includes:
  • the rate matching policy of the bit sequence to be transmitted may be: a second rate matching policy, or a third rate matching policy, or a fifth rate matching policy or an eighth rate matching policy or a tenth rate matching policy, or a seventh rate matching policy or a ninth rate matching policy or an eleventh rate matching policy; an aggregation level of control channel elements carrying information bit sequences
  • the rate matching policy of the to-be-transmitted bit sequence may be: a first rate matching policy, or a fourth rate matching policy, or a sixth rate matching policy.
  • the value of the first threshold may be one of ⁇ 1, 2, 4, 8 ⁇ .
  • the rate matching policy according to the determining the bit sequence to be transmitted in step 101 may include:
  • the rate matching policy of the bit sequence to be transmitted may be: a second rate matching policy, or a third rate matching policy, or a fifth rate matching policy or an eighth rate, when the MCS level of the information bit sequence is greater than a preset second threshold.
  • a matching policy or a tenth rate matching policy when the MCS level of the information bit sequence is less than or equal to the second threshold, the rate matching policy of the bit sequence to be transmitted may be: a first rate matching policy, or a fourth rate matching policy, or a A six rate matching policy, or a seventh rate matching policy or a ninth rate matching policy or an eleventh rate matching policy.
  • the second threshold may be a positive integer not less than 2 and not more than 32.
  • the rate matching policy according to the determining the bit sequence to be transmitted in step 101 includes:
  • the rate matching policy of the bit sequence to be sent may be: a second rate matching policy, or a third rate matching policy, or a fifth rate matching policy or an eighth rate matching strategy or The ten-rate matching policy; when the working mode is the out-of-band mode, the rate matching policy of the bit sequence to be sent may be: a first rate matching policy, or a fourth rate matching policy, or a sixth rate matching policy, or a seventh rate matching Policy or ninth rate matching policy or eleventh rate matching strategy.
  • the rate matching policy according to the determining the bit sequence to be sent in step 101 includes:
  • the rate matching policy of the bit sequence to be sent may be: a second rate matching policy, or a third rate matching policy, or a fifth rate matching policy or an eighth rate matching policy or a tenth rate.
  • the matching policy may be: the first rate matching policy, or the fourth rate matching policy, or the sixth rate matching, when the application scenario is a super-reliable low-latency scenario or a massive machine communication scenario.
  • the rate matching strategy for determining the bit sequence to be transmitted in step 101 includes:
  • the rate matching policy of the to-be-transmitted bit sequence may be: a second rate matching policy, or a third rate matching policy, or a fifth rate matching policy or the eighth a rate matching policy or a tenth rate matching policy, or a seventh rate matching policy or a ninth rate matching policy or an eleventh rate matching policy; when the link direction is a downlink direction from a base station or a relay to a terminal, a to-be-transmitted bit
  • the rate matching policy of the sequence may be: a first rate matching policy, or a fourth rate matching policy, or a sixth rate matching policy.
  • the rate matching policy according to the determining the bit sequence to be transmitted in step 101 includes:
  • the rate matching policy of the bit sequence to be transmitted may be: a second rate matching policy, or a third rate matching policy, or a fifth rate matching policy or an eighth rate, when the index of the type of the user equipment is greater than a preset third threshold. a matching policy or a tenth rate matching policy, or a seventh rate matching policy or a ninth rate matching policy or an eleventh rate matching policy; the rate of the bit sequence to be transmitted when the index of the type of the user equipment is less than or equal to the third threshold
  • the matching policy may be: a first rate matching policy, or a fourth rate matching policy, or a sixth rate matching policy.
  • the third threshold may be a positive integer greater than 6.
  • the rate matching strategy for determining the bit sequence to be transmitted in step 101 includes:
  • the rate matching policy of the bit sequence to be transmitted may be: a second rate matching policy, or a third rate matching policy, or a fifth rate matching policy or an eighth rate, when the length of the coded block is greater than a preset fourth threshold. a matching policy or a tenth rate matching policy, or a seventh rate matching policy or a ninth rate matching policy or an eleventh rate matching policy; the rate of the bit sequence to be transmitted when the length of the coded block is less than or equal to the fourth threshold
  • the matching policy may be: a first rate matching policy, or a fourth rate matching policy, or a sixth rate matching policy.
  • the fourth threshold may be a positive integer not less than 200 and not more than 4000.
  • the rate matching strategy for determining the bit sequence to be transmitted in step 101 includes:
  • the rate matching policy of the bit sequence to be transmitted may be: a second rate matching policy, or a third rate matching policy, or a fifth rate matching policy or an eighth rate matching, when the length of the information bit sequence is greater than a preset fifth threshold.
  • a rate matching strategy of a bit sequence to be transmitted when the length of the information bit sequence is less than or equal to a fifth threshold It may be: a first rate matching policy, or a fourth rate matching policy, or a sixth rate matching policy.
  • the fifth threshold may be a positive integer not less than 200 and not more than 2000.
  • the rate matching strategy for determining the bit sequence to be transmitted in step 101 includes:
  • the rate matching policy of the bit sequence to be transmitted may be: a second rate matching policy, or a third rate matching policy, or a fifth rate matching strategy or the eighth, when the code rate of the coded block is greater than a preset sixth threshold.
  • a rate matching policy or a tenth rate matching policy when the code rate of the coded block is less than or equal to the sixth threshold, the rate matching policy of the bit sequence to be transmitted may be: a first rate matching policy, or a fourth rate matching policy, Or a sixth rate matching policy, or a seventh rate matching policy or a ninth rate matching policy or an eleventh rate matching policy.
  • the sixth threshold is not less than 1/3 and not more than 1/2.
  • the rate matching strategy according to the determination of the bit sequence to be transmitted in step 101 includes:
  • the rate matching policy of the bit sequence to be sent may be: a second rate matching policy, or a third rate matching policy, or a fifth rate matching policy or an eighth rate matching policy or a tenth rate a matching policy;
  • the rate matching policy of the bit sequence to be transmitted may be: a first rate matching policy, or a fourth rate matching policy, or a sixth rate matching policy, or a seventh rate matching policy or The ninth rate matching strategy or the eleventh rate matching strategy.
  • the rate matching policy according to the determining the bit sequence to be transmitted in step 101 includes:
  • the rate matching policy of the bit sequence to be transmitted may be: a second rate matching policy, or a third rate matching policy, or a fifth rate matching strategy or The eighth rate matching policy or the tenth rate matching policy; when the number of transmissions of the information bit sequence is greater than the seventh threshold, the rate matching policy of the bit sequence to be transmitted may be: a first rate matching policy, or a fourth rate matching strategy, or a A six rate matching policy, or a seventh rate matching policy or a ninth rate matching policy or an eleventh rate matching policy.
  • the seventh threshold may be a positive integer not less than 1 and not more than 4.
  • the rate matching policy according to the determining the bit sequence to be transmitted in step 101 includes:
  • the rate matching policy of the bit sequence to be transmitted may be: a second rate matching policy, or a third rate matching policy, or a fifth rate matching policy or an eighth rate matching strategy. Or a tenth rate matching policy, or a seventh rate matching policy or a ninth rate matching policy or an eleventh rate matching policy; when the type of the channel carrying the information bit sequence is a control channel, the rate matching policy of the bit sequence to be transmitted may be Yes: a first rate matching policy, or a fourth rate matching policy, or a sixth rate matching policy.
  • the rate matching policy according to the determining the bit sequence to be transmitted in step 101 includes:
  • the rate matching policy of the bit sequence to be transmitted may be: a second rate matching policy, or a third rate matching policy, or a fifth rate, when the index of the control information format corresponding to the information bit sequence is less than or equal to the preset eighth threshold.
  • the rate matching policy of the to-be-transmitted bit sequence may be: a first rate matching policy, or a fourth rate matching policy, or a sixth rate matching policy.
  • the eighth threshold may be a non-negative integer not less than 3.
  • the rate matching policy according to the determining the bit sequence to be sent in step 101 includes:
  • the rate matching policy of the bit sequence to be sent may be: a second rate matching policy, or a third rate matching policy, or a fifth rate matching policy or an eighth rate.
  • a matching policy or a tenth rate matching policy when the value of the CQI in the CSI process is less than or equal to the ninth threshold, the rate matching policy of the to-be-transmitted bit sequence may be: a first rate matching policy, or a fourth rate matching policy, or a A six rate matching policy, or a seventh rate matching policy or a ninth rate matching policy or an eleventh rate matching policy.
  • the ninth threshold is a non-negative integer not greater than 15.
  • the rate matching strategy for determining the bit sequence to be transmitted in step 101 includes:
  • the rate matching policy of the bit sequence to be sent may be: a second rate matching policy, or a third rate matching policy, or a fifth rate matching policy or an eighth rate matching.
  • the policy or the tenth rate matching policy; when the level of the scrambling mode is less than or equal to the tenth threshold, the rate matching policy of the to-be-transmitted bit sequence may be: a first rate matching policy, or a fourth rate matching policy, or a sixth rate A matching policy, or a seventh rate matching policy or a ninth rate matching policy or an eleventh rate matching policy.
  • the tenth threshold may be a positive integer not greater than three.
  • the rate matching policy according to determining the bit sequence to be transmitted in step 101 includes:
  • the rate matching policy of the to-be-transmitted bit sequence may be: a second rate matching policy, or a third rate matching policy, or The fifth rate matching policy or the eighth rate matching policy or the tenth rate matching policy; when the index of the set of subframes is less than or equal to the eleventh threshold, the rate matching policy of the to-be-transmitted bit sequence may be: a first rate matching policy, Or a fourth rate matching policy, or a sixth rate matching policy, or a seventh rate matching policy or a ninth rate matching policy or an eleventh rate matching policy.
  • the eleventh threshold may be a non-negative integer of no more than 15.
  • the rate matching strategy according to the determining the bit sequence to be transmitted in step 101 includes:
  • the rate matching policy of the bit sequence to be transmitted may be: a second rate matching policy, or a third rate matching strategy, or a fifth rate matching policy or an eighth rate matching policy or a tenth rate matching policy, or a seventh rate matching policy or a ninth rate matching policy or an eleventh rate matching policy; a position index of the information bit sequence and the check bit sequence
  • the rate matching policy of the bit sequence to be transmitted may be: a first rate matching policy, or a fourth rate matching policy, or a sixth rate matching policy.
  • the twelfth threshold may be a positive integer of not less than 200 and not more than 4000.
  • the rate matching policy according to the determining the bit sequence to be transmitted in step 101 includes:
  • the rate matching policy of the bit sequence to be transmitted may be: a second rate matching policy, or a third rate matching policy, or a fifth rate, when the carrier frequency carrying the information bit sequence is less than or equal to a thirteenth threshold set in advance.
  • a matching policy or an eighth rate matching policy or a tenth rate matching policy; when the carrier frequency carrying the information bit sequence is greater than the thirteenth threshold, the rate matching policy of the to-be-transmitted bit sequence may be: a first rate matching policy, or a A four rate matching policy, or a sixth rate matching policy, or a seventh rate matching policy or a ninth rate matching policy or an eleventh rate matching policy.
  • the thirteenth threshold is not less than 6 GHz.
  • the rate according to the bit sequence to be transmitted is determined in step 101.
  • Matching strategies include:
  • the rate matching policy of the to-be-transmitted bit sequence may be: a second rate matching policy, or a third rate matching policy, or a fifth a rate matching policy or an eighth rate matching policy or a tenth rate matching policy; the control channel unit aggregation level of the information bit sequence is less than or equal to the first threshold, or the index of the control information format corresponding to the information bit sequence is smaller than Or equal to the foregoing eighth threshold, the rate matching policy of the to-be-transmitted bit sequence may be: a first rate matching policy, or a fourth rate matching policy, or a sixth rate matching policy, or a seventh rate matching policy or a ninth rate matching Strategy or eleven
  • the step of selecting one or C code blocks for performing polarization code encoding according to the data feature includes: When the aggregation level of the CCE carrying the information bit sequence is less than or equal to the preset first threshold, the C code blocks are selected for polarization code coding; when the aggregation level of the CCE carrying the information bit sequence is greater than the first threshold, select 1 The code blocks are coded by polarization codes.
  • the step of selecting one or C code blocks for polarization code encoding according to the data feature comprises: in the information bit sequence When the MCS level is greater than the preset second threshold, one code block is selected for polarization code encoding; when the MCS level of the information bit sequence is less than or equal to the second threshold, C code blocks are selected for polarization code encoding.
  • the step of selecting one or C code blocks according to the data feature for encoding the polarization code comprises: In the internal mode or the independent mode, one code block is selected for polarization code coding; when the operation mode is the out-of-band mode, C code blocks are selected for polarization code coding.
  • the step of selecting one or C code blocks for performing polarization code encoding according to the data feature includes: enhancing in an application scenario In the mobile broadband scenario, one code block is selected for polarization code encoding; when the application scenario is an ultra-reliable low-latency scene or a huge machine communication scenario, C code blocks are selected for polarization code encoding.
  • the step of selecting one or C code blocks according to the data feature for encoding the polarization code comprises: in the link direction When the base station or relay is in the downlink direction of the terminal, one code block is selected for polarization code coding; when the link direction is from the terminal to the uplink direction of the base station or the relay, C code blocks are selected for polarization code. coding.
  • the step of selecting one or C code blocks for performing polarization code encoding according to the data feature includes: When the index of the type of the user equipment is greater than a preset third threshold, C code blocks are selected for polarization code encoding; when the user equipment type index is less than or equal to the third threshold, one code block is selected for polarization code encoding.
  • the step of selecting one or C code blocks according to the data feature for encoding the polarization code comprises: after coding the code block When the length of the code block is greater than or equal to the fourth threshold, the C code blocks are selected for polarization code coding; when the code block length is less than or equal to the fourth threshold, one code block is selected for polarization code coding.
  • the step of selecting one or C code blocks for performing polarization code encoding according to the data feature comprises: length of the information bit sequence When it is greater than a preset fifth threshold, C code blocks are selected for polarization code encoding; when the length of the information bit sequence is less than or equal to the fifth threshold, one code block is selected for polarization code encoding.
  • the fifth threshold may be a positive integer of not less than 200 and not more than 2000.
  • the step of selecting one or C code blocks according to the data feature for encoding the polarization code comprises: encoding the code When the code rate of the block is greater than a preset sixth threshold, one code block is selected for polarization code coding; when the code rate of the coded block is less than or equal to the sixth threshold, C code blocks are selected for polarization code coding. .
  • the step of selecting one or C code blocks according to the data feature for encoding the polarization code comprises: When the corresponding search space is a user-specific search space, one code block is selected for polarization code encoding; when the search space corresponding to the information bit sequence is a common search space, C code blocks are selected for polarization code encoding.
  • the step of selecting one or C code blocks according to the data feature for encoding the polarization code comprises: in the information bit sequence When the number of transmissions is less than or equal to the preset seventh threshold, one code block is selected for polarization code coding; when the number of transmissions of the information bit sequence is greater than the seventh threshold, C code blocks are selected for polarization code coding.
  • the step of selecting one or C code blocks according to the data feature for encoding the polarization code comprises: carrying information
  • the type of the channel of the bit sequence is a data channel
  • C code blocks are selected for polarization code coding
  • the type of the channel carrying the information bit sequence is a control channel
  • one code block is selected for polarization code coding.
  • the step of selecting one or C code blocks according to the data feature for encoding the polarization code comprises: When the index of the control information format corresponding to the sequence is less than or equal to the preset eighth threshold, one code block is selected for polarization code encoding; when the index of the control information format corresponding to the information bit sequence is greater than the eighth threshold, C are selected.
  • the code block performs polarization code encoding.
  • the eighth threshold is a non-negative integer not greater than 3.
  • the step of selecting one or C code blocks according to the data feature for encoding the polarization code includes: in the CSI process When the value of CQI is greater than a preset ninth threshold, one code block is selected for polarization code encoding; when the value of CQI is less than or equal to the ninth threshold in the CSI process, C code blocks are selected for polarization code encoding.
  • the step of selecting one or C code blocks according to the data feature for encoding the polarization code comprises: performing scrambling mode When the level is greater than the preset tenth threshold, C code blocks are selected for polarization code encoding; when the level of the scrambling mode is less than or equal to the tenth threshold, one code block is selected for polarization code encoding.
  • the step of selecting one or C code blocks according to the data feature for encoding the polarization code comprises: When the index of the set of frames is greater than the eleventh threshold set in advance, one code block is selected for polarization code encoding; when the index of the set of subframes is less than or equal to the eleventh threshold, C code blocks are selected for polarization. Code coding.
  • the step of selecting one or C code blocks for performing polarization code encoding according to the data feature includes: : when the length of the position index sequence of the information bit sequence and the check bit sequence is greater than a preset twelfth threshold, C code blocks are selected for polarization code encoding; position index sequences of the information bit sequence and the check bit sequence are selected. When the length is less than or equal to the twelfth threshold, one code block is selected for polarization code encoding.
  • the step of selecting one or C code blocks according to the data feature for encoding the polarization code comprises: carrying When the carrier frequency of the information bit sequence is less than or equal to the thirteenth threshold set in advance, C code blocks are selected for polarization code encoding; when the carrier frequency carrying the information bit sequence is greater than the thirteenth threshold, select 1 The code blocks are coded by polarization codes.
  • the step of performing polarization code encoding on the block includes: when the aggregation level of the CCE of the information bit sequence and the control information format corresponding to the information bit sequence satisfy the set threshold condition, that is, the aggregation of the CCE in the information bit sequence When the level is less than or equal to the preset first threshold and the index of the control information format corresponding to the information bit sequence is greater than the eighth threshold, C code blocks are selected for polarization code encoding; aggregation of CCEs in the information bit sequence When the level is greater than a preset first threshold, or the index of the control information format corresponding to the information bit sequence is less than or equal to the eighth threshold, one code block is selected for polarization code encoding.
  • the step of selecting the encoding method according to the data feature of the characterizing information bit sequence in step 100 includes: carrying information When the aggregation level of the CCE of the bit sequence is less than or equal to the preset first threshold, the parity polarization code encoding is selected; when the aggregation level of the CCE carrying the information bit sequence is greater than the first threshold, the cyclic redundancy check assist is selected. Polarization code encoding.
  • the step of selecting the encoding method for the data feature according to the characterizing information bit sequence in step 100 comprises: the MCS level of the information bit sequence When the second threshold is greater than the preset threshold, the parity polarization code is selected; when the MCS level of the information bit sequence is less than or equal to the second threshold, the cyclic redundancy check auxiliary polarization code is selected.
  • the step of selecting the encoding method according to the data feature of the characterizing information bit sequence in step 100 includes: the in-band mode in the working mode Or in the independent mode, select the parity polarization code encoding; when the working mode is the outband mode, select the cyclic redundancy check auxiliary polarization code.
  • the step of selecting the encoding method according to the data feature of the characterizing information bit sequence in step 100 includes: enhancing the mobile broadband in the application scenario In the scene, the parity polarization code is selected; when the application scenario is an ultra-reliable low-latency scene or a huge machine communication scenario, the cyclic redundancy check auxiliary polarization code is selected.
  • the step of selecting the encoding method according to the data feature of the characterizing information bit sequence in step 100 includes: When the base station or relays to the downlink direction of the terminal, the parity polarization code code is selected; when the link direction is the uplink direction from the terminal to the base station or the relay, the cyclic redundancy check auxiliary polarization code is selected.
  • the step of selecting the encoding method according to the data feature of the characterizing information bit sequence in step 100 includes: at the user equipment The cyclic redundancy check auxiliary polarization code encoding is selected when the index of the type is greater than a third threshold set in advance; the parity polarization code encoding is selected when the index of the type of the user equipment is less than or equal to the third threshold.
  • the step of selecting the encoding method according to the data feature of the characterizing information bit sequence in step 100 includes: length of the code block after encoding
  • the fourth threshold is set to be larger than the preset fourth threshold, the cyclic redundancy check auxiliary polarization code is selected; when the length of the coded block is less than or equal to the fourth threshold, the parity polarization code is selected.
  • the fourth threshold may be a positive integer not less than 200 and not more than 4000.
  • the step of selecting the encoding method according to the data feature of the characterizing information bit sequence in step 100 includes: the length of the information bit sequence is greater than When the fifth threshold is set, the cyclic redundancy check auxiliary polarization code is selected; when the length of the information bit sequence is less than or equal to the fifth threshold, the parity polarization code is selected.
  • the fifth threshold may be a positive integer of not less than 200 and not more than 2000.
  • the step of selecting the encoding method according to the data feature of the characterizing information bit sequence in step 100 includes: after encoding the code block When the code rate is greater than a preset sixth threshold, the parity polarization code encoding is selected; when the code rate of the coded block is less than or equal to the sixth threshold, the cyclic redundancy check auxiliary polarization code is selected.
  • the step of selecting the encoding method according to the data feature of the characterizing information bit sequence in step 100 includes: selecting when the search space is a user-specific search space Parity polarization code encoding; when the search space is a common search space, the cyclic redundancy check auxiliary polarization code is selected.
  • the step of selecting the encoding method according to the data feature of the characterizing information bit sequence in step 100 includes: the number of transmissions in the information bit sequence When less than or equal to the preset seventh threshold, the parity polarization code encoding is selected; when the number of transmissions of the information bit sequence is greater than the seventh threshold, the cyclic redundancy check auxiliary polarization code encoding is selected.
  • the step of selecting the encoding method according to the data feature of the characterizing information bit sequence in step 100 comprises: carrying the information bit sequence When the type of the channel is a data channel, the cyclic redundancy check auxiliary polarization code is selected; when the type of the channel carrying the information bit sequence is the control channel, the parity polarization code is selected.
  • the step of selecting the encoding method according to the data feature of the characterizing information bit sequence in step 100 includes: corresponding to the information bit sequence When the index of the control information format is less than or equal to the preset eighth threshold, the parity polarization code encoding is selected; when the index of the control information format corresponding to the information bit sequence is greater than the eighth threshold, the cyclic redundancy check assist is selected. Polarization code encoding.
  • the step of selecting the encoding method according to the data feature of the characterizing information bit sequence in step 100 includes: CQI in the CSI process When the value is greater than the preset ninth threshold, the parity polarization code encoding is selected; when the value of the CQI is less than or equal to the ninth threshold in the CSI process, the cyclic redundancy check auxiliary polarization code encoding is selected.
  • the step of selecting the encoding method according to the data feature of the characterizing information bit sequence in step 100 includes: at the level of the scrambling mode When it is greater than a preset tenth threshold, the cyclic redundancy check auxiliary polarization code encoding is selected; when the level of the scrambling mode is less than or equal to the tenth threshold, the parity polarization code encoding is selected.
  • the step of selecting the encoding method according to the data feature of the characterizing information bit sequence in step 100 includes: in the subframe When the index of the set is greater than the eleventh threshold set in advance, the cyclic redundancy check auxiliary polarization code encoding is selected; when the index of the set of subframes is less than or equal to the eleventh threshold, the parity polarization code encoding is selected.
  • the step of selecting the encoding method according to the data feature of the characterizing information bit sequence in step 100 includes: The cyclic redundancy check auxiliary polarization code encoding is selected when the length of the position index sequence of the information bit sequence and the check bit sequence is greater than a preset twelfth threshold; the position index sequence of the information bit sequence and the check bit sequence When the length is less than or equal to the twelfth threshold, the parity polarization code encoding is selected.
  • the step of selecting the encoding method according to the data feature of the characterizing information bit sequence in step 100 includes: carrying the information bit sequence When the carrier frequency is less than or equal to the thirteenth threshold set in advance, the parity polarization code encoding is selected; when the carrier frequency of the bearer information bit sequence is greater than the thirteenth threshold, the cyclic redundancy check auxiliary polarization code encoding is selected.
  • the data feature of the characterization information bit sequence is the aggregation level of the CCE of the information bit sequence and the control information format corresponding to the information bit sequence
  • the data feature according to the characterization information bit sequence in step 100 includes: when the aggregation level of the CCE of the information bit sequence and the control information format corresponding to the information bit sequence satisfy the set threshold condition, that is, the aggregation level of the CCE of the information bit sequence is smaller than Or equal to a preset first threshold and an index of a control information format corresponding to the information bit sequence is less than or equal to a preset eighth threshold, selecting parity polarization code encoding; CCE of the information bit sequence
  • the cyclic redundancy check auxiliary polarization code is selected when the aggregation level is greater than a preset first threshold, or the index of the control information format corresponding to the information bit sequence is greater than a preset eighth threshold.
  • the threshold conditions for selecting the polarization code encoding method and the number of polarization code blocks may be the same as the threshold conditions for determining the rate matching strategy of the bit sequence to be transmitted.
  • bit sequence of length K bits is coded by the polarization code to obtain a coded bit sequence of length N bits, and the bit sequence to be transmitted is determined according to the data feature, and the polarization code coding is implemented.
  • the transmission of bit sequences of arbitrary length, and the polarization code encoding method and the number of polarization code blocks can be arbitrarily selected based on the data features characterizing the information bit sequence.
  • An embodiment also provides a data processing method that can be applied to the transmitting end side. As shown in FIG. 2, the data processing method may include the following steps.
  • step 200 the transmitting end performs polarization code encoding on the input information bit sequence of length K bits to obtain an encoded bit sequence of length N bits.
  • performing a polarization code encoding on a bit sequence of length K bits to obtain a coded bit sequence having a length of N bits includes: selecting one in a polarization code encoding process according to a data feature of the characterizing information bit sequence
  • the C code blocks are coded by a polarization code, where C is a positive integer greater than one.
  • K 1 is the length of the information bit sequence to be transmitted
  • K 1max is the length of the set maximum information bit sequence
  • N max is the maximum size of the polarization matrix corresponding to the generation matrix
  • K 1 , K 1max and N max are both A positive integer, 0 ⁇ ⁇ ⁇ 2.
  • the step of selecting one or C code blocks for polarization code encoding in the polarization code encoding process includes: if the data feature of the characterization information bit sequence satisfies a threshold condition, determining The C code blocks are subjected to polarization code encoding. If the data feature of the characterizing information bit sequence does not satisfy the threshold condition, it is determined that the code code is encoded using one code block.
  • the polarization code encoding in this step 200 includes, but is not limited to, Parity-Check Polar code encoding, or Cyclic Redundancy Check-aided Polar code encoding.
  • the method further includes: selecting a parity polarization code code or a cyclic redundancy check auxiliary polarization code code as the coding method according to the data feature of the characterization information bit sequence.
  • selecting the parity polarization code encoding or the cyclic redundancy check auxiliary polarization code encoding as the encoding method according to the data characteristics of the characterizing information bit sequence comprises: if the data feature characterizing the information bit sequence satisfies a threshold condition, One of the parity polarization code encoding or the cyclic redundancy check auxiliary polarization code encoding is selected; if the data feature characterizing the information bit sequence does not satisfy the threshold condition, another encoding method is selected.
  • performing a polarization code encoding on a bit sequence of length K bits to obtain a coded bit sequence having a length of N bits includes: encoding a bit sequence of length K bits according to a polarization code generation matrix An encoded bit sequence of length N bits is obtained.
  • step 201 the transmitting end determines the bit sequence to be transmitted from the encoded bit sequence according to the data feature of the characterizing information bit sequence and the preset rate matching policy.
  • the step 201 may include: determining a rate matching policy of the to-be-transmitted bit sequence from the plurality of preset rate matching policies according to the data feature of the characterizing information bit sequence; and selecting R pieces from the encoded bit sequence according to the determined rate matching policy.
  • the bit is a bit sequence to be transmitted, where R ⁇ K and R is a positive integer.
  • determining, according to the data feature of the information bit sequence, a rate matching policy for determining a bit sequence to be transmitted from a plurality of preset rate matching policies includes: if the data feature of the characterizing information bit sequence satisfies a threshold condition, Determining, from a plurality of preset rate matching policies, a combination of a rate matching policy or a plurality of rate matching policies as a rate matching policy of a bit sequence to be transmitted; if the data feature of the characterizing information bit sequence does not satisfy a threshold condition, A combination of one or more of the other rate matching policies is determined among the plurality of preset rate matching policies as a rate matching policy of the bit sequence to be transmitted.
  • the data characteristics characterizing the information bit sequence include any one or any combination as recited in the above embodiments.
  • step 202 the transmitting end sends the determined bit sequence to be transmitted to the receiving end.
  • FIG. 3 is a schematic diagram showing the structure of a data processing apparatus according to an embodiment.
  • the data processing device can be applied to the transmitting end side for transmitting the encoded bit sequence to the receiving end side.
  • the data processing apparatus includes at least an encoding module 310 and a matching module 320.
  • the encoding module 310 is configured to perform polarization code encoding on the input bit sequence of length K bits to obtain a coded bit sequence of length N bits.
  • K is a positive integer and N is a positive integer greater than or equal to K.
  • the matching module 320 is configured to determine a bit sequence to be transmitted from the encoded bit sequence according to the data feature of the characterizing information bit sequence and a preset rate matching policy.
  • the input bit sequence of length K bits may include one of the following forms: an information bit sequence; or an information bit sequence and a check bit sequence; or an information bit sequence and a known bit sequence; or, the information bit sequence , check bit sequence and known bit sequence.
  • the check bit sequence may be encoded by the information bit sequence and the known bit sequence, or the check bit sequence may be encoded by the information bit sequence.
  • the coding modes include, but are not limited to, parity coding, cyclic redundancy check coding, BCH coding, Hamming code coding, convolutional coding, generator matrix coding, Turbo coding, low density parity check coding, Reed Muller encoding, hash encoding, etc.
  • the coding mode is any combination of the foregoing coding modes, or is performed one or more times by the same coding mode.
  • known bit sequences include, but are not limited to, an all-zero sequence, or a full 1-bit sequence, or a pseudo-random sequence of zeros and ones.
  • the known bit sequence can also be any combination of the above.
  • the encoding module 310 is configured to perform polarization code encoding on the bit sequence of length K bits according to the data feature of the characterization information bit sequence, and select one or C codes in the polarization code encoding process.
  • a block is used as the encoded bit sequence, where C is a positive integer.
  • K 1 is the length of the information bit sequence to be transmitted
  • K 1max is the length of the set maximum information bit sequence
  • N max is the maximum size of the polarization matrix corresponding to the generation matrix
  • K 1 , K 1max and N max are positive integers, 0 ⁇ ⁇ ⁇ 2.
  • the encoding module 310 is configured to select a code block by: if the data feature of the characterizing information bit sequence satisfies a threshold condition, determining to perform polarization code encoding using C code blocks; if the characterizing information bit sequence is The data feature does not satisfy the threshold condition, and it is determined that one code block is used for polarization code encoding.
  • the polarization code encoding includes: parity polarization code encoding, or cyclic redundancy check auxiliary polarization code encoding.
  • the encoding module 310 is further configured to: select, according to the data feature, the parity polarization code or the cyclic redundancy check auxiliary polarization code encoding as an encoding method.
  • the encoding module 310 is further configured to: if the data feature of the characterizing information bit sequence satisfies a threshold condition, determine one from the parity polarization code or the cyclic redundancy check auxiliary polarization code encoding An encoding method; if the data feature of the characterizing information bit sequence does not satisfy the threshold condition, it is determined to adopt another encoding method.
  • the matching module 320 is configured to: determine a rate matching policy of the to-be-transmitted bit sequence from the plurality of preset rate matching policies according to the data feature of the characterizing information bit sequence; and from the encoded bit sequence according to the determined rate matching policy R bits are selected as the bit sequence to be transmitted, where R ⁇ K and R is a positive integer.
  • determining, according to the data feature of the information bit sequence, a rate matching policy for determining a bit sequence to be transmitted from a plurality of preset rate matching policies includes: if the data feature of the characterizing information bit sequence satisfies a threshold condition, Determining, from a plurality of preset rate matching policies, a combination of a rate matching policy or a plurality of rate matching policies as a rate matching policy of a bit sequence to be transmitted; if the data feature of the characterizing information bit sequence does not satisfy a threshold condition, A combination of one or more of the other rate matching policies is determined among the plurality of preset rate matching policies as a rate matching policy of the bit sequence to be transmitted.
  • the data processing method and apparatus provided by the foregoing embodiment perform polarization code encoding on a bit sequence of length K bits to obtain a coded bit sequence of length N bits, and determine a bit sequence to be transmitted according to the data feature, and implement the bit sequence to be transmitted according to the data feature. Transmission of bit sequences of arbitrary length based on polarization code encoding.
  • An embodiment further provides a user equipment in which the data processing apparatus of any of the above embodiments is provided.
  • An embodiment further provides a base station in which the data processing apparatus of any of the above embodiments is provided.
  • This embodiment can be, but is not limited to, used in New Radio Access Technology (NR).
  • NR New Radio Access Technology
  • the transmitting end may be a base station, and the base station may be, but not limited to, a g-Node B (gNB); the transmitting end may also be a user equipment UE.
  • the receiving end may be a user equipment UE or a base station, and the base station may be, but not limited to, a gNB.
  • the transmitting end has a bit sequence, that is, an input information bit sequence, and the transmitting end performs polarization code encoding on the input information bit sequence.
  • the polarization code encoding method may include parity polarization code encoding and cyclic redundancy check auxiliary polarization code encoding.
  • the transmitting end needs to select an appropriate encoding mode according to the data characteristics of the characterizing information bit sequence and a preset threshold condition.
  • the number of code blocks subjected to polarization code encoding also needs to be determined based on the data characteristics of the characterizing information bit sequence and the threshold conditions.
  • the above selection of the polarization code encoding method and the number of code blocks are independent of the selection of the rate matching strategy.
  • the process of selecting the R bits from the encoded bit sequence of length N bits obtained by encoding the polarization code as the bit sequence to be transmitted requires rate matching.
  • the data feature of the characterization information bit sequence may be an aggregation level of the CCE of the information bit sequence, and the aggregation level may be T 1 , and the preset first threshold may be E 1 bits, where T 1 and E 1 is a positive integer.
  • the rate matching policy according to the foregoing step 101 for determining the bit sequence to be sent may include:
  • the adopted rate matching policy may be: a second rate matching policy, or a third rate matching policy, or a fifth rate matching policy or an eighth rate matching policy or a tenth rate matching policy, or a seven-rate matching policy or a ninth rate matching policy or an eleventh rate matching policy;
  • the adopted rate matching policy may be: a first rate matching policy, or a fourth rate matching policy, or a sixth Rate matching strategy.
  • An embodiment further provides a computer readable storage medium storing computer executable instructions for performing the encoding method and/or data processing method described above.
  • An embodiment also provides an apparatus for implementing a data processing method, which can include a memory and a processor for executing executable instructions stored in the memory.
  • the following executable instructions may be stored in the memory: performing polarization code encoding on the input bit sequence of length K bits to obtain an encoded bit sequence of length N bits; according to characterizing the information bit sequence
  • the data feature and a preset rate matching policy determine a bit sequence to be transmitted from the encoded bit sequence; wherein K is a positive integer and N is a positive integer greater than or equal to K.
  • the memory may store a polarization code generation matrix and the following executable instructions: performing polarization code encoding on an input bit sequence of length K bits to obtain an encoded bit sequence of length N bits; The data feature of the information bit sequence and a preset rate matching policy determine a bit sequence to be transmitted from the encoded bit sequence; wherein K is a positive integer and N is a positive integer greater than or equal to K.
  • serial numbers of the embodiments of the present invention are merely for the description, and do not represent the advantages and disadvantages of the embodiments.
  • the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is better.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium (such as ROM/RAM, magnetic).
  • the disc, the optical disc includes a number of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • the data processing method and device of the embodiment of the present invention performs polarization code encoding on a bit sequence of length K bits to obtain a coded bit sequence of length N bits, and determines a bit sequence to be transmitted according to the data feature, and implements Transmission of bit sequences of arbitrary length based on polarization code encoding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Probability & Statistics with Applications (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Physics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Error Detection And Correction (AREA)
  • Dc Digital Transmission (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

公开了一种数据处理方法及装置。数据处理方法包括:对长度为K比特的输入比特序列进行极化码编码后得到长度为N比特的编码后比特序列;根据表征信息比特序列的数据特征及预先设置的速率匹配策略,从编码后比特序列中确定待发送比特序列。K为正整数,N为大于等于K的正整数。

Description

数据处理方法及装置 技术领域
本公开涉及下一代移动通信技术,例如一种数据处理方法及装置。
背景技术
由于信道噪声的存在,信道编码服务作为移动通信系统的独立部分,它保证着信息传递的可靠性、准确性和有效性。
相关技术中,极化码编码是一种被严格证明的可达信道容量的构造性编码方式,而且能满足第五代通信系统新无线接入技术(5 th Generation New Radio Access Technology,5G New RAT)中对通信吞吐量(Throughput)和时延(Latency)的要求。
极化码编码后的码字可表示为:x=u·G N。其中,u=(u 1,...u N)由信息比特和冻结比特组成;
Figure PCTCN2018076793-appb-000001
表示对矩阵F 2进行n次克罗内克积操作,且
Figure PCTCN2018076793-appb-000002
经过极化码编码器输出的比例序列长度为2的幂级数,并不能从编码后的比特序列中选取任意长度的比特序列来传输。
发明内容
提供了一种数据处理方法及装置,能够实现任意长度的比特序列的传输。
一实施例提供了一种数据处理方法,包括:
对长度为K比特的输入比特序列进行极化码编码后得到长度为N比特的编码后比特序列;
根据表征信息比特序列的数据特征及预先设置的速率匹配策略,从编码后比特序列中确定待发送比特序列;
其中,K为正整数,N为大于等于K的正整数。
在一实施例中,所述极化码编码包括:奇偶校验极化码编码,或循环冗余校验辅助极化码编码。
在一实施例中,所述方法还包括:根据所述数据特征,选择所述奇偶校验极化码编码或所述循环冗余校验辅助极化码编码作为编码方法。
一实施例还提供了一种数据处理方法,包括:发射端对输入信息比特序列进行极化码编码后得到编码后比特序列;
发射端根据表征信息比特序列的数据特征及预先设置的速率匹配策略,从编码后比特序列中确定待发送比特序列;
发射端将确定的待发送比特序列发送给接收端。
一实施例还提供了一种数据处理装置,包括:编码模块和匹配模块,其中,
所述编码模块设置为对长度为K比特的输入比特序列进行极化码编码后得到长度为N比特编码后比特序列;
所述匹配模块设置为根据表征信息比特序列的数据特征及预先设置的速率匹配策略,从所述编码后比特序列中确定待发送比特序列;
其中,K为正整数,N为大于等于K的正整数。
在一实施例中,所述极化码编码包括:奇偶校验极化码编码,或循环冗余校验辅助极化码编码。
在一实施例中,所述编码模块还设置为:根据所述数据特征,选择所述奇偶校验极化码或所述循环冗余校验辅助极化码编码作为编码方法。
一实施例还提供了一种用于实现数据处理方法的装置,至少包括存储器和用于执行存储于所述存储器中的可执行指令的处理器,其中,
存储器中存储有极化码生成矩阵和以下可执行指令:对长度为K比特的输入比特序列进行极化码编码后得到长度为N比特的编码后比特序列;根据表征信息比特序列的数据特征及预先设置的速率匹配策略,从所述编码后比特序列中确定待发送比特序列;
或者存储器中存储以下可执行指令:对长度为K比特的输入比特序列进行极化码编码后得到长度为N比特的编码后比特序列;根据表征信息比特序列的数据特征及预先设置的速率匹配策略,从所述编码后比特序列中确定待发送比特序列;
其中,K为正整数,N为大于等于K的正整数。
一实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任意实施例中的方法。
上述实施例的数据处理方法及装置,对长度为K比特的比特序列进行极化码编码,得到长度为N比特的编码后比特序列,并根据数据特征来确定待发送的比特序列,实现了基于极化码编码的任意长度的比特序列的传输。
附图说明
图1为一实施例的一种数据处理方法的流程图;
图2为一实施例的另一种数据处理方法的流程图;
图3为一实施例的数据处理装置的组成结构示意图。
具体实施方式
图1为一实施例提供的一种数据处理方法的流程图。如图1所示,该数据处理方法包括如下步骤。
在步骤100中,对长度为K比特的输入比特序列进行极化码编码后得到长度为N比特的编码后比特序列。其中,K为正整数,N为大于等于K的正整数。
可选地,长度为K比特的比特序列包括以下形式之一:
信息比特序列;或者,
信息比特序列和校验比特序列;或者,
信息比特序列和已知比特序列;或者,
信息比特序列、校验比特序列和已知比特序列。
可选地,校验比特序列由信息比特序列和已知比特序列编码得到;或者,校验比特序列由信息比特序列编码得到。
可选地,编码方式包括但不限于:奇偶校验编码,循环冗余校验编码,BCH(Bose,Ray-Chaudhuri,&Hocquenghem)编码,汉明码编码,卷积编码,生成矩阵编码,Turbo编码,低密度奇偶校验编码,里德穆勒编码,哈希编码等。可选地,编码方式是以上编码方式的任意组合,或者,是以上同一编码方式执行 一次或多次。
可选地,已知比特序列包括但不局限于:全0比特序列,或全1比特序列,或0和1组成的伪随机序列。或者,已知比特序列也可以是以上这些方式的任意组合。
可选地,已知比特序列包括以下序列之一或任意组合:全0比特序列;全1比特序列;0和1组成的伪随机序列;部分已知比特序列为0,剩余部分的已知比特序列为0和1组成的伪随机序列;部分已知比特序列为1,剩余部分的已知比特序列为0和1组成的伪随机序列;以及,部分已知比特序列为0,另一部分已知比特序列为1,剩余部分的已知比特序列为0和1组成的伪随机序列。
可选地,本步骤100可以包括:根据表征信息比特序列的数据特征,在极化码编码过程中选择1个或C个码块进行极化码编码,其中C为大于1的正整数。
可选地,码块个数
Figure PCTCN2018076793-appb-000003
或者,
Figure PCTCN2018076793-appb-000004
上式中,K 1为待发送信息比特序列的长度,K 1max为所设最大信息比特序列的长度,N max为极化码对应生成矩阵的最大尺寸,K 1、K 1max和N max均为正整数,0≤Δ≤2。
可选地,上述步骤中选择1个或C个码块进行极化码编码包括:
如果所述表征信息比特序列的数据特征满足阈值条件,确定采用C个码块进行极化码编码。如果所述表征信息比特序列的数据特征不满足阈值条件,确定采用1个码块进行极化码编码。
可选地,本步骤100中的极化码编码包括但不限于:奇偶校验极化码(Parity-check Polar code)编码,或者循环冗余校验辅助极化码(Cyclic Redundancy Check-aided Polar code)编码。
需要指出的是,所述奇偶校验极化码是指极化码编码时输入比特序列中的校验比特生成方式包括由信息比特编码经过奇偶校验编码得到;而所述循环冗余校验辅助极化码是指极化码编码时输入比特序列中的校验比特生成方式包括由信息比特编码经过循环冗余校验编码得到,但不包括奇偶校验编码。
可选地,在本步骤100之前还可以包括:根据用于表征信息比特序列的数据特征,选择奇偶校验极化码编码或循环冗余校验辅助极化码编码作为编码方法。
可选地,根据用于表征信息比特序列的数据特征,选择奇偶校验极化码编码或循环冗余校验辅助极化码编码作为编码方法包括:如果所述表征信息比特序列的数据特征满足阈值条件,从所述奇偶校验极化码编码或循环冗余校验辅助极化码编码中选择一种编码方法;如果所述表征信息比特序列的数据特征不满足阈值条件,选择另一种编码方法。
可选地,所述对长度为K比特的比特序列进行极化码编码后得到长度为N比特的编码后比特序列包括:根据极化码生成矩阵,对所述长度为K比特的输入比特序列进行编码后得到长度为N比特的编码后比特序列。
在步骤101中,根据表征信息比特序列的数据特征及预先设置的速率匹配策略,从编码后比特序列中确定待发送比特序列。
本步骤101可以包括:根据表征信息比特序列的数据特征,从多个预先设置的速率匹配策略中确定待发送比特序列的速率匹配策略;根据确定的速率匹配策略从编码后比特序列中选取R个比特作为待发送比特序列,其中,R≥K,且R为正整数。
在一实施例中,根据表征信息比特序列的数据特征,从多个预先设置的速率匹配策略中确定待发送比特序列的速率匹配策略包括:如果所述表征信息比特序列的数据特征满足阈值条件,从多个预先设置的速率匹配策略中确定一种速率匹配策略作为待发送比特序列的速率匹配策略;如果所述表征信息比特序列的数据特征不满足阈值条件,从多个预先设置的速率匹配策略中确定其他速率匹配策略中的一种作为待发送比特序列的速率匹配策略。
可选地,表征信息比特序列的数据特征包括以下任一项或者任意组合:
信息比特序列的工作模式,其中,工作模式可以是指带内(in-band)模式,带外(out-band)模式或者独立(stand alone)模式等;
信息比特序列的应用场景,其中,应用场景可以为增强移动宽带(enhanced Mobile Broadband,eMBB)场景,或超可靠低延时(Ultra Reliability Low Latency, URLLC)场景,或巨量机器通信(massive Machine Type Communication,mMTC)场景等;
信息比特序列的链路方向,其中,链路方向可以是指从基站或中继到终端的下行方向,或者从终端到基站或中继的上行方向;
接收待发送比特序列的用户设备(User Equipment,UE)的类型,其中不同等级(不同类型)的用户设备的接收缓存的大小不同;
信息比特序列的长度;
编码后码块的长度;
编码后码块的码率;
信息比特序列的调制编码方式(Modulation Coding Scheme,MCS)等级;
承载信息比特序列的控制信道单元(Control Channel Element,CCE)的聚合等级;
信息比特序列对应的搜索空间;
信息比特序列的加扰方式;
信息比特序列的传输次数;
承载信息比特序列的信道的类型,其中,信道的类型可以是指数据信道和控制信道;
信息比特序列对应的控制信息格式;
信息比特序列对应的信道状态信息(Channel State Information,CSI)进程;
承载信息比特序列的子帧的集合;
信息比特序列和校验比特序列的位置索引序列;
承载信息比特序列的载波频率。
可选地,预先设置的速率匹配策略(即从编码后的比特序列中选取R个比特作为待发送比特序列所根据的速率匹配策略)可以包括:
第一速率匹配策略:当R<N时,舍弃编码后比特序列中的索引为BRO(i 1)的比特,将其余R个比特作为待发送比特序列,其中i1=0,1,...,N-R-1,BRO为 比特反序置换操作;
第二速率匹配策略:当R<N时,舍弃编码后比特序列中的索引为BRO(i 2)的比特,将其余R个比特作为待发送比特序列,其中i 2=R,R+1,...,N-1,BRO为比特反序置换操作;
第三速率匹配策略:当R<N时,舍弃编码后比特序列中的索引为i 3的比特,将其余R个比特作为待发送比特序列,其中i 3=R,R+1,...,N-1;
第四速率匹配策略:当R<N时,依次从所述编码后比特序列中的索引为{S 1,S 2,S 3}的比特中舍弃N-R个比特,将其余R个比特作为所述待发送比特序列,其中,S 1={0,1,...,N 1-1},S 2={N 2,N 3,N 2+1,N 3+1,...,N 4,N 5},S 3为其余索引,N/8≤N 1≤N 2≤N/3,N 2≤N 4≤N 3≤2N/3,N 3≤N 5≤N-1,并且N 1、N 2、N 3、N 4和N 5均为正整数,序列S 1、序列S 2、序列S 3任意两者之间的集合为空集;
第五速率匹配策略:当R<N时,依次从所述编码后比特序列中的索引为{Q 3,Q 2,Q 1}的比特中舍弃N-R个比特,将其余R个比特作为所述待发送比特序列,其中,Q1={N 1-1,N 1-2,...,0},Q 2={N 5,N 4,N 5-1,N 4-1,...,N 3,N 2},Q 3为其余索引,N/8≤N 1≤N 2≤N/3,N 2≤N 4≤N 3≤2N/3,N 3≤N 5≤N-1,并且N 1、N 2、N 3、N 4和N 5均为正整数,序列Q 1、序列Q 2、序列Q 3任意两者之间的集合为空集;
第六速率匹配策略:当R<N时,按照索引序列{I 1,I 2,I 3,I 4}选取所述编码后比特序列中的前R个比特作为所述待发送比特序列,其中,序列I 1为序列{BRO(k)}与序列{0,1,...,t 1-1}的交集,序列I 2为序列{0,1,...,t 1-1}与I 1的差集,序列I 4为序列{BRO(k)}与序列{t 1,t 1+1,...,N-1}的交集,序列I 3为其余索引值,并且k=t 2,t 2+1,...,N-1,BRO为比特反序置换操作,N/8≤t 1≤3N/8,0≤t 2≤N-1,t 1和t 2为非负整数,序列I 1、序列I 2、序列I 3、序列I 4任意两者之间的交集为空集;
第七速率匹配策略:当R>N时,从长度为N的编码后比特序列中选取(R-N)个比特排列在长度为N的编码后比特序列之前或之后的位置,得到长度为R的比特序列作为待发送比特序列。
第八速率匹配策略:当R<N时,按照索引序列P 1中前面R个或后面R个索引从所述长度为N比特的编码后比特序列中选取R个比特作为所述待发送比特序列,其中所述索引序列P 1与用于确定所述K比特的输入比特序列在极化码编码器中位置的序列为同一序列;或者,所述索引序列P 1中至少有比例为q% 的元素的排列顺序与用于确定所述K比特的输入比特序列在极化码编码器中位置的序列中的元素的排列顺序不同,其中q%为5%、10%或20%中的一个;
第九速率匹配策略:当R>N时,按照索引序列P 1中连续R-N个索引从所述长度为N比特的编码后比特序列中选取R-N个比特排列在所述长度为N比特的编码后比特序列之前或之后的位置,得到长度为R的比特序列作为所述待发送比特序列,其中所述索引序列P 1与用于确定所述K比特的输入比特序列在极化码编码器中位置的序列为同一序列;或者,所述索引序列P 1中至少有比例为q%的元素的排列顺序与用于确定所述K比特的输入比特序列在极化码编码器中位置的序列中的元素的排列顺序不同,q%不大于70%,其中q%为5%、10%或20%中的一个;
第十速率匹配策略:当R<N时,从所述长度为N比特的编码后比特序列中选择前面R个或后面R个比特作为所述待发送比特序列,其中所述编码过程包括:将所述K比特的比特序列中的第a个输入比特交织到极化码编码器的位置索引b处,编码后,将所述长度为N比特的编码后比特序列中的第c个比特序列交织到寄存器的位置索引d处,a=π 1(b),c=π 2(d),π 1和π 2为同一序列,a∈[0,1,...,k-1],b∈[0,1,...,N-1],c∈[0,1,...,N-1],d∈[0,1,...,N-1];或者,π 1中元素的排列顺序至少有e%与π 2中元素的排列顺序不同,e%为5%、10%或20%中的一个;
第十一速率匹配策略:当R>N时,从所述长度为N比特的编码后比特序列中选取连续R-N个比特排列在所述长度为N比特的编码后比特序列之前或之后的位置,得到长度为R的比特序列作为所述待发送比特序列,其中所述编码过程包括:将所述K比特的比特序列中的第a个输入比特交织到极化码编码器或生成矩阵的位置索引b处,编码后,将所述长度为N比特的编码后比特序列中的第c个比特序列交织到寄存器的位置索引d处,a=π 1(b),c=π 2(d),π 1和π 2为同一序列,a∈[0,1,...,k-1],b∈[0,1,...,N-1],c∈[0,1,...,N-1],d∈[0,1,...,N-1];或者,π 1中元素的排列顺序至少有e%与π 2中元素的排列顺序不同,e%为5%、10%或20%中的一个。
可选地,所述K比特的输入比特序列在极化码编码器中位置的序列或所述交织器π 1可由索引i根据其函数值
Figure PCTCN2018076793-appb-000005
排列得到的序列得到,其中, i∈[0,1,...,N-1],n=log 2N,(B n-1,B n-2,...,B w,...,B 0)为索引i的二进制表示,k为正整数,w∈[0,1,...,n-1]。
需要说明的是,对i进行BRO比特反序置换操作得到数据j=BRO(i)的方法可以为:假设i,j均可以用三位二进制表示,且i=3=(011),将(011)进行比特反序排列得到(110)=6,也就是j=6。
需要说明的是,在极化码编码器或者是生成矩阵中,需要适当安排输入比特序列(包括信息比特、校验比特和已知比特)的位置,也就是为信息比特、校验比特选择好的子信道或者可靠度高的索引位置,才能获得比较好的码的性能。而对于任意索引,其在索引序列P 1、交织器π 1或交织器π 2中的排列位置表征了该索引的可靠度。
需要说明的是,得到按照索引i根据其函数值
Figure PCTCN2018076793-appb-000006
排序的序列的操作如下:假设k=4,N=16,n=log 2(16)=4,对于索引i=3,可以计算得到(B 3,B 2,B 1,B 0)=(0011),那么,f(i)=f(3)=1*2 (0*(1/4))+1*2 (1*(1/4))+0*2 (2*(1/4))+0*2 (3*(1/4))=2.1892,同样对于i,i∈[0,1,...,15],可以得到[f(0),f(1),...,f(15)]=[0,1,1.1892,2.1892,1.4142,2.4142,2.6034,3.6034,1.6818,2.6818,2.8710,3.8710,3.0960,4.0960,4.2852,5.2852],对[f(0),f(1),...,f(15)]由小到大排序,则可得到序列[0,1,2,4,8,3,5,6,9,10,12,7,11,13,14,15]。
在一实施例中,当表征信息比特序列的数据特征为承载信息比特序列的CCE的聚合等级时,步骤101中确定待发送比特序列所根据的速率匹配策略包括:
在承载信息比特序列的CCE的聚合等级不大于(小于或等于)预先设置的第一阈值时,待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略、或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略;在承载信息比特序列的控制信道单元的聚合等级大于第一阈值时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略。第一阈值的取值可以为{1,2,4,8}中的一个。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的MCS等 级时,步骤101中确定待发送比特序列所根据的速率匹配策略可以包括:
在信息比特序列的MCS等级大于预先设置的第二阈值时,待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略;在信息比特序列的MCS等级小于或等于第二阈值时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略、或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略。第二阈值可以为不小于2且不大于32的正整数。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的工作模式时,步骤101中确定待发送比特序列所根据的速率匹配策略包括:
在工作模式为带内模式或者独立模式时,待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略;在工作模式为带外模式时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略、或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的应用场景时,步骤101中确定待发送比特序列所根据的速率匹配策略包括:
在应用场景是增强移动宽带场景时,待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略;在应用场景是超可靠低延时场景或巨量机器通信场景时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略、或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的链路方向时,步骤101中确定待发送比特序列所根据的速率匹配策略包括:
在链路方向是从终端到基站或中继的上行方向时,待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略、或第七速率匹配策略或第九速 率匹配策略或第十一速率匹配策略;在链路方向是从基站或中继到终端的下行方向时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略。
在一实施例中,当表征信息比特序列的数据特征为接收待发送比特序列的用户设备的类型时,步骤101中确定待发送比特序列所根据的速率匹配策略包括:
在用户设备的类型的索引大于预先设置的第三阈值时,待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略、或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略;在用户设备的类型的索引小于或等于第三阈值时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略。第三阈值可以是大于6的正整数。
在一实施例中,当表征信息比特序列的数据特征为编码后码块的长度时,步骤101中确定待发送比特序列所根据的速率匹配策略包括:
在编码后码块的长度大于预先设置的第四阈值时,待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略、或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略;在编码后码块的长度小于或等于第四阈值时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略。第四阈值可以是不小于200且不大于4000的正整数。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的长度时,步骤101中确定待发送比特序列所根据的速率匹配策略包括:
在信息比特序列的长度大于预先设置的第五阈值时,待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略、或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略;在信息比特序列的长度小于或等于第五阈值时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略。第五阈值可以是不小于200且不大于2000 的正整数。
在一实施例中,当表征信息比特序列的数据特征为编码后码块的码率时,步骤101中确定待发送比特序列所根据的速率匹配策略包括:
在编码后码块的码率大于预先设置的第六阈值时,待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略;在编码后码块的码率小于或等于第六阈值时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略、或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略。第六阈值不小于1/3且不大于1/2。
在一实施例中,当表征信息比特序列的数据特征为搜索空间时,步骤101中确定待发送比特序列所根据的速率匹配策略包括:
在搜索空间为用户特定搜索空间时,待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略;在搜索空间为公共搜索空间时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略、或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的传输次数时,步骤101中确定待发送比特序列所根据的速率匹配策略包括:
在信息比特序列的传输次数小于或等于预先设置的第七阈值时,待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略;在信息比特序列的传输次数大于第七阈值时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略、或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略。第七阈值可以为不小于1且不大于4的正整数。
在一实施例中,当表征信息比特序列的数据特征为承载信息比特序列的信道的类型时,步骤101中确定待发送比特序列所根据的速率匹配策略包括:
在承载信息比特序列的信道的类型为数据信道时,待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略、或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略;在承载信息比特序列的信道的类型为控制信道时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列对应的控制信息格式时,步骤101中确定待发送比特序列所根据的速率匹配策略包括:
在信息比特序列对应的控制信息格式的索引小于或等于预先设置的第八阈值时,待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略、或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略;信息比特序列对应的控制信息格式的索引大于第八阈值时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略。第八阈值可以为不小于3的非负整数。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列对应的CSI进程时,步骤101中确定待发送比特序列所根据的速率匹配策略包括:
在CSI进程中CQI的值大于预先设置的第九阈值时,待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略;在CSI进程中CQI的值小于或等于第九阈值时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略、或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略。第九阈值为不大于15的非负整数。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的加扰方式时,步骤101中确定待发送比特序列所根据的速率匹配策略包括:
在加扰方式的级别大于预先设置的第十阈值时,待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略;在加扰方式的级别小于或等于第十阈值时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第 四速率匹配策略、或第六速率匹配策略、或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略。第十阈值可以为不大于3的正整数。
在一实施例中,当表征信息比特序列的数据特征为承载信息比特序列的子帧的集合时,步骤101中确定待发送比特序列所根据的速率匹配策略包括:
在承载信息比特序列的子帧的集合的索引大于预先设置的第十一阈值时,所述待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略;在子帧的集合的索引小于或等于第十一阈值时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略、或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略。第十一阈值可以为不大于15的非负整数。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列和校验比特序列的位置索引序列时,步骤101中确定待发送比特序列所根据的速率匹配策略包括:
在信息比特序列和校验比特序列的位置索引序列的长度大于预先设置的第十二阈值时,待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略、或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略;在信息比特序列和校验比特序列的位置索引序列的长度小于或等于第十二阈值时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略。第十二阈值可以为不小于200且不大于4000的正整数。
在一实施例中,当表征信息比特序列的数据特征为承载所述信息比特序列的载波频率时,步骤101中确定待发送比特序列所根据的速率匹配策略包括:
在承载所述信息比特序列的载波频率小于或等于预先设置的第十三阈值时,待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略;承载所述信息比特序列的载波频率大于第十三阈值时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略、 或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略。第十三阈值不小于6GHz。
在一实施例中,当表征信息比特序列的数据特征为所述信息比特序列的CCE的聚合等级和所述信息比特序列对应的控制信息格式时,步骤101中确定待发送比特序列所根据的速率匹配策略包括:
在所述信息比特序列的控制信道单元聚合等级和所述信息比特序列对应的控制信息格式满足所设阈值条件时,即,在所述信息比特序列的控制信道单元聚合等级小于或等于上述第一阈值且所述信息比特序列对应的控制信息格式的索引小于或等于上述第八阈值时,待发送比特序列的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略;在所述信息比特序列的控制信道单元聚合等级小于或等于上述第一阈值,或者所述信息比特序列对应的控制信息格式的索引小于或等于上述第八阈值时,待发送比特序列的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略、或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略。
在一实施例中,当表征信息比特序列的数据特征为承载所述信息比特序列的CCE的聚合等级时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括:在承载信息比特序列的CCE的聚合等级小于或等于预先设置的第一阈值时,选择C个码块进行极化码编码;在承载信息比特序列的CCE的聚合等级大于第一阈值时,选择1个码块进行极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的MCS等级时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括:在信息比特序列的MCS等级大于预先设置的第二阈值时,选择1个码块进行极化码编码;在信息比特序列的MCS等级小于或等于第二阈值时,选择C个码块进行极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的工作模式时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括:在工作模式为带内模式或者独立模式时,选择1个码块进行极化码编码;在工作模式为带外模式时,选择C个码块进行极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的应用场景时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括:在应用场景是增强移动宽带场景时,选择1个码块进行极化码编码;在应用场景是超可靠低延时场景或巨量机器通信场景时,选择C个码块进行极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的链路方向时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括:在链路方向是从基站或中继到终端的下行方向时,选择1个码块进行极化码编码;在链路方向是从终端到基站或中继的上行方向时,选择C个码块进行极化码编码。
在一实施例中,当表征信息比特序列的数据特征为接收待发送比特序列的用户设备的类型时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括:在用户设备的类型的索引大于预先设置的第三阈值时,选择C个码块进行极化码编码;在用户设备类型索引小于或等于第三阈值时,选择1个码块进行极化码编码。
在一实施例中,当表征信息比特序列的数据特征为编码后码块的长度时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括:在编码后码块的长度大于预先设置的第四阈值时,选择C个码块进行极化码编码;在编码后码块的长度小于或等于第四阈值时,选择1个码块进行极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的长度时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括:在信息比特序列的长度大于预先设置的第五阈值时,选择C个码块进行极化码编码;在信息比特序列的长度小于或等于第五阈值时,选择1个码块进行极化码编码。其中,所述第五阈值可以是不小于200且不大于2000的正整数。
在一实施例中,当表征信息比特序列的数据特征为编码后码块的码率时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括:在编码后码块的码率大于预先设置的第六阈值时,选择1个码块进行极化码编码;在编码后码块的码率小于或等于第六阈值时,选择C个码块进行极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列对应的搜索空间时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括: 在信息比特序列对应的搜索空间为用户特定搜索空间时,选择1个码块进行极化码编码;在信息比特序列对应的搜索空间为公共搜索空间时,选择C个码块进行极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的传输次数时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括:在信息比特序列的传输次数小于或等于预先设置的第七阈值时,选择1个码块进行极化码编码;在信息比特序列的传输次数大于第七阈值时,选择C个码块进行极化码编码。
在一实施例中,当表征信息比特序列的数据特征为承载信息比特序列的信道的类型时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括:在承载信息比特序列的信道的类型为数据信道时,选择C个码块进行极化码编码;在承载信息比特序列的信道的类型为控制信道时,选择1个码块进行极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列对应的控制信息格式时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括:在信息比特序列对应的控制信息格式的索引小于或等于预先设置的第八阈值时,选择1个码块进行极化码编码;在信息比特序列对应的控制信息格式的索引大于第八阈值时,选择C个码块进行极化码编码。第八阈值为不大于3的非负整数。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列对应的CSI进程时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括:在CSI进程中CQI的值大于预先设置的第九阈值时,选择1个码块进行极化码编码;在CSI进程中CQI的值小于或等于第九阈值时,选择C个码块进行极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的加扰方式时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括:在加扰方式的级别大于预先设置的第十阈值时,选择C个码块进行极化码编码;在加扰方式的级别小于或等于第十阈值时,选择1个码块进行极化码编码。
在一实施例中,当表征信息比特序列的数据特征为承载信息比特序列的子 帧的集合时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括:在子帧的集合的索引大于预先设置的第十一阈值时,选择1个码块进行极化码编码;在子帧的集合的索引小于或等于第十一阈值时,选择C个码块进行极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列和校验比特序列的位置索引序列时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括:在信息比特序列和校验比特序列的位置索引序列的长度大于预先设置的第十二阈值时,选择C个码块进行极化码编码;在信息比特序列和校验比特序列的位置索引序列的长度小于或等于第十二阈值时,选择1个码块进行极化码编码。
在一实施例中,当表征信息比特序列的数据特征为承载所述信息比特序列的载波频率时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括:在承载所述信息比特序列的载波频率小于或等于预先设置的第十三阈值时,选择C个码块进行极化码编码;在承载所述信息比特序列的载波频率大于第十三阈值时,选择1个码块进行极化码编码。
在一实施例中,当表征信息比特序列的数据特征为所述信息比特序列的CCE的聚合等级和所述信息比特序列对应的控制信息格式时,根据所述数据特征选择1个或C个码块进行极化码编码的步骤包括:在所述信息比特序列的CCE的聚合等级和所述信息比特序列对应的控制信息格式满足所设阈值条件时,即在所述信息比特序列的CCE的聚合等级小于或等于预先设置的第一阈值且所述信息比特序列对应的控制信息格式的索引大于第八阈值时,选择C个码块进行极化码编码;在所述信息比特序列的CCE的聚合等级大于预先设置的第一阈值,或者所述信息比特序列对应的控制信息格式的索引小于或等于第八阈值时,选择1个码块进行极化码编码。
在一实施例中,当表征信息比特序列的数据特征为承载输入信息比特序列的CCE的聚合等级时,对于步骤100中根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在承载信息比特序列的CCE的聚合等级小于或等于预先设置的第一阈值时,选择奇偶校验极化码编码;在承载信息比特序列的CCE的聚合等级大于第一阈值时,选择循环冗余校验辅助极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的MCS等级时,对于步骤100中根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在信息比特序列的MCS等级大于预先设置的第二阈值时,选择奇偶校验极化码编码;在信息比特序列的MCS等级小于或等于第二阈值时,选择循环冗余校验辅助极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的工作模式时,对于步骤100中根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在工作模式为带内模式或者独立模式时,选择奇偶校验极化码编码;在工作模式为带外模式时,选择循环冗余校验辅助极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的应用场景时,对于步骤100中根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在应用场景是增强移动宽带场景时,选择奇偶校验极化码编码;在应用场景是超可靠低延时场景或巨量机器通信场景时,选择循环冗余校验辅助极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的链路方向时,对于步骤100中根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在链路方向是从基站或中继到终端的下行方向时,选择奇偶校验极化码编码;在链路方向是从终端到基站或中继的上行方向时,选择循环冗余校验辅助极化码编码。
在一实施例中,当表征信息比特序列的数据特征为接收待发送比特序列的用户设备的类型时,对于步骤100中根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在用户设备的类型的索引大于预先设置的第三阈值时,选择循环冗余校验辅助极化码编码;在用户设备的类型的索引小于或等于第三阈值时,选择奇偶校验极化码编码。
在一实施例中,当表征信息比特序列的数据特征为编码后码块的长度时,对于步骤100中根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在编码后码块的长度大于预先设置的第四阈值时,选择循环冗余校验辅助极化码编码;在编码后码块的长度小于或等于第四阈值时,选择奇偶校验极化码编码。
在一实施例中,所述第四阈值可以是不小于200且不大于4000的正整数。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的长度时,对于步骤100中根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在信息比特序列的长度大于预先设置的第五阈值时,选择循环冗余校验辅助极化码编码;在信息比特序列的长度小于或等于第五阈值时,选择奇偶校验极化码编码。
在一实施例中,所述第五阈值可以是不小于200且不大于2000的正整数。
在一实施例中,当表征信息比特序列的数据特征为编码后码块的码率时,对于步骤100中根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在编码后码块的码率大于预先设置的第六阈值时,选择奇偶校验极化码编码;在编码后码块的码率小于或等于第六阈值时,选择循环冗余校验辅助极化码编码。
在一实施例中,当表征信息比特序列的数据特征为搜索空间时,对于步骤100中根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在搜索空间为用户特定搜索空间时,选择奇偶校验极化码编码;在搜索空间为公共搜索空间时,选择循环冗余校验辅助极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的传输次数时,对于步骤100中根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在信息比特序列的传输次数小于或等于预先设置的第七阈值时,选择奇偶校验极化码编码;在信息比特序列的传输次数大于第七阈值时,选择循环冗余校验辅助极化码编码。
在一实施例中,当表征信息比特序列的数据特征为承载信息比特序列的信道的类型时,对于步骤100中根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在承载信息比特序列的信道的类型为数据信道时,选择循环冗余校验辅助极化码编码;在承载信息比特序列的信道的类型为控制信道时,选择奇偶校验极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列对应的控制信息格式时,对于步骤100中根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在信息比特序列对应的控制信息格式的索引小于或等于预先 设置的第八阈值时,选择奇偶校验极化码编码;在信息比特序列对应的控制信息格式的索引大于第八阈值时,选择循环冗余校验辅助极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列对应的CSI进程时,对于步骤100中根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在CSI进程中CQI的值大于预先设置的第九阈值时,选择奇偶校验极化码编码;在CSI进程中CQI的值小于或等于第九阈值时,选择循环冗余校验辅助极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列的加扰方式时,对于步骤100中根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在加扰方式的级别大于预先设置的第十阈值时,选择循环冗余校验辅助极化码编码;在加扰方式的级别小于或等于第十阈值时,选择奇偶校验极化码编码。
在一实施例中,当表征信息比特序列的数据特征为承载信息比特序列的子帧的集合时,对于步骤100中根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在子帧的集合的索引大于预先设置的第十一阈值时,选择循环冗余校验辅助极化码编码;在子帧的集合的索引小于或等于第十一阈值时,选择奇偶校验极化码编码。
在一实施例中,当表征信息比特序列的数据特征为信息比特序列和校验比特序列的位置索引序列时,步骤100中的根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在信息比特序列和校验比特序列的位置索引序列的长度大于预先设置的第十二阈值时,选择循环冗余校验辅助极化码编码;在信息比特序列和校验比特序列的位置索引序列的长度小于或等于第十二阈值时,选择奇偶校验极化码编码。
在一实施例中,当表征信息比特序列的数据特征为承载信息比特序列的载波频率时,步骤100中的根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在承载信息比特序列的载波频率小于或等于预先设置的第十三阈值时,选择奇偶校验极化码编码;在承载信息比特序列的载波频率大于第十三阈值时,选择循环冗余校验辅助极化码编码。
在一实施例中,当表征信息比特序列的数据特征为所述信息比特序列的 CCE的聚合等级和所述信息比特序列对应的控制信息格式时,步骤100中的根据表征信息比特序列的数据特征,选择编码方法的步骤包括:在所述信息比特序列的CCE的聚合等级和所述信息比特序列对应的控制信息格式满足所设阈值条件时,即在所述信息比特序列的CCE的聚合等级小于或等于预先设置的第一阈值且所述信息比特序列对应的控制信息格式的索引小于或等于预先设置的第八阈值时,选择奇偶校验极化码编码;在所述信息比特序列的CCE的聚合等级大于预先设置的第一阈值,或者所述信息比特序列对应的控制信息格式的索引大于预先设置的第八阈值时,选择循环冗余校验辅助极化码编码。
选择极化码编码方法和极化码码块数量的各阈值条件与确定待发送比特序列的速率匹配策略的各阈值条件可以相同。
上述实施例中,对长度为K比特的比特序列进行极化码编码,得到长度为N比特的编码后比特序列,并根据数据特征来确定待发送的比特序列,实现了基于极化码编码的任意长度的比特序列的传输,并且可以基于表征信息比特序列的数据特征对极化码编码方法和极化码码块数量进行任意选择。
一实施例还提供了一种数据处理方法,可以应用于发射端侧。如图2所示,该数据处理方法可以包括如下步骤。
在步骤200中,发射端对输入的长度为K比特的信息比特序列进行极化码编码后得到长度为N比特的编码后比特序列。
可选地,对长度为K比特的比特序列进行极化码编码后得到长度为N比特的编码后比特序列包括:根据表征信息比特序列的数据特征,在极化码编码过程中选择1个或C个码块进行极化码编码,其中C为大于1的正整数。
可选地,码块个数
Figure PCTCN2018076793-appb-000007
或者,
Figure PCTCN2018076793-appb-000008
上式中,K 1为待发送信息比特序列的长度,K 1max为所设最大信息比特序列的长度,N max为极化码对应生成矩阵的最大尺寸,K 1、K 1max和N max均为正整数,0≤Δ≤2。
上述根据表征信息比特序列的数据特征,在极化码编码过程中选择1个或C个码块进行极化码编码的步骤包括:如果所述表征信息比特序列的数据特征满 足阈值条件,确定采用C个码块进行极化码编码。如果所述表征信息比特序列的数据特征不满足阈值条件,确定采用1个码块进行极化码编码。
本步骤200中的极化码编码包括但不限于:奇偶校验极化码(Parity-check Polar code)编码,或者循环冗余校验辅助极化码(Cyclic Redundancy Check-aided Polar code)编码。
可选地,在本步骤200之前还包括:根据表征信息比特序列的数据特征,选择奇偶校验极化码编码或循环冗余校验辅助极化码编码作为编码方法。
可选地,根据表征信息比特序列的数据特征,选择奇偶校验极化码编码或循环冗余校验辅助极化码编码作为编码方法包括:如果表征信息比特序列的数据特征满足阈值条件,从所述奇偶校验极化码编码或循环冗余校验辅助极化码编码中选择一种编码方法;如果表征信息比特序列的数据特征不满足阈值条件,选择另一种编码方法。
可选地,对长度为K比特的比特序列进行极化码编码后得到长度为N比特的编码后比特序列包括:根据极化码生成矩阵,对所述长度为K比特的比特序列进行编码后得到长度为N比特的编码后比特序列。
在步骤201中,发射端根据表征信息比特序列的数据特征及预先设置的速率匹配策略,从编码后比特序列中确定待发送比特序列。
本步骤201可以包括:根据表征信息比特序列的数据特征,从多个预先设置的速率匹配策略中确定待发送比特序列的速率匹配策略;根据确定的速率匹配策略从编码后比特序列中选取R个比特作为待发送比特序列,其中,R≥K,且R为正整数。
在一实施例中,根据表征信息比特序列的数据特征,从多个预先设置的速率匹配策略中确定待发送比特序列的速率匹配策略包括:如果所述表征信息比特序列的数据特征满足阈值条件,从多个预先设置的速率匹配策略中确定一种速率匹配策略或多种速率匹配策略的组合作为待发送比特序列的速率匹配策略;如果所述表征信息比特序列的数据特征不满足阈值条件,从多个预先设置的速率匹配策略中确定其他速率匹配策略中的一种或多种的组合作为待发送比特序列的速率匹配策略。
可选地,表征信息比特序列的数据特征包括如上述实施例中所列举的任一项或者任意组合。
在步骤202中,发射端将确定的待发送比特序列发送给接收端。
关于根据数据特征对速率匹配策略、码块数量及编码方法的选择的描述请参照上述实施例中的相关描述,这里不再赘述。各步骤的具体实现过程可参照上述实施例中的相关描述,这里不再赘述。
图3为一实施例的数据处理装置的组成结构示意图。该数据处理装置可以应用于发射端侧,用于将编码后比特序列发送至接收端侧。如图3所示,该数据处理装置至少包括:编码模块310和匹配模块320。
编码模块310设置为对长度为K比特的输入比特序列进行极化码编码后得到长度为N比特的编码后比特序列。K为正整数,N为大于等于K的正整数。
匹配模块320设置为根据表征信息比特序列的数据特征及预先设置的速率匹配策略,从编码后比特序列中确定待发送比特序列。
可选地,长度为K比特的输入比特序列可以包括以下形式之一:信息比特序列;或者,信息比特序列和校验比特序列;或者,信息比特序列和已知比特序列;或者,信息比特序列、校验比特序列和已知比特序列。
可选地,校验比特序列可以由信息比特序列和已知比特序列编码得到,或者,校验比特序列可以由信息比特序列编码得到。
可选地,编码方式包括但不限于:奇偶校验编码,循环冗余校验编码,BCH编码,汉明码编码,卷积编码,生成矩阵编码,Turbo编码,低密度奇偶校验编码,里德穆勒编码,哈希编码等。可选地,编码方式是以上编码方式的任意组合,或者,是以上同一编码方式执行一次或多次。
可选地,已知比特序列包括但不局限于:全0比特序列,或全1比特序列,或0和1组成的伪随机序列。或者,已知比特序列也可以是以上这些方式的任意组合。
可选地,编码模块310设置为通过以下方式对长度为K比特的比特序列进行极化码编码根据所述表征信息比特序列的数据特征,在极化码编码过程中选择1个或C个码块作为所述编码后比特序列,其中C为正整数。
码块个数
Figure PCTCN2018076793-appb-000009
或者,
Figure PCTCN2018076793-appb-000010
K 1为待发送信息比特序列的长度,K 1max为所设最大信息比特序列的长度,N max为极化码对应生成矩阵的最大尺寸,K 1、K 1max和N max均为正整数,0≤Δ≤2。
可选地,编码模块310设置为通过以下方式选择码块:如果所述表征信息比特序列的数据特征满足阈值条件,确定采用C个码块进行极化码编码;如果所述表征信息比特序列的数据特征不满足阈值条件,确定采用1个码块进行极化码编码。
可选地,极化码编码包括:奇偶校验极化码编码,或循环冗余校验辅助极化码编码。
可选地,编码模块310还设置为:根据所述数据特征,选择所述奇偶校验极化码或所述循环冗余校验辅助极化码编码作为编码方法。
可选地,所述编码模块310还设置为:如果所述表征信息比特序列的数据特征满足阈值条件,从所述奇偶校验极化码或循环冗余校验辅助极化码编码中确定一种编码方法;如果所述表征信息比特序列的数据特征不满足阈值条件,确定采用另一种编码方法。
可选地,匹配模块320设置为:根据表征信息比特序列的数据特征,从多个预先设置的速率匹配策略中确定待发送比特序列的速率匹配策略;根据确定的速率匹配策略从编码后比特序列中选取R个比特作为待发送比特序列,其中,R≥K,且R为正整数。
在一实施例中,根据表征信息比特序列的数据特征,从多个预先设置的速率匹配策略中确定待发送比特序列的速率匹配策略包括:如果所述表征信息比特序列的数据特征满足阈值条件,从多个预先设置的速率匹配策略中确定一种速率匹配策略或多种速率匹配策略的组合作为待发送比特序列的速率匹配策略;如果所述表征信息比特序列的数据特征不满足阈值条件,从多个预先设置的速率匹配策略中确定其他速率匹配策略中的一种或多种的组合作为待发送比特序列的速率匹配策略。
关于码块数量、编码方法以及速率匹配策略的选择的描述请参照上述实施例中的相关描述,这里不再赘述。
上述实施例提供的数据处理方法及装置,对长度为K比特的比特序列进行极化码编码,得到长度为N比特的编码后比特序列,并根据数据特征来确定待发送的比特序列,实现了基于极化码编码的任意长度的比特序列的传输。
一实施例还提供了一种用户设备,其中设置有上述任一实施例中的数据处理装置。
一实施例还提供了一种基站,其中设置有上述任一实施例中的数据处理装置。
下面结合具体实施例对上述实施例中的方法进行详细描述。
本实施例可以但不限于用在新无线接入技术(New Radio Access Technology,NR)中。
在本实施例中,发射端可以是基站,基站可以但不限于g节点B(g Node B,gNB);发射端也可以是用户设备UE。在本发明实施例中,接收端可以是用户设备UE,也可以是基站,基站可以但不限于是gNB。
在本实施例中,发送端有一个比特序列,即输入信息比特序列,并且所述发送端对该输入信息比特序列进行极化码编码。
极化码编码方式可以包括奇偶校验极化码编码和循环冗余校验辅助极化码编码。发送端需要根据表征信息比特序列的数据特征和一预设的阈值条件来选择合适的编码方式。进行极化码编码的码块数量也需要根据表征信息比特序列的数据特征和所述阈值条件来确定。
以上极化码编码方式和码块数量的选择与速率匹配策略的选择相互独立。
从极化码编码后得到的长度为N比特的编码后比特序列中选取R个比特作为待发送比特序列的过程,需要进行速率匹配。在本实施例中,表征信息比特序列的数据特征可以为信息比特序列的CCE的聚合等级,且聚合等级可以为T 1,以及预先设置第一阈值可以为E 1比特,其中,T 1和E 1都是正整数。那么,上述步骤101中确定待发送比特序列所根据的速率匹配策略可以包括:
当T 1≤E 1时,采用的速率匹配策略可以是:第二速率匹配策略、或第三速率匹配策略、或第五速率匹配策略或第八速率匹配策略或第十速率匹配策略、或第七速率匹配策略或第九速率匹配策略或第十一速率匹配策略;当T 1>E 1时, 采用的速率匹配策略可以是:第一速率匹配策略、或第四速率匹配策略、或第六速率匹配策略。E 1的取值可以为{1,2,4,8}中的一个,比如E 1=2。
一实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述的编码方法和/或数据处理方法。
一实施例还提供了一种用于实现数据处理方法的装置,可以包括存储器和用于执行存储于所述存储器中的可执行指令的处理器。
在一实施例中,存储器中可以存储有以下可执行指令:对长度为K比特的输入比特序列进行极化码编码后得到长度为N比特的编码后比特序列;根据表征所述信息比特序列的数据特征及预先设置的速率匹配策略,从所述编码后比特序列中确定待发送比特序列;其中,K为正整数,N为大于等于K的正整数。
在一实施例中,存储器中可以存储有极化码生成矩阵以及以下可执行指令:对长度为K比特的输入比特序列进行极化码编码后得到长度为N比特的编码后比特序列;根据表征所述信息比特序列的数据特征及预先设置的速率匹配策略,从所述编码后比特序列中确定待发送比特序列;其中,K为正整数,N为大于等于K的正整数。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
工业实用性
本发明实施例的数据处理方法及装置,对长度为K比特的比特序列进行极化码编码,得到长度为N比特的编码后比特序列,并根据数据特征来确定待发送的比特序列,实现了基于极化码编码的任意长度的比特序列的传输。

Claims (18)

  1. 一种数据处理方法,包括:
    对长度为K比特的输入比特序列进行极化码编码后得到长度为N比特的编码后比特序列;其中,K为正整数,N为大于等于K的正整数;
    根据表征信息比特序列的数据特征及预先设置的速率匹配策略,从编码后比特序列中确定待发送比特序列;
    其中,所述极化码编码包括:奇偶校验极化码编码,或循环冗余校验辅助极化码编码;所述方法还包括:根据所述数据特征,选择所述奇偶校验极化码编码或所述循环冗余校验辅助极化码编码作为编码方法。
  2. 根据权利要求1所述的数据处理方法,其中,所述长度为K比特的输入比特序列包括以下形式之一:
    信息比特序列;
    信息比特序列和校验比特序列;
    信息比特序列和已知比特序列;
    信息比特序列、校验比特序列和已知比特序列。
  3. 根据权利要求2所述的方法,其中,所述校验比特序列由所述信息比特序列和所述已知比特序列编码得到;或者,所述校验比特序列由所述信息比特序列编码得到。
  4. 根据权利要求3所述的方法,其中,所述编码包括以下编码方式之一或任意组合:奇偶校验编码、循环冗余校验编码、BCH编码、汉明码编码、卷积编码、生成矩阵编码、Turbo编码、低密度奇偶校验编码、里德穆勒编码、哈希编码。
  5. 根据权利要求1所述的方法,其中,所述对长度为K比特的输入比特序列进行极化码编码包括:
    根据所述表征信息比特序列的数据特征,在极化码编码过程中选择1个或C个码块进行极化码编码,其中C为大于1的正整数。
  6. 根据权利要求5所述的方法,其中,所述根据所述数据特征选择1个或C个码块进行极化码编码包括:
    在所述表征信息比特序列的数据特征满足阈值条件的情况下,确定采用C个码块进行极化码编码;
    在所述表征信息比特序列的数据特征不满足所述阈值条件的情况下,确定采用1个码块进行极化码编码。
  7. 根据权利要求1所述的方法,其中,所述根据表征信息比特序列的数据特征及预先设置的速率匹配策略,从所述编码后比特序列中确定待发送比特序列包括:
    根据所述表征信息比特序列的数据特征,从多个预先设置的速率匹配策略中确定待发送比特序列的速率匹配策略;
    根据确定的待发送比特序列的速率匹配策略,从所述编码后比特序列中选取R个比特作为所述待发送比特序列,其中,R≥K,且R为正整数。
  8. 根据权利要求1、5、6或7所述的方法,其中,所述表征信息比特序列的数据特征包括以下任一项或者任意组合:
    所述信息比特序列的工作模式;
    所述信息比特序列的应用场景;
    所述信息比特序列的链路方向;
    接收待发送比特序列的用户设备的类型;
    所述信息比特序列的长度;
    所述编码后码块的长度;
    编码后码块的码率;
    承载所述信息比特序列的信道的类型。
  9. 根据权利要求1或8所述的方法,其中,当所述数据特征为所述信息比特序列的链路方向时,所述根据所述数据特征,选择所述奇偶校验极化码编码或所述循环冗余校验辅助极化码编码作为编码方法包括:
    在所述信息比特序列的链路方向是从基站或中继到终端的下行方向时,选择所述奇偶校验极化码编码;在所述信息比特序列的链路方向是从终端到基站或中继的上行方向时,选择所述循环冗余校验辅助极化码编码。
  10. 根据权利要求1或8所述的方法,其中,当所述数据特征为所述信息比特序列的链路方向时,所述根据所述数据特征,选择所述奇偶校验极化码编码或所述循环冗余校验辅助极化码编码作为编码方法包括:
    在所述信息比特序列的链路方向是从基站或中继到终端的下行方向时,选择所述循环冗余校验辅助极化码编码;在所述信息比特序列的链路方向是从终端到基站或中继的上行方向时,选择所述奇偶校验极化码编码。
  11. 根据权利要求1或8所述的方法,其中,当所述数据特征为所述信息比特序列的长度和链路方向时,所述根据所述数据特征,选择所述奇偶校验极化码编码或所述循环冗余校验辅助极化码编码作为编码方法包括:在所述信息比特序列的长度和链路方向均满足预先设置的阈值条件时,选择奇偶校验极化码编码;在所述信息比特序列的长度和链路方向任意一个不满足预先设置的阈值条件时,选择循环冗余校验辅助极化码编码。
  12. 根据权利要求1或8所述的方法,其中,当所述数据特征为所述信息比特序列的长度和信道类型时,所述根据所述数据特征,选择所述奇偶校验极化码编码或所述循环冗余校验辅助极化码编码作为编码方法包括:在所述信息比特序列的长度和信道类型均满足预先设置的阈值条件时,选择奇偶校验极化码编码;在所述信息比特序列的长度和信道类型任意一个不满足预先设置的阈值条件时,选择循环冗余校验辅助极化码编码。
  13. 一种数据处理装置,包括:编码模块和匹配模块,其中,
    所述编码模块设置为对长度为K比特的输入比特序列进行极化码编码后得到长度为N比特的编码后比特序列;其中,K为正整数,N为大于等于K的正整数;
    所述匹配模块设置为根据表征信息比特序列的数据特征及预先设置的速率匹配策略,从所述编码后比特序列中确定待发送比特序列;
    其中,所述极化码编码包括:奇偶校验极化码编码,或循环冗余校验辅助极化码编码;
    所述编码模块还设置为:根据所述数据特征,选择所述奇偶校验极化码或所述循环冗余校验辅助极化码编码作为编码方法。
  14. 根据权利要求13所述的装置,其中,所述长度为K比特的输入比特序列包括以下形式之一:
    信息比特序列;
    信息比特序列和校验比特序列;
    信息比特序列和已知比特序列;
    信息比特序列、校验比特序列和已知比特序列。
  15. 根据权利要求14所述的装置,其中,所述校验比特序列由所述信息比特序列和所述已知比特序列编码得到;或者,所述校验比特序列由所述信息比特序列编码得到。
  16. 根据权利要求13、14或15所述的装置,其中,所述编码模块设置为通过以下方式对长度为K比特的比特序列进行极化码编码:
    根据所述表征信息比特序列的数据特征,在极化码编码过程中选择1个或C个码块进行极化码编码,其中C为大于1的正整数。
  17. 根据权利要求13至16任一项所述的装置,其中,所述极化码编码包括:奇偶校验极化码编码,或循环冗余校验辅助极化码编码;
    所述编码模块还设置为:根据所述数据特征,选择所述奇偶校验极化码或所述循环冗余校验辅助极化码编码作为编码方法。
  18. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求1-12中任一项所述的方法。
PCT/CN2018/076793 2017-02-15 2018-02-14 数据处理方法及装置 WO2018149411A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP23202725.0A EP4325727A3 (en) 2017-02-15 2018-02-14 Data processing method and device
KR1020197026787A KR102289928B1 (ko) 2017-02-15 2018-02-14 데이터 프로세싱 방법 및 디바이스
KR1020217025220A KR102419967B1 (ko) 2017-02-15 2018-02-14 데이터 처리 방법 및 디바이스
EP18754604.9A EP3584970A4 (en) 2017-02-15 2018-02-14 DATA PROCESSING DEVICE AND METHOD
JP2019544003A JP7030131B2 (ja) 2017-02-15 2018-02-14 データ処理方法およびデバイス
US16/542,246 US11121724B2 (en) 2017-02-15 2019-08-15 Data processing method and device
US17/468,606 US11683052B2 (en) 2017-02-15 2021-09-07 Data processing method and device
JP2021172802A JP7248762B2 (ja) 2017-02-15 2021-10-22 データ処理方法およびデバイス
US17/648,413 US11496156B2 (en) 2017-02-15 2022-01-19 Data processing method and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710081996.7 2017-02-15
CN201710081996 2017-02-15
CN201710184062.6A CN108429603B (zh) 2017-02-15 2017-03-24 一种数据处理方法及装置
CN201710184062.6 2017-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/542,246 Continuation US11121724B2 (en) 2017-02-15 2019-08-15 Data processing method and device

Publications (1)

Publication Number Publication Date
WO2018149411A1 true WO2018149411A1 (zh) 2018-08-23

Family

ID=68694487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076793 WO2018149411A1 (zh) 2017-02-15 2018-02-14 数据处理方法及装置

Country Status (6)

Country Link
US (3) US11121724B2 (zh)
EP (2) EP4325727A3 (zh)
JP (2) JP7030131B2 (zh)
KR (2) KR102289928B1 (zh)
CN (1) CN114598424A (zh)
WO (1) WO2018149411A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114598424A (zh) * 2017-02-15 2022-06-07 中兴通讯股份有限公司 一种数据处理方法及装置
US11082067B1 (en) * 2019-10-03 2021-08-03 Xilinx, Inc. System and method for determining bit types for polar encoding and decoding
CN111211793B (zh) * 2020-02-10 2023-08-04 成都烨软科技有限公司 一种基于汉明码并行tpc编码方法
US20230361788A1 (en) * 2022-05-04 2023-11-09 Qualcomm Incorporated Polarization adjusted channel coding design for complexity reduction
WO2024049262A1 (ko) * 2022-09-01 2024-03-07 엘지전자 주식회사 정보 블록을 전송하는 방법, 통신 기기, 프로세싱 장치, 및 저장 매체, 그리고 정보 블록을 수신하는 방법, 통신 기기, 프로세싱 장치, 및 저장 매체

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104539393A (zh) * 2015-01-07 2015-04-22 北京邮电大学 一种基于极化码的信源编码方法
WO2015149225A1 (zh) * 2014-03-31 2015-10-08 华为技术有限公司 极化码的混合自动重传方法及装置、无线通信装置
CN105337697A (zh) * 2015-10-12 2016-02-17 国网信息通信产业集团有限公司 一种适用于配网自动化的电力无线通信方法、装置及系统
US20160164629A1 (en) * 2014-12-05 2016-06-09 Lg Electronics Inc. Method and device for providing secure transmission based on polar code
CN105871506A (zh) * 2016-03-23 2016-08-17 中国电子科技集团公司第十研究所 无线通信自适应传输方法
US20160241355A1 (en) * 2015-02-13 2016-08-18 Samsung Electronics Co., Ltd. Apparatus and method of constructing polar code

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1656737B1 (en) * 2003-08-08 2019-05-08 Intel Corporation Method and apparatus for varying lengths of low density parity check codewords
CA2685471C (en) * 2007-04-30 2014-10-28 Interdigital Technology Corporation Feedback signaling error detection and checking in mimo wireless communication systems
BRPI0815159B1 (pt) * 2007-08-14 2020-09-08 Lg Electronics, Inc. Método de transmissão dados em sistema de acesso sem fio
KR101502623B1 (ko) * 2008-02-11 2015-03-16 삼성전자주식회사 저밀도 패리티 검사 부호를 사용하는 통신 시스템에서 채널부호/복호 방법 및 장치
EP2377359B1 (en) * 2009-01-09 2019-03-20 Lenovo Innovations Limited (Hong Kong) A method and apparatus for encoding and decoding
JP5250061B2 (ja) * 2011-01-07 2013-07-31 株式会社エヌ・ティ・ティ・ドコモ 通信制御方法、移動通信システム及び移動端末装置
CN102136886A (zh) * 2011-04-14 2011-07-27 西安新邮通信设备有限公司 一种正交重复累积码的编译码方法及装置
CN108712231B (zh) 2012-10-17 2019-04-19 华为技术有限公司 一种编译码的方法、装置及系统
CN107659384A (zh) 2012-11-16 2018-02-02 华为技术有限公司 数据处理的方法和装置
KR101951663B1 (ko) 2012-12-14 2019-02-25 삼성전자주식회사 Crc 부호와 극 부호에 의한 부호화 방법 및 장치
KR102007770B1 (ko) * 2012-12-14 2019-08-06 삼성전자주식회사 패킷의 부호화 방법과 그 복호화 장치 및 방법
CN104219019B (zh) * 2013-05-31 2021-06-22 华为技术有限公司 编码方法及编码设备
USRE49547E1 (en) 2013-08-20 2023-06-06 Lg Electronics Inc. Method for transmitting data by using polar coding in wireless access system
JP6363721B2 (ja) * 2014-02-21 2018-07-25 華為技術有限公司Huawei Technologies Co.,Ltd. ポーラ符号のためのレートマッチング方法および装置
CN105306165B (zh) * 2014-06-23 2019-10-11 中兴通讯股份有限公司 数据发送方法及装置
US10193578B2 (en) 2014-07-10 2019-01-29 The Royal Institution For The Advancement Of Learning / Mcgill University Flexible polar encoders and decoders
CN105471545B (zh) * 2014-09-10 2020-07-21 中兴通讯股份有限公司 一种数据包处理方法及装置
CN110401456B (zh) 2014-12-22 2023-10-13 Oppo广东移动通信有限公司 极性码的编码方法和编码装置
JP2018137491A (ja) * 2015-06-29 2018-08-30 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
WO2017023079A1 (ko) * 2015-08-02 2017-02-09 엘지전자 주식회사 폴라 코드에서의 데이터 비트 결정 방법 및 이를 위한 장치
US10461779B2 (en) 2015-08-12 2019-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Rate-compatible polar codes
US10581462B2 (en) 2015-12-01 2020-03-03 Huawei Technologies Co., Ltd. Signature-enabled polar encoder and decoder
CN105933010B (zh) * 2016-04-15 2019-05-14 华南理工大学 一种基于分段校验辅助的低复杂度极化码译码scl方法
US10454499B2 (en) * 2016-05-12 2019-10-22 Qualcomm Incorporated Enhanced puncturing and low-density parity-check (LDPC) code structure
US9917675B2 (en) * 2016-06-01 2018-03-13 Qualcomm Incorporated Enhanced polar code constructions by strategic placement of CRC bits
US20170353267A1 (en) * 2016-06-01 2017-12-07 Qualcomm Incorporated Generalized polar code construction
CN106230489B (zh) * 2016-07-15 2019-07-16 西安电子科技大学 适用于任意高阶调制的极化码编码调制方法
CN106230555B (zh) * 2016-07-29 2019-02-19 西安电子科技大学 极化码的分段循环冗余校验方法
WO2018126378A1 (en) * 2017-01-05 2018-07-12 Qualcomm Incorporated Wireless communication with polar codes using a mask sequence for frozen bits
CN108365911B (zh) 2017-01-26 2021-07-20 华为技术有限公司 一种信息的编码方法及设备
CN114598424A (zh) 2017-02-15 2022-06-07 中兴通讯股份有限公司 一种数据处理方法及装置
CN108540259B (zh) * 2017-03-01 2020-07-10 电信科学技术研究院 一种极化码编译码方法及装置
JP6991234B2 (ja) * 2017-03-23 2022-01-12 クアルコム,インコーポレイテッド ポーラ符号化のためのパリティビットチャネル割当て
CN115173992A (zh) * 2017-03-25 2022-10-11 华为技术有限公司 一种速率匹配的方法和装置
CN108809332B (zh) * 2017-05-05 2021-09-03 华为技术有限公司 一种Polar码传输方法及装置
US10742350B2 (en) * 2017-06-19 2020-08-11 Samsung Electronics Co., Ltd. Method and apparatus of rate-matching for communication and broadcasting systems
CN109150383B (zh) * 2017-06-27 2021-08-27 华为技术有限公司 一种Polar码的编码方法及装置
SG11201911638SA (en) * 2017-07-07 2020-02-27 Qualcomm Inc Communication techniques applying low-density parity-check code base graph selection
CN109391343B (zh) * 2017-08-02 2021-09-03 华为技术有限公司 一种Polar码编码方法及装置
CN107592181B (zh) * 2017-08-02 2021-10-15 华为技术有限公司 一种Polar码编码方法及装置
US10659194B2 (en) * 2017-08-02 2020-05-19 Huawei Technologies Co., Ltd. Polar code encoding method and apparatus in wireless communications
CN110572239A (zh) * 2017-08-04 2019-12-13 华为技术有限公司 极化码的编译码方法、装置及设备
CN111095831B (zh) * 2017-08-21 2023-11-07 高通股份有限公司 用于极化码的速率匹配技术
KR102426047B1 (ko) * 2017-11-06 2022-07-26 삼성전자주식회사 폴라 부호 복호화 장치 및 방법
WO2019130475A1 (ja) * 2017-12-27 2019-07-04 日本電気株式会社 通信路分極を用いた誤り訂正符号化方法および装置、復号方法および装置
KR102428522B1 (ko) * 2018-04-05 2022-08-03 삼성전자 주식회사 무선 통신 시스템에서 극 부호를 이용한 부호화 및 복호화를 위한 장치 및 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015149225A1 (zh) * 2014-03-31 2015-10-08 华为技术有限公司 极化码的混合自动重传方法及装置、无线通信装置
US20160164629A1 (en) * 2014-12-05 2016-06-09 Lg Electronics Inc. Method and device for providing secure transmission based on polar code
CN104539393A (zh) * 2015-01-07 2015-04-22 北京邮电大学 一种基于极化码的信源编码方法
US20160241355A1 (en) * 2015-02-13 2016-08-18 Samsung Electronics Co., Ltd. Apparatus and method of constructing polar code
CN105337697A (zh) * 2015-10-12 2016-02-17 国网信息通信产业集团有限公司 一种适用于配网自动化的电力无线通信方法、装置及系统
CN105871506A (zh) * 2016-03-23 2016-08-17 中国电子科技集团公司第十研究所 无线通信自适应传输方法

Also Published As

Publication number Publication date
KR20210102484A (ko) 2021-08-19
US20190372599A1 (en) 2019-12-05
US11496156B2 (en) 2022-11-08
EP3584970A4 (en) 2020-03-04
EP4325727A2 (en) 2024-02-21
JP2020511051A (ja) 2020-04-09
EP4325727A3 (en) 2024-04-24
US11121724B2 (en) 2021-09-14
US11683052B2 (en) 2023-06-20
US20220140844A1 (en) 2022-05-05
KR20190126806A (ko) 2019-11-12
EP3584970A1 (en) 2019-12-25
US20210409039A1 (en) 2021-12-30
CN114598424A (zh) 2022-06-07
JP2022009388A (ja) 2022-01-14
KR102419967B1 (ko) 2022-07-11
JP7030131B2 (ja) 2022-03-04
JP7248762B2 (ja) 2023-03-29
KR102289928B1 (ko) 2021-08-18

Similar Documents

Publication Publication Date Title
WO2018149411A1 (zh) 数据处理方法及装置
CN103444087B (zh) 使用弹性代码与柔性源块映射进行编码和解码
US11088709B2 (en) Polar code encoding method and apparatus
US10567994B2 (en) Method and device for transmitting data
EP3570475B1 (en) Rate matching of an ldpc coded block stored in a circular buffer for harq transmissions
EP3567766B1 (en) Data transmission method and apparatus
CN107800510B (zh) 极化Polar码编码的方法及装置
JP7216011B2 (ja) ポーラーコードレートマッチング方法および装置
US10848185B2 (en) Coding and decoding of polar codes extended to lengths which are not powers of two
US20230208554A1 (en) Encoding and Decoding Method and Apparatus
CN107733440B (zh) 多边类型结构化ldpc处理方法及装置
EP3873010A1 (en) Polar code encoding method and device
US20090150743A1 (en) Method and system for constructing and decoding rateless codes with partial information
CN107733439B (zh) 一种ldpc编码方法、编码装置及通信设备
CN110034845B (zh) 信息处理方法和无线传输设备
WO2018127198A1 (zh) 数据处理方法和装置
EP3605904B1 (en) Interleaving method and device
CN111771336B (zh) 生成极化码的设备和方法
WO2018149389A1 (zh) 数据处理方法、装置及发射端
CN108429603B (zh) 一种数据处理方法及装置
TWI674766B (zh) 低密度奇偶檢查碼之編碼及解碼方法
CN111052614B (zh) 消息处理和对应装置
CN116195195A (zh) 用于线性网络码的主元位置的选择
KR20090051139A (ko) 이동 통신 시스템에서의 연합 부호화 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544003

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197026787

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018754604

Country of ref document: EP

Effective date: 20190916