WO2018149303A1 - 具有低介电常数的聚合物及降低聚合物介电常数的分子结构设计方法 - Google Patents

具有低介电常数的聚合物及降低聚合物介电常数的分子结构设计方法 Download PDF

Info

Publication number
WO2018149303A1
WO2018149303A1 PCT/CN2018/074891 CN2018074891W WO2018149303A1 WO 2018149303 A1 WO2018149303 A1 WO 2018149303A1 CN 2018074891 W CN2018074891 W CN 2018074891W WO 2018149303 A1 WO2018149303 A1 WO 2018149303A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
dielectric constant
low dielectric
benzene ring
design method
Prior art date
Application number
PCT/CN2018/074891
Other languages
English (en)
French (fr)
Inventor
张艺
钱超
许家瑞
贝润鑫
刘四委
池振国
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Priority to JP2019543885A priority Critical patent/JP6851093B2/ja
Priority to US16/486,802 priority patent/US11370886B2/en
Priority to KR1020197023897A priority patent/KR102283757B1/ko
Publication of WO2018149303A1 publication Critical patent/WO2018149303A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/12Applications used for fibers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention relates to the field of materials science, in particular to a polymer having a low dielectric constant and a molecular structure design method for lowering the dielectric constant of the polymer.
  • the most effective way to reduce the dielectric constant of a material is to increase the internal voids of the material.
  • the free volume present in the bulk of the polymer material is the intrinsic property of the polymer. It belongs to the intrinsic void of the polymer material. Its size is sub-nanometer, and it is uniformly dispersed inside the material. Its size is closely related to the structure of the polymer chain. The stability of the overall performance of the material has little effect.
  • Increasing the free volume of the polymer material can be achieved by designing its molecular chain structure.
  • the patent CN105622834A, CN105860075A, etc. by introducing a fluorine-containing component into the molecular structure of the polymer, inhibits the tight packing between the molecules of the material, and effectively reduces The dielectric constant of the polymer material, but the introduction of a large amount of fluorine-containing components leads to a decrease in the bonding property of the material, and the hydrofluoric acid released at a high temperature is extremely corrosive and environmentally friendly, and cannot be applied.
  • the field of precision electronic devices by introducing a fluorine-containing component into the molecular structure of the polymer, inhibits the tight packing between the molecules of the material, and effectively reduces The dielectric constant of the polymer material, but the introduction of a large amount of fluorine-containing components leads to a decrease in the bonding property of the material, and the hydrofluoric acid released at a high temperature is extremely corrosive and
  • An object of the present invention is to provide a polymer having a low dielectric constant and a molecular structure design method for lowering the dielectric constant of a polymer, which has the advantages of simple process, low cost, and easy industrial production.
  • the object of the present invention is achieved by a polymer having a low dielectric constant, the molecular structure of which consists of a main chain structure and a side group structure, characterized in that the side group structure has a structure linked to the main chain structure. a benzene ring or a biphenyl segment, and a substituent having a rigid linear structure at a meta position on the benzene ring or the biphenyl group.
  • the side group structure has one or more of the structural formula I or II:
  • X 1 is selected from any one of the following structural formulas and 0 ⁇ n ⁇ 10:
  • Y 1 is selected from any one of the following structural formulas and 0 ⁇ n ⁇ 10:
  • Z is selected from any one of the following structural formulas and 0 ⁇ m ⁇ 10:
  • a molecular structure design method capable of reducing a dielectric constant of a polymer characterized in that a side group structure is introduced in a main chain structure of a polymer, the side group structure having a benzene ring or a biphenyl group connected to the main chain structure And a substituent having a rigid linear structure at a meta position on the benzene ring or the biphenyl group.
  • the invention utilizes the rich designability of the side chain of the polymer molecular chain, introduces a linear rigid group at the position between the pendant benzene ring or the biphenyl segment structure, and forms a larger in the material by the relaxation rotation of the pendant benzene ring.
  • the size of the free volume cavity, inhibiting the molecular chain accumulation, thereby reducing the dielectric constant of the polymer material, the method is simple, and is suitable for common high-performance polymer materials, the dielectric constant of the obtained polymer material is significantly reduced, and it is easy to realize industrial production.
  • the low dielectric constant polymer obtained by the invention can be applied to the preparation of low dielectric materials, and is suitable for high-tech industries such as electronics, microelectronics, information and aerospace, especially in the field of ultra-large scale integrated circuits.
  • Figure 1 shows the dielectric constants of polymer films TmBPPA, TPPA and TpBPPA at different frequencies. It can be seen from the figure that the dielectric constant of the polymer film TmBPPA is 2.23 at a frequency of 10000 Hz, and the dielectric constant of the polymer film TPPA.
  • the polymer film TpBPPA has a dielectric constant of 2.76.
  • Figure 2 shows the dielectric constants of polymer films TmBPHF, TPAHF and TpBPHF at different frequencies. It can be seen from the figure that the dielectric constant of the polymer film TmBPHF is 2.09 at a frequency of 10000 Hz, and the dielectric constant of the polymer film TPAHF.
  • the polymer film TpBPHF has a dielectric constant of 2.51 at 2.65.
  • Figure 3 shows the dielectric constants of the polymer films TM3BPhHF, TPMHF and TM4BPhHF at different frequencies. It can be seen from the figure that the dielectric constant of the polymer film TM3BPhHF is 1.92 at a frequency of 10000 Hz, and the dielectric constant of the polymer film TPMHF.
  • the polymer film TM4BPhHF has a dielectric constant of 2.46 for 2.45.
  • Figure 4 shows the dielectric constants of polymer films TPMHF and TM35Ph2CF 3 HF at different frequencies. It can be seen from the figure that the dielectric constant of the polymer film TM35Ph2CF 3 HF is 1.91 at a frequency of 10000 Hz, and the dielectric film TPMHF is introduced. The electrical constant is 2.45.
  • the present invention is a polymer having a low dielectric constant, the molecular structure of which consists of a main chain structure and a pendant structure, characterized in that the side group structure contains a benzene ring or a biphenyl group bonded to the main chain structure. a segment, and a substituent having a rigid linear structure at a meta position on the benzene ring or the biphenyl group.
  • the temperature corresponding to the relaxation motion of the main chain segment of the molecule is called the glass transition temperature; the relaxation rotation of the pendant benzene ring becomes the ⁇ relaxation temperature.
  • the ⁇ relaxation temperature is much lower than the glass transition temperature. Therefore, when the polymer material is frozen at the glass transition temperature, the main chain side of the molecular chain is still able to relax and rotate. This dynamic rotation is structurally designed to inhibit the tight packing of molecular chains to achieve more free volume.
  • a pendant structure is introduced in the main chain structure of the polymer, the pendant structure having a benzene ring or a biphenyl segment, and having a rigid linear structure at a meta position on the benzene ring or the biphenyl segment
  • the substituent, the pendant structure is linked to the main chain structure through its benzene ring or biphenyl segment, and is a molecular structure design method which can lower the dielectric constant of the polymer.
  • the side group structure has one or more of the structural formula I or II:
  • X 1 is selected from any one of the following structural formulas and 0 ⁇ n ⁇ 10:
  • Y 1 is selected from any one of the following structural formulas and 0 ⁇ n ⁇ 10:
  • Z is selected from any one of the following structural formulas and 0 ⁇ m ⁇ 10:
  • the polymer backbone structure can be selected from all aromatic polymer structures, heterocyclic polymer structures or alkyl chain polymer structures.
  • the polymer may be a powder material, a fiber material or a film material, and has a lower dielectric constant and can be applied to the preparation of a low dielectric polymer material.
  • the side-group phenyl ring meta-biphenyl substitution was introduced into the molecular structure of the polyimide material containing triphenylamine and PMDA structure, and the dielectric properties of the polymer film were characterized by an impedance analyzer, and the benzene was not contained.
  • the polymer film of the ring meta-substitution (TPPA) and the pendant phenyl ring para-substitution (TpBPPA) was compared (as shown in Figure 1).
  • the dielectric constant of the pendant phenyl ring meta-biphenyl substituted polymer film is significantly lower than the other two polymer films, down to 2.23.
  • the side-group phenyl ring meta-biphenyl substitution was introduced into the molecular structure of the polyimide material containing triphenylamine and 6FDA structure, and the dielectric properties of the polymer film were characterized by an impedance analyzer, and the benzene was not contained.
  • the inter-ring substitution (TPAHF) and the pendant phenyl ring para-substitution (TpBPHF) polymer films were compared (as shown in Figure 2).
  • the dielectric constant of the pendant phenyl ring meta-biphenyl substituted polymer film is significantly lower than the other two polymer films, down to 2.09.
  • the molecular structure of the polymer film TM3BPhHF in this embodiment is as follows:
  • the side-group phenyl ring meta-biphenyl substitution was introduced into the molecular structure of the polyimide material containing triphenylmethane and 6FDA structure, and the dielectric properties of the polymer film were characterized by impedance analyzer and without side groups.
  • a polymer film of a phenyl ring meta-substitution (TPMHF) and a pendant phenyl ring para-substitution (TM4BPhHF) was compared (as shown in Figure 3).
  • the dielectric constant of the pendant phenyl ring meta-biphenyl substituted polymer film is significantly lower than the other two polymer films, down to 1.92.
  • the molecular structure of the polymer film TM35Ph2CF 3 HF in this embodiment is as follows:
  • the side-group benzene ring meta-fluorination double substitution was introduced into the molecular structure of the polyimide material containing triphenylmethane and 6FDA structure, and the dielectric properties of the polymer film were characterized by impedance analyzer and without side groups.
  • a phenyl ring meta-substitution (TPMHF) polymer film was compared (as shown in Figure 4).
  • the dielectric constant of the pendant phenyl ring meta-fluorinated disubstituted polymer film is significantly lower than that of the no-base meta-substituted polymer film, as low as 1.91.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Formation Of Insulating Films (AREA)
  • Laminated Bodies (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Organic Insulating Materials (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polyethers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

本发明公开了一种具有低介电常数的聚合物及降低聚合物介电常数的分子结构设计方法,其利用聚合物分子链侧基的可设计性,在侧基苯环或联苯基链段结构间位引入直链刚性基团,通过侧基苯环的松弛旋转在材料中形成更大尺寸的自由体积空穴,抑制分子链堆积,进而降低聚合物材料介电常数。本发明的设计方法简单,适用于常见的高性能聚合物材料,可应用于制备低介电聚合物材料,适用于电子、微电子、信息以及航空航天等高新技术产业领域,特别是超大规模集成电路领域。

Description

具有低介电常数的聚合物及降低聚合物介电常数的分子结构设计方法 技术领域
本发明涉及材料科学领域,特别是一种具有低介电常数的聚合物以及降低聚合物介电常数的分子结构设计方法。
技术背景
高密度、高速度、多功能型、高性能超大规模集成电路(ULSI)要求大芯片面积和小特征尺寸,为此必须增加布线密度,降低金属线的宽度和线间的距离。器件密度和连线密度大大增加,从而使互连系统中电阻和线间电容耦合迅速增大。使信号传输延迟甚至失真、干扰噪声增强和功率耗散增大,成为高性能超大规模集成电路(ULSI)进一步发展的瓶颈。根据信号传输延迟(RC)和功率(P)的计算公式模型和相关理论,要实现降低集成电路的RC延迟和降低能耗P,这一问题的解决有赖于新型低介电层间材料的开发及应用。
根据克劳修斯-莫索提方程(Clausius-Mossotti equation)可知,要实现降低材料介电常数,最有效的方法是增大材料的内部空隙。但是增大材料内部空隙的同时,很可能会损害材料的其它性能(如力学性能、热稳定性以及吸湿率等)。聚合物材料本体中存在的自由体积是聚合物的本征特性,属于聚合物材料的本征性空隙,其尺寸在亚纳米级别,在材料内部均匀分散,其大小与聚合物链结构密切相关,对于材料综合性能的稳定性影响较小。
增大聚合物材料的自由体积可以通过对其分子链结构进行设计来实现,如专利CN105622834A、CN105860075A等通过在聚合物分子结构中引入含氟组分抑制了材料分子间的紧密堆砌,有效地降低了聚合物材料的介电常数,但是含氟组分的大量引入会导致材料的粘结性能降低,高温下释放的氢氟酸具有极强的腐蚀性,对环境友好性较差,无法应用于精密电子器件领域。专利CN105461924A、CN1302254等通过在聚合物分子结构中引入大体积基团,阻碍分子间的紧密堆砌,也在一定程度上降低了材料的介电常数,但是这种方法设计的聚合物分子结构较为复杂,不可避免的会导致材料生产工艺复杂性和生产成本的大幅提高,难以实现大规模工业化生产。此外,降低聚合物材料介电常数还可以通过物理致孔方式来实现,如微发泡、添加致孔剂等,但这类办法会造成材料的机械性能下降,吸水性提高等,影响材料的实际应用价值。
发明内容
本发明的目的是提供一种具有低介电常数的聚合物及降低聚合物介电常数的分子结 构设计方法,其具有工艺简单、成本较低、易于工业生产等优点。
本发明的目的是这样实现的:一种具有低介电常数的聚合物,其分子结构由主链结构和侧基结构组成,其特征在于:所述的侧基结构具有与主链结构连接的苯环或联苯基链段,且在苯环或联苯基链段上的间位具有刚性直链型结构的取代基。
所述的侧基结构中有结构通式Ⅰ或Ⅱ的一种或两种以上:
Figure PCTCN2018074891-appb-000001
其中,X 1选自下列结构式中的任何一种且0≤n<10:
Figure PCTCN2018074891-appb-000002
Y 1选自下列结构式中的任何一种且0≤n<10:
Figure PCTCN2018074891-appb-000003
Z选自下列结构式中的任何一种且0≤m<10:
Figure PCTCN2018074891-appb-000004
一种可降低聚合物介电常数的分子结构设计方法,其特征在于:在聚合物的主链结构引入侧基结构,该侧基结构具有与主链结构连接的苯环或联苯基链段,且在苯环或联苯基链段上的间位具有刚性直链型结构的取代基。
本发明利用聚合物分子链侧基丰富的可设计性,在侧基苯环或联苯基链段结构间位引入直链刚性基团,通过侧基苯环的松弛旋转在材料中形成更大尺寸的自由体积空穴,抑制分子链堆积,进而降低聚合物材料介电常数,其方法简单,适用于常见的高性能聚合物材料,所得聚合物材料介电常数降低显著,易于实现工业化生产。本发明得到的低 介电常数聚合物可应用于制备低介电接材料,适用于电子、微电子、信息以及航空航天等高新技术产业领域,特别是超大规模集成电路领域。
附图说明
图1是聚合物薄膜TmBPPA、TPPA和TpBPPA在不同频率下的介电常数,从图中可以看到频率为10000Hz时,聚合物薄膜TmBPPA的介电常数为2.23,聚合物薄膜TPPA的介电常数为3.59,聚合物薄膜TpBPPA的介电常数为2.76。
图2是聚合物薄膜TmBPHF、TPAHF和TpBPHF在不同频率下的介电常数,从图中可以看到频率为10000Hz时,聚合物薄膜TmBPHF的介电常数为2.09,聚合物薄膜TPAHF的介电常数为2.65,聚合物薄膜TpBPHF的介电常数为2.51。
图3是聚合物薄膜TM3BPhHF、TPMHF和TM4BPhHF在不同频率下的介电常数,从图中可以看到频率为10000Hz时,聚合物薄膜TM3BPhHF的介电常数为1.92,聚合物薄膜TPMHF的介电常数为2.45,聚合物薄膜TM4BPhHF的介电常数为2.46。
图4是聚合物薄膜TPMHF和TM35Ph2CF 3HF在不同频率下的介电常数,从图中可以看到频率为10000Hz时,聚合物薄膜TM35Ph2CF 3HF的介电常数为1.91,聚合物薄膜TPMHF的介电常数为2.45。
具体实施方法
本发明是一种具有低介电常数的聚合物,其分子结构由主链结构和侧基结构组成,其特征在于:所述的侧基结构含有与主链结构连接的苯环或联苯基链段,且在苯环或联苯基链段上的间位具有刚性直链型结构的取代基。
对于聚合物分子链来说,在不同温度下存在多个松弛运动阶段。其中,分子主链段的松弛运动对应的温度称为玻璃化转变温度;侧基苯环的松弛旋转成为β松弛温度。β松弛温度要远低于玻璃化转变温度,因此聚合物材料在其玻璃化转变温度下使用时大分子主链段被冻结的状态下,其分子主链侧基苯环依然能够松弛旋转,利用这种动态旋转加以结构的设计可以抑制分子链的紧密堆砌,以获得更多的自由体积。
因此,在聚合物的主链结构中引入侧基结构,该侧基结构含有苯环或联苯基链段,且在苯环或联苯基链段上的间位具有刚性直链型结构的取代基,侧基结构通过其苯环或联苯基链段与主链结构连接,是一种可以降低聚合物介电常数的分子结构设计方法。
所述的侧基结构中有结构通式Ⅰ或Ⅱ的一种或两种以上:
Figure PCTCN2018074891-appb-000005
其中,X 1选自下列结构式中的任何一种且0≤n<10:
Figure PCTCN2018074891-appb-000006
Y 1选自下列结构式中的任何一种且0≤n<10:
Figure PCTCN2018074891-appb-000007
Z选自下列结构式中的任何一种且0≤m<10:
Figure PCTCN2018074891-appb-000008
所述的聚合物主链结构可选自所有芳香型聚合物结构、杂环型聚合物结构或烷基链型聚合物结构。所述的聚合物可以是粉体材料、纤维材料或薄膜材料,由于具有较低介电常数,因此可以应用于制备低介电聚合物材料。
下面给出实例以对本发明作更详细的说明,有必要指出的是以下实施不能解释为对发明保护范围的限制,该领域的技术熟练人员根据上述发明内容对本发明作出的一些非本质的改进和调整,仍应属于本发明的保护范围。
实施例1
本实施例中的聚合物薄膜TmBPPA的分子结构式如下:
Figure PCTCN2018074891-appb-000009
将侧基苯环间位二联苯取代引入含三苯胺及PMDA结构的聚酰亚胺材料分子结构中,通过阻抗分析仪对聚合物薄膜的介电性能进行表征,并与不含侧基苯环间位取代(TPPA)和侧基苯环对位取代(TpBPPA)的聚合物薄膜进行比较(如图1所示)。侧基苯环间位二联苯取代的聚合物薄膜介电常数相比于其它两种聚合物薄膜有明显降低,低至2.23。
实施例2
本实施例中的聚合物薄膜TmBPHF的分子结构式如下:
Figure PCTCN2018074891-appb-000010
将侧基苯环间位二联苯取代引入含三苯胺及6FDA结构的聚酰亚胺材料分子结构中,通过阻抗分析仪对聚合物薄膜的介电性能进行表征,并与不含侧基苯环间位取代(TPAHF)和侧基苯环对位取代(TpBPHF)的聚合物薄膜进行比较(如图2所示)。侧基苯环间位二联苯取代的聚合物薄膜介电常数相比于其它两种聚合物薄膜有明显降低,低至2.09。
实施例3
本实施例中的聚合物薄膜TM3BPhHF的分子结构式如下:
Figure PCTCN2018074891-appb-000011
将侧基苯环间位二联苯取代引入含三苯甲烷及6FDA结构的聚酰亚胺材料分子结构中,通过阻抗分析仪对聚合物薄膜的介电性能进行表征,并与不含侧基苯环间位取代(TPMHF)和侧基苯环对位取代(TM4BPhHF)的聚合物薄膜进行比较(如图3所示)。侧基苯环间位二联苯取代的聚合物薄膜介电常数相比于其它两种聚合物薄膜有明显降低,低至1.92。
实施例4
本实施例中的聚合物薄膜TM35Ph2CF 3HF的分子结构式如下:
Figure PCTCN2018074891-appb-000012
将侧基苯环间位含氟双取代引入含三苯甲烷及6FDA结构的聚酰亚胺材料分子结构中,通过阻抗分析仪对聚合物薄膜的介电性能进行表征,并与不含侧基苯环间位取代(TPMHF)的聚合物薄膜进行比较(如图4所示)。侧基苯环间位含氟双取代的聚合物薄膜介电常数相比于无侧基间位取代聚合物薄膜有明显降低,低至1.91。

Claims (9)

  1. 一种具有低介电常数的聚合物,其分子结构由主链结构和侧基结构组成,其特征在于:所述的侧基结构具有与主链结构连接的苯环或联苯基链段,且在苯环或联苯基链段上的间位具有刚性直链型结构的取代基。
  2. 根据权利要求1所述的具有低介电常数的聚合物,其特征在于:所述的侧基结构中有结构通式Ⅰ或Ⅱ的一种或两种以上:
    Figure PCTCN2018074891-appb-100001
    其中,X 1选自下列结构式中的任何一种且0≤n<10:
    Figure PCTCN2018074891-appb-100002
    Figure PCTCN2018074891-appb-100003
    Y 1选自下列结构式中的任何一种且0≤n<10:
    Figure PCTCN2018074891-appb-100004
    Z选自下列结构式中的任何一种且0≤m<10:
    Figure PCTCN2018074891-appb-100005
  3. 根据权利要求1或2所述的具有低介电常数的聚合物,其特征在于:所述的主链结构可选自芳香型聚合物结构、杂环型聚合物结构或烷基链型聚合物结构。
  4. 根据权利要求1或2所述的具有低介电常数的聚合物,其特征在于:所述的聚合物为粉体材料、纤维材料或薄膜材料。
  5. 权利要求1或2所述的具有低介电常数的聚合物应用于制备低介电聚合物材料。
  6. 一种降低聚合物介电常数的分子结构设计方法,其特征在于:在聚合物的主链结构引入侧基结构,该侧基结构具有与主链结构连接的苯环或联苯基链段,且在苯环或联苯基链段上的间位具有刚性直链型结构的取代基。
  7. 根据权利要求6所述的降低聚合物介电常数的分子结构设计方法,其特征在于:所述的侧基结构中有结构通式Ⅰ或Ⅱ的一种或两种以上:
    Figure PCTCN2018074891-appb-100006
    其中,X 1选自下列结构式中的任何一种且0≤n<10:
    Figure PCTCN2018074891-appb-100007
    Figure PCTCN2018074891-appb-100008
    Y 1选自下列结构式中的任何一种且0≤n<10:
    Figure PCTCN2018074891-appb-100009
    Figure PCTCN2018074891-appb-100010
    Z选自下列结构式中的任何一种且0≤m<10:
    Figure PCTCN2018074891-appb-100011
  8. 根据权利要求6或7所述的降低聚合物介电常数的分子结构设计方法,其特征在于:所述的主链结构可选自芳香型聚合物结构、杂环型聚合物结构或烷基链型聚合物结构。
  9. 根据权利要求6或7所述的降低聚合物介电常数的分子结构设计方法,其特征在于:所述的聚合物为粉体材料、纤维材料或薄膜材料。
PCT/CN2018/074891 2017-02-16 2018-02-01 具有低介电常数的聚合物及降低聚合物介电常数的分子结构设计方法 WO2018149303A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019543885A JP6851093B2 (ja) 2017-02-16 2018-02-01 低誘電率を有するポリマー及びポリマーの誘電率を低下させるための分子構造設計法
US16/486,802 US11370886B2 (en) 2017-02-16 2018-02-01 Polymer with low dielectric constant and molecular structure design method capable of reducing dielectric constant of polymer
KR1020197023897A KR102283757B1 (ko) 2017-02-16 2018-02-01 저유전율을 가진 중합체 및 중합체 유전율을 감소시키는 분자 구조 설계 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710083465.1A CN107057065B (zh) 2017-02-16 2017-02-16 具有低介电常数的聚合物及降低聚合物介电常数的分子结构设计方法
CN201710083465.1 2017-02-16

Publications (1)

Publication Number Publication Date
WO2018149303A1 true WO2018149303A1 (zh) 2018-08-23

Family

ID=59622623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074891 WO2018149303A1 (zh) 2017-02-16 2018-02-01 具有低介电常数的聚合物及降低聚合物介电常数的分子结构设计方法

Country Status (5)

Country Link
US (1) US11370886B2 (zh)
JP (1) JP6851093B2 (zh)
KR (1) KR102283757B1 (zh)
CN (1) CN107057065B (zh)
WO (1) WO2018149303A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107057065B (zh) 2017-02-16 2020-01-14 中山大学 具有低介电常数的聚合物及降低聚合物介电常数的分子结构设计方法
CN111082055B (zh) * 2019-12-12 2020-12-29 华南师范大学 二联三苯胺-酰亚胺聚合物在锂电池正极制备中的应用
JP7438790B2 (ja) 2020-03-04 2024-02-27 東レ・デュポン株式会社 接着剤付きポリイミドフィルムおよびフラットケーブル

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020103385A1 (en) * 2001-01-26 2002-08-01 Kwangju Institute Of Science And Technology 3,6-di(3',5'-bis(fluoroalkyl) phenyl) pyromellitic dianhydride and method for the preparation thereof
WO2006070728A1 (ja) * 2004-12-28 2006-07-06 Central Glass Company, Limited 含フッ素ジアミンおよびそれを用いた重合体
CN104341311A (zh) * 2013-07-31 2015-02-11 中山大学 新型二胺化合物及其制备方法和应用
CN104341593A (zh) * 2013-07-31 2015-02-11 中山大学 具有低介电特性的聚酰亚胺及其制备方法和应用
CN107057065A (zh) * 2017-02-16 2017-08-18 中山大学 具有低介电常数的聚合物及降低聚合物介电常数的分子结构设计方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959288A (en) * 1989-04-03 1990-09-25 Xerox Corporation Photoconductive imaging members with diaryl biarylylamine copolymer charge transport layers
US4937165A (en) * 1989-04-03 1990-06-26 Xerox Corporation Photoconductive imaging members with N,N-bis(biarylyl)aniline charge transport polymers
US5403908A (en) * 1989-10-06 1995-04-04 Idemitsu Kosan Company, Limited Aryl styrene-based copolymer
JP4769242B2 (ja) 2007-09-25 2011-09-07 山本化成株式会社 高分子化合物、および該高分子化合物を含有する有機電界発光素子
US8461291B2 (en) * 2007-12-17 2013-06-11 E I Du Pont De Nemours And Company Organic electroactive materials and an organic electronic device having an electroactive layer utilizing the same material
WO2012031403A1 (zh) 2010-09-10 2012-03-15 海洋王照明科技股份有限公司 一类苝四羧酸二酰亚胺有机半导体材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020103385A1 (en) * 2001-01-26 2002-08-01 Kwangju Institute Of Science And Technology 3,6-di(3',5'-bis(fluoroalkyl) phenyl) pyromellitic dianhydride and method for the preparation thereof
WO2006070728A1 (ja) * 2004-12-28 2006-07-06 Central Glass Company, Limited 含フッ素ジアミンおよびそれを用いた重合体
CN104341311A (zh) * 2013-07-31 2015-02-11 中山大学 新型二胺化合物及其制备方法和应用
CN104341593A (zh) * 2013-07-31 2015-02-11 中山大学 具有低介电特性的聚酰亚胺及其制备方法和应用
CN107057065A (zh) * 2017-02-16 2017-08-18 中山大学 具有低介电常数的聚合物及降低聚合物介电常数的分子结构设计方法

Also Published As

Publication number Publication date
KR102283757B1 (ko) 2021-07-29
US20190367678A1 (en) 2019-12-05
JP6851093B2 (ja) 2021-03-31
CN107057065B (zh) 2020-01-14
JP2020506277A (ja) 2020-02-27
CN107057065A (zh) 2017-08-18
KR20190103394A (ko) 2019-09-04
US11370886B2 (en) 2022-06-28

Similar Documents

Publication Publication Date Title
WO2018149303A1 (zh) 具有低介电常数的聚合物及降低聚合物介电常数的分子结构设计方法
Naghibi et al. Noncuring graphene thermal interface materials for advanced electronics
Wang et al. Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films
Tan et al. Anisotropically oriented carbon films with dual‐function of efficient heat dissipation and excellent electromagnetic interference shielding performances
Zeng et al. Thermal behavior and dielectric property analysis of boron nitride‐filled bismaleimide‐triazine resin composites
Rani et al. Dielectric and electromagnetic interference shielding properties of zeolite 13X and carbon black nanoparticles based PVDF nanocomposites
Zhang et al. Enhanced discharged efficiency and high energy density at elevated temperature in polymer dielectric via manipulating relaxation behavior
Liao et al. Polyacrylonitrile-derived polyconjugated ladder structures for high performance all-organic dielectric materials
Wang et al. Thermally conductive boron nitride nanosheet composite paper as a flexible printed circuit board
Thomas et al. Structural, thermal and electrical properties of poly (methyl methacrylate)/CaCu 3 Ti 4 O 12 composite sheets fabricated via melt mixing
Chi et al. High thermal conductivity of epoxy-based composites utilizing 3D porous boron nitride framework
Namitha et al. Aluminum nitride filled flexible silicone rubber composites for microwave substrate applications
Zhang et al. Dielectric Properties of Polyimide‐Mica Hybrid Films
Ling et al. Self‐Healable and Mechanically Reinforced Multidimensional‐Carbon/Polyurethane Dielectric Nanocomposite Incorporates Various Functionalities for Capacitive Strain Sensor Applications
CN110982457A (zh) 一种高导热胶黏剂及其制备方法
Liu et al. Investigation on thermal conductivity of bilayer graphene nanoribbons
Zhang et al. Inorganic halide perovskite electromagnetic wave absorption system with ultra‐wide absorption bandwidth and high thermal‐stability
CN111471299A (zh) 一种导热绝缘的聚酰亚胺纳米复合膜及其制备方法
Chen et al. Effects of surface‐functionalized aluminum nitride on thermal, electrical, and mechanical behaviors of polyarylene ether nitrile‐based composites
Zhang et al. Improved mechanical, thermal properties and ideal dielectric properties of polyimide composite films by incorporation of boron nitride nanosheets and aramid nanofibers
Hu et al. Polyhedral oligosilsesquioxane-modified alumina/aluminum nitride/silicone rubber composites to enhance dielectric properties and thermal conductivity
Chi et al. Simultaneously enhanced in-plane and out-of-plane thermal conductivity of a PI composite film by tetraneedle-like ZnO whiskers and BN nanosheets
Ni et al. Coordinating of thermal and dielectric properties for cyanate ester composites filled with silica‐coated sulfonated graphene oxide hybrids
Da et al. Novle layered boron nitride nanosheets/cellulose nanofibers/epoxy composite with high thermal conductivity
CN107501573B (zh) 一种低介电常数的非晶态聚合物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197023897

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2019543885

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754484

Country of ref document: EP

Kind code of ref document: A1