WO2018149037A1 - 触摸屏及触摸显示装置 - Google Patents

触摸屏及触摸显示装置 Download PDF

Info

Publication number
WO2018149037A1
WO2018149037A1 PCT/CN2017/083179 CN2017083179W WO2018149037A1 WO 2018149037 A1 WO2018149037 A1 WO 2018149037A1 CN 2017083179 W CN2017083179 W CN 2017083179W WO 2018149037 A1 WO2018149037 A1 WO 2018149037A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
sensing electrode
pressure sensing
pressure
sensing electrodes
Prior art date
Application number
PCT/CN2017/083179
Other languages
English (en)
French (fr)
Inventor
龚树强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780068489.8A priority Critical patent/CN109906429B/zh
Priority to US16/486,738 priority patent/US20190384458A1/en
Publication of WO2018149037A1 publication Critical patent/WO2018149037A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Definitions

  • the present invention relates to the field of touch control technologies, and in particular, to a touch screen and a touch display device.
  • the pressure detection technology can add a touch pressure value outside the touch position of the conventional capacitive touch screen, that is, the touch detection result is from the original two-dimensional coordinates (x, y) to the three-dimensional coordinates (x, y, z) to realize the three-dimensional touch control experience.
  • x and y represent the abscissa and ordinate of the touch position, respectively
  • z represents the magnitude of the touch pressure.
  • the embodiment of the invention provides a touch screen and a touch display device, so that on the basis of the capacitive touch screen, the pressure detection of the touch operation is realized without increasing the thickness of the touch screen, and the production cost and assembly difficulty of the touch screen are reduced.
  • a first aspect of the present invention provides a touch screen, comprising: a transparent substrate, wherein the transparent substrate includes opposite first and second surfaces, and the first surface is provided with a transparent first conductive layer Providing a transparent second conductive layer on the second surface, the first conductive layer includes a plurality of first touch sensing electrodes and first pressure sensing electrodes extending in a first direction, the first touch sensing electrodes And the first pressure sensing electrodes are alternately arranged in a second direction, the second conductive layer includes a plurality of second touch sensing electrodes and second pressure sensing electrodes extending in the second direction, the second touch sensing electrodes and The second pressure sensing electrode and the second touch sensing electrode and the second pressure sensing electrode are alternately arranged in the first direction, and the plurality of first touch sensing electrodes and the plurality of second touch sensing electrodes are used for detecting a position of a touch operation of the touch screen, the plurality of first pressure sensing electrodes and the plurality of second pressure sensing electrodes are used to detect
  • the first touch sensing electrode and the first pressure sensing electrode are alternately arranged on the first conductive layer, and the second touch sensing is alternately arranged on the second conductive layer.
  • An electrode and a second pressure sensing electrode wherein the position of the touch operation for the touch screen is detected by the first touch sensing electrode and the second touch sensing electrode, and the first pressure sensing electrode and the The second pressure sensing electrode detects the pressure of the touch operation on the touch screen, and the pressure detection of the touch operation can be realized without increasing the thickness of the touch screen, and since the first conductive layer and the second conductive layer are both It is transparent, so that the touch screen can be directly attached to the upper surface of the display screen, which is advantageous for reducing production cost and assembly difficulty.
  • the first touch sensing electrode includes a plurality of first touch sensing regions connected in sequence
  • the first pressure sensing electrode includes a plurality of first pressure sensing regions connected in sequence, and the plurality of first sensing regions of the first touch sensing electrodes and the plurality of first pressure sensing electrodes of the adjacent first pressure sensing electrodes The regions are staggered.
  • the first touch sensing electrode as a plurality of sequentially connected first touch sensing regions, a plurality of corresponding mutual through holes can be formed between the adjacent two first touch sensing electrodes.
  • a hollow region further forming a first pressure sensing electrode by sequentially providing a plurality of first pressure sensing regions connected in the hollow region, thereby realizing forming a first position on the same transparent substrate for detecting a touch operation
  • the touch sensing electrode and the first pressure sensing electrode for detecting the pressure of the touch operation achieve pressure detection by touch without increasing the thickness of the touch screen.
  • the second touch sensing electrode includes a plurality of sequentially connected second touch sensing regions
  • the second pressure sensing electrode includes a plurality of sequentially connected second pressure sensing regions
  • the second touch The plurality of second touch sensing regions of the sensing electrode are staggered with the plurality of second pressure sensing regions of the adjacent second pressure sensing electrodes.
  • the second touch sensing electrode as a plurality of sequentially connected second touch sensing regions, a plurality of corresponding mutual interconnections can be formed between the adjacent two second touch sensing electrodes.
  • a hollowed out area further forming a second pressure sensing electrode by sequentially providing a plurality of second pressure sensing regions connected in the hollowed out region, thereby realizing forming a second position on the same transparent substrate for detecting a touch operation
  • the touch sensing electrode and the second pressure sensing electrode for detecting the pressure of the touch operation achieve pressure detection by touch without increasing the thickness of the touch screen.
  • the first touch sensing electrode and the first pressure sensing electrode are conductive patterns formed by the first conductive layer; the second touch sensing electrode and the second pressure sensing electrode It is a conductive pattern formed by the second conductive layer.
  • the first pressure sensing electrode and the second pressure sensing electrode are also transparent, thereby When the touch screen is applied to the touch display device, it can be directly attached to the display screen of the touch display device, thereby shortening the pressure transmission path during the touch operation and improving the sensitivity of the pressure touch control.
  • the first touch sensing electrode and the first pressure sensing electrode are formed by the first conductive layer through an etching or laser engraving process; the second touch sensing electrode and the second pressure The sensing electrode is formed by the second conductive layer through an etching or laser engraving process.
  • the touch sensing electrode and the pressure sensing electrode are formed by the same conductive layer through etching or laser engraving process, which can effectively shorten the process of the touch screen and reduce the production cost.
  • the conductive pattern of the first touch sensing electrode is the same as the conductive pattern of the second touch sensing electrode, and the conductive patterns of the first pressure sensing electrode and the second pressure sensing electrode are the same.
  • the conductive pattern of the first touch sensing electrode is complementary to the conductive pattern of the first pressure sensing electrode, and the conductive pattern of the second touch sensing electrode and the conductive of the second pressure sensing electrode The patterns are complementary.
  • the conductive pattern of the first touch sensing electrode and the conductive pattern of the second touch sensing electrode are complementary in a right projection direction, and the conductive pattern of the first pressure sensing electrode and the second The conductive patterns of the pressure sensing electrodes are complementary in the forward projection direction.
  • the first pressure sensing electrode and the second pressure sensing electrode are strain resistance lines in a meandering structure.
  • a longer strain resistance line can be disposed in the pressure sensing region of the same area.
  • the strain resistance circuit of the bypass structure can also make the deformation of the pressure sensing electrode more sensitive when subjected to pressure, thereby sensitively changing the resistance of the applied resistance according to the change of the pressure, so that the sensitivity of the pressure detection can be increased.
  • a second aspect of the embodiments of the present invention provides a touch display device, including a display screen and a touch screen, the display screen includes a display surface, and the touch screen is attached to the display surface for receiving Touching a three-dimensional touch operation of the display device, wherein the touch screen is a touch screen according to the first aspect of the embodiment of the present invention and any one of the embodiments.
  • the touch screen since the first conductive layer and the second conductive layer are both transparent, by directly bonding the touch screen to the display surface of the display screen, the touch may not be increased. Under the condition of the thickness of the display device, the pressure detection of the three-dimensional touch operation is realized, and at the same time, the production cost and the assembly difficulty of the touch display device can be reduced.
  • the touch display device further includes a transparent cover, and the transparent cover is attached to the touch screen.
  • the touch screen can be directly attached to the display screen of the touch display device, and the transparent cover plate is attached to the touch screen to protect the touch screen.
  • the touch screen since the touch screen is in close contact with the transparent cover, the pressure transmission path during the touch operation can be shortened, and the sensitivity of the pressure touch control is improved.
  • the touch display device further includes a processor, wherein the first touch sensing electrode, the second touch sensing electrode, the first pressure sensing electrode, and the second pressure sensing electrode pass The transparent electrode trace is guided to a non-display area of the touch display device, and is electrically connected to the processor.
  • the touch sensing electrode and the pressure sensing electrode are guided to the non-display area of the touch display device through a transparent electrode trace, and are electrically connected to the processor, wherein the transparent
  • the electrode traces may be formed by the same conductive layer as the touch sensing electrodes and the pressure sensing electrodes by etching or the like, thereby having the same permeability as the touch sensing electrodes and the pressure sensing electrodes, and preventing the electrode trace pairs from being displayed.
  • the screen causes occlusion.
  • the processor is configured to acquire an induced voltage output by the plurality of first touch sensing electrodes and the plurality of second touch sensing electrodes, and according to the plurality of first touch sensing electrodes and Determining a magnitude of the induced voltage output by the plurality of second touch sensing electrodes to determine a position of the three-dimensional touch operation for the touch display device.
  • the plurality of second touch sensing electrodes extend in the second direction and are arranged in the first direction, thereby Determining a position of the three-dimensional touch operation for the touch display device in a second direction by detecting an induced voltage output by the plurality of first touch sensing electrodes, and detecting the output of the plurality of second touch sensing electrodes Determining a position of the three-dimensional touch operation of the touch display device in the first direction, and determining the touch display device according to the position in the second direction and the position in the first direction The location of the 3D touch operation.
  • the processor is configured to acquire an induced voltage of the plurality of first pressure sensing electrodes and the plurality of second pressure sensing electrodes, and according to the plurality of first pressure sensing electrodes and The magnitude of the induced voltage outputted by the plurality of second pressure sensing electrodes determines the pressure of the three-dimensional touch operation for the touch display device.
  • the plurality of first pressure sensing electrodes extend in the first direction and are arranged in the second direction
  • the plurality of second pressure sensing electrodes extend in the second direction and are arranged in the first direction, thereby By detecting the plurality of The induced voltage outputted by the pressure sensing electrode can determine the pressure distribution in the second direction of the three-dimensional touch operation of the touch display device, and can detect the induced voltage outputted by the plurality of second pressure sensing electrodes
  • the pressure distribution of the three-dimensional touch operation of the touch display device in the first direction and further determining the three-dimensional touch for the touch display device according to the pressure distribution in the second direction and the pressure distribution in the first direction The pressure of operation.
  • FIG. 1 is a first schematic structural diagram of a touch screen according to an embodiment of the present invention.
  • FIG. 2 is a second schematic structural diagram of a touch screen according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a third structure of a touch screen according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a pressure detecting principle of a touch screen according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a touch display device according to an embodiment of the present invention.
  • a touch screen 100 including a transparent substrate 110 including a first surface 111 and a second surface 113 opposite to each other.
  • the first surface 111 is provided with a transparent first conductive layer 130
  • the second surface 113 is provided with a transparent second conductive layer 150.
  • the first conductive layer 130 includes a plurality of first extending along the first direction.
  • the sensing electrode 131 and the first pressure sensing electrode 133, the first touch sensing electrode 131 and the first pressure sensing electrode 133 are alternately arranged in a second direction
  • the second conductive layer 150 includes a plurality of second directions
  • the second touch sensing electrode 151 and the second pressure sensing electrode 153 are alternately arranged in a first direction
  • the plurality of first touch sensing electrodes 131 are alternately arranged in a first direction.
  • the plurality of second touch sensing electrodes 151 are configured to detect a position of a touch operation for the touch screen 100
  • the plurality of first pressure sensing electrodes 133 and the plurality of second pressure sensing electrodes 153 are configured to detect Said Touch screen 100 of the touch operation pressure.
  • the first direction is orthogonal to the second direction, and the plane where the first direction and the second direction are located is parallel to the first surface 111 and the second surface 113,
  • the direction of the pressure of the touch operation is perpendicular to the first surface 111 and the second surface 113.
  • a three-dimensional coordinate system can be established, as shown in FIG. 3, wherein the direction along the y-axis is the first direction, the direction along the x-axis is the second direction, and the direction along the z-axis is Touch the direction of the pressure of the operation.
  • the first touch sensing electrodes 131 and the first pressure sensing electrodes 133 are alternately arranged on the first conductive layer 130, and are alternately arranged on the second conductive layer 150.
  • the second touch sensing electrode 151 and the second pressure sensing electrode 153 can further detect the position of the touch operation for the touch screen 100 through the first touch sensing electrode 131 and the second touch sensing electrode 151, and pass through
  • the first pressure sensing electrode 133 and the second pressure sensing electrode 153 are configured to detect the pressure of the touch operation on the touch screen 100, and the pressure detection of the touch operation can be realized without increasing the thickness of the touch screen 100, and
  • the first conductive layer 130 and the second conductive layer 150 are both transparent, so that the touch screen 100 can be directly attached to the upper surface of the display screen. Conducive to reducing production costs and assembly difficulties.
  • the first touch sensing electrode 131 includes a plurality of first touch sensing regions 1311 connected in sequence, and the first pressure sensing electrode 133 includes a plurality of first pressures connected in sequence.
  • the plurality of first touch sensing regions 1311 of the first touch sensing electrodes 131 are staggered with the plurality of first pressure sensing regions 1331 of the adjacent first pressure sensing electrodes 133 .
  • the second touch sensing electrode 151 includes a plurality of second touch sensing regions 1511 connected in sequence, and the second pressure sensing electrode 153 includes a plurality of second pressure sensing regions 1531 connected in sequence, and the second touch sensing electrodes 151
  • the plurality of second touch sensing regions 1511 are staggered with the plurality of second pressure sensing regions 1531 of the adjacent second pressure sensing electrodes 153.
  • the first touch sensing electrode 131 is disposed as a plurality of first touch sensing regions 1311 connected in sequence, so that a corresponding amount can be formed between the adjacent two first touch sensing electrodes 131.
  • a plurality of interconnected first pressure sensing regions 1331 are formed in the hollow region to form the first pressure sensing electrode 133
  • the second touch sensing electrode 151 is set to a plurality of second touch sensing regions 1511 connected in sequence, so that a plurality of mutually intersecting hollow regions can be formed between the adjacent two second touch sensing electrodes 151, and further, a plurality of sequentially arranged in the hollowed out region a second pressure sensing region 1531 is connected to form the second pressure sensing electrode 153, thereby realizing a touch sensing electrode for detecting a position of a touch operation and a pressure sensing electrode for detecting a touch operation on the same transparent substrate, The pressure detection by the touch is achieved without increasing the thickness of the touch screen 100.
  • the first touch sensing area 1311, the first pressure sensing area 1331, the second touch sensing area 1511, and the second pressure sensing area 1531 may be disposed in a diamond shape, any The first touch sensing regions 1311 of the two adjacent first touch sensing electrodes 131 are aligned with each other in the second direction, and between the first pressure sensing regions 1331 of any two adjacent first pressure sensing electrodes 133 Aligning with each other in the second direction, the second touch sensing regions 1511 of any two adjacent second touch sensing electrodes 151 are aligned with each other in the first direction, and the first two adjacent second pressure sensing electrodes 153 are The two pressure sensing regions 1531 are aligned with each other in the first direction.
  • the first touch sensing electrode 131 and the first pressure sensing electrode 133 are conductive patterns formed by the first conductive layer 130; the second touch sensing electrodes 151 and the second The pressure sensing electrode 153 is a conductive pattern formed by the second conductive layer 150.
  • the conductive pattern of the first touch sensing electrode 131 and the conductive pattern of the second touch sensing electrode 151 are the same, and the conductive patterns of the first pressure sensing electrode 133 and the second pressure sensing electrode 153 are the same.
  • the conductive pattern of the first touch sensing electrode 131 is complementary to the conductive pattern of the first pressure sensing electrode 133, and the conductive pattern of the second touch sensing electrode 151 is complementary to the conductive pattern of the second pressure sensing electrode 153.
  • the conductive pattern of the first touch sensing electrode 131 and the conductive pattern of the second touch sensing electrode 151 are complementary in a front projection direction, and the conductive pattern of the first pressure sensing electrode 133 and the second pressure sensing electrode 153
  • the conductive patterns are complementary in the orthogonal projection direction.
  • the front projection direction refers to a direction in which the projection line is perpendicular to the first conductive layer 130 and the second conductive layer 150.
  • the fact that the conductive pattern of the first touch sensing electrode 131 and the conductive pattern of the second touch sensing electrode 151 are complementary in the front projection direction means that the first touch sensing area 1311 of the first touch sensing electrode 131 is
  • the projection on the second conductive layer 150 is located in a gap between the second touch sensing regions 1511 of the second touch sensing electrode 151, and the second touch sensing region 1511 Complementary; that is, the projection of the first touch sensing area 1311 on the second conductive layer 150 is located in a region interlaced with the second touch sensing area 1511.
  • first touch sensing electrode 131 and the first pressure sensing electrode 133 may be formed by the first conductive layer 130 through an etching or laser engraving process; the second touch sensing electrode 151 and the second The pressure sensing electrode 153 may be formed by the second conductive layer 150 through an etching or laser engraving process. It can be understood that forming the touch sensing electrode and the pressure sensing electrode through the same conductive layer through etching or laser engraving process can effectively shorten the process of the touch screen and reduce the production cost.
  • the first pressure sensing electrode 133 and the second pressure sensing electrode 153 are strain resistance lines in a meandering structure. It can be understood that the specific circuitous form of the strain resistance circuit of the circuitous structure is not limited herein. For example, it may be a square bypass structure as shown in FIG. 3, or may be a diamond-shaped, circular or the like.
  • the strain resistance circuit can also make the deformation of the pressure sensing electrode more sensitive when subjected to pressure, thereby sensitively changing the resistance of the applied resistance according to the change of the pressure, so that the sensitivity of the pressure detection can be increased.
  • the strain resistances of the plurality of first pressure sensing electrodes 133 are RT1, RT2, RT3, RT4, . . .
  • the strain resistances of the plurality of second pressure sensing electrodes 153 are RB1, RB2, and RB3.
  • RB4 the resistance values of the strain resistors RT1, RT2, RT3, RT4, ..., RB1, RB2, RB3, RB4, . . . are unchanged when the touch operation for the touch screen 100 is not received, or when the touch operation does not have pressure.
  • the resistance values of the strain resistors RT1, RT2, RT3, RT4, ..., RB1, RB2, RB3, RB4, ... will change, and the closer to the position of the touch operation contact point, the strain resistance The greater the resistance change.
  • the position of the touch operation is at the first pressure sensing electrode 133 having the largest resistance (for example, RTi) and The junction of the second pressure sensing electrode 153 having the largest resistance (for example, RBj), and the resistance value RTi corresponding to the strain resistance corresponding to the first pressure sensing electrode 133 having the largest resistance value and the second pressure sensing electrode having the largest resistance value
  • the resistance value RB j of the corresponding strain resistance of 153 calculates the pressure of the touch operation.
  • the position indicated by the symbol "+” is the position of the touch operation, and the touch operation carries the pressure, and if the position of the touch operation is close to the first pressure sensing electrode 133 and strain with the strain resistance of RT2
  • the junction of the second pressure sensing electrode 153 having the resistance of RB3 is the largest, and the deformation caused by the pressure of the first pressure sensing electrode 133 corresponding to the strain resistance RT2 and the second pressure sensing electrode 153 corresponding to the strain resistor RB3 is the largest.
  • the resistance values of the strain resistors RT2 and RB3 are also the largest, that is, by detecting the resistance values of RT1, RT2, RT3, RT4, ..., RB1, RB2, RB3, RB4, ..., the resistance values of the strain resistors RT2 and RB3 are maximum, and
  • the pressure point position of the touch operation is determined according to the positions of the first pressure sensing electrode 133 corresponding to the strain resistance RT2 and the second pressure sensing electrode 153 corresponding to the strain resistance RB3.
  • the pressure corresponding to the touch operation can be calculated.
  • a touch display device 200 including a display screen 210 and a touch screen 100.
  • the display screen 210 includes a display surface 211, and the touch screen 100 is attached to the display surface. 211, configured to receive a three-dimensional touch operation for the touch display device, wherein a specific structure and work of the touch screen 100.
  • the touch display device 200 further includes a transparent cover 230 attached to the touch screen 100 such that the touch screen 100 is in close contact with the display screen 210 Between the transparent cover plates 230. It can be understood that the protection of the touch screen 230 can be achieved by directly attaching the touch screen 100 to the display screen 210 of the touch display device and attaching the transparent cover 230 to the touch screen 100. At the same time, since the touch screen 100 is in close contact with the transparent cover 230, the pressure transmission path during the touch operation can be shortened, and the sensitivity of the pressure touch control is improved.
  • the touch display device further includes a processor 250, and the processor 250 can be disposed on a circuit board (not shown).
  • the first touch sensing electrode 131, the second touch sensing electrode 151, the first pressure sensing electrode 133, and the second pressure sensing electrode 153 are all guided to the touch display device 200 through transparent electrode traces.
  • the non-display area 213 is further electrically connected to the processor 250 through a trace in the non-display area 213. It can be understood that only the manner in which the first touch sensing electrode 131 and the first pressure sensing electrode 133 are connected to the processor 250, the second touch sensing electrode 151 and the second pressure sensing electrode 153 and the processing are shown in FIG.
  • the electrical connection between the first touch sensing electrode 131 and the first pressure sensing electrode 133 and the processor 250 can be electrically connected.
  • the touch sensing electrode and the pressure sensing electrode are guided to the non-display area 213 of the touch display device 200 through a transparent electrode trace, and then electrically connected to the processor 250.
  • the transparent electrode trace can be formed by the same conductive layer as the touch sensing electrode and the pressure sensing electrode by etching or the like, thereby having the same permeability as the touch sensing electrode and the pressure sensing electrode, and preventing the electrode from walking.
  • the line occludes the display.
  • the processor 250 is configured to acquire the induced voltages output by the plurality of first touch sensing electrodes 131 and the plurality of second touch sensing electrodes 151, and according to the plurality of first touches The magnitude of the induced voltage output by the sensing electrode 131 and the plurality of second touch sensing electrodes 151 determines the position of the three-dimensional touch operation for the touch display device 200.
  • the plurality of second touch sensing electrodes 151 extend in the second direction and are arranged in the first direction. Therefore, by detecting the induced voltage output by the plurality of first touch sensing electrodes 131, the position of the three-dimensional touch operation for the touch display device 200 in the second direction can be determined, and by detecting the plurality of second touches The induced voltage outputted by the sensing electrode 151 can determine the position of the three-dimensional touch operation for the touch display device 200 in the first direction, and further determine the position according to the position in the second direction and the position in the first direction. The position of the three-dimensional touch operation for the touch display device 200.
  • the processor 250 is configured to acquire the induced voltages output by the plurality of first pressure sensing electrodes 133 and the plurality of second pressure sensing electrodes 153, and according to the plurality of first pressures The magnitude of the induced voltage output by the sensing electrode 133 and the plurality of second pressure sensing electrodes 153 determines the pressure of the three-dimensional touch operation for the touch display device 200.
  • the plurality of first pressure sensing electrodes 133 extend in the first direction and are arranged in the second direction
  • the plurality of second pressure sensing electrodes 153 extend in the second direction and are arranged in the first direction. Therefore, by detecting the induced voltages output by the plurality of first pressure sensing electrodes 133, three of the touch display devices 200 can be determined.
  • the dimension touches the pressure distribution in the second direction, and detects the pressure in the first direction of the three-dimensional touch operation of the touch display device 200 by detecting the induced voltages output by the plurality of second pressure sensing electrodes 153.
  • the distribution further determines the pressure of the three-dimensional touch operation for the touch display device 200 based on the pressure distribution in the second direction and the pressure distribution in the first direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触摸屏及触摸显示装置,所述触摸屏包括透明基板,所述透明基板包括第一表面和第二表面,所述第一表面上设置有透明的第一导电层,所述第二表面上设置有透明的第二导电层,所述第一导电层包括多个沿第一方向延伸并沿第二方向交替排列的第一触摸感应电极和第一压力感应电极,所述第二导电层包括多个沿第二方向延伸并沿第一方向交替排列的第二触摸感应电极和第二压力感应电极,所述多个第一触摸感应电极和多个第二触摸感应电极用于检测针对所述触摸屏的触摸操作的位置,所述多个第一压力感应电极和多个第二压力感应电极用于检测针对所述触摸屏的触摸操作的压力。所述触摸屏可以在不增加厚度的情况下实现触摸压力检测。

Description

触摸屏及触摸显示装置 技术领域
本发明涉及触摸控制技术领域,尤其涉及一种触摸屏及触摸显示装置。
背景技术
压力检测技术可以在传统电容触摸屏的触摸位置以外增加一个触摸压力值,即触摸检测结果从原来的二维坐标(x,y)到三维坐标(x,y,z),以实现三维触摸控制体验。其中,x、y分别表示触摸位置的横坐标和纵坐标,z表示触摸压力的大小。通过在触摸屏中引入压力检测功能,可以提高触控输入的表达范围及效率。目前,存在利用电容触摸屏检测手指接触面积大小来判断触摸压力的方案,但该方案针对不同用户的手指可能存在较大的误差。同时,还存在通过新增额外的压力传感器来实现触摸压力检测的方案,但由于传感器不是透明的,无法布置在显示屏上方,只能布置在显示屏周边,导致玻璃盖板安装方式受限,且影响防水设计;或者将压力传感器通过基板设置于显示屏背后,玻璃盖板在压力作用下的变形需要压迫显示屏变形才能传递到屏幕背后的压力传感器,导致压力检测灵敏度低,且影响屏幕可靠性;此外,压力传感器的设置需要增加触摸屏的厚度,且存在装配难度大,成本高等问题。
发明内容
本发明实施例提供一种触摸屏及触摸显示装置,以在电容触摸屏的基础上,无需增加触摸屏的厚度,实现触摸操作的压力检测,降低触摸屏的生产成本和装配难度。
本发明实施例第一方面提供一种触摸屏,其特征在于,包括透明基板,所述透明基板包括相背的第一表面和第二表面,所述第一表面上设置有透明的第一导电层,所述第二表面上设置有透明的第二导电层,所述第一导电层包括多个沿第一方向延伸的第一触摸感应电极和第一压力感应电极,所述第一触摸感应电极和所述第一压力感应电极沿第二方向交替排列,所述第二导电层包括多个沿第二方向延伸的第二触摸感应电极和第二压力感应电极,所述第二触摸感应电极和所述第二压力感应电极并沿第一方向交替排列的第二触摸感应电极和第二压力感应电极,所述多个第一触摸感应电极和所述多个第二触摸感应电极用于检测针对所述触摸屏的触摸操作的位置,所述多个第一压力感应电极和所述多个第二压力感应电极用于检测针对所述触摸屏的触摸操作的压力。
在本实施例中,通过在所述第一导电层上形成相互交替排列的第一触摸感应电极和第一压力感应电极,并在所述第二导电层上形成相互交替排列的第二触摸感应电极和第二压力感应电极,进而可以通过所述第一触摸感应电极和所述第二触摸感应电极来检测针对所述触摸屏的触摸操作的位置,并通过所述第一压力感应电极和所述第二压力感应电极来检测针对所述触摸屏的触摸操作的压力,无需增加所述触摸屏的厚度即可实现触摸操作的压力检测,且由于所述第一导电层和所述第二导电层均为透明的,从而可以将所述触摸屏直接贴合于显示屏的上面,有利于降低生产成本和装配难度。
在一种实施方式中,所述第一触摸感应电极包括多个依次连接的第一触摸感应区域, 所述第一压力感应电极包括多个依次连接的第一压力感应区域,所述第一触摸感应电极的多个第一触摸感应区域与相邻的第一压力感应电极的多个第一压力感应区域交错排列。
在本实施方式中,通过将所述第一触摸感应电极设置为多个依次连接的第一触摸感应区域,从而可以在相邻的两个第一触摸感应电极之间形成对应的多个相互贯通的镂空区,进一步通过在所述镂空区设置多个依次连接的第一压力感应区域以形成所述第一压力感应电极,从而实现在同一透明基板上形成用于检测触摸操作的位置的第一触摸感应电极和用于检测触摸操作的压力的第一压力感应电极,在不增加所述触摸屏的厚度的情况下实现了触摸造成的压力检测。
在一种实施方式中,所述第二触摸感应电极包括多个依次连接的第二触摸感应区域,所述第二压力感应电极包括多个依次连接的第二压力感应区域,所述第二触摸感应电极的多个第二触摸感应区域与相邻的第二压力感应电极的多个第二压力感应区域交错排列。
在本实施方式中,通过将所述第二触摸感应电极设置为多个依次连接的第二触摸感应区域,从而可以在相邻的两个第二触摸感应电极之间形成对应的多个相互贯通的镂空区,进一步通过在所述镂空区设置多个依次连接的第二压力感应区域以形成所述第二压力感应电极,从而实现在同一透明基板上形成用于检测触摸操作的位置的第二触摸感应电极和用于检测触摸操作的压力的第二压力感应电极,在不增加所述触摸屏的厚度的情况下实现了触摸造成的压力检测。
在一种实施方式中,所述第一触摸感应电极和所述第一压力感应电极为由所述第一导电层形成的导电图案;所述第二触摸感应电极和所述第二压力感应电极为由所述第二导电层形成的导电图案。
在本实施方式中,由于所述第一导电层和所述第二导电层均为透明的,故所述第一压力感应电极和所述第二压力感应电极也为透明的,从而在所述触摸屏应用于触摸显示装置上时,可以直接贴合于所述触摸显示装置的显示屏上,从而可以缩短触摸操作时的压力传递路径,提升压力触摸控制的灵敏度。
在一种实施方式中,所述第一触摸感应电极和所述第一压力感应电极由所述第一导电层经过蚀刻或激光雕刻工艺形成;所述第二触摸感应电极和所述第二压力感应电极由所述第二导电层经过蚀刻或激光雕刻工艺形成。
在本实施方式中,通过同一导电层经过蚀刻或激光雕刻工艺形成触摸感应电极和压力感应电极,可以有效缩短所述触摸屏的工艺制成,降低生产成本。
在一种实施方式中,所述第一触摸感应电极的导电图案和所述第二触摸感应电极的导电图案相同,所述第一压力感应电极和所述第二压力感应电极的导电图案相同。
在一种实施方式中,所述第一触摸感应电极的导电图案与所述第一压力感应电极的导电图案互补,所述第二触摸感应电极的导电图案与所述第二压力感应电极的导电图案互补。
在一种实施方式中,所述第一触摸感应电极的导电图案与所述第二触摸感应电极的导电图案在正投影方向上互补,所述第一压力感应电极的导电图案与所述第二压力感应电极的导电图案在正投影方向上互补。
在一种实施方式中,所述第一压力感应电极和所述第二压力感应电极为呈迂回结构的应变电阻线路。
在本实施方式中,通过将所述第一压力感应电极和所述第二压力感应电极设置为呈迂回结构的应变电阻线路,从而可以在相同面积的压力感应区域内设置更长的应变电阻线路,迂回结构的应变电阻线路还可以使得压力感应电极在受到压力作用时的形变更加灵敏,从而根据压力的变化灵敏地改变应用电阻的阻值,故可以增加压力检测的灵敏度。
本发明实施例第二方面提供一种触摸显示装置,其特征在于,包括显示屏及触摸屏,所述显示屏包括显示面,所述触摸屏贴合于所述显示面上,用于接收针对所述触摸显示装置的三维触摸操作,其中,所述触摸屏为如本发明实施例第一方面及其任意一种实施方式所述的触摸屏。
在本实施例中,由于所述第一导电层和所述第二导电层均为透明的,通过将所述触摸屏直接贴合于所述显示屏的显示面上,可以在无需增加所述触摸显示装置的厚度的条件下,实现三维触摸操作的压力检测,同时还可以降低所述触摸显示装置的生产成本和装配难度。
在一种实施方式中,所述触摸显示装置还包括透明盖板,所述透明盖板贴合于所述触摸屏上。
在本实施方式中,通过将所述触摸屏直接贴合于所述触摸显示装置的显示屏上,并在所述触摸屏上贴合透明盖板,可以实现对所述触摸屏的保护。同时,由于所述触摸屏紧贴所述透明盖板,从而可以缩短触摸操作时的压力传递路径,提升压力触摸控制的灵敏度。
在一种实施方式中,所述触摸显示装置还包括处理器,所述第一触摸感应电极、所述第二触摸感应电极、所述第一压力感应电极和所述第二压力感应电极均通过透明的电极走线引导至所述触摸显示装置的非显示区域,进而与所述处理器电性连接。
在本实施方式中,通过透明的电极走线将所述触摸感应电极和压力感应电极引导至所述触摸显示装置的非显示区域,进而与所述处理器电性连接,其中,所述透明的电极走线可以采用与所述触摸感应电极和压力感应电极相同的导电层通过蚀刻等工艺形成,从而具有与所述触摸感应电极和压力感应电极相同的通透性,可以防止电极走线对显示屏造成遮挡。
在一种实施方式中,所述处理器用于获取所述多个第一触摸感应电极和所述多个第二触摸感应电极输出的感应电压,并根据所述多个第一触摸感应电极和所述多个第二触摸感应电极输出的感应电压的大小,确定所述针对所述触摸显示装置的三维触摸操作的位置。
在本实施方式中,由于所述多个第一触摸感应电极沿第一方向延伸并沿第二方向排列,所述多个第二触摸感应电极沿第二方向延伸并沿第一方向排列,因而通过检测所述多个第一触摸感应电极输出的感应电压即可判断针对所述触摸显示装置的三维触摸操作在第二方向上的位置,并通过检测所述多个第二触摸感应电极输出的感应电压即可判断针对所述触摸显示装置的三维触摸操作在第一方向上的位置,进而根据所述第二方向上的位置和第一方向上的位置,确定所述针对所述触摸显示装置的三维触摸操作的位置。
在一种实施方式中,所述处理器用于获取所述多个第一压力感应电极和所述多个第二压力感应电极输出的感应电压,并根据所述多个第一压力感应电极和所述多个第二压力感应电极输出的感应电压的大小,确定所述针对所述触摸显示装置的三维触摸操作的压力。
在本实施方式中,由于所述多个第一压力感应电极沿第一方向延伸并沿第二方向排列,所述多个第二压力感应电极沿第二方向延伸并沿第一方向排列,因而通过检测所述多个第 一压力感应电极输出的感应电压即可判断针对所述触摸显示装置的三维触摸操作在第二方向上的压力分布,并通过检测所述多个第二压力感应电极输出的感应电压即可判断针对所述触摸显示装置的三维触摸操作在第一方向上的压力分布,进而根据所述第二方向上的压力分布和第一方向上的压力分布,确定所述针对所述触摸显示装置的三维触摸操作的压力。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单地介绍。
图1是本发明实施例提供的触摸屏的第一结构示意图;
图2是本发明实施例提供的触摸屏的第二结构示意图;
图3是本发明实施例提供的触摸屏的第三结构示意图;
图4是本发明实施例提供的触摸屏的压力检测原理示意图;
图5是本发明实施例提供的触摸显示装置的结构示意图。
具体实施方式
下面将结合附图,对本发明的实施例进行描述。
请一并参阅图1和图2,在本发明一个实施例中,提供一种触摸屏100,包括透明基板110,所述透明基板110包括相背的第一表面111和第二表面113,所述第一表面111上设置有透明的第一导电层130,所述第二表面113上设置有透明的第二导电层150,所述第一导电层130包括多个沿第一方向延伸的第一触摸感应电极131和第一压力感应电极133,所述第一触摸感应电极131和所述第一压力感应电极133沿第二方向交替排列,所述第二导电层150包括多个沿第二方向延伸的第二触摸感应电极151和第二压力感应电极153,所述第二触摸感应电极151和所述第二压力感应电极153沿第一方向交替排列,所述多个第一触摸感应电极131和所述多个第二触摸感应电极151用于检测针对所述触摸屏100的触摸操作的位置,所述多个第一压力感应电极133和所述多个第二压力感应电极153用于检测针对所述触摸屏100的触摸操作的压力。
在本实施例中,所述第一方向与所述第二方向正交,所述第一方向和所述第二方向所在的平面与所述第一表面111和第二表面113平行,所述触摸操作的压力的方向与所述第一表面111和第二表面113垂直。可以理解,在一种实施方式中,可以建立三维坐标系,如图3所示,其中,沿y轴的方向为第一方向,沿x轴的方向为第二方向,沿z轴的方向为触摸操作的压力的方向。
在本实施例中,通过在所述第一导电层130上形成相互交替排列的第一触摸感应电极131和第一压力感应电极133,并在所述第二导电层150上形成相互交替排列的第二触摸感应电极151和第二压力感应电极153,进而可以通过所述第一触摸感应电极131和所述第二触摸感应电极151来检测针对所述触摸屏100的触摸操作的位置,并通过所述第一压力感应电极133和所述第二压力感应电极153来检测针对所述触摸屏100的触摸操作的压力,无需增加所述触摸屏100的厚度即可实现触摸操作的压力检测,且由于所述第一导电层130和所述第二导电层150均为透明的,从而可以将所述触摸屏100直接贴合于显示屏的上面, 有利于降低生产成本和装配难度。
请参阅图3,在一种实施方式中,所述第一触摸感应电极131包括多个依次连接的第一触摸感应区域1311,所述第一压力感应电极133包括多个依次连接的第一压力感应区域1331,所述第一触摸感应电极131的多个第一触摸感应区域1311与相邻的第一压力感应电极133的多个第一压力感应区域1331交错排列。
所述第二触摸感应电极151包括多个依次连接的第二触摸感应区域1511,所述第二压力感应电极153包括多个依次连接的第二压力感应区域1531,所述第二触摸感应电极151的多个第二触摸感应区域1511与相邻的第二压力感应电极153的多个第二压力感应区域1531交错排列。
在本实施方式中,通过将所述第一触摸感应电极131设置为多个依次连接的第一触摸感应区域1311,从而可以在相邻的两个第一触摸感应电极131之间形成对应的多个相互贯通的镂空区,进一步通过在所述镂空区设置多个依次连接的第一压力感应区域1331以形成所述第一压力感应电极133,并通过将所述第二触摸感应电极151设置为多个依次连接的第二触摸感应区域1511,从而可以在相邻的两个第二触摸感应电极151之间形成对应的多个相互贯通的镂空区,进一步通过在所述镂空区设置多个依次连接的第二压力感应区域1531以形成所述第二压力感应电极153,从而实现在同一透明基板上形成用于检测触摸操作的位置的触摸感应电极和用于检测触摸操作的压力感应电极,在不增加所述触摸屏100的厚度的情况下实现了触摸造成的压力检测。
可以理解,在一种实施方式中,所述第一触摸感应区域1311、第一压力感应区域1331、第二触摸感应区域1511及第二压力感应区域1531均可以设置为呈菱形状的区域,任意两个相邻的第一触摸感应电极131的第一触摸感应区域1311之间在第二方向上相互对齐,任意两个相邻的第一压力感应电极133的第一压力感应区域1331之间在第二方向上相互对齐,任意两个相邻的第二触摸感应电极151的第二触摸感应区域1511之间在第一方向上相互对齐,任意两个相邻的第二压力感应电极153的第二压力感应区域1531之间在第一方向上相互对齐。
在本实施例中,所述第一触摸感应电极131和所述第一压力感应电极133为由所述第一导电层130形成的导电图案;所述第二触摸感应电极151和所述第二压力感应电极153为由所述第二导电层150形成的导电图案。其中,所述第一触摸感应电极131的导电图案和所述第二触摸感应电极151的导电图案相同,所述第一压力感应电极133和所述第二压力感应电极153的导电图案相同。所述第一触摸感应电极131的导电图案与所述第一压力感应电极133的导电图案互补,所述第二触摸感应电极151的导电图案与所述第二压力感应电极153的导电图案互补。所述第一触摸感应电极131的导电图案与所述第二触摸感应电极151的导电图案在正投影方向上互补,所述第一压力感应电极133的导电图案与所述第二压力感应电极153的导电图案在正投影方向上互补。其中,正投影方向是指投射线垂直于所述第一导电层130和所述第二导电层150的方向。所述第一触摸感应电极131的导电图案与所述第二触摸感应电极151的导电图案在正投影方向上互补是指:所述第一触摸感应电极131的第一触摸感应区域1311在所述第二导电层150上的投影位于所述第二触摸感应电极151的第二触摸感应区域1511之间的空隙内,并与所述第二触摸感应区域1511 互补;也就是说,所述第一触摸感应区域1311在所述第二导电层150上的投影位于与所述第二触摸感应区域1511相互交错的区域内。
可以理解,所述第一触摸感应电极131和所述第一压力感应电极133可以由所述第一导电层130经过蚀刻或激光雕刻工艺形成;所述第二触摸感应电极151和所述第二压力感应电极153可以由所述第二导电层150经过蚀刻或激光雕刻工艺形成。可以理解,通过同一导电层经过蚀刻或激光雕刻工艺形成触摸感应电极和压力感应电极,可以有效缩短所述触摸屏的工艺制成,降低生产成本。
在一种实施方式中,所述第一压力感应电极133和所述第二压力感应电极153为呈迂回结构的应变电阻线路。可以理解,所述迂回结构的应变电阻线路的具体迂回形式这里并不做限定,例如,可以是如图3中所示的方形迂回结构,也可以是菱形、圆形等其他形式的迂回结构。
通过将所述第一压力感应电极133和所述第二压力感应电极153设置为呈迂回结构的应变电阻线路,从而可以在相同面积的压力感应区域内设置更长的应变电阻线路,迂回结构的应变电阻线路还可以使得压力感应电极在受到压力作用时的形变更加灵敏,从而根据压力的变化灵敏地改变应用电阻的阻值,故可以增加压力检测的灵敏度。
请参阅图4,假设所述多个第一压力感应电极133对应的应变电阻为RT1、RT2、RT3、RT4…,所述多个第二压力感应电极153对应的应变电阻为RB1、RB2、RB3、RB4…。可以理解,在没有接收到针对所述触摸屏100的触摸操作,或者触摸操作不具有压力时,应变电阻RT1、RT2、RT3、RT4…、RB1、RB2、RB3、RB4…的阻值无变化。当有压力作用于所述触摸屏100时,应变电阻RT1、RT2、RT3、RT4…、RB1、RB2、RB3、RB4…的阻值将会发生变化,且越靠近触摸操作接触点的位置应变电阻的阻值变化越大。因此,可以通过分别检测RT1、RT2、RT3、RT4…、RB1、RB2、RB3、RB4…的阻值,即可确定触摸操作的位置处于阻值最大(例如RTi)的第一压力感应电极133和阻值最大(例如RBj)的第二压力感应电极153的交界处,同时,可以根据阻值最大的第一压力感应电极133对应的应变电阻的阻值RTi和阻值最大的第二压力感应电极153对应的应变电阻的阻值RB j计算出所述触摸操作的压力。
如图4中所示,假设符号“+”所示位置为触摸操作的位置,且该触摸操作携带压力,同时,若该触摸操作的位置靠近应变电阻为RT2的第一压力感应电极133和应变电阻为RB3的第二压力感应电极153的交界处,则由于应变电阻RT2对应的第一压力感应电极133和应变电阻RB3对应的第二压力感应电极153受到压力作用而产生的形变最大,对应的应变电阻RT2、RB3的阻值也最大,即通过分别检测RT1、RT2、RT3、RT4…、RB1、RB2、RB3、RB4…的阻值,可以得到应变电阻RT2、RB3的阻值最大,并可根据应变电阻RT2对应的第一压力感应电极133和应变电阻RB3对应的第二压力感应电极153的位置确定触摸操作的压力点位置。同时,还可以根据应变电阻RT2、RB3的阻值的变化大小,计算得到触摸操作对应的压力大小。
请参阅图5,在本发明一个实施例中,提供一种触摸显示装置200,包括显示屏210及触摸屏100,所述显示屏210包括显示面211,所述触摸屏100贴合于所述显示面211上,用于接收针对所述触摸显示装置的三维触摸操作,其中,所述触摸屏100的具体结构及功 能可以参照图1至图4所示实施例中描述,此处不再赘述。
在一种实施方式中,所述触摸显示装置200还包括透明盖板230,所述透明盖板230贴合于所述触摸屏100上,从而使得所述触摸屏100紧贴于所述显示屏210与所述透明盖板230之间。可以理解,通过将所述触摸屏100直接贴合于所述触摸显示装置的显示屏210上,并在所述触摸屏100上贴合透明盖板230,可以实现对所述触摸屏230的保护。同时,由于所述触摸屏100紧贴所述透明盖板230,从而可以缩短触摸操作时的压力传递路径,提升压力触摸控制的灵敏度。
在一种实施方式中,所述触摸显示装置还包括处理器250,所述处理器250可以设置于一电路板(图未示)上。所述第一触摸感应电极131、所述第二触摸感应电极151、所述第一压力感应电极133和所述第二压力感应电极153均通过透明的电极走线引导至所述触摸显示装置200的非显示区域213,进而通过所述非显示区域213内的走线与所述处理器250电性连接。可以理解,图5中仅示出了第一触摸感应电极131和第一压力感应电极133与所述处理器250的连接方式,第二触摸感应电极151及第二压力感应电极153与所述处理器250之间可以参考第一触摸感应电极131和第一压力感应电极133与所述处理器250的连接方式进行电连接。
在本实施方式中,通过透明的电极走线将所述触摸感应电极和压力感应电极引导至所述触摸显示装置200的非显示区域213,进而与所述处理器250电性连接,其中,所述透明的电极走线可以采用与所述触摸感应电极和压力感应电极相同的导电层通过蚀刻等工艺形成,从而具有与所述触摸感应电极和压力感应电极相同的通透性,可以防止电极走线对显示屏造成遮挡。
在一种实施方式中,所述处理器250用于获取所述多个第一触摸感应电极131和所述多个第二触摸感应电极151输出的感应电压,并根据所述多个第一触摸感应电极131和所述多个第二触摸感应电极151输出的感应电压的大小,确定所述针对所述触摸显示装置200的三维触摸操作的位置。
在本实施方式中,由于所述多个第一触摸感应电极131沿第一方向延伸并沿第二方向排列,所述多个第二触摸感应电极151沿第二方向延伸并沿第一方向排列,因而通过检测所述多个第一触摸感应电极131输出的感应电压即可判断针对所述触摸显示装置200的三维触摸操作在第二方向上的位置,并通过检测所述多个第二触摸感应电极151输出的感应电压即可判断针对所述触摸显示装置200的三维触摸操作在第一方向上的位置,进而根据所述第二方向上的位置和第一方向上的位置,确定所述针对所述触摸显示装置200的三维触摸操作的位置。
在一种实施方式中,所述处理器250用于获取所述多个第一压力感应电极133和所述多个第二压力感应电极153输出的感应电压,并根据所述多个第一压力感应电极133和所述多个第二压力感应电极153输出的感应电压的大小,确定所述针对所述触摸显示装置200的三维触摸操作的压力。
在本实施方式中,由于所述多个第一压力感应电极133沿第一方向延伸并沿第二方向排列,所述多个第二压力感应电极153沿第二方向延伸并沿第一方向排列,因而通过检测所述多个第一压力感应电极133输出的感应电压即可判断针对所述触摸显示装置200的三 维触摸操作在第二方向上的压力分布,并通过检测所述多个第二压力感应电极153输出的感应电压即可判断针对所述触摸显示装置200的三维触摸操作在第一方向上的压力分布,进而根据所述第二方向上的压力分布和第一方向上的压力分布,确定所述针对所述触摸显示装置200的三维触摸操作的压力。

Claims (13)

  1. 一种触摸屏,其特征在于,包括透明基板,所述透明基板包括相背的第一表面和第二表面,所述第一表面上设置有透明的第一导电层,所述第二表面上设置有透明的第二导电层,所述第一导电层包括多个沿第一方向延伸的第一触摸感应电极和第一压力感应电极,所述第一触摸感应电极和所述第一压力感应电极沿第二方向交替排列,所述第二导电层包括多个沿第二方向延伸的第二触摸感应电极和第二压力感应电极,所述第二触摸感应电极和所述第二压力感应电极沿第一方向交替排列,所述多个第一触摸感应电极和所述多个第二触摸感应电极用于检测针对所述触摸屏的触摸操作的位置,所述多个第一压力感应电极和所述多个第二压力感应电极用于检测针对所述触摸屏的触摸操作的压力。
  2. 如权利要求1所述的触摸屏,其特征在于,所述第一触摸感应电极包括多个依次连接的第一触摸感应区域,所述第一压力感应电极包括多个依次连接的第一压力感应区域,所述第一触摸感应电极的多个第一触摸感应区域与相邻的第一压力感应电极的多个第一压力感应区域交错排列。
  3. 如权利要求1所述的触摸屏,其特征在于,所述第二触摸感应电极包括多个依次连接的第二触摸感应区域,所述第二压力感应电极包括多个依次连接的第二压力感应区域,所述第二触摸感应电极的多个第二触摸感应区域与相邻的第二压力感应电极的多个第二压力感应区域交错排列。
  4. 如权利要求1至3任一项所述的触摸屏,其特征在于,所述第一触摸感应电极和所述第一压力感应电极为由所述第一导电层形成的导电图案;所述第二触摸感应电极和所述第二压力感应电极为由所述第二导电层形成的导电图案。
  5. 如权利要求4所述的触摸屏,其特征在于,所述第一触摸感应电极的导电图案和所述第二触摸感应电极的导电图案相同,所述第一压力感应电极和所述第二压力感应电极的导电图案相同。
  6. 如权利要求4所述的触摸屏,其特征在于,所述第一触摸感应电极的导电图案与所述第一压力感应电极的导电图案互补,所述第二触摸感应电极的导电图案与所述第二压力感应电极的导电图案互补。
  7. 如权利要求4所述的触摸屏,其特征在于,所述第一触摸感应电极的导电图案与所述第二触摸感应电极的导电图案在正投影方向上互补,所述第一压力感应电极的导电图案与所述第二压力感应电极的导电图案在正投影方向上互补。
  8. 如权利要求1至7任一项所述的触摸屏,其特征在于,所述第一压力感应电极和所 述第二压力感应电极为呈迂回结构的应变电阻线路。
  9. 一种触摸显示装置,其特征在于,包括显示屏及触摸屏,所述显示屏包括显示面,所述触摸屏贴合于所述显示面上,用于接收针对所述触摸显示装置的三维触摸操作,其中,所述触摸屏为如权利要求1至8任一项所述的触摸屏。
  10. 如权利要求9所述的触摸显示装置,其特征在于,所述触摸显示装置还包括透明盖板,所述透明盖板贴合于所述触摸屏上。
  11. 如权利要求9或10所述的触摸显示装置,其特征在于,所述触摸显示装置还包括处理器,所述第一触摸感应电极、所述第二触摸感应电极、所述第一压力感应电极和所述第二压力感应电极均通过透明的电极走线引导至所述触摸显示装置的非显示区域,进而与所述处理器电性连接。
  12. 如权利要求11所述的触摸显示装置,其特征在于,所述处理器用于获取所述多个第一触摸感应电极和所述多个第二触摸感应电极输出的感应电压,并根据所述多个第一触摸感应电极和所述多个第二触摸感应电极输出的感应电压的大小,确定所述针对所述触摸显示装置的三维触摸操作的位置。
  13. 如权利要求11所述的触摸显示装置,其特征在于,所述处理器用于获取所述多个第一压力感应电极和所述多个第二压力感应电极输出的感应电压,并根据所述多个第一压力感应电极和所述多个第二压力感应电极输出的感应电压的大小,确定所述针对所述触摸显示装置的三维触摸操作的压力。
PCT/CN2017/083179 2017-02-16 2017-05-05 触摸屏及触摸显示装置 WO2018149037A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780068489.8A CN109906429B (zh) 2017-02-16 2017-05-05 触摸屏及触摸显示装置
US16/486,738 US20190384458A1 (en) 2017-02-16 2017-05-05 Touchscreen and Touch Display Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710084647.0 2017-02-16
CN201710084647 2017-02-16

Publications (1)

Publication Number Publication Date
WO2018149037A1 true WO2018149037A1 (zh) 2018-08-23

Family

ID=63169693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083179 WO2018149037A1 (zh) 2017-02-16 2017-05-05 触摸屏及触摸显示装置

Country Status (3)

Country Link
US (1) US20190384458A1 (zh)
CN (1) CN109906429B (zh)
WO (1) WO2018149037A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200052483A (ko) * 2018-11-06 2020-05-15 삼성디스플레이 주식회사 터치 센서 및 표시 장치
KR20210106595A (ko) * 2020-02-20 2021-08-31 삼성디스플레이 주식회사 터치 센서를 포함하는 표시장치
WO2022163955A1 (ko) * 2021-02-01 2022-08-04 주식회사 오몰래 키 입력 장치, 키 입력 장치를 구비하는 스마트 매트, 인터렉티브 피트니스 시스템 및 그것의 제어 방법
CN115008927A (zh) * 2022-06-08 2022-09-06 科大讯飞股份有限公司 矫正笔和矫正笔的矫正方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201886454U (zh) * 2010-06-02 2011-06-29 无锡阿尔法电子科技有限公司 一种电容式触控面板
CN205193774U (zh) * 2015-11-24 2016-04-27 南昌欧菲光科技有限公司 触摸显示装置及其压力感应单元
CN205193760U (zh) * 2015-11-24 2016-04-27 南昌欧菲光科技有限公司 触摸显示装置及其压力感应单元
US20160216822A1 (en) * 2013-01-24 2016-07-28 Samsung Display Co., Ltd. Flexible display device having touch and bending sensing function
CN205644489U (zh) * 2016-03-31 2016-10-12 汕头超声显示器技术有限公司 一种内嵌压力感应功能的触摸屏
CN106325578A (zh) * 2015-07-10 2017-01-11 宸鸿科技(厦门)有限公司 压力感应触控面板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106293290B (zh) * 2015-06-10 2023-08-29 宸鸿科技(厦门)有限公司 触控装置
CN106325579B (zh) * 2015-07-10 2023-04-07 宸鸿科技(厦门)有限公司 一种压力感测输入装置
CN105320354B (zh) * 2015-08-26 2018-11-23 宸鸿科技(厦门)有限公司 一种三维触控装置
TWI581169B (zh) * 2016-04-28 2017-05-01 友達光電股份有限公司 雙模式電容觸控顯示面板
CN205827356U (zh) * 2016-06-20 2016-12-21 厦门天马微电子有限公司 一种触控显示面板和触控显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201886454U (zh) * 2010-06-02 2011-06-29 无锡阿尔法电子科技有限公司 一种电容式触控面板
US20160216822A1 (en) * 2013-01-24 2016-07-28 Samsung Display Co., Ltd. Flexible display device having touch and bending sensing function
CN106325578A (zh) * 2015-07-10 2017-01-11 宸鸿科技(厦门)有限公司 压力感应触控面板
CN205193774U (zh) * 2015-11-24 2016-04-27 南昌欧菲光科技有限公司 触摸显示装置及其压力感应单元
CN205193760U (zh) * 2015-11-24 2016-04-27 南昌欧菲光科技有限公司 触摸显示装置及其压力感应单元
CN205644489U (zh) * 2016-03-31 2016-10-12 汕头超声显示器技术有限公司 一种内嵌压力感应功能的触摸屏

Also Published As

Publication number Publication date
CN109906429A (zh) 2019-06-18
CN109906429B (zh) 2020-10-16
US20190384458A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
TWI607356B (zh) 一種三維觸控裝置
WO2018149037A1 (zh) 触摸屏及触摸显示装置
US10025411B2 (en) Touch screen and pressure touch detection method thereof
KR101651408B1 (ko) 정전용량식 터치감지패널 및 이를 갖는 정전용량식 터치감지장치
JP5259811B2 (ja) エッジ位置認識特性が改善された接触検出装置
CN105045441B (zh) 用户接口单元、智能卡和制造方法
KR101330779B1 (ko) 터치 패널의 전극 구조, 그 방법 및 터치 패널
JP2014238813A (ja) タッチディスプレイ装置
CN105404430B (zh) 3d压感触摸屏及其制造方法以及3d压感触控实现方法
TWI423105B (zh) 電容式觸控面板的導電圖案結構
JPWO2012096210A1 (ja) 座標入力装置
KR20150091936A (ko) 터치 패널 및 이를 포함하는 터치 스크린
WO2017156889A1 (zh) 一种显示基板、内嵌式触摸屏及显示装置
JP2016189037A (ja) センサ構造体およびその検出方法
JP2014170334A (ja) 静電容量式タッチパネルおよびそれを用いた手持ち式電子機器
TWM588284U (zh) 一種壓力感測模組及其觸控面板
KR20110125838A (ko) 정전용량 방식의 다중 입력 터치 스크린
US10318037B2 (en) Detection method for enhanced 3D detection module
TWI628417B (zh) 偵測若干物體的感測器裝置及方法以及具有感測器裝置之電手持裝置
US20200241700A1 (en) Enhanced projected capacitive sensing
KR101644693B1 (ko) 커패시턴스 터치스크린의 회선보상식 멀티 터치포인트 포지셔닝 방법 및 구조
CN107491224B (zh) 显示面板、显示装置以及显示面板的驱动方法
CN107340931B (zh) 一种显示面板和显示装置
TWM595260U (zh) 單層自電容觸控感測結構及觸控裝置
WO2020124439A1 (zh) 触摸面板、触摸装置及触摸检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896499

Country of ref document: EP

Kind code of ref document: A1