WO2018147287A1 - Heating device for manufacturing gas sensor - Google Patents

Heating device for manufacturing gas sensor Download PDF

Info

Publication number
WO2018147287A1
WO2018147287A1 PCT/JP2018/004077 JP2018004077W WO2018147287A1 WO 2018147287 A1 WO2018147287 A1 WO 2018147287A1 JP 2018004077 W JP2018004077 W JP 2018004077W WO 2018147287 A1 WO2018147287 A1 WO 2018147287A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction heating
heating coil
sensor element
electrode
manufacturing
Prior art date
Application number
PCT/JP2018/004077
Other languages
French (fr)
Japanese (ja)
Inventor
翔太郎 森
籔谷 正文
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018147287A1 publication Critical patent/WO2018147287A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells

Definitions

  • the present disclosure relates to a manufacturing heating apparatus that heats an intermediate body of a sensor element from the outside.
  • the gas sensor is arranged in the piping of the exhaust system of the internal combustion engine, and performs gas detection by utilizing a change in oxygen concentration in the exhaust gas flowing through the piping.
  • the gas sensor includes an application for detecting the oxygen concentration of exhaust gas exhausted from the internal combustion engine, an application for detecting the air-fuel ratio of the internal combustion engine obtained from the exhaust gas, and the air-fuel ratio of the internal combustion engine obtained from the exhaust gas relative to the theoretical air-fuel ratio.
  • the gas sensor has a sensor element made of a solid electrolyte body with electrodes provided on both surfaces.
  • the sensor element is often provided with a heater for heating the sensor element to the sensor activation temperature.
  • the heater may be disposed inside the bottomed cylindrical sensor element or may be stacked on a plate-like sensor element.
  • a sensor element in which no heater is disposed may be used.
  • the intermediate body of the sensor element before manufacture completion is arrange
  • a heater that generates heat by Joule heat during energization is disposed inside or around the intermediate body of the sensor element, and the intermediate body may be heated by heat conduction from the heater or the like by generating heat.
  • the coil described in the gas sensor manufacturing method of Patent Document 1 is used to heat the metal shell that holds the sensor element when the gas sensor is manufactured. .
  • This coil removes the oil adhering to the metallic shell by arranging and energizing around the assembly in which the sensor element and the metallic shell are assembled.
  • an induction coil described in the gas sensor of Patent Document 2 is used to heat the sensor element when the gas sensor is used.
  • This induction coil is disposed on the inner peripheral surface of the cover that covers the sensor element, and heats the sensor element to the sensor activation temperature by causing the electrodes provided on the solid electrolyte body to generate heat when energized. Is.
  • the coil described in Patent Document 1 heats the metal shell and is not used to heat the intermediate of the sensor element.
  • the induction coil described in Patent Document 2 heats the sensor element when the gas sensor is used, and is not used for heating the intermediate body of the sensor element. Therefore, when heating the intermediate body of the sensor element, in order to heat the electrode or the entire porous ceramic layer as uniformly as possible in a short time, further ingenuity is required.
  • the present disclosure is intended to provide a heating device for manufacturing a gas sensor capable of obtaining a sensor element having necessary performance with high accuracy and in a short time.
  • One aspect of the present disclosure is used in a gas sensor (4) that performs gas detection in exhaust gas (G) of an internal combustion engine, and includes a solid electrolyte body (51) provided with an outer electrode (52A) and an inner electrode (52B).
  • a heating apparatus (1) for manufacturing which is controlled by an energization control unit (2) different from the control apparatus (40) of the gas sensor and heats the intermediate body (50) of the sensor element, The energization control unit;
  • An induction heating coil (3) arranged in a spiral around the intermediate body and generating heat to the outer electrode and the inner electrode in the intermediate body by electromagnetic induction generated by energization and interruption of energization by the energization control unit;
  • a heating device for manufacturing a gas sensor used in the manufacture of the element (5).
  • the heating device for manufacturing the gas sensor is used for manufacturing a sensor element by heating an intermediate body of the sensor element.
  • the manufacturing heating apparatus includes an energization control unit and an induction heating coil arranged in a spiral around the intermediate body.
  • an eddy current is generated in the electrode in the intermediate body by electromagnetic induction, and the electrode self-heats due to this eddy current.
  • the whole electrode is heated as uniformly as possible in a short time, and accordingly, the periphery of the electrode is also heated as uniformly as possible in a short time.
  • the electrode When the electrode is sintered, when the electrode is heat-treated, when the porous ceramic layer covering the surface of the electrode is dried or sintered, the entire intermediate electrode is heated as uniformly as possible in a short time. Therefore, a sensor element having necessary performance can be obtained with high accuracy. Therefore, according to the heating device for manufacturing the gas sensor, a sensor element having necessary performance can be obtained accurately and in a short time.
  • gas detection indicates that the oxygen concentration of the exhaust gas exhausted from the internal combustion engine is detected, the air-fuel ratio of the internal combustion engine obtained from the exhaust gas is detected, and the air condition of the internal combustion engine obtained from the exhaust gas is detected. This includes detecting whether the fuel ratio is on the fuel rich side or the fuel lean side with respect to the stoichiometric air-fuel ratio, detecting the concentration of a specific gas component such as NOx, and the like.
  • the “heating device for manufacturing” is different from the heater as the heating device built in the gas sensor.
  • “Gas sensor control device” indicates a control device used when gas detection is performed by a gas sensor
  • “energization control unit” indicates a control device used when a sensor element is manufactured.
  • the “electrode in the intermediate” includes both an electrode before sintering and an electrode after sintering.
  • the following manufacturing method of a gas sensor is realizable by using the heating apparatus for manufacturing a gas sensor.
  • An electrode material arranging step of arranging an electrode material for forming an electrode on both surfaces of the solid electrolyte body Using an induction heating coil arranged in a spiral around the intermediate body of the sensor element and an energization control unit for energizing the induction heating coil, the energization and energization of the induction heating coil from the energization control unit is performed.
  • There is a gas sensor manufacturing method including an electrode forming step of forming the electrode from the electrode material by causing the electrode material to generate heat by electromagnetic induction generated by being interrupted.
  • electrodes are provided on both surfaces of the solid electrolyte body, and the surface of one of the outer electrodes is covered with a porous ceramic layer, so that gas detection in exhaust gas from an internal combustion engine is performed.
  • a ceramic layer forming step of forming the porous ceramic layer from the ceramic material by heat conduction from the outer electrode to the ceramic material. is there.
  • FIG. 1 is a cross-sectional view showing a gas sensor according to a first embodiment.
  • FIG. 3 is a cross-sectional view showing the sensor element according to the first embodiment. 3 is a flowchart showing a method for manufacturing a sensor element according to the first embodiment.
  • FIG. 5 is a flowchart showing another sensor element manufacturing method according to the first embodiment.
  • Sectional drawing which expands and shows the periphery of the intermediate body and induction heating coil of a sensor element concerning Embodiment 1.
  • FIG. The graph which shows simply the change of the temperature of an intermediate body when heating an intermediate body to target temperature with the heating apparatus of the implementation goods, the comparative goods 1, and the comparative goods 2 concerning Embodiment 1.
  • FIG. Explanatory drawing which shows the heating apparatus for manufacture concerning Embodiment 2.
  • FIG. which shows the difference of the electrical resistance between a pair of electrodes before and behind sintering concerning Embodiment 2.
  • FIG. The graph which shows the difference of the electrical resistance between a pair of electrodes according to Embodiment 2 according to the presence or absence of a disconnection.
  • FIG. 1 Explanatory drawing which shows the heating apparatus for manufacture concerning Embodiment 3.
  • the heating device 1 for manufacturing the gas sensor 4 of this embodiment is used when manufacturing a sensor element 5 used for the gas sensor 4 as shown in FIG.
  • the gas sensor 4 performs gas detection in the exhaust gas G of the internal combustion engine, and the sensor element 5 is provided with electrodes 52A and 52B on both surfaces of the solid electrolyte body 51, respectively.
  • the manufacturing heating apparatus 1 heats the intermediate body 50 of the sensor element 5 before becoming a complete body when the sensor element 5 is manufactured.
  • the manufacturing heating device 1 is arranged in a spiral around the energization control unit 2 and the intermediate body 50 provided separately from the control device 40 of the gas sensor 4, and receives energization and interruption of energization by the energization control unit 2. And an induction heating coil 3 that generates heat in the electrodes 52A and 52B in the intermediate 50 by electromagnetic induction that occurs.
  • the manufacturing heating apparatus 1 of this embodiment is used when manufacturing the sensor element 5 and is not used for heating the sensor element 5 when the gas sensor 4 is used.
  • the manufacturing heating apparatus 1 operates independently of the gas sensor 4 when the sensor element 5 is manufactured.
  • the gas sensor 4 of this embodiment is a heaterless type that does not have a heater for heating the sensor element 5, and the sensor element 5 cannot be heated by the heater.
  • the intermediate body 50 of the sensor element 5 is in a state before the manufacture of the sensor element 5 is completed.
  • the intermediate body 50 of the sensor element 5 heated by the manufacturing heating apparatus 1 can be a single body of the solid electrolyte body 51 provided with the electrodes 52A and 52B. Further, as shown in FIG. 13, the intermediate body 50 is a solid electrolyte body 51 provided with electrodes 52 ⁇ / b> A and 52 ⁇ / b> B, and may be in a state assembled to each component of the gas sensor 4. However, each part of the gas sensor 4 to which the intermediate body 50 is assembled is assumed to be in a state where an element cover 44 described later is removed.
  • the gas sensor 4 of this embodiment is a heaterless type that does not incorporate a heater, and is mounted on a two-wheeled vehicle.
  • the gas sensor 4 is disposed in a pipe of an exhaust system of an internal combustion engine in a two-wheeled vehicle, and detects gas in the exhaust gas G flowing through the pipe.
  • the gas sensor 4 of this embodiment detects oxygen in the exhaust gas G, and detects whether the air-fuel ratio of the internal combustion engine obtained from the exhaust gas G is on the fuel rich side or the fuel lean side with respect to the theoretical air fuel ratio. It is.
  • the gas sensor 4 may be one that detects the air-fuel ratio of the internal combustion engine obtained from the exhaust gas G, or one that detects the concentration of a specific gas component such as NOx.
  • the solid electrolyte body 51 of the sensor element 5 is formed in a bottomed cylindrical shape, and includes a cylindrical portion 511 and a hemispherical bottom portion 512 that closes the distal end side of the cylindrical portion 511.
  • the electrodes 52A and 52B include an outer electrode 52A provided on the outer peripheral surface of the solid electrolyte body 51 and in contact with the exhaust gas G, and an inner electrode 52B provided on the inner peripheral surface of the solid electrolyte body 51 and in contact with the atmosphere A. is there.
  • the outer electrode 52A is provided on the outer peripheral surface of the cylindrical portion 511 of the solid electrolyte body 51 at the bottom position located in the vicinity of the bottom portion 512.
  • the inner electrode 52 ⁇ / b> B is provided on the entire inner peripheral surface of the cylindrical portion 511 of the solid electrolyte body 51.
  • the detection portion 501 of the sensor element 5 is formed as a portion where the outer electrode 52A and the inner electrode 52B face each other with the solid electrolyte body 51 interposed therebetween.
  • an electrode lead portion 521 connected to the outer electrode 52A in a state parallel to the axial direction L of the cylindrical portion 511 is formed on the outer peripheral surface of the cylindrical portion 511 of the solid electrolyte body 51.
  • the electrode lead portion 521 is not included in the outer electrode 52A.
  • the solid electrolyte body 51 is made of a zirconia material having a property of transmitting oxide ions (O 2 ⁇ ).
  • a zirconia material can be comprised with the various material which has a zirconia as a main component.
  • As the zirconia material stabilized zirconia or partially stabilized zirconia in which a part of zirconia is substituted with a rare earth metal element or an alkaline earth metal element can be used.
  • the outer electrode 52 ⁇ / b> A and the inner electrode 52 ⁇ / b> B contain platinum as an oxygen active catalyst that reacts with oxygen and a zirconia material that is a co-material of the solid electrolyte body 51.
  • a porous ceramic layer 53 is provided on the surface of the outer electrode 52A so as to cover the outer electrode 52A and prevent the permeation of water and poisonous substances to protect the outer electrode 52A.
  • the porous ceramic layer 53 is provided on the bottom side position of the cylindrical portion 511 of the solid electrolyte body 51 and the entire circumference of the bottom portion 512 including the outer electrode 52A.
  • the porous ceramic layer 53 is formed of a porous body of a ceramic material such as alumina.
  • the gas sensor 4 includes a housing 41 that holds the sensor element 5, connection terminals 42 and lead wires 43 that are electrically connected to the electrodes 52 ⁇ / b> A and 52 ⁇ / b> B of the sensor element 5.
  • An element cover 44 covering the detection portion 501 of the sensor element 5, a connection terminal 42, a terminal cover 45 covering a part of the lead wire 43, and the like.
  • the connection terminal 42 includes one that contacts the electrode lead portion 521 of the outer electrode 52A from the outer peripheral side and one that contacts the inner electrode 52B from the inner peripheral side.
  • the element cover 44 is provided with a through hole 441 through which the exhaust gas G passes.
  • the exhaust gas G flowing in the piping of the exhaust system flows into the element cover 44 through the through hole 441 and is guided to the porous ceramic layer 53 and the outer electrode 52A in the detection portion 501 of the sensor element 5.
  • the terminal cover 45 is provided with a through hole 451 through which the atmosphere A passes, and a sheet 452 for preventing water from entering the terminal cover 45 is disposed facing the through hole 451. ing.
  • the atmosphere A existing outside the piping of the exhaust system flows into the terminal cover 45 through the through hole 451 and is guided to the inner electrode 52 ⁇ / b> B in the detection unit 501 of the sensor element 5.
  • the spiral portion 31 of the induction heating coil 3 is formed in a circular shape in accordance with the circular sectional shape of the bottomed cylindrical solid electrolyte body 51.
  • the induction heating coil 3 is disposed to face the entire circumference of the outer electrode 52 ⁇ / b> A provided on the entire circumference of the cylindrical portion 511 of the solid electrolyte body 51.
  • the induction heating coil 3 is configured to heat the entire outer electrode 52A and the portion of the inner electrode 52B that faces the outer electrode 52A via the solid electrolyte body 51.
  • the conductor 301 constituting the induction heating coil 3 is formed in a hollow shape having a refrigerant flow path 302 through which the refrigerant C passes.
  • the induction heating coil 3 When the induction heating coil 3 is energized, the induction heating coil 3 generates heat due to Joule heat. Therefore, by forming the induction heating coil 3 using the conductor 301 having the refrigerant flow path 302, the induction heating coil 3 is cooled by the refrigerant C flowing through the refrigerant flow path 302, and the induction heating coil 3 is prevented from fusing. can do. Thus, the induction heating coil 3 can cause the electrodes 52A and 52B to generate heat until the electrodes 52A and 52B in the intermediate 50 reach a high temperature of 400 to 1000 ° C.
  • the induction heating coil 3 is formed by spirally winding a conductor 301 having an annular cross section.
  • the length of the spiral portion 31 in the induction heating coil 3 in the axial direction L is longer than the length of the outer electrode 52A in the axial direction L.
  • the entire outer electrode 52A can be effectively heated by the induction heating coil 3.
  • the entire axial direction L of the outer electrode 52 ⁇ / b> A is disposed at the center of the induction heating coil 3.
  • the axial direction L of the spiral portion 31 refers to the direction in which the central axis passing through the circle center of the spiral portion 31 extends.
  • the outer diameter of the conductor 301 constituting the induction heating coil 3 is in the range of ⁇ 1.5 to 3 mm, and the inner diameter of the refrigerant flow path 302 is smaller than the outer diameter of the induction heating coil 3. , In the range of ⁇ 1 to 2.5 mm.
  • the cross-sectional area of the refrigerant flow path 302 becomes small and the refrigerant flow path 302 may be formed. It becomes difficult.
  • the outer diameter of the conductor 301 exceeds ⁇ 3 mm, or when the inner diameter of the refrigerant flow path 302 exceeds ⁇ 2.5 mm, the conductor 301 and the refrigerant flow path 302 become relatively large with respect to the sensor element 5, and the outside It becomes impossible to increase the number of turns of the conductor 301 opposed to the electrode 52A.
  • the induction heating coil 3 is formed by arranging the conductor 301 in a state of one layer winding in the radial direction around the central axis, and winding the conductor 301 three or more times in a spiral shape.
  • the number of turns of the conductor 301 in the induction heating coil 3 can be, for example, 10 or less.
  • a gap is formed between the conductors 301 constituting the induction heating coil 3 to ensure sufficient insulation between the conductors 301.
  • both end portions 32 of the induction heating coil 3 are supported by the heating head 21.
  • the heating head 21 is configured to be positioned with respect to the jig 11 that holds the intermediate body 50 of the sensor element 5.
  • the intermediate body 50 of the sensor element 5 and the induction heating coil 3 are positioned so that the central axis of the intermediate body 50 coincides with the central axis of the induction heating coil 3. .
  • the distance between the outermost surface of the intermediate body 50 and the inner peripheral side position of the induction heating coil 3 is 2 mm or less.
  • the outermost surface of the intermediate body 50 can be the surface of the outer electrode 52A, and the porous ceramic layer 53 is formed.
  • the surface of the porous ceramic layer 53 can be used.
  • the energization control unit 2 of this embodiment includes a cooling chiller 22 that circulates the refrigerant C through the refrigerant flow path 302 of the induction heating coil 3 and a thermometer 24 that measures the temperature of the bottom 512 of the intermediate body 50. And a controller 23 that applies an alternating voltage (or alternating current) to the induction heating coil 3, and a power source (not shown) that supplies power to the cooling chiller 22 and the controller 23.
  • the refrigerant C is supplied from the cooling chiller 22 to the induction heating coil 3 via the heating head 21, and is collected from the induction heating coil 3 to the cooling chiller 22 via the heating head 21.
  • the AC voltage generated by the controller 23 has a voltage waveform such as a sine wave or a pulse wave.
  • the cooling chiller 22 has a function of cooling the refrigerant C circulated through the refrigerant flow path 302 of the induction heating coil 3.
  • the thermometer 24 is a radiation thermometer that measures heat radiation (heat radiation) due to movement of electromagnetic waves from the intermediate body 50 of the sensor element 5 in a non-contact manner.
  • heat radiation heat radiation
  • the thermometer 24 is disposed so as to face the tip of the bottom 512 of the intermediate body 50, and measures the temperature due to heat radiation from the tip of the bottom 512 in a non-contact manner.
  • the controller 23 is configured using a computer.
  • the controller 23 has a function of adjusting the amplitude and frequency of the AC voltage applied to the induction heating coil 3, a function of setting a target temperature and a voltage application time for heating the intermediate body 50 to be heated by the induction heating coil 3, and a heating target A function of monitoring the temperature of the intermediate body 50, a function of performing feedback control so that the temperature of the intermediate body 50 becomes the target temperature, and the like.
  • setting of the target temperature, setting of the amplitude, frequency and application time of the AC voltage are possible.
  • the cooling chiller 22, the heating head 21, and the thermometer 24 are connected to a controller 23.
  • the temperature of the bottom 512 of the intermediate body 50 measured by the thermometer 24 is transmitted to the controller 23.
  • Both end portions 32 of the induction heating coil 3 are connected to the controller 23 via the heating head 21. Then, an AC voltage is applied to the induction heating coil 3 by the controller 23.
  • the controller 23 is configured to adjust the amplitude (magnitude) and frequency of the AC voltage applied to the induction heating coil 3 so that the temperature measured by the thermometer 24 becomes the target temperature.
  • the temperature of the electrodes 52A and 52B in the intermediate body 50 can be controlled to be an appropriate temperature. Therefore, the sensor element 5 having performance necessary for performing gas detection can be obtained with high accuracy.
  • the target temperature is determined when the electrodes 52A and 52B in the intermediate body 50 of the sensor element 5 are sintered, or when the electrodes 52A and 52B in the intermediate body 50 of the sensor element 5 are heat-treated.
  • the temperature is set to an appropriate temperature in accordance with each production scene such as when the porous ceramic layer 53 disposed in the substrate is dried or sintered.
  • thermometer 24 may not be used. . In this case, the temperature of the intermediate body 50 is not measured, and the controller 23 can heat the intermediate body 50 to a target temperature by feedforward control.
  • Electrodes 52A and 52B First, the case where the electrodes 52A and 52B are formed on the surface of the solid electrolyte body 51 will be described.
  • an electrode material arranging step S1 and an electrode forming step S2 are performed to form the electrodes 52A and 52B.
  • electrode materials for forming the electrodes 52A and 52B are arranged on both surfaces of the solid electrolyte body 51.
  • the electrode material includes precious metal particles such as platinum, solid electrolyte particles, a solvent, and the like that constitute the electrodes 52A and 52B.
  • the electrode material may be a plating material for performing a precious metal plating process.
  • the intermediate body 50 of the sensor element 5 in which the electrode material is disposed on the solid electrolyte body 51 is disposed inside the spiral portion 31 of the induction heating coil 3.
  • the central axis of the intermediate body 50 is made to coincide with the central axis of the spiral portion 31.
  • the thermometer 24 is disposed at a position facing the tip of the bottom 512 of the intermediate body 50.
  • the target temperature for heating the electrode material, the amplitude, frequency, application time, and the like of the AC voltage applied to the induction heating coil 3 are set.
  • the controller 23 applies an AC voltage to the induction heating coil 3 and operates the cooling chiller 22 to circulate the refrigerant C through the refrigerant flow path 302 of the induction heating coil 3.
  • an alternating voltage is applied to the spiral portion 31 of the induction heating coil 3
  • a magnetic field M penetrating the inner peripheral side of the induction heating coil 3 is generated in response to energization and interruption of energization.
  • an eddy current for canceling the magnetic field M is generated, and the electrode material self-heats due to the generation of the eddy current.
  • the entire electrode material of the outer electrode 52A and the entire electrode material in the portion of the inner electrode 52B facing the outer electrode 52A are heated as uniformly as possible.
  • the temperature of the tip of the bottom 512 in the intermediate body 50 is measured by the thermometer 24, and the controller 23 applies alternating current to the induction heating coil 3 so that the temperature measured by the thermometer 24 becomes the target temperature. Adjust the voltage amplitude and frequency. The adjustment by the controller 23 is performed for the set application time. Note that the target temperature can be changed as appropriate while the electrode material generates heat as the heating of the intermediate 50.
  • the electrode material arranged on the surface of the solid electrolyte body 51 is sintered, and the electrodes 52A and 52B are formed on the surface of the solid electrolyte body 51.
  • the heating of the intermediate body 50 by the induction heating coil 3 can also be performed to heat-treat the electrodes 52A and 52B provided on the surface of the solid electrolyte body 51. Also in this case, the electrodes 52A and 52B are self-heated by the induction heating coil 3 as in the case where the electrodes 52A and 52B are sintered.
  • the ceramic material arranging step S3 and the ceramic layer forming step S4 are performed to form the porous ceramic layer 53.
  • a ceramic material for forming the porous ceramic layer 53 is arranged on the surface of the intermediate body 50 of the sensor element 5 including the surface of the outer electrode 52A.
  • the ceramic material is in the form of a slurry containing ceramic particles such as alumina, a volatilizing agent for forming a large number of pores, a solvent, and the like.
  • the intermediate body 50 of the sensor element 5 in which the ceramic material is disposed on the solid electrolyte body 51 and the electrodes 52A and 52B is replaced with the spiral shape of the induction heating coil 3.
  • the induction heating coil 3 cools the induction heating coil 3 with the refrigerant C of the cooling chiller 22, and the induction heating coil 3 causes the electrodes 52A and 52B to generate heat.
  • the controller 23 adjusts the amplitude and frequency of the AC voltage applied to the induction heating coil 3 so that the temperature of the intermediate 50 measured by the thermometer 24 becomes the target temperature.
  • the ceramic material is heated by heat conduction from the outer electrode 52A and the inner electrode 52B. Then, the ceramic material is dried and solidified to form the porous ceramic layer 53. At this time, the inner part in contact with the outer electrode 52A is first heated and dried and solidified, and the ceramic material is sequentially heated from the inner part to the outer part by heat conduction to be dried and solidified.
  • the internal pressure of the ceramic material increases due to evaporation of a solvent such as water contained in the ceramic material.
  • the outer portion of the ceramic material when the outer portion of the ceramic material is dried and solidified, the outer portion of the ceramic material is not dried and solidified, so that the internal pressure generated in the inner portion of the ceramic material can be released to the outer portion.
  • the internal pressure hardly remains in the inner portion of the ceramic material, and cracks due to bumping can hardly occur in the porous ceramic layer 53 formed from the ceramic material.
  • the ceramic material is heated by using a conventional heating device that performs heating by heat radiation, heat conduction, convection, etc. instead of the manufacturing heating device 1, the ceramic material is dried and solidified first from the outer portion. Then, it is heated by heat conduction sequentially from the outer part to the inner part and dried and solidified.
  • the outer part of the ceramic material is dried and solidified while the solvent remains in the inner part of the ceramic material, and when the refrigerant C of the inner part evaporates, the internal pressure of the inner part increases. Therefore, the porous ceramic layer 53 formed from the ceramic material may be cracked due to bumping.
  • FIG. 8 shows that the intermediate body 50 is manufactured by a manufacturing heating device 1 using induction heating (practical product), a heating device using Joule heat (comparative product 1), and a heating device using a heating furnace (comparative product 2).
  • the change of the temperature of the intermediate body 50 when heating to target temperature is shown simply.
  • the temperature of the intermediate body 50 is the temperature of the tip of the bottom 512 of the solid electrolyte body 51 constituting the intermediate body 50.
  • the comparative product 1 a case where a part of the heating device is brought into contact with the intermediate body 50 is shown.
  • the time for heating the intermediate 50 to the target temperature can be shortened as compared with the comparative product 1 using Joule heat.
  • the entire outer electrode 52A and the entire portion of the inner electrode 52B facing the outer electrode 52A self-heats. Therefore, it is considered that the amount of heat transfer from each electrode 52A, 52B to the bottom 512 of the solid electrolyte body 51 is increased, and the heating time is shortened.
  • the entire outer electrode 52A and the entire portion of the inner electrode 52B facing the outer electrode 52A can be caused to generate heat substantially uniformly.
  • the intermediate 50 when the intermediate 50 and the heating device are in contact, the intermediate 50 is heated by heat conduction from the heating device. Since this heat conduction is locally performed from a part of the electrodes 52A, 52B or the solid electrolyte body 51, the heating time becomes long. In addition, it is difficult to uniformly heat the entire outer electrode 52A and the entire portion of the inner electrode 52B facing the outer electrode 52A.
  • the intermediate 50 when the intermediate 50 is not in contact with the heating device, the intermediate 50 is heated by heat radiation from the heating device. In this case, the heat is carried by electromagnetic waves due to thermal radiation, so that the heating time becomes long. Moreover, also in the comparative product 2, since the intermediate body 50 is heated by thermal radiation or convection, the heating time is remarkably increased.
  • the entire outer electrode 52A in the intermediate body 50 and the entire portion facing the outer electrode 52A in the inner electrode 52B are substantially uniformly and in a short time. Can be heated. Thereby, the outer electrode 52A or the porous ceramic layer 53 in a target state can be formed, and the sensor element 5 having necessary performance can be obtained with high accuracy. Therefore, according to the manufacturing heating apparatus 1 of this embodiment, the sensor element 5 having necessary performance can be obtained with high accuracy and in a short time.
  • the configuration of the energization control unit 2 is different from the configuration of the energization control unit 2 shown in the first embodiment.
  • the energization control unit 2 of this embodiment includes a resistance detection unit that detects an electrical resistance between the outer electrode 52 ⁇ / b> A and the inner electrode 52 ⁇ / b> B through the solid electrolyte body 51 in the intermediate body 50 of the sensor element 5. 25 and a controller 23 for applying an AC voltage to the induction heating coil 3.
  • the controller 23 is configured to start energizing the induction heating coil 3, detect that the electrical resistance by the resistance detection unit 25 has become a predetermined threshold value or less, and end energization to the induction heating coil 3. .
  • the resistance detector 25 is connected to the electrode lead 521 connected to the outer electrode 52A of the bottomed cylindrical solid electrolyte body 51 and the end of the inner electrode 52B on the opening side opposite to the bottom.
  • the induction heating coil 3 is supported by the heating head 21, and the energization control unit 2 has a cooling chiller 22 and a power source.
  • the controller 23 the amplitude, frequency, application time, and the like of the AC voltage applied to the induction heating coil 3 are set.
  • the electrical resistance between the outer electrode 52A and the inner electrode 52B via the solid electrolyte body 51 includes the inner resistance of the outer electrode 52A and the inner electrode 52B, the inner resistance of the solid electrolyte body 51, the outer electrode 52A and the inner electrode 52B, and the solid Interface resistance between the electrolyte body 51 and the like are included. As shown in FIGS. 10 and 11, this electrical resistance is related to the temperature of the solid electrolyte body 51 and becomes lower as the temperature of the solid electrolyte body 51 is higher. In each of the figures, a change in electrical resistance when the solid electrolyte body 51 is heated from room temperature (20 ° C.) to 400 ° C. and then maintained at 400 ° C. is shown.
  • the induction heating coil 3 is energized until the set application time elapses. And when this application time passes, in order to confirm whether sintering of electrode 52A, 52B was performed normally, the electrical resistance between a pair of electrodes 52A, 52B is measured by the resistance detection part 25.
  • the electrical resistance is equal to or less than the threshold value indicating the completion of sintering
  • the energization to the induction heating coil 3 is terminated on the assumption that the sintering has been normally performed.
  • the electrical resistance is not less than or equal to the threshold value indicating the completion of sintering
  • the energization to the induction heating coil 3 is continued assuming that the sintering has not been completed yet.
  • the electrical resistance in the case where there is a partial disconnection or a complete disconnection between the pair of electrodes 52A and 52B is the disconnection. It becomes higher than the electric resistance when it does not occur. Therefore, if the electrical resistance does not fall below the threshold value even after a preparatory time longer than the application time, it can be estimated that a disconnection has occurred between the pair of electrodes 52A and 52B. The disconnection occurs due to peeling of the electrodes 52A and 52B, fading due to the thinning of the electrodes 52A and 52B, chipping or cracking of the solid electrolyte body 51, and the like.
  • the other components of the manufacturing heating apparatus 1 and the components indicated by the same reference numerals as those in the first embodiment are the same as those in the first embodiment. And the effect similar to Embodiment 1 can be acquired.
  • the heating device 1 for manufacturing the gas sensor 4 performs an inspection of whether the sensor element 5 or the intermediate body 50 after heating is functioning normally in addition to the function of energizing the induction heating coil 3. It has a function.
  • the energization control unit 2 of the present embodiment is detected by a current detection unit 26 that detects a current flowing between the outer electrode 52A and the inner electrode 52B via the solid electrolyte body 51, and a current detection unit 26.
  • a determination unit 27 that determines whether or not the current to be output is equal to or greater than a predetermined threshold value.
  • the current detection unit 26 is in contact with the oxygen concentration of the fluid R1 to be brought into contact with the outer electrode 52A of the solid electrolyte body 51 of the sensor element 5 or the intermediate body 50 and the inner electrode 52B of the solid electrolyte body 51 of the sensor element 5 or the intermediate body 50.
  • the current flowing between the outer electrode 52A and the inner electrode 52B is detected when the oxygen concentration of the fluid R2 to be made is different.
  • the threshold value used in the determination unit 27 is determined by adding a margin to the current flowing between the outer electrode 52A and the inner electrode 52B according to the difference between the oxygen concentration in the outer electrode 52A and the oxygen concentration in the inner electrode 52B.
  • the determination unit 27 can be configured in the controller 23, or can be configured by a control device different from the controller 23.
  • the current detection unit 26 is connected to the electrode lead portion 521 connected to the outer electrode 52A of the bottomed cylindrical solid electrolyte body 51 and the end portion of the inner electrode 52B on the opening side opposite to the bottom side.
  • the induction heating coil 3 is supported by the heating head 21, and the energization control unit 2 has a cooling chiller 22 and a power source.
  • the controller 23 the amplitude, frequency, application time, and the like of the AC voltage applied to the induction heating coil 3 are set.
  • FIG. 12 the details of the manufacturing heating apparatus 1 are omitted.
  • the oxygen concentration of the fluid R1 brought into contact with the outer electrode 52A is made different from the oxygen concentration of the fluid R2 brought into contact with the inner electrode 52B.
  • the inner electrode 52B is brought into contact with the atmosphere A as the fluid R2, and the outer electrode 52A is more oxygenated than the atmosphere A.
  • a gas as the fluid R1 having a low concentration is brought into contact.
  • the electrodes 52A and 52B and the solid electrolyte body 51 may be heated by energizing the induction heating coil 3 so that the electrodes 52A and 52B and the solid electrolyte body 51 have a catalytic activity.
  • oxide ions (O 2 ⁇ ) permeate the solid electrolyte body 51 and A current flows between the electrode 52B. Therefore, the current flowing between the outer electrode 52A and the inner electrode 52B is measured by the current detection unit 26.
  • the determination unit 27 determines that the sensor element 5 or the intermediate body 50 functions normally in order to perform gas detection. Or it determines with the intermediate body 50 being non-defective.
  • the determination unit 27 determines that the sensor element 5 or the intermediate body 50 does not function normally in order to perform gas detection. Or it determines with the intermediate body 50 being inferior goods. In this embodiment, it can be inspected whether the sensor element 5 or the intermediate body 50 functions normally for gas detection, and the manufacturing accuracy of the sensor element 5 can be increased.
  • the other components of the manufacturing heating apparatus 1 and the components indicated by the same reference numerals as those in the first embodiment are the same as those in the first embodiment. And the effect similar to Embodiment 1 can be acquired.
  • the manufacturing heating apparatus 1 is used when inspecting whether the gas detection by the sensor element 5 in a state assembled to the housing 41 or the like functions normally.
  • the element cover 44 (see FIG. 3) is removed from the gas sensor 4 to which the sensor element 5 of this embodiment is assembled. And the sensor element 5 in the gas sensor 4 from which the element cover 44 is removed is heated to a temperature at which the pair of electrodes 52A and 52B and the solid electrolyte body 51 have catalytic activity by the induction heating coil 3 of the manufacturing heating apparatus 1.
  • the oxygen concentration of the fluid brought into contact with the outer electrode 52A is made different from the oxygen concentration of the fluid brought into contact with the inner electrode 52B. Specifically, the atmosphere A is brought into contact with the inner electrode 52B, and a gas having a lower oxygen concentration than the atmosphere A is brought into contact with the outer electrode 52A.
  • the manufacturing heating apparatus 1 of the third embodiment including the energization control unit 2 having the current detection unit 26 and the determination unit 27 is used.
  • the details of the manufacturing heating apparatus 1 are omitted.
  • the determination unit 27 determines that the gas sensor 4 functions normally to perform gas detection, and determines that the gas sensor 4 is a non-defective product. To do.
  • the determination unit 27 determines that the gas sensor 4 is defective because the gas sensor 4 does not function normally for gas detection. judge.
  • the determination unit 27 can be configured in the controller 23, or can be configured by a control device different from the controller 23.
  • the gas sensor 4 when the gas sensor 4 does not include a heater that generates heat when energized, the sensor element 5 in the gas sensor 4 can be heated from the outside of the gas sensor 4 using the manufacturing heating device 1. Therefore, by using the manufacturing heating apparatus 1, it is possible to perform a function test in the heaterless gas sensor 4 that does not incorporate a heater.
  • the sensor element 5 in this embodiment is of a laminated type in which a pair of electrodes 52 ⁇ / b> A and 52 ⁇ / b> B are provided on a plate-shaped solid electrolyte body 51.
  • the pair of electrodes 52A and 52B is provided on one surface of the solid electrolyte body 51 and provided on the other surface of the solid electrolyte body 51 and the outer electrode 52A in contact with the exhaust gas G, and the atmosphere A is in contact therewith.
  • a porous ceramic layer 53 is formed as a diffusion resistance layer for adjusting the flow rate of the exhaust gas G reaching the outer electrode 52A.
  • the sensor element 5 is formed in an elongated rectangular parallelepiped shape having a rectangular cross-section with chamfered corners and fillet processing.
  • the pair of electrodes 52 ⁇ / b> A and 52 ⁇ / b> B is formed at the distal end portion of the elongated sensor element 5.
  • a duct 54 for taking in the atmosphere A into the inner electrode 52B is formed inside the sensor element 5.
  • the sensor element 5 of this embodiment does not include a heater.
  • the induction heating coil 3 of the present embodiment is formed by winding a conductor 301 in an oval shape (oval shape) and spirally in accordance with a rectangular cross section of the sensor element 5. Yes.
  • the induction heating coil 3 is formed such that the gap S between the long side portion of the elliptical conductor 301 and the surface of the sensor element 5 is 2 mm or less.
  • Other configurations of the manufacturing heating apparatus 1 of the present embodiment are the same as those shown in the first embodiment.
  • the multilayer sensor element 5 can be effectively heated, and the multilayer sensor element 5 having necessary performance can be obtained accurately and in a short time. it can.
  • the configuration of the manufacturing heating apparatus 1 is not limited to that shown in the first to fifth embodiments, and further different embodiments can be configured without departing from the gist of the present disclosure.
  • the present disclosure includes various modifications and modifications within the equivalent range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

A heating device (1) for manufacturing a gas sensor (4) heats an intermediate body (50) of a sensor element (5) prior to becoming a finished body, when the sensor element (5) is being manufactured. The heating device (1) for manufacture is provided with: an energization control unit (2) provided separately from a control device of the gas sensor (4); and an induction heating coil (3) which is arranged in a helical shape around the intermediate body (50), and which causes electrodes (52A, 52B) in the intermediate body (50) to generate heat by means of electromagnetic induction caused by the induction heating coil (3) being subjected to energization and interruption of energization by the energization control unit (2).

Description

ガスセンサの製造用加熱装置Heating device for gas sensor manufacturing 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年2月9日に出願された日本の特許出願番号2017-022311号に基づくものであり、その記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-022311 filed on Feb. 9, 2017, the contents of which are incorporated herein by reference.
 本開示は、センサ素子の中間体を外部から加熱する製造用加熱装置に関する。 The present disclosure relates to a manufacturing heating apparatus that heats an intermediate body of a sensor element from the outside.
 ガスセンサは、内燃機関の排気系統の配管内に配置され、配管内を流れる排ガス中の酸素濃度の変化等を利用して、ガス検出を行うものである。ガスセンサには、内燃機関から排気される排ガスの酸素濃度を検出する用途、排ガスから求められる内燃機関の空燃比を検出する用途、排ガスから求められる内燃機関の空燃比が、理論空燃比に対して燃料リッチ側にあるか燃料リーン側にあるかを検出する用途、NOx等の特定ガス成分を検出する用途等がある。 The gas sensor is arranged in the piping of the exhaust system of the internal combustion engine, and performs gas detection by utilizing a change in oxygen concentration in the exhaust gas flowing through the piping. The gas sensor includes an application for detecting the oxygen concentration of exhaust gas exhausted from the internal combustion engine, an application for detecting the air-fuel ratio of the internal combustion engine obtained from the exhaust gas, and the air-fuel ratio of the internal combustion engine obtained from the exhaust gas relative to the theoretical air-fuel ratio. There are applications for detecting whether the fuel is on the fuel rich side or the fuel lean side, and for detecting a specific gas component such as NOx.
 ガスセンサは、電極が両表面に設けられた固体電解質体によるセンサ素子を有する。センサ素子には、センサ素子をセンサ活性温度に加熱するためのヒータが配置されることが多い。ヒータは、有底円筒状のセンサ素子の内側に配置される場合、板状のセンサ素子に積層される場合等がある。また、例えば、二輪自動車の内燃機関に採用されるガスセンサにおいては、ヒータが配置されないセンサ素子が用いられることがある。 The gas sensor has a sensor element made of a solid electrolyte body with electrodes provided on both surfaces. The sensor element is often provided with a heater for heating the sensor element to the sensor activation temperature. The heater may be disposed inside the bottomed cylindrical sensor element or may be stacked on a plate-like sensor element. For example, in a gas sensor employed in an internal combustion engine of a two-wheeled vehicle, a sensor element in which no heater is disposed may be used.
 センサ素子を製造する際には、電極を焼結させるための加熱、電極の熱処理のための加熱、電極の表面を覆う多孔質セラミック層を乾燥又は焼結させるための加熱等が行われる。そして、製造完了前のセンサ素子の中間体を加熱炉内に配置し、熱放射又は対流によって中間体を加熱している。また、センサ素子の中間体の内側又は周辺に、通電時のジュール熱によって発熱するヒータを配置し、このヒータを発熱させて、ヒータからの熱伝導等によって中間体を加熱することもある。 When the sensor element is manufactured, heating for sintering the electrode, heating for heat treatment of the electrode, heating for drying or sintering the porous ceramic layer covering the surface of the electrode, and the like are performed. And the intermediate body of the sensor element before manufacture completion is arrange | positioned in a heating furnace, and the intermediate body is heated by thermal radiation or a convection. In addition, a heater that generates heat by Joule heat during energization is disposed inside or around the intermediate body of the sensor element, and the intermediate body may be heated by heat conduction from the heater or the like by generating heat.
 センサ素子の中間体を加熱するものではないが、ガスセンサを製造する際に、センサ素子が保持される主体金具を加熱するものとしては、特許文献1のガスセンサの製造方法に記載されたコイルがある。このコイルは、センサ素子及び主体金具が組み付けられた組付体の周囲に配置して通電することにより、主体金具に付着する油分を除去するものである。 Although the intermediate body of the sensor element is not heated, the coil described in the gas sensor manufacturing method of Patent Document 1 is used to heat the metal shell that holds the sensor element when the gas sensor is manufactured. . This coil removes the oil adhering to the metallic shell by arranging and energizing around the assembly in which the sensor element and the metallic shell are assembled.
 また、ガスセンサの使用時にセンサ素子を加熱するものとしては、特許文献2のガスセンサに記載された誘導コイルがある。この誘導コイルは、センサ素子を覆うカバーの内周面に配置されており、通電を行ったときに固体電解質体に設けられた電極を発熱させて、センサ素子を迅速にセンサ活性温度に加熱するものである。 In addition, an induction coil described in the gas sensor of Patent Document 2 is used to heat the sensor element when the gas sensor is used. This induction coil is disposed on the inner peripheral surface of the cover that covers the sensor element, and heats the sensor element to the sensor activation temperature by causing the electrodes provided on the solid electrolyte body to generate heat when energized. Is.
特開2016-53498号公報Japanese Unexamined Patent Publication No. 2016-53498 特開2006-105768号公報JP 2006-105768 A
 センサ素子の中間体を加熱する際に、加熱炉を用いる場合には、熱放射又は対流によって加熱が行われる。そのため、中間体の温度が目標温度に加熱されるまでの加熱時間が長くなるといった課題がある。その結果、センサ素子の生産性を向上させることができない。 When a heating furnace is used when heating the sensor element intermediate, heating is performed by thermal radiation or convection. Therefore, there exists a subject that the heating time until the temperature of an intermediate body is heated to target temperature becomes long. As a result, the productivity of the sensor element cannot be improved.
 また、センサ素子の中間体を加熱する際に、通電によって発熱するヒータを使用する場合には、熱伝導、熱放射等によって加熱が行われる。そのため、電極の全体が均一に加熱されにくいといった課題がある。その結果、必要な性能を有するセンサ素子が得られないおそれがある。 Also, when a heater that generates heat when energized is used to heat the sensor element intermediate, heating is performed by heat conduction, heat radiation, or the like. Therefore, there exists a subject that the whole electrode is hard to be heated uniformly. As a result, there is a possibility that a sensor element having necessary performance cannot be obtained.
 特許文献1に記載されたコイルは、主体金具を加熱するものであり、センサ素子の中間体の加熱に用いるものではない。また、特許文献2に記載された誘導コイルは、ガスセンサの使用時にセンサ素子を加熱するものであり、センサ素子の中間体の加熱に用いるものではない。従って、センサ素子の中間体を加熱する際に、電極又は多孔質セラミック層の全体を、できるだけ均一にかつ短時間で加熱するためには、更なる工夫が必要とされる。 The coil described in Patent Document 1 heats the metal shell and is not used to heat the intermediate of the sensor element. Moreover, the induction coil described in Patent Document 2 heats the sensor element when the gas sensor is used, and is not used for heating the intermediate body of the sensor element. Therefore, when heating the intermediate body of the sensor element, in order to heat the electrode or the entire porous ceramic layer as uniformly as possible in a short time, further ingenuity is required.
 本開示は、必要な性能を有するセンサ素子を、精度よくかつ短時間で得ることができるガスセンサの製造用加熱装置を提供しようとするものである。 The present disclosure is intended to provide a heating device for manufacturing a gas sensor capable of obtaining a sensor element having necessary performance with high accuracy and in a short time.
 本開示の一態様は、内燃機関の排ガス(G)におけるガス検出を行うガスセンサ(4)に用いられ、固体電解質体(51)に外側電極(52A)及び内側電極(52B)が設けられたセンサ素子(5)の製造時に使用され、
 前記ガスセンサの制御装置(40)とは別の通電制御ユニット(2)によって制御されて、前記センサ素子の中間体(50)を加熱する製造用加熱装置(1)であって、
 前記通電制御ユニットと、
 前記中間体の周りに螺旋状に配置され、前記通電制御ユニットによる通電及び通電の遮断を受けて生じる電磁誘導によって前記中間体における前記外側電極及び前記内側電極を発熱させる誘導加熱コイル(3)と、を備える、ガスセンサの製造用加熱装置にある。
One aspect of the present disclosure is used in a gas sensor (4) that performs gas detection in exhaust gas (G) of an internal combustion engine, and includes a solid electrolyte body (51) provided with an outer electrode (52A) and an inner electrode (52B). Used in the manufacture of the element (5),
A heating apparatus (1) for manufacturing which is controlled by an energization control unit (2) different from the control apparatus (40) of the gas sensor and heats the intermediate body (50) of the sensor element,
The energization control unit;
An induction heating coil (3) arranged in a spiral around the intermediate body and generating heat to the outer electrode and the inner electrode in the intermediate body by electromagnetic induction generated by energization and interruption of energization by the energization control unit; And a heating device for manufacturing a gas sensor.
 前記ガスセンサの製造用加熱装置は、センサ素子の中間体を加熱して、センサ素子を製造するために用いられる。製造用加熱装置は、通電制御ユニットと、中間体の周りに螺旋状に配置される誘導加熱コイルとを備える。通電制御ユニットによって、中間体の周りに配置された誘導加熱コイルが通電されるときには、電磁誘導によって中間体における電極に渦電流が生じ、この渦電流によって電極が自己発熱する。これにより、電極の全体が極力均一に短時間で加熱され、これに伴い、電極の周辺も極力均一に短時間で加熱される。 The heating device for manufacturing the gas sensor is used for manufacturing a sensor element by heating an intermediate body of the sensor element. The manufacturing heating apparatus includes an energization control unit and an induction heating coil arranged in a spiral around the intermediate body. When the induction heating coil arranged around the intermediate body is energized by the energization control unit, an eddy current is generated in the electrode in the intermediate body by electromagnetic induction, and the electrode self-heats due to this eddy current. Thereby, the whole electrode is heated as uniformly as possible in a short time, and accordingly, the periphery of the electrode is also heated as uniformly as possible in a short time.
 そして、電極を焼結させるとき、電極の熱処理を行うとき、電極の表面を覆う多孔質セラミック層を乾燥又は焼結させるとき等において、中間体の電極の全体を極力均一に短時間で加熱することができ、必要な性能を有するセンサ素子を精度よく得ることができる。
 それ故、前記ガスセンサの製造用加熱装置によれば、必要な性能を有するセンサ素子を、精度よくかつ短時間で得ることができる。
When the electrode is sintered, when the electrode is heat-treated, when the porous ceramic layer covering the surface of the electrode is dried or sintered, the entire intermediate electrode is heated as uniformly as possible in a short time. Therefore, a sensor element having necessary performance can be obtained with high accuracy.
Therefore, according to the heating device for manufacturing the gas sensor, a sensor element having necessary performance can be obtained accurately and in a short time.
 なお、ガスセンサによる「ガス検出」が示す内容は、内燃機関から排気される排ガスの酸素濃度を検出すること、排ガスから求められる内燃機関の空燃比を検出すること、排ガスから求められる内燃機関の空燃比が、理論空燃比に対して燃料リッチ側にあるか燃料リーン側にあるかを検出すること、NOx等の特定ガス成分の濃度を検出すること等を含む。 It should be noted that “gas detection” by the gas sensor indicates that the oxygen concentration of the exhaust gas exhausted from the internal combustion engine is detected, the air-fuel ratio of the internal combustion engine obtained from the exhaust gas is detected, and the air condition of the internal combustion engine obtained from the exhaust gas is detected. This includes detecting whether the fuel ratio is on the fuel rich side or the fuel lean side with respect to the stoichiometric air-fuel ratio, detecting the concentration of a specific gas component such as NOx, and the like.
 また、「製造用加熱装置」は、ガスセンサに内蔵された、加熱装置としてのヒータとは異なる。「ガスセンサの制御装置」は、ガスセンサによってガス検出を行う際に用いられる制御装置のことを示し、「通電制御ユニット」は、センサ素子を製造する際に用いられる制御装置のことを示す。「中間体における電極」には、焼結前の電極及び焼結後の電極のいずれも含まれる。 Also, the “heating device for manufacturing” is different from the heater as the heating device built in the gas sensor. “Gas sensor control device” indicates a control device used when gas detection is performed by a gas sensor, and “energization control unit” indicates a control device used when a sensor element is manufactured. The “electrode in the intermediate” includes both an electrode before sintering and an electrode after sintering.
 また、本開示の一態様において示す各構成要素のカッコ書きの符号は、実施形態における図中の符号との対応関係を示すが、各構成要素を実施形態の内容のみに限定するものではない。 In addition, although the reference numerals in parentheses of the constituent elements shown in one aspect of the present disclosure indicate the correspondence with the reference numerals in the drawings in the embodiments, the constituent elements are not limited only to the contents of the embodiments.
 また、ガスセンサの製造用加熱装置を用いることによって、次のガスセンサの製造方法を実現することができる。
 製造方法の発明の一態様としては、固体電解質体の両表面に電極がそれぞれ設けられ、内燃機関の排ガスにおけるガス検出を行うガスセンサに用いられるセンサ素子を製造するに当たり、
 前記固体電解質体の両表面に、電極を形成するための電極材料を配置する電極材料配置工程と、
 前記センサ素子の中間体の周りに螺旋状に配置される誘導加熱コイルと、前記誘導加熱コイルに通電を行う通電制御ユニットとを用い、前記通電制御ユニットから前記誘導加熱コイルへの通電及び通電の遮断を受けて生じる電磁誘導によって前記電極材料を発熱させて、前記電極材料から前記電極を形成する電極形成工程と、を含む、ガスセンサの製造方法がある。
Moreover, the following manufacturing method of a gas sensor is realizable by using the heating apparatus for manufacturing a gas sensor.
As one aspect of the invention of the manufacturing method, in manufacturing a sensor element used for a gas sensor in which electrodes are provided on both surfaces of a solid electrolyte body and gas detection in exhaust gas of an internal combustion engine is performed,
An electrode material arranging step of arranging an electrode material for forming an electrode on both surfaces of the solid electrolyte body;
Using an induction heating coil arranged in a spiral around the intermediate body of the sensor element and an energization control unit for energizing the induction heating coil, the energization and energization of the induction heating coil from the energization control unit is performed. There is a gas sensor manufacturing method including an electrode forming step of forming the electrode from the electrode material by causing the electrode material to generate heat by electromagnetic induction generated by being interrupted.
 また、製造方法の発明の他の態様としては、固体電解質体の両表面に電極がそれぞれ設けられ、かついずれかの外側電極の表面が多孔質セラミック層によって覆われ、内燃機関の排ガスにおけるガス検出を行うガスセンサに用いられるセンサ素子を製造するに当たり、
 前記外側電極の表面を含む前記センサ素子の中間体の表面に、前記多孔質セラミック層を形成するためのセラミック材料を配置するセラミック材料配置工程と、
 前記中間体の周りに螺旋状に配置される誘導加熱コイルと、前記誘導加熱コイルに通電を行う通電制御ユニットとを用い、前記通電制御ユニットから前記誘導加熱コイルへの通電及び通電の遮断を受けて生じる電磁誘導によって前記外側電極を発熱させ、前記外側電極から前記セラミック材料への熱伝導によって前記セラミック材料から前記多孔質セラミック層を形成するセラミック層形成工程と、を含む、ガスセンサの製造方法がある。
As another aspect of the invention of the manufacturing method, electrodes are provided on both surfaces of the solid electrolyte body, and the surface of one of the outer electrodes is covered with a porous ceramic layer, so that gas detection in exhaust gas from an internal combustion engine is performed. In manufacturing a sensor element used for a gas sensor that performs
A ceramic material disposing step of disposing a ceramic material for forming the porous ceramic layer on a surface of the sensor element intermediate including the surface of the outer electrode;
Using an induction heating coil arranged in a spiral around the intermediate body and an energization control unit for energizing the induction heating coil, the energization control unit is energized and the energization is interrupted. And a ceramic layer forming step of forming the porous ceramic layer from the ceramic material by heat conduction from the outer electrode to the ceramic material. is there.
 本開示についての目的、特徴、利点等は、添付の図面を参照する下記の詳細な記述により、より明確になる。本開示の図面を以下に示す。
実施形態1にかかる、製造用加熱装置を示す説明図。 実施形態1にかかる、センサ素子の中間体及び誘導加熱コイルの周辺を拡大して示す断面図。 実施形態1にかかる、ガスセンサを示す断面図。 実施形態1にかかる、センサ素子を示す断面図。 実施形態1にかかる、センサ素子の製造方法を示すフローチャート。 実施形態1にかかる、他のセンサ素子の製造方法を示すフローチャート。 実施形態1にかかる、センサ素子の中間体及び誘導加熱コイルの周辺を拡大して示す断面図。 実施形態1にかかる、実施品、比較品1及び比較品2の加熱装置によって中間体を目標温度に加熱するときの中間体の温度の変化を簡易的に示すグラフ。 実施形態2にかかる、製造用加熱装置を示す説明図。 実施形態2にかかる、焼結前後における一対の電極間の電気抵抗の違いを示すグラフ。 実施形態2にかかる、断線の有無に応じた一対の電極間の電気抵抗の違いを示すグラフ。 実施形態3にかかる、製造用加熱装置を示す説明図。 実施形態4にかかる、製造用加熱装置を示す説明図。 実施形態5にかかる、製造用加熱装置を示す説明図。 実施形態5にかかる、センサ素子の中間体及び誘導加熱コイルの周辺を示す説明図。
Objects, features, advantages, and the like of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawings of the present disclosure are shown below.
BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which shows the heating apparatus for manufacture concerning Embodiment 1. FIG. Sectional drawing which expands and shows the periphery of the intermediate body and induction heating coil of a sensor element concerning Embodiment 1. FIG. 1 is a cross-sectional view showing a gas sensor according to a first embodiment. FIG. 3 is a cross-sectional view showing the sensor element according to the first embodiment. 3 is a flowchart showing a method for manufacturing a sensor element according to the first embodiment. 5 is a flowchart showing another sensor element manufacturing method according to the first embodiment. Sectional drawing which expands and shows the periphery of the intermediate body and induction heating coil of a sensor element concerning Embodiment 1. FIG. The graph which shows simply the change of the temperature of an intermediate body when heating an intermediate body to target temperature with the heating apparatus of the implementation goods, the comparative goods 1, and the comparative goods 2 concerning Embodiment 1. FIG. Explanatory drawing which shows the heating apparatus for manufacture concerning Embodiment 2. FIG. The graph which shows the difference of the electrical resistance between a pair of electrodes before and behind sintering concerning Embodiment 2. FIG. The graph which shows the difference of the electrical resistance between a pair of electrodes according to Embodiment 2 according to the presence or absence of a disconnection. Explanatory drawing which shows the heating apparatus for manufacture concerning Embodiment 3. FIG. Explanatory drawing which shows the heating apparatus for manufacture concerning Embodiment 4. FIG. Explanatory drawing which shows the heating apparatus for manufacture concerning Embodiment 5. FIG. Explanatory drawing which shows the periphery of the intermediate body of an sensor element, and induction heating coil concerning Embodiment 5. FIG.
 前述したガスセンサの製造用加熱装置にかかる好ましい実施形態について、図面を参照して説明する。
<実施形態1>
 本形態のガスセンサ4の製造用加熱装置1は、図1に示すように、ガスセンサ4に用いられるセンサ素子5を製造する際に用いられる。図3及び図4に示すように、ガスセンサ4は、内燃機関の排ガスGにおけるガス検出を行うものであり、センサ素子5は、固体電解質体51の両表面に電極52A,52Bがそれぞれ設けられたものである。製造用加熱装置1は、図1及び図2に示すように、センサ素子5の製造時に、完成体となる前のセンサ素子5の中間体50を加熱するものである。製造用加熱装置1は、ガスセンサ4の制御装置40とは別に設けられた通電制御ユニット2と、中間体50の周りに螺旋状に配置され、通電制御ユニット2による通電及び通電の遮断を受けて生じる電磁誘導によって中間体50における電極52A,52Bを発熱させる誘導加熱コイル3とを備える。
A preferred embodiment of the above-described heating apparatus for manufacturing a gas sensor will be described with reference to the drawings.
<Embodiment 1>
The heating device 1 for manufacturing the gas sensor 4 of this embodiment is used when manufacturing a sensor element 5 used for the gas sensor 4 as shown in FIG. As shown in FIGS. 3 and 4, the gas sensor 4 performs gas detection in the exhaust gas G of the internal combustion engine, and the sensor element 5 is provided with electrodes 52A and 52B on both surfaces of the solid electrolyte body 51, respectively. Is. As shown in FIG. 1 and FIG. 2, the manufacturing heating apparatus 1 heats the intermediate body 50 of the sensor element 5 before becoming a complete body when the sensor element 5 is manufactured. The manufacturing heating device 1 is arranged in a spiral around the energization control unit 2 and the intermediate body 50 provided separately from the control device 40 of the gas sensor 4, and receives energization and interruption of energization by the energization control unit 2. And an induction heating coil 3 that generates heat in the electrodes 52A and 52B in the intermediate 50 by electromagnetic induction that occurs.
 以下に、本形態のガスセンサ4の製造用加熱装置1について詳説する。
 本形態の製造用加熱装置1は、センサ素子5の製造時に用いられ、ガスセンサ4の使用時にセンサ素子5を加熱する用途には用いられない。製造用加熱装置1は、センサ素子5の製造時においてガスセンサ4と独立して動作する。本形態のガスセンサ4は、図3に示すように、センサ素子5を加熱するためのヒータを有しないヒータレスタイプのものであり、ヒータによってセンサ素子5を加熱することはできないものである。なお、製造用加熱装置1は、ヒータを内蔵するガスセンサ4に用いられるセンサ素子5を製造する際に使用してもよい。
Below, it demonstrates in full detail about the heating apparatus 1 for manufacture of the gas sensor 4 of this form.
The manufacturing heating apparatus 1 of this embodiment is used when manufacturing the sensor element 5 and is not used for heating the sensor element 5 when the gas sensor 4 is used. The manufacturing heating apparatus 1 operates independently of the gas sensor 4 when the sensor element 5 is manufactured. As shown in FIG. 3, the gas sensor 4 of this embodiment is a heaterless type that does not have a heater for heating the sensor element 5, and the sensor element 5 cannot be heated by the heater. In addition, you may use the heating apparatus 1 for manufacture, when manufacturing the sensor element 5 used for the gas sensor 4 incorporating a heater.
 センサ素子5の中間体50は、センサ素子5の製造が完了する前の状態のものとする。センサ素子5の中間体50としては、固体電解質体51の両表面に焼結前の電極52A,52Bが設けられた状態のもの、固体電解質体51の両表面に熱処理前の電極52A,52Bが設けられた状態のもの、固体電解質体51の外側電極52Aの表面に乾燥前又は焼結前の多孔質セラミック層53が設けられた状態のもの等がある。そして、製造用加熱装置1によって、中間体50の電極52A,52Bが発熱したときには、電極52A,52Bの焼結もしくは熱処理、又は多孔質セラミック層53の乾燥もしくは焼結を行うことができる。 The intermediate body 50 of the sensor element 5 is in a state before the manufacture of the sensor element 5 is completed. As the intermediate body 50 of the sensor element 5, a state in which the electrodes 52 A and 52 B before sintering are provided on both surfaces of the solid electrolyte body 51, and the electrodes 52 A and 52 B before heat treatment are formed on both surfaces of the solid electrolyte body 51. There are a state in which the porous ceramic layer 53 before drying or sintering is provided on the surface of the outer electrode 52A of the solid electrolyte body 51, and the like. Then, when the electrodes 52A and 52B of the intermediate body 50 generate heat by the manufacturing heating device 1, the electrodes 52A and 52B can be sintered or heat-treated, or the porous ceramic layer 53 can be dried or sintered.
 図1に示すように、製造用加熱装置1によって加熱する、センサ素子5の中間体50は、電極52A,52Bが設けられた固体電解質体51の単体とすることができる。また、図13に示すように、中間体50は、電極52A,52Bが設けられた固体電解質体51であって、ガスセンサ4の各部品に組み付けられた状態のものとすることもできる。ただし、中間体50が組み付けられたガスセンサ4の各部品は、後述する素子用カバー44が取り外された状態のものとする。 As shown in FIG. 1, the intermediate body 50 of the sensor element 5 heated by the manufacturing heating apparatus 1 can be a single body of the solid electrolyte body 51 provided with the electrodes 52A and 52B. Further, as shown in FIG. 13, the intermediate body 50 is a solid electrolyte body 51 provided with electrodes 52 </ b> A and 52 </ b> B, and may be in a state assembled to each component of the gas sensor 4. However, each part of the gas sensor 4 to which the intermediate body 50 is assembled is assumed to be in a state where an element cover 44 described later is removed.
 本形態のガスセンサ4は、ヒータを内蔵しないヒータレスタイプのものであり、二輪自動車に搭載されるものである。ガスセンサ4は、二輪自動車における内燃機関の排気系統の配管に配置され、配管を流れる排ガスGにおけるガス検出を行うものである。本形態のガスセンサ4は、排ガスG中の酸素を検出し、排ガスGから求められる内燃機関の空燃比が、理論空燃比に対して燃料リッチ側にあるか燃料リーン側にあるかを検出するものである。なお、ガスセンサ4は、排ガスGから求められる内燃機関の空燃比を検出するもの、又はNOx等の特定ガス成分の濃度を検出するものとしてもよい。 The gas sensor 4 of this embodiment is a heaterless type that does not incorporate a heater, and is mounted on a two-wheeled vehicle. The gas sensor 4 is disposed in a pipe of an exhaust system of an internal combustion engine in a two-wheeled vehicle, and detects gas in the exhaust gas G flowing through the pipe. The gas sensor 4 of this embodiment detects oxygen in the exhaust gas G, and detects whether the air-fuel ratio of the internal combustion engine obtained from the exhaust gas G is on the fuel rich side or the fuel lean side with respect to the theoretical air fuel ratio. It is. The gas sensor 4 may be one that detects the air-fuel ratio of the internal combustion engine obtained from the exhaust gas G, or one that detects the concentration of a specific gas component such as NOx.
(センサ素子5)
 図4に示すように、センサ素子5の固体電解質体51は、有底円筒形状に形成されており、円筒部511と円筒部511の先端側を閉塞する半球状の底部512とを有する。電極52A,52Bには、固体電解質体51の外周面に設けられ、排ガスGが接触する外側電極52Aと、固体電解質体51の内周面に設けられ、大気Aが接触する内側電極52Bとがある。
(Sensor element 5)
As shown in FIG. 4, the solid electrolyte body 51 of the sensor element 5 is formed in a bottomed cylindrical shape, and includes a cylindrical portion 511 and a hemispherical bottom portion 512 that closes the distal end side of the cylindrical portion 511. The electrodes 52A and 52B include an outer electrode 52A provided on the outer peripheral surface of the solid electrolyte body 51 and in contact with the exhaust gas G, and an inner electrode 52B provided on the inner peripheral surface of the solid electrolyte body 51 and in contact with the atmosphere A. is there.
 図3及び図4に示すように、外側電極52Aは、固体電解質体51の円筒部511の外周面における、底部512の近傍に位置する底側位置に設けられている。内側電極52Bは、固体電解質体51の円筒部511の内周面における全体に設けられている。センサ素子5の検出部501は、固体電解質体51を介して外側電極52Aと内側電極52Bとが対向する部位として形成されている。固体電解質体51の円筒部511の外周面には、円筒部511の軸線方向Lに平行な状態で外側電極52Aに繋がる電極リード部521が形成されている。電極リード部521は、外側電極52Aには含まれないこととする。 As shown in FIGS. 3 and 4, the outer electrode 52A is provided on the outer peripheral surface of the cylindrical portion 511 of the solid electrolyte body 51 at the bottom position located in the vicinity of the bottom portion 512. The inner electrode 52 </ b> B is provided on the entire inner peripheral surface of the cylindrical portion 511 of the solid electrolyte body 51. The detection portion 501 of the sensor element 5 is formed as a portion where the outer electrode 52A and the inner electrode 52B face each other with the solid electrolyte body 51 interposed therebetween. On the outer peripheral surface of the cylindrical portion 511 of the solid electrolyte body 51, an electrode lead portion 521 connected to the outer electrode 52A in a state parallel to the axial direction L of the cylindrical portion 511 is formed. The electrode lead portion 521 is not included in the outer electrode 52A.
 固体電解質体51は、酸化物イオン(O2-)を透過させる性質を有するジルコニア材料から構成されている。ジルコニア材料は、ジルコニアを主成分とする種々の材料によって構成することができる。ジルコニア材料には、希土類金属元素もしくはアルカリ土類金属元素によってジルコニアの一部を置換させた安定化ジルコニア又は部分安定化ジルコニアを用いることができる。外側電極52A及び内側電極52Bは、酸素に対して反応する酸素活性触媒としての白金と、固体電解質体51との共材となるジルコニア材料とを含有する。 The solid electrolyte body 51 is made of a zirconia material having a property of transmitting oxide ions (O 2− ). A zirconia material can be comprised with the various material which has a zirconia as a main component. As the zirconia material, stabilized zirconia or partially stabilized zirconia in which a part of zirconia is substituted with a rare earth metal element or an alkaline earth metal element can be used. The outer electrode 52 </ b> A and the inner electrode 52 </ b> B contain platinum as an oxygen active catalyst that reacts with oxygen and a zirconia material that is a co-material of the solid electrolyte body 51.
 図4に示すように、外側電極52Aの表面には、外側電極52Aを覆い、水及び被毒物質の透過を阻止して外側電極52Aを保護するための多孔質セラミック層53が設けられている。多孔質セラミック層53は、外側電極52Aを含む、固体電解質体51の円筒部511の底側位置及び底部512の全周に設けられている。多孔質セラミック層53は、アルミナ等のセラミック材料の多孔質体によって形成されている。 As shown in FIG. 4, a porous ceramic layer 53 is provided on the surface of the outer electrode 52A so as to cover the outer electrode 52A and prevent the permeation of water and poisonous substances to protect the outer electrode 52A. . The porous ceramic layer 53 is provided on the bottom side position of the cylindrical portion 511 of the solid electrolyte body 51 and the entire circumference of the bottom portion 512 including the outer electrode 52A. The porous ceramic layer 53 is formed of a porous body of a ceramic material such as alumina.
(ガスセンサ4)
 図3に示すように、ガスセンサ4は、センサ素子5の他に、センサ素子5を保持するハウジング41、センサ素子5の各電極52A,52Bに電気的に接続された接続端子42及びリード線43、センサ素子5の検出部501を覆う素子用カバー44、接続端子42及びリード線43の一部を覆う端子用カバー45等を備える。接続端子42には、外側電極52Aの電極リード部521に外周側から接触するものと、内側電極52Bに内周側から接触するものとがある。
(Gas sensor 4)
As shown in FIG. 3, in addition to the sensor element 5, the gas sensor 4 includes a housing 41 that holds the sensor element 5, connection terminals 42 and lead wires 43 that are electrically connected to the electrodes 52 </ b> A and 52 </ b> B of the sensor element 5. , An element cover 44 covering the detection portion 501 of the sensor element 5, a connection terminal 42, a terminal cover 45 covering a part of the lead wire 43, and the like. The connection terminal 42 includes one that contacts the electrode lead portion 521 of the outer electrode 52A from the outer peripheral side and one that contacts the inner electrode 52B from the inner peripheral side.
 素子用カバー44には、排ガスGが通過する貫通孔441が設けられている。排気系統の配管内を流れる排ガスGは、貫通孔441を通って素子用カバー44内に流入し、センサ素子5の検出部501における多孔質セラミック層53及び外側電極52Aへ導かれる。また、端子用カバー45には、大気Aが通過する貫通孔451が設けられており、貫通孔451には、端子用カバー45内に水が入ることを防止するシート452が対向して配置されている。排気系統の配管の外部に存在する大気Aは、貫通孔451を通って端子用カバー45内に流入し、センサ素子5の検出部501における内側電極52Bへ導かれる。 The element cover 44 is provided with a through hole 441 through which the exhaust gas G passes. The exhaust gas G flowing in the piping of the exhaust system flows into the element cover 44 through the through hole 441 and is guided to the porous ceramic layer 53 and the outer electrode 52A in the detection portion 501 of the sensor element 5. Further, the terminal cover 45 is provided with a through hole 451 through which the atmosphere A passes, and a sheet 452 for preventing water from entering the terminal cover 45 is disposed facing the through hole 451. ing. The atmosphere A existing outside the piping of the exhaust system flows into the terminal cover 45 through the through hole 451 and is guided to the inner electrode 52 </ b> B in the detection unit 501 of the sensor element 5.
(誘導加熱コイル3)
 図1及び図2に示すように、誘導加熱コイル3の螺旋状部31は、有底円筒形状の固体電解質体51の円形断面形状に合わせて、円形状に形成されている。誘導加熱コイル3は、固体電解質体51の円筒部511の全周に設けられた外側電極52Aの全周に対向して配置される。誘導加熱コイル3は、外側電極52Aの全体と、外側電極52Aに固体電解質体51を介して対向する内側電極52Bの部分とを発熱させるよう構成されている。誘導加熱コイル3を構成する導体301は、冷媒Cを通過させる冷媒流路302を内部に有する中空形状に形成されている。
(Induction heating coil 3)
As shown in FIGS. 1 and 2, the spiral portion 31 of the induction heating coil 3 is formed in a circular shape in accordance with the circular sectional shape of the bottomed cylindrical solid electrolyte body 51. The induction heating coil 3 is disposed to face the entire circumference of the outer electrode 52 </ b> A provided on the entire circumference of the cylindrical portion 511 of the solid electrolyte body 51. The induction heating coil 3 is configured to heat the entire outer electrode 52A and the portion of the inner electrode 52B that faces the outer electrode 52A via the solid electrolyte body 51. The conductor 301 constituting the induction heating coil 3 is formed in a hollow shape having a refrigerant flow path 302 through which the refrigerant C passes.
 誘導加熱コイル3が通電されるときには、誘導加熱コイル3はジュール熱によって発熱する。そこで、冷媒流路302を有する導体301を用いて誘導加熱コイル3を形成することにより、冷媒流路302に流れる冷媒Cによって誘導加熱コイル3を冷却し、誘導加熱コイル3が溶断することを防止することができる。これにより、誘導加熱コイル3によって、中間体50における電極52A,52Bが400~1000℃の高温になるまで、電極52A,52Bを発熱させることができる。 When the induction heating coil 3 is energized, the induction heating coil 3 generates heat due to Joule heat. Therefore, by forming the induction heating coil 3 using the conductor 301 having the refrigerant flow path 302, the induction heating coil 3 is cooled by the refrigerant C flowing through the refrigerant flow path 302, and the induction heating coil 3 is prevented from fusing. can do. Thus, the induction heating coil 3 can cause the electrodes 52A and 52B to generate heat until the electrodes 52A and 52B in the intermediate 50 reach a high temperature of 400 to 1000 ° C.
 誘導加熱コイル3は、円環状断面を有する導体301が螺旋状に巻かれて形成されたものである。誘導加熱コイル3における螺旋状部31の軸線方向Lの長さは、外側電極52Aの軸線方向Lの長さよりも長い。この構成により、誘導加熱コイル3によって外側電極52Aの全体を効果的に発熱させることができる。そして、誘導加熱コイル3の中心部には、外側電極52Aの軸線方向Lの全体が配置される。螺旋状部31の軸線方向Lとは、螺旋状部31の円中心を通る中心軸線が伸びる方向のことをいう。 The induction heating coil 3 is formed by spirally winding a conductor 301 having an annular cross section. The length of the spiral portion 31 in the induction heating coil 3 in the axial direction L is longer than the length of the outer electrode 52A in the axial direction L. With this configuration, the entire outer electrode 52A can be effectively heated by the induction heating coil 3. Then, the entire axial direction L of the outer electrode 52 </ b> A is disposed at the center of the induction heating coil 3. The axial direction L of the spiral portion 31 refers to the direction in which the central axis passing through the circle center of the spiral portion 31 extends.
 図2に示すように、誘導加熱コイル3を構成する導体301の外径は、φ1.5~3mmの範囲内にあり、冷媒流路302の内径は、誘導加熱コイル3の外径よりも小さく、φ1~2.5mmの範囲内にある。この構成により、センサ素子5の中間体50を加熱するために最適な誘導加熱コイル3を形成することができ、中間体50における電極52A,52Bを400~1000℃の高温に加熱することが容易である。 As shown in FIG. 2, the outer diameter of the conductor 301 constituting the induction heating coil 3 is in the range of φ1.5 to 3 mm, and the inner diameter of the refrigerant flow path 302 is smaller than the outer diameter of the induction heating coil 3. , In the range of φ1 to 2.5 mm. With this configuration, the induction heating coil 3 that is optimal for heating the intermediate body 50 of the sensor element 5 can be formed, and the electrodes 52A and 52B in the intermediate body 50 can be easily heated to a high temperature of 400 to 1000 ° C. It is.
 導体301の外径がφ1.5mm未満である場合、又は冷媒流路302の内径がφ1mm未満である場合には、冷媒流路302の断面積が小さくなり、冷媒流路302を形成することが難しくなる。導体301の外径がφ3mm超過の場合、又は冷媒流路302の内径がφ2.5mm超過である場合には、センサ素子5に対して導体301及び冷媒流路302が相対的に大きくなり、外側電極52Aに対向させる導体301の巻き数を増やすことができなくなる。 When the outer diameter of the conductor 301 is less than φ1.5 mm, or when the inner diameter of the refrigerant flow path 302 is less than φ1 mm, the cross-sectional area of the refrigerant flow path 302 becomes small and the refrigerant flow path 302 may be formed. It becomes difficult. When the outer diameter of the conductor 301 exceeds φ3 mm, or when the inner diameter of the refrigerant flow path 302 exceeds φ2.5 mm, the conductor 301 and the refrigerant flow path 302 become relatively large with respect to the sensor element 5, and the outside It becomes impossible to increase the number of turns of the conductor 301 opposed to the electrode 52A.
 また、誘導加熱コイル3は、その中心軸線を中心とする径方向に導体301が1層巻の状態で配置され、導体301が螺旋状に3巻以上巻かれて形成されている。誘導加熱コイル3における導体301の巻き数は、例えば、10巻以下とすることができる。また、誘導加熱コイル3を構成する導体301同士の間には、導体301同士の間の十分な絶縁性を確保するための隙間が形成されている。 Further, the induction heating coil 3 is formed by arranging the conductor 301 in a state of one layer winding in the radial direction around the central axis, and winding the conductor 301 three or more times in a spiral shape. The number of turns of the conductor 301 in the induction heating coil 3 can be, for example, 10 or less. In addition, a gap is formed between the conductors 301 constituting the induction heating coil 3 to ensure sufficient insulation between the conductors 301.
 図1に示すように、誘導加熱コイル3の両端部32は、加熱ヘッド21に支持されている。加熱ヘッド21は、センサ素子5の中間体50を保持する治具11との間の位置決めができるよう構成されている。加熱ヘッド21と治具11との位置決めにより、センサ素子5の中間体50と誘導加熱コイル3との位置決めを行い、中間体50の中心軸線が誘導加熱コイル3の中心軸線と一致するようにする。 As shown in FIG. 1, both end portions 32 of the induction heating coil 3 are supported by the heating head 21. The heating head 21 is configured to be positioned with respect to the jig 11 that holds the intermediate body 50 of the sensor element 5. By positioning the heating head 21 and the jig 11, the intermediate body 50 of the sensor element 5 and the induction heating coil 3 are positioned so that the central axis of the intermediate body 50 coincides with the central axis of the induction heating coil 3. .
 図2に示すように、中間体50の中心軸線と誘導加熱コイル3の中心軸線とが一致するときには、中間体50の最も外周側の表面と、誘導加熱コイル3の内周側位置との間に形成される隙間Sが2mm以下になるようにしている。中間体50の最も外周側の表面は、多孔質セラミック層53が形成される前の中間体50を加熱するときには、外側電極52Aの表面とすることができ、多孔質セラミック層53が形成された後の中間体50を加熱するときには、多孔質セラミック層53の表面とすることができる。 As shown in FIG. 2, when the central axis of the intermediate body 50 and the central axis of the induction heating coil 3 coincide with each other, the distance between the outermost surface of the intermediate body 50 and the inner peripheral side position of the induction heating coil 3 The gap S formed on the substrate is 2 mm or less. When the intermediate body 50 is heated before the porous ceramic layer 53 is formed, the outermost surface of the intermediate body 50 can be the surface of the outer electrode 52A, and the porous ceramic layer 53 is formed. When the subsequent intermediate 50 is heated, the surface of the porous ceramic layer 53 can be used.
(通電制御ユニット2)
 図1に示すように、本形態の通電制御ユニット2は、誘導加熱コイル3の冷媒流路302に冷媒Cを循環させる冷却チラー22と、中間体50の底部512の温度を測定する温度計24と、誘導加熱コイル3へ交流電圧(又は交流電流)を印加するコントローラ23と、冷却チラー22及びコントローラ23へ電力を供給する電源(図示略)とを備える。冷媒Cは、冷却チラー22から加熱ヘッド21を経由して誘導加熱コイル3へ供給され、誘導加熱コイル3から加熱ヘッド21を経由して冷却チラー22へ回収される。コントローラ23によって発生させる交流電圧は、正弦波、パルス波等の電圧波形を有するものとする。
(Energization control unit 2)
As shown in FIG. 1, the energization control unit 2 of this embodiment includes a cooling chiller 22 that circulates the refrigerant C through the refrigerant flow path 302 of the induction heating coil 3 and a thermometer 24 that measures the temperature of the bottom 512 of the intermediate body 50. And a controller 23 that applies an alternating voltage (or alternating current) to the induction heating coil 3, and a power source (not shown) that supplies power to the cooling chiller 22 and the controller 23. The refrigerant C is supplied from the cooling chiller 22 to the induction heating coil 3 via the heating head 21, and is collected from the induction heating coil 3 to the cooling chiller 22 via the heating head 21. The AC voltage generated by the controller 23 has a voltage waveform such as a sine wave or a pulse wave.
 冷却チラー22は、誘導加熱コイル3の冷媒流路302に循環させる冷媒Cを冷却する機能を有する。温度計24は、センサ素子5の中間体50からの電磁波の移動による熱放射(熱輻射)を非接触で測定する放射温度計とする。センサ素子5の中間体50の周りに誘導加熱コイル3が配置された状態において、中間体50の底部512の先端には、誘導加熱コイル3の一部が対向しない。そこで、温度計24は、中間体50の底部512の先端に対向して配置し、底部512の先端からの熱放射による温度を非接触で測定する。 The cooling chiller 22 has a function of cooling the refrigerant C circulated through the refrigerant flow path 302 of the induction heating coil 3. The thermometer 24 is a radiation thermometer that measures heat radiation (heat radiation) due to movement of electromagnetic waves from the intermediate body 50 of the sensor element 5 in a non-contact manner. In a state where the induction heating coil 3 is disposed around the intermediate body 50 of the sensor element 5, a part of the induction heating coil 3 does not face the tip of the bottom 512 of the intermediate body 50. Therefore, the thermometer 24 is disposed so as to face the tip of the bottom 512 of the intermediate body 50, and measures the temperature due to heat radiation from the tip of the bottom 512 in a non-contact manner.
 コントローラ23は、コンピュータを用いて構成されている。コントローラ23は、誘導加熱コイル3へ印加する交流電圧の振幅及び周波数を調整する機能、誘導加熱コイル3によって加熱対象である中間体50を加熱する目標温度及び電圧印加時間を設定する機能、加熱対象である中間体50の温度を監視する機能、中間体50の温度が目標温度になるようフィードバック制御を行う機能等を有している。コントローラ23においては、目標温度の設定、交流電圧の振幅、周波数及び印加時間の設定等が可能である。 The controller 23 is configured using a computer. The controller 23 has a function of adjusting the amplitude and frequency of the AC voltage applied to the induction heating coil 3, a function of setting a target temperature and a voltage application time for heating the intermediate body 50 to be heated by the induction heating coil 3, and a heating target A function of monitoring the temperature of the intermediate body 50, a function of performing feedback control so that the temperature of the intermediate body 50 becomes the target temperature, and the like. In the controller 23, setting of the target temperature, setting of the amplitude, frequency and application time of the AC voltage are possible.
 図1に示すように、冷却チラー22、加熱ヘッド21及び温度計24は、コントローラ23に接続されている。温度計24によって測定される中間体50の底部512の温度はコントローラ23に送信される。誘導加熱コイル3の両端部32は、加熱ヘッド21を介してコントローラ23に接続されている。そして、コントローラ23によって誘導加熱コイル3に交流電圧が印加される。 As shown in FIG. 1, the cooling chiller 22, the heating head 21, and the thermometer 24 are connected to a controller 23. The temperature of the bottom 512 of the intermediate body 50 measured by the thermometer 24 is transmitted to the controller 23. Both end portions 32 of the induction heating coil 3 are connected to the controller 23 via the heating head 21. Then, an AC voltage is applied to the induction heating coil 3 by the controller 23.
 コントローラ23は、温度計24による測定温度が目標温度になるよう、誘導加熱コイル3に印加する交流電圧の振幅(大きさ)及び周波数を調整するよう構成されている。この構成により、中間体50における電極52A,52Bの温度が適切な温度になるよう制御することができる。そのため、ガス検出を行うために必要な性能を有するセンサ素子5を精度よく得ることができる。 The controller 23 is configured to adjust the amplitude (magnitude) and frequency of the AC voltage applied to the induction heating coil 3 so that the temperature measured by the thermometer 24 becomes the target temperature. With this configuration, the temperature of the electrodes 52A and 52B in the intermediate body 50 can be controlled to be an appropriate temperature. Therefore, the sensor element 5 having performance necessary for performing gas detection can be obtained with high accuracy.
 目標温度は、センサ素子5の中間体50における電極52A,52Bを焼結する場合、センサ素子5の中間体50における電極52A,52Bの熱処理を行う場合、センサ素子5の中間体50の外周面に配置された多孔質セラミック層53の乾燥又は焼結を行う場合等の各製造場面に応じて、適切な温度に設定する。 The target temperature is determined when the electrodes 52A and 52B in the intermediate body 50 of the sensor element 5 are sintered, or when the electrodes 52A and 52B in the intermediate body 50 of the sensor element 5 are heat-treated. The temperature is set to an appropriate temperature in accordance with each production scene such as when the porous ceramic layer 53 disposed in the substrate is dried or sintered.
 なお、誘導加熱コイル3へ印加する交流電圧の振幅及び周波数と、誘導加熱コイル3によって加熱される中間体50の温度との関係が分かる場合等には、温度計24は使用しなくてもよい。この場合には、中間体50の温度は測定せず、コントローラ23は、フィードフォワード制御によって中間体50を目標とする温度に加熱することができる。 If the relationship between the amplitude and frequency of the alternating voltage applied to the induction heating coil 3 and the temperature of the intermediate 50 heated by the induction heating coil 3 is known, the thermometer 24 may not be used. . In this case, the temperature of the intermediate body 50 is not measured, and the controller 23 can heat the intermediate body 50 to a target temperature by feedforward control.
 次に、製造用加熱装置1を用いてガスセンサ4のセンサ素子5を製造する方法について説明する。
(電極52A,52Bの形成)
 まず、固体電解質体51の表面に電極52A,52Bを形成する場合について説明する。電極52A,52Bを形成するに当たっては、図5に示すように、電極材料配置工程S1及び電極形成工程S2を行って電極52A,52Bを形成する。電極材料配置工程S1においては、固体電解質体51の両表面に、電極52A,52Bを形成するための電極材料を配置する。電極材料は、電極52A,52Bを構成する白金等の貴金属粒子、固体電解質粒子及び溶媒等を含有するものとする。なお、電極材料は、貴金属のめっき処理を行うためのめっき材料としてもよい。
Next, a method for manufacturing the sensor element 5 of the gas sensor 4 using the manufacturing heating apparatus 1 will be described.
(Formation of electrodes 52A and 52B)
First, the case where the electrodes 52A and 52B are formed on the surface of the solid electrolyte body 51 will be described. In forming the electrodes 52A and 52B, as shown in FIG. 5, an electrode material arranging step S1 and an electrode forming step S2 are performed to form the electrodes 52A and 52B. In the electrode material arrangement step S1, electrode materials for forming the electrodes 52A and 52B are arranged on both surfaces of the solid electrolyte body 51. The electrode material includes precious metal particles such as platinum, solid electrolyte particles, a solvent, and the like that constitute the electrodes 52A and 52B. The electrode material may be a plating material for performing a precious metal plating process.
 次いで、電極形成工程S2においては、図1に示すように、固体電解質体51に電極材料が配置された、センサ素子5の中間体50を、誘導加熱コイル3の螺旋状部31の内側に配置する。このとき、中間体50の中心軸線を、螺旋状部31の中心軸線と一致させる。また、中間体50の底部512の先端に対向する位置に温度計24を配置する。また、コントローラ23においては、電極材料を加熱する目標温度、誘導加熱コイル3に印加する交流電圧の振幅、周波数、印加時間等を設定する。 Next, in the electrode forming step S2, as shown in FIG. 1, the intermediate body 50 of the sensor element 5 in which the electrode material is disposed on the solid electrolyte body 51 is disposed inside the spiral portion 31 of the induction heating coil 3. To do. At this time, the central axis of the intermediate body 50 is made to coincide with the central axis of the spiral portion 31. In addition, the thermometer 24 is disposed at a position facing the tip of the bottom 512 of the intermediate body 50. In the controller 23, the target temperature for heating the electrode material, the amplitude, frequency, application time, and the like of the AC voltage applied to the induction heating coil 3 are set.
 次いで、図2に示すように、コントローラ23は、誘導加熱コイル3に交流電圧を印加するとともに、冷却チラー22を動作させて、誘導加熱コイル3の冷媒流路302に冷媒Cを循環させる。誘導加熱コイル3の螺旋状部31に交流電圧が印加されるときには、通電及び通電の遮断を受けて、誘導加熱コイル3の内周側を貫通する磁界Mが生じる。そして、中間体50の電極材料においては、磁界Mを打ち消すための渦電流が生じ、この渦電流の発生によって電極材料が自己発熱する。これにより、外側電極52Aの電極材料の全体、及び外側電極52Aに対向する内側電極52Bの部分における電極材料の全体が極力均一に加熱される。 Next, as shown in FIG. 2, the controller 23 applies an AC voltage to the induction heating coil 3 and operates the cooling chiller 22 to circulate the refrigerant C through the refrigerant flow path 302 of the induction heating coil 3. When an alternating voltage is applied to the spiral portion 31 of the induction heating coil 3, a magnetic field M penetrating the inner peripheral side of the induction heating coil 3 is generated in response to energization and interruption of energization. In the electrode material of the intermediate 50, an eddy current for canceling the magnetic field M is generated, and the electrode material self-heats due to the generation of the eddy current. Thereby, the entire electrode material of the outer electrode 52A and the entire electrode material in the portion of the inner electrode 52B facing the outer electrode 52A are heated as uniformly as possible.
 また、中間体50における底部512の先端の温度は、温度計24によって測定されており、コントローラ23は、温度計24によって測定される温度が目標温度になるよう、誘導加熱コイル3へ印加する交流電圧の振幅及び周波数を調整する。そして、このコントローラ23による調整は、設定された印加時間の間行われる。なお、目標温度は、中間体50の加熱としての電極材料の発熱が行われる間に、適宜変更することもできる。こうして、固体電解質体51の表面に配置された電極材料が焼結し、固体電解質体51の表面に電極52A,52Bが形成される。 Further, the temperature of the tip of the bottom 512 in the intermediate body 50 is measured by the thermometer 24, and the controller 23 applies alternating current to the induction heating coil 3 so that the temperature measured by the thermometer 24 becomes the target temperature. Adjust the voltage amplitude and frequency. The adjustment by the controller 23 is performed for the set application time. Note that the target temperature can be changed as appropriate while the electrode material generates heat as the heating of the intermediate 50. Thus, the electrode material arranged on the surface of the solid electrolyte body 51 is sintered, and the electrodes 52A and 52B are formed on the surface of the solid electrolyte body 51.
 また、誘導加熱コイル3による中間体50の加熱は、固体電解質体51の表面に設けられた電極52A,52Bの熱処理をするために行うこともできる。この場合にも、電極52A,52Bの焼結を行った場合と同様に、誘導加熱コイル3によって電極52A,52Bが自己発熱する。 Further, the heating of the intermediate body 50 by the induction heating coil 3 can also be performed to heat-treat the electrodes 52A and 52B provided on the surface of the solid electrolyte body 51. Also in this case, the electrodes 52A and 52B are self-heated by the induction heating coil 3 as in the case where the electrodes 52A and 52B are sintered.
(多孔質セラミック層53の形成)
 次に、外側電極52Aの表面に多孔質セラミック層53を形成する場合について説明する。多孔質セラミック層53を形成するに当たっては、図6に示すように、セラミック材料配置工程S3及びセラミック層形成工程S4を行って多孔質セラミック層53を形成する。セラミック材料配置工程S3においては、外側電極52Aの表面を含むセンサ素子5の中間体50の表面に、多孔質セラミック層53を形成するためのセラミック材料を配置する。セラミック材料は、アルミナ等のセラミック粒子、多数の孔を形成するための揮発剤、溶媒等を含有するスラリー状のものとする。
(Formation of porous ceramic layer 53)
Next, the case where the porous ceramic layer 53 is formed on the surface of the outer electrode 52A will be described. In forming the porous ceramic layer 53, as shown in FIG. 6, the ceramic material arranging step S3 and the ceramic layer forming step S4 are performed to form the porous ceramic layer 53. In the ceramic material arrangement step S3, a ceramic material for forming the porous ceramic layer 53 is arranged on the surface of the intermediate body 50 of the sensor element 5 including the surface of the outer electrode 52A. The ceramic material is in the form of a slurry containing ceramic particles such as alumina, a volatilizing agent for forming a large number of pores, a solvent, and the like.
 次いで、セラミック層形成工程S4においては、図7に示すように、固体電解質体51及び電極52A,52Bにセラミック材料が配置された、センサ素子5の中間体50を、誘導加熱コイル3の螺旋状部31の内側に配置する。そして、電極52A,52Bを形成する場合と同様にして、冷却チラー22の冷媒Cによって誘導加熱コイル3を冷却しつつ、誘導加熱コイル3によって電極52A,52Bを発熱させる。また、コントローラ23によって、温度計24によって測定する中間体50の温度が目標温度になるよう、誘導加熱コイル3へ印加する交流電圧の振幅及び周波数が調整される。 Next, in the ceramic layer forming step S4, as shown in FIG. 7, the intermediate body 50 of the sensor element 5 in which the ceramic material is disposed on the solid electrolyte body 51 and the electrodes 52A and 52B is replaced with the spiral shape of the induction heating coil 3. Arranged inside the portion 31. In the same manner as when the electrodes 52A and 52B are formed, the induction heating coil 3 cools the induction heating coil 3 with the refrigerant C of the cooling chiller 22, and the induction heating coil 3 causes the electrodes 52A and 52B to generate heat. Further, the controller 23 adjusts the amplitude and frequency of the AC voltage applied to the induction heating coil 3 so that the temperature of the intermediate 50 measured by the thermometer 24 becomes the target temperature.
 誘導加熱コイル3の電磁誘導によって外側電極52A及び内側電極52Bが発熱するときには、外側電極52A及び内側電極52Bからの熱伝導によってセラミック材料が加熱される。そして、セラミック材料が乾燥・固化して、多孔質セラミック層53が形成される。このとき、セラミック材料は、外側電極52Aと接する内側部分が先に加熱されて乾燥・固化し、内側部分から外側部分に向けて順次熱伝導によって加熱されて乾燥・固化していく。セラミック材料が加熱されるときには、セラミック材料に含まれる水等の溶媒が蒸発することによってセラミック材料の内部圧力が上昇する。 When the outer electrode 52A and the inner electrode 52B generate heat due to electromagnetic induction of the induction heating coil 3, the ceramic material is heated by heat conduction from the outer electrode 52A and the inner electrode 52B. Then, the ceramic material is dried and solidified to form the porous ceramic layer 53. At this time, the inner part in contact with the outer electrode 52A is first heated and dried and solidified, and the ceramic material is sequentially heated from the inner part to the outer part by heat conduction to be dried and solidified. When the ceramic material is heated, the internal pressure of the ceramic material increases due to evaporation of a solvent such as water contained in the ceramic material.
 そして、セラミック材料の外側部分が乾燥・固化するときに、セラミック材料の外側部分が乾燥して固化していないことにより、セラミック材料の内側部分において生じた内部圧力を外側部分へ逃がすことができる。これにより、セラミック材料の内側部分に内部圧力が残留しにくく、セラミック材料から形成する多孔質セラミック層53に、突沸による割れが生じにくくすることができる。 Further, when the outer portion of the ceramic material is dried and solidified, the outer portion of the ceramic material is not dried and solidified, so that the internal pressure generated in the inner portion of the ceramic material can be released to the outer portion. As a result, the internal pressure hardly remains in the inner portion of the ceramic material, and cracks due to bumping can hardly occur in the porous ceramic layer 53 formed from the ceramic material.
 一方、製造用加熱装置1ではなく、熱放射、熱伝導、対流等による加熱を行う従来の加熱装置を用いてセラミック材料を加熱する場合には、セラミック材料は、外側部分から先に乾燥・固化し、外側部分から内側部分に向けて順次熱伝導によって加熱されて乾燥・固化していく。この場合には、セラミック材料の内側部分に溶媒が残留したままセラミック材料の外側部分が乾燥・固化することになり、内側部分の冷媒Cが蒸発するときに、内側部分の内部圧力が上昇する。そのため、セラミック材料から形成する多孔質セラミック層53に、突沸による割れが生じるおそれがある。 On the other hand, when the ceramic material is heated by using a conventional heating device that performs heating by heat radiation, heat conduction, convection, etc. instead of the manufacturing heating device 1, the ceramic material is dried and solidified first from the outer portion. Then, it is heated by heat conduction sequentially from the outer part to the inner part and dried and solidified. In this case, the outer part of the ceramic material is dried and solidified while the solvent remains in the inner part of the ceramic material, and when the refrigerant C of the inner part evaporates, the internal pressure of the inner part increases. Therefore, the porous ceramic layer 53 formed from the ceramic material may be cracked due to bumping.
 図8は、誘導加熱を利用する製造用加熱装置1(実施品)、ジュール熱を利用する加熱装置(比較品1)、及び加熱炉を利用する加熱装置(比較品2)によって中間体50を目標温度に加熱するときの中間体50の温度の変化を簡易的に示す。中間体50の温度は、中間体50を構成する固体電解質体51の底部512の先端の温度とする。比較品1においては、加熱装置の一部を中間体50に接触させた場合について示す。 FIG. 8 shows that the intermediate body 50 is manufactured by a manufacturing heating device 1 using induction heating (practical product), a heating device using Joule heat (comparative product 1), and a heating device using a heating furnace (comparative product 2). The change of the temperature of the intermediate body 50 when heating to target temperature is shown simply. The temperature of the intermediate body 50 is the temperature of the tip of the bottom 512 of the solid electrolyte body 51 constituting the intermediate body 50. In the comparative product 1, a case where a part of the heating device is brought into contact with the intermediate body 50 is shown.
 誘導加熱を利用する実施品によれば、ジュール熱を利用する比較品1に比べて、中間体50を目標温度に加熱する時間を短縮することができる。実施品においては、外側電極52Aの全体、及び内側電極52Bにおける、外側電極52Aとの対向部位の全体が自己発熱する。そのため、各電極52A,52Bから固体電解質体51の底部512への伝熱量が多くなり、加熱時間が短くなると考える。また、外側電極52Aの全体、及び内側電極52Bにおける、外側電極52Aとの対向部位の全体を略均一に発熱させることができる。 According to the product using induction heating, the time for heating the intermediate 50 to the target temperature can be shortened as compared with the comparative product 1 using Joule heat. In the actual product, the entire outer electrode 52A and the entire portion of the inner electrode 52B facing the outer electrode 52A self-heats. Therefore, it is considered that the amount of heat transfer from each electrode 52A, 52B to the bottom 512 of the solid electrolyte body 51 is increased, and the heating time is shortened. In addition, the entire outer electrode 52A and the entire portion of the inner electrode 52B facing the outer electrode 52A can be caused to generate heat substantially uniformly.
 比較品1において、中間体50と加熱装置とが接触している場合には、加熱装置からの熱伝導によって中間体50が加熱される。この熱伝導は、電極52A,52B又は固体電解質体51の一部から全体に局所的に行われるため、加熱時間が長くなる。また、外側電極52Aの全体、及び内側電極52Bにおける、外側電極52Aとの対向部位の全体を均一に加熱することは困難である。 In the comparative product 1, when the intermediate 50 and the heating device are in contact, the intermediate 50 is heated by heat conduction from the heating device. Since this heat conduction is locally performed from a part of the electrodes 52A, 52B or the solid electrolyte body 51, the heating time becomes long. In addition, it is difficult to uniformly heat the entire outer electrode 52A and the entire portion of the inner electrode 52B facing the outer electrode 52A.
 比較品1において、中間体50と加熱装置とが接触していない場合には、加熱装置からの熱放射によって中間体50が加熱される。この場合には、熱放射によって熱が電磁波によって運ばれるため、加熱時間が長くなる。また、比較品2においても、熱放射又は対流によって中間体50を加熱するため、加熱時間が著しく長くなる。 In the comparative product 1, when the intermediate 50 is not in contact with the heating device, the intermediate 50 is heated by heat radiation from the heating device. In this case, the heat is carried by electromagnetic waves due to thermal radiation, so that the heating time becomes long. Moreover, also in the comparative product 2, since the intermediate body 50 is heated by thermal radiation or convection, the heating time is remarkably increased.
 このように、本形態のガスセンサ4の製造用加熱装置1においては、中間体50における外側電極52Aの全体、及び内側電極52Bにおける、外側電極52Aとの対向部位の全体を略均一に短時間で加熱することができる。これにより、目標とする状態の外側電極52A又は多孔質セラミック層53を形成することができ、必要な性能を有するセンサ素子5を精度よく得ることができる。
 それ故、本形態の製造用加熱装置1によれば、必要な性能を有するセンサ素子5を、精度よくかつ短時間で得ることができる。
As described above, in the heating apparatus 1 for manufacturing the gas sensor 4 of the present embodiment, the entire outer electrode 52A in the intermediate body 50 and the entire portion facing the outer electrode 52A in the inner electrode 52B are substantially uniformly and in a short time. Can be heated. Thereby, the outer electrode 52A or the porous ceramic layer 53 in a target state can be formed, and the sensor element 5 having necessary performance can be obtained with high accuracy.
Therefore, according to the manufacturing heating apparatus 1 of this embodiment, the sensor element 5 having necessary performance can be obtained with high accuracy and in a short time.
<実施形態2>
 本形態のガスセンサ4の製造用加熱装置1においては、通電制御ユニット2の構成が実施形態1に示す通電制御ユニット2の構成と異なる。本形態の通電制御ユニット2は、図9に示すように、センサ素子5の中間体50における、固体電解質体51を介する外側電極52Aと内側電極52Bとの間の電気抵抗を検出する抵抗検出部25と、誘導加熱コイル3へ交流電圧を印加するコントローラ23とを備える。コントローラ23は、誘導加熱コイル3への通電を開始し、抵抗検出部25による電気抵抗が所定の閾値以下になったことを検知して誘導加熱コイル3への通電を終了するよう構成されている。
<Embodiment 2>
In the heating apparatus 1 for manufacturing the gas sensor 4 of this embodiment, the configuration of the energization control unit 2 is different from the configuration of the energization control unit 2 shown in the first embodiment. As shown in FIG. 9, the energization control unit 2 of this embodiment includes a resistance detection unit that detects an electrical resistance between the outer electrode 52 </ b> A and the inner electrode 52 </ b> B through the solid electrolyte body 51 in the intermediate body 50 of the sensor element 5. 25 and a controller 23 for applying an AC voltage to the induction heating coil 3. The controller 23 is configured to start energizing the induction heating coil 3, detect that the electrical resistance by the resistance detection unit 25 has become a predetermined threshold value or less, and end energization to the induction heating coil 3. .
 抵抗検出部25は、有底円筒形状の固体電解質体51の外側電極52Aに繋がる電極リード部521と、内側電極52Bにおける、底側とは反対側の開口側の端部とに接続される。本形態においても、実施形態1の場合と同様に、誘導加熱コイル3は加熱ヘッド21に支持され、通電制御ユニット2は、冷却チラー22及び電源を有する。コントローラ23においては、誘導加熱コイル3へ印加する交流電圧の振幅、周波数及び印加時間等が設定される。 The resistance detector 25 is connected to the electrode lead 521 connected to the outer electrode 52A of the bottomed cylindrical solid electrolyte body 51 and the end of the inner electrode 52B on the opening side opposite to the bottom. Also in this embodiment, as in the case of the first embodiment, the induction heating coil 3 is supported by the heating head 21, and the energization control unit 2 has a cooling chiller 22 and a power source. In the controller 23, the amplitude, frequency, application time, and the like of the AC voltage applied to the induction heating coil 3 are set.
 固体電解質体51を介する外側電極52Aと内側電極52Bとの間の電気抵抗には、外側電極52A及び内側電極52Bの内部抵抗、固体電解質体51の内部抵抗、外側電極52A及び内側電極52Bと固体電解質体51との間の界面抵抗等が含まれる。この電気抵抗は、図10及び図11に示すように、固体電解質体51の温度に関連し、固体電解質体51の温度が高いほど低くなる。同各図においては、固体電解質体51が室温(20℃)から400℃に加熱され、その後400℃に維持されるときの電気抵抗の変化を示す。 The electrical resistance between the outer electrode 52A and the inner electrode 52B via the solid electrolyte body 51 includes the inner resistance of the outer electrode 52A and the inner electrode 52B, the inner resistance of the solid electrolyte body 51, the outer electrode 52A and the inner electrode 52B, and the solid Interface resistance between the electrolyte body 51 and the like are included. As shown in FIGS. 10 and 11, this electrical resistance is related to the temperature of the solid electrolyte body 51 and becomes lower as the temperature of the solid electrolyte body 51 is higher. In each of the figures, a change in electrical resistance when the solid electrolyte body 51 is heated from room temperature (20 ° C.) to 400 ° C. and then maintained at 400 ° C. is shown.
 本形態においては、図10に示すように、センサ素子5の中間体50における一対の電極52A,52Bの焼結を行う際に、一対の電極52A,52Bの間に任意の電流を流して電気抵抗を測定することにより、一対の電極52A,52Bの焼結が正常に行われたか否かを確認する。焼結が行われていない一対の電極52A,52Bの間の電気抵抗は、焼結が行われた一対の電極52A,52Bの間の電気抵抗に比べて高い。そこで、焼結が行われた一対の電極52A,52Bの間の電気抵抗に余裕率を加味して、焼結前又は焼結後の判別をするための閾値を設定する。なお、電気抵抗は、電圧、電流等の変化を測定し、電圧、電流等の変化に基づいて求めることができる。 In this embodiment, as shown in FIG. 10, when the pair of electrodes 52A and 52B in the intermediate body 50 of the sensor element 5 is sintered, an electric current is passed between the pair of electrodes 52A and 52B. By measuring the resistance, it is confirmed whether or not the pair of electrodes 52A and 52B has been normally sintered. The electrical resistance between the pair of electrodes 52A and 52B that has not been sintered is higher than the electrical resistance between the pair of electrodes 52A and 52B that has been sintered. Therefore, a threshold for determining before or after sintering is set by adding a margin to the electrical resistance between the pair of electrodes 52A and 52B subjected to sintering. The electrical resistance can be obtained based on changes in voltage, current, etc. by measuring changes in voltage, current, etc.
 本形態においても、誘導加熱コイル3への通電は、設定した印加時間が経過するまで行う。そして、この印加時間が経過したときには、電極52A,52Bの焼結が正常に行われたかを確認するために、抵抗検出部25によって一対の電極52A,52Bの間の電気抵抗を測定する。この電気抵抗が、焼結の完了を示す閾値以下である場合には、焼結が正常に行われたとして、誘導加熱コイル3への通電を終了する。一方、電気抵抗が、焼結の完了を示す閾値以下でない場合には、焼結がまだ完了していないとして、誘導加熱コイル3への通電を継続する。そして、電気抵抗が閾値以下となったときに通電を終了する。こうして、本形態においては、電極52A,52Bの焼結が正常に行われたか否かを確認することができ、センサ素子5の製造の精度を高めることができる。 Also in this embodiment, the induction heating coil 3 is energized until the set application time elapses. And when this application time passes, in order to confirm whether sintering of electrode 52A, 52B was performed normally, the electrical resistance between a pair of electrodes 52A, 52B is measured by the resistance detection part 25. FIG. When the electrical resistance is equal to or less than the threshold value indicating the completion of sintering, the energization to the induction heating coil 3 is terminated on the assumption that the sintering has been normally performed. On the other hand, when the electrical resistance is not less than or equal to the threshold value indicating the completion of sintering, the energization to the induction heating coil 3 is continued assuming that the sintering has not been completed yet. Then, energization is terminated when the electrical resistance is equal to or less than the threshold value. Thus, in this embodiment, it can be confirmed whether or not the electrodes 52A and 52B are normally sintered, and the accuracy of manufacturing the sensor element 5 can be increased.
 また、図11に示すように、固体電解質体51が400℃に維持される状態において、一対の電極52A,52Bの間に部分的な断線又は完全な断線がある場合の電気抵抗は、断線が生じていない場合の電気抵抗に比べて高くなる。そのため、印加時間よりも長い予備時間を経過しても、電気抵抗が閾値以下にならない場合には、一対の電極52A,52Bの間に断線が生じていることを推定することができる。なお、断線は、電極52A,52Bの剥離、電極52A,52Bが薄くなったことによるかすれ、固体電解質体51の欠け、割れ等によって生じる。 Further, as shown in FIG. 11, in the state where the solid electrolyte body 51 is maintained at 400 ° C., the electrical resistance in the case where there is a partial disconnection or a complete disconnection between the pair of electrodes 52A and 52B is the disconnection. It becomes higher than the electric resistance when it does not occur. Therefore, if the electrical resistance does not fall below the threshold value even after a preparatory time longer than the application time, it can be estimated that a disconnection has occurred between the pair of electrodes 52A and 52B. The disconnection occurs due to peeling of the electrodes 52A and 52B, fading due to the thinning of the electrodes 52A and 52B, chipping or cracking of the solid electrolyte body 51, and the like.
 本実施形態においても、製造用加熱装置1のその他の構成及び実施形態1に示した符号と同一の符号が示す構成要素は、実施形態1の場合と同様である。そして、実施形態1と同様の作用効果を得ることができる。 Also in the present embodiment, the other components of the manufacturing heating apparatus 1 and the components indicated by the same reference numerals as those in the first embodiment are the same as those in the first embodiment. And the effect similar to Embodiment 1 can be acquired.
<実施形態3>
 本形態のガスセンサ4の製造用加熱装置1は、誘導加熱コイル3に通電を行う機能の他に、加熱が行われた後のセンサ素子5又は中間体50が正常に機能するかの検査を行う機能を有する。本形態の通電制御ユニット2は、図12に示すように、固体電解質体51を介する外側電極52Aと内側電極52Bとの間に流れる電流を検出する電流検出部26と、電流検出部26によって検出される電流が所定の閾値以上であるか否かを判定する判定部27とを備える。
<Embodiment 3>
The heating device 1 for manufacturing the gas sensor 4 according to the present embodiment performs an inspection of whether the sensor element 5 or the intermediate body 50 after heating is functioning normally in addition to the function of energizing the induction heating coil 3. It has a function. As shown in FIG. 12, the energization control unit 2 of the present embodiment is detected by a current detection unit 26 that detects a current flowing between the outer electrode 52A and the inner electrode 52B via the solid electrolyte body 51, and a current detection unit 26. And a determination unit 27 that determines whether or not the current to be output is equal to or greater than a predetermined threshold value.
 電流検出部26は、センサ素子5又は中間体50の固体電解質体51の外側電極52Aに接触させる流体R1の酸素濃度と、センサ素子5又は中間体50の固体電解質体51の内側電極52Bに接触させる流体R2の酸素濃度とを異ならせたときに、外側電極52Aと内側電極52Bとの間に流れる電流を検出する。判定部27において使用される閾値は、外側電極52Aにおける酸素濃度と内側電極52Bにおける酸素濃度との差に応じて、外側電極52Aと内側電極52Bとの間に流れる電流に余裕率を加味して設定する。判定部27は、コントローラ23内に構成することができ、コントローラ23とは別の制御装置によって構成することもできる。 The current detection unit 26 is in contact with the oxygen concentration of the fluid R1 to be brought into contact with the outer electrode 52A of the solid electrolyte body 51 of the sensor element 5 or the intermediate body 50 and the inner electrode 52B of the solid electrolyte body 51 of the sensor element 5 or the intermediate body 50. The current flowing between the outer electrode 52A and the inner electrode 52B is detected when the oxygen concentration of the fluid R2 to be made is different. The threshold value used in the determination unit 27 is determined by adding a margin to the current flowing between the outer electrode 52A and the inner electrode 52B according to the difference between the oxygen concentration in the outer electrode 52A and the oxygen concentration in the inner electrode 52B. Set. The determination unit 27 can be configured in the controller 23, or can be configured by a control device different from the controller 23.
 電流検出部26は、有底円筒形状の固体電解質体51の外側電極52Aに繋がる電極リード部521と、内側電極52Bにおける、底側とは反対側の開口側の端部とに接続される。本形態においても、実施形態1の場合と同様に、誘導加熱コイル3は加熱ヘッド21に支持され、通電制御ユニット2は、冷却チラー22及び電源を有する。コントローラ23においては、誘導加熱コイル3へ印加する交流電圧の振幅、周波数及び印加時間等が設定される。図12においては、製造用加熱装置1の詳細を省略する。 The current detection unit 26 is connected to the electrode lead portion 521 connected to the outer electrode 52A of the bottomed cylindrical solid electrolyte body 51 and the end portion of the inner electrode 52B on the opening side opposite to the bottom side. Also in this embodiment, as in the case of the first embodiment, the induction heating coil 3 is supported by the heating head 21, and the energization control unit 2 has a cooling chiller 22 and a power source. In the controller 23, the amplitude, frequency, application time, and the like of the AC voltage applied to the induction heating coil 3 are set. In FIG. 12, the details of the manufacturing heating apparatus 1 are omitted.
 本形態においては、誘導加熱コイル3への通電が終了した後、外側電極52Aに接触させる流体R1の酸素濃度と、内側電極52Bに接触させる流体R2の酸素濃度とを異ならせる。本形態においては、各電極52A,52B及び固体電解質体51が触媒活性を有する温度において、内側電極52Bには、流体R2としての大気Aを接触させ、外側電極52Aには、大気Aよりも酸素濃度が低い、流体R1としての気体を接触させる。このとき、各電極52A,52B及び固体電解質体51が触媒活性を有する温度になるように、誘導加熱コイル3への通電によって各電極52A,52B及び固体電解質体51を加熱してもよい。 In this embodiment, after energization of the induction heating coil 3 is finished, the oxygen concentration of the fluid R1 brought into contact with the outer electrode 52A is made different from the oxygen concentration of the fluid R2 brought into contact with the inner electrode 52B. In this embodiment, at the temperature at which each of the electrodes 52A and 52B and the solid electrolyte body 51 has catalytic activity, the inner electrode 52B is brought into contact with the atmosphere A as the fluid R2, and the outer electrode 52A is more oxygenated than the atmosphere A. A gas as the fluid R1 having a low concentration is brought into contact. At this time, the electrodes 52A and 52B and the solid electrolyte body 51 may be heated by energizing the induction heating coil 3 so that the electrodes 52A and 52B and the solid electrolyte body 51 have a catalytic activity.
 外側電極52Aに接触する流体R1の酸素濃度と内側電極52Bに接触する流体R2の酸素濃度との差により、酸化物イオン(O2-)が固体電解質体51を透過し、外側電極52Aと内側電極52Bとの間に電流が流れる。そこで、電流検出部26によって外側電極52Aと内側電極52Bとの間に流れる電流を測定する。そして、電流検出部26によって測定される電流が閾値以上である場合には、判定部27は、センサ素子5又は中間体50が、ガス検出を行うために正常に機能するとして、このセンサ素子5又は中間体50が良品であると判定する。 Due to the difference between the oxygen concentration of the fluid R1 in contact with the outer electrode 52A and the oxygen concentration of the fluid R2 in contact with the inner electrode 52B, oxide ions (O 2− ) permeate the solid electrolyte body 51 and A current flows between the electrode 52B. Therefore, the current flowing between the outer electrode 52A and the inner electrode 52B is measured by the current detection unit 26. When the current measured by the current detection unit 26 is equal to or greater than the threshold value, the determination unit 27 determines that the sensor element 5 or the intermediate body 50 functions normally in order to perform gas detection. Or it determines with the intermediate body 50 being non-defective.
 一方、電流検出部26によって測定される電流が閾値未満である場合には、判定部27は、センサ素子5又は中間体50が、ガス検出を行うために正常に機能しないとして、このセンサ素子5又は中間体50が不良品であると判定する。本形態においては、センサ素子5又は中間体50がガス検出のために正常に機能するかを検査することができ、センサ素子5の製造の精度を高めることができる。 On the other hand, when the current measured by the current detection unit 26 is less than the threshold value, the determination unit 27 determines that the sensor element 5 or the intermediate body 50 does not function normally in order to perform gas detection. Or it determines with the intermediate body 50 being inferior goods. In this embodiment, it can be inspected whether the sensor element 5 or the intermediate body 50 functions normally for gas detection, and the manufacturing accuracy of the sensor element 5 can be increased.
 本実施形態においても、製造用加熱装置1のその他の構成及び実施形態1に示した符号と同一の符号が示す構成要素は、実施形態1の場合と同様である。そして、実施形態1と同様の作用効果を得ることができる。 Also in the present embodiment, the other components of the manufacturing heating apparatus 1 and the components indicated by the same reference numerals as those in the first embodiment are the same as those in the first embodiment. And the effect similar to Embodiment 1 can be acquired.
<実施形態4>
 本形態においては、ハウジング41等に組み付けられた状態のセンサ素子5によるガス検出が正常に機能するかを検査する際に製造用加熱装置1を用いる。図13に示すように、本形態のセンサ素子5が組み付けられたガスセンサ4からは、素子用カバー44(図3参照)が取り外されている。そして、製造用加熱装置1の誘導加熱コイル3によって、素子用カバー44が取り外されたガスセンサ4におけるセンサ素子5を、一対の電極52A,52B及び固体電解質体51が触媒活性を有する温度に加熱する。また、外側電極52Aに接触させる流体の酸素濃度と、内側電極52Bに接触させる流体の酸素濃度とを異ならせる。具体的には、内側電極52Bには大気Aを接触させ、外側電極52Aには大気Aよりも酸素濃度が低い気体を接触させる。
<Embodiment 4>
In this embodiment, the manufacturing heating apparatus 1 is used when inspecting whether the gas detection by the sensor element 5 in a state assembled to the housing 41 or the like functions normally. As shown in FIG. 13, the element cover 44 (see FIG. 3) is removed from the gas sensor 4 to which the sensor element 5 of this embodiment is assembled. And the sensor element 5 in the gas sensor 4 from which the element cover 44 is removed is heated to a temperature at which the pair of electrodes 52A and 52B and the solid electrolyte body 51 have catalytic activity by the induction heating coil 3 of the manufacturing heating apparatus 1. . Further, the oxygen concentration of the fluid brought into contact with the outer electrode 52A is made different from the oxygen concentration of the fluid brought into contact with the inner electrode 52B. Specifically, the atmosphere A is brought into contact with the inner electrode 52B, and a gas having a lower oxygen concentration than the atmosphere A is brought into contact with the outer electrode 52A.
 本形態においても、電流検出部26及び判定部27を有する通電制御ユニット2を備えた、実施形態3の製造用加熱装置1を用いる。図13においては、製造用加熱装置1の詳細を省略する。そして、電流検出部26によって測定される電流が閾値以上である場合には、判定部27は、ガスセンサ4が、ガス検出を行うために正常に機能するとして、このガスセンサ4が良品であると判定する。一方、電流検出部26によって測定される電流が閾値未満である場合には、判定部27は、ガスセンサ4が、ガス検出を行うために正常に機能しないとして、このガスセンサ4が不良品であると判定する。判定部27は、コントローラ23内に構成することができ、コントローラ23とは別の制御装置によって構成することもできる。 Also in the present embodiment, the manufacturing heating apparatus 1 of the third embodiment including the energization control unit 2 having the current detection unit 26 and the determination unit 27 is used. In FIG. 13, the details of the manufacturing heating apparatus 1 are omitted. When the current measured by the current detection unit 26 is equal to or greater than the threshold value, the determination unit 27 determines that the gas sensor 4 functions normally to perform gas detection, and determines that the gas sensor 4 is a non-defective product. To do. On the other hand, when the current measured by the current detection unit 26 is less than the threshold value, the determination unit 27 determines that the gas sensor 4 is defective because the gas sensor 4 does not function normally for gas detection. judge. The determination unit 27 can be configured in the controller 23, or can be configured by a control device different from the controller 23.
 本形態においては、ガスセンサ4が、通電によって発熱するヒータを内蔵しない場合において、製造用加熱装置1を用いて、ガスセンサ4におけるセンサ素子5を、ガスセンサ4の外部から加熱することができる。そのため、製造用加熱装置1を用いることにより、ヒータを内蔵しないヒータレスのガスセンサ4における機能検査を行うことができる。 In this embodiment, when the gas sensor 4 does not include a heater that generates heat when energized, the sensor element 5 in the gas sensor 4 can be heated from the outside of the gas sensor 4 using the manufacturing heating device 1. Therefore, by using the manufacturing heating apparatus 1, it is possible to perform a function test in the heaterless gas sensor 4 that does not incorporate a heater.
<実施形態5>
 本形態におけるセンサ素子5は、図14及び図15に示すように、板形状の固体電解質体51に一対の電極52A,52Bが設けられた積層タイプのものである。そして、一対の電極52A,52Bには、固体電解質体51の一方の表面に設けられ、排ガスGが接触する外側電極52Aと、固体電解質体51の他方の表面に設けられ、大気Aが接触する内側電極52Bとがある。外側電極52Aの表面には、外側電極52Aに到達する排ガスGの流速を調整するための拡散抵抗層としての多孔質セラミック層53が形成されている。
<Embodiment 5>
As shown in FIGS. 14 and 15, the sensor element 5 in this embodiment is of a laminated type in which a pair of electrodes 52 </ b> A and 52 </ b> B are provided on a plate-shaped solid electrolyte body 51. The pair of electrodes 52A and 52B is provided on one surface of the solid electrolyte body 51 and provided on the other surface of the solid electrolyte body 51 and the outer electrode 52A in contact with the exhaust gas G, and the atmosphere A is in contact therewith. There is an inner electrode 52B. On the surface of the outer electrode 52A, a porous ceramic layer 53 is formed as a diffusion resistance layer for adjusting the flow rate of the exhaust gas G reaching the outer electrode 52A.
 センサ素子5は、角部に面取り、フィレット加工等が行われた矩形状の断面を有する、長尺状の直方体形状に形成されている。一対の電極52A,52Bは、長尺形状のセンサ素子5における先端部分に形成されている。センサ素子5の内部には、内側電極52Bへ大気Aを取り込むためのダクト54が形成されている。また、本形態のセンサ素子5は、ヒータを内蔵しないものである。 The sensor element 5 is formed in an elongated rectangular parallelepiped shape having a rectangular cross-section with chamfered corners and fillet processing. The pair of electrodes 52 </ b> A and 52 </ b> B is formed at the distal end portion of the elongated sensor element 5. Inside the sensor element 5, a duct 54 for taking in the atmosphere A into the inner electrode 52B is formed. Moreover, the sensor element 5 of this embodiment does not include a heater.
 図15に示すように、本形態の誘導加熱コイル3は、センサ素子5の矩形状の断面に合わせて、導体301が長円形状(オーバル形状)であって螺旋形状に巻かれて形成されている。誘導加熱コイル3は、長円形状の導体301における長辺部と、センサ素子5の表面との間の隙間Sが2mm以下になるよう形成されている。本形態の製造用加熱装置1のその他の構成は、実施形態1に示したものと同様である。 As shown in FIG. 15, the induction heating coil 3 of the present embodiment is formed by winding a conductor 301 in an oval shape (oval shape) and spirally in accordance with a rectangular cross section of the sensor element 5. Yes. The induction heating coil 3 is formed such that the gap S between the long side portion of the elliptical conductor 301 and the surface of the sensor element 5 is 2 mm or less. Other configurations of the manufacturing heating apparatus 1 of the present embodiment are the same as those shown in the first embodiment.
 本形態の製造用加熱装置1によれば、積層タイプのセンサ素子5を効果的に加熱することができ、必要な性能を有する積層タイプのセンサ素子5を、精度よくかつ短時間で得ることができる。 According to the manufacturing heating apparatus 1 of the present embodiment, the multilayer sensor element 5 can be effectively heated, and the multilayer sensor element 5 having necessary performance can be obtained accurately and in a short time. it can.
 なお、製造用加熱装置1の構成は、実施形態1~5に示したものに限られず、本開示の要旨を逸脱しない範囲においてさらに異なる実施形態を構成することが可能である。本開示は、様々な変形例や均等範囲内の変形例をも包含する。 The configuration of the manufacturing heating apparatus 1 is not limited to that shown in the first to fifth embodiments, and further different embodiments can be configured without departing from the gist of the present disclosure. The present disclosure includes various modifications and modifications within the equivalent range.

Claims (7)

  1.  内燃機関の排ガス(G)におけるガス検出を行うガスセンサ(4)に用いられ、固体電解質体(51)に外側電極(52A)及び内側電極(52B)が設けられたセンサ素子(5)の製造時に使用され、
     前記ガスセンサの制御装置(40)とは別の通電制御ユニット(2)によって制御されて、前記センサ素子の中間体(50)を加熱する製造用加熱装置(1)であって、
     前記通電制御ユニットと、
     前記中間体の周りに螺旋状に配置され、前記通電制御ユニットによる通電及び通電の遮断を受けて生じる電磁誘導によって前記中間体における前記外側電極及び前記内側電極を発熱させる誘導加熱コイル(3)と、を備える、ガスセンサの製造用加熱装置。
    At the time of manufacture of the sensor element (5) used for the gas sensor (4) for detecting the gas in the exhaust gas (G) of the internal combustion engine and provided with the outer electrode (52A) and the inner electrode (52B) on the solid electrolyte body (51). Used,
    A heating apparatus (1) for manufacturing which is controlled by an energization control unit (2) different from the control apparatus (40) of the gas sensor and heats the intermediate body (50) of the sensor element,
    The energization control unit;
    An induction heating coil (3) arranged in a spiral around the intermediate body and generating heat to the outer electrode and the inner electrode in the intermediate body by electromagnetic induction generated by energization and interruption of energization by the energization control unit; A heating device for manufacturing a gas sensor.
  2.  前記誘導加熱コイルは、有底円筒形状に形成された前記固体電解質体の、底側の外周面に設けられた前記外側電極の全周に対向して配置されて、少なくとも前記外側電極の全体を発熱させるよう構成されている、請求項1に記載のガスセンサの製造用加熱装置。 The induction heating coil is disposed so as to face the entire circumference of the outer electrode provided on the outer peripheral surface of the bottom side of the solid electrolyte body formed in a bottomed cylindrical shape, and at least the entire outer electrode is disposed. The heating device for manufacturing a gas sensor according to claim 1, wherein the heating device is configured to generate heat.
  3.  前記通電制御ユニットは、前記中間体の底部(512)の温度を測定する温度計(24)と、前記誘導加熱コイルへ交流電圧を印加するコントローラ(23)とを備えており、
     前記コントローラは、前記温度計による測定温度が目標温度になるよう、前記交流電圧の振幅及び周波数を調整するよう構成されている、請求項1又は2に記載のガスセンサの製造用加熱装置。
    The energization control unit includes a thermometer (24) for measuring the temperature of the bottom (512) of the intermediate body, and a controller (23) for applying an AC voltage to the induction heating coil,
    The heating device for manufacturing a gas sensor according to claim 1, wherein the controller is configured to adjust an amplitude and a frequency of the AC voltage so that a temperature measured by the thermometer becomes a target temperature.
  4.  前記通電制御ユニットは、前記中間体における、前記固体電解質体を介する前記外側電極と前記内側電極との間の電気抵抗を検出する抵抗検出部(25)と、前記誘導加熱コイルへ交流電圧を印加するコントローラ(23)とを備えており、
     前記コントローラは、前記誘導加熱コイルへの通電を開始し、前記抵抗検出部によって検出される電気抵抗が所定の閾値以下になったことを検知して前記誘導加熱コイルへの通電を終了する、請求項1又は2に記載のガスセンサの製造用加熱装置。
    The energization control unit applies an AC voltage to the induction heating coil and a resistance detection unit (25) for detecting an electrical resistance between the outer electrode and the inner electrode through the solid electrolyte body in the intermediate body. And a controller (23) for
    The controller starts energizing the induction heating coil, detects that the electrical resistance detected by the resistance detection unit has become a predetermined threshold value or less, and ends energization to the induction heating coil. Item 3. A heating device for manufacturing a gas sensor according to Item 1 or 2.
  5.  前記通電制御ユニットは、
     前記センサ素子又は前記中間体の前記固体電解質体の前記外側電極に接触させる流体(R1)の酸素濃度と、前記センサ素子又は前記中間体の前記固体電解質体の前記内側電極に接触させる流体(R2)の酸素濃度とを異ならせたときに、前記固体電解質体を介する前記外側電極と前記内側電極との間に流れる電流を検出する電流検出部(26)と、
     前記電流検出部によって検出される電流が所定の閾値以上であるか否かを判定する判定部(27)と、を備える、請求項1~4のいずれか1項に記載のガスセンサの製造用加熱装置。
    The energization control unit is
    The oxygen concentration of the fluid (R1) in contact with the outer electrode of the solid electrolyte body of the sensor element or the intermediate body and the fluid (R2) of contact with the inner electrode of the solid electrolyte body of the sensor element or the intermediate body And a current detector (26) for detecting a current flowing between the outer electrode and the inner electrode via the solid electrolyte body when the oxygen concentration is different from
    The heating for manufacturing a gas sensor according to any one of claims 1 to 4, further comprising: a determination unit (27) that determines whether or not a current detected by the current detection unit is equal to or greater than a predetermined threshold value. apparatus.
  6.  前記誘導加熱コイルを構成する導体(301)は、冷媒(C)を通過させる冷媒流路(302)を内部に有する中空形状に形成されており、
     前記通電制御ユニットは、前記冷媒流路に冷媒を循環させる冷却チラー(22)を備える、請求項1~5のいずれか1項に記載のガスセンサの製造用加熱装置。
    The conductor (301) constituting the induction heating coil is formed in a hollow shape having a refrigerant flow path (302) through which the refrigerant (C) passes,
    The heating device for manufacturing a gas sensor according to any one of claims 1 to 5, wherein the energization control unit includes a cooling chiller (22) that circulates the refrigerant in the refrigerant flow path.
  7.  前記誘導加熱コイルを構成する導体の外径は、φ1.5~3mmの範囲内にあり、前記冷媒流路の内径は、前記誘導加熱コイルの外径よりも小さく、φ1~2.5mmの範囲内にあり、
     前記誘導加熱コイルの全長は、前記固体電解質体の軸線方向(L)における、前記外側電極の全長よりも長い、請求項6に記載のガスセンサの製造用加熱装置。
    The outer diameter of the conductor constituting the induction heating coil is in the range of φ1.5 to 3 mm, and the inner diameter of the refrigerant flow path is smaller than the outer diameter of the induction heating coil and in the range of φ1 to 2.5 mm. In
    The heating device for manufacturing a gas sensor according to claim 6, wherein an overall length of the induction heating coil is longer than an overall length of the outer electrode in an axial direction (L) of the solid electrolyte body.
PCT/JP2018/004077 2017-02-09 2018-02-06 Heating device for manufacturing gas sensor WO2018147287A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-022311 2017-02-09
JP2017022311A JP6693436B2 (en) 2017-02-09 2017-02-09 Heating device for manufacturing gas sensors

Publications (1)

Publication Number Publication Date
WO2018147287A1 true WO2018147287A1 (en) 2018-08-16

Family

ID=63108268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004077 WO2018147287A1 (en) 2017-02-09 2018-02-06 Heating device for manufacturing gas sensor

Country Status (2)

Country Link
JP (1) JP6693436B2 (en)
WO (1) WO2018147287A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890294A (en) * 1972-02-10 1973-11-24
JPH10300714A (en) * 1997-04-23 1998-11-13 Robert Bosch Gmbh Measuring instrument
JP2006105768A (en) * 2004-10-05 2006-04-20 Denso Corp Gas sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890294A (en) * 1972-02-10 1973-11-24
JPH10300714A (en) * 1997-04-23 1998-11-13 Robert Bosch Gmbh Measuring instrument
JP2006105768A (en) * 2004-10-05 2006-04-20 Denso Corp Gas sensor

Also Published As

Publication number Publication date
JP6693436B2 (en) 2020-05-13
JP2018128385A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
US8118985B2 (en) Gas sensor
JP4894829B2 (en) Gas sensor
JP2016048230A (en) Gas sensor element and gas sensor
JP2001165440A (en) Glow plug and its manufacturing method
JP2019158866A (en) Sensor and method for manufacturing the same
WO2018147287A1 (en) Heating device for manufacturing gas sensor
JP2009198346A (en) Ammonia gas sensor
JP4203346B2 (en) Manufacturing method of temperature sensor
US6497808B1 (en) Gas sensor
US11604160B2 (en) Gas sensor
US10767862B2 (en) Flame rod
EP3376215B1 (en) Method of removing oil from an assebly including a gas sensor
JP4015569B2 (en) Air-fuel ratio detection device
JP6979387B2 (en) Sensor element and gas sensor
JP6917207B2 (en) Gas sensor
JP3588094B2 (en) Oxygen sensor structure
JP6809355B2 (en) Gas sensor
JP6406786B2 (en) Gas sensor
WO2018194034A1 (en) Gas sensor
JP6540640B2 (en) Gas sensor
JP7114701B2 (en) Gas sensor element and gas sensor
WO2022224763A1 (en) Gas sensor
WO2022224764A1 (en) Gas sensor
JP2018128385A5 (en)
JP2017138121A (en) Fine particle detection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751255

Country of ref document: EP

Kind code of ref document: A1