WO2022224764A1 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
WO2022224764A1
WO2022224764A1 PCT/JP2022/015790 JP2022015790W WO2022224764A1 WO 2022224764 A1 WO2022224764 A1 WO 2022224764A1 JP 2022015790 W JP2022015790 W JP 2022015790W WO 2022224764 A1 WO2022224764 A1 WO 2022224764A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
porous layer
electrolyte body
sensor element
reference electrode
Prior art date
Application number
PCT/JP2022/015790
Other languages
French (fr)
Japanese (ja)
Inventor
朗 齋藤
康敬 神谷
直輝 神村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2023516391A priority Critical patent/JPWO2022224764A1/ja
Publication of WO2022224764A1 publication Critical patent/WO2022224764A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/41Oxygen pumping cells

Definitions

  • the present disclosure relates to a gas sensor including a sensor element.
  • a gas sensor is placed, for example, in an exhaust pipe of an internal combustion engine of a vehicle, and is used to obtain the air-fuel ratio of the internal combustion engine based on the detection target gas, with the exhaust gas flowing through the exhaust pipe as the detection target gas. Also, the gas sensor is used, for example, to detect whether the air-fuel ratio of the internal combustion engine is on the rich side or on the lean side with respect to the stoichiometric air-fuel ratio.
  • a plate-shaped solid electrolyte body and a cylindrical solid electrolyte body with a bottom are used as the sensor element constituting the gas sensor.
  • a detection electrode (measurement electrode) that is exposed to a detection target gas such as exhaust gas is provided on the outer surface, and a reference electrode that is exposed to a reference gas such as the atmosphere is provided on the inner surface. It is The sensing and reference electrodes are catalytically active towards oxygen. Further, on the outer surface of the solid electrolyte body, a porous layer that captures water, poisonous substances, etc. and allows the gas to be detected to permeate is provided in a state of covering the detection electrode.
  • a heater element for heating the detection electrode and the reference electrode provided on the bottom side portion of the sensor element is arranged inside the sensor element having a bottomed cylindrical solid electrolyte body.
  • the heater element has a heating portion of the heating element at a position facing the detection electrode and the reference electrode.
  • the gas sensor described in Patent Document 1 includes a sensor element composed of a solid electrolyte body having a cylindrical portion with a closed tip, and a heater element arranged inside the sensor element to heat the sensor element by generating heat.
  • a sensor element composed of a solid electrolyte body having a cylindrical portion with a closed tip
  • a heater element arranged inside the sensor element to heat the sensor element by generating heat.
  • the tip of the heater element is in contact with the inner surface of the tip of the sensor element, and the side of the heater element is located on the cylindrical portion of the sensor element. It is in contact with the inner peripheral surface.
  • An object of the present disclosure is to provide a gas sensor that can reduce the temperature difference between the heater element and the sensor element and facilitate assembly of the gas sensor.
  • a solid electrolyte body having a bottomed cylindrical shape and made of a solid electrolyte material having ionic conductivity, a detection electrode provided outside the solid electrolyte body and exposed to a gas to be detected, and an inside of the solid electrolyte body
  • a gas sensor comprising a sensor element having a reference electrode provided in and exposed to a reference gas, In the gas sensor, a porous layer having a large number of pores is provided between the solid electrolyte body and the reference electrode or on the surface of the reference electrode.
  • the gas sensor of the above aspect includes a sensor element in which a detection electrode and a reference electrode are provided in a solid electrolyte body having a bottomed cylindrical shape.
  • a porous layer having a large number of pores is provided between the solid electrolyte body and the reference electrode or on the surface of the reference electrode.
  • the temperature difference between the heater element and the sensor element can be reduced, and the assembly of the gas sensor can be facilitated.
  • FIG. 1 is an explanatory diagram showing a gas sensor according to Embodiment 1.
  • FIG. 2 is an explanatory diagram showing a cross section of the sensor element according to the first embodiment.
  • 3A and 3B are explanatory diagrams showing a formation state of detection electrodes on the surface of the sensor element according to the first embodiment.
  • FIG. 4 is an explanatory view showing an enlarged cross-section of tip side portions of the sensor element and the heater element according to the first embodiment.
  • FIG. 5 is an explanatory diagram showing an enlarged cross section of a portion of the cylindrical portion of the sensor element according to the first embodiment.
  • FIG. 6 is an explanatory diagram showing a cross section of the sensor element according to the second embodiment.
  • the gas sensor 1 of this embodiment includes a sensor element 2, and the sensor element 2 has a solid electrolyte body 3, a detection electrode 4A and a reference electrode 4B.
  • the solid electrolyte body 3 has a bottomed cylindrical shape and is made of a solid electrolyte material having ionic conductivity.
  • the detection electrode 4A is provided outside the solid electrolyte body 3 in a state of being exposed to the gas G to be detected.
  • the reference electrode 4B is provided inside the solid electrolyte body 3 in a state of being exposed to the reference gas A.
  • a porous layer 23 having a large number of pores 231 is provided between the solid electrolyte body 3 and the reference electrode 4B.
  • the direction along the central axis O of the sensor element 2 is called the axial direction L
  • the direction around the central axis O of the sensor element 2 is called the circumferential direction C. 2
  • a radial direction R is called the direction around the central axis O of the sensor element 2
  • the side on which the bottom portion 32 of the sensor element 2 is provided is called the bottom side L1
  • the side opposite to the bottom side L1 is called the opening side L2.
  • the side corresponding to the bottom side L1 is called the distal end side L1
  • the side corresponding to the bottom side L1 is called the base end side L2.
  • the gas sensor 1 of this embodiment will be described in detail below.
  • a gas sensor 1 As shown in FIG. 1, a gas sensor 1 is arranged in an exhaust pipe through which exhaust gas discharged from an internal combustion engine of a vehicle flows. The gas sensor 1 uses the exhaust gas flowing in the exhaust pipe as the detection target gas G and the atmosphere as the reference gas A to perform gas detection. The gas sensor 1 of this embodiment detects the electromotive force generated between the detection electrode 4A and the reference electrode 4B via the solid electrolyte body 3, and the air-fuel ratio of the internal combustion engine obtained from the composition of the exhaust gas is different from the stoichiometric air-fuel ratio.
  • the gas sensor 1 is used to bring the air-fuel ratio in the internal combustion engine close to the stoichiometric air-fuel ratio at which the catalytic activity of the three-way catalyst arranged in the exhaust pipe is effectively maintained.
  • the gas sensor 1 may be arranged either upstream or downstream of the exhaust gas flow relative to the position of the three-way catalyst in the exhaust pipe.
  • the gas sensor 1 of this embodiment can maintain an appropriate temperature distribution in the axial direction L of the sensor element 2, it can be effectively used even when the temperature of the exhaust gas from the internal combustion engine becomes lower. Further, the temperature of the exhaust gas is lower at a position downstream than the three-way catalyst arrangement position in the exhaust pipe compared to a position upstream from the three-way catalyst arrangement position.
  • the gas sensor 1 of the present embodiment is preferably arranged at a position downstream of the position where the three-way catalyst is arranged, where the temperature of the exhaust gas is low.
  • An air-fuel ratio sensor for detecting the air-fuel ratio may be arranged upstream of the arrangement position of the three-way catalyst, and in the combustion control of the internal combustion engine, the air-fuel ratio sensor and the oxygen sensor may be used together. .
  • the gas sensor 1 includes, in addition to the sensor element 2, a heater element 5 for heating a portion of the sensor element 2 on the bottom side L1 in the axial direction L.
  • the heater element 5 is formed by providing a heating element 52 on base materials 51A and 51B.
  • the heater element 5 has a heat generating portion 521 for heating a portion on the bottom side L1 of the sensor element 2 at a portion on the tip side L1 in the axial direction L. It contacts the inside of the bottom 32 .
  • the gas sensor 1 is attached to a housing 61 formed with an insertion hole 611 through which the sensor element 2 is inserted, and to the outside of the opening side L2 of the solid electrolyte body 3 for detection. It further includes an outer terminal 71 connected to the electrode 4A, and an inner terminal 72 attached to the inside of the opening side L2 of the solid electrolyte body 3 and connected to the reference electrode 4B.
  • the solid electrolyte body 3 of the sensor element 2 is mainly composed of zirconia, and stabilized by substituting a part of zirconia with a rare earth metal element or an alkaline earth metal element. It consists of zirconia or partially stabilized zirconia.
  • the solid electrolyte body 3 may be composed of yttria-stabilized zirconia or yttria-partially-stabilized zirconia.
  • the solid electrolyte body 3 has ion conductivity to conduct oxide ions (O 2 ⁇ ) at a predetermined activation temperature.
  • the detection electrode 4A and the reference electrode 4B contain platinum, which exhibits catalytic activity with respect to oxygen, and a solid electrolyte material equivalent to the solid electrolyte material forming the solid electrolyte body 3 .
  • the solid electrolyte body 3 has a cylindrical portion 31 and a curved bottom portion 32 formed on the bottom side L1 of the cylindrical portion 31 .
  • the solid electrolyte body 3 has a bottomed cylindrical shape in which the tip portion of the cylindrical portion 31 is closed by the curved (hemispherical) bottom portion 32 .
  • An opening 33 for allowing the reference gas A to flow inside the solid electrolyte body 3 is formed at a position opposite to the bottom 32 in the axial direction L of the solid electrolyte body 3 .
  • the outer diameter of each portion in the axial direction L of the cylindrical portion 31 is appropriately changed in consideration of attachment to the housing 61 .
  • the cylindrical portion 31 of the solid electrolyte body 3 has a straight cylindrical portion 311 provided with an outer detection portion 41 (to be described later) on the bottom side L1 in the axial direction L, and an opening side L2 of the straight cylindrical portion 311 toward the opening side L2. and a collar portion 313 which is a portion of the solid electrolyte body 3 having the largest outer diameter on the opening side L2 of the tapered cylindrical portion 312 .
  • the collar portion 313 is a portion that is engaged with a stepped portion 614 formed in the insertion hole 611 of the housing 61 .
  • the detection electrode 4A has an outer detection portion 41, an outer connection portion 43 and an outer lead portion .
  • the outer detection portion 41 is provided over the entire circumference in the circumferential direction C about the center axis O of the cylindrical portion 31 at the position closest to the bottom side L1 of the detection electrode 4A.
  • the outer connection portion 43 is provided over the entire circumference in the circumferential direction C at the position closest to the opening side L2 of the detection electrode 4A, and is connected to the outer terminal 71 .
  • the outer lead portion 42 is provided partly in the circumferential direction C at a position connecting the outer detection portion 41 and the outer connection portion 43 .
  • the reference electrode 4B is provided on the surface of the porous layer 23 and the inner surface 302 of the solid electrolyte body 3.
  • the reference electrode 4 ⁇ /b>B of this embodiment is provided on substantially the entire inner surface 302 of the solid electrolyte body 3 .
  • the reference electrode 4B is provided on the inner surface 302 of the solid electrolyte body 3 at the portion on the opening side L2 in the axial direction L, and the porous layer 23 on the portion other than the portion on the opening side L2 in the axial direction L. is provided on the surface of
  • the reference electrode 4B may be partially provided inside the solid electrolyte body 3, similar to the detection electrode 4A.
  • the reference electrode 4B is provided along the entire circumference of the bottom side L1 portion facing the outer detection portion 41 via the solid electrolyte body 3 and the opening side L2 portion. You may provide in the state which connects the site
  • the ratio of surface formation of the reference electrode 4B to the entire inner surface 302 of the solid electrolyte body 3 is 50% or more.
  • the inner surface 302 of the solid electrolyte body 3 when specifying the surface formation ratio of the reference electrode 4B also includes the surface of the porous layer 23 provided on the inner surface 302 of the solid electrolyte body 3 .
  • the reference electrode 4B is preferably provided along the entire circumference of the solid electrolyte body 3 in the circumferential direction C at the portion located on the inner peripheral side of the outer detecting portion 41 and the portion at which the inner terminal 72 is attached.
  • the surface formation ratio of the reference electrode 4B is less than 50%, the effect of heat conduction by the reference electrode 4B is reduced, the temperature rise rate of the sensor element 2 due to the heat transfer of the heater element 5 is slowed, and the sensor element 2 is activated. It may take longer to let The surface formation ratio of the reference electrode 4B of this embodiment is 100%.
  • the porous layer 23 of this embodiment is provided on the inner surface 302 of the solid electrolyte body 3 . More specifically, the porous layer 23 is sandwiched between the inner surface 302 of the solid electrolyte body 3 and the reference electrode 4B. In addition, the porous layer 23 is provided at a portion of the inner surface 302 of the solid electrolyte body 3 excluding the portion on the opening side L2 in the axial direction L. As shown in FIG.
  • the porous layer 23 is made of a solid electrolyte material having a higher porosity than the solid electrolyte material forming the solid electrolyte body 3 .
  • the composition of the porous layer 23 is the same as the composition of the solid electrolyte body 3 .
  • the porous layer 23 functions as a heat insulating layer by forming numerous pores 231 between the solid electrolyte particles.
  • the porosity of the porous layer 23 should be large in order to enhance the heat insulating effect, and should be small in order to enhance the strength.
  • the porosity of the porous layer 23 of this embodiment is 5% or more and 40% or less. If the porosity of the porous layer 23 is less than 5%, the effect of the porous layer 23 as a heat insulating layer may not be obtained. On the other hand, when the porosity of the porous layer 23 exceeds 40%, the strength of the porous layer 23 is low, and the porous layer 23 may be damaged during assembly of the gas sensor 1 .
  • the porosity of the porous layer 23 is preferably 10% or more and 30% or less. In this case, a heat insulating effect can be obtained more appropriately, and a decrease in the rate of temperature increase of the sensor element 2 by the heater element 5 can be properly prevented.
  • This porosity measurement method complies with JIS R1634: 1998 "Method for measuring sintered body density and open porosity of fine ceramics” (Archimedes method). Further, this JIS standard corresponds to the ISO standard of ISO18754:2003 "Fine ceramics-Determination of density and apparent porosity”.
  • the reference electrode 4B is provided on the surface of the porous layer 23 at the bottom side L1 in the axial direction L of the sensor element 2 .
  • the tip portion of the heater element 5 can be brought into contact with the reference electrode 4 ⁇ /b>B provided inside the bottom portion 32 of the solid electrolyte body 3 . Therefore, the heat generated in the heat generating portion 521 of the heater element 5 can be effectively transmitted to the sensor element 2 through the reference electrode 4B by thermal conduction.
  • a part of the reference electrode 4B becomes the pores 231 in the porous layer 23, in other words, between the solid electrolyte particles. penetrate into the gaps of As a result, the adhesion between the reference electrode 4B and the porous layer 23 is improved, and the reference electrode 4B is less likely to peel off from the solid electrolyte body 3 . Also, it is possible to suppress aggregation of the reference electrode 4B due to heat.
  • a large number of solid electrolyte particles that constitute the solid electrolyte body 3 are formed into a dense cylindrical shape with a bottom, and are sintered in close contact with each other.
  • the porous layer 23 is made up of many solid electrolyte particles.
  • the solid electrolyte particles forming the porous layer 23 are formed by applying slurry to the inner surface 302 of the solid electrolyte body 3 .
  • a large number of pores 231 of the porous layer 23 are formed by gaps between solid electrolyte particles.
  • the porous layer 23 of the present embodiment is formed at a portion of the solid electrolyte body 3 closer to the bottom side L1 than the mounting portion of the inner terminal 72 .
  • the inner terminal 72 is attached in contact with the reference electrode 4B provided on the inner surface 302 of the solid electrolyte body 3 which is compactly formed. Therefore, it is possible to secure the strength of the mounting portion of the inner terminal 72 in the solid electrolyte body 3 .
  • the heat of the heater element 5 heated by the heat generating portion 521 of the heating element 52 is conducted to the sensor element 2 via the inner terminal 72 in addition to being conducted from the tip of the heater element 5 to the sensor element 2 .
  • the inner terminal 72 is in contact with the reference electrode 4B provided on the inner surface 302 of the solid electrolyte body 3, the heat of the heater element 5 is transferred to the bottom side L1 and the opening side L2 of the sensor element 2. It can be effectively transmitted to the sensor element 2 .
  • the heat of the heater element 5 may be transferred to the sensor element 2 by thermal radiation or thermal convection.
  • the thickness of the bottom portion 233 of the porous layer 23 provided on the inner surface 302 of the bottom portion 32 of this embodiment is equal to the thickness of the opening of the porous layer 23 provided on the inner surface 302 of the cylindrical portion 31 . It is greater than the thickness of side portion 234 .
  • the inner surface 302 of the bottom portion 32 has the thickest portion of the entire porous layer 23 .
  • the thickness of the porous layer 23 is the thickest at the center position of the bottom portion 32 .
  • the thickness of the bottom side portion 233 of the porous layer 23 provided on the inner surface 302 of the bottom portion 32 and the thickness of the portion 233A of the porous layer 23 provided on the inner surface 302 of the straight cylindrical portion 311 are Thickness is relatively large.
  • the thickness of the opening side portion 234 of the porous layer 23 provided on the inner surface 302 of the tapered cylindrical portion 312 and the thickness of the opening side portion 234 of the porous layer 23 provided on the inner surface 302 of the flange portion 313 are , relatively small.
  • the thickness of the bottom-side portion 233 of the porous layer 23 inside the bottom portion 32 is relatively large.
  • a wide range around the heat generating portion 521 is likely to come into contact with the sensor element 2 .
  • a wide area around the heat generating portion 521 of the heater element 5 can be brought into contact with the sensor element 2 . Thereby, heat transfer from the heater element 5 to the sensor element 2 can be effectively promoted.
  • the portion of the reference electrode 4B and the portion of the porous layer 23 provided inside the cylindrical portion 31 are separated from the heater element 5, and the reference electrode 4B provided inside the bottom portion 32 is separated from the heater element 5. is in contact with the heater element 5 .
  • the corner portion of the bottom side L1 in the axial direction L of the heater element 5 may be in contact with the reference electrode 4B inside the bottom portion 32 of the sensor element 2 .
  • the tip 501 of the heater element 5 in the axial direction L may be in contact with the reference electrode 4B inside the bottom portion 32 of the sensor element 2 . Due to the configuration in which the thickness of the bottom side portion 233 of the porous layer 23 inside the bottom portion 32 is relatively large, a wide range of the tip portion of the heater element 5 in the axial direction L serves as a reference inside the bottom portion 32 of the sensor element 2 . Surface contact with the electrode 4B becomes possible.
  • the porous layer 23 is formed of a large number of solid electrolyte particles, unevenness 232 is formed on the surface of the porous layer 23 by the solid electrolyte particles.
  • unevenness 401 is formed on the surface of the reference electrode 4B provided on the surface of the porous layer 23 .
  • the protrusions of the unevenness 401 of the reference electrode 4B are likely to come into contact with the heater element 5 .
  • the friction generated between the reference electrode 4B and the heater element 5 can be kept small.
  • the dimension of the bottom portion 32 of the sensor element 2, the thickness of the porous layer 23, etc. may be devised so that the heater element 5 is intentionally brought into contact with the projections of the irregularities 401 formed on the surface of the reference electrode 4B. good. Further, when the heater element 5 comes into contact with the projections of the irregularities 401 formed on the surface of the reference electrode 4B, the contact portion or the projections may be partially deformed. Partial deformation of the contact portion or protrusion is caused by deformation of at least one of the porous layer 23 and the reference electrode 4B. In particular, since the porous layer 23 has a large number of pores 231, it is easily deformed.
  • the contact area between the heater element 5 and the sensor element 2 can be increased, and the degree of adhesion therebetween can be increased.
  • the configuration in which the heater element 5 is in contact with the convex portion of the reference electrode 4B makes it possible to more effectively conduct heat from the heater element 5 to the sensor element 2, thereby reducing the temperature difference between the heater element 5 and the sensor element 2. , can be mitigated more effectively.
  • the opening side portion 234 of the porous layer 23 of this embodiment is formed with a thickness within the range of 1 to 20 ⁇ m.
  • the bottom side portion 233 of the porous layer 23 is formed to have a thickness greater than that of the opening side portion 234 and within a range of 20 to 50 ⁇ m. Since the thickness of the bottom side portion 233 of the porous layer 23 is 2.5 times or more the thickness of the opening side portion 234 of the porous layer 23, the heat transfer effect at the bottom side L1 portion of the solid electrolyte body 3 can be properly obtained.
  • the outer surface 301 of the solid electrolyte body 3 is formed with a base layer 21 made of solid electrolyte particles having a plurality of types of particle diameters and made of a solid electrolyte material. Solid electrolyte particles with a relatively small particle size and solid electrolyte particles with a relatively large particle size are used for the underlayer 21 of this embodiment.
  • the detection electrode 4A of this embodiment is provided on the surface of the underlying layer 21 .
  • the surface of the base layer 21 is made uneven by solid electrolyte particles in order to increase the surface area of the detection electrode 4A and to prevent the detection electrode 4A from peeling off.
  • the outer surface 301 of the solid electrolyte body 3 is provided with a protective layer 22 made of a ceramic porous body that covers at least the entire outer detection portion 41 of the detection electrode 4A. .
  • the protective layer 22 is permeable to the gas G to be detected and prevents the detection electrode 4A from being poisoned and wet.
  • the protective layer 22 of this embodiment is formed of a plurality of laminated layers having different porosities.
  • the protective layer 22 of this embodiment includes a first protective layer 221 provided on the surface of the detection electrode 4A, a second protective layer 222 provided on the surface of the first protective layer 221, and a second protective layer 222 provided on the surface of the first protective layer 221. 2 and a third protective layer 223 provided on the surface of the second protective layer 222 .
  • the first protective layer 221 protects the detection electrode 4A from the heat of the gas G to be detected.
  • the second protective layer 222 has a function of adsorbing the poisoning substance of the detection electrode 4A in the gas G to be detected, and supports catalyst particles for adjusting the components of the gas G to be detected.
  • the third protective layer 223 has a function of adsorbing the poisoning substance of the detection electrode 4A in the gas G to be detected, and also protects the sensor element 2 from condensed water.
  • the heater element 5 has ceramic substrates 51A and 51B, and a heating element 52 made of a conductor provided on the substrate 51B.
  • the heat-generating portion 521 of the heat-generating member 52 is formed with the smallest cross-sectional area in the heat-generating member 52 and is a portion that generates heat by Joule heat when the heat-generating member 52 is energized.
  • the heat generating portion 521 is formed in a meandering shape in the axial direction L at the tip portion of the heat generating body 52 .
  • the heater element 5 is formed by winding a sheet-like base material 51B provided with a heating element 52 around a base material 51A serving as a mandrel.
  • the reference electrode 4B on the bottom 32 of the solid electrolyte body 3 is in contact with the tip 501 of the base material 51A serving as the mandrel.
  • the gas sensor 1 includes, in addition to the sensor element 2 and the heater element 5, a housing 61 that holds the sensor element 2;
  • the proximal side cover 63 attached to the proximal side L2 portion of the sensor element 2, the inner terminal 72 attached to the inner surface 302 of the opening side L2 portion of the sensor element 2, the outer surface of the opening side L2 portion of the sensor element 2
  • An outer terminal 71 and the like attached to 301 are provided.
  • the housing 61 is formed with an insertion hole 611 penetrating in the axial direction L to hold the sensor element 2 .
  • the insertion hole 611 has a small-diameter hole portion 612 positioned on the distal end side L1 in the axial direction L and a large-diameter hole portion 613 positioned on the proximal end side L2 in the axial direction L and having a larger diameter than the small-diameter hole portion 612. .
  • the sensor element 2 is inserted into the small-diameter hole portion 612 and the large-diameter hole portion 613 of the insertion hole 611, and a sealing material such as talc powder or a sleeve is placed in the gap between the sensor element 2 and the large-diameter hole portion 613. 64.
  • the sensor element 2 is pulled out from the insertion hole 611 of the housing 61 to the tip end side L1 by locking the collar portion 313, which is the portion of the sensor element 2 having the largest outer diameter, to the end portion of the small diameter hole portion 612. is prevented.
  • a crimped portion 615 that is bent inward is formed at a portion on the opening side L2 in the axial direction L of the housing 61 .
  • the sealing material 64 is compressed in the axial direction L between the crimped portion 615 and the flange portion 313 to hold the sensor element 2 in the housing 61 .
  • a portion of the bottom side L1 of the sensor element 2, particularly a portion where the outer detection portion 41 is formed, is arranged to protrude from the housing 61 toward the tip side L1 in the axial direction L. As shown in FIG.
  • a distal end portion for protecting the sensor element 2 by covering the portion of the sensor element 2 projecting from the housing 61 toward the distal end side L1 is provided on the distal end side L1 in the axial direction L of the housing 61 .
  • a cover 62 is attached.
  • the tip side cover 62 is arranged inside the exhaust pipe.
  • a gas passage hole 621 for allowing the gas G to be detected to pass is formed in the tip side cover 62 .
  • the tip side cover 62 may be of a double structure or of a single structure. Exhaust gas as the detection target gas G flowing into the distal end cover 62 from the gas passage hole 621 of the distal end cover 62 passes through the protective layer 22 of the sensor element 2 and is guided to the detection electrode 4A.
  • a proximal end cover 63 is attached to the opening side L2 of the housing 61 in the axial direction L.
  • the proximal end cover 63 is arranged outside the exhaust pipe.
  • An introduction hole 631 for introducing air as the reference gas A into the proximal side cover 63 is formed in a part of the proximal side cover 63 .
  • the introduction hole 631 is provided with a filter 632 that blocks the passage of liquid but allows the passage of gas.
  • the reference gas A introduced into the base end cover 63 through the introduction hole 631 passes through the space inside the base end cover 63 and is guided to the reference electrode 4B inside the sensor element 2 .
  • an inner terminal 72 that contacts the reference electrode 4B is attached to the inner surface 302 of the solid electrolyte body 3 on the opening side L2.
  • An outer terminal 71 is attached to the outer surface 301 of the solid electrolyte body 3 on the opening side L2 to contact the outer connection portion 43 of the detection electrode 4A.
  • Lead wires 65 are attached to the inner terminal 72 and the outer terminal 71 for electrically connecting the reference electrode 4B and the detection electrode 4A of the sensor element 2 to an external control device.
  • the lead wire 65 is held by a bush 66 arranged inside the proximal cover 63 .
  • powder of a solid electrolyte material is prepared by solid-solution substitution of zirconium oxide with at least one of rare earth oxides such as yttrium oxide and alkaline earth metal oxides as additives.
  • the powder of the solid electrolyte material is formed into a preliminary shape close to a cylindrical shape with a bottom by a rubber press, and then ground into a precursor of a cylindrical shape with a bottom as the final shape.
  • the precursor was heat-treated in an atmospheric environment at 1100 to 1200° C. for 2 hours to obtain a calcined solid electrolyte body 3 .
  • the powder of the solid electrolyte material is mixed with ion-exchanged water, polyvinyl alcohol, and an alkylsulfonic acid system.
  • a first slurry is generated by mixing and stirring a dispersant, acrylic resin microbeads, etc. as a burn-off material for forming the pores 231 .
  • a pin for thickness adjustment is inserted inside the solid electrolyte body 3 . At this time, the gap between the pin and the inner surface 302 of the solid electrolyte body 3 is filled with the first slurry.
  • the pins are pulled out from the inside of the solid electrolyte body 3 before the first slurry is completely dried.
  • the first slurry flows toward the bottom side L1 in the axial direction L due to gravity.
  • the thickness of the first slurry on the bottom side L1 in the axial direction L is greater than the thickness of the first slurry on the opening side L2 in the axial direction L.
  • the first slurry forms the porous layer 23 in which the bottom side portion 233 is thicker than the opening side portion 234 .
  • the porous layer 23 of this embodiment was formed so that the thickness of the bottom side portion 233 was within the range of 20 to 50 ⁇ m and the thickness of the opening side portion 234 was within the range of 1 to 20 ⁇ m after firing.
  • the porosity of the porous layer 23 was adjusted to be within the range of 5 to 40% by adjusting the amount of polyvinyl alcohol added and the amount of acrylic resin microbeads that burn during firing.
  • the powder of the solid electrolyte material is mixed with ion-exchanged water, polyvinyl alcohol, an alkylsulfonic acid-based dispersant, and a burnout material for forming the pores 231.
  • a second slurry is produced by mixing and stirring acrylic resin microbeads and the like. Also, part of the powder of the solid electrolyte material is spray-dried with a spray dryer to obtain granulated powder, and the granulated powder is mixed with the second slurry to obtain granulated powder slurry.
  • the solid electrolyte body 3 is immersed in the granulated powder slurry, and the outer surface 301 of the solid electrolyte body 3 is dip-coated with the granulated powder slurry.
  • the base layer 21 of this embodiment was formed so that the thickness of the portion where the powder of the solid electrolyte material was placed, excluding the portion where the granulated powder was placed, was in the range of 10 to 50 ⁇ m after firing. Also, the porosity of the underlying layer 21 was adjusted to about 10% by the same method as for the porous layer 23 .
  • the solid electrolyte material used for the porous layer 23 and the solid electrolyte material used for the underlying layer 21 are the same as the solid electrolyte material used for the solid electrolyte body 3 . Then, the unfired solid electrolyte body 3 having the porous layer 23 and the underlying layer 21 formed thereon was fired in an atmospheric environment at 1450° C. for 2 hours to obtain a fired body of the solid electrolyte body 3 .
  • the fired body is immersed in an aqueous hydrofluoric acid solution in order to roughen the surface of the fired body of the solid electrolyte body 3. was washed with water and dried.
  • a paste-like electrode material containing an organoplatinum compound is applied to the sintered body so as to form a desired electrode pattern, and the sintered body is heat-treated to degrease organic substances in the electrode material.
  • the fired body after degreasing is subjected to plating treatment using an electroless platinum plating solution, and then subjected to heat treatment in an atmospheric environment at 1000 to 1200° C. for 1 hour.
  • the detection electrode 4A and the reference electrode 4B are provided on the sintered body of the solid electrolyte body 3 .
  • the first protective layer 221 is formed on the outside of the solid electrolyte body 3 by plasma spraying magnesium aluminate powder having a spinel structure.
  • the solid electrolyte body 3 is immersed in a mixed slurry containing alumina particles, alumina sol, ion-exchanged water, catalyst particles made of platinum or platinum and rhodium, etc., and the second protective layer 222 is formed on the surface of the first protective layer 221.
  • the solid electrolyte body 3 is immersed in a mixed slurry containing alumina particles, alumina sol, ion-exchanged water, etc. to form the third protective layer 223 on the surface of the second protective layer 222 .
  • the solid electrolyte body 3 is heat-treated at 500 to 900° C. to manufacture the sensor element 2 .
  • a gas sensor 1 of this embodiment includes a sensor element 2 in which a solid electrolyte body 3 having a bottomed cylindrical shape is provided with a detection electrode 4A and a reference electrode 4B.
  • a porous layer 23 having many pores 231 is provided between the solid electrolyte body 3 and the reference electrode 4B. Formation of the porous layer 23 can reduce the gap between the sensor element 2 and the heater element 5 arranged inside the sensor element 2, and facilitates the heater element 5 to come into contact with the sensor element 2 over a wide range. can be done.
  • the heat transfer from the heater element 5 to the sensor element 2 can be effectively promoted, and the temperature difference between the heater element 5 and the sensor element 2 can be reduced. can be made smaller.
  • the temperature difference between the heater element 5 and the sensor element 2 can be reduced, and the assembly of the gas sensor 1 can be facilitated.
  • This embodiment shows the case where the porous layer 23 is provided on the surface of the reference electrode 4B in the solid electrolyte body 3, as shown in FIG. Since the porous layer 23 of this embodiment is provided on the surface of the reference electrode 4B, it does not have to have properties as a solid electrolyte between the detection electrode 4A and the reference electrode 4B.
  • the porous layer 23 of this embodiment is made of a metal oxide such as aluminum oxide instead of a solid electrolyte material.
  • the porous layer 23 is formed of a large number of metal oxide particles.
  • the porous layer 23 of this embodiment is formed to reduce the gap between the heater element 5 and the sensor element 2 .
  • the thickness of the portion of the porous layer 23 provided inside the bottom portion 32 is greater than the thickness of the portion of the porous layer 23 provided inside the cylindrical portion 31 .
  • the portion of the porous layer 23 provided on the surface of the reference electrode 4B inside the bottom portion 32 is in contact with the heater element 5 .
  • irregularities 232 are formed by a large number of metal oxide particles.
  • the contact portion of the heater element 5 or the convex portion of the unevenness 232 in the porous layer 23 may be deformed.
  • the reference gas A can come into contact with the reference electrode 4B through the pores 231 in the porous layer 23 .
  • the temperature difference between the heater element 5 and the sensor element 2 can be reduced, and the assembly of the gas sensor 1 can be facilitated.
  • Other configurations, effects, and the like of the gas sensor 1 of this embodiment are the same as those of the first embodiment.
  • constituent elements indicated by the same reference numerals as those in the first embodiment are the same as those in the first embodiment.
  • This embodiment shows a case where the composition of the solid electrolyte material forming the porous layer 23 is devised.
  • a part of zirconia is a rare earth oxide as a rare earth metal element or as an alkaline earth metal element. stabilized zirconia or partially stabilized zirconia replaced by alkaline earth oxides.
  • the content ratio of the solid electrolyte material substitute in the porous layer 23 is adjusted in order to compensate for the decrease in conductivity of oxide ions.
  • the content of the rare earth oxide or alkaline earth oxide in the solid electrolyte material forming the porous layer 23 is equal to the content of the rare earth oxide or alkaline earth oxide in the solid electrolyte material forming the solid electrolyte body 3. It is large compared to the oxide content. Since the porous layer 23 has a large number of pores 231 , the conductivity of oxide ions is lower than that of the solid electrolyte body 3 . By relatively increasing the content of rare earth oxides or alkaline earth oxides in the solid electrolyte material constituting the porous layer 23, the conductivity of oxide ions in the porous layer 23 can be increased. .
  • the performance of the sensor element 2 can be enhanced due to the high oxide ion conductivity of the porous layer 23 .
  • Other configurations, effects, and the like of the gas sensor 1 of this embodiment are the same as those of the first and second embodiments. Further, in this embodiment as well, constituent elements indicated by the same reference numerals as those in the first and second embodiments are the same as those in the first and second embodiments.
  • the heater element 5 is controlled so that the temperature of the outer detection part 41 of the detection electrode 4A reaches 650° C. in a state where the heater element 5 is arranged inside each sensor element of the test product and the comparative product. did. Then, the temperature of the outer detection portion 41 of the detection electrode 4A was measured as the temperature of each sensor element, and the temperature of the heating portion 521 of the heating element 52 of the heater element 5 was measured as the temperature of the heater element 5. As a result, in the sensor element of the comparative product, the temperature of the sensor element was 651.degree. C., the temperature of the heater element 5 was 947.degree. On the other hand, in the sensor element 2 of the practical product, the temperature of the sensor element 2 was 652°C, the temperature of the heater element 5 was 891°C, and the temperature difference between them was 239°C.
  • the gas sensor 1 using the sensor element 2 of the present embodiment reduces the temperature difference between the heater element 5 and the sensor element 2, and early activation of the gas sensor 1 is achieved. rice field. Further, it was found that the life of the heater element 5 is improved by lowering the temperature of the heater element 5 when heating the detection portion by the detection electrode 4A and the reference electrode 4B of the sensor element 2 to the target temperature.
  • present disclosure is not limited to only each embodiment, and further different embodiments can be configured without departing from the gist thereof.
  • the present disclosure includes various modifications, modifications within the equivalent range, and the like.
  • the technical idea of the present disclosure includes combinations of various constituent elements, forms, and the like assumed from the present disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

This gas sensor is provided with a sensor element (2), and the sensor element (2) includes a solid electrolyte body (3), a detecting electrode (4A), and a reference electrode (4B). The solid electrolyte body (3) is in the shape of a bottomed cylinder, and is configured from a solid electrolyte material having ion conductivity. The detecting electrode (4A) is provided on the outside of the solid electrolyte body (3), in a state of being exposed to a detection target gas (G). The reference electrode (4B) is provided on the inside of the solid electrolyte body (3), in a state of being exposed to a reference gas (A). A porous layer (23) having multiple pores is provided between the solid electrolyte body (3) and the reference electrode (4B).

Description

ガスセンサgas sensor 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年4月19日に出願された日本の特許出願番号2021-70519号に基づくものであり、その記載内容を援用する。 This application is based on Japanese Patent Application No. 2021-70519 filed on April 19, 2021, and the contents thereof are incorporated herein.
 本開示は、センサ素子を備えるガスセンサに関する。 The present disclosure relates to a gas sensor including a sensor element.
 ガスセンサは、例えば、車両の内燃機関の排気管等に配置され、排気管を流れる排ガスを検出対象ガスとして、検出対象ガスに基づく内燃機関の空燃比等を求めるために使用される。また、ガスセンサは、例えば、内燃機関の空燃比が、理論空燃比に対してリッチ側にあるかリーン側にあるかを検出するために使用される。ガスセンサを構成するセンサ素子には、板状の固体電解質体が用いられる場合と、有底円筒形状の固体電解質体が用いられる場合とがある。 A gas sensor is placed, for example, in an exhaust pipe of an internal combustion engine of a vehicle, and is used to obtain the air-fuel ratio of the internal combustion engine based on the detection target gas, with the exhaust gas flowing through the exhaust pipe as the detection target gas. Also, the gas sensor is used, for example, to detect whether the air-fuel ratio of the internal combustion engine is on the rich side or on the lean side with respect to the stoichiometric air-fuel ratio. A plate-shaped solid electrolyte body and a cylindrical solid electrolyte body with a bottom are used as the sensor element constituting the gas sensor.
 有底円筒形状の固体電解質体においては、排ガス等の検出対象ガスに晒される検出電極(測定電極)が外側面に設けられており、大気等の基準ガスに晒される基準電極が内側面に設けられている。検出電極及び基準電極は、酸素に対する触媒活性を有するものである。また、この固体電解質体の外側面には、検出電極を覆う状態で、水、被毒物質等を捕獲する一方、検出対象ガスを透過させる多孔質層が設けられている。 In the bottomed cylindrical solid electrolyte body, a detection electrode (measurement electrode) that is exposed to a detection target gas such as exhaust gas is provided on the outer surface, and a reference electrode that is exposed to a reference gas such as the atmosphere is provided on the inner surface. It is The sensing and reference electrodes are catalytically active towards oxygen. Further, on the outer surface of the solid electrolyte body, a porous layer that captures water, poisonous substances, etc. and allows the gas to be detected to permeate is provided in a state of covering the detection electrode.
 また、有底円筒形状の固体電解質体を有するセンサ素子の内側には、センサ素子の底側部位に設けられた検出電極及び基準電極の部分を加熱するためのヒータ素子が配置されている。ヒータ素子は、検出電極及び基準電極に対向する位置に、発熱体における発熱部を有している。 Further, inside the sensor element having a bottomed cylindrical solid electrolyte body, a heater element for heating the detection electrode and the reference electrode provided on the bottom side portion of the sensor element is arranged. The heater element has a heating portion of the heating element at a position facing the detection electrode and the reference electrode.
 例えば、特許文献1に記載されたガスセンサは、先端が閉じられた筒部を有する固体電解質体からなるセンサ素子と、センサ素子の内部に配置され、発熱することによりセンサ素子を加熱するヒータ素子とを備える。そして、センサ素子の活性化に要する時間を短縮するために、ヒータ素子の先端部は、センサ素子の先端部の内面と接触しており、かつヒータ素子の側部は、センサ素子の筒部の内周面と接触している。 For example, the gas sensor described in Patent Document 1 includes a sensor element composed of a solid electrolyte body having a cylindrical portion with a closed tip, and a heater element arranged inside the sensor element to heat the sensor element by generating heat. Prepare. In order to shorten the time required for activation of the sensor element, the tip of the heater element is in contact with the inner surface of the tip of the sensor element, and the side of the heater element is located on the cylindrical portion of the sensor element. It is in contact with the inner peripheral surface.
WO2013/024775号公報WO2013/024775
 特許文献1のガスセンサにおいては、ヒータ素子の中心軸線をセンサ素子の中心軸線に対して意図的に偏心させて、ヒータ素子の側部をセンサ素子の筒部の内周面に接触させる必要がある。そのため、ガスセンサの組み付け時に、センサ素子及びヒータ素子が損傷しないように工夫する必要があり、ガスセンサの組み付けが容易ではない。また、特許文献1のガスセンサにおいては、ヒータ素子の側部における周方向の一部が、ヒータ素子の筒部の内周面に中心軸線の方向に沿って線状に接触する。そのため、ヒータ素子からセンサ素子への伝熱を促進して、ヒータ素子とセンサ素子との温度差を小さくするためには十分ではなく、このためには更なる工夫が必要である。 In the gas sensor of Patent Document 1, it is necessary to intentionally eccentrically align the central axis of the heater element with respect to the central axis of the sensor element so that the sides of the heater element come into contact with the inner peripheral surface of the cylindrical portion of the sensor element. . Therefore, it is necessary to devise ways to prevent damage to the sensor element and the heater element when assembling the gas sensor, and assembling the gas sensor is not easy. In addition, in the gas sensor of Patent Document 1, a part of the side portion of the heater element in the circumferential direction linearly contacts the inner circumferential surface of the cylindrical portion of the heater element along the direction of the central axis. Therefore, it is not sufficient to accelerate the heat transfer from the heater element to the sensor element and to reduce the temperature difference between the heater element and the sensor element.
 本開示は、ヒータ素子とセンサ素子との温度差を小さくすることができるとともに、ガスセンサの組み付けを容易にすることができるガスセンサを提供しようとするものである。 An object of the present disclosure is to provide a gas sensor that can reduce the temperature difference between the heater element and the sensor element and facilitate assembly of the gas sensor.
 本開示の一態様は、
 有底円筒形状を有し、イオン伝導性を有する固体電解質材料によって構成された固体電解質体、前記固体電解質体の外側に設けられて検出対象ガスに晒される検出電極、及び前記固体電解質体の内側に設けられて基準ガスに晒される基準電極を有するセンサ素子を備えるガスセンサであって、
 前記固体電解質体と前記基準電極との間、又は前記基準電極の表面には、多数の気孔を有する多孔質層が設けられている、ガスセンサにある。
One aspect of the present disclosure is
A solid electrolyte body having a bottomed cylindrical shape and made of a solid electrolyte material having ionic conductivity, a detection electrode provided outside the solid electrolyte body and exposed to a gas to be detected, and an inside of the solid electrolyte body A gas sensor comprising a sensor element having a reference electrode provided in and exposed to a reference gas,
In the gas sensor, a porous layer having a large number of pores is provided between the solid electrolyte body and the reference electrode or on the surface of the reference electrode.
 前記一態様のガスセンサは、有底円筒形状を有する固体電解質体に検出電極及び基準電極が設けられたセンサ素子を備える。そして、センサ素子において、固体電解質体と基準電極との間、又は基準電極の表面には、多数の気孔を有する多孔質層が設けられている。多孔質層の形成により、センサ素子とセンサ素子の内側に配置されたヒータ素子との隙間を小さくすることができ、ヒータ素子がセンサ素子に広い範囲で接触しやすくすることができる。 The gas sensor of the above aspect includes a sensor element in which a detection electrode and a reference electrode are provided in a solid electrolyte body having a bottomed cylindrical shape. In the sensor element, a porous layer having a large number of pores is provided between the solid electrolyte body and the reference electrode or on the surface of the reference electrode. By forming the porous layer, the gap between the sensor element and the heater element arranged inside the sensor element can be reduced, and the heater element can easily come into contact with the sensor element over a wide range.
 これにより、ヒータ素子によってセンサ素子を加熱する際には、ヒータ素子からセンサ素子への伝熱を効果的に促進することができ、ヒータ素子とセンサ素子との温度差を小さくすることができる。また、センサ素子の内側にヒータ素子を配置する際に特別な工夫をする必要がなく、ガスセンサの組み付けを容易にすることができる。 Thereby, when the sensor element is heated by the heater element, heat transfer from the heater element to the sensor element can be effectively promoted, and the temperature difference between the heater element and the sensor element can be reduced. In addition, there is no need to take special measures when arranging the heater element inside the sensor element, and the assembly of the gas sensor can be facilitated.
 それ故、前記一態様のガスセンサによれば、ヒータ素子とセンサ素子との温度差を小さくすることができるとともに、ガスセンサの組み付けを容易にすることができる。 Therefore, according to the gas sensor of one aspect, the temperature difference between the heater element and the sensor element can be reduced, and the assembly of the gas sensor can be facilitated.
 なお、本開示の一態様において示す各構成要素のカッコ書きの符号は、実施形態における図中の符号との対応関係を示すが、各構成要素を実施形態の内容のみに限定するものではない。 It should be noted that the symbols in parentheses for each component shown in one aspect of the present disclosure indicate the correspondence relationship with the symbols in the drawings in the embodiment, but each component is not limited only to the contents of the embodiment.
 本開示についての目的、特徴、利点等は、添付の図面を参照する後記の詳細な記述によって、より明確になる。本開示の図面を以下に示す。
図1は、実施形態1にかかる、ガスセンサを示す説明図である。 図2は、実施形態1にかかる、センサ素子の断面を示す説明図である。 図3は、実施形態1にかかる、センサ素子の表面における検出電極の形成状態を示す説明図である。 図4は、実施形態1にかかる、センサ素子及びヒータ素子の先端側部分の断面を拡大して示す説明図である。 図5は、実施形態1にかかる、センサ素子の円筒部の一部の断面を拡大して示す説明図である。 図6は、実施形態2にかかる、センサ素子の断面を示す説明図である。
Objects, features, advantages, etc. of the present disclosure will become clearer from the following detailed description with reference to the accompanying drawings. Drawings of the present disclosure are provided below.
FIG. 1 is an explanatory diagram showing a gas sensor according to Embodiment 1. FIG. FIG. 2 is an explanatory diagram showing a cross section of the sensor element according to the first embodiment. 3A and 3B are explanatory diagrams showing a formation state of detection electrodes on the surface of the sensor element according to the first embodiment. FIG. FIG. 4 is an explanatory view showing an enlarged cross-section of tip side portions of the sensor element and the heater element according to the first embodiment. FIG. 5 is an explanatory diagram showing an enlarged cross section of a portion of the cylindrical portion of the sensor element according to the first embodiment. FIG. 6 is an explanatory diagram showing a cross section of the sensor element according to the second embodiment.
 前述したガスセンサ1にかかる好ましい実施形態について、図面を参照して説明する。
<実施形態1>
 本形態のガスセンサ1は、図1~図4に示すように、センサ素子2を備えており、センサ素子2は、固体電解質体3、検出電極4A及び基準電極4Bを有する。固体電解質体3は、有底円筒形状を有しており、イオン伝導性を有する固体電解質材料によって構成されている。検出電極4Aは、検出対象ガスGに晒される状態で、固体電解質体3の外側に設けられている。基準電極4Bは、基準ガスAに晒される状態で、固体電解質体3の内側に設けられている。固体電解質体3と基準電極4Bとの間には、多数の気孔231を有する多孔質層23が設けられている。
A preferred embodiment of the gas sensor 1 described above will be described with reference to the drawings.
<Embodiment 1>
As shown in FIGS. 1 to 4, the gas sensor 1 of this embodiment includes a sensor element 2, and the sensor element 2 has a solid electrolyte body 3, a detection electrode 4A and a reference electrode 4B. The solid electrolyte body 3 has a bottomed cylindrical shape and is made of a solid electrolyte material having ionic conductivity. The detection electrode 4A is provided outside the solid electrolyte body 3 in a state of being exposed to the gas G to be detected. The reference electrode 4B is provided inside the solid electrolyte body 3 in a state of being exposed to the reference gas A. As shown in FIG. A porous layer 23 having a large number of pores 231 is provided between the solid electrolyte body 3 and the reference electrode 4B.
 本形態のセンサ素子2及びガスセンサ1においては、センサ素子2の中心軸線Oに沿った方向を軸方向Lといい、センサ素子2の中心軸線Oの周りの方向を周方向Cといい、センサ素子2の中心軸線Oから放射状に広がる方向を径方向Rという。また、センサ素子2においては、センサ素子2の底部32が設けられた側を底側L1といい、底側L1とは反対側を開口側L2という。ガスセンサ1においては、底側L1に対応する側を先端側L1といい、底側L1に対応する側を基端側L2という。 In the sensor element 2 and the gas sensor 1 of this embodiment, the direction along the central axis O of the sensor element 2 is called the axial direction L, and the direction around the central axis O of the sensor element 2 is called the circumferential direction C. 2 is called a radial direction R. Further, in the sensor element 2, the side on which the bottom portion 32 of the sensor element 2 is provided is called the bottom side L1, and the side opposite to the bottom side L1 is called the opening side L2. In the gas sensor 1, the side corresponding to the bottom side L1 is called the distal end side L1, and the side corresponding to the bottom side L1 is called the base end side L2.
 以下に、本形態のガスセンサ1について詳説する。
(ガスセンサ1)
 図1に示すように、ガスセンサ1は、車両の内燃機関(エンジン)から排気される排ガスが流れる排気管内に配置される。ガスセンサ1は、排気管内を流れる排ガスを検出対象ガスGとするとともに、大気を基準ガスAとして、ガス検出を行うものである。本形態のガスセンサ1は、固体電解質体3を介して検出電極4Aと基準電極4Bとの間に生じる起電力を検出して、排ガスの組成から求められる内燃機関の空燃比が、理論空燃比と比べて空気に対する燃料の割合が多い燃料リッチ側にあるか、理論空燃比と比べて空気に対する燃料の割合が少ない燃料リーン側にあるかを判定する酸素センサとして用いられる。
The gas sensor 1 of this embodiment will be described in detail below.
(Gas sensor 1)
As shown in FIG. 1, a gas sensor 1 is arranged in an exhaust pipe through which exhaust gas discharged from an internal combustion engine of a vehicle flows. The gas sensor 1 uses the exhaust gas flowing in the exhaust pipe as the detection target gas G and the atmosphere as the reference gas A to perform gas detection. The gas sensor 1 of this embodiment detects the electromotive force generated between the detection electrode 4A and the reference electrode 4B via the solid electrolyte body 3, and the air-fuel ratio of the internal combustion engine obtained from the composition of the exhaust gas is different from the stoichiometric air-fuel ratio. It is used as an oxygen sensor to determine whether the air-fuel ratio is on the fuel-rich side, where the ratio of fuel to air is higher than the stoichiometric air-fuel ratio, or on the fuel-lean side, where the ratio of fuel to air is lower than the stoichiometric air-fuel ratio.
 ガスセンサ1は、内燃機関における空燃比を、排気管内に配置された三元触媒の触媒活性が効果的に維持される理論空燃比の近傍にするために用いられる。ガスセンサ1は、排気管における三元触媒の配置位置よりも、排ガスの流れの上流側の位置及び下流側の位置のいずれに配置してもよい。 The gas sensor 1 is used to bring the air-fuel ratio in the internal combustion engine close to the stoichiometric air-fuel ratio at which the catalytic activity of the three-way catalyst arranged in the exhaust pipe is effectively maintained. The gas sensor 1 may be arranged either upstream or downstream of the exhaust gas flow relative to the position of the three-way catalyst in the exhaust pipe.
 特に、本形態のガスセンサ1は、センサ素子2の軸方向Lの温度分布を適切に保つことができるため、内燃機関の排ガスがより低温になる場合にも有効に使用することができる。また、排気管における三元触媒の配置位置よりも下流側の位置においては、三元触媒の配置位置よりも上流側の位置に比べて排ガスの温度が低くなる。本形態のガスセンサ1は、排ガスの温度が低くなる、三元触媒の配置位置よりも下流側の位置に配置することが好適である。なお、三元触媒の配置位置よりも上流側の位置には、空燃比を検出する空燃比センサを配置し、内燃機関の燃焼制御においては、空燃比センサと酸素センサとを併用してもよい。 In particular, since the gas sensor 1 of this embodiment can maintain an appropriate temperature distribution in the axial direction L of the sensor element 2, it can be effectively used even when the temperature of the exhaust gas from the internal combustion engine becomes lower. Further, the temperature of the exhaust gas is lower at a position downstream than the three-way catalyst arrangement position in the exhaust pipe compared to a position upstream from the three-way catalyst arrangement position. The gas sensor 1 of the present embodiment is preferably arranged at a position downstream of the position where the three-way catalyst is arranged, where the temperature of the exhaust gas is low. An air-fuel ratio sensor for detecting the air-fuel ratio may be arranged upstream of the arrangement position of the three-way catalyst, and in the combustion control of the internal combustion engine, the air-fuel ratio sensor and the oxygen sensor may be used together. .
 図1及び図4に示すように、ガスセンサ1は、センサ素子2の他に、センサ素子2の軸方向Lの底側L1の部位を加熱するためのヒータ素子5を備える。ヒータ素子5は、基材51A,51Bに発熱体52を設けることによって形成されている。ヒータ素子5は、センサ素子2の底側L1の部位を加熱するための発熱部521を軸方向Lの先端側L1の部位に有しており、ヒータ素子5の先端501は、センサ素子2の底部32の内側に接触している。 As shown in FIGS. 1 and 4, the gas sensor 1 includes, in addition to the sensor element 2, a heater element 5 for heating a portion of the sensor element 2 on the bottom side L1 in the axial direction L. The heater element 5 is formed by providing a heating element 52 on base materials 51A and 51B. The heater element 5 has a heat generating portion 521 for heating a portion on the bottom side L1 of the sensor element 2 at a portion on the tip side L1 in the axial direction L. It contacts the inside of the bottom 32 .
 ガスセンサ1は、センサ素子2及びヒータ素子5の他に、センサ素子2が挿通される挿通穴611が形成されたハウジング61と、固体電解質体3の開口側L2の部位の外側に装着されて検出電極4Aに接続された外側端子71と、固体電解質体3の開口側L2の部位の内側に装着されて基準電極4Bに接続された内側端子72とをさらに備える。 In addition to the sensor element 2 and the heater element 5, the gas sensor 1 is attached to a housing 61 formed with an insertion hole 611 through which the sensor element 2 is inserted, and to the outside of the opening side L2 of the solid electrolyte body 3 for detection. It further includes an outer terminal 71 connected to the electrode 4A, and an inner terminal 72 attached to the inside of the opening side L2 of the solid electrolyte body 3 and connected to the reference electrode 4B.
(センサ素子2)
 図2及び図3に示すように、センサ素子2の固体電解質体3は、ジルコニアを主成分とするものであり、希土類金属元素又はアルカリ土類金属元素によってジルコニアの一部を置換させた安定化ジルコニア又は部分安定化ジルコニアからなる。固体電解質体3は、イットリア安定化ジルコニア又はイットリア部分安定化ジルコニアから構成してもよい。固体電解質体3は、所定の活性化温度において、酸化物イオン(O2-)を伝導させるイオン伝導性を有するものである。検出電極4A及び基準電極4Bは、酸素に対する触媒活性を示す白金、及び固体電解質体3を構成する固体電解質材料と同等の固体電解質材料を含有している。
(Sensor element 2)
As shown in FIGS. 2 and 3, the solid electrolyte body 3 of the sensor element 2 is mainly composed of zirconia, and stabilized by substituting a part of zirconia with a rare earth metal element or an alkaline earth metal element. It consists of zirconia or partially stabilized zirconia. The solid electrolyte body 3 may be composed of yttria-stabilized zirconia or yttria-partially-stabilized zirconia. The solid electrolyte body 3 has ion conductivity to conduct oxide ions (O 2− ) at a predetermined activation temperature. The detection electrode 4A and the reference electrode 4B contain platinum, which exhibits catalytic activity with respect to oxygen, and a solid electrolyte material equivalent to the solid electrolyte material forming the solid electrolyte body 3 .
 固体電解質体3は、円筒部31と、円筒部31の底側L1に形成された曲面状の底部32とを有する。換言すれば、固体電解質体3は、円筒部31の先端部が曲面状(半球状)の底部32によって閉塞された有底円筒形状を有する。固体電解質体3の軸方向Lにおける、底部32と反対側の位置には、固体電解質体3の内側に基準ガスAを流入させるための開口部33が形成されている。円筒部31の軸方向Lにおける各部の外径は、ハウジング61への取り付けを考慮して、適宜変化している。 The solid electrolyte body 3 has a cylindrical portion 31 and a curved bottom portion 32 formed on the bottom side L1 of the cylindrical portion 31 . In other words, the solid electrolyte body 3 has a bottomed cylindrical shape in which the tip portion of the cylindrical portion 31 is closed by the curved (hemispherical) bottom portion 32 . An opening 33 for allowing the reference gas A to flow inside the solid electrolyte body 3 is formed at a position opposite to the bottom 32 in the axial direction L of the solid electrolyte body 3 . The outer diameter of each portion in the axial direction L of the cylindrical portion 31 is appropriately changed in consideration of attachment to the housing 61 .
 固体電解質体3の円筒部31は、軸方向Lの底側L1の部位において後述する外側検知部41が設けられたストレート円筒部311と、ストレート円筒部311の開口側L2において開口側L2に行くに連れて拡径するテーパ円筒部312と、テーパ円筒部312の開口側L2において固体電解質体3における最も外径が大きくなった部位である鍔部313とを有する。鍔部313は、ハウジング61の挿通穴611に形成された段差部614に係止される部位である。 The cylindrical portion 31 of the solid electrolyte body 3 has a straight cylindrical portion 311 provided with an outer detection portion 41 (to be described later) on the bottom side L1 in the axial direction L, and an opening side L2 of the straight cylindrical portion 311 toward the opening side L2. and a collar portion 313 which is a portion of the solid electrolyte body 3 having the largest outer diameter on the opening side L2 of the tapered cylindrical portion 312 . The collar portion 313 is a portion that is engaged with a stepped portion 614 formed in the insertion hole 611 of the housing 61 .
 図1及び図3に示すように、検出電極4Aは、外側検知部41、外側接続部43及び外側リード部42を有する。外側検知部41は、検出電極4Aの最も底側L1の位置において、円筒部31の中心軸線Oを中心とする周方向Cの全周に亘って設けられている。外側接続部43は、検出電極4Aの最も開口側L2の位置において、周方向Cの全周に亘って設けられており、外側端子71に接続されている。外側リード部42は、外側検知部41と外側接続部43とを繋ぐ位置において、周方向Cの一部に設けられている。 As shown in FIGS. 1 and 3, the detection electrode 4A has an outer detection portion 41, an outer connection portion 43 and an outer lead portion . The outer detection portion 41 is provided over the entire circumference in the circumferential direction C about the center axis O of the cylindrical portion 31 at the position closest to the bottom side L1 of the detection electrode 4A. The outer connection portion 43 is provided over the entire circumference in the circumferential direction C at the position closest to the opening side L2 of the detection electrode 4A, and is connected to the outer terminal 71 . The outer lead portion 42 is provided partly in the circumferential direction C at a position connecting the outer detection portion 41 and the outer connection portion 43 .
 図2に示すように、基準電極4Bは、多孔質層23の表面及び固体電解質体3の内側面302に設けられている。本形態の基準電極4Bは、固体電解質体3の内側面302のほぼ全体に設けられている。基準電極4Bは、軸方向Lの開口側L2の部位においては、固体電解質体3の内側面302に設けられており、軸方向Lの開口側L2の部位を除く部位においては、多孔質層23の表面に設けられている。 As shown in FIG. 2, the reference electrode 4B is provided on the surface of the porous layer 23 and the inner surface 302 of the solid electrolyte body 3. The reference electrode 4</b>B of this embodiment is provided on substantially the entire inner surface 302 of the solid electrolyte body 3 . The reference electrode 4B is provided on the inner surface 302 of the solid electrolyte body 3 at the portion on the opening side L2 in the axial direction L, and the porous layer 23 on the portion other than the portion on the opening side L2 in the axial direction L. is provided on the surface of
 基準電極4Bは、検出電極4Aと同様に、固体電解質体3の内側において、部分的に設けられていてもよい。基準電極4Bは、外側検知部41に固体電解質体3の部分を介して対向する底側L1の部位と、開口側L2の部位とにおいて全周に亘って設け、底側L1の部位と開口側L2の部位とを周方向Cの一部において繋ぐ状態で設けてもよい。 The reference electrode 4B may be partially provided inside the solid electrolyte body 3, similar to the detection electrode 4A. The reference electrode 4B is provided along the entire circumference of the bottom side L1 portion facing the outer detection portion 41 via the solid electrolyte body 3 and the opening side L2 portion. You may provide in the state which connects the site|part of L2 in a part of the circumferential direction C. FIG.
 固体電解質体3の内側面302の全体における、基準電極4Bの表面形成割合は、50%以上である。この基準電極4Bの表面形成割合を特定するときの固体電解質体3の内側面302には、固体電解質体3の内側面302に設けられた多孔質層23の表面も含む。基準電極4Bは、外側検知部41の内周側に位置する部位、及び内側端子72が装着される部位においては、固体電解質体3の周方向Cの全周に設けることが好ましい。基準電極4Bの表面形成割合が50%未満になると、基準電極4Bによる熱伝導の効果が小さくなり、ヒータ素子5の伝熱によるセンサ素子2の昇温速度が遅くなり、センサ素子2を活性化させる時間が長くなるおそれがある。なお、本形態の基準電極4Bの表面形成割合は100%である。 The ratio of surface formation of the reference electrode 4B to the entire inner surface 302 of the solid electrolyte body 3 is 50% or more. The inner surface 302 of the solid electrolyte body 3 when specifying the surface formation ratio of the reference electrode 4B also includes the surface of the porous layer 23 provided on the inner surface 302 of the solid electrolyte body 3 . The reference electrode 4B is preferably provided along the entire circumference of the solid electrolyte body 3 in the circumferential direction C at the portion located on the inner peripheral side of the outer detecting portion 41 and the portion at which the inner terminal 72 is attached. When the surface formation ratio of the reference electrode 4B is less than 50%, the effect of heat conduction by the reference electrode 4B is reduced, the temperature rise rate of the sensor element 2 due to the heat transfer of the heater element 5 is slowed, and the sensor element 2 is activated. It may take longer to let The surface formation ratio of the reference electrode 4B of this embodiment is 100%.
(多孔質層23)
 図2に示すように、本形態の多孔質層23は、固体電解質体3の内側面302に設けられている。より具体的には、多孔質層23は、固体電解質体3の内側面302と基準電極4Bとの間に挟まれている。また、多孔質層23は、固体電解質体3の内側面302における、軸方向Lの開口側L2の部位を除く部位に設けられている。多孔質層23は、固体電解質体3を構成する固体電解質材料に比べて気孔率が高い固体電解質材料によって構成されている。多孔質層23の組成は、固体電解質体3の組成と同じである。
(Porous layer 23)
As shown in FIG. 2 , the porous layer 23 of this embodiment is provided on the inner surface 302 of the solid electrolyte body 3 . More specifically, the porous layer 23 is sandwiched between the inner surface 302 of the solid electrolyte body 3 and the reference electrode 4B. In addition, the porous layer 23 is provided at a portion of the inner surface 302 of the solid electrolyte body 3 excluding the portion on the opening side L2 in the axial direction L. As shown in FIG. The porous layer 23 is made of a solid electrolyte material having a higher porosity than the solid electrolyte material forming the solid electrolyte body 3 . The composition of the porous layer 23 is the same as the composition of the solid electrolyte body 3 .
 多孔質層23は、固体電解質粒子同士の間の多数の気孔231の形成によって断熱層としての機能を有する。多孔質層23の気孔率は、断熱効果を高めるためには大きい方がよく、強度を高めるためには小さい方がよい。本形態の多孔質層23における気孔率は、5%以上40%以下である。多孔質層23の気孔率が5%未満である場合には、多孔質層23が断熱層としての効果が得られなくなるおそれがある。一方、多孔質層23の気孔率が40%超過である場合には、多孔質層23の強度が低くて、ガスセンサ1の組付時に多孔質層23が損傷するおそれがある。 The porous layer 23 functions as a heat insulating layer by forming numerous pores 231 between the solid electrolyte particles. The porosity of the porous layer 23 should be large in order to enhance the heat insulating effect, and should be small in order to enhance the strength. The porosity of the porous layer 23 of this embodiment is 5% or more and 40% or less. If the porosity of the porous layer 23 is less than 5%, the effect of the porous layer 23 as a heat insulating layer may not be obtained. On the other hand, when the porosity of the porous layer 23 exceeds 40%, the strength of the porous layer 23 is low, and the porous layer 23 may be damaged during assembly of the gas sensor 1 .
 多孔質層23における気孔率は、10%以上30%以下とすることが好ましい。この場合には、断熱効果がより適切に得られるとともにヒータ素子5によるセンサ素子2の昇温速度の低下が適切に防止される。 The porosity of the porous layer 23 is preferably 10% or more and 30% or less. In this case, a heat insulating effect can be obtained more appropriately, and a decrease in the rate of temperature increase of the sensor element 2 by the heater element 5 can be properly prevented.
 多孔質層23の気孔率は、次のようにして測定すればよい。多孔質体の一部を取り出して薄片の試料とし、試料の乾燥質量、飽水質量及び水中質量を測定する。そして、多孔質層23の気孔率Kは、K=(試料の飽水質量-試料の乾燥質量)/(試料の飽水質量-試料の水中質量)×100[%]として求められる。 The porosity of the porous layer 23 can be measured as follows. A part of the porous body is taken out to prepare a thin sample, and the dry mass, saturated water mass and underwater mass of the sample are measured. The porosity K of the porous layer 23 is calculated as K=(saturated mass of sample−dry mass of sample)/(saturated mass of sample−mass of sample in water)×100 [%].
 この気孔率の測定方法は、JIS R1634:1998の「ファインセラミックスの焼結体密度・開気孔率の測定方法」(アルキメデス法)に準拠する。また、このJIS規格には、ISO18754:2003「ファインセラミックス-密度及び見かけ気孔率の測定」のISO規格が相当する。 This porosity measurement method complies with JIS R1634: 1998 "Method for measuring sintered body density and open porosity of fine ceramics" (Archimedes method). Further, this JIS standard corresponds to the ISO standard of ISO18754:2003 "Fine ceramics-Determination of density and apparent porosity".
 センサ素子2の軸方向Lの底側L1の部位において、基準電極4Bは、多孔質層23の表面に設けられている。この構成により、ヒータ素子5の先端部は、固体電解質体3の底部32の内側に設けられた基準電極4Bに接触させることができる。そのため、ヒータ素子5の発熱部521において発生した熱を、熱伝導によって基準電極4Bを介して効果的にセンサ素子2に伝達することができる。 The reference electrode 4B is provided on the surface of the porous layer 23 at the bottom side L1 in the axial direction L of the sensor element 2 . With this configuration, the tip portion of the heater element 5 can be brought into contact with the reference electrode 4</b>B provided inside the bottom portion 32 of the solid electrolyte body 3 . Therefore, the heat generated in the heat generating portion 521 of the heater element 5 can be effectively transmitted to the sensor element 2 through the reference electrode 4B by thermal conduction.
 また、図5に示すように、基準電極4Bが多孔質層23の表面に設けられることにより、基準電極4Bの一部は、多孔質層23における気孔231、換言すれば固体電解質粒子同士の間の隙間に浸透する。これにより、基準電極4Bと多孔質層23との密着性が向上し、基準電極4Bが固体電解質体3から剥がれにくくすることができる。また、熱による基準電極4Bの凝集を抑制することもできる。 Further, as shown in FIG. 5, by providing the reference electrode 4B on the surface of the porous layer 23, a part of the reference electrode 4B becomes the pores 231 in the porous layer 23, in other words, between the solid electrolyte particles. penetrate into the gaps of As a result, the adhesion between the reference electrode 4B and the porous layer 23 is improved, and the reference electrode 4B is less likely to peel off from the solid electrolyte body 3 . Also, it is possible to suppress aggregation of the reference electrode 4B due to heat.
 固体電解質体3を構成する、多数の固体電解質粒子は、有底円筒形状の緻密な状態に成形されており、互いに密着して焼結されている。多孔質層23は、多数の固体電解質粒子によって形成されている。多孔質層23を構成する固体電解質粒子は、固体電解質体3の内側面302へのスラリーの塗布によって構成されたものである。多孔質層23の多数の気孔231は、固体電解質粒子同士の間の隙間によって形成されている。 A large number of solid electrolyte particles that constitute the solid electrolyte body 3 are formed into a dense cylindrical shape with a bottom, and are sintered in close contact with each other. The porous layer 23 is made up of many solid electrolyte particles. The solid electrolyte particles forming the porous layer 23 are formed by applying slurry to the inner surface 302 of the solid electrolyte body 3 . A large number of pores 231 of the porous layer 23 are formed by gaps between solid electrolyte particles.
 図2に示すように、本形態の多孔質層23は、固体電解質体3における、内側端子72の装着部位よりも底側L1の部位に形成されている。この構成により、内側端子72は、緻密な状態に成形された固体電解質体3の内側面302に設けられた基準電極4Bに接触して装着される。そのため、固体電解質体3における、内側端子72の装着部位の強度を確保することができる。 As shown in FIG. 2, the porous layer 23 of the present embodiment is formed at a portion of the solid electrolyte body 3 closer to the bottom side L1 than the mounting portion of the inner terminal 72 . With this configuration, the inner terminal 72 is attached in contact with the reference electrode 4B provided on the inner surface 302 of the solid electrolyte body 3 which is compactly formed. Therefore, it is possible to secure the strength of the mounting portion of the inner terminal 72 in the solid electrolyte body 3 .
 また、発熱体52の発熱部521によって加熱されたヒータ素子5が有する熱は、ヒータ素子5の先端からセンサ素子2に伝導する以外にも、内側端子72を介してセンサ素子2に伝導される。内側端子72が、固体電解質体3の内側面302に設けられた基準電極4Bに接触していることにより、ヒータ素子5の熱をセンサ素子2の底側L1の部位及び開口側L2の部位において効果的にセンサ素子2に伝達することができる。なお、ヒータ素子5の熱は、熱輻射又は熱対流によってセンサ素子2に伝達されてもよい。 Moreover, the heat of the heater element 5 heated by the heat generating portion 521 of the heating element 52 is conducted to the sensor element 2 via the inner terminal 72 in addition to being conducted from the tip of the heater element 5 to the sensor element 2 . . Since the inner terminal 72 is in contact with the reference electrode 4B provided on the inner surface 302 of the solid electrolyte body 3, the heat of the heater element 5 is transferred to the bottom side L1 and the opening side L2 of the sensor element 2. It can be effectively transmitted to the sensor element 2 . The heat of the heater element 5 may be transferred to the sensor element 2 by thermal radiation or thermal convection.
 図2に示すように、本形態の底部32の内側面302に設けられた多孔質層23の底側部位233の厚みは、円筒部31の内側面302に設けられた多孔質層23の開口側部位234の厚みよりも大きい。換言すれば、底部32の内側面302には、多孔質層23の全体における最も厚みが大きい部分が存在する。特に、本形態においては、底部32の中心位置における多孔質層23の厚みが最も厚い。 As shown in FIG. 2 , the thickness of the bottom portion 233 of the porous layer 23 provided on the inner surface 302 of the bottom portion 32 of this embodiment is equal to the thickness of the opening of the porous layer 23 provided on the inner surface 302 of the cylindrical portion 31 . It is greater than the thickness of side portion 234 . In other words, the inner surface 302 of the bottom portion 32 has the thickest portion of the entire porous layer 23 . In particular, in this embodiment, the thickness of the porous layer 23 is the thickest at the center position of the bottom portion 32 .
 また、本形態においては、底部32の内側面302に設けられた多孔質層23の底側部位233の厚み、及びストレート円筒部311の内側面302に設けられた多孔質層23の部位233Aの厚みは、相対的に大きい。一方、テーパ円筒部312の内側面302に設けられた多孔質層23の開口側部位234の厚み、及び鍔部313の内側面302に設けられた多孔質層23の開口側部位234の厚みは、相対的に小さい。 In addition, in this embodiment, the thickness of the bottom side portion 233 of the porous layer 23 provided on the inner surface 302 of the bottom portion 32 and the thickness of the portion 233A of the porous layer 23 provided on the inner surface 302 of the straight cylindrical portion 311 are Thickness is relatively large. On the other hand, the thickness of the opening side portion 234 of the porous layer 23 provided on the inner surface 302 of the tapered cylindrical portion 312 and the thickness of the opening side portion 234 of the porous layer 23 provided on the inner surface 302 of the flange portion 313 are , relatively small.
 図4に示すように、底部32の内側における多孔質層23の底側部位233の厚みが相対的に大きいことにより、センサ素子2の内側にヒータ素子5を配置したときに、ヒータ素子5の発熱部521の周辺の広い範囲がセンサ素子2に接触しやすくなる。また、ヒータ素子5の発熱部521の周辺の広い範囲をセンサ素子2に接触させることもできる。これにより、ヒータ素子5からセンサ素子2への伝熱を効果的に促進することができる。 As shown in FIG. 4, the thickness of the bottom-side portion 233 of the porous layer 23 inside the bottom portion 32 is relatively large. A wide range around the heat generating portion 521 is likely to come into contact with the sensor element 2 . Also, a wide area around the heat generating portion 521 of the heater element 5 can be brought into contact with the sensor element 2 . Thereby, heat transfer from the heater element 5 to the sensor element 2 can be effectively promoted.
 また、本形態においては、円筒部31の内側に設けられた、基準電極4Bの部分及び多孔質層23の部分は、ヒータ素子5から離れており、底部32の内側に設けられた基準電極4Bの部分は、ヒータ素子5に接触している。この構成により、ヒータ素子5の軸方向Lの先端部からセンサ素子2への熱伝導を効果的にすることができ、ヒータ素子5とセンサ素子2との温度差を効果的に緩和することができる。 In this embodiment, the portion of the reference electrode 4B and the portion of the porous layer 23 provided inside the cylindrical portion 31 are separated from the heater element 5, and the reference electrode 4B provided inside the bottom portion 32 is separated from the heater element 5. is in contact with the heater element 5 . With this configuration, it is possible to effectively conduct heat from the tip portion of the heater element 5 in the axial direction L to the sensor element 2 , thereby effectively reducing the temperature difference between the heater element 5 and the sensor element 2 . can.
 また、ヒータ素子5の軸方向Lの底側L1の部位の角部は、センサ素子2の底部32の内側における基準電極4Bに接触していてもよい。また、ヒータ素子5の軸方向Lの先端501は、センサ素子2の底部32の内側における基準電極4Bに接触していてもよい。底部32の内側における多孔質層23の底側部位233の厚みを相対的に大きくした構成により、ヒータ素子5の軸方向Lの先端部の広い範囲が、センサ素子2の底部32の内側における基準電極4Bに面接触することが可能になる。 Further, the corner portion of the bottom side L1 in the axial direction L of the heater element 5 may be in contact with the reference electrode 4B inside the bottom portion 32 of the sensor element 2 . Also, the tip 501 of the heater element 5 in the axial direction L may be in contact with the reference electrode 4B inside the bottom portion 32 of the sensor element 2 . Due to the configuration in which the thickness of the bottom side portion 233 of the porous layer 23 inside the bottom portion 32 is relatively large, a wide range of the tip portion of the heater element 5 in the axial direction L serves as a reference inside the bottom portion 32 of the sensor element 2 . Surface contact with the electrode 4B becomes possible.
 図5に示すように、多孔質層23が多数の固体電解質粒子によって形成されていることにより、多孔質層23の表面には、固体電解質粒子による凹凸232が形成されている。そして、多孔質層23の表面に設けられた基準電極4Bの表面には、多孔質層23の表面に形成された凹凸232に応じた凹凸401が形成されている。この構成により、基準電極4Bにおける凹凸401の凸部がヒータ素子5に接触しやすくなる。また、基準電極4Bにおける凹凸401の凸部がヒータ素子5に接触しても、基準電極4Bとヒータ素子5との間に生じる摩擦を小さく維持することができる。 As shown in FIG. 5, since the porous layer 23 is formed of a large number of solid electrolyte particles, unevenness 232 is formed on the surface of the porous layer 23 by the solid electrolyte particles. On the surface of the reference electrode 4B provided on the surface of the porous layer 23, unevenness 401 corresponding to the unevenness 232 formed on the surface of the porous layer 23 is formed. With this configuration, the protrusions of the unevenness 401 of the reference electrode 4B are likely to come into contact with the heater element 5 . Further, even if the protrusions of the unevenness 401 of the reference electrode 4B come into contact with the heater element 5, the friction generated between the reference electrode 4B and the heater element 5 can be kept small.
 また、センサ素子2の底部32の寸法、多孔質層23の厚み等を工夫し、基準電極4Bの表面に形成された凹凸401の凸部に、ヒータ素子5を意図的に接触させる構成としてもよい。また、基準電極4Bの表面に形成された凹凸401の凸部にヒータ素子5が接触したときには、接触部分又は凸部の一部が変形してもよい。接触部分又は凸部の一部の変形は、多孔質層23及び基準電極4Bの少なくとも一方の変形によって生じる。特に、多孔質層23は、多数の気孔231を有していることにより、変形しやすい状態にある。多孔質層23が変形することにより、ヒータ素子5とセンサ素子2の接触面積を大きくし、これらの密着度を高めることができる。基準電極4Bの凸部にヒータ素子5が接触する構成により、ヒータ素子5からセンサ素子2への熱伝導を、より効果的にすることができ、ヒータ素子5とセンサ素子2との温度差を、より効果的に緩和することができる。 Alternatively, the dimension of the bottom portion 32 of the sensor element 2, the thickness of the porous layer 23, etc. may be devised so that the heater element 5 is intentionally brought into contact with the projections of the irregularities 401 formed on the surface of the reference electrode 4B. good. Further, when the heater element 5 comes into contact with the projections of the irregularities 401 formed on the surface of the reference electrode 4B, the contact portion or the projections may be partially deformed. Partial deformation of the contact portion or protrusion is caused by deformation of at least one of the porous layer 23 and the reference electrode 4B. In particular, since the porous layer 23 has a large number of pores 231, it is easily deformed. By deforming the porous layer 23, the contact area between the heater element 5 and the sensor element 2 can be increased, and the degree of adhesion therebetween can be increased. The configuration in which the heater element 5 is in contact with the convex portion of the reference electrode 4B makes it possible to more effectively conduct heat from the heater element 5 to the sensor element 2, thereby reducing the temperature difference between the heater element 5 and the sensor element 2. , can be mitigated more effectively.
 本形態の多孔質層23の開口側部位234は、1~20μmの範囲内の厚みに形成されている。また、多孔質層23の底側部位233は、開口側部位234の厚みよりも大きな厚みで、20~50μmの範囲内の厚みに形成されている。多孔質層23の底側部位233の厚みが多孔質層23の開口側部位234の厚みに比べて2.5倍以上であることにより、固体電解質体3の底側L1の部位における伝熱効果を適切に得ることができる。 The opening side portion 234 of the porous layer 23 of this embodiment is formed with a thickness within the range of 1 to 20 μm. In addition, the bottom side portion 233 of the porous layer 23 is formed to have a thickness greater than that of the opening side portion 234 and within a range of 20 to 50 μm. Since the thickness of the bottom side portion 233 of the porous layer 23 is 2.5 times or more the thickness of the opening side portion 234 of the porous layer 23, the heat transfer effect at the bottom side L1 portion of the solid electrolyte body 3 can be properly obtained.
(下地層21)
 図5に示すように、固体電解質体3の外側面301には、複数種類の粒径に形成された、固体電解質材料から構成された固体電解質粒子による下地層21が形成されている。本形態の下地層21には、相対的に小さな粒径の固体電解質粒子と、相対的に大きな粒径の固体電解質粒子とが用いられる。本形態の検出電極4Aは、下地層21の表面に設けられている。下地層21の表面は、検出電極4Aの表面積を増やすとともに検出電極4Aが剥がれにくくするために、固体電解質粒子による凹凸形状に形成されている。
(Base layer 21)
As shown in FIG. 5, the outer surface 301 of the solid electrolyte body 3 is formed with a base layer 21 made of solid electrolyte particles having a plurality of types of particle diameters and made of a solid electrolyte material. Solid electrolyte particles with a relatively small particle size and solid electrolyte particles with a relatively large particle size are used for the underlayer 21 of this embodiment. The detection electrode 4A of this embodiment is provided on the surface of the underlying layer 21 . The surface of the base layer 21 is made uneven by solid electrolyte particles in order to increase the surface area of the detection electrode 4A and to prevent the detection electrode 4A from peeling off.
(保護層22)
 図2~図4に示すように、固体電解質体3の外側面301には、少なくとも検出電極4Aの外側検知部41の全体を覆う、セラミックスの多孔質体からなる保護層22が設けられている。保護層22は、検出対象ガスGを透過する一方、検出電極4Aの被毒及び被水を防止するものである。本形態の保護層22は、気孔率が異なる、互いに積層された複数の層によって形成されている。
(Protective layer 22)
As shown in FIGS. 2 to 4, the outer surface 301 of the solid electrolyte body 3 is provided with a protective layer 22 made of a ceramic porous body that covers at least the entire outer detection portion 41 of the detection electrode 4A. . The protective layer 22 is permeable to the gas G to be detected and prevents the detection electrode 4A from being poisoned and wet. The protective layer 22 of this embodiment is formed of a plurality of laminated layers having different porosities.
 図5に示すように、本形態の保護層22は、検出電極4Aの表面に設けられた第1保護層221と、第1保護層221の表面に設けられた第2保護層222と、第2保護層222の表面に設けられた第3保護層223とによって形成されている。第1保護層221は、検出対象ガスGの熱から検出電極4Aを保護するものである。第2保護層222は、検出対象ガスGにおける検出電極4Aの被毒物質を吸着する機能を有するとともに、検出対象ガスGの成分を調整する触媒粒子が担持されたものである。第3保護層223は、検出対象ガスGにおける検出電極4Aの被毒物質を吸着する機能を有するとともに、凝縮水からセンサ素子2を保護するためのものである。 As shown in FIG. 5, the protective layer 22 of this embodiment includes a first protective layer 221 provided on the surface of the detection electrode 4A, a second protective layer 222 provided on the surface of the first protective layer 221, and a second protective layer 222 provided on the surface of the first protective layer 221. 2 and a third protective layer 223 provided on the surface of the second protective layer 222 . The first protective layer 221 protects the detection electrode 4A from the heat of the gas G to be detected. The second protective layer 222 has a function of adsorbing the poisoning substance of the detection electrode 4A in the gas G to be detected, and supports catalyst particles for adjusting the components of the gas G to be detected. The third protective layer 223 has a function of adsorbing the poisoning substance of the detection electrode 4A in the gas G to be detected, and also protects the sensor element 2 from condensed water.
(ヒータ素子5)
 図4に示すように、ヒータ素子5は、セラミックスの基材51A,51Bと、基材51Bに設けられた導体からなる発熱体52とを有する。発熱体52の発熱部521は、発熱体52において断面積が最も縮小して形成されており、発熱体52に通電したときにジュール熱によって発熱する部位である。発熱部521は、発熱体52における先端部において軸方向Lに蛇行する形状に形成されている。ヒータ素子5は、心棒となる基材51Aの周りに、発熱体52が設けられたシート状の基材51Bを巻き付けて形成されている。固体電解質体3の底部32における基準電極4Bには、心棒となる基材51Aの先端501が接触している。
(Heater element 5)
As shown in FIG. 4, the heater element 5 has ceramic substrates 51A and 51B, and a heating element 52 made of a conductor provided on the substrate 51B. The heat-generating portion 521 of the heat-generating member 52 is formed with the smallest cross-sectional area in the heat-generating member 52 and is a portion that generates heat by Joule heat when the heat-generating member 52 is energized. The heat generating portion 521 is formed in a meandering shape in the axial direction L at the tip portion of the heat generating body 52 . The heater element 5 is formed by winding a sheet-like base material 51B provided with a heating element 52 around a base material 51A serving as a mandrel. The reference electrode 4B on the bottom 32 of the solid electrolyte body 3 is in contact with the tip 501 of the base material 51A serving as the mandrel.
(ガスセンサ1の他の構成)
 図1に示すように、ガスセンサ1は、センサ素子2及びヒータ素子5の他に、センサ素子2を保持するハウジング61、ハウジング61の底側L1の部位に装着された先端側カバー62、ハウジング61の基端側L2の部位に装着された基端側カバー63、センサ素子2の開口側L2の部位の内側面302に装着された内側端子72、センサ素子2の開口側L2の部位の外側面301に装着された外側端子71等を備える。
(Another Configuration of Gas Sensor 1)
As shown in FIG. 1, the gas sensor 1 includes, in addition to the sensor element 2 and the heater element 5, a housing 61 that holds the sensor element 2; The proximal side cover 63 attached to the proximal side L2 portion of the sensor element 2, the inner terminal 72 attached to the inner surface 302 of the opening side L2 portion of the sensor element 2, the outer surface of the opening side L2 portion of the sensor element 2 An outer terminal 71 and the like attached to 301 are provided.
(ハウジング61)
 図1に示すように、ハウジング61には、センサ素子2を保持するために、軸方向Lに向けて貫通する挿通穴611が形成されている。挿通穴611は、軸方向Lの先端側L1に位置する小径穴部612と、軸方向Lの基端側L2に位置して小径穴部612よりも拡径した大径穴部613とを有する。センサ素子2は、挿通穴611の小径穴部612内及び大径穴部613内に挿通され、センサ素子2と大径穴部613との隙間内に配置されるタルク粉末、スリーブ等のシール材64を介して保持されている。
(Housing 61)
As shown in FIG. 1, the housing 61 is formed with an insertion hole 611 penetrating in the axial direction L to hold the sensor element 2 . The insertion hole 611 has a small-diameter hole portion 612 positioned on the distal end side L1 in the axial direction L and a large-diameter hole portion 613 positioned on the proximal end side L2 in the axial direction L and having a larger diameter than the small-diameter hole portion 612. . The sensor element 2 is inserted into the small-diameter hole portion 612 and the large-diameter hole portion 613 of the insertion hole 611, and a sealing material such as talc powder or a sleeve is placed in the gap between the sensor element 2 and the large-diameter hole portion 613. 64.
 また、センサ素子2における最も外径が大きい部分である鍔部313が小径穴部612の端部に係止されることにより、センサ素子2が、ハウジング61の挿通穴611から先端側L1へ抜け出すことが防止されている。ハウジング61の軸方向Lの開口側L2の部位には、内周側に屈曲するかしめ部615が形成されている。そして、かしめ部615と鍔部313との間においてシール材64が軸方向Lに圧縮されて、センサ素子2がハウジング61に保持されている。センサ素子2の底側L1の部位であって、特に外側検知部41が形成された部位は、ハウジング61から軸方向Lの先端側L1に突出して配置されている。 Further, the sensor element 2 is pulled out from the insertion hole 611 of the housing 61 to the tip end side L1 by locking the collar portion 313, which is the portion of the sensor element 2 having the largest outer diameter, to the end portion of the small diameter hole portion 612. is prevented. A crimped portion 615 that is bent inward is formed at a portion on the opening side L2 in the axial direction L of the housing 61 . The sealing material 64 is compressed in the axial direction L between the crimped portion 615 and the flange portion 313 to hold the sensor element 2 in the housing 61 . A portion of the bottom side L1 of the sensor element 2, particularly a portion where the outer detection portion 41 is formed, is arranged to protrude from the housing 61 toward the tip side L1 in the axial direction L. As shown in FIG.
(先端側カバー62及び基端側カバー63)
 図1に示すように、ハウジング61の軸方向Lの先端側L1の部位には、ハウジング61から先端側L1に突出するセンサ素子2の部分を覆って、センサ素子2を保護するための先端側カバー62が装着されている。先端側カバー62は、排気管内に配置される。先端側カバー62には、検出対象ガスGを通過させるためのガス通過孔621が形成されている。先端側カバー62は、二重構造のものとしてもよく、一重構造のものとしてもよい。先端側カバー62のガス通過孔621から先端側カバー62内に流入する検出対象ガスGとしての排ガスは、センサ素子2の保護層22を通過して検出電極4Aへと導かれる。
(Distal side cover 62 and proximal side cover 63)
As shown in FIG. 1, a distal end portion for protecting the sensor element 2 by covering the portion of the sensor element 2 projecting from the housing 61 toward the distal end side L1 is provided on the distal end side L1 in the axial direction L of the housing 61 . A cover 62 is attached. The tip side cover 62 is arranged inside the exhaust pipe. A gas passage hole 621 for allowing the gas G to be detected to pass is formed in the tip side cover 62 . The tip side cover 62 may be of a double structure or of a single structure. Exhaust gas as the detection target gas G flowing into the distal end cover 62 from the gas passage hole 621 of the distal end cover 62 passes through the protective layer 22 of the sensor element 2 and is guided to the detection electrode 4A.
 ハウジング61の軸方向Lの開口側L2の部位には、基端側カバー63が装着されている。基端側カバー63は、排気管の外部に配置される。基端側カバー63の一部には、基端側カバー63内へ基準ガスAとしての大気を導入するための導入孔631が形成されている。導入孔631には、液体を通過させない一方、気体を通過させるフィルタ632が配置されている。導入孔631から基端側カバー63内に導入される基準ガスAは、基端側カバー63内の空間を通過して、センサ素子2の内側における基準電極4Bへと導かれる。 A proximal end cover 63 is attached to the opening side L2 of the housing 61 in the axial direction L. The proximal end cover 63 is arranged outside the exhaust pipe. An introduction hole 631 for introducing air as the reference gas A into the proximal side cover 63 is formed in a part of the proximal side cover 63 . The introduction hole 631 is provided with a filter 632 that blocks the passage of liquid but allows the passage of gas. The reference gas A introduced into the base end cover 63 through the introduction hole 631 passes through the space inside the base end cover 63 and is guided to the reference electrode 4B inside the sensor element 2 .
 図1に示すように、固体電解質体3の開口側L2の部位の内側面302には、基準電極4Bに接触する内側端子72が装着されている。また、固体電解質体3の開口側L2の部位の外側面301には、検出電極4Aの外側接続部43に接触する外側端子71が装着されている。内側端子72及び外側端子71には、センサ素子2の基準電極4B及び検出電極4Aを、外部の制御装置に電気的に接続するためのリード線65が取り付けられている。リード線65は、基端側カバー63内に配置されたブッシュ66によって保持されている。 As shown in FIG. 1, an inner terminal 72 that contacts the reference electrode 4B is attached to the inner surface 302 of the solid electrolyte body 3 on the opening side L2. An outer terminal 71 is attached to the outer surface 301 of the solid electrolyte body 3 on the opening side L2 to contact the outer connection portion 43 of the detection electrode 4A. Lead wires 65 are attached to the inner terminal 72 and the outer terminal 71 for electrically connecting the reference electrode 4B and the detection electrode 4A of the sensor element 2 to an external control device. The lead wire 65 is held by a bush 66 arranged inside the proximal cover 63 .
(製造方法)
 次に、センサ素子2の製造方法について説明する。
 固体電解質体3を製造するに当たっては、酸化ジルコニウムに、添加物である酸化イットリウム等の希土類酸化物及びアルカリ土類金属酸化物の少なくとも一方を、固溶置換させた固体電解質材料の粉末を準備する。次いで、固体電解質材料の粉末を、ラバープレスによって有底円筒形状に近い予備形状に成形した後に、最終形状としての有底円筒形状の前駆体に研削加工する。次いで、前駆体を1100~1200℃の大気環境下において、2時間熱処理して、固体電解質体3の仮焼体を得た。
(Production method)
Next, a method for manufacturing the sensor element 2 will be described.
In manufacturing the solid electrolyte body 3, powder of a solid electrolyte material is prepared by solid-solution substitution of zirconium oxide with at least one of rare earth oxides such as yttrium oxide and alkaline earth metal oxides as additives. . Next, the powder of the solid electrolyte material is formed into a preliminary shape close to a cylindrical shape with a bottom by a rubber press, and then ground into a precursor of a cylindrical shape with a bottom as the final shape. Next, the precursor was heat-treated in an atmospheric environment at 1100 to 1200° C. for 2 hours to obtain a calcined solid electrolyte body 3 .
 固体電解質体3の仮焼体(単に固体電解質体3という。)の内側面302に多孔質層23を形成するに当たっては、固体電解質材料の粉末を、イオン交換水、ポリビニルアルコール、アルキルスルホン酸系分散剤、気孔231を形成するための焼失材としてのアクリル樹脂製のマイクロビーズ等と混合撹拌して、第1スラリーを生成する。次いで、固体電解質体3にシリンジを用いて第1スラリーを注入した後に、固体電解質体3の内側に厚み調整用のピンを挿入する。このとき、ピンと固体電解質体3の内側面302との間の隙間に第1スラリーが充填される。 In forming the porous layer 23 on the inner surface 302 of the calcined body of the solid electrolyte body 3 (simply referred to as the solid electrolyte body 3), the powder of the solid electrolyte material is mixed with ion-exchanged water, polyvinyl alcohol, and an alkylsulfonic acid system. A first slurry is generated by mixing and stirring a dispersant, acrylic resin microbeads, etc. as a burn-off material for forming the pores 231 . Next, after injecting the first slurry into the solid electrolyte body 3 using a syringe, a pin for thickness adjustment is inserted inside the solid electrolyte body 3 . At this time, the gap between the pin and the inner surface 302 of the solid electrolyte body 3 is filled with the first slurry.
 次いで、第1スラリーが完全に乾燥する前に、固体電解質体3の内側からピンを抜き出す。このとき、センサ素子2の底部32が下方に向けられていることにより、第1スラリーは重力によって軸方向Lの底側L1へ流動する。これにより、軸方向Lの開口側L2の部位の第1スラリーの厚みに比べて、軸方向Lの底側L1の部位の第1スラリーの厚みが大きくなる。 Next, the pins are pulled out from the inside of the solid electrolyte body 3 before the first slurry is completely dried. At this time, since the bottom portion 32 of the sensor element 2 is directed downward, the first slurry flows toward the bottom side L1 in the axial direction L due to gravity. As a result, the thickness of the first slurry on the bottom side L1 in the axial direction L is greater than the thickness of the first slurry on the opening side L2 in the axial direction L.
 こうして、固定電解質体の内側面302においては、第1スラリーによって開口側部位234に比べて底側部位233の厚みが大きい多孔質層23が形成される。本形態の多孔質層23は、焼成後において、底側部位233の厚みが20~50μmの範囲内になり、開口側部位234の厚みが1~20μmの範囲内になるように形成した。また、多孔質層23の気孔率は、ポリビニルアルコールの添加量、及び焼成時に燃焼するアクリル樹脂製のマイクロビーズの添加量によって、5~40%の範囲内になるように調整した。 In this way, on the inner surface 302 of the fixed electrolyte body, the first slurry forms the porous layer 23 in which the bottom side portion 233 is thicker than the opening side portion 234 . The porous layer 23 of this embodiment was formed so that the thickness of the bottom side portion 233 was within the range of 20 to 50 μm and the thickness of the opening side portion 234 was within the range of 1 to 20 μm after firing. The porosity of the porous layer 23 was adjusted to be within the range of 5 to 40% by adjusting the amount of polyvinyl alcohol added and the amount of acrylic resin microbeads that burn during firing.
 固体電解質体3の外側面301に下地層21を形成するに当たっては、固体電解質材料の粉末を、イオン交換水、ポリビニルアルコール、アルキルスルホン酸系分散剤、気孔231を形成するための焼失材としてのアクリル樹脂製のマイクロビーズ等と混合撹拌して、第2スラリーを生成する。また、固体電解質材料の粉末の一部をスプレイドライヤーで噴霧乾燥して造粒粉末とし、造粒粉末を第2スラリーに混合して、造粒粉末スラリーとする。次いで、造粒粉末スラリーに固体電解質体3を浸漬させて、造粒粉末スラリーを固体電解質体3の外側面301にディップコーティングする。 In forming the base layer 21 on the outer surface 301 of the solid electrolyte body 3, the powder of the solid electrolyte material is mixed with ion-exchanged water, polyvinyl alcohol, an alkylsulfonic acid-based dispersant, and a burnout material for forming the pores 231. A second slurry is produced by mixing and stirring acrylic resin microbeads and the like. Also, part of the powder of the solid electrolyte material is spray-dried with a spray dryer to obtain granulated powder, and the granulated powder is mixed with the second slurry to obtain granulated powder slurry. Next, the solid electrolyte body 3 is immersed in the granulated powder slurry, and the outer surface 301 of the solid electrolyte body 3 is dip-coated with the granulated powder slurry.
 本形態の下地層21は、焼成後において、造粒粉末が配置された部分を除く、固体電解質材料の粉末が配置された部分の厚みが10~50μmの範囲内になるように形成した。また、下地層21の気孔率は、多孔質層23と同様の方法によって、約10%になるように調整した。 The base layer 21 of this embodiment was formed so that the thickness of the portion where the powder of the solid electrolyte material was placed, excluding the portion where the granulated powder was placed, was in the range of 10 to 50 μm after firing. Also, the porosity of the underlying layer 21 was adjusted to about 10% by the same method as for the porous layer 23 .
 本形態においては、多孔質層23に用いる固体電解質材料と、下地層21に用いる固体電解質材料とは、固体電解質体3に用いる固体電解質材料と同等にした。そして、多孔質層23及び下地層21が形成された焼成前の固体電解質体3を1450℃の大気環境下において2時間焼成して、固体電解質体3の焼成体を得た。 In this embodiment, the solid electrolyte material used for the porous layer 23 and the solid electrolyte material used for the underlying layer 21 are the same as the solid electrolyte material used for the solid electrolyte body 3 . Then, the unfired solid electrolyte body 3 having the porous layer 23 and the underlying layer 21 formed thereon was fired in an atmospheric environment at 1450° C. for 2 hours to obtain a fired body of the solid electrolyte body 3 .
 固体電解質体3に検出電極4A及び基準電極4Bを形成するに当たっては、固体電解質体3の焼成体の表面を粗化するために、焼成体をフッ化水素酸水溶液に浸漬させ、次いで、焼成体の水洗及び乾燥を行った。次いで、有機白金化合物を含有するペースト状の電極材料を、所望の電極パターンを形成するように焼成体に塗布し、焼成体に熱処理を行って電極材料中の有機物を脱脂する。 In forming the detection electrode 4A and the reference electrode 4B on the solid electrolyte body 3, the fired body is immersed in an aqueous hydrofluoric acid solution in order to roughen the surface of the fired body of the solid electrolyte body 3. was washed with water and dried. Next, a paste-like electrode material containing an organoplatinum compound is applied to the sintered body so as to form a desired electrode pattern, and the sintered body is heat-treated to degrease organic substances in the electrode material.
 次いで、脱脂後の焼成体に、無電解白金めっき液を用いてめっき処理を行った後に、1000~1200℃の大気環境下において1時間熱処理する。こうして、固体電解質体3の焼成体に検出電極4A及び基準電極4Bが設けられる。 Next, the fired body after degreasing is subjected to plating treatment using an electroless platinum plating solution, and then subjected to heat treatment in an atmospheric environment at 1000 to 1200° C. for 1 hour. Thus, the detection electrode 4A and the reference electrode 4B are provided on the sintered body of the solid electrolyte body 3 .
 固体電解質体3の外側面301に保護層22を形成するに当たっては、固体電解質体3の外側に、スピネル構造のアルミン酸マグネシウムの粉体をプラズマ溶射することによって第1保護層221を形成する。次いで、固体電解質体3を、アルミナ粒子、アルミナゾル、イオン交換水、白金又は白金及びロジウムからなる触媒粒子等を含有する混合スラリーに浸漬させ、第1保護層221の表面に第2保護層222を形成する。次いで、固体電解質体3を、アルミナ粒子、アルミナゾル、イオン交換水等を含有する混合スラリーに浸漬させ、第2保護層222の表面に第3保護層223を形成する。その後、固体電解質体3を、500~900℃において熱処理して、センサ素子2が製造される。 When forming the protective layer 22 on the outer surface 301 of the solid electrolyte body 3, the first protective layer 221 is formed on the outside of the solid electrolyte body 3 by plasma spraying magnesium aluminate powder having a spinel structure. Next, the solid electrolyte body 3 is immersed in a mixed slurry containing alumina particles, alumina sol, ion-exchanged water, catalyst particles made of platinum or platinum and rhodium, etc., and the second protective layer 222 is formed on the surface of the first protective layer 221. Form. Next, the solid electrolyte body 3 is immersed in a mixed slurry containing alumina particles, alumina sol, ion-exchanged water, etc. to form the third protective layer 223 on the surface of the second protective layer 222 . After that, the solid electrolyte body 3 is heat-treated at 500 to 900° C. to manufacture the sensor element 2 .
(作用効果)
 本形態のガスセンサ1は、有底円筒形状を有する固体電解質体3に検出電極4A及び基準電極4Bが設けられたセンサ素子2を備える。そして、センサ素子2において、固体電解質体3と基準電極4Bとの間には、多数の気孔231を有する多孔質層23が設けられている。多孔質層23の形成により、センサ素子2とセンサ素子2の内側に配置されたヒータ素子5との隙間を小さくすることができ、ヒータ素子5がセンサ素子2に広い範囲で接触しやすくすることができる。
(Effect)
A gas sensor 1 of this embodiment includes a sensor element 2 in which a solid electrolyte body 3 having a bottomed cylindrical shape is provided with a detection electrode 4A and a reference electrode 4B. In the sensor element 2, a porous layer 23 having many pores 231 is provided between the solid electrolyte body 3 and the reference electrode 4B. Formation of the porous layer 23 can reduce the gap between the sensor element 2 and the heater element 5 arranged inside the sensor element 2, and facilitates the heater element 5 to come into contact with the sensor element 2 over a wide range. can be done.
 これにより、ヒータ素子5によってセンサ素子2を加熱する際には、ヒータ素子5からセンサ素子2への伝熱を効果的に促進することができ、ヒータ素子5とセンサ素子2との温度差を小さくすることができる。また、センサ素子2の内側にヒータ素子5を配置する際に特別な工夫をする必要がなく、ガスセンサ1の組み付けを容易にすることができる。 As a result, when the sensor element 2 is heated by the heater element 5, the heat transfer from the heater element 5 to the sensor element 2 can be effectively promoted, and the temperature difference between the heater element 5 and the sensor element 2 can be reduced. can be made smaller. Moreover, it is not necessary to take special measures when arranging the heater element 5 inside the sensor element 2, and the assembly of the gas sensor 1 can be facilitated.
 それ故、本形態のガスセンサ1によれば、ヒータ素子5とセンサ素子2との温度差を小さくすることができるとともに、ガスセンサ1の組み付けを容易にすることができる。 Therefore, according to the gas sensor 1 of this embodiment, the temperature difference between the heater element 5 and the sensor element 2 can be reduced, and the assembly of the gas sensor 1 can be facilitated.
<実施形態2>
 本形態は、図6に示すように、多孔質層23が、固体電解質体3における基準電極4Bの表面に設けられた場合について示す。本形態の多孔質層23は、基準電極4Bの表面に設けられているため、検出電極4Aと基準電極4Bとの間の固体電解質としての性質を有していなくてもよい。本形態の多孔質層23は、固体電解質材料ではなく、酸化アルミニウム等の金属酸化物によって構成されている。多孔質層23は、多数の金属酸化物の粒子によって形成されている。本形態の多孔質層23は、ヒータ素子5とセンサ素子2との間の隙間を小さくするために形成されている。
<Embodiment 2>
This embodiment shows the case where the porous layer 23 is provided on the surface of the reference electrode 4B in the solid electrolyte body 3, as shown in FIG. Since the porous layer 23 of this embodiment is provided on the surface of the reference electrode 4B, it does not have to have properties as a solid electrolyte between the detection electrode 4A and the reference electrode 4B. The porous layer 23 of this embodiment is made of a metal oxide such as aluminum oxide instead of a solid electrolyte material. The porous layer 23 is formed of a large number of metal oxide particles. The porous layer 23 of this embodiment is formed to reduce the gap between the heater element 5 and the sensor element 2 .
 本形態においても、底部32の内側に設けられた多孔質層23の部分の厚みは、円筒部31の内側に設けられた多孔質層23の部分の厚みよりも大きい。また、底部32の内側における、基準電極4Bの表面に設けられた多孔質層23の部分は、ヒータ素子5に接触している。図5に示したように、多孔質層23の表面には、多数の金属酸化物の粒子による凹凸232が形成されている。また、多孔質層23における、ヒータ素子5の接触部分又は凹凸232の凸部は、変形していてもよい。また、多孔質層23が基準電極4Bの表面に設けられていても、多孔質層23における気孔231を介して、基準ガスAが基準電極4Bに接触することができる。 Also in this embodiment, the thickness of the portion of the porous layer 23 provided inside the bottom portion 32 is greater than the thickness of the portion of the porous layer 23 provided inside the cylindrical portion 31 . Also, the portion of the porous layer 23 provided on the surface of the reference electrode 4B inside the bottom portion 32 is in contact with the heater element 5 . As shown in FIG. 5, on the surface of the porous layer 23, irregularities 232 are formed by a large number of metal oxide particles. Moreover, the contact portion of the heater element 5 or the convex portion of the unevenness 232 in the porous layer 23 may be deformed. Moreover, even if the porous layer 23 is provided on the surface of the reference electrode 4B, the reference gas A can come into contact with the reference electrode 4B through the pores 231 in the porous layer 23 .
 本形態のガスセンサ1によっても、実施形態1の場合と同様に、ヒータ素子5とセンサ素子2との温度差を小さくすることができるとともに、ガスセンサ1の組み付けを容易にすることができる。本形態のガスセンサ1における、その他の構成、作用効果等については、実施形態1の構成、作用効果等と同様である。また、本形態においても、実施形態1に示した符号と同一の符号が示す構成要素は、実施形態1の構成要素と同様である。 According to the gas sensor 1 of this embodiment, as in the first embodiment, the temperature difference between the heater element 5 and the sensor element 2 can be reduced, and the assembly of the gas sensor 1 can be facilitated. Other configurations, effects, and the like of the gas sensor 1 of this embodiment are the same as those of the first embodiment. Also in the present embodiment, constituent elements indicated by the same reference numerals as those in the first embodiment are the same as those in the first embodiment.
<実施形態3>
 本形態は、多孔質層23を構成する固体電解質材料の組成に工夫をした場合を示す。本形態の固体電解質体3を構成する固体電解質材料及び多孔質層23を構成する固体電解質材料は、ジルコニア(酸化ジルコニウム)の一部が希土類金属元素としての希土類酸化物又はアルカリ土類金属元素としてのアルカリ土類酸化物によって置き換えられた安定化ジルコニア又は部分安定化ジルコニアによって構成されている。
<Embodiment 3>
This embodiment shows a case where the composition of the solid electrolyte material forming the porous layer 23 is devised. In the solid electrolyte material constituting the solid electrolyte body 3 and the solid electrolyte material constituting the porous layer 23 of the present embodiment, a part of zirconia (zirconium oxide) is a rare earth oxide as a rare earth metal element or as an alkaline earth metal element. stabilized zirconia or partially stabilized zirconia replaced by alkaline earth oxides.
 固体電解質体3の内側面302に多孔質層23が形成されていることにより、検出電極4Aと基準電極4Bとの間における、固体電解質体3及び多孔質層23による酸化物イオンの伝導性は、多孔質層23が形成されていない場合に比べて低下する可能性がある。本形態においては、この酸化物イオンの伝導性の低下を補うために、多孔質層23における固体電解質材料の置換物の含有割合を調整する。 Since the porous layer 23 is formed on the inner surface 302 of the solid electrolyte body 3, the conductivity of oxide ions by the solid electrolyte body 3 and the porous layer 23 between the detection electrode 4A and the reference electrode 4B is , there is a possibility of lowering compared to the case where the porous layer 23 is not formed. In the present embodiment, the content ratio of the solid electrolyte material substitute in the porous layer 23 is adjusted in order to compensate for the decrease in conductivity of oxide ions.
 具体的には、多孔質層23を構成する固体電解質材料における、希土類酸化物又はアルカリ土類酸化物の含有量は、固体電解質体3を構成する固体電解質材料における、希土類酸化物又はアルカリ土類酸化物の含有量に比べて多い。多孔質層23は、多数の気孔231を有することにより、酸化物イオンの伝導性が固体電解質体3に比べて低い。多孔質層23を構成する固体電解質材料における、希土類酸化物又はアルカリ土類酸化物の含有量を相対的に多くすることにより、多孔質層23における酸化物イオンの伝導性を高くすることができる。 Specifically, the content of the rare earth oxide or alkaline earth oxide in the solid electrolyte material forming the porous layer 23 is equal to the content of the rare earth oxide or alkaline earth oxide in the solid electrolyte material forming the solid electrolyte body 3. It is large compared to the oxide content. Since the porous layer 23 has a large number of pores 231 , the conductivity of oxide ions is lower than that of the solid electrolyte body 3 . By relatively increasing the content of rare earth oxides or alkaline earth oxides in the solid electrolyte material constituting the porous layer 23, the conductivity of oxide ions in the porous layer 23 can be increased. .
 本形態においては、多孔質層23の酸化物イオンの伝導性が高いことにより、センサ素子2の性能を高めることができる。本形態のガスセンサ1における、その他の構成、作用効果等については、実施形態1,2の構成、作用効果等と同様である。また、本形態においても、実施形態1,2に示した符号と同一の符号が示す構成要素は、実施形態1,2の構成要素と同様である。 In this embodiment, the performance of the sensor element 2 can be enhanced due to the high oxide ion conductivity of the porous layer 23 . Other configurations, effects, and the like of the gas sensor 1 of this embodiment are the same as those of the first and second embodiments. Further, in this embodiment as well, constituent elements indicated by the same reference numerals as those in the first and second embodiments are the same as those in the first and second embodiments.
<確認試験>
 本確認試験においては、固体電解質体3に多孔質層23を設けた実施形態1のセンサ素子2(実施品)と、固体電解質体3に多孔質層23を設けていない従来のセンサ素子(比較品)とについて、ヒータ素子5によって加熱する際の、ヒータ素子5とセンサ素子との間に生じる温度差を測定した。実施品のセンサ素子2においては、多孔質層23の底側部位233の平均厚みが40μmになるようにし、開口側部位234の平均厚みが10μmになるようにした。
<Confirmation test>
In this confirmation test, the sensor element 2 (implementation product) of Embodiment 1 in which the solid electrolyte body 3 is provided with the porous layer 23 and the conventional sensor element in which the solid electrolyte body 3 is not provided with the porous layer 23 (comparison The temperature difference generated between the heater element 5 and the sensor element when heated by the heater element 5 was measured. In the sensor element 2 of the practical product, the average thickness of the bottom side portion 233 of the porous layer 23 was set to 40 μm, and the average thickness of the opening side portion 234 was set to 10 μm.
 本確認試験においては、実施品及び比較品の各センサ素子の内側にヒータ素子5が配置された状態において、検出電極4Aの外側検知部41の温度が650℃になるようにヒータ素子5を制御した。そして、検出電極4Aの外側検知部41の温度を、各センサ素子の温度として測定し、ヒータ素子5の発熱体52の発熱部521の温度を、ヒータ素子5の温度として測定した。この結果、比較品のセンサ素子においては、センサ素子の温度が651℃となり、ヒータ素子5の温度が947℃となり、両者の温度差は、296℃となった。一方、実施品のセンサ素子2においては、センサ素子2の温度が652℃となり、ヒータ素子5の温度が891℃となり、両者の温度差は、239℃となった。 In this confirmation test, the heater element 5 is controlled so that the temperature of the outer detection part 41 of the detection electrode 4A reaches 650° C. in a state where the heater element 5 is arranged inside each sensor element of the test product and the comparative product. did. Then, the temperature of the outer detection portion 41 of the detection electrode 4A was measured as the temperature of each sensor element, and the temperature of the heating portion 521 of the heating element 52 of the heater element 5 was measured as the temperature of the heater element 5. As a result, in the sensor element of the comparative product, the temperature of the sensor element was 651.degree. C., the temperature of the heater element 5 was 947.degree. On the other hand, in the sensor element 2 of the practical product, the temperature of the sensor element 2 was 652°C, the temperature of the heater element 5 was 891°C, and the temperature difference between them was 239°C.
 この結果より、実施品のセンサ素子2は、比較品のセンサ素子に比べて、ヒータ素子5とセンサ素子との温度差が57℃小さくなることが分かった。この結果は、実施品のセンサ素子2においては、多孔質層23の形成によって、ヒータ素子5とセンサ素子2との間の隙間が小さくなったことに起因する。 From this result, it was found that the temperature difference between the heater element 5 and the sensor element was 57°C smaller than that of the sensor element of the comparative product. This result is due to the fact that the gap between the heater element 5 and the sensor element 2 was reduced by forming the porous layer 23 in the sensor element 2 of the embodied product.
 また、本確認試験においては、実施品のセンサ素子2及び比較品のセンサ素子を、ヒータ素子5の発熱体52への断続した通電によって継続的に加熱したときの、各センサ素子に配置したヒータ素子5の劣化の度合も測定した。この結果、実施品に用いたヒータ素子5においては、比較品に用いたヒータ素子5に比べて、寿命が3.6倍長くなることが分かった。この結果は、実施品のセンサ素子2においては、ヒータ素子5からセンサ素子2へより多くの熱が移動して、ヒータ素子5とセンサ素子2との温度差が低減したことにより、実施品のセンサ素子2を加熱するヒータ素子5の温度が低下したことに起因する。 Further, in this confirmation test, when the sensor element 2 of the practical product and the sensor element of the comparative product were continuously heated by intermittent energization to the heating element 52 of the heater element 5, the heater arranged in each sensor element The degree of deterioration of element 5 was also measured. As a result, it was found that the life of the heater element 5 used as the practical product was 3.6 times longer than that of the heater element 5 used as the comparative product. As a result, more heat was transferred from the heater element 5 to the sensor element 2 in the sensor element 2 of the practical product, and the temperature difference between the heater element 5 and the sensor element 2 was reduced. This is because the temperature of the heater element 5 that heats the sensor element 2 has decreased.
 以上の確認試験の結果より、本形態のセンサ素子2を用いたガスセンサ1によれば、ヒータ素子5とセンサ素子2との温度差が低減し、ガスセンサ1の早期活性化が図られることが分かった。また、センサ素子2の検出電極4A及び基準電極4Bによる検知部を目標温度に加熱する際の、ヒータ素子5の温度が低下することにより、ヒータ素子5の寿命が向上することが分かった。 From the results of the confirmation test described above, it was found that the gas sensor 1 using the sensor element 2 of the present embodiment reduces the temperature difference between the heater element 5 and the sensor element 2, and early activation of the gas sensor 1 is achieved. rice field. Further, it was found that the life of the heater element 5 is improved by lowering the temperature of the heater element 5 when heating the detection portion by the detection electrode 4A and the reference electrode 4B of the sensor element 2 to the target temperature.
 本開示は、各実施形態のみに限定されるものではなく、その要旨を逸脱しない範囲においてさらに異なる実施形態を構成することが可能である。また、本開示は、様々な変形例、均等範囲内の変形例等を含む。さらに、本開示から想定される様々な構成要素の組み合わせ、形態等も本開示の技術思想に含まれる。 The present disclosure is not limited to only each embodiment, and further different embodiments can be configured without departing from the gist thereof. In addition, the present disclosure includes various modifications, modifications within the equivalent range, and the like. Furthermore, the technical idea of the present disclosure includes combinations of various constituent elements, forms, and the like assumed from the present disclosure.

Claims (7)

  1.  有底円筒形状を有し、イオン伝導性を有する固体電解質材料によって構成された固体電解質体(3)、前記固体電解質体の外側に設けられて検出対象ガス(G)に晒される検出電極(4A)、及び前記固体電解質体の内側に設けられて基準ガス(A)に晒される基準電極(4B)を有するセンサ素子(2)を備えるガスセンサ(1)であって、
     前記固体電解質体と前記基準電極との間、又は前記基準電極の表面には、多数の気孔(231)を有する多孔質層(23)が設けられている、ガスセンサ。
    A solid electrolyte body (3) having a bottomed cylindrical shape and made of a solid electrolyte material having ionic conductivity, a detection electrode (4A) provided outside the solid electrolyte body and exposed to the gas (G) to be detected ), and a sensor element (2) having a reference electrode (4B) provided inside the solid electrolyte body and exposed to a reference gas (A), wherein
    A gas sensor, wherein a porous layer (23) having a large number of pores (231) is provided between the solid electrolyte body and the reference electrode or on the surface of the reference electrode.
  2.  前記固体電解質体の開口側部位の内側に装着されて前記基準電極に接続された内側端子(72)をさらに備え、
     前記多孔質層は、前記固体電解質体における、前記内側端子の装着部位よりも底側(L1)の部位に形成されている、請求項1に記載のガスセンサ。
    further comprising an inner terminal (72) mounted inside the opening side portion of the solid electrolyte body and connected to the reference electrode;
    2. The gas sensor according to claim 1, wherein said porous layer is formed on a portion of said solid electrolyte body closer to the bottom side (L1) than said inner terminal mounting portion.
  3.  前記固体電解質体は、円筒部(31)と、前記円筒部の底側に形成された曲面状の底部(32)とを有しており、
     前記底部の内側に設けられた前記多孔質層の部分の厚みは、前記円筒部の内側に設けられた前記多孔質層の部分の厚みよりも大きい、請求項1又は2に記載のガスセンサ。
    The solid electrolyte body has a cylindrical portion (31) and a curved bottom portion (32) formed on the bottom side of the cylindrical portion,
    3. The gas sensor according to claim 1, wherein the thickness of the portion of the porous layer provided inside the bottom portion is greater than the thickness of the portion of the porous layer provided inside the cylindrical portion.
  4.  前記センサ素子内に配置されて、前記センサ素子を加熱するヒータ素子(5)をさらに備え、
     前記円筒部の内側に設けられた、前記基準電極の部分及び前記多孔質層の部分は、前記ヒータ素子から離れており、
     前記底部の内側に設けられた、前記基準電極の部分又は前記多孔質層の部分は、前記ヒータ素子に接触している、請求項3に記載のガスセンサ。
    further comprising a heater element (5) disposed within the sensor element to heat the sensor element;
    the portion of the reference electrode and the portion of the porous layer provided inside the cylindrical portion are spaced apart from the heater element;
    4. The gas sensor of claim 3, wherein the portion of the reference electrode or the portion of the porous layer provided inside the bottom is in contact with the heater element.
  5.  前記多孔質層は、前記固体電解質体と前記基準電極との間に設けられており、かつ、前記固体電解質体を構成する固体電解質材料に比べて気孔率が高い固体電解質材料の粒子によって構成されており、
     前記基準電極の表面には、前記多孔質層の表面に形成された凹凸(232)に応じた凹凸(401)が形成されている、請求項1~4のいずれか1項に記載のガスセンサ。
    The porous layer is provided between the solid electrolyte body and the reference electrode, and is composed of particles of a solid electrolyte material having a higher porosity than the solid electrolyte material constituting the solid electrolyte body. and
    The gas sensor according to any one of claims 1 to 4, wherein the surface of the reference electrode is formed with irregularities (401) corresponding to the irregularities (232) formed on the surface of the porous layer.
  6.  前記固体電解質体を構成する固体電解質材料及び前記多孔質層を構成する固体電解質材料は、ジルコニアの一部が希土類金属元素又はアルカリ土類金属元素によって置き換えられた安定化ジルコニア又は部分安定化ジルコニアによって構成されており、
     前記多孔質層を構成する固体電解質材料における、希土類金属元素又はアルカリ土類金属元素の含有量は、前記固体電解質体を構成する固体電解質材料における、希土類金属元素又はアルカリ土類金属元素の含有量に比べて多い、請求項5に記載のガスセンサ。
    The solid electrolyte material constituting the solid electrolyte body and the solid electrolyte material constituting the porous layer are composed of stabilized zirconia or partially stabilized zirconia in which a part of zirconia is replaced with a rare earth metal element or an alkaline earth metal element. is composed of
    The content of the rare earth metal element or alkaline earth metal element in the solid electrolyte material constituting the porous layer is the content of the rare earth metal element or alkaline earth metal element in the solid electrolyte material constituting the solid electrolyte body. 6. The gas sensor according to claim 5, wherein the number is greater than the .
  7.  前記多孔質層における気孔率は、5%以上40%以下である、請求項1~6のいずれか1項に記載のガスセンサ。 The gas sensor according to any one of claims 1 to 6, wherein the porous layer has a porosity of 5% or more and 40% or less.
PCT/JP2022/015790 2021-04-19 2022-03-30 Gas sensor WO2022224764A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023516391A JPWO2022224764A1 (en) 2021-04-19 2022-03-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021070519 2021-04-19
JP2021-070519 2021-04-19

Publications (1)

Publication Number Publication Date
WO2022224764A1 true WO2022224764A1 (en) 2022-10-27

Family

ID=83722199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015790 WO2022224764A1 (en) 2021-04-19 2022-03-30 Gas sensor

Country Status (2)

Country Link
JP (1) JPWO2022224764A1 (en)
WO (1) WO2022224764A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225251A (en) * 1985-07-26 1987-02-03 Hitachi Ltd Oxygen concentration detector
JPS6435359A (en) * 1987-07-31 1989-02-06 Hitachi Ltd Air fuel ratio detecting element
JPH09507915A (en) * 1994-11-08 1997-08-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrochemical sensor and manufacturing method thereof
US20100059374A1 (en) * 2008-09-05 2010-03-11 Ngk Spark Plug Co., Ltd. Gas sensor element and gas sensor
WO2016143610A1 (en) * 2015-03-06 2016-09-15 株式会社デンソー Gas sensor element and gas sensor
WO2020246174A1 (en) * 2019-06-06 2020-12-10 日本特殊陶業株式会社 Method for manufacturing gas sensor element, gas sensor element, and gas sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225251A (en) * 1985-07-26 1987-02-03 Hitachi Ltd Oxygen concentration detector
JPS6435359A (en) * 1987-07-31 1989-02-06 Hitachi Ltd Air fuel ratio detecting element
JPH09507915A (en) * 1994-11-08 1997-08-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrochemical sensor and manufacturing method thereof
US20100059374A1 (en) * 2008-09-05 2010-03-11 Ngk Spark Plug Co., Ltd. Gas sensor element and gas sensor
WO2016143610A1 (en) * 2015-03-06 2016-09-15 株式会社デンソー Gas sensor element and gas sensor
WO2020246174A1 (en) * 2019-06-06 2020-12-10 日本特殊陶業株式会社 Method for manufacturing gas sensor element, gas sensor element, and gas sensor

Also Published As

Publication number Publication date
JPWO2022224764A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
US7329844B2 (en) Prismatic ceramic heater for heating gas sensor element, prismatic gas sensor element in multilayered structure including the prismatic ceramic heater, and method for manufacturing the prismatic ceramic heater and prismatic gas sensor element
JP6014000B2 (en) Gas sensor element and gas sensor
EP0372425B1 (en) Oxygen-sensor element and method for producing the same
JP5390682B1 (en) Gas sensor element and gas sensor
WO2013084097A2 (en) Gas sensor element, and gas sensor
US20120211362A1 (en) Gas sensor element and gas sensor
JP2003322632A (en) Ceramic heater, lamination type gas sensor element and manufacturing method therefor, and gas sensor having the lamination type gas sensor element
JP2016048230A (en) Gas sensor element and gas sensor
JP2006343297A (en) Lamination-type gas sensor element and gas sensor
JP4567547B2 (en) GAS SENSOR ELEMENT, MANUFACTURING METHOD THEREOF, AND GAS SENSOR
US20220065809A1 (en) Gas sensor
WO2022224764A1 (en) Gas sensor
CN109425645A (en) Gas sensor element and gas sensor
WO2022224763A1 (en) Gas sensor
JP7178420B2 (en) Ceramic structure and sensor element of gas sensor
JP3677920B2 (en) Oxygen concentration detector
WO2018012101A1 (en) Gas sensor
JP2007278877A (en) Gas sensor element and gas sensor
JP5639032B2 (en) Gas sensor element and gas sensor
US11604160B2 (en) Gas sensor
JPH01203963A (en) Oxygen sensor element
JP5931692B2 (en) Gas sensor
CN114026413A (en) Gas sensor and method for manufacturing the same
JP2005351741A (en) Oxygen concentration detection element
WO2020230515A1 (en) Gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023516391

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791539

Country of ref document: EP

Kind code of ref document: A1