JPH01203963A - Oxygen sensor element - Google Patents

Oxygen sensor element

Info

Publication number
JPH01203963A
JPH01203963A JP63027623A JP2762388A JPH01203963A JP H01203963 A JPH01203963 A JP H01203963A JP 63027623 A JP63027623 A JP 63027623A JP 2762388 A JP2762388 A JP 2762388A JP H01203963 A JPH01203963 A JP H01203963A
Authority
JP
Japan
Prior art keywords
protective layer
oxygen sensor
sensor element
solid electrolyte
electrolyte body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63027623A
Other languages
Japanese (ja)
Other versions
JPH087177B2 (en
Inventor
Takao Kojima
孝夫 小島
Toshiaki Kondo
稔明 近藤
Masahiko Yamada
雅彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP63027623A priority Critical patent/JPH087177B2/en
Publication of JPH01203963A publication Critical patent/JPH01203963A/en
Publication of JPH087177B2 publication Critical patent/JPH087177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sensor which is superior in durability, lambda point deviation, and responsiveness and performs accurate air fuel ratio control continuously for a long period by coupling a solid-state electrolyte body with a protection layer tightly by the presence of spherical projection parts. CONSTITUTION:The element 1 consists of the solid-state electrolyte body 2 which generates an oxygen concentration difference between a reference gas and a gas to be measured, a couple of porous electrodes (internal electrode) 3 and (external electrode 4) formed on the internal and external surface of the solid-state electrolyte body 2, the porous protection layer 5 which covers the external electrode 4, a noble metal catalyst 6 dispersed uniformly in the protection layer 5.... Further, the solid-state electrolyte body 4 consists of a base part 2a and spherical projection parts 2b and the external electrode 4 and protection layer 5 are formed in conformity with the shapes of the spherical projection parts 2b. Further, the protection layer 5 consists of a 1st protection layer 5a which is positioned more inside and covers the external electrode 4 directly and a 2nd protection layer 5b which is positioned outside and covers the external electrode 4 directly. The protection layers 5a and 5b carry catalyst 6.... Consequently, the sensor which is superior in durability and responsiveness is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は各種燃焼機器の酸素濃度を検知するための酸素
センサ素子、特に内燃機関からの排ガスを浄化するため
に利用される空燃比制御用の酸素センサ素子及びその製
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an oxygen sensor element for detecting oxygen concentration in various combustion equipment, particularly for air-fuel ratio control used to purify exhaust gas from an internal combustion engine. The present invention relates to an oxygen sensor element and a manufacturing method thereof.

[従来技術及び課題] 空燃比制御用酸素センサ素子は、酸素イオン伝導性の固
体電解質体とその内外面に備えられる一対の電極(基準
電極、測定電極)とからなり、排ガスと接触する測定電
極を排ガスから保護するため多孔質保護層で被覆するの
が一般的である。しかし、この種のセンサ素子にあって
は、排ガス中に含まれる未焼成分により、空気過剰率(
λ)がずれる、いわゆるλポイントズレをきたし、検出
精度が低下する。そのため1種々の研究、提案がなされ
ている。
[Prior art and problems] An oxygen sensor element for air-fuel ratio control consists of an oxygen ion-conducting solid electrolyte body and a pair of electrodes (reference electrode, measurement electrode) provided on the inner and outer surfaces of the solid electrolyte body, the measurement electrode being in contact with exhaust gas. It is common to coat the material with a porous protective layer to protect it from exhaust gas. However, in this type of sensor element, the excess air ratio (
λ) shifts, a so-called λ point shift occurs, and the detection accuracy decreases. For this reason, various studies and proposals have been made.

例えば、保護層の中に貴金属触媒を担持してなる酸素セ
ンサ素子が提案されている(特開昭53−50888.
同50−14396.同54−89898)。しかし、
この種の酸素センサ素子にあっては、使用時における耐
久性に問題があった。即ち、排ガス中の未焼成分(Co
等)が担持触媒に吸着又は反応して触媒が体積膨張する
ことにより、保護層にキレを生じ、最悪の場合には保護
層が剥離して電極が昇華する。又、触媒の担持量を多く
すると目詰りを発生して応答劣化をもたらし、一方少な
すぎると触媒が飛散してしまい、その効果が消失する。
For example, an oxygen sensor element in which a noble metal catalyst is supported in a protective layer has been proposed (Japanese Patent Laid-Open No. 53-50888.
50-14396. 54-89898). but,
This type of oxygen sensor element has a problem in durability during use. In other words, the unburned component (Co) in the exhaust gas
etc.) adsorbs or reacts with the supported catalyst and the catalyst expands in volume, causing the protective layer to crack, and in the worst case, the protective layer peels off and the electrode sublimates. Furthermore, if the amount of catalyst supported is too large, clogging will occur and the response will deteriorate, while if it is too small, the catalyst will scatter and the effect will disappear.

又、保護層を二層にして、より外側に位置する層だけに
触媒を担持してなる酸素センサ素子が提案されている(
特開昭53−72688.同55− 13828)。し
かし、この種の酸素センサ素子にあっては、触媒担持層
そのものが剥離し易く、触媒作用を有効に活かしきれな
い。
Furthermore, an oxygen sensor element has been proposed in which the protective layer is made up of two layers and only the outer layer carries a catalyst (
Japanese Patent Publication No. 53-72688. 55-13828). However, in this type of oxygen sensor element, the catalyst supporting layer itself tends to peel off, and the catalytic action cannot be effectively utilized.

更に、保護層として酸素を吸蔵・放出する物質で構成し
てなる酸素センサ素子も提案されている(特開昭02−
245148)。しかし、保護層が剥離し易いことは上
記技術と同様であり、やはり耐久性の劣化が懸念される
Furthermore, an oxygen sensor element composed of a substance that absorbs and releases oxygen as a protective layer has also been proposed (Japanese Patent Application Laid-Open No. 2002-02).
245148). However, as in the above technology, the protective layer is likely to peel off, and there is still concern about deterioration of durability.

本発明はかかる課題を解決すること、即ち耐久性に優れ
、貴金属触媒を有効に活用でき、しかもλポイントズレ
及び応答性の低下を生ずることなく、正確な空燃比制御
を長期間安定に維持できる酸素センサ素子を開発するこ
とを目的とする。
The present invention solves these problems, that is, it has excellent durability, makes effective use of precious metal catalysts, and can maintain accurate air-fuel ratio control stably for a long period of time without causing λ point deviation or decrease in response. The purpose is to develop oxygen sensor elements.

又、かかる酸素センサ素子を容易に量産できる製法を開
発することにある。
Another object of the present invention is to develop a manufacturing method that can easily mass-produce such oxygen sensor elements.

[課題解決の手段] 本発明はこうした見地に鑑み鋭意研究を重ねた結果、同
一出願人が先に出願した特願昭62−311278と同
様に1本発明を完成するに至ったものであり2本発明は
上述の課題を下記手段によって解決する。
[Means for solving the problem] As a result of extensive research in view of the above, the present invention has been completed in the same way as Japanese Patent Application No. 62-311278 filed earlier by the same applicant. The present invention solves the above-mentioned problems by the following means.

(1)固体電解質体の一面側に基準電極、他面側に測定
電極を備え、被測定ガスの酸素濃度を検知する酸素セン
サ素子において。
(1) In an oxygen sensor element that includes a reference electrode on one side of a solid electrolyte body and a measurement electrode on the other side, and detects the oxygen concentration of a gas to be measured.

固体電解質体が基部及び基部に直接結合する球状突起部
からなり1球状突起部を少なくとも含む位置において測
定電極を備え。
The solid electrolyte body comprises a base and a spherical protrusion directly connected to the base, and a measurement electrode is provided at a position including at least one spherical protrusion.

測定電極が多孔質の第1保護層で被覆されると共に、第
1保護層が多孔質の第2保護層で被覆され、第1.2保
護層夫々が被測定ガスの酸化反応を促進する貴金属触媒
を担持し。
The measurement electrode is covered with a porous first protective layer, and the first protective layer is covered with a porous second protective layer, and each of the first and second protective layers is made of a noble metal that promotes the oxidation reaction of the gas to be measured. Supports catalyst.

第1保護層が被測定ガスに対して化学的に安定な金属酸
化物からなり。
The first protective layer is made of a metal oxide that is chemically stable to the gas to be measured.

第2保護層が非化学量論的な遷移金属酸化物からなる。The second protective layer comprises a non-stoichiometric transition metal oxide.

酸素センサ素子。Oxygen sensor element.

(2)固体電解質体が基部及び基部に測定電極を介して
結合する球状突起部からなる酸素センサ素子(他の構成
は前記(1)と同じ)。
(2) An oxygen sensor element consisting of a solid electrolyte body and a spherical protrusion coupled to the base via a measurement electrode (other configurations are the same as in (1) above).

(3)固体電解質体の一面側に基準電極、他面側に測定
電極を備え、被測定ガスの酸素濃度を検知する酸素セン
サ素子において。
(3) In an oxygen sensor element that includes a reference electrode on one side of a solid electrolyte body and a measurement electrode on the other side, and detects the oxygen concentration of a gas to be measured.

固体電解質体が基部及び基部に直接結合する球状突起部
からなり1球状突起部を少なくとも含む位置において測
定電極を備え。
The solid electrolyte body comprises a base and a spherical protrusion directly connected to the base, and a measurement electrode is provided at a position including at least one spherical protrusion.

測定電極が多孔質の保護層で被覆され、保護層の少なく
とも一部が非化学量論的な遷移金属酸化物からなるとと
もに、被測定ガスの酸化反応を促進する貴金属触媒を担
持してなる。
The measurement electrode is covered with a porous protective layer, at least a portion of which is made of a non-stoichiometric transition metal oxide and supports a noble metal catalyst that promotes the oxidation reaction of the gas to be measured.

酸素センサ素子。Oxygen sensor element.

(4)固体電解質体が前記(2)の構成である酸素セン
サ素子(他の構成は前記(3)と同じ)。
(4) An oxygen sensor element in which the solid electrolyte body has the configuration described in (2) above (other configurations are the same as in (3) above).

(5)固体電解質体の一面側に基準電極、他面側に測定
電極を備え、被測定ガスの酸素濃度を検知する酸素セン
サ素子を製造する方法において。
(5) In a method for manufacturing an oxygen sensor element that includes a reference electrode on one side of a solid electrolyte body and a measurement electrode on the other side and detects the oxygen concentration of a gas to be measured.

固体電解質体の基材の一面側の処理について。Regarding the treatment of one side of the base material of the solid electrolyte body.

少なくとも次の各工程: (a)固体電解質からなる球状粒子を付着する工程。At least each of the following steps: (a) Step of attaching spherical particles made of solid electrolyte.

(b)電極材料を折着する工程。(b) Step of folding the electrode material.

(C)金属酸化物成分を溶射する工程。(C) A step of thermally spraying a metal oxide component.

(d) j14を金属塩溶液に浸漬処理する工程、及び
(e)非化学量論的な遷移金属酸化物成分と貴金属成分
とを配合してなるペースト状物で被覆した後、焼成する
工程。
(d) a step of immersing j14 in a metal salt solution; and (e) a step of coating it with a paste-like material made by blending a non-stoichiometric transition metal oxide component and a noble metal component, and then firing it.

を含むことからなる。酸素センサ素子の製造方法。It consists of including. A method for manufacturing an oxygen sensor element.

[好適な実施態様] 固体電解質体としては先端が閉塞され後端が開口したも
のであれば1袋状、板状又は円筒状等積々の形状でよく
、固体電解質材料としては例えばZrOに安定化剤とし
てYO,CaO等を添加したものを用いるとよい。基準
電極及び測定電極(層状)はともに多孔質とされ、Pt
又は296程度以下のRhを含有するpt等の貴金属を
用いるとよい。
[Preferred Embodiment] The solid electrolyte body may have a bag-like, plate-like, or cylindrical shape as long as it has a closed end and an open rear end, and the solid electrolyte material may be stable to ZrO, for example. It is preferable to use one to which YO, CaO, etc. are added as a curing agent. Both the reference electrode and the measurement electrode (layered) are porous and Pt
Alternatively, a noble metal such as pt containing Rh of about 296 or less may be used.

固体電解質体の他面(測定電極を形成する面)は、固体
電解質からなる球状突起部とされる。球状突起部を測定
電極更には保護層内に楔状に貫入した状態とし、固体電
解質体と保護層とを強固に物理的に結合させるためであ
る。球状突起部の存在によって、保護層中の触媒に未焼
成分が吸着又は反応して体積膨張しても、保護層は固体
電解質体から剥離し難く、素子の耐久性が高められる。
The other surface of the solid electrolyte body (the surface forming the measurement electrode) is a spherical protrusion made of solid electrolyte. This is because the spherical protrusion penetrates into the measurement electrode and further into the protective layer in a wedge shape, thereby firmly physically bonding the solid electrolyte body and the protective layer. Due to the presence of the spherical protrusions, even if the unfired component adsorbs or reacts with the catalyst in the protective layer and expands in volume, the protective layer is difficult to peel off from the solid electrolyte body, and the durability of the element is increased.

球状突起部は測定電極を介して、その外側に位置させて
もよい。
The spherical protrusion may be located outside the measurement electrode.

球状突起部は、造粒粒子の集合体からなり、造粒粒子を
固体電解質体の基部表面に単層又は複層をもって形成す
るとよい。又造粒粒子は40〜10〇−1好ましくは5
0〜80umにするとよい。楔状の凹凸を形成して保護
層との強固な結合を得るためであり、40μm未満では
楔としての機能を充分に果し得ず、100μlを越える
と基材との固着が弱くなるためである。球状突起部は、
各造粒粒子間に凹部を残すよう分布するとよい。保護層
との結合力をより高める他、!極表面績の拡大にも寄与
し得る。
The spherical protrusion is composed of an aggregate of granulated particles, and the granulated particles are preferably formed in a single layer or in multiple layers on the base surface of the solid electrolyte body. Also, the granulated particles have a particle size of 40 to 100-1, preferably 5
It is preferable to set the thickness to 0 to 80 um. This is to form wedge-shaped unevenness to obtain a strong bond with the protective layer, and if it is less than 40 μl, it will not function well as a wedge, and if it exceeds 100 μl, the adhesion to the base material will be weakened. . The spherical protrusion is
It is preferable to distribute the granulated particles so as to leave concave portions between each granulated particle. In addition to further increasing the bonding force with the protective layer! It can also contribute to expanding the surface performance.

球状突起部の材質は固体電解質体の基部と同一材質とす
ることが好ましいが、固体電解質であればよい。例えば
基部がZ「02−Y2o3系1球状突起部がZrO2−
(Cab、Mg0)系、又基部がZr02−Y203系
1球状突起部が該基部とY2O3含有mの異なるZrO
2−Y2O3系としてもよい。
The material of the spherical protrusion is preferably the same as that of the base of the solid electrolyte body, but any solid electrolyte may be used. For example, if the base is Z"02-Y2o3 system 1, the spherical protrusion is ZrO2-
(Cab, Mg0) system, and the base is Zr02-Y203 system 1 spherical protrusion is ZrO with a different Y2O3 content m from the base
It may also be 2-Y2O3-based.

測定電極は、既述の通り多孔質の第1保護層で被覆され
ると共に、この第1保護層は多孔質の第2保護層で被覆
されなければならない(前記(1)の構成)。
The measurement electrode is covered with a porous first protective layer as described above, and this first protective layer must be covered with a porous second protective layer (configuration (1) above).

第1保護層は、使用時において排ガスの未焼成分(CO
等)が測定電極(貴金属)に吸着又は反応することによ
り測定電極が体積膨張して固体電解質体から剥離するの
を防止するためのものである。第1保護層はセラミック
ス例えばA(0、スピネル、Bed、ZrO2等又はこ
れらの混合物で構成するとよく、特にスピネルを主体と
するものが好ましい。その気孔率は5〜20%程度、そ
の厚みは100〜180μ町好ましくは150μl程度
にするとよい。素子先端部における第1保護層の厚みを
より後方部における厚みに対して大(例えば372〜2
倍)にするとよい。低温使用時においてセンサ出力が不
規則になる。いわゆる「ケミカルノイズ」現象の発生を
抑制して、低温使用時においてもより正確な制御を行な
うためである。その先端部の軸方向長さは、素子先端か
ら素子取付部までの軸方向長さの115〜l/2の範囲
から選択するとよい。肉厚とされる部分について材料を
異ならせてもよい。
The first protective layer protects the unburned components (CO) of exhaust gas during use.
etc.) adsorbs or reacts with the measuring electrode (noble metal), thereby preventing the measuring electrode from expanding in volume and peeling off from the solid electrolyte body. The first protective layer is preferably composed of a ceramic such as A(0, spinel, Bed, ZrO2, etc.) or a mixture thereof, and is particularly preferably composed of spinel as a main component.The porosity is about 5 to 20%, and the thickness is about 100%. ~180 μl, preferably about 150 μl.The thickness of the first protective layer at the tip of the element is larger than the thickness at the rear (for example, 372~2
It is recommended to increase the amount (double). Sensor output becomes irregular when used at low temperatures. This is to suppress the occurrence of so-called "chemical noise" phenomenon and to perform more accurate control even when used at low temperatures. The axial length of the tip portion is preferably selected from a range of 115 to 1/2 of the axial length from the element tip to the element mounting portion. The thicker portion may be made of different materials.

この第1保護層に担持され被測定ガスの未焼成分の酸化
を促進する貴金属触媒としては、特に白金(Pt)を主
体とするもの例えばp t 80wt1%以上からなる
ものが好ましい。その担持量は、第1保護層の構成材料
全量に対して0.01〜5 vt1%の範囲にするとよ
い。0.01wt%未満では効果がなく。
The noble metal catalyst supported on the first protective layer and promoting the oxidation of the unburned components of the gas to be measured is particularly preferably one containing platinum (Pt) as a main component, for example, a catalyst containing Pt of 80wt1% or more. The amount supported is preferably in the range of 0.01 to 5 vt1% based on the total amount of the constituent materials of the first protective layer. There is no effect at less than 0.01 wt%.

5 vt%を越えると目詰りを生ずるおそれがあるから
である。但し、濃い(リッチ)排ガスに晒される条件下
ではlvt%以下であることが好ましい。
This is because if it exceeds 5 vt%, clogging may occur. However, under conditions of exposure to rich exhaust gas, it is preferably lvt% or less.

lvt%を越えると、多量に存在する未焼成分が貴金属
触媒に吸着又は反応して保護層にキレが発生するためで
ある。この触媒は、保護層全域に均−又は不均一に分散
でき1例えば、排ガスの未焼成分が多い素子先方部にお
いて貴金属の含有率を大としてもよい。又、触媒の材質
を各部で異ならせてもよい。
This is because if the lvt% is exceeded, the unburned components present in large amounts will be adsorbed or reacted with the noble metal catalyst, causing the protective layer to crack. This catalyst can be dispersed uniformly or non-uniformly over the entire area of the protective layer. For example, the content of the noble metal may be increased in the front part of the element where the unburned components of the exhaust gas are large. Further, the material of the catalyst may be made different for each part.

第2保護層は、既述の通り非化学量論的な遷移金属酸化
物によって構成されていなければならない。第1保護層
の担持貴金属触媒が使用時に飛散してλポイントズレ及
び出力低下するのを防止するためである。又、第2保護
層自体による遷移金属特有の触媒作用及び担持触媒の作
用によって排ガスの未焼成分の酸化作用をより一層促進
すると共に、その非化学量論性によって酸素量に応じて
電子又は正孔が変化することから、担持触媒に未焼成分
が過度に吸着することを防止し、担持触媒の作用を長期
安定に維持するためである。遷移金属酸化物としては、
上記作用を発揮し得る限り3A族〜8族の遷移金属酸化
物のいずれをも選択し得るが、4A族2例えばチタン(
TL)、8族他例えばコバルト(Co)、ニッケル(N
i)の酸化物が好ましい。特−にTiOx  (x−1
,8以上2未満、好ましくは1゜95以上2未満)で表
わされる非化学量論的チタニアを使用するとよい。上記
作用を効率よく発揮でき、しかも耐熱性に優れるからで
ある。そのチタニア(T i Ox )を第2保護層の
構成材料(担持触媒は除く)全量に対して50wt%以
上、好ましくは70シt%以上にするとよい。この場合
、残部は、他の非化学量論的な遷移金属酸化物とすると
よいが、化学量論的な遷移金属酸化物或は第1保護層と
同様なセラミック材料で構成してもよい。第2保護層の
気孔率は第1保護層のそれよりも大にするとよい。被測
定ガスの通過性及びセン、す応答性の劣化を防止するた
めである。例えば、8%〜15%にするとよく、開気孔
(通過孔)として存在させてもよい。又、同様な見地で
、第2保護層の厚みは第1保護層のそれよりも薄くする
とよい。例えば、10μ11〜50μmにするとよい。
The second protective layer must be composed of a non-stoichiometric transition metal oxide as described above. This is to prevent the noble metal catalyst supported on the first protective layer from scattering during use, causing a λ point shift and a decrease in output. In addition, the second protective layer itself further promotes the oxidation of the unburned components of the exhaust gas through the catalytic action peculiar to the transition metal and the action of the supported catalyst, and its non-stoichiometric nature allows it to oxidize electrons or electrons depending on the amount of oxygen. This is to prevent unburned components from excessively adsorbing to the supported catalyst due to the change in pores, and to maintain stable operation of the supported catalyst over a long period of time. As transition metal oxides,
Any transition metal oxide from Group 3A to Group 8 can be selected as long as it can exhibit the above effects, but Group 4A 2, for example, titanium (
TL), group 8 and others such as cobalt (Co), nickel (N
The oxide i) is preferred. Especially TiOx (x-1
, 8 or more and less than 2, preferably 1°95 or more and less than 2). This is because it can efficiently exhibit the above effects and has excellent heat resistance. The content of titania (T i Ox ) is preferably 50 wt % or more, preferably 70 wt % or more based on the total amount of the constituent materials (excluding the supported catalyst) of the second protective layer. In this case, the remainder may be made of another non-stoichiometric transition metal oxide, but may also be made of a stoichiometric transition metal oxide or the same ceramic material as the first protective layer. The porosity of the second protective layer is preferably greater than that of the first protective layer. This is to prevent deterioration of the permeability of the gas to be measured and the sensor response. For example, it may be set at 8% to 15%, and may be present as open pores (passing pores). Also, from a similar standpoint, the thickness of the second protective layer is preferably thinner than that of the first protective layer. For example, it is preferable to set the thickness to 10μ11 to 50μm.

第2保護層の貴金属触媒の担持量は第1層におけるもの
よりも少なくしてもよい。遷移金属酸化物が触媒作用を
兼備するからであり、この担持量低減によって触媒によ
る目詰まり発生を防止すると共に、貴金属の有効利用を
図ることができる。
The amount of noble metal catalyst supported in the second protective layer may be smaller than that in the first layer. This is because the transition metal oxide also has a catalytic effect, and by reducing the supported amount, clogging caused by the catalyst can be prevented and the precious metal can be used effectively.

特に第2保護層全量に対して0.02〜5 mo1%の
担持量とすれば、触媒作用を有効に発揮し、触媒と未燃
焼ガスとの反応に基づく体積膨張による層剥離を防止で
きる。好ましくは0.1〜2 a+o1%である。
In particular, if the amount supported is 0.02 to 5 mo1% with respect to the total amount of the second protective layer, the catalytic action can be effectively exhibited and layer peeling due to volume expansion caused by the reaction between the catalyst and the unburned gas can be prevented. Preferably it is 0.1-2 a+o1%.

この触媒も第2保護層全域に均−又は不均一に分散する
とよい。
This catalyst may also be dispersed uniformly or non-uniformly throughout the second protective layer.

又、保護層の少なくとも一部(特定部)が非化学量論的
な遷移金属酸化物からなる場合(前記手段(3) 、 
(4)の場合)、即ち必ずしも二層に明確に区別されな
い場合にあっても、その構成は既述の第2保護層におけ
ると同様にするとよい。又残部構成は既述の第1保護層
と同様にするとよい。
Further, when at least a part (specific part) of the protective layer is made of a non-stoichiometric transition metal oxide (the above means (3),
(4)), that is, even if the two layers are not clearly distinguished, the structure may be the same as that of the second protective layer described above. The remaining structure may be the same as that of the first protective layer described above.

保護層全体が非化学量論的な遷移金属酸化物からなって
もよい。貴金属触媒は特定部及び残部にかかられず存在
させるとよい。
The entire protective layer may consist of a non-stoichiometric transition metal oxide. It is preferable that the noble metal catalyst is present in both the specific part and the remainder.

次に1本発明の製造方法、特に固体電解質基材の他面側
(測定電極が形成されるべき側)の処理工程について、
好適な態様及び作用を述べる。
Next, regarding the manufacturing method of the present invention, particularly the treatment step of the other side of the solid electrolyte base material (the side on which the measurement electrode is to be formed),
Preferred aspects and effects will be described.

固体電解質基材は原料粉末を混合、仮焼した後、粉砕(
2,5μm以下)シ、その後スプレードライによって二
次粒子(20〜150−)を形成し、所定形状に成形す
るとよい。
The solid electrolyte base material is made by mixing raw material powder, calcining it, and then pulverizing it (
2.5 μm or less) and then spray drying to form secondary particles (20 to 150 μm) and forming them into a predetermined shape.

球状突起部の形成は、固体電解質体基材表面に平均粒径
50〜100μlの球状粒子を付着させ、その後、焼成
するとよい。後工程の電極析着処理後も充分に楔状の凹
凸を残し、第1保護層との強固な結合を得るためである
。即ち、焼成後の球状粒子が40μm未満では楔として
の機能を充分に果し得ず、100μmを越えると基材と
の固着が弱くなるためである。より好ましくは50〜8
0μIにするとよい。又10μm以下のより細粒を混在
させ、より一層の強度向上を図ってもよい。固体電解質
基材と球状粒子とは同時焼成に供するとよい。両者の固
着強度を高めるためである。その焼成温度は140(1
〜1500℃にするとよい。又、電極析着処理を施した
後1球状粒子の形成を行なってもよい。特に1球状粒子
を先に付着形成した場合において、測定電極を形成でき
ないときに有効である。これによって、測定電極の確実
な保護となり、又保護層との結合をより一層高めること
ができる。
The spherical projections may be formed by attaching spherical particles with an average particle size of 50 to 100 μl to the surface of the solid electrolyte base material, and then firing. This is to ensure that the wedge-shaped unevenness remains sufficiently even after the electrode deposition treatment in the subsequent step, and to obtain a strong bond with the first protective layer. That is, if the spherical particles after firing are less than 40 μm, they cannot function as a wedge sufficiently, and if they exceed 100 μm, the adhesion to the base material becomes weak. More preferably 50-8
It is best to set it to 0μI. Further, finer particles of 10 μm or less may be mixed to further improve the strength. The solid electrolyte base material and the spherical particles may be fired simultaneously. This is to increase the adhesion strength of both. The firing temperature is 140 (1
It is preferable to set the temperature to ~1500°C. Alternatively, one spherical particle may be formed after the electrode deposition treatment. This is particularly effective when a measurement electrode cannot be formed when one spherical particle is deposited first. This ensures reliable protection of the measurement electrode and further enhances the bonding with the protective layer.

電極の形成は、電気メツキ、化学メツキ等の通常メツキ
処理の他1通常の気相析着法例えばスパッタリング、蒸
着或いはスクリーン印刷によって行なってもよい。
In addition to conventional plating processes such as electroplating and chemical plating, the electrodes may be formed by a conventional vapor deposition method such as sputtering, vapor deposition, or screen printing.

第1保護層の形成としては、その材料の溶液又は粉末を
刷毛塗布、浸漬、噴霧等の後焼成する等積々の方法が挙
げられるが、特にプラズマ溶射が好ましい。溶射粉末同
志の固着強度が強く、その条件を適宜変更することによ
り、任意の気孔率。
The first protective layer can be formed by a number of methods such as brush coating, dipping, spraying, and subsequent baking of a solution or powder of the material, but plasma spraying is particularly preferred. The adhesion strength of the thermal spray powders is strong, and by changing the conditions appropriately, any porosity can be achieved.

気孔径とすることができるからである。This is because the pore diameter can be adjusted.

第1保護層への触媒担持は、貴金属塩溶液中にて浸漬処
理し、その後乾燥、焼成して行なうとよい。その溶液の
濃度は触媒が充分に分散し、含浸的に目詰まりを起こさ
ないようにする見地で決定するとよい。例えば、触媒が
、Ptの場合、Ptが十分分散した溶液としては、H2
PtC,g。溶液があり、そのpt濃度を0.O1〜5
g/j!にするとよい。pt濃度が0.01g#!未満
では触媒作用が不充分となり、5g#!を越えると第1
保護層の孔が目詰まりし、センサ応答性が悪くなるため
である。浸漬処理は減圧又は加圧しながら行なうとよい
。貴金属含有塩溶液が第1保護層の奥深くまで浸漬し、
従って貴金属触媒を第1保護層内に均一に分散できるか
らである。焼成温度は400〜700℃にするとよい。
The catalyst may be supported on the first protective layer by immersion treatment in a noble metal salt solution, followed by drying and baking. The concentration of the solution is preferably determined from the standpoint of sufficiently dispersing the catalyst and preventing clogging in terms of impregnation. For example, when the catalyst is Pt, a solution in which Pt is sufficiently dispersed is H2
PtC,g. There is a solution whose pt concentration is 0. O1~5
g/j! It is better to make it . PT concentration is 0.01g#! If it is less than 5g#, the catalytic action will be insufficient. 1st
This is because the pores in the protective layer become clogged, resulting in poor sensor response. The immersion treatment is preferably carried out under reduced pressure or increased pressure. The noble metal-containing salt solution is immersed deep into the first protective layer,
Therefore, the noble metal catalyst can be uniformly dispersed within the first protective layer. The firing temperature is preferably 400 to 700°C.

第2保護層の形成は、保護層材料及び貴金属成分を配合
してなるペースト状物で第1保護層を彼覆し、その後焼
成することによって行なわなければならない。保:J層
の形成と触媒の担持とを同時に行なうことによって、よ
り強固に触媒を担持させ、使用時における飛散を防止し
て長期安定に触媒作用を発揮させるためである。又、ペ
ースト状物とすることによって、焼成時に結合剤等が飛
散し、所望の気孔率及び気孔径を容易に得ることができ
るからである。ペースト状物は通常の如く結合剤、溶剤
等を配合して得られる。被覆方法としては、刷毛塗布、
浸漬、噴霧等いずれであってもよい。但し、プラズマ溶
射は不適である。その溶射時に保護層材料の焼結が進行
してしまい、気孔を所望の状態で(特に高気孔率として
)得ることができないからである。又、保護層材料と担
持触媒との配合は、保護層材料粉末に貴金属塩溶液を含
浸させることにより行なうとよい。均質に配合させるた
めである。保護層材料としては、遷移金属酸化物の他、
熱分解によって該遷移金属酸化物を形成し得る化合物例
えば水酸化物又は塩などであってもよい。その粉末粒径
は2μm以下にするとよい。焼結性が向上し固着強度が
高められ、従って使用時において第2保護層が剥離し難
くなるからである。好ましくは0.3〜1.5μmであ
る。熱処理温度は非酸化雰囲気中で700〜900℃で
行なうとよい。
The second protective layer must be formed by covering the first protective layer with a paste made of a protective layer material and a noble metal component, and then firing. Maintenance: By forming the J layer and supporting the catalyst at the same time, the catalyst is more strongly supported, preventing scattering during use, and stably exhibiting the catalytic action over a long period of time. Moreover, by forming the paste into a paste-like material, the binder and the like are scattered during firing, making it possible to easily obtain the desired porosity and pore diameter. A paste-like material is obtained by blending a binder, a solvent, etc. in the usual manner. Coating methods include brush application,
Any method such as dipping or spraying may be used. However, plasma spraying is not suitable. This is because sintering of the protective layer material progresses during thermal spraying, making it impossible to obtain pores in a desired state (particularly with high porosity). Further, the combination of the protective layer material and the supported catalyst is preferably carried out by impregnating the protective layer material powder with a noble metal salt solution. This is to ensure homogeneous blending. In addition to transition metal oxides, protective layer materials include
It may also be a compound that can form the transition metal oxide by thermal decomposition, such as a hydroxide or a salt. The powder particle size is preferably 2 μm or less. This is because the sinterability is improved and the adhesion strength is increased, so that the second protective layer becomes difficult to peel off during use. Preferably it is 0.3 to 1.5 μm. The heat treatment temperature is preferably 700 to 900°C in a non-oxidizing atmosphere.

[実施例] 以下2本発明の実施例について説明する。[Example] Two embodiments of the present invention will be described below.

第1〜3図は一実施例を示したものであり、各図におい
て、1が酸素センサ素子であり、大略。
1 to 3 show one embodiment, and in each figure, numeral 1 represents an oxygen sensor element.

この素子1は基準ガスと被測定ガス(排ガス)とによっ
て酸素濃度差を生じ得る固体電解質体2と、固体電解質
体2の内外面に形成された一対の多孔質電極(内側電極
)3.(外側電極)4と。
This element 1 includes a solid electrolyte body 2 that can cause a difference in oxygen concentration between a reference gas and a gas to be measured (exhaust gas), and a pair of porous electrodes (inner electrodes) formed on the inner and outer surfaces of the solid electrolyte body 2.3. (Outer electrode) 4.

外側電極4を被覆する多孔質保護層5と、保護層Sに均
一分散して担持された貴金属触媒6・・・とから構成さ
れている。ここでは、固体電解質体2はZ r O2に
Y2O3を添加したものからなり、電極3.4はともに
pt主電極あり、貴金属触媒6・・・はpt粒子からな
っている。
It is composed of a porous protective layer 5 covering the outer electrode 4, and a noble metal catalyst 6 supported on the protective layer S in a uniformly dispersed manner. Here, the solid electrolyte body 2 is made of Z r O2 with Y2O3 added, the electrodes 3.4 are both PT main electrodes, and the noble metal catalysts 6 are made of PT particles.

固体電解質体2は、基部2aとその外側表面に位置する
球状突起部2bとからなり、この球状突起部2bの形状
に沿って外側電極4.更には保護層5が形成されている
。又、保護層5はより内側に位置して外側電極4を直接
被覆する第1保護層5aと、より外側に位置して排ガス
に晒される第2保護層5bとからなる。両保護層5a、
5bはともにpt触媒6・・・を担持している。ここで
は。
The solid electrolyte body 2 consists of a base 2a and a spherical protrusion 2b located on the outer surface thereof, and an outer electrode 4. Furthermore, a protective layer 5 is formed. Further, the protective layer 5 includes a first protective layer 5a located further inside and directly covering the outer electrode 4, and a second protective layer 5b located further outside and exposed to exhaust gas. Both protective layers 5a,
5b both support a pt catalyst 6... here.

第1保護層5aはスピネル、第2保護層5bはチタニア
からなる。
The first protective layer 5a is made of spinel, and the second protective layer 5b is made of titania.

尚、第1図において、7はハウジング、8は加締用リン
グ、9は充填剤、そしてlOは保護管を夫々示す。
In FIG. 1, 7 is a housing, 8 is a caulking ring, 9 is a filler, and 10 is a protective tube.

第4図は他の実施例、即ち板状の酸素センサ素子の例を
示したものであり、他は前記実施例と同様であるので、
同一構成要素に同一符号を付してその説明は省略する。
FIG. 4 shows another embodiment, that is, an example of a plate-shaped oxygen sensor element, and the rest is the same as the previous embodiment.
Identical components are given the same reference numerals and their explanations will be omitted.

次に9本発明の酸素センサ素子の製造例について説明す
る。以下の各工程を順次行なう。
Next, an example of manufacturing the oxygen sensor element of the present invention will be described. Perform each of the following steps in sequence.

工程1:純度99%以上のZ r 02に純度99.9
%のY2O3を511O1%添加し、混合した後、 1
300℃で2時間仮焼する。
Step 1: Z r 02 with a purity of 99% or more and a purity of 99.9
After adding 511% of Y2O3 and mixing, 1
Calculate at 300℃ for 2 hours.

工程2:水を加えボールミル中にて湿式にて粒子の80
%が2.5μm以下の粒径になるまで粉砕する。
Step 2: Add water and mill the particles wet in a ball mill.
% is ground to a particle size of 2.5 μm or less.

工程3:水溶性バインダを添加し、スプレードライにて
平均粒径70Mの球状の造粒粒子を得る。      
       −(1)3工程4: (1)3にて得た
粉末をラバープレスし所望の管状(試験管状)に成形し
乾燥後、砥石にて所定の形状に研削する。
Step 3: Add a water-soluble binder and spray dry to obtain spherical granulated particles with an average particle size of 70M.
- (1) 3 Step 4: The powder obtained in (1) 3 is rubber pressed to form a desired tube shape (test tube shape), dried, and then ground into a predetermined shape using a grindstone.

工程5:外面上に、 (1)3で得た造粒粒子に水溶性
バインダ繊維素グリコール酸ナトリウム及び溶剤を添加
した泥漿を付着させる。
Step 5: A slurry prepared by adding a water-soluble binder cellulose sodium glycolate and a solvent to the granulated particles obtained in (1) 3 is attached to the outer surface.

工程6:乾燥後、 1500℃X 2 firsにて焼
成する。
Step 6: After drying, it is fired at 1500°C x 2 firs.

検出部に対応する部分について、軸方向長さは25mm
、外径約5關φ、内径約3市φとした。
The axial length of the part corresponding to the detection part is 25 mm.
The outer diameter was about 5 mm and the inner diameter was about 3 mm.

工程7:化学メツキにより、内外面にpt層を厚さ 0
.9μ■に析若させ、その後1000℃で焼付する。
Step 7: Apply a PT layer to the inner and outer surfaces to a thickness of 0 using chemical plating.
.. The plate was precipitated to 9 μι, and then baked at 1000°C.

工程8 : M g O−A I! 203(スピネル
)の粉末にてプラズマ溶射して厚さ約150−の第1保
護層を形成する。
Step 8: M g O-A I! 203 (spinel) powder is plasma sprayed to form a first protective layer having a thickness of about 150 mm.

工程9:Ptが0.05g/、i!のHPtC,gB溶
液中に浸し、50〜100m11g減圧下で約5分放置
する。
Step 9: Pt is 0.05g/, i! of HPtC, gB solution and leave it for about 5 minutes under reduced pressure of 50 to 100 ml.

工程lO:乾燥乾燥後金貴金属含有チタニアペースト1
保護層の表面に塗布し、800℃の還元性雰囲気で焼付
けることにより、約2μ−の細孔を有する厚さ約25μ
■の第2保護層を形成する。尚、上記ペーストは、チタ
ニアの粉末をH2PtC,C6液又はPtブラックニ浸
し。
Step 1O: Dry After drying, gold noble metal-containing titania paste 1
By applying it to the surface of the protective layer and baking it in a reducing atmosphere at 800°C, it forms a layer with a thickness of about 25μ with pores of about 2μ.
(2) Form the second protective layer. The above paste is made by soaking titania powder in H2PtC, C6 liquid or Pt black.

撹拌しながら乾燥・含浸させ、その後有機バインダ及び
溶剤(プチルガルビドール)を添加して得る。
It is obtained by drying and impregnating it while stirring, and then adding an organic binder and a solvent (butylgarbidol).

更に、こうして製造された酸素センサ素子lを用いて、
以下の工程により、酸素センサAを得た。
Furthermore, using the oxygen sensor element l manufactured in this way,
Oxygen sensor A was obtained through the following steps.

工程11:素子1をハウジング7内に挿入した後。Step 11: After inserting the element 1 into the housing 7.

加締用リング8及び滑石等の充填剤9を挿填して、素T
−1をハウジング7内に固定する。
Insert the caulking ring 8 and filler 9 such as talc, and make the base T.
-1 is fixed in the housing 7.

工程12:素子工先端部を覆って保護層10を配置し、
ハウジング7先端と保護管10後端とを溶接する。
Step 12: Placing a protective layer 10 covering the tip of the element,
The tip of the housing 7 and the rear end of the protection tube 10 are welded.

工程13:端子及びリード線(図示せず)をns極に接
続し、外筒(図示せず)を被せて酸素センサを得る。
Step 13: Connect terminals and lead wires (not shown) to the ns pole, and cover with an outer cylinder (not shown) to obtain an oxygen sensor.

[試験例1 前記実施例に係る本発明の酸素センサ素子に基づいて以
下の試験を行ない各評価項目について調べた。又、比較
例についても同様に調べた。
[Test Example 1 The following tests were conducted based on the oxygen sensor element of the present invention according to the above-mentioned example, and each evaluation item was investigated. Comparative examples were also examined in the same manner.

試験1,2 工程IOで使用される貴金属触媒源及び第2保護層の触
媒担持量を変化させてなる酸素センサ素子をブンゼンバ
ーナで耐久試験に供した。試験1では空気を殆んど導入
しない不完全燃焼状態で各酸素センサ素子のT19部(
先端部)を700〜850℃に加熱し、試験2では空気
を導入しほぼ完全燃焼状態でT19部を約850”C1
,:加熱し、夫k  50011rs耐久させる。
Tests 1 and 2 Oxygen sensor elements formed by varying the noble metal catalyst source used in step IO and the amount of catalyst supported on the second protective layer were subjected to a durability test using a Bunsen burner. In test 1, the T19 section of each oxygen sensor element (
In test 2, air was introduced and the T19 part was heated to approximately 850"C1 in an almost complete combustion state.
,: Heat and make it durable for 50011rs.

評価項目A: 上記加熱後の酸素センサ素子を備えてなる酸素センサを
燃焼管(内径幅43)に取付け、1m離れた部位からバ
ーナ炎を吹付け、センサ応答性を評価する。
Evaluation item A: An oxygen sensor comprising the above-mentioned heated oxygen sensor element is attached to a combustion tube (inner diameter width 43), and burner flame is blown from a position 1 m away to evaluate sensor responsiveness.

評価項目B: 同様に加熱後に係る酸素センサをエンジン実車にて所定
の位置に取付け、センサ制御し、より下流に位置するλ
スキャン値(制御A/F平均値)を調べ、λ特性を評価
する。
Evaluation item B: Similarly, after heating, the oxygen sensor is installed at a predetermined position on the actual engine vehicle, and the sensor is controlled to determine the temperature of λ located further downstream.
Check the scan value (control A/F average value) and evaluate the λ characteristic.

評価項目C: 目視によって素子表面部の状態を評価する。Evaluation item C: Evaluate the condition of the element surface by visual inspection.

これらの結果を第1表に示す。These results are shown in Table 1.

第  1  表 本比較例 第1表から明らかな通り、実施例に係る酸素センサ素子
(及び酸素センサ)は比較例のものに比して、各試験1
,2の各評価項目A、B、Cについて優れた結果を示し
ている。又、第2保護層の触媒担持量としては8.0I
lo1%未満であることが好ましいことを認識できる。
Table 1 This Comparative Example As is clear from Table 1, the oxygen sensor element (and oxygen sensor) according to the example had a higher performance in each test 1 than the comparative example.
, 2 showed excellent results for each evaluation item A, B, and C. In addition, the amount of catalyst supported on the second protective layer was 8.0I.
It can be recognized that lo is preferably less than 1%.

試験3 第1,2保護層の各触媒担持量を変化させてなる酸素セ
ンサ素子を用いて、その初期特性(耐久前)としてセン
サ制御時における振動数(Hz )を測定する[評価項
目D]。
Test 3 Using an oxygen sensor element in which the amount of each catalyst supported in the first and second protective layers is varied, the frequency (Hz) during sensor control is measured as its initial characteristic (before durability) [Evaluation item D] .

上記素子に係る酸素センサをエンジン実車にて所定の位
置に取付け、A/FIO(リッチ雰囲気)、排ガス温度
700℃で200Hrs耐久を行ない、前記評価項目B
、Cについても調べた。
The oxygen sensor related to the above element was installed in a predetermined position on an actual engine vehicle, and was subjected to durability for 200 hours at A/FIO (rich atmosphere) and exhaust gas temperature of 700°C, and the above evaluation item B
, C was also investigated.

第  2  表 第2表からも2本実施例の優れた結果は裏付けられる。Table 2 Table 2 also supports the excellent results of the two Examples.

又、このような濃い(リッチ)排ガスに晒される条件下
では、第1保護層の触媒担持量は1νt%未満であるこ
とが好ましいことを認識できる。
Furthermore, it can be recognized that under conditions of exposure to such rich exhaust gas, the amount of catalyst supported in the first protective layer is preferably less than 1 νt%.

[効果] 以上の如く本発明によれば1球状突起部の存在によって
固体電解質体と保護層とが強固に結合しているので、保
護層の剥離を防止でき、耐久性に優れる。又、未焼成分
の貴金属への過度の吸着及び反応を第2保訛層(又は保
護層の少なくとも一部、以下同じ)によって抑制できる
ので、センサ応答性及びλ特性においても優れ、高精度
の空燃比制御を維持できる。第2保護層によって第1保
護層の担持触媒の飛散が防止されるので、第1保護層の
触媒担持量を多くでき、その触媒作用によってより一層
の高精度の空燃比制御を維持できる。更に、第1.2保
護層の担持貴金属触媒に加えて、第2保護層自体も被測
定ガス中の未焼成分の酸化反応を促進する触媒作用を有
するので、触媒作用を保護層全体が分担できることとな
り、触媒と未焼成分との反応による体積膨張を極力抑止
でき、この点からも耐久性の向上に寄与する。しかも、
仮に第2保護層の貴金属が昇華しても、第1保護層の担
持触媒及び第2保護層自体によって充分な触媒作用を継
続して発揮できる。
[Effects] As described above, according to the present invention, the solid electrolyte body and the protective layer are firmly bonded due to the presence of one spherical protrusion, so peeling of the protective layer can be prevented and the durability is excellent. In addition, excessive adsorption and reaction of unfired components to precious metals can be suppressed by the second protective layer (or at least a part of the protective layer, the same applies hereinafter), resulting in excellent sensor response and λ characteristics, and high precision. Air-fuel ratio control can be maintained. Since the second protective layer prevents the catalyst supported on the first protective layer from scattering, the amount of catalyst supported on the first protective layer can be increased, and its catalytic action can maintain even more precise air-fuel ratio control. Furthermore, in addition to the supported noble metal catalyst in the first and second protective layers, the second protective layer itself also has a catalytic effect that promotes the oxidation reaction of unburned components in the gas to be measured, so the entire protective layer shares the catalytic effect. This makes it possible to suppress volume expansion due to the reaction between the catalyst and the unburned components as much as possible, which also contributes to improved durability. Moreover,
Even if the noble metal in the second protective layer sublimes, the supported catalyst in the first protective layer and the second protective layer itself can continue to exert sufficient catalytic action.

従って1本発明は高価な貴金属を有効に利用して、被測
定ガス中の未焼成分を効率良く酸化させることができる
ので、高精度のセンサ制御を安定に維持でき、かくて酸
素センサ分野において極めて有用なものである。
Therefore, the present invention makes effective use of expensive precious metals and can efficiently oxidize the unburned components in the gas to be measured, making it possible to stably maintain high-precision sensor control, thus making it suitable for use in the field of oxygen sensors. It is extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の酸素センサ素子及び酸素センサの一
実施例を示す断面図。 第2図は、第1図の拡大断面図。 第3図は、第2図の拡大断面図、及び 第4図は1本発明の酸素センサ素子の他の実施例を示す
半断面図、を夫々表わす。 A・・・酸素センサ  1・・・酸素センサ素子2・・
・固体電解質体 2a・・・基部2b・・・球状突起部
 3・・・基準電極4・・・測定電極   5・・・保
護層5a・・・第1保護層 5b・・・第2保護層6・
・・触媒 出願人  日本特殊陶業株式会社 代理人   弁理士  加 藤 朝 道(外1名) 第1図 第2図 第3図 円上 / 手続補正書(鵠) 昭和63年3月15日
FIG. 1 is a sectional view showing an embodiment of the oxygen sensor element and oxygen sensor of the present invention. FIG. 2 is an enlarged sectional view of FIG. 1. 3 shows an enlarged sectional view of FIG. 2, and FIG. 4 shows a half sectional view showing another embodiment of the oxygen sensor element of the present invention. A...Oxygen sensor 1...Oxygen sensor element 2...
・Solid electrolyte body 2a... Base 2b... Spherical protrusion 3... Reference electrode 4... Measuring electrode 5... Protective layer 5a... First protective layer 5b... Second protective layer 6.
...Catalyst applicant: NGK Spark Plug Co., Ltd. Agent: Patent attorney Asamichi Kato (1 other person) Figure 1 Figure 2 Figure 3 Above the circle / Procedural amendment (voice) March 15, 1988

Claims (9)

【特許請求の範囲】[Claims] (1)固体電解質体の一面側に基準電極、他面側に測定
電極を備え、被測定ガスの酸素濃度を検知する酸素セン
サ素子において、 固体電解質体が基部及び基部に直接結合する球状突起部
からなり、球状突起部を少なくとも含む位置において測
定電極を備え、 測定電極が多孔質の第1保護層で被覆されると共に、第
1保護層が多孔質の第2保護層で被覆され、第1、2保
護層夫々が被測定ガスの酸化反応を促進する貴金属触媒
を担持し、 第1保護層が被測定ガスに対して化学的に安定な金属酸
化物からなり、 第2保護層が非化学量論的な遷移金属酸化物からなる、 酸素センサ素子。
(1) In an oxygen sensor element that has a reference electrode on one side of a solid electrolyte body and a measurement electrode on the other side and detects the oxygen concentration of a gas to be measured, the solid electrolyte body has a base and a spherical protrusion directly connected to the base. comprising a measuring electrode at a position including at least the spherical protrusion, the measuring electrode is covered with a porous first protective layer, the first protective layer is covered with a porous second protective layer, and the first protective layer is covered with a porous second protective layer; , each of the two protective layers supports a noble metal catalyst that promotes the oxidation reaction of the gas to be measured, the first protective layer is made of a metal oxide that is chemically stable to the gas to be measured, and the second protective layer is made of a non-chemically Oxygen sensor element made of stoichiometric transition metal oxide.
(2)固体電解質体の一面側に基準電極、他面側に測定
電極を備え、被測定ガスの酸素濃度を検知する酸素セン
サ素子において、 固体電解質体が基部及び基部に測定電極を介して結合す
る球状突起部からなり、 測定電極が多孔質の第1保護層で被覆されると共に、第
1保護層が多孔質の第2保護層で被覆され、第1、2保
護層夫々が被測定ガスの酸化反応を促進する貴金属触媒
を担持し、 第1保護層が被測定ガスに対して化学的に安定な金属酸
化物からなり、 第2保護層が非化学量論的な遷移金属酸化物からなる、 酸素センサ素子。
(2) In an oxygen sensor element that has a reference electrode on one side of a solid electrolyte body and a measurement electrode on the other side and detects the oxygen concentration of a gas to be measured, the solid electrolyte body is connected to the base and the base through the measurement electrode. The measurement electrode is covered with a porous first protective layer, the first protective layer is covered with a porous second protective layer, and the first and second protective layers each contain a gas to be measured. The first protective layer is made of a metal oxide that is chemically stable against the gas to be measured, and the second protective layer is made of a non-stoichiometric transition metal oxide. An oxygen sensor element.
(3)固体電解質体の一面側に基準電極、他面側に測定
電極を備え、被測定ガスの酸素濃度を検知する酸素セン
サ素子において、 固体電解質体が基部及び基部に直接結合する球状突起部
からなり、球状突起部を少なくとも含む位置において測
定電極を備え、 測定電極が多孔質の保護層で被覆され、保護層の少なく
とも一部が非化学量論的な遷移金属酸化物からなるとと
もに、被測定ガスの酸化反応を促進する貴金属触媒を担
持してなる、 酸素センサ素子。
(3) In an oxygen sensor element that has a reference electrode on one side of a solid electrolyte body and a measurement electrode on the other side and detects the oxygen concentration of a gas to be measured, the solid electrolyte body has a base and a spherical protrusion directly connected to the base. comprising a measuring electrode at a position including at least the spherical protrusion, the measuring electrode is covered with a porous protective layer, at least a part of the protective layer is made of a non-stoichiometric transition metal oxide, and the measuring electrode is covered with a porous protective layer; An oxygen sensor element that supports a noble metal catalyst that promotes the oxidation reaction of the measurement gas.
(4)固体電解質体の一面側に基準電極、他面側に測定
電極を備え、被測定ガスの酸素濃度を検知する酸素セン
サ素子において、 固体電解質体が基部及び基部に測定電極を介して結合す
る球状突起部からなり、 測定電極が多孔質の保護層で被覆され、保護層の少なく
とも一部が非化学量論的な遷移金属酸化物からなるとと
もに、被測定ガスの酸化反応を促進する貴金属触媒を担
持してなる、 酸素センサ素子。
(4) In an oxygen sensor element that has a reference electrode on one side of a solid electrolyte body and a measurement electrode on the other side and detects the oxygen concentration of a gas to be measured, the solid electrolyte body is connected to the base and the base via the measurement electrode. The measuring electrode is covered with a porous protective layer, at least a part of which is made of a non-stoichiometric transition metal oxide and a noble metal that promotes the oxidation reaction of the gas to be measured. An oxygen sensor element that supports a catalyst.
(5)遷移金属酸化物がチタニアである請求項1〜4の
いずれか一記載の酸素センサ素子。
(5) The oxygen sensor element according to any one of claims 1 to 4, wherein the transition metal oxide is titania.
(6)第2保護層に担持される触媒の量が、第2保護層
材料に対して0.02〜5mol%(貴金属換算)であ
る請求項1、2のいずれか一記載の酸素センサ素子。
(6) The oxygen sensor element according to any one of claims 1 and 2, wherein the amount of the catalyst supported on the second protective layer is 0.02 to 5 mol% (calculated as noble metal) based on the material of the second protective layer. .
(7)固体電解質体の一面側に基準電極、他面側に測定
電極を備え、被測定ガスの酸素濃度を検知する酸素セン
サ素子を製造する方法において、固体電解質体の基材の
一面側の処理について、少なくとも次の各工程: (a)固体電解質からなる球状粒子を付着する工程。 (b)電極材料を折着する工程、 (c)金属酸化物成分を溶射する工程、 (d)貴金属塩溶液に浸漬処理する工程、及び(e)非
化学量論的な遷移金属酸化物成分と貴金属成分とを配合
してなるペースト状物で被覆した後、焼成する工程、 を含むことからなる、酸素センサ素子の製造方法。
(7) In a method for manufacturing an oxygen sensor element that includes a reference electrode on one side of a solid electrolyte body and a measurement electrode on the other side and detects the oxygen concentration of a gas to be measured, one side of the base material of the solid electrolyte body is Regarding the treatment, at least the following steps: (a) A step of attaching spherical particles made of a solid electrolyte. (b) a step of folding the electrode material; (c) a step of thermal spraying the metal oxide component; (d) a step of immersion in a noble metal salt solution; and (e) a non-stoichiometric transition metal oxide component. 1. A method for manufacturing an oxygen sensor element, comprising the steps of: coating with a paste made of a mixture of and a noble metal component, and then firing.
(8)(a)工程において、固体電解質の基材及び球状
粒子を同時焼成する請求項7記載の製造方法。
(8) The manufacturing method according to claim 7, wherein in step (a), the solid electrolyte base material and the spherical particles are co-fired.
(9)(d)工程において、浸漬を減圧又は加圧しなが
ら行なう請求項7記載の製造方法。
(9) The manufacturing method according to claim 7, wherein in the step (d), the immersion is performed under reduced pressure or increased pressure.
JP63027623A 1988-02-10 1988-02-10 Oxygen sensor element and manufacturing method thereof Expired - Fee Related JPH087177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63027623A JPH087177B2 (en) 1988-02-10 1988-02-10 Oxygen sensor element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63027623A JPH087177B2 (en) 1988-02-10 1988-02-10 Oxygen sensor element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01203963A true JPH01203963A (en) 1989-08-16
JPH087177B2 JPH087177B2 (en) 1996-01-29

Family

ID=12226077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63027623A Expired - Fee Related JPH087177B2 (en) 1988-02-10 1988-02-10 Oxygen sensor element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH087177B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1195601A2 (en) 2000-10-05 2002-04-10 Denso Corporation Oxygen sensor element and manufacturing method thereof
JP2006058282A (en) * 2004-07-22 2006-03-02 Ngk Spark Plug Co Ltd Gas sensor and manufacturing method of the same
JP2008281584A (en) * 2008-08-25 2008-11-20 Denso Corp Oxygen sensor element
JP2008286810A (en) * 2008-08-25 2008-11-27 Denso Corp Oxygen sensor element
JP2010151575A (en) * 2008-12-25 2010-07-08 Denso Corp Gas sensor element and gas sensor incorporating the same
JP2011237356A (en) * 2010-05-13 2011-11-24 Denso Corp Gas sensor element and gas sensor with the same built in
US8088264B2 (en) 2008-01-08 2012-01-03 Ngk Spark Plug Co., Ltd. Gas sensor element and gas sensor
WO2019130630A1 (en) * 2017-12-27 2019-07-04 日本特殊陶業株式会社 Sensor element and gas sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365783U (en) * 1976-11-05 1978-06-02
JPS56160653A (en) * 1980-05-14 1981-12-10 Ngk Spark Plug Co Ltd Manufacture of oxygen concentration cell
JPS59196580A (en) * 1983-04-20 1984-11-07 Ngk Spark Plug Co Ltd Manufacture of oxygen concentration cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365783U (en) * 1976-11-05 1978-06-02
JPS56160653A (en) * 1980-05-14 1981-12-10 Ngk Spark Plug Co Ltd Manufacture of oxygen concentration cell
JPS59196580A (en) * 1983-04-20 1984-11-07 Ngk Spark Plug Co Ltd Manufacture of oxygen concentration cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660145B2 (en) 2000-10-05 2003-12-09 Denso Corporation Oxygen sensor element
EP1195601A2 (en) 2000-10-05 2002-04-10 Denso Corporation Oxygen sensor element and manufacturing method thereof
JP4587473B2 (en) * 2004-07-22 2010-11-24 日本特殊陶業株式会社 Gas sensor
JP2006058282A (en) * 2004-07-22 2006-03-02 Ngk Spark Plug Co Ltd Gas sensor and manufacturing method of the same
US7713393B2 (en) 2004-07-22 2010-05-11 Ngk Spark Plug Co., Ltd. Gas sensor and method for manufacturing the same
US8088264B2 (en) 2008-01-08 2012-01-03 Ngk Spark Plug Co., Ltd. Gas sensor element and gas sensor
JP2008281584A (en) * 2008-08-25 2008-11-20 Denso Corp Oxygen sensor element
JP2008286810A (en) * 2008-08-25 2008-11-27 Denso Corp Oxygen sensor element
JP2010151575A (en) * 2008-12-25 2010-07-08 Denso Corp Gas sensor element and gas sensor incorporating the same
JP2011237356A (en) * 2010-05-13 2011-11-24 Denso Corp Gas sensor element and gas sensor with the same built in
US8597481B2 (en) 2010-05-13 2013-12-03 Denso Corporation Gas sensor element and gas sensor equipped with the same
WO2019130630A1 (en) * 2017-12-27 2019-07-04 日本特殊陶業株式会社 Sensor element and gas sensor
JP2019117135A (en) * 2017-12-27 2019-07-18 日本特殊陶業株式会社 Sensor element and gas sensor

Also Published As

Publication number Publication date
JPH087177B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
US5443711A (en) Oxygen-sensor element
US5160598A (en) Oxygen sensor for air-fuel ratio control having a protective layer including an oxygen storage material
JP4595264B2 (en) Oxygen sensor element and manufacturing method thereof
US4940528A (en) Oxygen sensor elements
EP0369238A2 (en) Oxygen sensor and method for producing same
US6210552B1 (en) Oxygen sensor
JP5187417B2 (en) Gas sensor element and manufacturing method thereof
JPH07134114A (en) Oxygen concentration detector and its manufacture
US5445796A (en) Oxygen concentration sensor with heat resistant coating
JP2574452B2 (en) Oxygen sensor, method of manufacturing the same, and method of preventing poisoning
JPH01203963A (en) Oxygen sensor element
JP2000310610A (en) Gas sensor element and production thereof
JPS6179155A (en) Oxygen sensor element
JP2589130B2 (en) Oxygen sensor element
JP3616510B2 (en) Oxygen sensor and manufacturing method thereof
JP4532286B2 (en) Measuring sensor
JP2002031618A (en) Gas sensor
JP2589136B2 (en) Oxygen sensor element
JPH01232252A (en) Oxygen sensor element
US5969232A (en) Catalytic layer system
JPH02212757A (en) Oxygen sensor for controlling air/fuel ratio with protective layer containing oxygen occluded material and making thereof
JPH02212759A (en) Oxygen sensor and controlling air/fuel ratio with protective layer containing oxygen occluded material
JPH0650297B2 (en) Method of manufacturing oxygen sensor element
JPH0778483B2 (en) Oxygen detector
JPH05256816A (en) Oxygen sensor and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees