JP2589130B2 - Oxygen sensor element - Google Patents

Oxygen sensor element

Info

Publication number
JP2589130B2
JP2589130B2 JP63056340A JP5634088A JP2589130B2 JP 2589130 B2 JP2589130 B2 JP 2589130B2 JP 63056340 A JP63056340 A JP 63056340A JP 5634088 A JP5634088 A JP 5634088A JP 2589130 B2 JP2589130 B2 JP 2589130B2
Authority
JP
Japan
Prior art keywords
protective layer
oxygen sensor
sensor element
protective
measurement electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63056340A
Other languages
Japanese (ja)
Other versions
JPH01232253A (en
Inventor
健 美濃羽
治久 塩見
孝夫 小島
稔明 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP63056340A priority Critical patent/JP2589130B2/en
Publication of JPH01232253A publication Critical patent/JPH01232253A/en
Application granted granted Critical
Publication of JP2589130B2 publication Critical patent/JP2589130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は各種燃焼機器の酸素濃度を検知するための酸
素センサ素子,特に内燃機関からの排ガスを浄化するた
めに三元触媒と併用される空燃比制御用の酸素センサ素
子及びその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is used in combination with an oxygen sensor element for detecting the oxygen concentration of various kinds of combustion equipment, in particular, a three-way catalyst for purifying exhaust gas from an internal combustion engine. The present invention relates to an oxygen sensor element for controlling an air-fuel ratio and a method for producing the same.

[従来技術及び課題] 空燃比制御用酸素センサ素子は,酸素イオン伝導性の
固体電解質体とその内外面に備えられる一対の電極(基
準電極,測定電極)とからなり,排ガスと接触する測定
電極を排ガスから保護するため多孔質保護層で被覆する
のが一般的である。しかし,この種のセンサ素子にあっ
ては,排ガス中に含まれる未燃成分により,空気過乗率
(λ)がずれる,いわゆるλポイントズレをきたし,検
出精度が低下する。そのため,排ガス浄化システムにお
いて,排ガスを還流させて浄化することが一般に行なわ
れているが,そのための排ガス還流装置(EGR)が別途
必要となってシステム全体が複雑化する他,還流状態を
適切に制御することに困難を伴ない,しかもその装置自
体の故障による新たな問題を生ずる。従って種々の研
究,提案がなされている。
[Prior art and problems] An oxygen sensor element for air-fuel ratio control comprises a solid electrolyte body having oxygen ion conductivity and a pair of electrodes (reference electrode, measurement electrode) provided on the inner and outer surfaces thereof, and a measurement electrode which comes into contact with exhaust gas. Is generally covered with a porous protective layer to protect the gas from exhaust gas. However, in such a sensor element, a so-called λ point shift, that is, an air excess factor (λ) is shifted due to unburned components contained in exhaust gas, and detection accuracy is reduced. For this reason, it is common practice in exhaust gas purification systems to recirculate and purify exhaust gas, but this requires an additional exhaust gas recirculation device (EGR), which complicates the entire system and properly controls the recirculation state. It is difficult to control, and causes a new problem due to the failure of the device itself. Accordingly, various studies and proposals have been made.

例えば,測定電極自体の表面にロジウム又はパラジウ
ムの一方又は双方からなる層を形成せしめてなる酸素セ
ンサ素子が提案されている(特開昭61−30760)。しか
し,この種の酸素センサ素子にあっては,使用時におけ
る耐久性に問題がある。即ち,測定電極とロジウム等か
らなる層とが合金生成反応を生じ,その層による作用を
安定に維持できない。
For example, an oxygen sensor element has been proposed in which a layer made of one or both of rhodium and palladium is formed on the surface of the measurement electrode itself (Japanese Patent Application Laid-Open No. Sho 61-30760). However, this type of oxygen sensor element has a problem in durability during use. That is, an alloying reaction occurs between the measurement electrode and the layer made of rhodium or the like, and the action of the layer cannot be stably maintained.

又,白金及びロジウムで構成した測定電極を設け,白
金及びロジウムの比率を変化させて分布してなる酸素セ
ンサ素子も提案されている。(特開昭62−198749)。し
かし,この種の酸素センサ素子にあっても,合金生成反
応を生じ易いことは上記技術と同様であり,やはり耐久
性の劣化が懸念される。又,多量のロジウムが高密度に
存在することによって応答性が低下するおそれもある。
There has also been proposed an oxygen sensor element provided with a measurement electrode made of platinum and rhodium and distributed by changing the ratio of platinum and rhodium. (JP-A-62-198749). However, even in this type of oxygen sensor element, it is similar to the above-mentioned technology that the alloy formation reaction is likely to occur, and there is a concern that the durability may be deteriorated. In addition, responsiveness may be reduced due to the presence of a large amount of rhodium at a high density.

本発明はかかる課題を解決すること,即ち耐久性に優
れ,正確な空燃比制御を長期間安定に維持できる酸素セ
ンサ素子を開発することを目的とする。
An object of the present invention is to solve such a problem, that is, to develop an oxygen sensor element having excellent durability and capable of maintaining accurate air-fuel ratio control stably for a long period of time.

[課題解決の手段] 本発明はこうした見地に鑑み鋭意研究を重ねた結果,
本発明を完成するに至ったものである。
[Means for Solving the Problems] The present invention has been made as a result of intensive studies in view of such a viewpoint.
The present invention has been completed.

排ガス中の酸素濃度を正確に検知するためには,理想
的には完全燃焼における酸素濃度,即ち平衡酸素濃度を
測定するのがよい。しかし,一般に排ガス系は未燃成分
CO,HC,NOxを含有する不完全燃焼系であるため,その未
燃成分の存在分だけ平衡酸素濃度からズレを生じ,実際
の酸素濃度を正確に検知できず,結果としてλポイント
ズレをきたす。そこで,本発明者は被測定ガスを平衡酸
素濃度状態として,基準ガスとの酸素濃度差を検出し,
かつ,それを耐久性良く維持するために種々検討を重ね
たところ本発明を完成するに至ったものであり,本発明
は上述の課題を下記手段によって解決する。
In order to accurately detect the oxygen concentration in the exhaust gas, it is ideally desirable to measure the oxygen concentration in complete combustion, that is, the equilibrium oxygen concentration. However, the exhaust gas system generally has unburned components.
Because it is an incomplete combustion system containing CO, HC, and NOx, a deviation from the equilibrium oxygen concentration occurs due to the presence of the unburned components, and the actual oxygen concentration cannot be detected accurately, resulting in a λ point deviation. . Therefore, the present inventor sets the gas to be measured in an equilibrium oxygen concentration state, detects the oxygen concentration difference from the reference gas, and
In addition, the inventors of the present invention have made various studies to maintain the durability of the invention, and have completed the present invention. The present invention solves the above-mentioned problems by the following means.

(1)固体電解質体の一面側に基準電極,他面側に測定
電極を備え,測定電極が被測定ガスに接触される酸素セ
ンサ素子において, 測定電極が,熱的に安全な金属酸化物を主成分とする
複数の多孔質保護層で被覆され,複数の保護層が第1,2,
3保護層からなり, 第1保護層が第2,3保護層よりも測定電極に近接して
位置し, 第2保護層がRh及びPdを担持したチタニアからなり, 第3保護層がPtを担持したアルミナ,スピネル又はマ
グネシアの1以上からなる, 酸素センサ素子。
(1) An oxygen sensor element in which a reference electrode is provided on one side of the solid electrolyte body and a measurement electrode is provided on the other side, and the measurement electrode is in contact with the gas to be measured. It is covered with a plurality of porous protective layers as main components, and the plurality of protective layers are the first, second, and second protective layers.
The first protective layer is located closer to the measurement electrode than the second and third protective layers, the second protective layer is composed of titania carrying Rh and Pd, and the third protective layer is composed of Pt. An oxygen sensor element comprising at least one of alumina, spinel and magnesia supported.

(2)固体電解質体の一面側に基準電極,他面側に測定
電極を備え,測定電極が被測定ガスに接触される酸素セ
ンサ素子において, 測定電極が,熱的に安全な金属酸化物を主成分とする
複数の多孔質保護層で被覆され,複数の保護層が第1,2,
3保護層からなり, 第1保護層が第2,第3保護層よりも測定電極に近接し
て位置し, 第2保護層がRh及びPdを担持したチタニアからなり, 第3保護層がPtを担持したアルミナ,スピネル又はマ
グネシアの1以上からなり, 第2,3保護層を夫々二層以上備えてなる, 酸素センサ素子。
(2) An oxygen sensor element in which a reference electrode is provided on one side of the solid electrolyte body and a measurement electrode is provided on the other side, and the measurement electrode is in contact with the gas to be measured. It is covered with a plurality of porous protective layers as main components, and the plurality of protective layers are the first, second, and second protective layers.
The first protective layer is located closer to the measurement electrode than the second and third protective layers, the second protective layer is made of titania carrying Rh and Pd, and the third protective layer is made of Pt. An oxygen sensor element comprising at least one of alumina, spinel, and magnesia, and having two or more second and third protective layers, respectively.

[実施態様及び作用] 素子形状ないしは固体電解質形状は,先端が閉塞され
後端が開口している限り,袋状,板状又は管状等種々の
形状でよく,あるいは絶縁物基材に固定電解質体等の素
子の各要素を結合させて前記と同様の形状になるもので
もよい。固体電解質材料としては例えばZrO2に安定化剤
としてY2O3,CaO等を添加したものを用いるとよい。基準
電極及び測定電極(層状)はともに多孔質とされ,Pt又
は2%程度以下のRhを含有するPt等の貴金属を用いると
よい。
[Embodiment and Operation] The element shape or the solid electrolyte shape may be various shapes such as a bag shape, a plate shape, or a tubular shape as long as the front end is closed and the rear end is open, or an electrolyte material fixed on an insulating base material. And the like may be combined to form the same shape as described above. As the solid electrolyte material, for example, a material obtained by adding Y 2 O 3 , CaO, or the like as a stabilizer to ZrO 2 may be used. The reference electrode and the measurement electrode (layered) are both porous, and it is preferable to use a noble metal such as Pt or Pt containing about 2% or less of Rh.

測定電極は,既述の通り被測定ガスに対して熱的に安
定な金属化物を主成分とする複数の保護層で被覆されて
いなければならない。排ガスから測定電極を保護すると
共に,測定電極に到達する排ガスを平衡酸素濃度として
λポイントズレを防止し,かつ未燃成分(CO等)が測定
電極に吸着等してその体積膨張により固体電解質体から
剥離するのを防止するためである。複数の多孔質層は相
互に異なる機能を有する第1,2,3保護層からなる。
As described above, the measurement electrode must be covered with a plurality of protective layers mainly composed of a metallized material that is thermally stable with respect to the gas to be measured. In addition to protecting the measurement electrode from exhaust gas, preventing exhaust gas reaching the measurement electrode as equilibrium oxygen concentration to prevent a λ point shift, and unburned components (CO, etc.) adsorbing to the measurement electrode and expanding the solid electrolyte This is to prevent peeling from the substrate. The plurality of porous layers include first, second, and third protective layers having different functions.

第1保護層は保護層のうち測定電極に最も近接して位
置し,直接的に排ガスから測定電極を保護するためのも
のである。第1保護層はセラミックス例えばアルミナ,
スピネル,ベリリア,ジルコニア等又はこれらの混合物
で構成するとよく,特にスピネルを主体とするものが好
ましい。その気孔率は5〜20%,好ましくは7〜20%,
その厚みは30〜200μm,好ましくは50〜130μmにすると
よい。排ガス通過性に支障を生ずることなく,電極を確
実に保護するためである。
The first protective layer is located closest to the measuring electrode in the protective layer and is for directly protecting the measuring electrode from exhaust gas. The first protective layer is made of ceramics such as alumina,
It is preferable to use spinel, beryllia, zirconia, or the like or a mixture thereof, and it is particularly preferable to mainly use spinel. Its porosity is 5-20%, preferably 7-20%,
The thickness is preferably 30 to 200 μm, preferably 50 to 130 μm. This is for the purpose of reliably protecting the electrodes without causing a problem in the exhaust gas passage.

第2保護層はRh及びPdを担持したチタニアから構成さ
れていなければならない。排ガス中の未燃成分のうちNO
Xの還元反応を促進し,NOXの存在に基づく平衡酸素濃度
からのズレを補足するためである。還元反応の例とし
て,NOX+H2→N2+H2Oが挙げられる。チタニアはTiO
X(x=1.8以上2未満,好ましくは1.95以上2未満)で
表わされる非化学量論的チタニアを使用するとよい。触
媒としてのRh,Pdを高分散状態で担持し,その触媒作用
を効率良く発揮でき,しかも耐熱性に優れているからで
ある。特に,資源的に乏しいRhを高分散担持できること
は有効である。そのチタニアを第2保護層全量に対して
50wt%以上,好ましくは70wt%以上にするとよい。Rh,P
dの外に,他の貴金属触媒を担持してもよいが,Rh,Pdの
合計量が少なくとも50%以上であるものが好ましい。NO
Xの還元反応を充分に促進させるためである。Rh,Pdを同
時に混合する場合の割合は0.05≦Rh/Pd≦1,好ましくは
0.2≦Rh/Pd≦1にするとよい。触媒担持量は,第2保護
層の構成材料に対して0.1〜3wt%の範囲にするとよい。
下限未満では効果がなく,上限を越えると目詰りを生ず
るおそれがあるからである。
The second protective layer must be composed of titania carrying Rh and Pd. NO among unburned components in exhaust gas
The purpose is to promote the reduction reaction of X and to compensate for the deviation from the equilibrium oxygen concentration based on the presence of NO X. An example of the reduction reaction is NO X + H 2 → N 2 + H 2 O. Titania is TiO
It is preferable to use a non-stoichiometric titania represented by X (x = 1.8 or more and less than 2 and preferably 1.95 or more and less than 2). This is because Rh and Pd as a catalyst are supported in a highly dispersed state, the catalytic action can be efficiently exhibited, and the heat resistance is excellent. In particular, it is effective to be able to carry Rh, which is scarce in resources, in a highly dispersed manner. The titania is added to the total amount of the second protective layer.
The content should be 50 wt% or more, preferably 70 wt% or more. Rh, P
In addition to d, other noble metal catalysts may be supported, but it is preferable that the total amount of Rh and Pd is at least 50% or more. NO
This is for sufficiently promoting the reduction reaction of X. When Rh and Pd are mixed simultaneously, the ratio is 0.05 ≦ Rh / Pd ≦ 1, preferably
It is preferable that 0.2 ≦ Rh / Pd ≦ 1. The amount of the supported catalyst is preferably in the range of 0.1 to 3% by weight based on the constituent material of the second protective layer.
If the amount is less than the lower limit, there is no effect, and if the amount exceeds the upper limit, clogging may occur.

第3保護層はPtを担持したアルミナ,スピネル又はマ
グネシアの1以上で構成されていなければならない。排
ガス中の未燃成分のうちCO,HCの酸化反応を促進し,CO,H
Cに基づく平衡酸素濃度からのズレを補正するためであ
る。酸化反応の例として,CO+O2→CO2,HC+O2→CO2+H2
Oが挙げられる。アルミナにPtを担持させたのは,PtがRh
等に比して未燃成分の影響によって消耗が激しいので,
アルミナによって低分散担持させ,その消耗劣化をでき
る限り規制するためである。アルミナを第3保護層全量
に対して50wt%以上,好ましくは70wt%以上にするとよ
い。分散性を制御するために,チタニア(好ましくは非
化学量論的チタニア)を50wt%以下配合してなる材料を
用いるとよい。50wt%を越えると高分散状態で担持する
こととなってPtの消耗劣化が激しくなる。Ptと共に,他
の貴金属触媒を担持してもよいが,Pt量が少なくとも70
%以上であるものが好ましい。CO,HCの酸化反応を充分
に促進するためである。触媒担持量は,第3保護層の構
成材料に対して0.5〜5wt%の範囲にするとよい。下限未
満では効果がなく,上限を越えると目詰りを生ずるおそ
れがあるからである。
The third protective layer must be composed of at least one of alumina, spinel or magnesia supporting Pt. It promotes the oxidation reaction of CO and HC among the unburned components in the exhaust gas,
This is to correct the deviation from the equilibrium oxygen concentration based on C. As an example of the oxidation reaction, CO + O 2 → CO 2 , HC + O 2 → CO 2 + H 2
O. Pt was supported on alumina because Pt was Rh
Consumption is more severe than that of the unburned components.
This is because alumina is supported in a low-dispersion state and its wear and degradation is regulated as much as possible. Alumina is used in an amount of 50% by weight or more, preferably 70% by weight or more based on the total amount of the third protective layer. In order to control the dispersibility, a material containing 50 wt% or less of titania (preferably, non-stoichiometric titania) may be used. If it exceeds 50 wt%, it will be supported in a highly dispersed state, and Pt wear and tear will be severe. Other precious metal catalysts may be supported together with Pt, but the amount of Pt must be at least 70%.
% Is preferable. This is to sufficiently promote the oxidation reaction of CO and HC. The amount of the catalyst carried is preferably in the range of 0.5 to 5% by weight based on the constituent material of the third protective layer. If the amount is less than the lower limit, there is no effect, and if the amount exceeds the upper limit, clogging may occur.

第2,3保護層は,その残部構成材料として遷移金属酸
化物を用いるとよい。担持状態を安定に維持するためで
ある。第2,3保護層の気孔率は第1保護層のそれよりも
大にするとよい。NOXの還元反応及びCO,HCの酸化反応を
有効に促進しつつ,排ガスの通過性及びセンサ応答性の
劣化を防止するためである。第2,3保護層の気孔は開気
孔(通気孔)として存在させてもよい。又,同様な見地
で,第2,3保護層の厚みは第1保護層のそれよりも薄く
するとよい。例えば,10〜50μmにするとよい。
For the second and third protective layers, a transition metal oxide is preferably used as the remaining constituent material. This is for maintaining the carrying state stably. The porosity of the second and third protective layers may be higher than that of the first protective layer. NO X reduction reaction and CO, while effectively promoting the oxidation reaction of HC, is to prevent the passage resistance and sensor response deterioration of the exhaust gas. The pores of the second and third protective layers may be present as open pores (vents). Also, from a similar point of view, the thickness of the second and third protective layers may be thinner than that of the first protective layer. For example, the thickness may be 10 to 50 μm.

排ガスの通過量の多い素子先端部において各保護層の
厚みを大としたり,触媒含有率を大としてもよい。又,
各保護層界面において突起部を存在させ,各層間の接合
性を高めてもよい。
The thickness of each protective layer may be increased or the catalyst content may be increased at the end of the element where a large amount of exhaust gas passes. or,
Protrusions may be present at the interface of each protective layer to enhance the bonding between the layers.

次に,本発明の製造方法,特に固体電解質基材の他面
側(測定電極が形成されるべき側)の処理工程につい
て,好適な態様及び作用を述べる。
Next, a preferred embodiment and operation of the manufacturing method of the present invention, particularly the processing step on the other surface side (the side on which the measurement electrode is to be formed) of the solid electrolyte substrate will be described.

固体電解質基材は原料粉末を混合,仮焼した後,粉砕
(2.5μm以下)し,その後スプレードライによって二
次粒子(20〜150μm)を形成し,所定形状に成形する
とよい。
The solid electrolyte base material is preferably formed by mixing and calcining the raw material powder, pulverizing (2.5 μm or less), then forming secondary particles (20 to 150 μm) by spray drying, and molding into a predetermined shape.

電極の形状は,電気メッキ,化学メッキ等の通常メッ
キ処理の他,通常の気相析着法例えばスパッタリング,
蒸着或いはスクリーン印刷によって行なってもよい。
The shape of the electrode is not limited to a normal plating process such as electroplating, chemical plating, etc., but also a normal vapor deposition method such as sputtering,
It may be performed by vapor deposition or screen printing.

第1保護層の形成としては,その材料の溶液又は粉末
を刷毛塗布,浸漬,噴霧等の後焼成する等種々の方法が
挙げられるが,特にプラズマ溶射が好ましい。溶射粉末
同志の固着強度が強く,その条件を適宜変更することに
より,任意の気孔率,気孔径とすることができるからで
ある。
As the formation of the first protective layer, various methods such as baking the solution or powder of the material with a brush, dipping, spraying or the like may be mentioned, but plasma spraying is particularly preferable. This is because the adhesion strength between the sprayed powders is high, and the porosity and the pore diameter can be arbitrarily set by appropriately changing the conditions.

第2,3保護層の形成は,夫々,保護層材料及び貴金属
成分を配合してなるペースト状物で第1保護層を順次被
覆し,その後焼成することによって行なうとよい。保護
層の形成と触媒の担持とを同時に行なうことによって,
より強固に触媒を担持させ,使用時における飛散を防止
して長期安定に触媒作用を発揮させるためである。又,
ペースト状物とすることによって,焼成時に結合剤等が
飛散し,所望の気孔率及び気孔径を容易に得ることがで
きるからである。ペースト状物は通常の如く結合剤,溶
剤等を配合して得られる。被覆方法としては,刷毛塗
布,浸漬,噴霧等のいずれかであってもよい。但し,プ
ラズマ溶射は不適である。その溶射時に保護層材料の焼
結が進行してしまい,気孔を所望の状態で(特に高気孔
率として)得ることができないからである。又,保護層
材料と担持触媒との配合は,保護層材料粉末に貴金属塩
溶液を含浸させることにより行なうとよい。均質に配合
させるためである。保護層材料としては,金属酸化物の
他,熱分解によって金属酸化物を形成し得る化合物例え
ば水酸化物又は塩などであってもよい。その粉末粒径は
2μm以下にするとよい。焼結性が向上し固着強度が高
められ,従って使用時において第2,3保護層が剥離し難
くなるからである。好ましくは0.3〜1.5μmである。熱
処理温度は非酸化雰囲気中で700〜900℃で行なうとよ
い。尚,第2,3保護層についても第1保護層と同時に披
着形成した後,触媒を担持させてもよい。例えば,貴金
属塩溶液中に保護層材料を浸漬処理し,その後乾燥,焼
成するとよい。
The second and third protective layers may be formed by sequentially covering the first protective layer with a paste containing a material for the protective layer and a noble metal component, followed by firing. By simultaneously forming the protective layer and supporting the catalyst,
This is because the catalyst is more firmly supported, scattering at the time of use is prevented, and a long-term stable catalytic action is exhibited. or,
This is because the paste or the like causes the binder and the like to be scattered at the time of firing, so that the desired porosity and pore size can be easily obtained. The paste is obtained by blending a binder, a solvent and the like as usual. The coating method may be any of brush application, dipping, spraying and the like. However, plasma spraying is not suitable. This is because sintering of the protective layer material proceeds during the thermal spraying, and pores cannot be obtained in a desired state (especially as a high porosity). The protective layer material and the supported catalyst may be blended by impregnating the protective layer material powder with a noble metal salt solution. This is to ensure uniform blending. As the material for the protective layer, in addition to the metal oxide, a compound capable of forming a metal oxide by thermal decomposition, such as a hydroxide or a salt, may be used. The particle size of the powder is preferably 2 μm or less. This is because the sinterability is improved and the fixing strength is increased, so that the second and third protective layers are less likely to peel off during use. Preferably it is 0.3 to 1.5 μm. The heat treatment is preferably performed at 700 to 900 ° C. in a non-oxidizing atmosphere. The second and third protective layers may be formed at the same time as the first protective layer, and then may carry a catalyst. For example, the protective layer material may be immersed in a noble metal salt solution, and then dried and fired.

又,酸素センサ素子の製造は,各構成要素を段階的に
被着形成する方法の他,いわゆる積層印刷法によって行
なってもよい。積層印刷技術とは,酸素センサ素子の各
構成要素を所定のグリーンシートに積層して印刷し,こ
の印刷グリーンシートを基材に被着して焼成一体化する
技術をいう(例えば特開昭62−222159参照)。
The manufacture of the oxygen sensor element may be performed by a so-called laminating printing method, in addition to the method of forming the constituent elements in a stepwise manner. Laminated printing technology refers to a technology in which the components of the oxygen sensor element are laminated on a predetermined green sheet and printed, and the printed green sheet is applied to a base material and fired and integrated (for example, see Japanese Unexamined Patent Publication No. -222159).

[実施例] 以下,本発明の実施例について説明する。Examples Examples of the present invention will be described below.

第1,2図は一実施例を示したものであり,各図におい
て,1が酸素センサ素子であり,大略,この素子1は基準
ガスと被測定ガス(排ガス)とによって酸素濃度差を生
じ得る固体電解質体2,固体電解質体2の内外面に形成さ
れた一対の多孔質電極(内側電極)3,(外側電極)4,外
側電極4を被覆する複数の多孔質保護層5,6,7,第2,3保
護層6,7に均一分散して担持された貴金属触媒6a…,7a…
から構成されている。ここでは,固体電解質体2はZrO2
にY2O3を添加したものからなり,電極3,4はともにPt電
極であり,6a…はRh/Pd触媒,7a…はPt触媒である。
FIGS. 1 and 2 show an embodiment. In each of the figures, reference numeral 1 denotes an oxygen sensor element, and this element 1 generates an oxygen concentration difference between a reference gas and a gas to be measured (exhaust gas). The solid electrolyte body 2 to be obtained, a pair of porous electrodes (inner electrode) 3, (outer electrode) 4, formed on the inner and outer surfaces of the solid electrolyte body 2, and a plurality of porous protective layers 5, 6, which cover the outer electrode 4. 7, noble metal catalysts 6a ..., 7a ... uniformly dispersed and supported on the second and third protective layers 6, 7 ...
It is composed of Here, the solid electrolyte body 2 is made of ZrO 2
Made from those added Y 2 O 3, the electrodes 3 and 4 are both Pt electrodes, 6a ... is Rh / Pd catalyst, 7a ... is Pt catalyst.

又,複数の多孔質保護層はより内側に位置して外側電
極4を直接被覆する第1保護層5,中間に位置する第2保
護層6及びより外側に位置して排ガスに晒される第3保
護層7とからなる。第1保護層5はスピネル,第2保護
層6はRh,Pt触媒6a…を担持したチタニア,第3保護層
7はPt触媒7a…を担持したアルミナからなる。
Further, the plurality of porous protective layers are located on the inner side, the first protective layer 5 directly covering the outer electrode 4, the second protective layer 6 located in the middle, and the third protective layer located on the outer side and exposed to exhaust gas. And a protective layer 7. The first protective layer 5 is made of spinel, the second protective layer 6 is made of titania carrying Rh and Pt catalysts 6a, and the third protective layer 7 is made of alumina carrying Pt catalysts 7a.

尚,第1図において,Aは酸素センサ,8はハウジング,9
は加締用リング,10は充填剤,そして酸素センサ素子の
先端は保護管で保護されている。
In FIG. 1, A is an oxygen sensor, 8 is a housing, 9
Is a caulking ring, 10 is a filler, and the tip of the oxygen sensor element is protected by a protective tube.

次に,本発明の酸素センサ素子の製造例について説明
する。以下の各工程を順次行なう。
Next, a production example of the oxygen sensor element of the present invention will be described. The following steps are sequentially performed.

工程1:純度99%以上のZrO2に純度99.9%のY2O3を5mol%
添加し,混合した後,1300℃で2時間仮焼する。
Step 1: ZrO 2 of more than 99% purity of 99.9% pure Y 2 O 3 with 5 mol%
Add, mix and calcine at 1300 ° C for 2 hours.

工程2:水を加えボールミル中にて湿式にて粒子の80%が
2.5μm以下の粒径になるまで粉砕する。
Step 2: 80% of the particles are wet in a ball mill by adding water
Grind to a particle size of 2.5 μm or less.

工程3:水溶性バインダを添加し,スプレードライにて平
均粒径70μmの球状の造粒粒子を得る。
Step 3: A water-soluble binder is added, and spherical granulated particles having an average particle size of 70 μm are obtained by spray drying.

工程4:ラバープレスし所望の管状(試験管状)に成形し
乾燥後,砥石にて所定の形状に研削する。
Step 4: Rubber pressing, forming into a desired tube (test tube), drying, and grinding with a grindstone into a predetermined shape.

工程5:乾燥後,1500℃×2Hrsにて焼成する。検出部に対
応する部分について,軸方向長さは25mm,外径約5mmφ,
内径約3mmφとした。
Step 5: After drying, firing at 1500 ° C. × 2 hrs. For the part corresponding to the detector, the axial length is 25 mm, the outer diameter is about 5 mmφ,
The inner diameter was about 3 mmφ.

工程6:化学メッキにより,内外面にPt層を厚さ0.9μm
に析着させ,その後1000℃で焼付する。
Process 6: Pt layer thickness 0.9μm on inner and outer surfaces by chemical plating
And then baked at 1000 ° C.

工程7:MgO・Al2O3(スピネル)の粉末にてプラズマ溶射
して厚さ約150μmの第1保護層を形成する。
Step 7: forming a first protective layer having a thickness of about 150 μm by plasma spraying with MgO · Al 2 O 3 (spinel) powder.

工程8:乾燥後,貴金属含有チタニアペーストを第1保護
層の表面に塗布し,800℃の還元性雰囲気で焼付すること
により,約2μmの細孔を有する厚さ約25μmの第2保
護層を形成する。尚,上記ペーストは,チタニアの粉末
をRh/Pd重量比が1の触媒液に浸し,撹拌しながら乾燥
・含浸させ,その後有機バインダ及び溶剤(ブチルカル
ビトール)を添加して得る。
Step 8: After drying, a noble metal-containing titania paste is applied to the surface of the first protective layer, and baked in a reducing atmosphere at 800 ° C. to form a second protective layer having a thickness of about 25 μm having pores of about 2 μm. Form. The above paste is obtained by immersing titania powder in a catalyst solution having a Rh / Pd weight ratio of 1, drying and impregnating it with stirring, and then adding an organic binder and a solvent (butyl carbitol).

工程9:貴金属含有γアルミナペーストを第2保護層の表
面に塗布し,600℃の酸化雰囲気で焼付けることにより,
厚み約25μmの第3保護層を形成する。上記ペースト
は,γアルミナの粉末をH2PtCl6液に浸し,撹拌しなが
ら乾燥・含浸させ,その後有機バインダ及び及び溶剤
(ブチルカルドール)を添加して得る。
Step 9: A γ-alumina paste containing a noble metal is applied to the surface of the second protective layer and baked in an oxidizing atmosphere at 600 ° C.
A third protective layer having a thickness of about 25 μm is formed. The paste is obtained by immersing γ-alumina powder in an H 2 PtCl 6 solution, drying and impregnating the powder while stirring, and then adding an organic binder and a solvent (butyl cardol).

更に,こうして製造された酸素センサ素子1を用い
て,以下の工程により,酸素センサAを得た。
Furthermore, using the oxygen sensor element 1 thus manufactured, an oxygen sensor A was obtained by the following steps.

工程10:素子1をハウジング8内に挿入した後,加締用
リング9及び滑石等の充填剤10を挿填して,素子1をハ
ウジング8内に固定する。
Step 10: After inserting the element 1 into the housing 8, the element 1 is fixed in the housing 8 by inserting a caulking ring 9 and a filler 10 such as talc.

工程11:素子1先端部を覆って保護管を配置し,ハウジ
ング8先端と保護管後端とを溶接する。
Step 11: A protective tube is arranged so as to cover the front end of the element 1, and the front end of the housing 8 and the rear end of the protective tube are welded.

工程12:端子及びリード(図示せず)を電極に接続し,
外筒(図示せず)を被せて酸素センサを得る。
Step 12: Connect terminals and leads (not shown) to the electrodes,
An oxygen sensor is obtained by covering an outer cylinder (not shown).

[試験例] 前記実施例に係る本発明の酸素センサ素子に基づいて
以下の試験を行ない各評価項目について調べた。又,比
較例としてPtを担持したスピネルからなる単一保護層の
みからなるもの(工程8,9がないもの)についても同様
に調べた。
[Test Example] The following tests were performed based on the oxygen sensor element of the present invention according to the above-described embodiment, and each evaluation item was examined. In addition, as a comparative example, a device having only a single protective layer made of Pt-supported spinel (without steps 8 and 9) was similarly examined.

酸素センサ素子をブンゼンバーナで耐久試験に供し
た。即ち,空気を殆んど導入しない不完全燃焼状態で各
酸素センサ素子のTip部(先端部)を700〜850℃に加熱
して500Hrs耐久させる。
The oxygen sensor element was subjected to a durability test using a Bunsen burner. That is, the tip portion (tip portion) of each oxygen sensor element is heated to 700 to 850 ° C. in an incomplete combustion state in which almost no air is introduced, so as to withstand 500 hours.

評価項目A: 上記加熱後の酸素センサ素子を備えてなる酸素センサ
を燃焼管(内径幅43)に取付け,1m離れた部位からバー
ナ炎を吹付け,センサ応答性を評価する。
Evaluation item A: An oxygen sensor equipped with the above heated oxygen sensor element was attached to a combustion tube (inner diameter width 43), and a burner flame was sprayed from a location 1 m away from the sensor to evaluate sensor response.

評価項目B: 同様に加熱後に係る酸素センサをエンジン実車にて所
定の位置に取付け,センサ制御し,より下流に位置する
λスキャン値(制御A/F平均値)を調べ,λ特性を評価
する。
Evaluation item B: Similarly, attach the oxygen sensor to the specified position on the actual engine of the engine after heating, control the sensor, examine the λ scan value (average control A / F value) located further downstream, and evaluate the λ characteristics. .

評価項目C: 目視によって素子表面部の状態を評価する。Evaluation item C: The state of the element surface was visually evaluated.

これらの結果を表及び第3,4図に示す。尚,第3,4図は
夫々試料No1,2,試料No*4に係るものである。
The results are shown in the table and FIGS. FIGS. 3 and 4 relate to samples No. 1 and No. 2 and sample No. * 4, respectively.

表及び第3,4図から明らかな通り,実施例に係る酸素
センサ素子(及び酸素センサ)は比較例のものに比し
て,各評価項目A,B,Cについて優れた結果を示してい
る。
As is clear from the table and FIGS. 3 and 4, the oxygen sensor element (and oxygen sensor) according to the example shows excellent results for each of the evaluation items A, B, and C as compared with the comparative example. .

[効果] 以上の如く本発明によれば,第1〜3保護層によって
通気性を劣化させることなく,測定電極を確実に保護で
き,センサ応答性及びλ特性においても優れ,高精度の
空燃比制御を維持できる。
[Effects] As described above, according to the present invention, the measurement electrodes can be reliably protected without deteriorating the air permeability by the first to third protective layers, the sensor response and the λ characteristics are excellent, and the air-fuel ratio with high accuracy is achieved. You can maintain control.

しかも,第2保護層に高分散担持されたRh,Pd触媒に
よって未燃成分のうちNOXの還元反応を促進すると共
に,第3保護層に低分散担持されたPt触媒によって未燃
成分のうちCO,HCの酸化反応を促進できるので,被測定
ガスについて完全燃焼状態における平衡酸素濃度として
検出でき,理想的な検知特性を発揮できる。
Moreover, highly dispersed supported Rh in the second protective layer, as well as promote the reduction reaction of the NO X of the unburned components by Pd catalyst, of unburned components by low dispersion supported Pt catalyst in the third protective layer Since the oxidation reaction of CO and HC can be promoted, the gas to be measured can be detected as an equilibrium oxygen concentration in a complete combustion state, and ideal detection characteristics can be exhibited.

従って,本発明は高精度即ちλポイントズレの極力少
ないセンサ制御を長期間安定に維持でき,三元触媒と組
合せることにより,浄化特性が格段優れたシステムを提
供することができることに成功したものであり,かくて
酸素センサ分野において極めて有用なものである。
Therefore, the present invention has succeeded in providing a system which is capable of maintaining high accuracy, that is, sensor control with as small a λ point shift as possible, stably for a long time, and providing a system with extremely excellent purification characteristics by combining with a three-way catalyst. Thus, it is extremely useful in the field of oxygen sensors.

【図面の簡単な説明】[Brief description of the drawings]

第1図は,本発明の酸素センサ素子(酸素センサ)の一
実施例を示す断面図, 第2図は,第1図のII部位の拡大断面図, 第3,4図は,空気過剰率(λ)と出力との関係を示した
グラフであり,第3図は耐久前に係るもの,第4図は耐
久後に係るもの,を夫々表わす。 1……酸素センサ素子、2……固体電解質体 3……基準電極、4……測定電極 5……第1保護層、6……第2保護層 7……第3保護層、6a,7a……触媒
FIG. 1 is a sectional view showing an embodiment of the oxygen sensor element (oxygen sensor) of the present invention, FIG. 2 is an enlarged sectional view of a portion II in FIG. 1, and FIGS. FIG. 3 is a graph showing the relationship between (λ) and output, wherein FIG. 3 shows the relationship before endurance and FIG. 4 shows the relationship after endurance. DESCRIPTION OF SYMBOLS 1 ... Oxygen sensor element, 2 ... Solid electrolyte body 3 ... Reference electrode 4, ... Measurement electrode 5 ... 1st protective layer, 6 ... 2nd protective layer 7 ... 3rd protective layer, 6a, 7a ……catalyst

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 稔明 愛知県名古屋市瑞穂区高辻町14番18号 日本特殊陶業株式会社内 (56)参考文献 特開 昭63−290956(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Toshiaki Kondo 14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi, Aichi Japan Special Ceramics Co., Ltd. (56) References JP-A-63-290956 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固体電解質体の一面側に基準電極,他面側
に測定電極を備え,測定電極が被測定ガスに接触される
酸素センサ素子において, 測定電極が,熱的に安全な金属酸化物を主成分とする複
数の多孔質保護層で被覆され,複数の保護層が第1,2,3
保護層からなり, 第1保護層が第2,第3保護層よりも測定電極に近接して
位置し, 第2保護層がRh及びPdを担持したチタニアからなり, 第3保護層がPtを担持したアルミナ,スピネル又はマグ
ネシアの1以上からなる, 酸素センサ素子。
An oxygen sensor element comprising a reference electrode on one side of a solid electrolyte body and a measurement electrode on the other side, wherein the measurement electrode is in contact with a gas to be measured. Is covered with a plurality of porous protective layers mainly composed of a material, and the plurality of protective layers are the first, second, and third layers.
The first protective layer is located closer to the measurement electrode than the second and third protective layers, the second protective layer is composed of titania carrying Rh and Pd, and the third protective layer is composed of Pt. An oxygen sensor element comprising at least one of alumina, spinel and magnesia supported.
【請求項2】RhとPdの担持量の重量比Rh/Pdが0.05〜1.0
である請求項1に記載の酸素センサ素子。
2. The weight ratio Rh / Pd of Rh and Pd is 0.05 to 1.0.
The oxygen sensor element according to claim 1, wherein
【請求項3】第2保護層が第3保護層よりも測定電極側
に位置する請求項1又は2記載の酸素センサ素子。
3. The oxygen sensor element according to claim 1, wherein the second protective layer is located closer to the measurement electrode than the third protective layer.
JP63056340A 1988-03-11 1988-03-11 Oxygen sensor element Expired - Fee Related JP2589130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63056340A JP2589130B2 (en) 1988-03-11 1988-03-11 Oxygen sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63056340A JP2589130B2 (en) 1988-03-11 1988-03-11 Oxygen sensor element

Publications (2)

Publication Number Publication Date
JPH01232253A JPH01232253A (en) 1989-09-18
JP2589130B2 true JP2589130B2 (en) 1997-03-12

Family

ID=13024493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63056340A Expired - Fee Related JP2589130B2 (en) 1988-03-11 1988-03-11 Oxygen sensor element

Country Status (1)

Country Link
JP (1) JP2589130B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3488818B2 (en) * 1997-11-25 2004-01-19 日本特殊陶業株式会社 Oxygen sensor
JPH11237361A (en) * 1997-12-15 1999-08-31 Nippon Soken Inc Gas sensor
JP4587473B2 (en) * 2004-07-22 2010-11-24 日本特殊陶業株式会社 Gas sensor
JP5051660B2 (en) * 2008-01-08 2012-10-17 日本特殊陶業株式会社 Gas sensor element and gas sensor
JP5931692B2 (en) * 2012-02-01 2016-06-08 日本特殊陶業株式会社 Gas sensor
JP6359373B2 (en) 2013-09-05 2018-07-18 日本特殊陶業株式会社 Gas sensor element and gas sensor
JP6274554B2 (en) * 2013-11-25 2018-02-07 株式会社Soken Gas sensor element and gas sensor
DE112019006447T5 (en) * 2018-12-28 2021-09-09 Ngk Spark Plug Co., Ltd. Gas sensor element and gas sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125752A (en) * 1985-11-26 1987-06-08 Nec Corp Test system for remote station stand-alone call processing
JPH0650298B2 (en) * 1987-05-25 1994-06-29 株式会社ユニシアジェックス Oxygen sensor for internal combustion engine

Also Published As

Publication number Publication date
JPH01232253A (en) 1989-09-18

Similar Documents

Publication Publication Date Title
EP0372425B1 (en) Oxygen-sensor element and method for producing the same
US6773565B2 (en) NOx sensor
EP1195601B1 (en) Oxygen sensor element and manufacturing method thereof
US4940528A (en) Oxygen sensor elements
US6514397B2 (en) Gas sensor
JPS63266352A (en) Electrode structure of oxygen sensor
JP3443962B2 (en) Oxygen concentration detector and manufacturing method thereof
US6210552B1 (en) Oxygen sensor
JPS61241657A (en) Oxygen sensor element
US4650697A (en) Process of manufacturing oxygen sensor
JP2589130B2 (en) Oxygen sensor element
JP2574452B2 (en) Oxygen sensor, method of manufacturing the same, and method of preventing poisoning
JP4456839B2 (en) NOx detection cell, manufacturing method thereof, and NOx detection apparatus including the cell
US7655123B2 (en) Gas sensor
JPH087177B2 (en) Oxygen sensor element and manufacturing method thereof
JP3616510B2 (en) Oxygen sensor and manufacturing method thereof
JP2589136B2 (en) Oxygen sensor element
US20020117397A1 (en) Exhaust oxygen sensor electrode formed with organo-metallic ink additives
JPH05256816A (en) Oxygen sensor and its manufacture
JP2592510B2 (en) Oxygen sensor element
JP2844371B2 (en) Manufacturing method of oxygen detection element
JP4830525B2 (en) Limit current type gas sensor and its use
JPH03100450A (en) Gas sensor
JPH10104194A (en) Stabilization of oxygen sensor
JP2534297B2 (en) Oxygen detection element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees