JPH02212757A - Oxygen sensor for controlling air/fuel ratio with protective layer containing oxygen occluded material and making thereof - Google Patents

Oxygen sensor for controlling air/fuel ratio with protective layer containing oxygen occluded material and making thereof

Info

Publication number
JPH02212757A
JPH02212757A JP1032603A JP3260389A JPH02212757A JP H02212757 A JPH02212757 A JP H02212757A JP 1032603 A JP1032603 A JP 1032603A JP 3260389 A JP3260389 A JP 3260389A JP H02212757 A JPH02212757 A JP H02212757A
Authority
JP
Japan
Prior art keywords
protective layer
oxygen
sensor
layer
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1032603A
Other languages
Japanese (ja)
Inventor
Toshiki Sawada
澤田 俊樹
Masaru Sannou
山農 勝
Kazuo Taguchi
一夫 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP1032603A priority Critical patent/JPH02212757A/en
Priority to DE4004172A priority patent/DE4004172C2/en
Priority to US07/479,695 priority patent/US5160598A/en
Publication of JPH02212757A publication Critical patent/JPH02212757A/en
Priority to US07/840,829 priority patent/US5326597A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a deterioration in endurance on severe heat cycle conditions while achieving an accurate air/fuel ratio control by coupling a protective layer to a base part of a sensor element through a spherical protrusion while an oxygen occluded material is contained in the protective layer. CONSTITUTION:A protective layer 4 comprising a heat resistant metal oxide is provided on a side exposed to an exhaust gas of a sensor element through an electrode 3. A body 1 of the sensor element is made up of a base part 1a and a plurality of spherical protrusions 1b. The layer 4 contains an oxygen occluded material. According to an oxygen sensor thus arranged, the protrusion 1b functions as wedge to allow the coupling of the layer 4 to the body 1 firmly. As a result, there is no deterioration in endurance such as peeling even under severe heat cycle conditions. Thus, an action of a material 4a contained in the layer 4 can be delivered sufficiently for a long period of time, thereby achieving an accurate air/fuel control in accelerated and normal operations.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は自動車等の排気ガス浄化システムの三元触媒と
組合せて利用される空燃比制御用酸素センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oxygen sensor for air-fuel ratio control that is used in combination with a three-way catalyst in an exhaust gas purification system for automobiles and the like.

[従来技術及び課題] 自動車等の排ガス規制がますます強化され。[Prior art and issues] Exhaust gas regulations for automobiles, etc. are becoming increasingly strict.

数多くの酸素センサが開発されている。こうした状況下
、酸素吸蔵・放出作用を示す酸化セリウム等と触媒とを
併用してなる層を備えた酸素センサも提案されている(
特開昭81−791.55.同62−245148)。
Many oxygen sensors have been developed. Under these circumstances, an oxygen sensor has been proposed that has a layer made of a combination of a catalyst and cerium oxide, etc., which exhibits oxygen storage and release properties (
Japanese Patent Publication No. 81-791.55. 62-245148).

しかし、酸素センサは通常苛酷な熱サイクル条件下で使
用されるが、上記提案に係る酸素センサはいずれも、そ
の使用により酸化セリウム等・触媒層がセンサ素子から
剥離してしまう事態を生ずる。又、酸化セリウム等と触
媒とを混合してコートしてなるので両成分が共に単一層
に存在する。
However, oxygen sensors are usually used under severe thermal cycle conditions, and in all of the oxygen sensors proposed above, when used, the cerium oxide or other catalyst layer may peel off from the sensor element. Furthermore, since the coating is made by mixing cerium oxide or the like with a catalyst, both components exist in a single layer.

そのため、触媒成分の強い影響を受けて酸化セリウム等
による酸素の吸蔵・放出作用か過度に高められ、センサ
としての制御周波数が低下し、排気ガス浄化システムの
三元触媒のウィンドから外れてしまう事もある。
Therefore, due to the strong influence of the catalyst components, the occlusion and release of oxygen by cerium oxide, etc. is excessively increased, and the control frequency as a sensor decreases, causing it to fall out of the window of the three-way catalyst of the exhaust gas purification system. There is also.

[課題の解決手段・作用・効果] そこで5本発明の空燃比制御用酸素センサは。[Means for solving problems, actions, and effects] Therefore, the oxygen sensor for air-fuel ratio control of the present invention is as follows.

センサ素子の排気ガスにさらされる側に、少なくとも電
極を被覆して、耐熱性金属酸化物からなる保護層を備え
、 センサ素子の本体か基部と複数の球状突起部とからなり
、保護層が球状突起部を介して基部に結合され。
A protective layer made of a heat-resistant metal oxide is provided on the side of the sensor element exposed to exhaust gas, covering at least the electrode, and the protective layer consists of a main body or base of the sensor element and a plurality of spherical protrusions, and the protective layer is spherical. Connected to the base via the protrusion.

保護[トうが酸素吸蔵物質を含有している。ことを特徴
とする。
Protection [Tower contains oxygen storage substances. It is characterized by

この酸素センサによれば1球状突起部がいわば楔として
機能し、素子本体と保護層とを強固に結合できる。その
ため1通常の苛酷な熱サイクル条件下においても、ハク
リ等の耐久劣化を生ずることなく、保護層は素子本体及
び電極を排ガスから確実に保護する。従ってその保護層
に含有された酸素吸蔵物・質(以下、rO3cJという
)の作用を長い使用期間中十分に発揮できる。即ち1保
Jψ層に含有されたO20は、 I!J!論値よりリッ
チA/F時においては酸素吸着能力が殆んどなく、す〜
ンA、 / F時に酸素吸着能力が高くなるものである
(第7図)。そのため、加速時等の急激な空気量増加時
(リーンA/F時)に−旦酸素を吸蔵しセンサ素子には
実際の排ガスより少ない酸素を6した排ガスが達し、結
果とし、てセンサによるり一ン信号の出力時期を遅らせ
る。又、エンジンが加速を終了して定常運転に戻った時
には、測定電極を保護する保護層としてλポイントズレ
動作及び出力低ドするのを防止する。
According to this oxygen sensor, one spherical protrusion functions as a wedge, so that the element body and the protective layer can be firmly connected. Therefore, 1. Even under normal severe thermal cycle conditions, the protective layer reliably protects the element body and electrodes from exhaust gas without causing durability deterioration such as peeling. Therefore, the action of the oxygen storage material (hereinafter referred to as rO3cJ) contained in the protective layer can be fully exerted over a long period of use. That is, the O20 contained in the 1-layer Jψ layer is I! J! When the A/F is richer than the theoretical value, there is almost no oxygen adsorption capacity, and it is very
The oxygen adsorption capacity increases when the temperature is A or F (Fig. 7). Therefore, when the amount of air increases rapidly (during lean A/F) such as during acceleration, the exhaust gas absorbs oxygen and reaches the sensor element with less oxygen than the actual exhaust gas.As a result, the sensor Delays the output timing of the single signal. Furthermore, when the engine finishes accelerating and returns to normal operation, it acts as a protective layer to protect the measurement electrodes, preventing the λ point from shifting and reducing the output.

従って 急激な空気量増加によるλポイントズレ(いわ
ゆるリッチエクスカーリ3ン)を酸素吸蔵物質によって
極力時+L L、、 、  もっ゛C初期・耐久後にお
ける加速時・定常運転時において正確な空燃比制御を達
成できる。
Therefore, the deviation of the λ point due to a sudden increase in air volume (so-called rich excursion) is minimized by using an oxygen storage material. can be achieved.

本発明の酸素センサにおいて、保護層は初期・耐久後に
おいて排ガスから電極、特に測定電極を保護する。保護
層は耐熱性金属酸化物例えばアルミナ スピネル及びマ
グネンア、ベリリア、ジルコニア等又はこれらの混合物
で構成するとよく。
In the oxygen sensor of the present invention, the protective layer protects the electrode, particularly the measurement electrode, from exhaust gas both initially and after durability. The protective layer is preferably composed of a refractory metal oxide, such as alumina spinel and magnenia, beryllia, zirconia, etc., or a mixture thereof.

特にMg0−A、f!203等のスピネルを主体とする
ものが好ましい。O20を高分散状態で担持してその酸
素吸蔵作用を長い使用期間において発揮でき、しかも耐
熱性に優れる。化学量論的化合物と非化学量論的化合物
とを併用してなるものでもよい。その気孔率は5〜20
%、好ましくは7〜20%、その厚みは30〜200趨
、好ましくは50〜17f)μmにするとよい。排ガス
通過性に支障を生ずることなく、(測定)電極を確実に
保護できる。
Especially Mg0-A, f! A material mainly composed of spinel such as 203 is preferable. It supports O20 in a highly dispersed state and exhibits its oxygen storage function over a long period of use, and has excellent heat resistance. It may be formed by using a stoichiometric compound and a non-stoichiometric compound in combination. Its porosity is 5-20
%, preferably 7 to 20%, and the thickness is 30 to 200 μm, preferably 50 to 17 μm. The (measuring) electrode can be reliably protected without impeding exhaust gas permeability.

保護層に含有されるO20としては、非化学量論的化合
物例えば希土類元素の酸化物が挙げられる。特に酸化セ
リウム、酸化バナジウムが好ましい。酸素の吸蔵・放出
作用が強く、これと同等な作用を他の物質で得るにはそ
の量を多くしたり。
Examples of the O20 contained in the protective layer include non-stoichiometric compounds such as oxides of rare earth elements. Particularly preferred are cerium oxide and vanadium oxide. It has a strong ability to absorb and release oxygen, and to achieve the same effect with another substance, you need to increase its amount.

厚くする必要があり、従って目詰りし易くなる。It needs to be thicker and therefore more prone to clogging.

O20は保護層を構成する耐熱性金属酸化物に対し、て
02〜3owt% (O5Cの金属元素換算)存在され
る。0.2wt%未満ては特に過渡応答時等において多
量の余剰酸素を吸蔵できない。一方。
O20 is present in an amount of 02 to 3 wt% (in terms of O5C metal element) based on the heat-resistant metal oxide constituting the protective layer. If it is less than 0.2 wt%, a large amount of excess oxygen cannot be stored, especially during transient response. on the other hand.

30νt%を超えると定常状態でも吸蔵・放出作用が大
きすぎて応答周波数特性がゆるやかになりすぎてしまう
。但し、後述のように保護層としてのO8C含有層の耐
久性を向上させるために保護層形成後にO20の金属塩
溶液に浸漬させる場合には、その保護層の目詰りを防ぐ
ために02〜8νt%、好ましくは0.8〜3νt%に
するとよい。
If it exceeds 30 νt%, the absorption and desorption effects will be too large even in a steady state, and the response frequency characteristics will become too gradual. However, in order to improve the durability of the O8C-containing layer as a protective layer as described below, when the protective layer is immersed in an O20 metal salt solution after forming the protective layer, 02 to 8 νt% is added to prevent clogging of the protective layer. , preferably 0.8 to 3 νt%.

ド限未満ではO20の効果が若干悪くなる。尚。Below the de limit, the effect of O20 becomes slightly worse. still.

O8C含有量は、保護層を設ける前、後の重量差[X]
と、OSC含有後の重量増分[Y’lから次式の如く求
めた。
The O8C content is the weight difference before and after providing the protective layer [X]
It was calculated from the weight increase [Y'l] and the weight increase after the inclusion of OSC as shown in the following formula.

(ここで、A、:O3Cの金属元素の原子量。(Here, A: atomic weight of the metal element O3C.

M:O20の分子量1面積比:O5Cの金属塩溶液に浸
漬又はO20のスラリーを塗布した部分の面積/保護層
の全表面積) 08Cは保護層の全表面積の1/2以上に含有させると
よい。1/2未満ではO8C存在部以外を通過して(測
定)電極に達する排気ガスが多くなり、その部分での出
力変動が支配的になる。好ましくは7710以上である
M: Molecular weight of O20 1 Area ratio: Area of the part immersed in O5C metal salt solution or coated with O20 slurry / Total surface area of protective layer) 08C is preferably contained in 1/2 or more of the total surface area of the protective layer. . If it is less than 1/2, a large amount of exhaust gas passes through areas other than the O8C existing area and reaches the (measurement) electrode, and output fluctuations in that area become dominant. Preferably it is 7710 or more.

センサ素子の本体は基部と複数の球状突起部とからなり
、保護層が球状突起部を介して基部に結合される。従来
、素子本体と保護層との界面は平坦面とされており保護
層形成時における熱融着力によってのみ結合されていた
。しかし、かかる界面においては電極が存在し、この電
極材料としての貴金属例えばptは、素子本体材料や保
護層を構成する耐熱性金属酸化物とは熱膨張率など種々
の特性において相違がある。そのため、素子本体と保護
層との界面部のうち、(測定)電極が存在する検知特性
にとって最も重要な部分が、使用によりキレ、ハクリ等
の耐久劣化を生ずることがあった。しかし2本発明のよ
うに素子本体と保護層との界面、特に(測定)電極の存
在部位に対応させて素子本体材料からなる球状突起部を
存在させることにより、この球状突起部をいわば楔とし
て、素子本体と保護層とをより強固に物理的に結合でき
る。そのため、苛酷な熱サイクル条件下で使用されても
長期に亘り保護層によって(測定)電極を安定に保護し
、かつその保護層に含有された前記O8Cの作用を発揮
できる。しかも、この球状突起部の存在によって(測定
)電極を凸凹とさせることにより、その表面積を増大さ
せ、狭い領域をもって高いλ検知性を維持することもで
きる。
The main body of the sensor element includes a base and a plurality of spherical protrusions, and a protective layer is coupled to the base via the spherical protrusions. Conventionally, the interface between the element body and the protective layer has been a flat surface, and the interface between the element body and the protective layer has been bonded only by thermal adhesive force during the formation of the protective layer. However, an electrode exists at such an interface, and the noble metal such as PT as the electrode material differs from the heat-resistant metal oxide that constitutes the element body material and the protective layer in various properties such as the coefficient of thermal expansion. Therefore, among the interface parts between the element body and the protective layer, the most important part for the detection characteristics where the (measuring) electrode is present sometimes suffers from durability deterioration such as sharpness and peeling due to use. However, as in the present invention, by providing a spherical protrusion made of the element body material at the interface between the element body and the protective layer, particularly in correspondence with the location of the (measuring) electrode, this spherical protrusion can be used as a so-called wedge. , the element body and the protective layer can be physically bonded more firmly. Therefore, even when used under severe thermal cycle conditions, the (measuring) electrode can be stably protected by the protective layer over a long period of time, and the action of the O8C contained in the protective layer can be exerted. Moreover, by making the (measuring) electrode uneven due to the presence of this spherical protrusion, its surface area can be increased and high λ detectability can be maintained in a narrow area.

球状突起部は素子本体材料、即ち固体電解質。The spherical protrusion is made of the element body material, that is, the solid electrolyte.

(ZrOなど)、半導体材料(Tie、C。(such as ZrO), semiconductor materials (Tie, C.

0など)によって構成するとよい。具体的には。0, etc.). in particular.

素子本体材料が酸素イオン伝導性固体電解質からなる場
合1例えば素子基部ZrO−Y203系1球状突起部Z
 r OY 203系の他、Zr02   (Ca O
1M g O)系としてもよい。又。
When the element body material is made of an oxygen ion conductive solid electrolyte 1 For example, element base ZrO-Y203 system 1 spherical protrusion Z
In addition to r OY 203 series, Zr02 (Ca O
It may also be a 1M g O) system. or.

同一組成で安定化剤の量を異ならせてもよい。The same composition may contain different amounts of stabilizer.

尚1球状突起部は測定電極の内側(素子寄り)。Note that the first spherical protrusion is inside the measurement electrode (closer to the element).

外側(保護層寄り)のいずれに備えてもよい。It may be provided either on the outside (closer to the protective layer).

球状突起部は、造粒粒子の集合体からなり。The spherical protrusion consists of an aggregate of granulated particles.

単層又は複層で存在させるとよい。造粒粒子の粒径は4
0〜100μI、好ましくは50〜80μlにするとよ
い。40μm未満では楔としての機能を充分に果たし得
ず、  1oonを越えると素子本体(基部)又は保護
層と球状突起部との固着が弱くなるおそれがある。各球
状突起部の間に凹部が存在するように分布するとよい。
It may be present in a single layer or in multiple layers. The particle size of the granulated particles is 4
The amount may be 0 to 100 μl, preferably 50 to 80 μl. If the thickness is less than 40 μm, it cannot function as a wedge sufficiently, and if it exceeds 1oon, the adhesion between the element body (base) or the protective layer and the spherical protrusion may become weak. It is preferable that the spherical protrusions are distributed such that there are recesses between each spherical protrusion.

保護層との結合力をより高め、電極表面積を拡大し得る
It can further enhance the bonding force with the protective layer and expand the electrode surface area.

本発明の酸素センサは、更に1例えば次のような構成を
許容する。
The oxygen sensor of the present invention further allows the following configuration, for example.

(a)前記保護層(以下、「第1保護層jともいう)を
被覆して、第2保護層を更に備えてもよい。耐熱性をよ
り向上させ、より一層長期に亘ってO20の上記作用を
安定に発揮できる。この第2保護層は第1保護層と同様
な耐熱性金属酸化物から構成できる。又、第1保護層を
化学量論的化合物、第2保護層を非化学量論的化合物例
えばTiO(x−0,02〜0.03) 、 N i 
O等で構成−x してもよい。尚、第1保護層に比して、第2保護層の気
孔率は1.5倍以上大(例えば8〜35%)。
(a) A second protective layer may be further provided by covering the protective layer (hereinafter also referred to as "first protective layer j").The heat resistance is further improved, and the above-mentioned O20 This second protective layer can be made of the same heat-resistant metal oxide as the first protective layer.Also, the first protective layer can be made of a stoichiometric compound, and the second protective layer can be made of a non-stoichiometric compound. logical compounds such as TiO(x-0,02-0.03), Ni
It may be composed of -x such as O. Note that the porosity of the second protective layer is 1.5 times or more greater than that of the first protective layer (for example, 8 to 35%).

その厚みは薄く (例えば10〜50μ0+)するとよ
い。
The thickness should be small (for example, 10 to 50μ0+).

第1保護層でのO20の酸素吸蔵作用を有効に発揮しつ
つ、排ガス通過性及びセンサ応答性の劣化を防止できる
While effectively exhibiting the oxygen storage effect of O20 in the first protective layer, deterioration of exhaust gas permeability and sensor responsiveness can be prevented.

又、この第2保護層には貴金属を担持させるとよい。貴
金属は触媒として排ガス中の未燃成分を平衡状態にする
。そのため、未燃成分によるλのリーン側へのズレを極
力防止できる。貴金属として例えばptを主体(80v
t%以上)とすれば。
Further, it is preferable that this second protective layer supports a noble metal. Precious metals act as catalysts to bring unburned components in exhaust gas into equilibrium. Therefore, deviation of λ toward the lean side due to unburned components can be prevented as much as possible. For example, PT is the main precious metal (80v
t% or more).

未燃成分のうちCo、HCの特に酸化反応を促進できる
。又、Rh、Pdを主体とすれば、未燃成分のうちNO
の還元反応を促進できる。その担持量は、第2保護層を
構成する耐熱性金属酸化物に対して0.01〜5vt%
の範囲にするとよい。0.01wt%未満では効果がな
く、5νt%を越えると目詰りを生ずるおそれがある。
Among unburnt components, the oxidation reaction of Co and HC can be particularly promoted. In addition, if Rh and Pd are the main components, NO
can promote the reduction reaction of The supported amount is 0.01 to 5vt% with respect to the heat-resistant metal oxide constituting the second protective layer.
It is recommended to set it within the range of . If it is less than 0.01wt%, there is no effect, and if it exceeds 5vt%, clogging may occur.

但し、濃い(リッチ)排ガスに晒される条件下では約I
 Vt%であることが好ましい。3wt%を越えると、
多量に存在する未燃成分が貴金属触媒に吸着又は反応し
て保護層にキレが発生するおそれかある。
However, under conditions of exposure to rich exhaust gas, approximately I
It is preferably Vt%. If it exceeds 3wt%,
There is a risk that unburned components present in large quantities may adsorb or react with the precious metal catalyst, causing the protective layer to crack.

(b)センサ素子近傍にヒータを錨えてもよい。低温時
においても、保護層のOSCによる酸素吸蔵・放出作用
を安定に発揮できる。
(b) A heater may be anchored near the sensor element. Even at low temperatures, the OSC of the protective layer can stably exhibit its oxygen storage and release effects.

(c)保護層に、IIa族成分成分Ca、Mgの非酸化
物例えばCaC0、CaCjl!2.Mg(NO3)2
を含有させてもよい。オイル中のSiによる被毒を防止
できる。
(c) In the protective layer, non-oxides of group IIa components Ca and Mg, such as CaC0, CaCjl! 2. Mg(NO3)2
may be included. Poisoning by Si in oil can be prevented.

次に1本発明の空燃比制御用酸素センサの製造方法は、
センザ素了の排気ガスにさらされる側の処理につい“C
1 少なくとも電極の存在位置に対応させて、素子の本体材
料からなる球状物質を何首させる工稈。
Next, the method for manufacturing the oxygen sensor for air-fuel ratio control of the present invention is as follows:
About the treatment of the side exposed to the exhaust gas of the sensor
1. A culm in which a number of spherical substances made of the main body material of the element are arranged at least in correspondence with the positions of the electrodes.

耐熱性金属酸化物を彼着させた後、酸素吸蔵物質の金属
塩溶液に浸漬させるT−程。
After the heat-resistant metal oxide is deposited, it is immersed in a metal salt solution of an oxygen storage substance.

を含むことを特徴とする。It is characterized by including.

この製法によれば、前述の酸素センサ、即ち通常の苛酷
な熱サイクル条件下においても素子本体及び電極を排ガ
スによる耐久劣化から確実に保護し、OSCの作用を安
定に発揮できる酸素センサを量産性良く製造できる。
This manufacturing method makes it possible to mass-produce the aforementioned oxygen sensor, that is, an oxygen sensor that can reliably protect the element body and electrodes from deterioration due to exhaust gas even under normal severe thermal cycle conditions, and stably exhibit the OSC function. Can be manufactured well.

素子本体の基部の形成は9例えば固体電解質又は才導体
などの基材粉末を混合、仮焼した後。
The base of the element body is formed after mixing and calcining base material powders such as solid electrolyte or conductor.

粉砕(2,5μIl+以下)シ、その後スプレードライ
によって二次粒子(20−1,5011m、好ましくは
70111A以ト)を形成し、所定形状に成形するとよ
い。
It is preferable to form secondary particles (20-1,5011 m, preferably 70111 A or higher) by pulverization (2.5 μl+ or less) and then spray drying, and mold them into a predetermined shape.

球状突起部の形成は、素子本体の基材表面に平均粒径4
0〜I OQ Itllの球状粒子を付着させ、その後
、焼成するとよい。後王稈の電極析着処理後も充分に楔
としての凸凹を残し、保護層との強固な結合を得ること
かできる。即ち、焼成後の球状粒子が401m未満では
楔と1.ての機能を充分に宋たし得ず、  1100f
1を越えると基材との固着が弱くなる。より好ましくは
50〜80μmにするとよい。叉10μm以下のよ1つ
細粒を混在させ、より一層の強度向上を図ってもよい。
The formation of spherical protrusions is achieved by forming an average particle size of 4 on the surface of the base material of the element body.
It is preferable to attach spherical particles of 0 to I OQ Itll and then bake. Even after the electrode deposition treatment of the rear culm, sufficient unevenness as a wedge remains, making it possible to obtain a strong bond with the protective layer. That is, if the spherical particles after firing are less than 401 m long, they will form a wedge. 1100f.
When it exceeds 1, the adhesion to the base material becomes weak. More preferably, the thickness is 50 to 80 μm. Fine grains of 10 μm or less may be mixed to further improve the strength.

素子本体の基+イと球状粒子とは同時焼成に供するとよ
い。両名゛の固着強度を高め得る。その焼成温度は14
00〜1500℃にするとよい。又、電極折ン1処理を
施した後1球状粒子の形成を行なってもよい。特に1球
状粒子を先に(=J着形成した場合において、(Δ1り
定)電極を形成できないときにa効である。つまり電極
を生ジー トドにスクリーン印刷等により形成させ、そ
の後造粉粒子を付着させた後に同時焼成させる場合に有
効である。
It is preferable that the base material of the element body and the spherical particles be fired simultaneously. The adhesion strength of both can be increased. The firing temperature is 14
It is preferable to set the temperature to 00 to 1500°C. Alternatively, one spherical particle may be formed after the electrode folding treatment. Particularly when one spherical particle is formed first (=J), it is effective when it is not possible to form an electrode (Δ1).In other words, the electrode is formed on the raw material by screen printing, etc., and then the powdered particles are formed. This is effective when simultaneously firing after adhering.

電極の形成も特に限定さ第1ず1電(iメツキ、化学メ
ツキ等の通常メツキ処理の他1通常の気相+I−i着法
例えばスパッタリング、蒸着或いはスクリン印刷によっ
て行なってもよい。
The formation of the electrodes is not particularly limited either, and in addition to conventional plating processes such as i-plating and chemical plating, it may also be performed by a conventional vapor phase + I-i deposition method such as sputtering, vapor deposition, or screen printing.

保護層の形成は、素子本体のλ(材及び球状13+、子
を焼成して素子本体の基部及び球状突起部を形成させた
後に行なうとよい(但し、後述のように保護層材料をも
同時焼成【、でもよい)。その形成方法としては、保護
層材料の溶液又は粉末を刷毛塗布、浸漬1噴霧等の後焼
成する等種々の方法か挙げられるが、溶射、特にプラズ
マ溶射が好まし0゜溶射粉末同志の固着強度が強く、そ
の条件を適宜変更することにより、任意の気孔率、気孔
iYとすることができる。又、素子本体材料(例えばZ
rO固体電解質、TiO,CoO+導体など)からなる
生シー に貴金属ペーストにて電極を印刷後、保護層材
料と[2てのAf!203等を川に印刷し、これらを同
時焼成しCもよい。保護層材料としては、金属酸化物の
他、熱分解によって金属酸化物を形成し得る化合物例え
ば水酸化物又は塩などであってもよい。その粉末粒径は
2μm以下にするとよい。
The protective layer is preferably formed after the element body λ (material and spherical 13+) are fired to form the base and spherical protrusions of the element body (however, as described later, the protective layer material may also be formed at the same time). Firing [, may be used].As a method for forming the protective layer material, there are various methods such as applying a solution or powder of the protective layer material with a brush, dipping and spraying, and then firing, but thermal spraying, particularly plasma spraying, is preferable.゜The adhesion strength between the thermal spray powders is strong, and by appropriately changing the conditions, it is possible to achieve any porosity and pores iY.
After printing electrodes with precious metal paste on a green sheet made of a solid electrolyte (rO solid electrolyte, TiO, CoO + conductor, etc.), a protective layer material and [2 Af! 203 etc. may be printed on the surface and C may be printed at the same time and fired at the same time. In addition to metal oxides, the protective layer material may be a compound capable of forming a metal oxide by thermal decomposition, such as a hydroxide or a salt. The powder particle size is preferably 2 μm or less.

保護層・\のOSCの担持は、少なくとも保護層をOS
Cの金属塩溶液に浸漬させた後、乾燥、焼成するとよい
。保護層を素子本体に強固に包容形成させた後、その保
護層(多孔質)内にOSCの金属塩溶液をa浸させるの
で、OSCを高分散相持できると共に、使用時における
飛散を防lにできる。従って、OSCの前記作用を長期
間安定に持続できる。
Supporting the OSC of the protective layer/\ means that at least the protective layer is
It is preferable to immerse it in a metal salt solution of C, then dry and bake it. After the protective layer is tightly encased in the element body, a metal salt solution of OSC is soaked into the protective layer (porous), which allows OSC to be highly dispersed and prevents it from scattering during use. can. Therefore, the effect of OSC can be maintained stably for a long period of time.

OSCの金属塩としては、硝酸塩、酢酸塩が挙げられる
。Ce塩の場合1例えば硝酸セリウムにするとよい。p
l+は5以ドにするとよい。金属塩溶液が保護層内に深
く入り込み08CO付11強度を強くできる上、非常に
分散性が高い。より好ましくはpH3以下とすると良い
。保護層内に入り込み昌い為、この保護層内の排ガスの
流通路に確実にCeを分散できる。浸漬は300+n+
nHg以下、特に200+n+++Hg以下の真空ない
しは減圧下又は加圧下で行なうとよい。金属塩の可溶性
を高め、かつ保護層内に深く効率良く高分散させること
ができる。
Examples of metal salts of OSC include nitrates and acetates. In the case of Ce salt 1, for example, cerium nitrate may be used. p
l+ should be 5 or more. The metal salt solution penetrates deeply into the protective layer, increasing the strength of the 08CO attached 11, and has very high dispersibility. More preferably, the pH is set to 3 or less. Since it penetrates into the protective layer, Ce can be reliably dispersed in the exhaust gas flow path within the protective layer. Immersion is 300+n+
It is preferable to carry out under vacuum or reduced pressure or under pressure of not more than nHg, especially not more than 200+n+++Hg. The solubility of the metal salt can be increased and it can be highly dispersed deeply and efficiently within the protective layer.

300關11gを越えると、浸漬処理時間又は回収を多
く必要とし、保護層内部よりもむしろ表面部に多く付着
し、保護層が目詰りするおそれがある。浸漬は室温以上
、より好ましくは20 ’C以上で行なうとよい。
If it exceeds 300 g or 11 g, a long immersion treatment time or recovery will be required, and there is a risk that the protective layer will be clogged because more of it will adhere to the surface rather than the inside of the protective layer. The immersion is preferably carried out at room temperature or higher, more preferably at 20'C or higher.

浸漬処理にあたり、予め保護層は溶射等によって形成さ
れ、かつ球状突起部によって素子本体に強固に結合され
た状態となっている。そのため。
In the immersion treatment, the protective layer is formed in advance by thermal spraying or the like, and is firmly bonded to the element body by the spherical protrusions. Therefore.

浸漬処理によってOSCの金属塩溶液が保護層へ含浸し
ても、素子本体と保護層との結合性は阻害されない。し
かも、保護層は多孔質(連通孔)に形成されており、こ
の後に浸漬処理がなされるので、この多孔質の通気孔の
一部に高分散担持できる。従って、苛酷な熱サイクル条
件下において素子本体及び電極を保護層によって確実に
保護しつつ、耐久後においてもOSCの作用を極めて効
率良く発揮できる。
Even if the protective layer is impregnated with the metal salt solution of OSC by the dipping treatment, the bonding between the element body and the protective layer is not inhibited. Moreover, since the protective layer is formed porous (with continuous pores) and is subsequently subjected to a dipping treatment, it can be highly dispersed and supported in a portion of the porous ventilation pores. Therefore, the element body and electrodes can be reliably protected by the protective layer under severe thermal cycle conditions, and the OSC function can be exhibited extremely efficiently even after durability.

又2保護層の浸漬はセンサ検知部を下方へ位置させて行
なうが、この場合保護層のうち下端より95%の部位ま
でを浸漬させるようにするとよい。
Further, the second protective layer is immersed with the sensor detection part positioned downward, and in this case, it is preferable to immerse up to 95% of the lower end of the protective layer.

95%を超えると導通部分となるべき素子鍔部にOSC
の金属塩溶液が付着してその使用時における導通性を阻
害するおそれがある。尚、金属塩溶液に耐熱性金属酸化
物例えばアルミナ、スピネルを含有させて、これに保護
層を浸漬してもよい。
If it exceeds 95%, OSC is applied to the element flange that should become a conductive part.
There is a risk that the metal salt solution may adhere to the product and impede its conductivity during use. The protective layer may be immersed in the metal salt solution containing a heat-resistant metal oxide such as alumina or spinel.

但し、この場合には耐用性が低下するおそれがある。However, in this case, there is a risk that durability may be reduced.

又、含浸により担持されるO8C量は、耐熱性金属酸化
物に対して0.2〜8vt% (OSCの金属元素換算
)が良い。より好ましくは0.8〜3vt%がよい。上
限は保護層の目詰りを防ぎ、又センサ使用時の保護層の
キレを防ぐためである。下限未満ではOSCの効果が若
干悪くなる。
Further, the amount of O8C supported by impregnation is preferably 0.2 to 8 vt% (in terms of OSC metal element) based on the heat-resistant metal oxide. More preferably 0.8 to 3 vt%. The upper limit is set to prevent clogging of the protective layer and also to prevent the protective layer from coming loose when the sensor is used. Below the lower limit, the OSC effect will be slightly worse.

浸漬処理によるO8C金属塩溶液の含浸後。After impregnation with O8C metal salt solution by dipping treatment.

300℃〜850℃の温度にて酸化雰囲気中にて熱処理
するとよい。OSCの金属塩を熱分解させると共に水分
を揮発させOSCに変更できる。300°C未満ではか
かる作用が不充分あり、一方850℃を越えると電極等
に02が吸着したりする事もある他、OSCに一時的に
酸素の吸蔵が多くなり、使用時にこの酸素の放出が困難
になるおそれかある。好ましくは800℃以下である。
Heat treatment is preferably carried out in an oxidizing atmosphere at a temperature of 300°C to 850°C. It can be converted into OSC by thermally decomposing the metal salt of OSC and volatilizing the water. If the temperature is lower than 300°C, this effect may be insufficient, whereas if the temperature exceeds 850°C, 02 may be adsorbed to the electrodes, etc., and the OSC may temporarily store a large amount of oxygen, causing the release of this oxygen during use. There is a risk that it will become difficult. Preferably it is 800°C or less.

又、還元雰囲気中にてこの熱処理を行なうと1例えば硝
酸塩の場合毒性のNoが発生するので、取扱いが煩雑と
なる。
Furthermore, if this heat treatment is performed in a reducing atmosphere, toxic No. 1, for example, is generated in the case of nitrates, making handling complicated.

本発明は2種々のタイプの空燃比制御用酸素センサ、即
ち理論空燃比制御、稀薄空燃比制御;固体電解質型(Z
、rO)、半導体型(T iO2。
The present invention provides two different types of oxygen sensors for air-fuel ratio control, namely stoichiometric air-fuel ratio control, lean air-fuel ratio control; solid electrolyte type (Z
, rO), semiconducting type (T iO2.

Cod)等の酸素センサとして広く適用できる。It can be widely applied as an oxygen sensor such as Cod).

〔実施例〕〔Example〕

以下の工程により第1〜3図に示すようなU字管型酸素
センサ(試料No、 1〜4.比較I〜■)を得た。尚
、各試料についての具体的組成を第1表に示す。
U-shaped tube type oxygen sensors (Sample Nos. 1-4, Comparisons I-■) as shown in FIGS. 1-3 were obtained through the following steps. The specific composition of each sample is shown in Table 1.

工程1: 純度99%以上のZ r O2に純度99.9%のY2
O3を5 mo1%添加し、混合した後、 1800’
cで2時間仮焼する。
Step 1: Z r O2 with a purity of 99% or more and Y2 with a purity of 99.9%
After adding 5 mo1% of O3 and mixing, 1800'
Bake for 2 hours at c.

工程2: 水を加えボールミル中にて湿式にて粒子の80%が2.
5如以下の粒径になるまで粉砕する。
Step 2: Add water and wet process in a ball mill until 80% of the particles are 2.
Grind until the particle size is less than 5 mm.

工程3: 水溶性バインダを添加し、スプレードライにて平均粒径
70即の球状の造粒粒子を得る。
Step 3: Add a water-soluble binder and spray dry to obtain spherical granulated particles with an average particle size of 70 mm.

工程4; 工程3にて得た粉末をラバープレスし所望の管状(U字
管状)に成形し乾燥後、砥石にて所定の形状に研削する
Step 4: The powder obtained in Step 3 is rubber pressed to form a desired tubular shape (U-shaped tubular shape), dried, and then ground into a predetermined shape using a grindstone.

工程5: 外面上に、工程3で得た造粒粒子に水溶性バインダ繊維
素グリコール酸ナトリウム及び溶剤を1添加した泥漿を
付着させる。
Step 5: A slurry prepared by adding a water-soluble binder cellulose sodium glycolate and one portion of a solvent to the granulated particles obtained in Step 3 is attached to the outer surface.

工程6: 乾燥後、 1500℃X 2 Hrsにて焼成する。検
出部に対応する部分について、軸方向長25開、外径約
5Illlφ、内径的3 u+φとした〇工程7: 無電解メツキにより2外面にptt定電極層を厚さ 0
.9μlに折着させ、その後1000℃で焼(=7する
Step 6: After drying, it is fired at 1500°C for 2 hours. For the part corresponding to the detection part, the axial length was 25 mm, the outer diameter was approximately 5 Illlφ, and the inner diameter was 3 U+φ. Step 7: A PTT constant electrode layer was applied to the outer surface by electroless plating to a thickness of 0.
.. Fold into 9 μl and then bake at 1000°C (=7).

工程8: Mg0−Af!203 (スピネル)の粉末にてプラズ
マ溶射して厚さ約150 JiIllの保護層を形成す
る。
Step 8: Mg0-Af! 203 (spinel) powder is plasma sprayed to form a protective layer with a thickness of about 150 JIll.

−「程9: 」二程7と同様にして、内面にpt基基型電極層形成し
た。
- "Step 9:" In the same manner as Step 7, a PT-based electrode layer was formed on the inner surface.

工程10+ 硝酸セリウムを、硝酸を水で薄めた溶液中に溶かし2種
々の濃度の硝酸セリウム硝酸溶i11を調整した。
Step 10+ Cerium nitrate was dissolved in a solution of nitric acid diluted with water to prepare two different concentrations of cerium nitrate solution i11.

工程11: ]二程10で得た溶液中に、工程1〜9で得た素子の保
護層を浸漬し、 50〜250+!+mHgの圧力下で
約10分放置し、て、保護層中に硝酸セリウムを含浸さ
せた。その後、600℃大気中にて処理して、保護層に
酸化セリウムを担持させた。
Step 11: ] The protective layer of the element obtained in Steps 1 to 9 is immersed in the solution obtained in Step 10, and 50 to 250+! The protective layer was left under a pressure of +mHg for about 10 minutes to impregnate cerium nitrate into the protective layer. Thereafter, the protective layer was treated in the atmosphere at 600° C. to support cerium oxide.

工程12 素′T−1をハウジング7内に挿入した後、加締用リン
グ8及び滑石等の充填材9を挿填し、て素子Bをハウジ
ング7内に固定する。
Step 12 After inserting the element 'T-1 into the housing 7, a caulking ring 8 and a filler material 9 such as talc are inserted to fix the element B inside the housing 7.

工程13: 電極部2,3に端子を介してリードを接続する。Step 13: Leads are connected to the electrode parts 2 and 3 via terminals.

工程14: 素子B先端部を覆って保護層10を配置しハウジング7
先端と保護管lO後端とを溶接する。
Step 14: Place the protective layer 10 covering the tip of the element B and attach the housing 7.
Weld the tip and the rear end of the protective tube lO.

工程15: 外筒を被せて酸素センサを得る。Step 15: Cover with the outer cylinder to obtain the oxygen sensor.

第1〜5図において、Aは酸素センサ、Bは酸素センサ
素子、1は素子本体(酸素イオン伝導性固体電解質体又
は半導体)、1aは基部、lbは球状突起部、2は基準
電極23は測定電極、4は保護層、4aはO3C,6は
ヒータ、7はt\ウジング 8は加締用リング、9は充
填材、10は保護管を夫々表わす。
1 to 5, A is an oxygen sensor, B is an oxygen sensor element, 1 is an element body (oxygen ion conductive solid electrolyte body or semiconductor), 1a is a base, lb is a spherical protrusion, 2 is a reference electrode 23 A measuring electrode, 4 a protective layer, 4a O3C, 6 a heater, 7 a t\Using, 8 a caulking ring, 9 a filler, and 10 a protective tube, respectively.

[試験コ こうして得られた各試料について、−FallLのよう
な試験を行った。
[Tests] Each sample thus obtained was subjected to a test such as -FallL.

(イ)各試料を実車にて2[1(1℃以下(20分)と
 900℃以上(30分)の温度サイクルで500時間
耐久を行なった。その後、 50ew+J:方より床下
コンクリドに5回落下させた後、外観を評価した。判定
は次の通り。
(B) Each sample was tested in an actual vehicle for 500 hours under a temperature cycle of 2 degrees Celsius or lower (20 minutes) and 900 degrees Celsius or higher (30 minutes). After that, it was dropped from the 50ew+J: direction onto the concrete under the floor five times. After letting it fall, the appearance was evaluated.The judgment was as follows.

ハクリ等なし  〇 一部ハクリ   △ 全部ハクリ   × U  l記■の試験後の各試料をプロノくンノクー す
装置に取付け、そのバーナを燃焼させ、その雰囲気を第
7図の如く一時的にλζ098から 1.1に切替えて
リーン側へ移動させ、その時のセンサの■力状況を調べ
た。判定は次の通り。
No peeling, etc. 〇 Partial peeling △ All peeling × U After the test described in ■, each sample was attached to a professional cleaning device, the burner was fired, and the atmosphere was temporarily changed from λζ098 to 1 as shown in Figure 7. .1 and moved it to the lean side, and investigated the force situation of the sensor at that time. The verdict is as follows.

殆んど出力変化無 100 mV程度変化 200W以−1−変化   × その結果を下記表に示す。Almost no output change Approximately 100 mV change 200W or more -1-change × The results are shown in the table below.

△ ○ (以下余白) 第1表 1)この量はOSC/金属酸化物であってO3C金属元
素(Ce)換算値 2)スピネル: Mg O−A 、e2’03試験(へ
)において、比較試料■(特開昭81791、55の開
示実施例とほぼ同様にして製造した酸素センサであって
、  Ce O2をCe塩の溶液の浸漬によらず、γ−
Ai2o3とCe O2との混合粉末スラリーの塗布に
よって形成させたもの、厚み20〜30μ+i)は、ス
ピネル保護層上に形成されたAl2O3及びCe O2
からなる層がスピネル保護層からハクリした。従って、
熱サイクル状況下の耐久性の点で箸しく劣る。又、比較
試料歯、■(実施例試料No、 2と同一の真空度条件
下でCe塩溶液に浸漬されて形成される同一組成の保護
層を有するが1球状突起部を有しないもの)は、保護層
の一部がハクリした。更に、比較試料No、 I(Ce
 O2を、Ce塩溶液に浸漬によらず、CeO2単独粉
末スラリー塗布によって形成させたもの)についても、
Ce O2の大部分がスピネル層表面に層として形成さ
れて存在しており、このCe O2の一部にハクリが見
られた。これに対して、実施例試料No、 1〜4.及
び比較試料■についてはこのようなハクリが全く見られ
ず、CeO2を担持した保護層は素子本体に安定に固定
して素子本体及び電極を保護する。従って、熱サイクル
状況下の耐久性に極めて優れており、苛酷な熱サイクル
条件下で長期間使用されても優れたλの検知特性及び応
答性を示すことが判明した。
△ ○ (blank space below) Table 1 1) This amount is OSC/metal oxide, converted to O3C metal element (Ce) 2) Spinel: Mg O-A, in e2'03 test (f), comparative sample (1) An oxygen sensor manufactured in substantially the same manner as the embodiment disclosed in JP-A-81791-55, in which CeO2 is not immersed in a solution of Ce salt, but
The layer formed by coating a mixed powder slurry of Al2O3 and CeO2, with a thickness of 20 to 30μ+i) is a layer of Al2O3 and CeO2 formed on a spinel protective layer.
The layer consisting of peeled off from the spinel protective layer. Therefore,
It is inferior to chopsticks in terms of durability under heat cycle conditions. In addition, the comparative sample tooth, ■ (which has a protective layer of the same composition formed by being immersed in a Ce salt solution under the same vacuum conditions as Example sample No. 2, but does not have one spherical protrusion) is , part of the protective layer peeled off. Furthermore, comparative sample No. I (Ce
Regarding the method in which O2 was formed by applying a CeO2 powder slurry alone, rather than by immersion in a Ce salt solution,
Most of the Ce O2 was formed as a layer on the surface of the spinel layer, and peeling was observed in a part of the Ce O2. In contrast, Example Sample Nos. 1 to 4. For Comparative Sample (3), such peeling was not observed at all, and the protective layer carrying CeO2 was stably fixed to the element body and protected the element body and electrodes. Therefore, it has been found that it has extremely excellent durability under thermal cycling conditions, and exhibits excellent λ detection characteristics and responsiveness even when used for a long period of time under severe thermal cycling conditions.

試験(ロ)において、第7図から明らかなように。In test (b), as is clear from Figure 7.

耐久試験後の比較試料I(既述)、比較試料No、 I
V(既述)、比較試料No、II[(スピネル保護層の
みを備えた酸素センサ)は、A/Fが略理論値(λ=0
.98)から−時的にリーン側(λ−1,1)に移行し
た場合、A/Fが略理論値(λ= 0.98)に復帰し
ても、応答遅れによりA/F曲線についてリッチ側へ大
きく逸脱する減少(リッチエクスカーション)を生ずる
。これに対して、実施例試料N072〜4はO20の存
在によって空気量増加時に一旦酸素を貯蔵させることに
より、リーン信号を出力する時期を遅らせ、結果として
リーン信号を出力している期間を短縮する。従って、上
記リッチエクスカーション現象を生ずることなく。
Comparative sample I (already mentioned) after durability test, comparative sample No. I
V (already mentioned), comparative sample No., and II [(oxygen sensor with only a spinel protective layer), the A/F is approximately the theoretical value (λ = 0
.. 98) to the lean side (λ-1, 1), even if the A/F returns to approximately the theoretical value (λ = 0.98), the A/F curve becomes rich due to the response delay. This results in a large excursion to the side (rich excursion). On the other hand, Example samples Nos. 072 to 4 temporarily store oxygen when the air amount increases due to the presence of O20, thereby delaying the timing of outputting the lean signal and, as a result, shortening the period during which the lean signal is output. . Therefore, the rich excursion phenomenon described above does not occur.

空気増量終了後にA/Fは速やかに理論値近傍に復帰す
る。又、実施例試料No、 1 、及び比較試料Hにつ
いてもほぼ同様な効果が見られた。
After the air increase is completed, the A/F quickly returns to near the theoretical value. Moreover, almost the same effect was observed for Example Samples No. 1 and Comparative Sample H.

従って、実施例試料No、 1〜4.特に2〜4は耐久
後においても、優れたλ−1検知特性及び十分な応答性
を示す。そのため、特に排気系のガス流速が速い空燃比
制御系において極めて有用である。加えて、加速時等の
急峻な空気増量時においても、λポイントズレを生ずる
ことなく、正確な空燃比制御が可能である。かくて、苛
酷な熱サイクル条件下で長期に使用されても排気浄化シ
ステムの三元触媒のウィンドから外れることなく、有害
物質の浄化特性を高く維持できる。
Therefore, Example sample Nos. 1 to 4. In particular, samples 2 to 4 exhibit excellent λ-1 detection characteristics and sufficient responsiveness even after durability. Therefore, it is extremely useful particularly in air-fuel ratio control systems where the gas flow rate in the exhaust system is high. In addition, accurate air-fuel ratio control is possible without causing a λ point shift even when the amount of air increases sharply during acceleration or the like. In this way, even if used for a long time under severe thermal cycle conditions, it will not come off the window of the three-way catalyst of the exhaust purification system, and its harmful substance purification properties can be maintained at a high level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るU字管型酸素センサの一例を示す
半断面図。 第2図は第1図の■拡大断面の模式図。 第3図は第2図の■拡大断面の模式図。 第4図は本発明に係る酸素センサの他の例を示す斜視図
であって、第4(a)図は板状型酸素センサの一例を示
すもの、第4(b)図は円柱状型酸素センサの一例を示
すもの。 第5図は第4(a)図に示す板状型酸素センサの一部拡
大断面図。 第6図はO8C金属塩溶液の浸漬工程(実施例工程11
)を示す断面図2 第7図はO20の酸素吸蔵二とλとの関係を示すグラフ
、そして @8図は試験(ロ)の結果を示すグラフであって。 時間とセンサ出力との関係を示し、たちの。 を夫々表わす。 A・・・酸素センサ ト・素子本体 1b・・・球状突起部 4・・・保護層 4a・・・酸素吸蔵物質 B・・・酸素センサ素子 1a・・・基部 3・・測定電極 (O20)
FIG. 1 is a half-sectional view showing an example of a U-tube type oxygen sensor according to the present invention. Figure 2 is a schematic diagram of an enlarged section of Figure 1. Figure 3 is a schematic diagram of an enlarged section of Figure 2. FIG. 4 is a perspective view showing another example of the oxygen sensor according to the present invention, in which FIG. 4(a) shows an example of a plate-shaped oxygen sensor, and FIG. 4(b) shows a cylindrical type oxygen sensor. An example of an oxygen sensor. FIG. 5 is a partially enlarged sectional view of the plate-shaped oxygen sensor shown in FIG. 4(a). Figure 6 shows the immersion process in O8C metal salt solution (Example process 11).
) Fig. 7 is a graph showing the relationship between O20 oxygen storage and λ, and Fig. 8 is a graph showing the results of the test (b). Shows the relationship between time and sensor output. respectively. A... Oxygen sensor element body 1b... Spherical protrusion 4... Protective layer 4a... Oxygen storage material B... Oxygen sensor element 1a... Base 3... Measuring electrode (O20)

Claims (2)

【特許請求の範囲】[Claims] (1)センサ素子の排気ガスにさらされる側に、少なく
とも電極を被覆して、耐熱性金属酸化物からなる保護層
を備え、 センサ素子の本体が基部と複数の球状突起部とからなり
、保護層が球状突起部を介して基部に結合され、 保護層が酸素吸蔵物質を含有している、 ことを特徴とする空燃比制御用酸素センサ。
(1) A protective layer made of a heat-resistant metal oxide is provided on the side of the sensor element exposed to exhaust gas, covering at least the electrode, and the main body of the sensor element is composed of a base and a plurality of spherical protrusions. An oxygen sensor for air-fuel ratio control, characterized in that the layer is bonded to a base via a spherical protrusion, and the protective layer contains an oxygen storage substance.
(2)センサ素子の排気ガスにさらされる側の処理につ
いて、 少なくとも電極の存在位置に対応させて、素子の本体材
料からなる球状物質を付着させる工程、耐熱性金属酸化
物を被着させた後、酸素吸蔵物質の金属塩溶液に浸漬さ
せる工程、を含むことを特徴とする空燃比制御用酸素セ
ンサの製造方法。
(2) Regarding the treatment of the side of the sensor element exposed to exhaust gas, the step of attaching a spherical substance made of the main body material of the element, at least corresponding to the position of the electrode, and the step of attaching a heat-resistant metal oxide A method for manufacturing an oxygen sensor for controlling an air-fuel ratio, the method comprising: immersing the sensor in a metal salt solution of an oxygen storage substance.
JP1032603A 1989-02-14 1989-02-14 Oxygen sensor for controlling air/fuel ratio with protective layer containing oxygen occluded material and making thereof Pending JPH02212757A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1032603A JPH02212757A (en) 1989-02-14 1989-02-14 Oxygen sensor for controlling air/fuel ratio with protective layer containing oxygen occluded material and making thereof
DE4004172A DE4004172C2 (en) 1989-02-14 1990-02-11 An oxygen sensor for air-fuel mixture control having a protective layer comprising an oxygen occluding substance, and a method of manufacturing the sensor
US07/479,695 US5160598A (en) 1989-02-14 1990-02-14 Oxygen sensor for air-fuel ratio control having a protective layer including an oxygen storage material
US07/840,829 US5326597A (en) 1989-02-14 1992-02-25 Method of producing oxygen sensor for air-fuel ratio control having a protective layer including oxygen storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1032603A JPH02212757A (en) 1989-02-14 1989-02-14 Oxygen sensor for controlling air/fuel ratio with protective layer containing oxygen occluded material and making thereof

Publications (1)

Publication Number Publication Date
JPH02212757A true JPH02212757A (en) 1990-08-23

Family

ID=12363436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1032603A Pending JPH02212757A (en) 1989-02-14 1989-02-14 Oxygen sensor for controlling air/fuel ratio with protective layer containing oxygen occluded material and making thereof

Country Status (1)

Country Link
JP (1) JPH02212757A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873508A (en) * 1995-05-23 1999-02-23 Applied Tool Development Corporation Internal combustion powered tool
JP2000241385A (en) * 1999-02-19 2000-09-08 Robert Bosch Gmbh Sensor for measuring gas component and/or gas concentration of gas mixture
US6123241A (en) * 1995-05-23 2000-09-26 Applied Tool Development Corporation Internal combustion powered tool
JP2004205507A (en) * 2002-12-23 2004-07-22 Robert Bosch Gmbh Operation method for gas sensor, and device for executing the method
JP2013036929A (en) * 2011-08-10 2013-02-21 Toyota Motor Corp Manufacturing method of oxygen sensor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873508A (en) * 1995-05-23 1999-02-23 Applied Tool Development Corporation Internal combustion powered tool
US6123241A (en) * 1995-05-23 2000-09-26 Applied Tool Development Corporation Internal combustion powered tool
US6213370B1 (en) 1995-05-23 2001-04-10 Applied Tool Development Corporation Internal combustion powered tool
US6223963B1 (en) 1995-05-23 2001-05-01 J. Oscar Aparacio, Jr. Internal combustion powered tool
US6247626B1 (en) 1995-05-23 2001-06-19 Applied Tool Development Corporation Internal combustion powered tool
US6311887B1 (en) 1995-05-23 2001-11-06 Applied Tool Development Corporation Internal combustion powered tool
US6318615B1 (en) 1995-05-23 2001-11-20 Applied Tool Development Corporation Internal combustion powered tool
JP2000241385A (en) * 1999-02-19 2000-09-08 Robert Bosch Gmbh Sensor for measuring gas component and/or gas concentration of gas mixture
JP4518349B2 (en) * 1999-02-19 2010-08-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sensor for measuring the gas component and / or gas concentration of a gas mixture
JP2004205507A (en) * 2002-12-23 2004-07-22 Robert Bosch Gmbh Operation method for gas sensor, and device for executing the method
JP4500042B2 (en) * 2002-12-23 2010-07-14 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method of operating a gas sensor and apparatus for implementing the method
JP2013036929A (en) * 2011-08-10 2013-02-21 Toyota Motor Corp Manufacturing method of oxygen sensor

Similar Documents

Publication Publication Date Title
US5160598A (en) Oxygen sensor for air-fuel ratio control having a protective layer including an oxygen storage material
US5443711A (en) Oxygen-sensor element
US5849165A (en) Oxygen sensor for preventing silicon poisoning
US5271821A (en) Oxygen sensor and method of producing the same
JP2848970B2 (en) Honeycomb heater and catalytic converter
JP3969274B2 (en) Gas sensor element and manufacturing method thereof
US20190105637A1 (en) Exhaust gas purification catalyst
JP2002181769A (en) Oxygen sensor element and production method thereof
JPH021532A (en) Oxygen sensor and air-fuel ratio controller of internal combustion engine applied with the same sensor
JP2000310610A (en) Gas sensor element and production thereof
JPH11160273A (en) Oxygen sensor
KR101630472B1 (en) Storage materials for sensor applications
JPS6179155A (en) Oxygen sensor element
JP2574452B2 (en) Oxygen sensor, method of manufacturing the same, and method of preventing poisoning
JPH02212757A (en) Oxygen sensor for controlling air/fuel ratio with protective layer containing oxygen occluded material and making thereof
JP5322596B2 (en) Exhaust gas purification catalyst
US20020077248A1 (en) Ceramic carrier and ceramic catalyst body
JPH01203963A (en) Oxygen sensor element
JP2589130B2 (en) Oxygen sensor element
JP4051555B2 (en) Exhaust gas purification catalyst
JP2002031618A (en) Gas sensor
JPH02212759A (en) Oxygen sensor and controlling air/fuel ratio with protective layer containing oxygen occluded material
JP2589136B2 (en) Oxygen sensor element
JP2649405B2 (en) Oxygen sensor for controlling air-fuel ratio provided with a protective layer containing an oxygen storage material and a noble metal, and a method of manufacturing the same
JP2006511806A (en) Measuring sensor