JP6979387B2 - Sensor element and gas sensor - Google Patents

Sensor element and gas sensor Download PDF

Info

Publication number
JP6979387B2
JP6979387B2 JP2018086207A JP2018086207A JP6979387B2 JP 6979387 B2 JP6979387 B2 JP 6979387B2 JP 2018086207 A JP2018086207 A JP 2018086207A JP 2018086207 A JP2018086207 A JP 2018086207A JP 6979387 B2 JP6979387 B2 JP 6979387B2
Authority
JP
Japan
Prior art keywords
sensor element
solid electrolyte
heater
pair
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018086207A
Other languages
Japanese (ja)
Other versions
JP2019191071A (en
Inventor
広大 小島
雄太 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2018086207A priority Critical patent/JP6979387B2/en
Publication of JP2019191071A publication Critical patent/JP2019191071A/en
Application granted granted Critical
Publication of JP6979387B2 publication Critical patent/JP6979387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

本発明は、被検出ガスの濃度を検出するセンサ素子及びガスセンサに関する。 The present invention relates to a sensor element and a gas sensor that detect the concentration of the gas to be detected.

従来から、燃焼器や内燃機関等の排気ガス中の特定成分(酸素等)の濃度を検出するためのガスセンサが用いられている。このガスセンサは、固体電解質体と該固体電解質体に配置された一対の電極とを有するセルを備えたセンサ素子を有している。このセルは、排気ガス中の特定成分の濃度を検出したり、素子の内部空間(測定室等)から酸素を汲み入れ又は汲み出す酸素ポンプを行う機能を有している。又、セルの固体電解質体を活性化温度に加熱するため、センサ素子には通電により発熱するヒータが積層されている。
ところで、近年、ガスセンサの活性時間を短縮する早期活性が要求されているが、ヒータの昇温速度を高めるとヒータ近傍の熱応力が大きくなり、素子が割れるおそれがある。そこで、ヒータの発熱体を素子(ヒータ基板)の端部(側端及び先端)になるべく近い位置まで形成し、発熱体が埋設されていないヒータ基板の端部と、発熱体の埋設されている部分との温度差(熱応力)を低減する技術が開発されている(特許文献1参照)。
Conventionally, a gas sensor for detecting the concentration of a specific component (oxygen, etc.) in the exhaust gas of a combustor, an internal combustion engine, or the like has been used. The gas sensor has a sensor element comprising a cell having a solid electrolyte and a pair of electrodes arranged on the solid electrolyte. This cell has a function of detecting the concentration of a specific component in the exhaust gas and performing an oxygen pump for pumping or pumping oxygen from the internal space (measurement chamber or the like) of the element. Further, in order to heat the solid electrolyte body of the cell to the activation temperature, a heater that generates heat by energization is laminated on the sensor element.
By the way, in recent years, early activity for shortening the activation time of the gas sensor has been required, but if the heating rate of the heater is increased, the thermal stress in the vicinity of the heater becomes large, and the element may be cracked. Therefore, the heating element of the heater is formed as close as possible to the end (side end and tip) of the element (heater substrate), and the end of the heater substrate in which the heating element is not embedded and the heating element are embedded. A technique for reducing the temperature difference (thermal stress) from the portion has been developed (see Patent Document 1).

特開2002−228626号公報Japanese Unexamined Patent Publication No. 2002-228626

しかしながら、特許文献1記載のガスセンサの場合、図9に示すように、排気ガス中の導電成分(カーボンの煤)や水1200がセンサ素子1000の端面(図9では側端面)に付着すると、ヒータの発熱体1150からのリーク電流が各電極1110、1120や固体電解質層1100へ流れ、検出精度や酸素ポンプ能が低下するという問題がある。
これは、固体電解質層1100の端面が露出しているため、固体電解質層1100の端面に付着した水1200と固体電解質層1100との間に電流経路CPが形成され、ヒータの発熱体1150と電流経路CPとの間の絶縁は、ヒータ基板1160と発熱体1150の側端との間のわずかな隙間Gのみで維持されるが、発熱体1150が通電すると隙間Gが容易に絶縁破壊されるためと考えられる。
However, in the case of the gas sensor described in Patent Document 1, as shown in FIG. 9, when the conductive component (carbon soot) or water 1200 in the exhaust gas adheres to the end surface (side end surface in FIG. 9) of the sensor element 1000, the heater There is a problem that the leakage current from the heating element 1150 flows to each of the electrodes 1110 and 1120 and the solid electrolyte layer 1100, and the detection accuracy and the oxygen pumping ability are deteriorated.
This is because the end face of the solid electrolyte layer 1100 is exposed, so that a current path CP is formed between the water 1200 adhering to the end face of the solid electrolyte layer 1100 and the solid electrolyte layer 1100, and the heater heating element 1150 and the current. The insulation between the path CP is maintained only by a slight gap G between the heater substrate 1160 and the side end of the heating element 1150, but the gap G is easily destroyed when the heating element 1150 is energized. it is conceivable that.

本発明は、かかる現状に鑑みてなされたものであって、早期活性を実現すると共に、ヒータと固体電解質体との間の絶縁を安定して確保し、検出精度等の低下を抑制したセンサ素子及びガスセンサを提供することを目的とする。 The present invention has been made in view of the current situation, and is a sensor element that realizes early activity, stably secures insulation between the heater and the solid electrolyte, and suppresses deterioration of detection accuracy and the like. And to provide gas sensors.

本発明のセンサ素子は、絶縁層に設けられた貫通孔に固体電解質体が配置された複合層と、前記固体電解質体の表面に形成された一対の電極と、を有する1つ以上のセルと、前記複合層の積層方向に配置されるヒータ基板、及び前記ヒータ基板に設けられて少なくとも1つの前記セルを加熱する発熱部を備えたヒータと、を有し、軸線方向に延びるセンサ素子であって、前記発熱部は、前記軸線方向にそれぞれ延びる一対の外側直線状部と、前記外側直線状部間に配置された前記軸線方向に延びる一対の内側直線状部と、隣接する前記外側直線状部の先端と前記内側直線状部の先端とを接続する第1接続部と、一対の前記内側直線状部の後端を接続する第2接続部と、からなる発熱体と、一対の前記外側直線状部の後端に接続される一対のリード部と、を含んで構成され、前記ヒータ基板の側端部と前記外側直線状部の側端部との最小距離Aが、0.15mm≦A≦0.35mmであり、前記ヒータ基板の先端部と前記第1接続部の先端部との最小距離Bが、0.25mm≦B≦0.85mmであり、前記複合層における前記絶縁層の側端部と前記固体電解質体の側端部との最小距離G2と、前記最小距離Aとの合計長さが0.3mm以上、前記内側直線状部は、前記一対の電極と前記固体電解質体との重なり領域と前記積層方向に重なると共に、該重なり領域の先端又は後端に跨って形成されていることを特徴とする。


The sensor element of the present invention includes one or more cells having a composite layer in which a solid electrolyte is arranged in a through hole provided in an insulating layer, and a pair of electrodes formed on the surface of the solid electrolyte. A sensor element extending in the axial direction, comprising a heater substrate arranged in the stacking direction of the composite layer, and a heater provided on the heater substrate and provided with a heat generating portion for heating at least one cell. The heat generating portion includes a pair of outer linear portions extending in the axial direction, a pair of inner linear portions arranged between the outer linear portions, and an adjacent outer linear portion. A heating element comprising a first connecting portion connecting the tip of the portion and the tip of the inner linear portion, and a second connecting portion connecting the rear ends of the pair of the inner linear portions, and a pair of the outer side. It is configured to include a pair of lead portions connected to the rear end of the linear portion, and the minimum distance A between the side end portion of the heater substrate and the side end portion of the outer linear portion is 0.15 mm ≦. A ≦ 0.35 mm, the minimum distance B between the tip of the heater substrate and the tip of the first connection is 0.25 mm ≦ B ≦ 0.85 mm, and the insulating layer in the composite layer The total length of the minimum distance G2 between the side end portion and the side end portion of the solid electrolyte and the minimum distance A is 0.3 mm or more, and the inner linear portion is the pair of electrodes and the solid electrolyte. It is characterized in that it overlaps with the overlapping region with the above in the stacking direction and is formed so as to straddle the front end or the rear end of the overlapping region.


このセンサ素子によれば、ヒータ基板の側端部及び先端部と発熱部との最小距離A,Bを適切な範囲とすることで、ヒータ基板(ひいてはセンサ素子)の側端部及び先端部に発熱部を近付けることができ、ヒータの昇温速度を高めてもヒータ近傍の熱応力の増大を抑制し、素子割れを抑制して早期活性を実現できる。又、発熱部を上記側端部及び先端部に近付け過ぎないので、ヒータと固体電解質体との間の絶縁を確保できる。
又、固体電解質体が絶縁層に埋め込まれる形態であるので、絶縁層の端部に排気ガス中の導電成分(カーボンの煤)や水が付着した場合に、これら導電成分又は水と、固体電解質体との間を絶縁層が絶縁するので、ヒータ基板と発熱部との上述の隙間A,Bと相俟って、ヒータと固体電解質体との間の絶縁を安定して確保できる。
さらに、一対の内側直線状部が、セルの重なり領域と積層方向に重なると共に、重なり領域の先端又は後端に跨って形成されているので、セルの有効部分である重なり領域に内側直線状部の熱を確実に伝えることができ、早期活性をより確実に実現できる共に、ヒータ基板の端部との温度差(熱応力)をさらに低減できる。
According to this sensor element, by setting the minimum distances A and B between the side end portion and the tip portion of the heater substrate and the heat generating portion within an appropriate range, the side end portion and the tip portion of the heater substrate (and thus the sensor element) can be covered. The heat generating portion can be brought closer, and even if the heating rate of the heater is increased, the increase in thermal stress in the vicinity of the heater can be suppressed, the element cracking can be suppressed, and early activity can be realized. Further, since the heat generating portion is not brought too close to the side end portion and the tip portion, the insulation between the heater and the solid electrolyte body can be ensured.
Further, since the solid electrolyte is embedded in the insulating layer, when the conductive component (carbon soot) or water in the exhaust gas adheres to the end of the insulating layer, the conductive component or water and the solid electrolyte Since the insulating layer insulates between the body and the body, the insulation between the heater and the solid electrolyte body can be stably ensured in combination with the above-mentioned gaps A and B between the heater substrate and the heat generating portion.
Further, since the pair of inner linear portions overlap with the overlapping region of the cell in the stacking direction and are formed so as to straddle the front end or the rear end of the overlapping region, the inner linear portion is formed in the overlapping region which is an effective portion of the cell. The heat can be reliably transferred, early activity can be realized more reliably, and the temperature difference (thermal stress) from the end of the heater substrate can be further reduced.

本発明のセンサ素子において、前記外側直線状部は、前記固体電解質体の側端側に該固体電解質体と間隔を開けて配置されていてもよい。
このセンサ素子によれば、早期活性をより確実に実現できる共に、ヒータ基板の端部との温度差(熱応力)をさらに低減できる。
In the sensor element of the present invention, the outer linear portion may be arranged on the side end side of the solid electrolyte body at a distance from the solid electrolyte body.
According to this sensor element, early activity can be realized more reliably, and the temperature difference (thermal stress) from the end of the heater substrate can be further reduced.

本発明のセンサ素子において、前記内側直線状部は、前記一対の電極の重なり領域の先端及び後端に跨って形成されていてもよい。
このセンサ素子によれば、内側直線状部が、セルの重なり領域の先後まで重なるので、重なり領域に内側直線状部の熱をさらに確実に伝えることができる。
In the sensor element of the present invention, the inner linear portion may be formed so as to straddle the front end and the rear end of the overlapping region of the pair of electrodes.
According to this sensor element, since the inner linear portion overlaps to the tip and the back of the overlapping region of the cells, the heat of the inner linear portion can be more reliably transferred to the overlapping region.

本発明のガスセンサは、被測定ガス中の特定ガスを検出するセンサ素子と、該センサ素子を保持する主体金具と、を備えるガスセンサであって、前記センサ素子として、請求項1から3のいずれか1項に記載のセンサ素子を備える。 The gas sensor of the present invention is a gas sensor including a sensor element for detecting a specific gas in a gas to be measured and a main metal fitting for holding the sensor element, and the sensor element is any one of claims 1 to 3. The sensor element according to item 1 is provided.

この発明によれば、ガスセンサの早期活性を実現すると共に、ヒータと固体電解質体との間の絶縁を安定して確保し、検出精度等の低下を抑制することができる。 According to the present invention, it is possible to realize early activity of the gas sensor, stably secure insulation between the heater and the solid electrolyte, and suppress deterioration of detection accuracy and the like.

本発明の実施形態にかかるガスセンサの断面図である。It is sectional drawing of the gas sensor which concerns on embodiment of this invention. センサ素子の模式分解斜視図である。It is a schematic disassembled perspective view of a sensor element. 発熱部を示す平面図である。It is a top view which shows the heat generation part. 発熱部と、ポンプセル及びヒータ基板との位置関係を示す平面図である。It is a top view which shows the positional relationship between a heat generating part, a pump cell and a heater substrate. 発熱部と、検知セル及びヒータ基板との位置関係を示す平面図である。It is a top view which shows the positional relationship between a heat generating part, a detection cell, and a heater substrate. 水がセンサ素子の側端面に付着したときの、固体電解質体と発熱体との間の絶縁状態を示す幅方向断面図である。It is a cross-sectional view in the width direction which shows the insulation state between a solid electrolyte body and a heating element when water adheres to a side end surface of a sensor element. クラックによる故障率0.1%のときの発熱体の電圧と最小距離Aとの関係を示す図である。It is a figure which shows the relationship between the voltage of a heating element and the minimum distance A when the failure rate by a crack is 0.1%. クラックによる故障率0.1%のときの発熱体の電圧と最小距離Bとの関係を示す図である。It is a figure which shows the relationship between the voltage of a heating element and the minimum distance B when the failure rate by a crack is 0.1%. 従来のセンサ素子において、水がセンサ素子の側端面に付着したときの、固体電解質体と発熱体との間の絶縁状態を示す幅方向断面図である。It is a cross-sectional view in the width direction which shows the insulation state between a solid electrolyte body and a heating element when water adheres to a side end surface of a conventional sensor element.

本発明の実施形態について、図1〜図3に基づいて詳細に説明する。図1は、本発明の実施形態にかかるガスセンサ1の軸線O方向に沿う断面図、図2はセンサ素子19の模式分解斜視図、図3は発熱部146を示す平面図である。 Embodiments of the present invention will be described in detail with reference to FIGS. 1 to 3. FIG. 1 is a cross-sectional view of the gas sensor 1 according to the embodiment of the present invention along the axis O direction, FIG. 2 is a schematic exploded perspective view of the sensor element 19, and FIG. 3 is a plan view showing a heat generating portion 146.

図1において、ガスセンサ(全領域空燃比ガスセンサ)1は、センサ素子19と、軸線O方向に貫通してセンサ素子19を挿通させる貫通孔32を有するホルダ(セラミックホルダ)30と、セラミックホルダ30の径方向周囲を取り囲む主体金具11と、を備えている。
センサ素子19のうち、検知部22が形成された先端寄り部位が、セラミックホルダ30より先端に突出している。このように貫通孔32を通されたセンサ素子19は、セラミックホルダ30の後端面側(図示上側)に配置されたシール材(本例では滑石)41を、絶縁材からなるスリーブ43、リングワッシャ45を介して先後方向に圧縮することによって、主体金具11の内側において先後方向に気密を保持して固定されている。
なお、センサ素子19の後端19eを含む後端寄り部位はスリーブ43及び主体金具11より後方に突出しており、その後端寄り部位に形成された各センサパッド部13〜15及びヒータパッド部16,17に、シール材85を通して外部に引き出された各リード線71の先端に設けられた端子金具75が圧接され、電気的に接続されている。また、このセンサパッド部13〜15及びヒータパッド部16,17を含むセンサ素子19の後端寄り部位は、外筒81でカバーされている。以下、さらに詳細に説明する。
In FIG. 1, the gas sensor (all-region air-fuel ratio gas sensor) 1 is a holder (ceramic holder) 30 having a sensor element 19, a through hole 32 penetrating in the axis O direction through which the sensor element 19 is inserted, and a ceramic holder 30. It is provided with a main metal fitting 11 that surrounds the radial circumference.
Of the sensor element 19, the portion near the tip where the detection unit 22 is formed protrudes from the ceramic holder 30 to the tip. The sensor element 19 passed through the through hole 32 in this way has a sealing material (talc in this example) 41 arranged on the rear end surface side (upper side in the drawing) of the ceramic holder 30, a sleeve 43 made of an insulating material, and a ring washer. By compressing in the front-rear direction via the 45, the airtightness is maintained and fixed in the front-rear direction inside the main metal fitting 11.
The portion near the rear end including the rear end 19e of the sensor element 19 protrudes rearward from the sleeve 43 and the main metal fitting 11, and the sensor pad portions 13 to 15 and the heater pad portion 16 formed on the portion near the rear end. A terminal fitting 75 provided at the tip of each lead wire 71 drawn out to the outside through the sealing material 85 is pressure-welded to 17 and electrically connected. Further, the portion near the rear end of the sensor element 19 including the sensor pad portions 13 to 15 and the heater pad portions 16 and 17 is covered with the outer cylinder 81. Hereinafter, it will be described in more detail.

センサ素子19は軸線O方向に延びると共に、測定対象に向けられる先端側(図示下側)に、被測定ガス側電極155等(図2参照)からなり被検出ガス中の特定ガス成分を検出する検知部22を備えた帯板状(板状)をなしている。センサ素子19の横断面は、先後において一定の大きさの長方形(矩形)をなし、セラミック(固体電解質等)を主体として細長いものとして形成されている。
このセンサ素子19は、先端寄り部位に検知部22をなす検知セル層151及び一対の電極153、155(図2参照)が配置され、これに連なり後端寄り部位には、検知用出力取り出し用のリード線71接続用のセンサパッド部14,15(図2参照)が露出形成されている。
The sensor element 19 extends in the O-axis direction and is composed of an electrode to be measured on the gas side to be measured such as an electrode 155 (see FIG. 2) on the tip side (lower side in the drawing) facing the measurement target, and detects a specific gas component in the gas to be detected. It has a strip-shaped shape (plate-shaped) provided with a detection unit 22. The cross section of the sensor element 19 forms a rectangle (rectangle) of a certain size in the front and rear, and is formed as an elongated one mainly composed of a ceramic (solid electrolyte or the like).
In this sensor element 19, a detection cell layer 151 forming a detection unit 22 and a pair of electrodes 153 and 155 (see FIG. 2) are arranged at a portion near the tip, and a detection output is taken out at a portion connected to the detection cell layer 15 near the rear end. Sensor pads 14 and 15 (see FIG. 2) for connecting the lead wire 71 of the above are exposed.

本例では、センサ素子19の先端寄り部位内部に、酸素をポンピングするポンプセル層161(図2参照)が設けられており、後端寄り部位には、ポンプセル制御用のリード線71接続用のセンサパッド部13、15(図2参照)が露出形成されている。
すなわち、本例では、センサ素子19は検知セル150及びポンプセル160の2セルを備えている。
In this example, a pump cell layer 161 (see FIG. 2) for pumping oxygen is provided inside the portion near the tip of the sensor element 19, and a sensor for connecting a lead wire 71 for pump cell control is provided at the portion near the rear end. Pad portions 13 and 15 (see FIG. 2) are exposed and formed.
That is, in this example, the sensor element 19 includes two cells, a detection cell 150 and a pump cell 160.

また、本例では、センサ素子19の先端寄り部位の下側に、発熱部146を含むヒータ145(図2参照)が設けられており、後端寄り部位には、ヒータ電圧印加用のリード線71接続用のヒータパッド部16,17(図2参照)が露出形成されている。 Further, in this example, a heater 145 (see FIG. 2) including a heat generating portion 146 is provided below the portion near the tip of the sensor element 19, and a lead wire for applying a heater voltage is provided at the portion near the rear end. The heater pad portions 16 and 17 (see FIG. 2) for connecting 71 are exposed and formed.

なお、これらセンサパッド部13〜15、ヒータパッド部16,17は縦長矩形に形成され、例えばセンサ素子19の後端寄り部位において、図2に示すように帯板の幅広面にセンサパッド部13〜15が3つ横に並び、反対面にヒータパッド部16,17が2つ横に並んでいる。
さらに、センサ素子19の検知部22に、アルミナ又はスピネル等からなる多孔質の保護層23が被覆されている。
The sensor pad portions 13 to 15 and the heater pad portions 16 and 17 are formed in a vertically long rectangular shape. For example, in a portion near the rear end of the sensor element 19, the sensor pad portion 13 is formed on the wide surface of the strip as shown in FIG. ~ 15 are arranged side by side, and two heater pad portions 16 and 17 are arranged side by side on the opposite surface.
Further, the detection unit 22 of the sensor element 19 is coated with a porous protective layer 23 made of alumina, spinel, or the like.

主体金具11は、先後において同心異径の筒状をなし、先端側が小径で、後述するプロテクタ51、61を外嵌して固定するための円筒状の円環状部(以下、円筒部ともいう)12を有し、その後方(図示上方)の外周面には、それより大径をなす、エンジンの排気管への固定用のネジ13が設けられている。そして、その後方には、このネジ13によってセンサ1をねじ込むための多角形部14を備えている。
また、この多角形部14の後方には、ガスセンサ1の後方をカバーする保護筒(外筒)81を外嵌して溶接する円筒部11eが連設され、その後方には外径がそれより小さく薄肉のカシメ用円筒部16を備えている。なお、このカシメ用円筒部16は、図1では、カシメ後のために内側に曲げられている。なお、多角形部14の下面には、ねじ込み時におけるシール用のガスケット21が取着されている。
一方、主体金具11は、軸線O方向に貫通する内孔18を有している。内孔18の内周面は後端側から先端側に向かって径方向内側に先細るテーパ状の段部11dを有している。
The main metal fitting 11 has a cylindrical shape having concentric and different diameters at the front and rear, and has a small diameter on the tip side, and is a cylindrical annular portion (hereinafter, also referred to as a cylindrical portion) for externally fitting and fixing the protectors 51 and 61 described later. 12 is provided, and a screw 13 for fixing to the exhaust pipe of the engine having a larger diameter is provided on the outer peripheral surface behind the 12 (upper side in the drawing). A polygonal portion 14 for screwing the sensor 1 by the screw 13 is provided behind the screw 13.
Further, behind the polygonal portion 14, a cylindrical portion 11e to which a protective cylinder (outer cylinder) 81 covering the rear of the gas sensor 1 is fitted and welded is continuously provided, and the outer diameter thereof is smaller than that behind the cylindrical portion 11e. It is provided with a small and thin-walled caulking cylindrical portion 16. In FIG. 1, the caulking cylindrical portion 16 is bent inward for post-caulking. A gasket 21 for sealing at the time of screwing is attached to the lower surface of the polygonal portion 14.
On the other hand, the main metal fitting 11 has an inner hole 18 penetrating in the axis O direction. The inner peripheral surface of the inner hole 18 has a tapered step portion 11d that tapers inward in the radial direction from the rear end side to the tip side.

主体金具11の内側には、絶縁性セラミック(例えばアルミナ)からなり、概略短円筒状に形成されたセラミックホルダ30が配置されている。セラミックホルダ30は、先端に向かって先細りのテーパ状に形成された先端向き面30aを有している。そして、先端向き面30aの外周寄りの部位が段部11dに係止されつつ、セラミックホルダ30が後端側からシール材41で押圧されることで主体金具11内にセラミックホルダ30が位置決めされ、かつ隙間嵌めされている。
一方、貫通孔32は、セラミックホルダ30の中心に設けられると共に、センサ素子19が略隙間なく通るように、センサ素子19の横断面とほぼ同一の寸法の矩形の開口とされている。
Inside the main metal fitting 11, a ceramic holder 30 made of an insulating ceramic (for example, alumina) and formed in a substantially short cylindrical shape is arranged. The ceramic holder 30 has a tip facing surface 30a formed in a tapered shape that tapers toward the tip. Then, the ceramic holder 30 is positioned in the main metal fitting 11 by pressing the ceramic holder 30 from the rear end side with the sealing material 41 while the portion of the tip facing surface 30a near the outer circumference is locked to the step portion 11d. And it is fitted in the gap.
On the other hand, the through hole 32 is provided in the center of the ceramic holder 30 and is a rectangular opening having substantially the same dimensions as the cross section of the sensor element 19 so that the sensor element 19 can pass through without a gap.

センサ素子19は、セラミックホルダ30の貫通孔32に通され、センサ素子19の先端をセラミックホルダ30及び主体金具11の先端12aよりも先方に突出させている。
一方、センサ素子19の先端部位は、本形態では、2層構造からなり、共にそれぞれ通気孔(穴)56、67を有する有底円筒状のプロテクタ(保護カバー)51,61で覆われている。このうち内側のプロテクタ51の後端が、主体金具11の円筒部12に外嵌され、溶接されている。なお、通気孔56はプロテクタ51の後端側で周方向において例えば8箇所設けられている。一方プロテクタ51の先端側にも、周方向において例えば4箇所、排出穴53が設けられている。
また、外側のプロテクタ61は、内側のプロテクタ51に外嵌して、同時に円筒部12に溶接されている。外側のプロテクタ61の通気孔67は、先端寄り部位に、周方向において例えば8箇所設けられており、また、プロテクタ61先端の底部中央にも排出孔69が設けられている。
The sensor element 19 is passed through a through hole 32 of the ceramic holder 30, and the tip of the sensor element 19 is projected beyond the tip 12a of the ceramic holder 30 and the main metal fitting 11.
On the other hand, the tip portion of the sensor element 19 has a two-layer structure in this embodiment, and is covered with bottomed cylindrical protectors (protective covers) 51 and 61, both of which have ventilation holes (holes) 56 and 67, respectively. .. Of these, the rear end of the inner protector 51 is fitted and welded to the cylindrical portion 12 of the main metal fitting 11. It should be noted that the ventilation holes 56 are provided at, for example, eight places in the circumferential direction on the rear end side of the protector 51. On the other hand, on the tip side of the protector 51, for example, four discharge holes 53 are provided in the circumferential direction.
Further, the outer protector 61 is fitted onto the inner protector 51 and is welded to the cylindrical portion 12 at the same time. The vent holes 67 of the outer protector 61 are provided at, for example, eight places in the circumferential direction near the tip, and the discharge holes 69 are also provided at the center of the bottom of the tip of the protector 61.

又、図1に示すように、センサ素子19の後端寄り部位に形成された各センサパッド部13〜15及びヒータパッド部16,17には、外部にシール材85を通して引き出された各リード線71の先端に設けられた各端子金具75がそのバネ性により圧接され、電気的に接続されている。そして、この圧接部を含む各端子金具75は、本例ガスセンサ1では、外筒81内に配置された絶縁性のセパレータ91内に設けられた各収容部内に、それぞれ対向配置で設けられている。なお、セパレータ91は、外筒81内にカシメ固定された保持部材82を介して径方向及び先端側への動きが規制されている。そして、この外筒81の先端部を、主体金具11の後端寄り部位の円筒部11eに外嵌して溶接することで、ガスセンサ1の後方が気密状にカバーされている。
なお、リード線71は外筒81の後端部の内側に配置されたシール材(例えばゴム)85を通されて外部に引き出されており、外筒81の小径筒部83を縮径カシメしてこのシール材85を圧縮することにより、この部位の気密が保持されている。
Further, as shown in FIG. 1, each of the sensor pad portions 13 to 15 and the heater pad portions 16 and 17 formed in the portion near the rear end of the sensor element 19 has lead wires drawn out through the sealing material 85 to the outside. Each terminal fitting 75 provided at the tip of the 71 is pressure-welded by its springiness and electrically connected. In the gas sensor 1 of this example, the terminal fittings 75 including the pressure contact portion are provided in opposite arrangements in each accommodating portion provided in the insulating separator 91 arranged in the outer cylinder 81. .. The separator 91 is restricted from moving in the radial direction and toward the tip side via a holding member 82 that is caulked and fixed in the outer cylinder 81. Then, the tip of the outer cylinder 81 is fitted onto the cylindrical portion 11e of the portion near the rear end of the main metal fitting 11 and welded, so that the rear of the gas sensor 1 is airtightly covered.
The lead wire 71 is pulled out to the outside through a sealing material (for example, rubber) 85 arranged inside the rear end portion of the outer cylinder 81, and the small diameter cylinder portion 83 of the outer cylinder 81 is crimped. By compressing the sealing material 85 of the lever, the airtightness of this portion is maintained.

因みに、外筒81の軸線O方向の中央よりやや後端側には、先端側が径大の段部81dが形成され、この段部81dの内面がセパレータ91の後端を先方に押すように支持する。一方、セパレータ91はその外周に形成されたフランジ93を外筒81の内側に固定された保持部材82の上に支持させられており、段部81dと保持部材82とによってセパレータ91が軸線O方向に保持されている。 Incidentally, a stepped portion 81d having a large diameter at the tip side is formed on the rear end side of the outer cylinder 81 slightly from the center in the axis O direction, and the inner surface of the stepped portion 81d supports the rear end of the separator 91 so as to push it forward. do. On the other hand, in the separator 91, a flange 93 formed on the outer periphery thereof is supported on a holding member 82 fixed to the inside of the outer cylinder 81, and the separator 91 is oriented in the axis O direction by the stepped portion 81d and the holding member 82. It is held in.

次に、図2を参照し、センサ素子19の構成について説明する。
センサ素子19は厚さ方向(積層方向)に、図2の上方から順に、外側セラミック層183、ポンプセル160、中間セラミック層170、検知セル150及びヒータ145を積層してなる。各層145、150〜183は、アルミナ等の絶縁性セラミックからなり、外形寸法(少なくとも幅及び長さ)の等しい矩形板状をなしている。
Next, the configuration of the sensor element 19 will be described with reference to FIG.
The sensor element 19 is formed by laminating an outer ceramic layer 183, a pump cell 160, an intermediate ceramic layer 170, a detection cell 150, and a heater 145 in order from the upper side of FIG. 2 in the thickness direction (stacking direction). Each layer 145, 150 to 183 is made of an insulating ceramic such as alumina, and has a rectangular plate shape having the same external dimensions (at least width and length).

外側セラミック層183はセンサ素子19の外表面(図2の上面)を構成すると共に、その後端部にセンサパッド部13〜15が配置される。又、外側セラミック層183の先端側(図2の左側)には略矩形状に開口する貫通部183hが設けられ、貫通部183hに埋め込まれるように略矩形状の多孔質層182が充填されている。外側セラミック層183は以下のポンプセル層161を保護して覆い、多孔質層182はポンプセル160におけるポンプ電極163を覆っている。
多孔質層182はセンサ素子19の上面に露出し、多孔質層182の上面を介してポンプ電極163と外部との間で酸素の汲み出し及び汲み入れが可能となっている。
The outer ceramic layer 183 constitutes the outer surface (upper surface of FIG. 2) of the sensor element 19, and the sensor pad portions 13 to 15 are arranged at the rear end thereof. Further, a penetrating portion 183h that opens in a substantially rectangular shape is provided on the tip end side (left side in FIG. 2) of the outer ceramic layer 183, and a substantially rectangular porous layer 182 is filled so as to be embedded in the penetrating portion 183h. There is. The outer ceramic layer 183 protects and covers the following pump cell layer 161 and the porous layer 182 covers the pump electrode 163 in the pump cell 160.
The porous layer 182 is exposed on the upper surface of the sensor element 19, and oxygen can be pumped and pumped between the pump electrode 163 and the outside through the upper surface of the porous layer 182.

ポンプセル160は、第1絶縁層161a及び略矩形板状の固体電解質体162を備えたポンプセル層161と、固体電解質体162の表裏面にそれぞれ設けられた上述のポンプ電極163及び対向電極165とを備えている。第1絶縁層161aの先端側(図2の左側)には略矩形状に開口する貫通部161hが設けられ、貫通部161hに埋め込まれるように固体電解質体162が配置されている。なお、ポンプ電極163はポンプ電極部163E、及び、当該ポンプ電極部163Eから後端側へ向かって延びるリード部163Lからなり、対向電極165は対向電極部165E、及び、当該対向電極部165Eから後端側へ向かって延びるリード部165Lからなる。
固体電解質体162,ポンプ電極163及び対向電極165は、後述する測定室171内の被測定ガス中の酸素の汲み出し及び汲み入れを行う酸素ポンプセルを構成し、対向電極165は測定室171に臨み、ポンプ電極163は多孔質層182を介して外部に連通している。
The pump cell 160 includes a pump cell layer 161 provided with a first insulating layer 161a and a substantially rectangular plate-shaped solid electrolyte body 162, and the above-mentioned pump electrodes 163 and counter electrodes 165 provided on the front and back surfaces of the solid electrolyte body 162, respectively. I have. A penetrating portion 161h that opens in a substantially rectangular shape is provided on the tip end side (left side of FIG. 2) of the first insulating layer 161a, and the solid electrolyte body 162 is arranged so as to be embedded in the penetrating portion 161h. The pump electrode 163 is composed of a pump electrode portion 163E and a lead portion 163L extending from the pump electrode portion 163E toward the rear end side, and the counter electrode 165 is rearward from the counter electrode portion 165E and the counter electrode portion 165E. It consists of a lead portion 165L extending toward the end side.
The solid electrolyte body 162, the pump electrode 163 and the counter electrode 165 constitute an oxygen pump cell for pumping and pumping oxygen in the gas to be measured in the measurement chamber 171 described later, and the counter electrode 165 faces the measurement chamber 171. The pump electrode 163 communicates with the outside via the porous layer 182.

リード部163Lは、外側セラミック層183に設けられたスルーホールを介してセンサパッド部13と電気的に接続されている。又、リード部165Lは、ポンプセル層161、外側セラミック層183に設けられたスルーホールを介してセンサパッド部15と電気的に接続されている。
そして、測定室171内の酸素濃度に応じ、ポンプ電極163及び対向電極165の間に流れる電流の方向及び大きさがセンサパッド部13、15を介して2本のリード線71から外部装置によって制御され、酸素がポンピングされる。
The lead portion 163L is electrically connected to the sensor pad portion 13 via a through hole provided in the outer ceramic layer 183. Further, the lead portion 165L is electrically connected to the sensor pad portion 15 via a through hole provided in the pump cell layer 161 and the outer ceramic layer 183.
Then, the direction and magnitude of the current flowing between the pump electrode 163 and the counter electrode 165 are controlled by an external device from the two lead wires 71 via the sensor pad portions 13 and 15 according to the oxygen concentration in the measurement chamber 171. And oxygen is pumped.

中間セラミック層170の先端側(図2の左側)には測定室171が矩形状に開口している。又、中間セラミック層170の長辺側の両側面には、測定室171を外部と区画する拡散多孔質層173が配置されている。一方、測定室171の先端側と後端側には、測定室171の側壁をなすセラミック絶縁層175が配置されている。
測定室171は拡散多孔質層173を介して外部と連通しており、拡散多孔質層173は外部と測定室171との間のガス拡散を所定の律速条件下で実現する。
A measurement chamber 171 is rectangularally opened on the tip end side (left side in FIG. 2) of the intermediate ceramic layer 170. Further, on both side surfaces on the long side of the intermediate ceramic layer 170, a diffusion porous layer 173 that partitions the measurement chamber 171 from the outside is arranged. On the other hand, on the front end side and the rear end side of the measurement chamber 171, the ceramic insulating layer 175 forming the side wall of the measurement chamber 171 is arranged.
The measurement chamber 171 communicates with the outside through the diffusion porous layer 173, and the diffusion porous layer 173 realizes gas diffusion between the outside and the measurement chamber 171 under a predetermined rate-determining condition.

検知セル150は、第2絶縁層151a及び略矩形板状の固体電解質体152を備えた検知セル層151と、固体電解質体152の表裏面にそれぞれ設けられた基準ガス側電極153及び被測定ガス側電極155とを備えている。第2絶縁層151aの先端側(図2の左側)には略矩形状に開口する貫通部151hが設けられ、貫通部151hに埋め込まれるように固体電解質体152が配置されている。なお、基準ガス側電極153は基準ガス側電極部153E、及び、当該基準ガス側電極部153Eから後端側へ向かって延びるリード部153Lからなり、被測定ガス側電極155は被測定ガス側電極部155E、及び、当該被測定ガス側電極部155Eから後端側へ向かって延びるリード部155Lからなる。
固体電解質体152,基準ガス側電極153及び被測定ガス側電極155は、被測定ガス中の酸素濃度の検知セルを構成し、被測定ガス側電極部155Eは測定室171に臨んでいる。一方、基準ガス側電極部153Eは、リード部153L、スルーホールを介して外部に通気する。
The detection cell 150 includes a detection cell layer 151 having a second insulating layer 151a and a substantially rectangular plate-shaped solid electrolyte body 152, a reference gas side electrode 153 provided on the front and back surfaces of the solid electrolyte body 152, and a gas to be measured. It is provided with a side electrode 155. A penetrating portion 151h that opens in a substantially rectangular shape is provided on the tip end side (left side of FIG. 2) of the second insulating layer 151a, and the solid electrolyte 152 is arranged so as to be embedded in the penetrating portion 151h. The reference gas side electrode 153 includes a reference gas side electrode portion 153E and a lead portion 153L extending from the reference gas side electrode portion 153E toward the rear end side, and the measured gas side electrode 155 is a measured gas side electrode. It is composed of a portion 155E and a lead portion 155L extending from the measured gas side electrode portion 155E toward the rear end side.
The solid electrolyte 152, the reference gas side electrode 153, and the measured gas side electrode 155 constitute a detection cell for the oxygen concentration in the measured gas, and the measured gas side electrode portion 155E faces the measurement chamber 171. On the other hand, the reference gas side electrode portion 153E is ventilated to the outside through the lead portion 153L and the through hole.

リード部153Lは、検知セル層151、中間セラミック層170、ポンプセル層161、外側セラミック層183に設けられたスルーホールを介してセンサパッド部14と電気的に接続されている。又、リード部155Lは、中間セラミック層170、ポンプセル層161、外側セラミック層183に設けられたスルーホールを介してセンサパッド部15と電気的に接続されている。
そして、基準ガス側電極153及び被測定ガス側電極155の検出信号が、センサパッド部14,15から2本のリード線71を介して外部に出力され、酸素濃度が検出される。
The lead portion 153L is electrically connected to the sensor pad portion 14 via through holes provided in the detection cell layer 151, the intermediate ceramic layer 170, the pump cell layer 161 and the outer ceramic layer 183. Further, the lead portion 155L is electrically connected to the sensor pad portion 15 via through holes provided in the intermediate ceramic layer 170, the pump cell layer 161 and the outer ceramic layer 183.
Then, the detection signals of the reference gas side electrode 153 and the measured gas side electrode 155 are output from the sensor pad portions 14 and 15 to the outside via the two lead wires 71, and the oxygen concentration is detected.

検知セル150、ポンプセル160がそれぞれ特許請求の範囲の「セル」に相当する。基準ガス側電極153及び被測定ガス側電極155、並びにポンプ電極163及び対向電極165がそれぞれ特許請求の範囲の「一対の電極」に相当する。
又、第1絶縁層161a及び第2絶縁層151aが特許請求の範囲の「絶縁層」に相当する。検知セル層151、ポンプセル層161が特許請求の範囲の「複合層」に相当する。
The detection cell 150 and the pump cell 160 correspond to the "cells" in the claims, respectively. The reference gas side electrode 153 and the measured gas side electrode 155, and the pump electrode 163 and the counter electrode 165 each correspond to the "pair of electrodes" in the claims.
Further, the first insulating layer 161a and the second insulating layer 151a correspond to the "insulating layer" in the claims. The detection cell layer 151 and the pump cell layer 161 correspond to the "composite layer" in the claims.

なお、センサ素子19においては、検知セル150の電極間に生じる電圧(起電力)が所定の値(例えば、450mV)となるように、ポンプセル160の電極間に流れる電流の方向及び大きさが調整され、ポンプセル160に流れる電流に応じた被測定ガス中の酸素濃度をリニアに検出する酸素センサ素子を構成する。 In the sensor element 19, the direction and magnitude of the current flowing between the electrodes of the pump cell 160 are adjusted so that the voltage (electromotive force) generated between the electrodes of the detection cell 150 becomes a predetermined value (for example, 450 mV). It constitutes an oxygen sensor element that linearly detects the oxygen concentration in the measured gas according to the current flowing through the pump cell 160.

ヒータ145は、セラミック製の第1ヒータ基板145a、セラミック製の第2ヒータ基板145b、及び第1ヒータ基板145aと第2ヒータ基板145bの間に配置される発熱部146を備えている。第1ヒータ基板145aは検知セル層151と対向している。発熱部146は、蛇行状のパターンを有する発熱体146m(図3参照)、及び発熱体146mから後端側に延びる一対のリード部146Lを備えている。
リード部146Lは、第2ヒータ基板145bに設けられたスルーホールを介してヒータパッド部16,17と電気的に接続されている。そして、2本のリード線71を介してヒータパッド部16,17から発熱部146に通電することで、発熱部146が発熱し、固体電解質体152,162を活性化する。
この発熱部146(ヒータ145)は、検知セル150及びポンプセル160よりも積層方向の片側(図2の下側)に配置されている。
なお、第1ヒータ基板145aと第2ヒータ基板145bとが特許請求の範囲の「ヒータ基板」に相当する。
The heater 145 includes a first heater substrate 145a made of ceramic, a second heater substrate 145b made of ceramic, and a heat generating portion 146 arranged between the first heater substrate 145a and the second heater substrate 145b. The first heater substrate 145a faces the detection cell layer 151. The heating element 146 includes a heating element 146 m (see FIG. 3) having a meandering pattern, and a pair of lead portions 146 L extending from the heating element 146 m toward the rear end side.
The lead portion 146L is electrically connected to the heater pad portions 16 and 17 via a through hole provided in the second heater substrate 145b. Then, by energizing the heat generating portion 146 from the heater pad portions 16 and 17 via the two lead wires 71, the heat generating portion 146 generates heat and activates the solid electrolyte bodies 152 and 162.
The heat generating portion 146 (heater 145) is arranged on one side (lower side in FIG. 2) in the stacking direction with respect to the detection cell 150 and the pump cell 160.
The first heater substrate 145a and the second heater substrate 145b correspond to the "heater substrate" in the claims.

次に、図3を参照し、発熱部146について説明する。
図3に示すように、発熱部146は、発熱体146m、及び発熱体146から後端側に延びる一対のリード部146Lを備えている。
発熱体146mは、軸線O方向にそれぞれ延びる一対の外側直線状部146m1と、外側直線状部146m1間に配置され軸線O方向に延びる一対の内側直線状部146m2と、隣接する外側直線状部146m1の先端と内側直線状部146m2の先端とを接続する2つのU字状の第1接続部146j1と、一対の内側直線状部146m2の後端を接続する1つのU字状の第2接続部146j2と、からなる。
又、一対のリード部146Lは、それぞれ外側直線状部146m1の後端146eに接続されている。
本実施形態では、発熱部146の発熱体146mは、検知セル150及びポンプセル160と積層方向に重なっており(図4、図5参照)、両セル150,160を加熱する。
なお、外側直線状部146m1の後端146eは、外側直線状部146m1の幅D1が一定の部分の最後端部であり、幅D1より広幅の幅D2(D2>D1)のリード部146Lに繋がる境界部分である。
Next, the heat generating portion 146 will be described with reference to FIG.
As shown in FIG. 3, the heating element 146 includes a heating element 146m and a pair of lead portions 146L extending from the heating element 146 to the rear end side.
The heating element 146m includes a pair of outer linear portions 146m1 extending in the axis O direction, a pair of inner linear portions 146m2 arranged between the outer linear portions 146m1 and extending in the axis O direction, and adjacent outer linear portions 146m1. Two U-shaped first connecting portions 146j1 connecting the tip of the inner linear portion 146m2 and one U-shaped second connecting portion connecting the rear ends of the pair of inner linear portions 146m2. It consists of 146j2.
Further, each of the pair of lead portions 146L is connected to the rear end 146e of the outer linear portion 146m1.
In the present embodiment, the heating element 146 m of the heating unit 146 overlaps the detection cell 150 and the pump cell 160 in the stacking direction (see FIGS. 4 and 5), and heats both cells 150 and 160.
The rear end 146e of the outer linear portion 146m1 is the rearmost end portion of the portion where the width D1 of the outer linear portion 146m1 is constant, and is connected to the lead portion 146L having a width D2 (D2> D1) wider than the width D1. It is a boundary part.

次に、図4〜図6を参照し、発熱部146(ヒータ145)と、各セル150、160及びヒータ基板145a、145bとの位置関係について説明する。なお、図4は、発熱部146と、ポンプセル160及びヒータ基板145a、145bとの位置関係を示す平面図、図5は、発熱部146と、検知セル150及びヒータ基板145a、145bとの位置関係を示す平面図である。 Next, with reference to FIGS. 4 to 6, the positional relationship between the heat generating portion 146 (heater 145), the cells 150 and 160, and the heater substrates 145a and 145b will be described. FIG. 4 is a plan view showing the positional relationship between the heat generating portion 146 and the pump cell 160 and the heater substrates 145a and 145b, and FIG. 5 is a positional relationship between the heating unit 146 and the detection cell 150 and the heater substrates 145a and 145b. It is a plan view which shows.

まず、図4、図5に示すように、ヒータ基板145a、145bの側端部と外側直線状部146m1の側端部との最小距離をAとすると、0.15mm≦A≦0.35mmである。又、ヒータ基板145a、145bの先端部と第1接続部146j1の先端部との最小距離をBとすると、0.25mm≦B≦0.85mmである。 First, as shown in FIGS. 4 and 5, assuming that the minimum distance between the side end portion of the heater substrate 145a and 145b and the side end portion of the outer linear portion 146m1 is A, 0.15 mm ≦ A ≦ 0.35 mm. be. Further, assuming that the minimum distance between the tip of the heater substrates 145a and 145b and the tip of the first connection portion 146j1 is B, 0.25 mm ≦ B ≦ 0.85 mm.

次に、図4に示すように、ポンプセル160におけるポンプ電極部163E、対向電極部165E及び固体電解質体162の重なり領域をS1とする。ここで、重なり領域S1を求める際には、ポンプセル160の一対の電極163、165のうち、セルとして電極反応に有効に寄与するポンプ電極部163E及び対向電極部165Eを対象とし、リード部163L、165Lを除外する。又、ポンプ電極部163Eとリード部163Lとの境界163Bは、固体電解質体162の外側のリード部163Lの幅D3が一定の部分の最先端部とする。対向電極部165Eとリード部165Lとの境界165Bも同様である。
このとき、一対の内側直線状部146m2は、それぞれ重なり領域S1と積層方向に重なると共に、重なり領域S1の後端に跨って形成されている。
Next, as shown in FIG. 4, the overlapping region of the pump electrode portion 163E, the counter electrode portion 165E, and the solid electrolyte body 162 in the pump cell 160 is defined as S1. Here, when the overlapping region S1 is obtained, among the pair of electrodes 163 and 165 of the pump cell 160, the pump electrode portion 163E and the counter electrode portion 165E that effectively contribute to the electrode reaction as cells are targeted, and the lead portion 163L. Exclude 165L. Further, the boundary 163B between the pump electrode portion 163E and the lead portion 163L is the most advanced portion of the outer lead portion 163L of the solid electrolyte body 162 in which the width D3 is constant. The same applies to the boundary 165B between the counter electrode portion 165E and the lead portion 165L.
At this time, the pair of inner linear portions 146m2 overlap with the overlapping region S1 in the stacking direction, and are formed so as to straddle the rear end of the overlapping region S1.

図5の検知セル150についても同様に、検知セル150の基準ガス側電極部153E、被測定ガス側電極部155E及び固体電解質体152の重なり領域をS2とする。重なり領域S2を求める際に基準ガス側電極部153E、被測定ガス側電極部155Eと、各リード部153L,155Lとの境界153B、155Bを求める方法も上述の通りである。
このとき、一対の内側直線状部146m2は、それぞれ重なり領域S2と積層方向に重なると共に、重なり領域S2の後端に跨って形成されている。
なお、ポンプセル160においては、ポンプ電極部163E及び対向電極部165Eは、固体電解質体162の内側に位置するので、重なり領域S1はポンプ電極部163E及び対向電極部165Eの重なり部分となる。一方、検知セル150においては、基準ガス側電極部153E及び被測定ガス側電極部155Eは、幅方向に固体電解質体152の外側に位置するので、重なり領域S2は幅方向に基準ガス側電極部153E及び被測定ガス側電極部155Eよりも内側となる。
Similarly, for the detection cell 150 of FIG. 5, the overlapping region of the reference gas side electrode portion 153E, the measured gas side electrode portion 155E, and the solid electrolyte body 152 of the detection cell 150 is defined as S2. The method for obtaining the boundary 153B and 155B between the reference gas side electrode portion 153E and the measured gas side electrode portion 155E and the lead portions 153L and 155L when the overlapping region S2 is obtained is also as described above.
At this time, the pair of inner linear portions 146m2 overlap with the overlapping region S2 in the stacking direction, and are formed so as to straddle the rear end of the overlapping region S2.
In the pump cell 160, since the pump electrode portion 163E and the counter electrode portion 165E are located inside the solid electrolyte body 162, the overlapping region S1 is the overlapping portion of the pump electrode portion 163E and the counter electrode portion 165E. On the other hand, in the detection cell 150, the reference gas side electrode portion 153E and the measured gas side electrode portion 155E are located outside the solid electrolyte body 152 in the width direction, so that the overlapping region S2 is the reference gas side electrode portion in the width direction. It is inside the 153E and the electrode portion 155E on the gas side to be measured.

以上のように、ヒータ基板145a、145bの側端部及び先端部と発熱部146との最小距離A,Bを適切な範囲とすることで、ヒータ基板145a、145b(ひいてはセンサ素子19)の側端部及び先端部に発熱部146を近付けることができ、ヒータ145の昇温速度を高めてもヒータ145近傍の熱応力の増大を抑制し、素子割れを抑制して早期活性を実現できる。又、発熱部146を上記側端部及び先端部に近付け過ぎないので、ヒータ145と固体電解質体162,152との間の絶縁を確保できる。 As described above, by setting the minimum distances A and B between the side end portions and the tip portions of the heater substrates 145a and 145b and the heat generating portion 146 within an appropriate range, the side of the heater substrates 145a and 145b (and by extension, the sensor element 19) The heat generating portion 146 can be brought close to the end portion and the tip portion, and even if the heating rate of the heater 145 is increased, the increase in thermal stress in the vicinity of the heater 145 can be suppressed, the element cracking can be suppressed, and early activity can be realized. Further, since the heat generating portion 146 is not brought too close to the side end portion and the tip portion, the insulation between the heater 145 and the solid electrolyte bodies 162 and 152 can be ensured.

0.15mm>A、又は0.25mm>Bであると、ヒータ基板145a、145bの側端部又は先端部に排気ガス中の導電成分(カーボンの煤)や水が付着した場合に、これら導電成分又は水と発熱部146との隙間である絶縁距離が短くなり、発熱部146が通電すると隙間が容易に絶縁破壊される。その結果、発熱部146からのリーク電流が各セル150、160の電極や固体電解質体へ流れ、検出精度や酸素ポンプ能が低下する。又、素子端部付近の温度が高くなり、材料強度が低下するため小さな応力でも素子にクラックが発生する。さらに、ヒータ基板145a、145bで発熱部146を十分に埋設できずに発熱部146が端面に露出する可能性がある。
0.35mm<A、又は0.85mm<Bであると、ヒータ基板145a、145bの側端部又は先端部から発熱部146が遠ざかり、ヒータ145の昇温速度を高めるとヒータ145近傍の熱応力が増大し、素子割れを生じる場合がある。
When 0.15 mm> A or 0.25 mm> B, when the conductive component (carbon soot) or water in the exhaust gas adheres to the side end or the tip of the heater substrates 145a and 145b, these are conducted. The insulation distance, which is the gap between the component or water and the heat generating portion 146, becomes short, and when the heat generating portion 146 is energized, the gap is easily broken down. As a result, the leak current from the heat generating portion 146 flows to the electrodes and the solid electrolyte of the cells 150 and 160, and the detection accuracy and the oxygen pumping ability are lowered. Further, since the temperature near the end of the element becomes high and the material strength decreases, cracks occur in the element even with a small stress. Further, the heat generating portion 146 may not be sufficiently embedded in the heater substrates 145a and 145b, and the heating portion 146 may be exposed on the end face.
When 0.35 mm <A or 0.85 mm <B, the heat generating portion 146 moves away from the side end portion or the tip portion of the heater substrates 145a and 145b, and when the heating rate of the heater 145 is increased, the thermal stress in the vicinity of the heater 145 is increased. May increase and cause element cracking.

又、本実施形態では、固体電解質体162、152がそれぞれ第1絶縁層161a、第2絶縁層151aに埋め込まれている。このため、第1絶縁層161a、第2絶縁層151aの側端部又は先端部に排気ガス中の導電成分(カーボンの煤)や水が付着した場合に、これら導電成分又は水と、固体電解質体162、152との間を第1絶縁層161a、第2絶縁層151aが絶縁するので、ヒータ基板145a、145bと発熱部146との上述の隙間A,Bと相俟って、ヒータ145と固体電解質体162,152との間の絶縁を安定して確保できる。
つまり、図6に示すように、水200がセンサ素子19の端面(側端面)に付着しても、水200と固体電解質体152との間を隙間G2を介して第2絶縁層151aが絶縁すると共に、水200と発熱部146との間を隙間Aにより絶縁する。これにより、固体電解質体152と発熱部146との間に電流経路が形成されないので、隙間A、G2が絶縁破壊されることが抑制され、絶縁を安定して確保できるのである。なお、図6では固体電解質体152について図示したが、固体電解質体162についても同様である。
Further, in the present embodiment, the solid electrolytes 162 and 152 are embedded in the first insulating layer 161a and the second insulating layer 151a, respectively. Therefore, when the conductive component (carbon soot) or water in the exhaust gas adheres to the side end portion or the tip portion of the first insulating layer 161a and the second insulating layer 151a, these conductive components or water and the solid electrolyte Since the first insulating layer 161a and the second insulating layer 151a insulate between the bodies 162 and 152, the heater 145 and the heater 145 are combined with the above-mentioned gaps A and B between the heater substrate 145a and 145b and the heat generating portion 146. Stable insulation can be ensured between the solid electrolytes 162 and 152.
That is, as shown in FIG. 6, even if the water 200 adheres to the end surface (side end surface) of the sensor element 19, the second insulating layer 151a insulates between the water 200 and the solid electrolyte 152 via the gap G2. At the same time, the space A between the water 200 and the heat generating portion 146 is insulated. As a result, a current path is not formed between the solid electrolyte body 152 and the heat generating portion 146, so that the gaps A and G2 are suppressed from dielectric breakdown, and insulation can be stably secured. Although the solid electrolyte 152 is shown in FIG. 6, the same applies to the solid electrolyte 162.

さらに、一対の内側直線状部146m2が、それぞれ重なり領域S1、S2と積層方向に重なると共に、重なり領域S1、S2の先端又は後端(図4、図5の例では後端)に跨って形成されている。
これにより、各セル160、150の有効部分である重なり領域S1、S2に内側直線状部146m2の熱を確実に伝えることができ、早期活性をより確実に実現できる共に、ヒータ基板145a、145bの端部との温度差(熱応力)をさらに低減できる。
Further, a pair of inner linear portions 146 m2 overlap with the overlapping regions S1 and S2 in the stacking direction, respectively, and are formed so as to straddle the front end or the rear end (rear end in the examples of FIGS. 4 and 5) of the overlapping regions S1 and S2. Has been done.
As a result, the heat of the inner linear portion 146 m2 can be reliably transferred to the overlapping regions S1 and S2, which are the effective portions of the cells 160 and 150, and early activity can be more reliably realized, and the heater substrates 145a and 145b can be realized. The temperature difference (thermal stress) from the end can be further reduced.

なお、図4、図5に示すように、本実施形態では、外側直線状部146m1は、固体電解質体162,152の側端側に固体電解質体162,152と間隔を開けて配置されている。
このようにすると、早期活性をより確実に実現できる共に、ヒータ基板の端部との温度差(熱応力)をさらに低減できる。
As shown in FIGS. 4 and 5, in the present embodiment, the outer linear portion 146m1 is arranged on the side end side of the solid electrolyte body 162, 152 at a distance from the solid electrolyte body 162, 152. ..
By doing so, early activity can be realized more reliably, and the temperature difference (thermal stress) from the end portion of the heater substrate can be further reduced.

又、図3に示す発熱体146mの軸線O方向の長さ(第1接続部146j1の先端から、外側直線状部146m1の後端146eまでの長さ)が4〜10mmであると、発熱範囲が集中することにより熱応力が増大しすぎず、また、素子の昇温速度の低下や消費電力が増大することを抑制することができる。
上記長さが4mm未満であると発熱範囲が集中することにより熱応力が増大する場合がある。上記長さが10mmを超えると素子の昇温速度の低下や消費電力が増大する場合がある。
又、図6に示す隙間Aと隙間(最小隙間)G2の合計長さが0.3mm以上であると、ヒータ145と固体電解質体162,152との間の絶縁をさらに安定して確保できる。
Further, when the length of the heating element 146 m shown in FIG. 3 in the axis O direction (the length from the tip of the first connecting portion 146j1 to the rear end 146e of the outer linear portion 146m1) is 4 to 10 mm, the heat generation range is set. The thermal stress does not increase too much due to the concentration of heat, and it is possible to suppress a decrease in the heating rate of the element and an increase in power consumption.
If the length is less than 4 mm, the thermal stress may increase due to the concentration of heat generation ranges. If the length exceeds 10 mm, the rate of temperature rise of the element may decrease and the power consumption may increase.
Further, when the total length of the gap A and the gap (minimum gap) G2 shown in FIG. 6 is 0.3 mm or more, the insulation between the heater 145 and the solid electrolyte bodies 162 and 152 can be secured more stably.

本発明のセンサ素子及びガスセンサは、本発明の要旨を逸脱しない限りにおいて、適宜にその構造、構成を設計変更して具体化できる。
例えば上記実施形態では、絶縁層に設けられた貫通孔に固体電解質体のペーストを充填して埋め込んだが、絶縁層の貫通孔にシート状の固体電解質体を挿入して配置する態様であってもよい。
又、各セルにおいて、一対の電極は固体電解質体よりも外側にはみ出てもよい。
また、センサ素子としては、1つ以上のセルを有していれば、酸素の濃度を測定するものに限定されず、窒素酸化物(NOx)又は炭化水素(HC)等の濃度を測定するものを用いてもよい。
又、図4、図5に示すように、上記実施形態ではセンサ素子が有するすべてのセルにつき、内側直線状部が重なり領域と積層方向に重なると共に、重なり領域の先端又は後端に跨って形成されているが、少なくとも1つのセルの重なり領域と積層方向に重なると共に、重なり領域の先端又は後端に跨って形成されていればよい。
The structure and configuration of the sensor element and gas sensor of the present invention can be appropriately redesigned and embodied without departing from the gist of the present invention.
For example, in the above embodiment, the through hole provided in the insulating layer is filled with the paste of the solid electrolyte and embedded, but even in the embodiment in which the sheet-shaped solid electrolyte is inserted and arranged in the through hole of the insulating layer. good.
Further, in each cell, the pair of electrodes may protrude outside the solid electrolyte.
Further, the sensor element is not limited to the one that measures the oxygen concentration as long as it has one or more cells, but the one that measures the concentration of nitrogen oxides (NOx), hydrocarbons (HC), and the like. May be used.
Further, as shown in FIGS. 4 and 5, in the above embodiment, in all the cells of the sensor element, the inner linear portion overlaps with the overlapping region in the stacking direction and is formed so as to straddle the front end or the rear end of the overlapping region. However, it may be formed so as to overlap with the overlapping region of at least one cell in the stacking direction and to straddle the front end or the rear end of the overlapping region.

<実施例1>
図2〜図5に示すセンサ素子19として、発熱体146mの抵抗が1.75±0.05Ωで、Aの値を種々変更したものをそれぞれ製造した。Bの値を1mmで一定とした。各センサ素子19の発熱体146mに初期電圧10Vを印加して、素子温度を900℃まで昇温した後、室温まで急冷するサイクルを100サイクル繰り返した後、染色試験にて、センサ素子19のクラックの有無を目視判定した。
クラックが無い場合、電圧を0.5V高くして同様にサイクル試験を行った後のクラックの有無を判定し、これをクラックが生じるまで繰り返し、クラックが生じたときの電圧を求めた。
なお、A,Bを所定の値としたセンサ素子19をそれぞれ10個製造し、上記サイクル試験を10個のセンサ素子19について行い、この10個のデータにつきワイブル解析により故障率0.1%のときの発熱体146mの電圧を求めた。この電圧が高いほど、センサ素子19のクラックを生じずに(熱応力を大きくせずに)ヒータの昇温速度を高めることができる。上記電圧が12V以上であれば、ヒータの昇温速度を高くして早期活性を実現できるものとみなすことができる。
<Example 1>
As the sensor element 19 shown in FIGS. 2 to 5, a heating element 146 m having a resistance of 1.75 ± 0.05 Ω and having various changes in the value of A were manufactured. The value of B was constant at 1 mm. An initial voltage of 10 V is applied to the heating element 146 m of each sensor element 19, the element temperature is raised to 900 ° C., and then the cycle of quenching to room temperature is repeated for 100 cycles. The presence or absence of was visually determined.
When there were no cracks, the voltage was increased by 0.5 V to determine the presence or absence of cracks after performing the same cycle test, and this was repeated until cracks occurred, and the voltage at the time of cracks was determined.
Ten sensor elements 19 each having A and B as predetermined values were manufactured, the cycle test was performed on the ten sensor elements 19, and the failure rate of 0.1% was obtained by Weibull analysis for the ten data. The voltage of the heating element 146 m at that time was obtained. The higher the voltage, the higher the heating rate of the heater without causing cracks in the sensor element 19 (without increasing the thermal stress). When the voltage is 12 V or more, it can be considered that early activity can be realized by increasing the heating rate of the heater.

<実施例2>
実施例1と同様にして、Bの値を種々変更し、Aの値を0.2mmで一定としたセンサ素子19をそれぞれ製造し、同様にサイクル試験を行って故障率0.1%のときの発熱体146mの電圧を求めた。
<Example 2>
In the same manner as in Example 1, the value of B is variously changed, the sensor elements 19 in which the value of A is constant at 0.2 mm are manufactured, and the cycle test is performed in the same manner when the failure rate is 0.1%. The voltage of the heating element 146 m was obtained.

得られた結果を図7、図8にそれぞれ示す。
図7、図8から明らかなように、0.15mm≦A≦0.35mm、0.25mm≦B≦0.85mmであれば、故障率0.1%のときの発熱体146mの電圧を12V以上とすることができ、センサ素子19のクラックを生じずに早期活性を実現できることがわかる。
なお、0.15mm>A、又は0.25mm>Bの場合は、熱応力は低下するものの、上述の理由で材料強度も同時に低下し、小さな応力でもクラックが生じたと考えられる。従って、本実験でクラックが生じたときの電圧で判定を行う方法は、A、Bの下限を見極めるにも適している。
The obtained results are shown in FIGS. 7 and 8, respectively.
As is clear from FIGS. 7 and 8, if 0.15 mm ≤ A ≤ 0.35 mm and 0.25 mm ≤ B ≤ 0.85 mm, the voltage of the heating element 146 m when the failure rate is 0.1% is 12 V. It can be seen that the above can be achieved and early activity can be realized without causing cracks in the sensor element 19.
When 0.15 mm> A or 0.25 mm> B, the thermal stress decreases, but the material strength also decreases for the above reason, and it is considered that cracks occur even with a small stress. Therefore, the method of making a judgment based on the voltage at which a crack occurs in this experiment is also suitable for determining the lower limits of A and B.

1 ガスセンサ
11 主体金具
19 センサ素子
145 ヒータ
145a、145b ヒータ基板(第1ヒータ基板、第2ヒータ基板)
146 発熱部
146m 発熱体
146m1 外側直線状部
146m2 内側直線状部
146j1 第1接続部
146j2 第2接続部
146e 外側直線状部の後端
146L リード部
160,150 セル(ポンプセル、検知セル)
161、151 複合層(ポンプセル層、検知セル層)
161a、151a 絶縁層(第1絶縁層、第2絶縁層)
161h、151h 貫通孔
162,152 固体電解質体
153及び155、163及び165 一対の電極
O 軸線
S1,S2 重なり領域
1 Gas sensor 11 Main metal fittings 19 Sensor element 145 Heater 145a, 145b Heater substrate (1st heater substrate, 2nd heater substrate)
146 Heating element 146m Heating element 146m1 Outer linear part 146m2 Inner linear part 146j1 First connection part 146j2 Second connection part 146e Rear end of outer linear part 146L Lead part 160,150 Cell (pump cell, detection cell)
161 and 151 composite layer (pump cell layer, detection cell layer)
161a, 151a Insulation layer (first insulation layer, second insulation layer)
161h, 151h Through hole 162,152 Solid electrolyte 153 and 155, 163 and 165 Pair of electrodes O-axis S1, S2 Overlapping region

Claims (4)

絶縁層に設けられた貫通孔に固体電解質体が配置された複合層と、前記固体電解質体の表面に形成された一対の電極と、を有する1つ以上のセルと、
前記複合層の積層方向に配置されるヒータ基板、及び前記ヒータ基板に設けられて少なくとも1つの前記セルを加熱する発熱部を備えたヒータと、
を有し、軸線方向に延びるセンサ素子であって、
前記発熱部は、前記軸線方向にそれぞれ延びる一対の外側直線状部と、前記外側直線状部間に配置された前記軸線方向に延びる一対の内側直線状部と、隣接する前記外側直線状部の先端と前記内側直線状部の先端とを接続する第1接続部と、一対の前記内側直線状部の後端を接続する第2接続部と、からなる発熱体と、一対の前記外側直線状部の後端に接続される一対のリード部と、を含んで構成され、
前記ヒータ基板の側端部と前記外側直線状部の側端部との最小距離Aが、0.15mm≦A≦0.35mmであり、
前記ヒータ基板の先端部と前記第1接続部の先端部との最小距離Bが、0.25mm≦B≦0.85mmであり、
前記複合層における前記絶縁層の側端部と前記固体電解質体の側端部との最小距離G2と、前記最小距離Aとの合計長さが0.3mm以上、
前記内側直線状部は、前記一対の電極と前記固体電解質体との重なり領域と前記積層方向に重なると共に、該重なり領域の先端又は後端に跨って形成されていることを特徴とするセンサ素子。
One or more cells having a composite layer in which a solid electrolyte is arranged in a through hole provided in the insulating layer, and a pair of electrodes formed on the surface of the solid electrolyte.
A heater substrate arranged in the stacking direction of the composite layer, and a heater provided on the heater substrate and provided with a heat generating portion for heating at least one cell.
Is a sensor element that extends in the axial direction.
The heat generating portion includes a pair of outer linear portions extending in the axial direction, a pair of inner linear portions arranged between the outer linear portions, and an adjacent outer linear portion. A heating element consisting of a first connecting portion connecting the tip and the tip of the inner linear portion, and a second connecting portion connecting the rear ends of the pair of inner linear portions, and a pair of the outer linear portions. Consists of a pair of lead sections connected to the rear end of the section,
The minimum distance A between the side end portion of the heater substrate and the side end portion of the outer linear portion is 0.15 mm ≦ A ≦ 0.35 mm.
The minimum distance B between the tip end portion of the heater substrate and the tip end portion of the first connection portion is 0.25 mm ≦ B ≦ 0.85 mm.
The total length of the minimum distance G2 between the side end portion of the insulating layer and the side end portion of the solid electrolyte in the composite layer and the minimum distance A is 0.3 mm or more.
The inner linear portion overlaps the overlapping region of the pair of electrodes and the solid electrolyte body in the stacking direction, and is formed so as to straddle the front end or the rear end of the overlapping region. ..
前記外側直線状部は、前記固体電解質体の側端側に該固体電解質体と間隔を開けて配置されている請求項1に記載のセンサ素子。 The sensor element according to claim 1, wherein the outer linear portion is arranged on the side end side of the solid electrolyte body at a distance from the solid electrolyte body. 前記内側直線状部は、前記一対の電極の重なり領域の先端及び後端に跨って形成されている請求項1または2に記載のセンサ素子。 The sensor element according to claim 1 or 2, wherein the inner linear portion is formed so as to straddle the front end and the rear end of the overlapping region of the pair of electrodes. 被測定ガス中の特定ガスを検出するセンサ素子と、該センサ素子を保持する主体金具と、を備えるガスセンサであって、
前記センサ素子として、請求項1から3のいずれか1項に記載のセンサ素子を備えるガスセンサ。
A gas sensor including a sensor element for detecting a specific gas in a gas to be measured and a main metal fitting for holding the sensor element.
A gas sensor including the sensor element according to any one of claims 1 to 3, as the sensor element.
JP2018086207A 2018-04-27 2018-04-27 Sensor element and gas sensor Active JP6979387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018086207A JP6979387B2 (en) 2018-04-27 2018-04-27 Sensor element and gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018086207A JP6979387B2 (en) 2018-04-27 2018-04-27 Sensor element and gas sensor

Publications (2)

Publication Number Publication Date
JP2019191071A JP2019191071A (en) 2019-10-31
JP6979387B2 true JP6979387B2 (en) 2021-12-15

Family

ID=68390031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018086207A Active JP6979387B2 (en) 2018-04-27 2018-04-27 Sensor element and gas sensor

Country Status (1)

Country Link
JP (1) JP6979387B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7360311B2 (en) * 2019-12-10 2023-10-12 日本碍子株式会社 Gas sensor sensor element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3523937B2 (en) * 1994-07-06 2004-04-26 日本特殊陶業株式会社 Ceramic heater for sensor and oxygen sensor
JP2002228626A (en) * 2000-11-30 2002-08-14 Denso Corp Gas sensor element
JP6762145B2 (en) * 2016-06-14 2020-09-30 日本特殊陶業株式会社 Gas sensor element and gas sensor
JP6741512B2 (en) * 2016-08-03 2020-08-19 日本特殊陶業株式会社 Gas sensor element

Also Published As

Publication number Publication date
JP2019191071A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
US8118985B2 (en) Gas sensor
US9829462B2 (en) Gas sensor element and gas sensor
US9512770B2 (en) Sensor element including an air introduction portion with a cross section having specified aspect ratio and area and sensor including the same
US9032779B2 (en) Gas sensor
US9581565B2 (en) Gas sensor
JP5105488B2 (en) Gas sensor
US7160422B2 (en) Gas sensor incorporating a multilayered gas sensing element
JP4693108B2 (en) Sensor
US7430894B2 (en) Gas sensor
JP4965356B2 (en) Degradation judgment method of gas sensor
JP6979387B2 (en) Sensor element and gas sensor
US10775342B2 (en) Gas sensor
US9395325B2 (en) Gas sensor
US10908116B2 (en) Gas sensor
JP6974249B2 (en) Sensor element and gas sensor
US6497808B1 (en) Gas sensor
US11604160B2 (en) Gas sensor
JP6406786B2 (en) Gas sensor
JP6475145B2 (en) Gas sensor
US20230228701A1 (en) Gas sensor and casing for containing sensor element
JP2016065857A (en) Gas sensor element and gas sensor
JP7391638B2 (en) Sensor element and gas sensor
JP6948984B2 (en) Sensor element and gas sensor
US20230119530A1 (en) Gas sensor
US20230393109A1 (en) Gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R150 Certificate of patent or registration of utility model

Ref document number: 6979387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350