WO2018194034A1 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
WO2018194034A1
WO2018194034A1 PCT/JP2018/015747 JP2018015747W WO2018194034A1 WO 2018194034 A1 WO2018194034 A1 WO 2018194034A1 JP 2018015747 W JP2018015747 W JP 2018015747W WO 2018194034 A1 WO2018194034 A1 WO 2018194034A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
electrode
solid electrolyte
end side
detection
Prior art date
Application number
PCT/JP2018/015747
Other languages
French (fr)
Japanese (ja)
Inventor
中江 誠
将太 今田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018018540A external-priority patent/JP6702342B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880026205.3A priority Critical patent/CN110573870B/en
Priority to DE112018002089.4T priority patent/DE112018002089T5/en
Publication of WO2018194034A1 publication Critical patent/WO2018194034A1/en
Priority to US16/656,959 priority patent/US11604160B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/41Oxygen pumping cells

Definitions

  • the present disclosure relates to a gas sensor having a sensor element in which an electrode is provided on a solid electrolyte body.
  • the gas sensor arranged in the exhaust pipe of the internal combustion engine uses the exhaust gas flowing in the exhaust pipe as a detection gas (measurement gas), and performs gas detection using the difference in oxygen concentration between this detection gas and a reference gas such as the atmosphere.
  • the gas sensor is used as an oxygen sensor for detecting whether the air-fuel ratio of the internal combustion engine determined from the composition of the exhaust gas is on the fuel rich side or the fuel lean side with respect to the theoretical air fuel ratio, and the internal combustion engine required from the exhaust gas
  • a bottomed cylindrical sensor element in which electrodes are arranged on the inner side surface and outer side surface of a bottomed cylindrical solid electrolyte body, or a plate-like sensor element in which electrodes are arranged on both sides of a plate-like solid electrolyte body Is used.
  • the gas sensor is used as an oxygen sensor, an electromotive force generated between the pair of electrodes through the solid electrolyte body is detected according to the difference in oxygen concentration between the detection gas and the reference gas.
  • the gas sensor is used as an air-fuel ratio sensor, a voltage is applied between the pair of electrodes, and the current flowing between the pair of electrodes via the solid electrolyte body is detected according to the oxygen concentration of the detection gas. is doing.
  • the detection electrode that is exposed to the detection gas is formed on the entire circumference of the tip side portion of the solid electrolyte body, and the detection unit that is heated to the target temperature by the heating unit of the heater, and the detection In many cases, it is formed into a shape having a lead portion drawn out from the portion to the proximal end side.
  • an insulating layer is provided between the lead portion and the solid electrolyte body in order to cause oxygen movement through the solid electrolyte body only in the detection section.
  • Examples of such sensor elements include an oxygen sensor described in Patent Document 1.
  • an insulating layer made of an insulator is provided between the solid electrolyte body and the lead portion of the detection electrode, and the area of the detection electrode that functions when performing gas detection is defined.
  • the sensor output of the gas sensor originally has a stoichiometric air-fuel ratio output. Even in the state, it has been found that there is a case where the sensor output is deviated and the sensor output may not be equivalent to the theoretical air-fuel ratio. This is due to the fact that the base end portion of the sensor element is heated, so that the solid electrolyte body, the lead portion of the detection electrode and the reference electrode are activated in the base end portion of the sensor element, and the base end portion of the sensor element is activated.
  • Patent Document 1 an insulating layer is provided for a portion of a detection electrode or a lead portion exposed to a detection gas.
  • the front end portion of the sensor element is exposed to the detection gas, while the proximal end portion of the sensor element is fixed to the housing and is not exposed to the detection gas.
  • the insulating layer in Patent Document 1 is provided to define the area of the detection electrode that functions when performing gas detection. For this reason, the insulating layer is a portion that is not exposed to the detection gas and is not considered to be provided up to the proximal end portion of the lead portion to which the terminal fitting is attached.
  • the present disclosure has been obtained in an attempt to provide a gas sensor capable of improving the accuracy of gas detection by preventing leakage current from being generated between the mounting electrode portion of the detection electrode and the reference electrode.
  • One aspect of the present disclosure includes a bottomed cylindrical solid electrolyte body in which a distal end portion of a cylindrical cylindrical portion is closed by a curved bottom portion; A detection electrode provided at least on the outer surface of the cylindrical portion and exposed to a detection gas guided to the outside of the solid electrolyte body; In a gas sensor comprising a sensor element that is provided at least on the inner surface of the cylindrical portion and is exposed to a reference gas guided to the inside of the solid electrolyte body,
  • the detection electrode is A detection electrode provided on the entire circumference or a part of the circumference in the circumferential direction centering on the central axis at the position on the distal end side in the axial direction along the central axis of the cylinder; A mounting electrode part that is provided on the entire circumference or a part of the circumferential direction at a position on the base end side in the axial direction and that contacts a terminal fitting mounted on the outer periphery of the cylindrical part; A lead electrode part provided at a part of the circumferential
  • an insulating layer is provided between the lead electrode portion and the solid electrolyte body in the detection electrode, but also between the mounting electrode portion and the solid electrolyte body where the terminal fitting is mounted in the detection electrode.
  • An insulating layer is provided.
  • the gas sensor when used as an air-fuel ratio sensor, even when the proximal end portion of the sensor element is exposed to a high temperature environment of 400 ° C. or higher, an offset current is added to the output current as the sensor output near the theoretical air-fuel ratio. Can be excluded.
  • an error voltage should not be included in the output voltage as the sensor output even when the proximal end portion of the sensor element is exposed to a high temperature environment of 400 ° C. or higher. Can do.
  • the gas sensor it is possible to prevent leak current from being generated between the mounting electrode portion of the detection electrode and the reference electrode, and to improve the accuracy of gas detection.
  • each component is not limited only to the content of embodiment.
  • FIG. 3 is an explanatory diagram illustrating a formation state of detection electrodes in the sensor element according to the first embodiment.
  • FIG. 3 is an explanatory diagram illustrating a cross section of a tip portion of a sensor element according to the first embodiment.
  • BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which shows the state which has arrange
  • FIG. 3 is an explanatory diagram illustrating a formation state of detection electrodes in other sensor elements according to the first embodiment.
  • Explanatory drawing which shows the cross section of the front-end
  • FIG. The perspective view which shows the state which attaches a terminal metal fitting to the sensor element concerning Embodiment 2.
  • FIG. Explanatory drawing which expands and shows a part of cross section of the state which attaches a terminal metal fitting to a sensor element concerning Embodiment 2.
  • FIG. The graph which shows the relationship between the temperature of a sensor element concerning the confirmation test 1, and the output shift amount of an air fuel ratio.
  • the graph which shows the relationship between the thickness of an insulating layer concerning the confirmation test 2, and the output shift amount of an air fuel ratio.
  • the graph which shows the relationship between the temperature of a sensor element concerning the confirmation test 3, and the amount of shifts of an output voltage.
  • the graph which shows the relationship between the thickness of an insulating layer concerning the confirmation test 4, and the amount of shifts of an output voltage.
  • the gas sensor 1 of the present embodiment includes a sensor element 2.
  • the sensor element 2 includes a bottomed cylindrical solid electrolyte body 3, a detection electrode 4A, and a reference electrode 4B.
  • the solid electrolyte body 3 has ion conductivity at the activation temperature, and includes a cylindrical tube portion 31 and a curved bottom portion 32 that closes the tip of the tube portion 31.
  • the detection electrode 4 ⁇ / b> A is provided on the outer surface 301 of the cylindrical portion 31 and is an electrode that is exposed to the detection gas G guided to the outside of the solid electrolyte body 3.
  • the reference electrode 4 ⁇ / b> B is an electrode that is provided on the inner side surface 302 of the cylindrical portion 31 and the bottom portion 32 and is exposed to the reference gas A guided to the inside of the solid electrolyte body 3.
  • the detection electrode 4A has a detection electrode portion 41, a mounting electrode portion 43, and a lead electrode portion.
  • the detection electrode portion 41 is provided on the entire circumference in the circumferential direction C centering on the central axis O at a position on the distal end side L1 in the axial direction L along the central axis O of the cylindrical portion 31.
  • the mounting electrode portion 43 is provided in a part of the circumferential direction C at a position on the base end side L ⁇ b> 2 in the axial direction L, and is a terminal mounted on the outer periphery of the cylindrical portion 31. Contact with the metal fitting 71.
  • the lead electrode portion 42 is provided in a part of the circumferential direction C at a position where the detection electrode portion 41 and the mounting electrode portion 43 are connected.
  • the formation range is narrow.
  • the solid electrolyte body 3 Between the cylindrical part 31 of the solid electrolyte body 3 and the mounting electrode part 43 and the lead electrode part 42, as shown in FIGS. 2 and 3, the solid electrolyte body 3, the mounting electrode part 43, and the lead electrode part 42 are connected.
  • An insulating layer 22 that insulates the gaps is provided. 2, 5, 6, and 8, for the sake of simplicity, the detection electrode 4 ⁇ / b> A is shown by hatching, and the portion where the insulating layer 22 is exposed on the surface is hatched. Show.
  • the direction along the central axis O of the sensor element 2 is referred to as the axial direction L, and the area around the central axis O of the sensor element 2 is The direction is referred to as a circumferential direction C, and the direction radially spreading from the central axis O of the sensor element 2 is referred to as a radial direction R.
  • the side on which the bottom 32 of the sensor element 2 is provided is referred to as a distal end side L1
  • the side opposite to the distal end side L1 is referred to as a proximal end side L2.
  • the gas sensor 1 is disposed in an exhaust pipe 81 through which exhaust gas exhausted from an internal combustion engine (engine) 8 of the vehicle flows.
  • the gas sensor 1 performs gas detection using the exhaust gas flowing in the exhaust pipe 81 as the detection gas G and the atmosphere as the reference gas A.
  • the gas sensor 1 of the present embodiment is used as an air-fuel ratio sensor for determining the air-fuel ratio of the internal combustion engine 8 determined from the composition of exhaust gas.
  • the air-fuel ratio sensor is quantitatively continuously air-fuel ratio from a fuel-rich state where the ratio of fuel to air is larger than the stoichiometric air-fuel ratio to a fuel-lean state where the ratio of fuel to air is smaller than the stoichiometric air-fuel ratio. Can be detected.
  • the detection electrode 4 ⁇ / b> A provided on one surface of the solid electrolyte body 3 and exposed to the detection gas G, and the other surface of the solid electrolyte body 3 are provided.
  • a predetermined voltage for showing the limiting current characteristic is applied by the voltage application circuit 11 between the reference electrode 4B exposed to the reference gas A and the reference electrode 4B.
  • a limit current generated between the detection electrode 4A and the reference electrode 4B via the solid electrolyte body 3 is detected by the current detection circuit 12.
  • the voltage application circuit 11 and the current detection circuit 12 are constructed in a control device 10 such as a sensor control unit.
  • the reference electrode In the air-fuel ratio sensor, when a voltage is applied between the detection electrode 4A and the reference electrode 4B, when the air-fuel ratio is on the fuel lean side, the reference electrode is connected from the detection electrode 4A via the solid electrolyte body 3. Oxygen ions (O 2 ⁇ ) move to 4B. On the other hand, when the air-fuel ratio is on the fuel rich side, oxygen ions (O 2 ⁇ ) are transferred from the reference electrode 4B to the detection electrode 4A via the solid electrolyte body 3 as the unburned gas chemically reacts at the detection electrode 4A. Move.
  • the gas sensor 1 is used as an oxygen sensor that determines whether the air-fuel ratio of the internal combustion engine 8 determined from the composition of the exhaust gas is on the fuel rich side or the fuel lean side by ON-OFF. You can also.
  • the oxygen sensor is connected to the detection electrode 4A and the reference through the solid electrolyte body 3 due to the difference in oxygen concentration between the atmosphere as the reference gas A that contacts the reference electrode 4B and the exhaust gas as the detection gas G that contacts the detection electrode 4A.
  • the electromotive force generated between the electrodes 4B is detected by the electromotive force detection circuit 13.
  • the electromotive force detection circuit 13 is formed in the sensor control unit.
  • the oxygen sensor can also quantitatively detect the oxygen concentration of the exhaust gas based on the electromotive force generated between the detection electrode 4A and the reference electrode 4B.
  • the gas sensor 1 is used to maintain the air-fuel ratio in the internal combustion engine 8 in the vicinity of the theoretical air-fuel ratio in which the catalytic activity of the three-way catalyst disposed in the exhaust pipe 81 is effectively exhibited.
  • the gas sensor 1 can be arranged at either the upstream side position or the downstream side position of the exhaust gas flow from the arrangement position of the three-way catalyst in the exhaust pipe 81.
  • the gas sensor 1 of the present embodiment can be used by being disposed in the exhaust pipe 81 at a downstream position where the temperature of the exhaust gas becomes lower.
  • the two catalysts 82A and 82B are arranged in the direction of the flow of the exhaust gas.
  • the two catalysts 82A and 82B are an upstream catalyst 82A (also referred to as an S / C (Start Converter) catalyst) located on the upstream side and a downstream catalyst 82B (U / F) located downstream of the upstream catalyst 82A. (Also called “Under Floor” catalyst).
  • the gas sensor 1 of the present embodiment is located downstream of the upstream catalyst 82A in the exhaust pipe 81 and downstream of the downstream catalyst 82B in the exhaust pipe 81. Placed in position. In other words, the gas sensor 1 of this embodiment is disposed at a position between the upstream catalyst 82A and the downstream catalyst 82B in the direction of the exhaust gas flow in the exhaust pipe 81.
  • another gas sensor 1A is disposed in the exhaust pipe 81 at a position upstream of the upstream catalyst 82A.
  • This other gas sensor functions as an air-fuel ratio sensor. Then, the air-fuel ratio of the exhaust gas is detected using the two gas sensors 1 and 1A, and the ECU (engine control unit) uses the air-fuel ratio received from the two gas sensors 1 and 1A to detect the fuel injection valve in the intake pipe.
  • the air-fuel ratio of the internal combustion engine 8 is controlled by adjusting the opening degree.
  • the gas sensor 1 of this embodiment may be disposed in the exhaust pipe 81 at a position upstream of the upstream catalyst 82A.
  • an air-fuel ratio sensor is disposed in the exhaust pipe 81 at a position upstream of the upstream catalyst 82A
  • an oxygen sensor is disposed at a position downstream of the upstream catalyst 82A.
  • the gas sensor 1 when the gas sensor 1 is disposed at a more downstream position in the exhaust pipe 81, the temperature of the exhaust gas in contact with the gas sensor 1 becomes lower, and the condensed water easily collides with the gas sensor 1.
  • the sensor element 2 of the present embodiment uses a bottomed cylindrical (cup-shaped) solid electrolyte body 3, and is effectively prevented from being cracked by condensed water present in the exhaust pipe 81.
  • the solid electrolyte body 3 of the sensor element 2 is mainly composed of zirconia, and is stabilized by replacing a part of zirconia with a rare earth metal element or an alkaline earth metal element. It consists of zirconia or partially stabilized zirconia.
  • the solid electrolyte body 3 can be composed of yttria stabilized zirconia or yttria partially stabilized zirconia.
  • the solid electrolyte body 3 has ion conductivity for conducting oxygen ions (O 2 ⁇ ) at a predetermined activation temperature.
  • the detection electrode 4A and the reference electrode 4B contain platinum as a noble metal exhibiting catalytic activity for oxygen.
  • the bottom portion 32 of the solid electrolyte body 3 is formed in a hemispherical shape, and the cylindrical portion 31 of the solid electrolyte body 3 is formed in a cylindrical shape.
  • An opening 33 through which the reference gas A can flow into the solid electrolyte body 3 is formed at a position opposite to the bottom 32 in the axial direction L of the solid electrolyte body 3.
  • the outer diameter of each part in the axial direction L of the cylindrical part 31 is appropriately changed in consideration of attachment to the housing 61.
  • a protective layer 21 made of a ceramic porous body is provided at the tip of the sensor element 2 so as to cover at least the entire detection electrode portion 41 of the detection electrode 4A.
  • the protective layer 21 in the air-fuel ratio sensor of this embodiment has a function as a diffusion resistance layer that limits the diffusion of the exhaust gas as the detection gas G. When a predetermined voltage is applied between the detection electrode 4A and the reference electrode 4B, the flow rate of the detection gas G passing through the protective layer 21 is limited, and a sensor output corresponding to the oxygen concentration in the detection gas G is generated. can get.
  • the protective layer 21 also has a function of preventing the detection electrode 4A from being poisoned and wet. Further, a porous layer for preventing the detection electrode 4A from being poisoned and exposed to water may be provided outside the protective layer 21 as a diffusion resistance layer.
  • the protective layer 21 mainly has a function of preventing the detection electrode 4A from being poisoned and wet.
  • the protective layer 21 may be formed from a plurality of layers having different porosity, composition, and the like.
  • the reference electrode 4 ⁇ / b> B is provided on the entire inner surface 302 of the solid electrolyte body 3.
  • An inner terminal fitting 72 is attached to the proximal end L2 portion of the inner side surface 302 of the solid electrolyte body 3 so as to be in contact with the proximal end L2 portion of the reference electrode 4B. Since the gas sensor 1 of the present embodiment is used as an air-fuel ratio sensor, the reference electrode 4B and the inner terminal fitting 72 become positive due to the voltage applied between the reference electrode 4B and the detection electrode 4A, and the detection electrode 4A and the terminal fitting are connected. 71 is on the negative side.
  • the reference electrode 4B is formed as a partial electrode in the same manner as the detection electrode 4A.
  • the detection electrode portion located on the most distal side L1, the attachment electrode portion located on the most proximal side L2, the detection electrode portion, and the attachment electrode It can also be formed by a lead electrode part connecting the parts.
  • the detection electrode portion 41 of the detection electrode 4A is a part that substantially performs gas detection such as detection of an air-fuel ratio in the detection electrode 4A.
  • the detection electrode part 41 is provided directly on the outer surface 301 of the solid electrolyte body 3 without the insulating layer 22 among the detection electrodes 4A.
  • the area of the detection electrode part 41 is prescribed
  • the detection electrode unit 41 is heated to a target temperature by the heater 5 disposed inside the solid electrolyte body 3 of the sensor element 2.
  • the lead electrode portion 42 of the detection electrode 4A is formed at one place in the circumferential direction C of the solid electrolyte body 3.
  • the lead electrode portion 42 is formed in parallel with the central axis O and the axial direction L of the cylindrical portion 31 of the solid electrolyte body 3. In other words, both side ends in the circumferential direction C of the lead electrode portion 42 are parallel to the axial direction L.
  • the mounting electrode portion 43 of the detection electrode 4A is formed in the circumferential direction C at a position on the base end side L2 of the outer surface 301 of the solid electrolyte body 3.
  • the mounting electrode portion 43 of this embodiment is formed only in a part of the outer surface 301 of the solid electrolyte body 3 in the circumferential direction C.
  • the insulating layer 22 provided on the outer surface 301 of the sensor element 2 is not provided between the cylinder portion 31 and the detection electrode portion 41.
  • the insulating layer 22 is provided on the entire bottom portion 32, the entire portion between the tubular portion 31 and the lead electrode portion 42, and the entire portion between the tubular portion 31 and the mounting electrode portion 43.
  • the mounting electrode portion 43 of this embodiment is not provided up to the base end position of the outer side surface 301 of the sensor element 2.
  • the mounting electrode portion 43 may be provided up to the base end position of the outer side surface 301 of the sensor element 2.
  • the insulating layer 22 is not provided at the position where the detection electrode portion 41 is formed, and the insulating layer 22 is provided at a position closer to the base end than the bottom 32 and the detection electrode portion 41.
  • the detection electrode 4 ⁇ / b> A is continuously provided from the detection electrode portion 41 to the outer surface of the insulating layer 22 provided on the bottom portion 32. Thereby, formation of electrode 4A can be made easy.
  • the bottom electrode portion 411 provided on the outer surface of the insulating layer 22 at the bottom portion 32 does not function as an electrode for conducting oxygen ions (O 2 ⁇ ) due to the presence of the insulating layer 22.
  • the mounting electrode portion 43 of the detection electrode 4A may be formed on the entire circumference in the circumferential direction C.
  • the detection electrode portion 41 of the detection electrode 4A may not necessarily be formed on the entire circumference in the circumferential direction C.
  • the insulating layer 22 can be provided only at a position closer to the base end side than the detection electrode portion 41 and not provided on the outer surface 301 of the bottom portion 32.
  • the detection electrode 4 ⁇ / b> A is formed by plating the outer surface 301 of the solid electrolyte body 3 with an electrode material
  • the reference electrode 4 ⁇ / b> B is formed on the inner surface 302 of the solid electrolyte body 3.
  • the material is formed by plating.
  • the insulating layer 22 is formed by applying a paste of an insulating material to the outer surface 301 of the solid electrolyte body 3 and sintering the paste together with the solid electrolyte body 3.
  • the formation portion of the detection electrode portion 41 on the outer surface 301 of the solid electrolyte body 3 is masked with a tape or the like.
  • the insulating layer 22 can be prevented from being formed in the masked portion by applying the paste and peeling off the tape or the like.
  • the insulating layer 22 is formed of an insulating material containing at least one of aluminum oxide (Al 2 O 3 ), spinel (MgAl 2 O 4 ), and insulating glass. This insulating material is generally used in the gas sensor 1, and a sufficient insulating effect can be obtained by having a high specific resistance.
  • the insulating layer 22 of this embodiment is formed on the outer surface 301 of the solid electrolyte body 3 so as to have a uniform thickness as much as possible.
  • the minimum thickness of the part located between the cylinder part 31 and the lead electrode part 42 and between the cylinder part 31 and the mounting electrode part 43 is 4 ⁇ m or more.
  • the minimum thickness means the thickness of the portion where the thickness is the smallest. If the minimum thickness of the insulating layer 22 is less than 4 ⁇ m, the insulating effect may not be sufficiently obtained.
  • the thickness of the insulating layer 22 can be set to, for example, 10 ⁇ m or less from the viewpoint of manufacturing.
  • a heater 5 for heating the solid electrolyte body 3 is disposed inside the solid electrolyte body 3 of the sensor element 2.
  • the heater 5 includes ceramic bases 51A and 51B and a heating element 52 made of a conductor provided on the base 51B.
  • a heat generating portion 521 that has the smallest cross-sectional area and generates heat by Joule heat when the heat generating member 52 is energized is formed at the tip of the heat generating member 52.
  • the heat generating portion 521 is formed in a shape meandering in the axial direction L at the tip portion of the heat generating body 52.
  • the heat generating portion 521 is disposed at a position facing the inner peripheral side of the detection electrode portion 41 of the detection electrode 4A, and the solid electrolyte body 3, the reference electrode 4B, and the detection are performed so that the detection electrode portion 41 reaches a target temperature.
  • the electrode 4A is heated.
  • the heater 5 is formed by winding a sheet-like base material 51B provided with a heating element 52 around a base material 51A serving as a mandrel.
  • the gas sensor 1 includes a housing 61 that holds the sensor element 2, a distal end side cover 62 that is attached to the distal end side L 1 of the housing 61, and a base of the housing 61.
  • the base end side cover 63 attached to the end side L2 portion, the terminal fitting 71 attached to the outer side surface 301 of the base end side L2 portion of the sensor element 2, and the inner side surface of the base end side L2 portion of the sensor element 2
  • Inner terminal fitting 72 attached to 302 is provided.
  • the housing 61 is formed with an insertion hole 611 penetrating in the axial direction L in order to hold the sensor element 2.
  • the insertion hole 611 has a small diameter hole 612 located on the distal end side L1 in the axial direction L, and a large diameter hole 613 located on the proximal side L2 in the axial direction L and having a diameter larger than that of the small diameter hole 612. .
  • the sensor element 2 is inserted into the small-diameter hole portion 612 and the large-diameter hole portion 613 of the insertion hole 611, and a sealing material such as talc powder and a sleeve disposed in the gap between the sensor element 2 and the large-diameter hole portion 613. 64 is held.
  • the flange portion 34 which is the portion having the largest outer diameter in the sensor element 2 is locked to the end portion of the small-diameter hole portion 612, so that the sensor element 2 is prevented from coming out from the insertion hole 611 to the distal end side L1.
  • a caulking portion 615 that is bent toward the inner peripheral side is formed in a portion on the base end side L2 in the axial direction L of the housing 61.
  • the sealing material 64 is compressed in the axial direction L between the caulking portion 615 and the flange portion 34, and the sensor element 2 is held by the housing 61.
  • a portion of the sensor element 2 on the distal end side L1, particularly where the detection electrode portion 41 and the lead electrode portion 42 are formed, is disposed so as to protrude from the housing 61 to the distal end side L1 in the axial direction L.
  • the portion of the housing 61 on the distal end side L1 in the axial direction L covers the portion of the sensor element 2 that protrudes from the housing 61 to the distal end side L1, and protects the sensor element 2
  • a cover 62 is attached.
  • the front end side cover 62 is disposed in the exhaust pipe 81.
  • a gas passage hole 621 for allowing the detection gas G to pass therethrough is formed in the distal end side cover 62.
  • the front end side cover 62 can have a double structure or a single structure. The exhaust gas as the detection gas G flowing into the tip side cover 62 from the gas passage hole 621 of the tip side cover 62 passes through the protective layer 21 of the sensor element 2 and is guided to the detection electrode 4A.
  • the base end side cover 63 is attached to a portion of the housing 61 on the base end side L2 in the axial direction L.
  • the proximal end cover 63 is disposed outside the exhaust pipe 81.
  • An introduction hole 631 for introducing the atmosphere as the reference gas A into the proximal end side cover 63 is formed in a part of the proximal end side cover 63.
  • a filter 632 that does not allow liquid to pass while allowing gas to pass is disposed in the introduction hole 631.
  • the reference gas A introduced into the base end side cover 63 from the introduction hole 631 passes through the gap in the base end side cover 63 and is guided to the reference electrode 4B on the inner side surface 302 of the sensor element 2.
  • a terminal fitting 71 that contacts the mounting electrode portion 43 of the detection electrode 4 ⁇ / b> A is mounted on the outer surface 301 of the base end side L ⁇ b> 2 portion of the sensor element 2.
  • an inner terminal fitting 72 that is in contact with the base end side L2 portion of the reference electrode 4B is mounted on the inner side surface 302 of the base end side L2 portion of the sensor element 2.
  • a lead wire 65 for electrically connecting the detection electrode 4A and the reference electrode 4B of the sensor element 2 to the external control device 10 is attached to the terminal fitting 71 and the inner terminal fitting 72.
  • the lead wire 65 is held by a bush 66 disposed in the proximal end side cover 63.
  • the insulating layer 22 is provided between the lead electrode portion 42 in the detection electrode 4A and the cylindrical portion 31 of the solid electrolyte body 3, but the terminal fitting 71 in the detection electrode 4A is mounted.
  • the insulating layer 22 is provided up to the portion between the mounting electrode portion 43 which is a part and the cylindrical portion 31 of the solid electrolyte body 3.
  • the gas sensor 1 when the gas sensor 1 is used as an air-fuel ratio sensor, even when the base end L2 portion of the sensor element 2 is exposed to a high temperature environment of 400 ° C. or higher, output as a sensor output in the vicinity of the theoretical air-fuel ratio. It is possible to prevent the offset current from being included in the current. Further, when the gas sensor 1 is used as an oxygen sensor, the output voltage as the sensor output does not include an error voltage even when the base end side L2 portion of the sensor element 2 is exposed to a high temperature environment of 400 ° C. or higher. Can be.
  • the entire sensor element 2 tends to become high temperature.
  • a minute leak current flows between the reference electrode 4B and the detection electrode 4A.
  • the influence of a minute leak current on the detection accuracy of the gas sensor 1 has not been regarded as a problem.
  • the influence of minute leak currents on the detection accuracy of the gas sensor 1, particularly the stoichiometric point (the air-fuel ratio of the exhaust gas is the stoichiometric air-fuel ratio) due to the minute current.
  • the point of detection has become a problem.
  • the gas sensor 1 of the present embodiment solves such a problem that has newly occurred in recent years.
  • the insulating layer 22 of this embodiment not only defines the formation area of the detection electrode portion 41 and suppresses variations in the sensor output of the gas sensor 1, but also oxygen in the reference gas A such as the atmosphere moves through the solid electrolyte body 3. It is provided in order to eliminate the leakage current.
  • the solid electrolyte body 3 in the portion on the tip side L1 of the sensor element 2 including the detection electrode portion 41 of the detection electrode 4A is heated to a temperature that activates the ionic conduction of oxygen. And the part of the base end side L2 of the sensor element 2 is often not heated up to the temperature at which the solid electrolyte body 3 is activated.
  • the temperature of the exhaust gas may become high, and the solid electrolyte body 3 in the portion on the base end side L2 of the sensor element 2 may be heated to a temperature at which it is activated.
  • this oxygen is ionized and passes through the solid electrolyte body 3 from the detection electrode 4A to the reference electrode 4B.
  • an electric current is generated by the conduction of oxygen ions in the portion on the base end side L2 of the solid electrolyte body 3 where the exhaust gas as the detection gas G does not reach. This current does not flow based on the change in the composition of the detection gas G, but becomes a leak current that causes an error in detection of the air-fuel ratio or the like.
  • the gas sensor 1 When the gas sensor 1 is used as an air-fuel ratio sensor, a voltage is applied between the detection electrode 4A and the reference electrode 4B so that the reference electrode 4B is on the positive side, so that ionized oxygen is detected by the detection electrode 4A. It is possible that a leakage current is generated by passing through the solid electrolyte body 3 from the reference electrode 4B to the reference electrode 4B.
  • the gas sensor 1 When the gas sensor 1 is used as an oxygen sensor, the oxygen concentration of the reference gas A that contacts the detection electrode 4A and the terminal fitting 71 and the oxygen concentration of the reference gas A that contacts the reference electrode 4B and the inner terminal fitting 72 are as follows. By being slightly different, it is possible that ionized oxygen passes through the solid electrolyte body 3 and a leak current is generated.
  • the occurrence of such a leakage current can be prevented by the arrangement of the insulating layer 22. Therefore, according to the gas sensor 1 of the present embodiment, it is possible to prevent leak current from being generated between the mounting electrode portion 43 of the detection electrode 4A and the reference electrode 4B, thereby improving the accuracy of gas detection.
  • the method of forming the insulating layer 22 provided between the lead electrode portion 42 and the mounting electrode portion 43 of the detection electrode 4A and the cylindrical portion 31 of the solid electrolyte element is devised.
  • the end portion on the base end side L2 in the axial direction L of the insulating layer 22 extends from the end portion on the base end side L2 in the axial direction L of the mounting electrode portion 43 to the base end side L2.
  • An end portion of the insulating layer 22 on the base end side L ⁇ b> 2 constitutes an outermost shell portion of the outer side surface 301 of the cylindrical portion 31 and is exposed on the outer side surface 301 of the cylindrical portion 31.
  • the end portion on the base end side L2 of the insulating layer 22 has a tapered surface 221 whose thickness in the radial direction R centering on the central axis O decreases toward the base end side L2 of the cylindrical portion 31.
  • the tapered surface 221 is a surface that guides the mounting of the terminal fitting 71 that is mounted on the outer periphery of the cylindrical portion 31 from the proximal end L2 of the cylindrical portion 31 toward the distal end L1.
  • a general portion of the insulating layer 22 excluding the end portion on the base end side L2 is provided on the outer surface 301 of the solid electrolyte body 3 so as to have a uniform thickness.
  • the terminal fitting 71 when the terminal fitting 71 is attached to the solid electrolyte body 3, the terminal fitting 71 can be brought into contact with the tapered surface 221 at the end portion on the proximal side L2 of the insulating layer 22. Then, the terminal fitting 71 can be slid on the tapered surface 221. Thereby, even if the terminal fitting 71 comes into contact with the end portion of the insulating layer 22 on the base end side L2, it is possible to prevent the end portion on the base end side L2 from being peeled off or chipped.
  • the entire tapered surface 221 at the end portion on the base end side L2 of the insulating layer 22 is exposed.
  • a mounting electrode portion 43 may be provided on the surface of the tapered surface 221 at the front end side L1. In this case, only the surface at the position of the base end side L2 of the tapered surface 221 is exposed.
  • the tapered surface 221 constitutes the outermost shell portion of the outer side surface 301 of the cylindrical portion 31, and becomes a surface that comes into contact with the terminal fitting 71 when the terminal fitting 71 is attached to the solid electrolyte body 3.
  • the inclination angle ⁇ of the tapered surface 221 with respect to the axial direction L parallel to the central axis O is 60 ° or less.
  • the inclination angle ⁇ of the tapered surface 221 exceeds 60 °, there is a possibility that peeling, chipping, or the like may occur at the end portion on the base end side L2 of the insulating layer 22.
  • the inclination angle ⁇ of the tapered surface 221 decreases, the length in the axial direction L of the end portion on the base end side L2 of the insulating layer 22 increases. Therefore, from the viewpoint of manufacturing, the inclination angle ⁇ of the tapered surface 221 can be set to 15 ° or more, for example.
  • a curved surface may be formed at the corner portion on the base end side L2 of the insulating layer 22. Also in this case, it is possible to make it difficult for the insulating layer 22 to be peeled off or chipped.
  • the method of forming the insulating layer 22 provided between the lead electrode portion 42 and the mounting electrode portion 43 of the detection electrode 4A and the cylindrical portion 31 of the solid electrolyte element is devised.
  • the end portion 222 on the base end side L2 in the axial direction L of the insulating layer 22 of this embodiment is continuous from the outer surface 301 of the tube portion 31 to the end surface 311 on the base end side L2 of the tube portion 31.
  • the corner portion 223 of the insulating layer 22 positioned at the corner portion on the base end side L2 of the cylindrical portion 31 is preferably formed in a curved surface shape or the like.
  • the end portion 222 of the insulating layer 22 need not be provided on the entire end surface 311 on the base end side L2 of the cylindrical portion 31.
  • the end portion 222 of the insulating layer 22 is provided on the outer peripheral side position of the end surface 311 on the base end side L2 of the cylindrical portion 31, and is provided on the center side position of the end surface 311 on the base end side L2 of the cylindrical portion 31. Absent.
  • the error generated in the sensor output is an output shift amount [A / F] (amount of change in air-fuel ratio) indicating an offset amount from the detected value of the air-fuel ratio.
  • the output shift amount is, for example, an error amount when the detected value of the air-fuel ratio is supposed to be 14.7 indicating the stoichiometric air-fuel ratio but is shown as a value slightly larger than 14.7.
  • the temperature of the sensor element 2 was the average value of the temperature from the portion on the distal end side L1 in the axial direction L of the sensor element 2 to the portion on the proximal end side L2.
  • the film thickness of the general part of the insulating layer 22 was 10 ⁇ m.
  • the output shift amount of the sensor output is almost 0 (zero) in the high temperature range where the temperature of the sensor element 2 is about 280 ° C. or more and about 540 ° C. or less. I understood that.
  • the comparative gas sensor it was found that an output shift amount occurs when the temperature of the sensor element 2 reaches about 420 ° C. or higher, and the output shift amount increases as the temperature of the sensor element 2 increases.
  • the gas sensor 1 for detecting the air-fuel ratio of the first embodiment suppresses a leak current generated between the reference electrode 4B and the detection electrode 4A of the sensor element 2, and an offset error due to the leak current almost occurs in the sensor output. I found out that I can do it.
  • FIG. 12 shows how much error occurs in the sensor output of the gas sensor 1 of the first embodiment when the thickness [ ⁇ m] of the insulating layer 22 is appropriately changed. Since the gas sensor 1 of the first embodiment is used as an air-fuel ratio sensor, the error generated in the sensor output is an output shift amount [A / F] (amount of change in air-fuel ratio) indicating an offset amount from the detected value of the air-fuel ratio.
  • the thickness of the insulating layer 22 was the average value of the thickness of the general portion of the insulating layer 22 excluding the end portion on the base end side L2 of the insulating layer 22 on which the tapered surface 221 was formed.
  • the thickness of the insulating layer 22 indicates the minimum thickness of a portion of the insulating layer 22 that is located between the cylindrical portion 31 and the lead electrode portion 42 and between the cylindrical portion 31 and the mounting electrode portion 43.
  • the temperature of the sensor element 2 which is an average value of the temperature from the portion on the distal end side L1 in the axial direction L of the sensor element 2 to the portion on the proximal end side L2, was 550 ° C.
  • the output shift amount of the sensor output increases as the thickness of the insulating layer 22 decreases. And when the thickness of the insulating layer 22 becomes thinner than 4 micrometers, it turns out that the output shift amount is increasing rapidly.
  • the thickness of the insulating layer 22 is less than 4 ⁇ m, the uneven protrusions formed on the surface of the solid electrolyte body 3 appear on the surface of the insulating layer 22, and the insulating layer 22 causes the solid electrolyte body 3 and the detection electrode 4A to be formed. This is considered to be because the insulation with the mounting electrode portion 43 cannot be sufficiently performed. Therefore, it can be said that the minimum thickness of the insulating layer 22 is preferably 4 ⁇ m or more in order to sufficiently obtain the insulating effect of the insulating layer 22.
  • the error that occurs in the sensor output is a shift in the output voltage that indicates how much the output voltage (electromotive force) of the gas sensor 1 changes when the detected gas G is at the stoichiometric air-fuel ratio when the temperature of the sensor element 2 changes. Indicated by quantity [V].
  • the temperature of the sensor element 2 was the average value of the temperature from the portion on the distal end side L1 in the axial direction L of the sensor element 2 to the portion on the proximal end side L2.
  • the film thickness of the general part of the insulating layer 22 was 10 ⁇ m.
  • the shift amount of the output voltage is close to 0 (zero) in the high temperature range where the temperature of the sensor element 2 is about 270 ° C. or more and about 600 ° C. or less. I understood.
  • the comparative gas sensor when the temperature of the sensor element 2 reaches about 380 ° C. or higher, the output voltage shift amount occurs, and as the sensor element 2 temperature increases, the output voltage shift amount increases. It was.
  • the gas sensor 1 for detecting the oxygen concentration according to the first embodiment suppresses a leak current generated between the reference electrode 4B and the detection electrode 4A of the sensor element 2, and an offset error due to the leak current almost occurs in the sensor output. I found out that I can do it.
  • FIG. 14 shows how much error occurs in the sensor output of the gas sensor 1 of the first embodiment when the thickness [ ⁇ m] of the insulating layer 22 is appropriately changed.
  • the error that occurs in the sensor output is a shift in the output voltage that indicates how much the output voltage (electromotive force) of the gas sensor 1 changes when the detected gas G is at the stoichiometric air-fuel ratio when the thickness of the insulating layer 22 changes. Indicated by quantity [V].
  • the thickness of the insulating layer 22 and the temperature of the sensor element 2 are the same as in the confirmation test 2.
  • the shift amount of the output voltage increases as the thickness of the insulating layer 22 decreases. And when the thickness of the insulating layer 22 becomes thinner than 4 micrometers, it turns out that the shift amount is increasing rapidly.
  • the thickness of the insulating layer 22 is less than 4 ⁇ m, the uneven protrusions formed on the surface of the solid electrolyte body 3 are reflected on the surface of the insulating layer 22, and the insulating layer 22 causes the solid electrolyte body 3 and the detection electrode 4A to be formed. This is considered to be because the insulation with the mounting electrode portion 43 cannot be sufficiently performed. Therefore, it can be said that the minimum thickness of the insulating layer 22 is preferably 4 ⁇ m or more in order to sufficiently obtain the insulating effect of the insulating layer 22.

Abstract

This gas sensor is provided with a sensor element (2), and the sensor element (2) includes a solid electrolyte body (3) in the shape of a bottomed cylinder, a detecting electrode (4A) provided on an outside surface of the solid electrolyte body (3), and a reference electrode provided on an inside surface of the solid electrolyte body (3). The detecting electrode (4A) of the sensor element (2) comprises: a detecting electrode portion (41) provided in a position on a distal end side (L1) in an axial direction (L); a mounting electrode portion (43) provided in a position on a proximal end side (L2) in the axial direction (L); and a lead electrode portion (42) provided in a position joining the detecting electrode portion (41) and the mounting electrode portion (43). An insulating layer (22) is provided between a cylinder portion (31) of the solid electrolyte body (3) on the one hand, and the mounting electrode portion (43) and the lead electrode portion (42) on the other hand.

Description

ガスセンサGas sensor 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年4月21日に出願された日本の特許出願番号2017-084568号、及び2018年2月5日に出願された日本の特許出願番号2018-018540号に基づくものであり、その記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-084568 filed on Apr. 21, 2017 and Japanese Patent Application No. 2018-018540 filed on Feb. 5, 2018. The description is incorporated.
 本開示は、固体電解質体に電極が設けられたセンサ素子を有するガスセンサに関する。 The present disclosure relates to a gas sensor having a sensor element in which an electrode is provided on a solid electrolyte body.
 内燃機関の排気管に配置されるガスセンサは、排気管内を流れる排ガスを検出ガス(測定ガス)とし、この検出ガスと大気等の基準ガスとの酸素濃度の差等を利用して、ガス検出を行う。ガスセンサには、排ガスの組成から求められる内燃機関の空燃比が、理論空燃比に対して燃料リッチ側にあるか燃料リーン側にあるかを検出する酸素センサとしての用途、排ガスから求められる内燃機関の空燃比を定量的に検出する空燃比センサとしての用途等がある。 The gas sensor arranged in the exhaust pipe of the internal combustion engine uses the exhaust gas flowing in the exhaust pipe as a detection gas (measurement gas), and performs gas detection using the difference in oxygen concentration between this detection gas and a reference gas such as the atmosphere. Do. The gas sensor is used as an oxygen sensor for detecting whether the air-fuel ratio of the internal combustion engine determined from the composition of the exhaust gas is on the fuel rich side or the fuel lean side with respect to the theoretical air fuel ratio, and the internal combustion engine required from the exhaust gas There are uses as an air-fuel ratio sensor for quantitatively detecting the air-fuel ratio.
 ガスセンサにおいては、有底筒状の固体電解質体の内側面及び外側面に電極を配置した有底筒状のセンサ素子、又は板状の固体電解質体の両面に電極を配置した板状のセンサ素子が用いられる。そして、ガスセンサを酸素センサとして用いる場合には、検出ガスと基準ガスとの酸素濃度の差に応じて、固体電解質体を介する一対の電極の間に生じる起電力を検出している。また、ガスセンサを空燃比センサとして用いる場合には、一対の電極の間に電圧を印加しておき、検出ガスの酸素濃度に応じて、固体電解質体を介する一対の電極の間に流れる電流を検出している。 In a gas sensor, a bottomed cylindrical sensor element in which electrodes are arranged on the inner side surface and outer side surface of a bottomed cylindrical solid electrolyte body, or a plate-like sensor element in which electrodes are arranged on both sides of a plate-like solid electrolyte body Is used. When the gas sensor is used as an oxygen sensor, an electromotive force generated between the pair of electrodes through the solid electrolyte body is detected according to the difference in oxygen concentration between the detection gas and the reference gas. When the gas sensor is used as an air-fuel ratio sensor, a voltage is applied between the pair of electrodes, and the current flowing between the pair of electrodes via the solid electrolyte body is detected according to the oxygen concentration of the detection gas. is doing.
 有底筒状のセンサ素子おける、検出ガスに晒される検出電極は、固体電解質体における先端側部分の全周に形成され、ヒータの発熱部によって目標とする温度に加熱される検知部と、検知部から基端側に引き出されたリード部とを有する形状に形成することが多い。そして、検知部のみにおいて、固体電解質体を介する酸素の移動が生じるようにするため、リード部と固体電解質体との間に、絶縁層を設けることが知られている。 In the bottomed cylindrical sensor element, the detection electrode that is exposed to the detection gas is formed on the entire circumference of the tip side portion of the solid electrolyte body, and the detection unit that is heated to the target temperature by the heating unit of the heater, and the detection In many cases, it is formed into a shape having a lead portion drawn out from the portion to the proximal end side. In addition, it is known that an insulating layer is provided between the lead portion and the solid electrolyte body in order to cause oxygen movement through the solid electrolyte body only in the detection section.
 このようなセンサ素子としては、例えば、特許文献1に記載された酸素センサがある。この酸素センサにおいては、固体電解質体と検出電極のリード部との間に、絶縁体による絶縁層が設けられており、ガス検出を行う際に機能する検出電極の面積を規定している。 Examples of such sensor elements include an oxygen sensor described in Patent Document 1. In this oxygen sensor, an insulating layer made of an insulator is provided between the solid electrolyte body and the lead portion of the detection electrode, and the area of the detection electrode that functions when performing gas detection is defined.
特開平6-201641号公報JP-A-6-201641
 ところで、発明者らの鋭意研究の結果、センサ素子の基端側部分が400℃以上の高温になる環境下においては、ガスセンサのセンサ出力が本来は理論空燃比の出力になる検出ガスの組成の状態においても、このセンサ出力にずれが生じ、このセンサ出力が理論空燃比相当の出力にならない場合があることが判明した。この原因は、センサ素子の基端側部分が高温になったことにより、センサ素子の基端側部分における固体電解質体、検出電極のリード部及び基準電極が活性化し、センサ素子の基端側部分に存在する大気等の基準ガス中の酸素が固体電解質体を移動して、検出電極のリード部と基準電極との間にリーク電流が生じたためであることが分かった。特に、検出電極のリード部における、端子金具が装着された部分においてリーク電流が生じていることが分かった。 By the way, as a result of the diligent research by the inventors, in an environment where the base end side portion of the sensor element is at a high temperature of 400 ° C. or higher, the sensor output of the gas sensor originally has a stoichiometric air-fuel ratio output. Even in the state, it has been found that there is a case where the sensor output is deviated and the sensor output may not be equivalent to the theoretical air-fuel ratio. This is due to the fact that the base end portion of the sensor element is heated, so that the solid electrolyte body, the lead portion of the detection electrode and the reference electrode are activated in the base end portion of the sensor element, and the base end portion of the sensor element is activated. It was found that oxygen in the reference gas such as the atmosphere existing in the atmosphere moved through the solid electrolyte body and a leak current was generated between the lead portion of the detection electrode and the reference electrode. In particular, it has been found that a leak current is generated in a portion where the terminal fitting is mounted in the lead portion of the detection electrode.
 特許文献1等においては、検出ガスに晒される検出電極の部分又はリード部について、絶縁層を設けることが行われている。しかし、センサ素子における先端側部分は検出ガスに晒される一方、センサ素子における基端側部分はハウジングに固定されるために、検出ガスには晒されない。特許文献1における絶縁層は、ガス検出を行う際に機能する検出電極の面積を規定するために設けている。そのため、絶縁層は、検出ガスに晒されない部分であって、端子金具が装着されるリード部の基端側部分にまで設けることは考えられていない。 In Patent Document 1 or the like, an insulating layer is provided for a portion of a detection electrode or a lead portion exposed to a detection gas. However, the front end portion of the sensor element is exposed to the detection gas, while the proximal end portion of the sensor element is fixed to the housing and is not exposed to the detection gas. The insulating layer in Patent Document 1 is provided to define the area of the detection electrode that functions when performing gas detection. For this reason, the insulating layer is a portion that is not exposed to the detection gas and is not considered to be provided up to the proximal end portion of the lead portion to which the terminal fitting is attached.
 本開示は、検出電極の装着電極部と基準電極との間にリーク電流が生じることを防止して、ガス検出の精度を向上させることができるガスセンサを提供しようとして得られたものである。 The present disclosure has been obtained in an attempt to provide a gas sensor capable of improving the accuracy of gas detection by preventing leakage current from being generated between the mounting electrode portion of the detection electrode and the reference electrode.
 本開示の一態様は、筒状の筒部の先端部が曲面状の底部によって閉塞された有底筒状の固体電解質体と、
 少なくとも前記筒部の外側面に設けられて、前記固体電解質体の外側に導かれる検出ガスに晒される検出電極と、
 少なくとも前記筒部の内側面に設けられて、前記固体電解質体の内側に導かれる基準ガスに晒される基準電極と、を有するセンサ素子を備えるガスセンサにおいて、
 前記検出電極は、
 前記筒部の中心軸線に沿った軸方向の先端側の位置において、前記中心軸線を中心とする周方向の全周又は一部に設けられた検知電極部と、
 前記軸方向の基端側の位置において、前記周方向の全周又は一部に設けられ、前記筒部の外周に装着された端子金具と接触する装着電極部と、
 前記検知電極部と前記装着電極部とを繋ぐ位置において、前記周方向の一部に設けられ、前記装着電極部に比べて前記周方向における形成範囲が狭いリード電極部と、を有し、
 前記固体電解質体の前記筒部と前記装着電極部及び前記リード電極部との間には、前記固体電解質体と前記装着電極部及び前記リード電極部との間を絶縁する絶縁層が設けられている、ガスセンサにある。
One aspect of the present disclosure includes a bottomed cylindrical solid electrolyte body in which a distal end portion of a cylindrical cylindrical portion is closed by a curved bottom portion;
A detection electrode provided at least on the outer surface of the cylindrical portion and exposed to a detection gas guided to the outside of the solid electrolyte body;
In a gas sensor comprising a sensor element that is provided at least on the inner surface of the cylindrical portion and is exposed to a reference gas guided to the inside of the solid electrolyte body,
The detection electrode is
A detection electrode provided on the entire circumference or a part of the circumference in the circumferential direction centering on the central axis at the position on the distal end side in the axial direction along the central axis of the cylinder;
A mounting electrode part that is provided on the entire circumference or a part of the circumferential direction at a position on the base end side in the axial direction and that contacts a terminal fitting mounted on the outer periphery of the cylindrical part;
A lead electrode part provided at a part of the circumferential direction at a position connecting the detection electrode part and the mounting electrode part, and having a narrow formation range in the circumferential direction compared to the mounting electrode part;
An insulating layer is provided between the cylindrical portion of the solid electrolyte body and the mounting electrode portion and the lead electrode portion to insulate the solid electrolyte body from the mounting electrode portion and the lead electrode portion. There is a gas sensor.
 前記ガスセンサにおいては、検出電極におけるリード電極部と固体電解質体との間に絶縁層を設けるだけでなく、検出電極における、端子金具が装着される部位である装着電極部と固体電解質体との間にまで絶縁層を設けている。これにより、センサ素子の基端側部分が400℃以上の高温に加熱されるような場合において、固体電解質体が活性化され、センサ素子の基端側部分に接触する基準ガスにおける酸素の移動によって、検出電極の装着電極部と基準電極との間にリーク電流が生じることを防止することができる。 In the gas sensor, not only an insulating layer is provided between the lead electrode portion and the solid electrolyte body in the detection electrode, but also between the mounting electrode portion and the solid electrolyte body where the terminal fitting is mounted in the detection electrode. An insulating layer is provided. Thereby, in the case where the base end side portion of the sensor element is heated to a high temperature of 400 ° C. or higher, the solid electrolyte body is activated, and oxygen moves in the reference gas contacting the base end side portion of the sensor element. Further, it is possible to prevent a leak current from being generated between the mounting electrode portion of the detection electrode and the reference electrode.
 そのため、ガスセンサを空燃比センサとして用いる場合には、センサ素子の基端側部分が400℃以上の高温環境下に晒されるときでも、理論空燃比の近傍において、センサ出力としての出力電流にオフセット電流が含まれないようにすることができる。また、ガスセンサを酸素センサとして用いる場合には、センサ素子の基端側部分が400℃以上の高温環境下に晒されるときでも、センサ出力としての出力電圧に誤差電圧が含まれないようにすることができる。 Therefore, when the gas sensor is used as an air-fuel ratio sensor, even when the proximal end portion of the sensor element is exposed to a high temperature environment of 400 ° C. or higher, an offset current is added to the output current as the sensor output near the theoretical air-fuel ratio. Can be excluded. In addition, when the gas sensor is used as an oxygen sensor, an error voltage should not be included in the output voltage as the sensor output even when the proximal end portion of the sensor element is exposed to a high temperature environment of 400 ° C. or higher. Can do.
 それ故、前記ガスセンサによれば、検出電極の装着電極部と基準電極との間にリーク電流が生じることを防止して、ガス検出の精度を向上させることができる。 Therefore, according to the gas sensor, it is possible to prevent leak current from being generated between the mounting electrode portion of the detection electrode and the reference electrode, and to improve the accuracy of gas detection.
 なお、本開示の一態様において示す各構成要素のカッコ書きの符号は、実施形態における図中の符号との対応関係を示すが、各構成要素を実施形態の内容のみに限定するものではない。 In addition, although the code | symbol of the parenthesis of each component shown in 1 aspect of this indication shows the correspondence with the code | symbol in the figure in embodiment, each component is not limited only to the content of embodiment.
 本開示についての目的、特徴、利点等は、添付の図面を参照する下記の詳細な記述により、より明確になる。本開示の図面を以下に示す。
実施形態1にかかる、ガスセンサの断面を示す説明図。 実施形態1にかかる、センサ素子における検出電極の形成状態を示す説明図。 実施形態1にかかる、センサ素子の先端部の断面を示す説明図。 実施形態1にかかる、内燃機関の排気管にガスセンサを配置した状態を示す説明図。 実施形態1にかかる、他の検出方式に用いられるセンサ素子の先端部の断面を示す説明図。 実施形態1にかかる、他のセンサ素子における検出電極の形成状態を示す説明図。 実施形態1にかかる、他のセンサ素子の先端部の断面を示す説明図。 実施形態2にかかる、センサ素子に端子金具を装着する状態を示す斜視図。 実施形態2にかかる、センサ素子に端子金具を装着する状態の断面の一部を拡大して示す説明図。 実施形態3にかかる、センサ素子に端子金具を装着する状態の断面の一部を拡大して示す説明図。 確認試験1にかかる、センサ素子の温度と空燃比の出力シフト量との関係を示すグラフ。 確認試験2にかかる、絶縁層の厚みと空燃比の出力シフト量との関係を示すグラフ。 確認試験3にかかる、センサ素子の温度と出力電圧のシフト量との関係を示すグラフ。 確認試験4にかかる、絶縁層の厚みと出力電圧のシフト量との関係を示すグラフ。 確認試験5にかかる、テーパ状表面の傾斜角度と絶縁層における欠陥の発生数との関係を示すグラフ。
Objects, features, advantages, and the like of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawings of the present disclosure are shown below.
Explanatory drawing which shows the cross section of the gas sensor concerning Embodiment 1. FIG. FIG. 3 is an explanatory diagram illustrating a formation state of detection electrodes in the sensor element according to the first embodiment. FIG. 3 is an explanatory diagram illustrating a cross section of a tip portion of a sensor element according to the first embodiment. BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which shows the state which has arrange | positioned the gas sensor to the exhaust pipe of the internal combustion engine concerning Embodiment 1. FIG. Explanatory drawing which shows the cross section of the front-end | tip part of the sensor element used for the other detection system concerning Embodiment 1. FIG. FIG. 3 is an explanatory diagram illustrating a formation state of detection electrodes in other sensor elements according to the first embodiment. Explanatory drawing which shows the cross section of the front-end | tip part of the other sensor element concerning Embodiment 1. FIG. The perspective view which shows the state which attaches a terminal metal fitting to the sensor element concerning Embodiment 2. FIG. Explanatory drawing which expands and shows a part of cross section of the state which attaches a terminal metal fitting to a sensor element concerning Embodiment 2. FIG. Explanatory drawing which expands and shows a part of cross section of the state which attaches a terminal metal fitting to a sensor element concerning Embodiment 3. FIG. The graph which shows the relationship between the temperature of a sensor element concerning the confirmation test 1, and the output shift amount of an air fuel ratio. The graph which shows the relationship between the thickness of an insulating layer concerning the confirmation test 2, and the output shift amount of an air fuel ratio. The graph which shows the relationship between the temperature of a sensor element concerning the confirmation test 3, and the amount of shifts of an output voltage. The graph which shows the relationship between the thickness of an insulating layer concerning the confirmation test 4, and the amount of shifts of an output voltage. The graph which shows the relationship between the inclination-angle of a taper-shaped surface concerning the confirmation test 5, and the generation number of the defect in an insulating layer.
 前述したガスセンサにかかる好ましい実施形態について、図面を参照して説明する。
<実施形態1>
 本形態のガスセンサ1は、図1~図3に示すように、センサ素子2を備えており、センサ素子2は、有底筒状の固体電解質体3、検出電極4A及び基準電極4Bを有する。固体電解質体3は、活性化温度においてイオン伝導性を有するものであり、筒状の筒部31と、筒部31の先端部を閉塞する曲面状の底部32とを有する。検出電極4Aは、筒部31の外側面301に設けられており、固体電解質体3の外側に導かれる検出ガスGに晒される電極である。基準電極4Bは、筒部31及び底部32の内側面302に設けられており、固体電解質体3の内側に導かれる基準ガスAに晒される電極である。
A preferred embodiment of the gas sensor described above will be described with reference to the drawings.
<Embodiment 1>
As shown in FIGS. 1 to 3, the gas sensor 1 of the present embodiment includes a sensor element 2. The sensor element 2 includes a bottomed cylindrical solid electrolyte body 3, a detection electrode 4A, and a reference electrode 4B. The solid electrolyte body 3 has ion conductivity at the activation temperature, and includes a cylindrical tube portion 31 and a curved bottom portion 32 that closes the tip of the tube portion 31. The detection electrode 4 </ b> A is provided on the outer surface 301 of the cylindrical portion 31 and is an electrode that is exposed to the detection gas G guided to the outside of the solid electrolyte body 3. The reference electrode 4 </ b> B is an electrode that is provided on the inner side surface 302 of the cylindrical portion 31 and the bottom portion 32 and is exposed to the reference gas A guided to the inside of the solid electrolyte body 3.
 検出電極4Aは、検知電極部41、装着電極部43及びリード電極部42を有する。検知電極部41は、図2に示すように、筒部31の中心軸線Oに沿った軸方向Lの先端側L1の位置において、中心軸線Oを中心とする周方向Cの全周に設けられている。装着電極部43は、図1及び図2に示すように、軸方向Lの基端側L2の位置において、周方向Cの一部に設けられており、筒部31の外周に装着された端子金具71と接触する。リード電極部42は、図2に示すように、検知電極部41と装着電極部43とを繋ぐ位置において、周方向Cの一部に設けられており、装着電極部43に比べて周方向Cにおける形成範囲が狭くなっている。 The detection electrode 4A has a detection electrode portion 41, a mounting electrode portion 43, and a lead electrode portion. As shown in FIG. 2, the detection electrode portion 41 is provided on the entire circumference in the circumferential direction C centering on the central axis O at a position on the distal end side L1 in the axial direction L along the central axis O of the cylindrical portion 31. ing. As shown in FIGS. 1 and 2, the mounting electrode portion 43 is provided in a part of the circumferential direction C at a position on the base end side L <b> 2 in the axial direction L, and is a terminal mounted on the outer periphery of the cylindrical portion 31. Contact with the metal fitting 71. As shown in FIG. 2, the lead electrode portion 42 is provided in a part of the circumferential direction C at a position where the detection electrode portion 41 and the mounting electrode portion 43 are connected. The formation range is narrow.
 固体電解質体3の筒部31と装着電極部43及びリード電極部42との間には、図2及び図3に示すように、固体電解質体3と装着電極部43及びリード電極部42との間を絶縁する絶縁層22が設けられている。なお、図2、図5、図6、図8においては、分かりやすくするために、検出電極4Aを斜線のハッチングを行って示し、絶縁層22が表面に露出する部分をグレーチングのハッチングを行って示す。 Between the cylindrical part 31 of the solid electrolyte body 3 and the mounting electrode part 43 and the lead electrode part 42, as shown in FIGS. 2 and 3, the solid electrolyte body 3, the mounting electrode part 43, and the lead electrode part 42 are connected. An insulating layer 22 that insulates the gaps is provided. 2, 5, 6, and 8, for the sake of simplicity, the detection electrode 4 </ b> A is shown by hatching, and the portion where the insulating layer 22 is exposed on the surface is hatched. Show.
 図8に示すように、実施形態1,2のセンサ素子2及びガスセンサ1においては、センサ素子2の中心軸線Oに沿った方向を軸方向Lといい、センサ素子2の中心軸線Oの周りの方向を周方向Cといい、センサ素子2の中心軸線Oから放射状に広がる方向を径方向Rという。また、センサ素子2及びガスセンサ1においては、センサ素子2の底部32が設けられた側を先端側L1といい、先端側L1とは反対側を基端側L2という。 As shown in FIG. 8, in the sensor element 2 and the gas sensor 1 of the first and second embodiments, the direction along the central axis O of the sensor element 2 is referred to as the axial direction L, and the area around the central axis O of the sensor element 2 is The direction is referred to as a circumferential direction C, and the direction radially spreading from the central axis O of the sensor element 2 is referred to as a radial direction R. In the sensor element 2 and the gas sensor 1, the side on which the bottom 32 of the sensor element 2 is provided is referred to as a distal end side L1, and the side opposite to the distal end side L1 is referred to as a proximal end side L2.
 以下に、本形態のガスセンサ1について詳説する。
(内燃機関8)
 図4に示すように、ガスセンサ1は、車両の内燃機関(エンジン)8から排気される排ガスが流れる排気管81内に配置される。ガスセンサ1は、排気管81内を流れる排ガスを検出ガスGとするとともに、大気を基準ガスAとして、ガス検出を行うものである。本形態のガスセンサ1は、排ガスの組成から求められる内燃機関8の空燃比を求める空燃比センサとして用いられる。空燃比センサは、理論空燃比と比べて空気に対する燃料の割合が多い燃料リッチの状態から、理論空燃比と比べて空気に対する燃料の割合が少ない燃料リーンの状態まで定量的に連続して空燃比を検出することができるものである。
Below, it explains in full detail about the gas sensor 1 of this form.
(Internal combustion engine 8)
As shown in FIG. 4, the gas sensor 1 is disposed in an exhaust pipe 81 through which exhaust gas exhausted from an internal combustion engine (engine) 8 of the vehicle flows. The gas sensor 1 performs gas detection using the exhaust gas flowing in the exhaust pipe 81 as the detection gas G and the atmosphere as the reference gas A. The gas sensor 1 of the present embodiment is used as an air-fuel ratio sensor for determining the air-fuel ratio of the internal combustion engine 8 determined from the composition of exhaust gas. The air-fuel ratio sensor is quantitatively continuously air-fuel ratio from a fuel-rich state where the ratio of fuel to air is larger than the stoichiometric air-fuel ratio to a fuel-lean state where the ratio of fuel to air is smaller than the stoichiometric air-fuel ratio. Can be detected.
 図3に示すように、空燃比センサにおいては、固体電解質体3の一方の表面に設けられた、検出ガスGに晒される検出電極4Aと、固体電解質体3の他方の表面に設けられた、基準ガスAに晒される基準電極4Bとの間に、限界電流特性を示すための所定の電圧が電圧印加回路11によって印加される。また、この電圧が印加された状態において、固体電解質体3を介して検出電極4Aと基準電極4Bとの間に生じる限界電流が、電流検出回路12によって検出される。言い換えれば、検出ガスGとしての排ガスの酸素濃度が変化したときに、検出電極4Aと基準電極4Bとの間における酸素イオン(O2-)の移動量及び移動方向が変化し、燃料リッチ側及び燃料リーン側の空燃比が、所定の検出レンジ内において定量的に検出される。なお、図1に示すように、電圧印加回路11及び電流検出回路12は、センサコントロールユニット等の制御装置10内に構築されている。 As shown in FIG. 3, in the air-fuel ratio sensor, the detection electrode 4 </ b> A provided on one surface of the solid electrolyte body 3 and exposed to the detection gas G, and the other surface of the solid electrolyte body 3 are provided. A predetermined voltage for showing the limiting current characteristic is applied by the voltage application circuit 11 between the reference electrode 4B exposed to the reference gas A and the reference electrode 4B. In addition, in the state where this voltage is applied, a limit current generated between the detection electrode 4A and the reference electrode 4B via the solid electrolyte body 3 is detected by the current detection circuit 12. In other words, when the oxygen concentration of the exhaust gas as the detection gas G changes, the movement amount and movement direction of oxygen ions (O 2− ) between the detection electrode 4A and the reference electrode 4B change, and the fuel rich side and The air-fuel ratio on the fuel lean side is quantitatively detected within a predetermined detection range. As shown in FIG. 1, the voltage application circuit 11 and the current detection circuit 12 are constructed in a control device 10 such as a sensor control unit.
 空燃比センサにおいては、検出電極4Aと基準電極4Bとの間に電圧が印加されていることにより、空燃比が燃料リーン側にあるときには、固体電解質体3を介して、検出電極4Aから基準電極4Bへ酸素イオン(O2-)が移動する。一方、空燃比が燃料リッチ側にあるときには、検出電極4Aにおいて未燃ガスが化学反応することに伴い、固体電解質体3を介して、基準電極4Bから検出電極4Aへ酸素イオン(O2-)が移動する。 In the air-fuel ratio sensor, when a voltage is applied between the detection electrode 4A and the reference electrode 4B, when the air-fuel ratio is on the fuel lean side, the reference electrode is connected from the detection electrode 4A via the solid electrolyte body 3. Oxygen ions (O 2− ) move to 4B. On the other hand, when the air-fuel ratio is on the fuel rich side, oxygen ions (O 2− ) are transferred from the reference electrode 4B to the detection electrode 4A via the solid electrolyte body 3 as the unburned gas chemically reacts at the detection electrode 4A. Move.
 なお、図5に示すように、ガスセンサ1は、排ガスの組成から求められる内燃機関8の空燃比が、燃料リッチ側にあるか燃料リーン側にあるかをON-OFFによって判定する酸素センサとして用いることもできる。酸素センサは、基準電極4Bに接触する基準ガスAとしての大気と、検出電極4Aに接触する検出ガスGとしての排ガスとの酸素濃度の差によって、固体電解質体3を介して検出電極4Aと基準電極4Bとの間に生じる起電力を起電力検出回路13によって検出するものである。なお、起電力検出回路13は、センサコントロールユニットに形成される。また、酸素センサは、検出電極4Aと基準電極4Bとの間に生じる起電力によって排ガスの酸素濃度を定量的に検出することも可能である。 As shown in FIG. 5, the gas sensor 1 is used as an oxygen sensor that determines whether the air-fuel ratio of the internal combustion engine 8 determined from the composition of the exhaust gas is on the fuel rich side or the fuel lean side by ON-OFF. You can also. The oxygen sensor is connected to the detection electrode 4A and the reference through the solid electrolyte body 3 due to the difference in oxygen concentration between the atmosphere as the reference gas A that contacts the reference electrode 4B and the exhaust gas as the detection gas G that contacts the detection electrode 4A. The electromotive force generated between the electrodes 4B is detected by the electromotive force detection circuit 13. The electromotive force detection circuit 13 is formed in the sensor control unit. The oxygen sensor can also quantitatively detect the oxygen concentration of the exhaust gas based on the electromotive force generated between the detection electrode 4A and the reference electrode 4B.
 ガスセンサ1は、内燃機関8における空燃比を、排気管81内に配置された三元触媒の触媒活性が効果的に発揮される理論空燃比の近傍に維持するために用いられる。ガスセンサ1は、排気管81における三元触媒の配置位置よりも、排ガスの流れの上流側の位置及び下流側の位置のいずれに配置することもできる。特に、本形態のガスセンサ1は、排気管81内において、排ガスの温度がより低くなる下流側の位置に配置して用いることができる。 The gas sensor 1 is used to maintain the air-fuel ratio in the internal combustion engine 8 in the vicinity of the theoretical air-fuel ratio in which the catalytic activity of the three-way catalyst disposed in the exhaust pipe 81 is effectively exhibited. The gas sensor 1 can be arranged at either the upstream side position or the downstream side position of the exhaust gas flow from the arrangement position of the three-way catalyst in the exhaust pipe 81. In particular, the gas sensor 1 of the present embodiment can be used by being disposed in the exhaust pipe 81 at a downstream position where the temperature of the exhaust gas becomes lower.
 図4に示すように、本形態の排気管81内には、排ガスの流れの方向に並ぶ2つの触媒82A,82Bが配置されている。2つの触媒82A,82Bは、上流側に位置する上流側触媒82A(S/C(Start Converter)触媒ともいう。)と、上流側触媒82Aの下流側に位置する下流側触媒82B(U/F(Under Floor)触媒ともいう。)とからなる。本形態のガスセンサ1は、排気管81内における上流側触媒82Aよりも、排ガスの流れの下流側の位置であって、排気管81内における下流側触媒82Bよりも、排ガスの流れの上流側の位置に配置されている。言い換えれば、本形態のガスセンサ1は、排気管81内の排ガスの流れの方向における上流側触媒82Aと下流側触媒82Bとの間の位置に配置されている。 As shown in FIG. 4, in the exhaust pipe 81 of this embodiment, two catalysts 82A and 82B are arranged in the direction of the flow of the exhaust gas. The two catalysts 82A and 82B are an upstream catalyst 82A (also referred to as an S / C (Start Converter) catalyst) located on the upstream side and a downstream catalyst 82B (U / F) located downstream of the upstream catalyst 82A. (Also called “Under Floor” catalyst). The gas sensor 1 of the present embodiment is located downstream of the upstream catalyst 82A in the exhaust pipe 81 and downstream of the downstream catalyst 82B in the exhaust pipe 81. Placed in position. In other words, the gas sensor 1 of this embodiment is disposed at a position between the upstream catalyst 82A and the downstream catalyst 82B in the direction of the exhaust gas flow in the exhaust pipe 81.
 また、排気管81内における、上流側触媒82Aよりも上流側の位置には、別のガスセンサ1Aが配置されている。この別のガスセンサは、空燃比センサとして機能するものである。そして、2つのガスセンサ1,1Aを用いて排ガスの空燃比を検出し、ECU(エンジン制御ユニット)は、2つのガスセンサ1,1Aから受信する空燃比を利用して、吸気管における燃料噴射弁の開度を調整し、内燃機関8の空燃比の制御を行う。 Further, another gas sensor 1A is disposed in the exhaust pipe 81 at a position upstream of the upstream catalyst 82A. This other gas sensor functions as an air-fuel ratio sensor. Then, the air-fuel ratio of the exhaust gas is detected using the two gas sensors 1 and 1A, and the ECU (engine control unit) uses the air-fuel ratio received from the two gas sensors 1 and 1A to detect the fuel injection valve in the intake pipe. The air-fuel ratio of the internal combustion engine 8 is controlled by adjusting the opening degree.
 なお、本形態のガスセンサ1は、排気管81内における、上流側触媒82Aよりも上流側の位置に配置してもよい。また、一般的には、排気管81内における、上流側触媒82Aよりも上流側の位置に空燃比センサが配置され、上流側触媒82Aよりも下流側の位置に酸素センサが配置される。 It should be noted that the gas sensor 1 of this embodiment may be disposed in the exhaust pipe 81 at a position upstream of the upstream catalyst 82A. In general, an air-fuel ratio sensor is disposed in the exhaust pipe 81 at a position upstream of the upstream catalyst 82A, and an oxygen sensor is disposed at a position downstream of the upstream catalyst 82A.
 特に、排気管81内における、より下流側の位置にガスセンサ1が配置されると、ガスセンサ1に接触する排ガスの温度がより低くなり、ガスセンサ1に凝縮水が衝突しやすくなる。本形態のセンサ素子2は、有底筒状(コップ状)の固体電解質体3を用いたものであり、排気管81内に存在する凝縮水による被水割れが効果的に防止される。 In particular, when the gas sensor 1 is disposed at a more downstream position in the exhaust pipe 81, the temperature of the exhaust gas in contact with the gas sensor 1 becomes lower, and the condensed water easily collides with the gas sensor 1. The sensor element 2 of the present embodiment uses a bottomed cylindrical (cup-shaped) solid electrolyte body 3, and is effectively prevented from being cracked by condensed water present in the exhaust pipe 81.
(センサ素子2)
 図2及び図3に示すように、センサ素子2の固体電解質体3は、ジルコニアを主成分とするものであり、希土類金属元素又はアルカリ土類金属元素によってジルコニアの一部を置換させた安定化ジルコニア又は部分安定化ジルコニアからなる。固体電解質体3は、イットリア安定化ジルコニア又はイットリア部分安定化ジルコニアから構成することができる。固体電解質体3は、所定の活性化温度において、酸素イオン(O2-)を伝導させるイオン伝導性を有するものである。検出電極4A及び基準電極4Bは、酸素に対する触媒活性を示す貴金属としての白金を含有している。
(Sensor element 2)
As shown in FIGS. 2 and 3, the solid electrolyte body 3 of the sensor element 2 is mainly composed of zirconia, and is stabilized by replacing a part of zirconia with a rare earth metal element or an alkaline earth metal element. It consists of zirconia or partially stabilized zirconia. The solid electrolyte body 3 can be composed of yttria stabilized zirconia or yttria partially stabilized zirconia. The solid electrolyte body 3 has ion conductivity for conducting oxygen ions (O 2− ) at a predetermined activation temperature. The detection electrode 4A and the reference electrode 4B contain platinum as a noble metal exhibiting catalytic activity for oxygen.
 固体電解質体3の底部32は、半球面状に形成されており、固体電解質体3の筒部31は、円筒状に形成されている。固体電解質体3の軸方向Lにおける、底部32と反対側の位置には、固体電解質体3の内側に基準ガスAを流入させることができる開口部33が形成されている。筒部31の軸方向Lにおける各部の外径は、ハウジング61への取り付けを考慮して、適宜変化している。 The bottom portion 32 of the solid electrolyte body 3 is formed in a hemispherical shape, and the cylindrical portion 31 of the solid electrolyte body 3 is formed in a cylindrical shape. An opening 33 through which the reference gas A can flow into the solid electrolyte body 3 is formed at a position opposite to the bottom 32 in the axial direction L of the solid electrolyte body 3. The outer diameter of each part in the axial direction L of the cylindrical part 31 is appropriately changed in consideration of attachment to the housing 61.
 センサ素子2の先端部には、少なくとも検出電極4Aの検知電極部41の全体を覆うように、セラミックスの多孔質体からなる保護層21が設けられている。本形態の空燃比センサにおける保護層21は、検出ガスGとしての排ガスの拡散を制限する拡散抵抗層としての機能を有する。そして、検出電極4Aと基準電極4Bとの間に所定の電圧が印加されたときに、保護層21を通過する検出ガスGの流量が制限され、検出ガスGにおける酸素濃度に応じたセンサ出力が得られる。また、保護層21は、検出電極4Aの被毒及び被水を防止する機能も併せ持つ。また、拡散抵抗層としての保護層21の外側に、検出電極4Aの被毒及び被水を防止するための多孔質層を設けてもよい。 A protective layer 21 made of a ceramic porous body is provided at the tip of the sensor element 2 so as to cover at least the entire detection electrode portion 41 of the detection electrode 4A. The protective layer 21 in the air-fuel ratio sensor of this embodiment has a function as a diffusion resistance layer that limits the diffusion of the exhaust gas as the detection gas G. When a predetermined voltage is applied between the detection electrode 4A and the reference electrode 4B, the flow rate of the detection gas G passing through the protective layer 21 is limited, and a sensor output corresponding to the oxygen concentration in the detection gas G is generated. can get. The protective layer 21 also has a function of preventing the detection electrode 4A from being poisoned and wet. Further, a porous layer for preventing the detection electrode 4A from being poisoned and exposed to water may be provided outside the protective layer 21 as a diffusion resistance layer.
 なお、ガスセンサ1を酸素センサとして用いる場合には、保護層21は、主に検出電極4Aの被毒及び被水を防止する機能を有する。この場合、保護層21は、多孔質体の気孔率、組成等が異なる複数の層から形成されていてもよい。 When the gas sensor 1 is used as an oxygen sensor, the protective layer 21 mainly has a function of preventing the detection electrode 4A from being poisoned and wet. In this case, the protective layer 21 may be formed from a plurality of layers having different porosity, composition, and the like.
 図1及び図3に示すように、基準電極4Bは、固体電解質体3の内側面302の全体に設けられている。固体電解質体3の内側面302の基端側L2の部分には、基準電極4Bの基端側L2の部分に接触する状態で、内側端子金具72が装着されている。本形態のガスセンサ1は空燃比センサとして用いられるため、基準電極4Bと検出電極4Aとの間に印加される電圧によって、基準電極4B及び内側端子金具72がプラス側となり、検出電極4A及び端子金具71がマイナス側となる。 As shown in FIGS. 1 and 3, the reference electrode 4 </ b> B is provided on the entire inner surface 302 of the solid electrolyte body 3. An inner terminal fitting 72 is attached to the proximal end L2 portion of the inner side surface 302 of the solid electrolyte body 3 so as to be in contact with the proximal end L2 portion of the reference electrode 4B. Since the gas sensor 1 of the present embodiment is used as an air-fuel ratio sensor, the reference electrode 4B and the inner terminal fitting 72 become positive due to the voltage applied between the reference electrode 4B and the detection electrode 4A, and the detection electrode 4A and the terminal fitting are connected. 71 is on the negative side.
 なお、基準電極4Bは、検出電極4Aと同様に部分電極化を図り、最も先端側L1に位置する検知電極部と、最も基端側L2に位置する装着電極部と、検知電極部と装着電極部とを繋ぐリード電極部とによって形成することもできる。 The reference electrode 4B is formed as a partial electrode in the same manner as the detection electrode 4A. The detection electrode portion located on the most distal side L1, the attachment electrode portion located on the most proximal side L2, the detection electrode portion, and the attachment electrode It can also be formed by a lead electrode part connecting the parts.
 検出電極4Aの検知電極部41は、検出電極4Aにおいて実質的に、空燃比の検出等のガス検出を行う部位である。言い換えれば、検出電極4Aのうち、絶縁層22を介さずに固体電解質体3の外側面301に直接設けられるのは、検知電極部41のみである。そして、センサ素子2においては、ガス検出を行う精度を安定化させる、言い換えればガスセンサ1の出力のばらつきを低減するために、検知電極部41の面積が規定されている。検知電極部41は、センサ素子2の固体電解質体3の内側に配置されたヒータ5によって目標とする温度に加熱される。 The detection electrode portion 41 of the detection electrode 4A is a part that substantially performs gas detection such as detection of an air-fuel ratio in the detection electrode 4A. In other words, only the detection electrode part 41 is provided directly on the outer surface 301 of the solid electrolyte body 3 without the insulating layer 22 among the detection electrodes 4A. And in the sensor element 2, in order to stabilize the precision which performs gas detection, in other words, in order to reduce the dispersion | variation in the output of the gas sensor 1, the area of the detection electrode part 41 is prescribed | regulated. The detection electrode unit 41 is heated to a target temperature by the heater 5 disposed inside the solid electrolyte body 3 of the sensor element 2.
 検出電極4Aのリード電極部42は、固体電解質体3の周方向Cの1箇所に形成されている。リード電極部42は、固体電解質体3の筒部31の中心軸線O及び軸方向Lに平行に形成されている。言い換えれば、リード電極部42の周方向Cの両側端は、軸方向Lに対して平行である。 The lead electrode portion 42 of the detection electrode 4A is formed at one place in the circumferential direction C of the solid electrolyte body 3. The lead electrode portion 42 is formed in parallel with the central axis O and the axial direction L of the cylindrical portion 31 of the solid electrolyte body 3. In other words, both side ends in the circumferential direction C of the lead electrode portion 42 are parallel to the axial direction L.
 検出電極4Aの装着電極部43は、固体電解質体3の外側面301の基端側L2の位置において、周方向Cに向けて形成されている。本形態の装着電極部43は、固体電解質体3の外側面301の周方向Cの一部にのみ形成されている。 The mounting electrode portion 43 of the detection electrode 4A is formed in the circumferential direction C at a position on the base end side L2 of the outer surface 301 of the solid electrolyte body 3. The mounting electrode portion 43 of this embodiment is formed only in a part of the outer surface 301 of the solid electrolyte body 3 in the circumferential direction C.
 図3に示すように、センサ素子2の外側面301に設けられた絶縁層22は、筒部31と検知電極部41との間には設けられていない。絶縁層22は、底部32の全体、筒部31とリード電極部42との間の全体、及び筒部31と装着電極部43との間の全体に設けられている。本形態の装着電極部43は、センサ素子2の外側面301の基端位置までは設けられていない。装着電極部43は、センサ素子2の外側面301の基端位置まで設けられていてもよい。 As shown in FIG. 3, the insulating layer 22 provided on the outer surface 301 of the sensor element 2 is not provided between the cylinder portion 31 and the detection electrode portion 41. The insulating layer 22 is provided on the entire bottom portion 32, the entire portion between the tubular portion 31 and the lead electrode portion 42, and the entire portion between the tubular portion 31 and the mounting electrode portion 43. The mounting electrode portion 43 of this embodiment is not provided up to the base end position of the outer side surface 301 of the sensor element 2. The mounting electrode portion 43 may be provided up to the base end position of the outer side surface 301 of the sensor element 2.
 本形態においては、検知電極部41の形成位置に絶縁層22が設けられないようにし、底部32、及び検知電極部41よりも基端側の位置には、絶縁層22を設ける。そして、検出電極4Aは、検知電極部41から、底部32に設けられた絶縁層22の外側面にまで連続して設けられている。これにより、電極4Aの形成を容易にすることができる。底部32の絶縁層22の外側面に設けられた底部電極部411は、絶縁層22があることによって酸素イオン(O2-)を伝導させる電極としては機能しない。 In this embodiment, the insulating layer 22 is not provided at the position where the detection electrode portion 41 is formed, and the insulating layer 22 is provided at a position closer to the base end than the bottom 32 and the detection electrode portion 41. The detection electrode 4 </ b> A is continuously provided from the detection electrode portion 41 to the outer surface of the insulating layer 22 provided on the bottom portion 32. Thereby, formation of electrode 4A can be made easy. The bottom electrode portion 411 provided on the outer surface of the insulating layer 22 at the bottom portion 32 does not function as an electrode for conducting oxygen ions (O 2− ) due to the presence of the insulating layer 22.
 また、図6に示すように、検出電極4Aの装着電極部43は、周方向Cの全周に形成してもよい。また、検出電極4Aの検知電極部41は、必ずしも周方向Cの全周に形成しないことも可能である。また、図6及び図7に示すように、絶縁層22は、検知電極部41よりも基端側の位置にのみ設け、底部32の外側面301には設けないようにすることができる。 Further, as shown in FIG. 6, the mounting electrode portion 43 of the detection electrode 4A may be formed on the entire circumference in the circumferential direction C. The detection electrode portion 41 of the detection electrode 4A may not necessarily be formed on the entire circumference in the circumferential direction C. Further, as shown in FIGS. 6 and 7, the insulating layer 22 can be provided only at a position closer to the base end side than the detection electrode portion 41 and not provided on the outer surface 301 of the bottom portion 32.
 図3に示すように、検出電極4Aは、固体電解質体3の外側面301に電極材料のメッキ処理を行って形成したものであり、基準電極4Bは、固体電解質体3の内側面302に電極材料のメッキ処理を行って形成したものである。絶縁層22は、固体電解質体3の外側面301に絶縁材料のペーストを塗布し、このペーストを固体電解質体3とともに焼結して形成したものである。絶縁層22を形成する際には、固体電解質体3の外側面301における検知電極部41の形成部位を、テープ等によってマスキングする。そして、この状態においてペーストを塗布し、テープ等を剥がすことにより、マスキングされた部位には絶縁層22が形成されないようにすることができる。絶縁層22は、酸化アルミニウム(Al23)、スピネル(MgAl24)及び絶縁性ガラスのうちの少なくとも1種類以上を含有する絶縁材料によって形成されている。この絶縁材料は、ガスセンサ1において一般的に使用されるものであり、高い比抵抗を有することにより、十分な絶縁効果が得られる。 As shown in FIG. 3, the detection electrode 4 </ b> A is formed by plating the outer surface 301 of the solid electrolyte body 3 with an electrode material, and the reference electrode 4 </ b> B is formed on the inner surface 302 of the solid electrolyte body 3. The material is formed by plating. The insulating layer 22 is formed by applying a paste of an insulating material to the outer surface 301 of the solid electrolyte body 3 and sintering the paste together with the solid electrolyte body 3. When forming the insulating layer 22, the formation portion of the detection electrode portion 41 on the outer surface 301 of the solid electrolyte body 3 is masked with a tape or the like. In this state, the insulating layer 22 can be prevented from being formed in the masked portion by applying the paste and peeling off the tape or the like. The insulating layer 22 is formed of an insulating material containing at least one of aluminum oxide (Al 2 O 3 ), spinel (MgAl 2 O 4 ), and insulating glass. This insulating material is generally used in the gas sensor 1, and a sufficient insulating effect can be obtained by having a high specific resistance.
 本形態の絶縁層22は、固体電解質体3の外側面301において、全体ができるだけ均一な厚みになるよう形成されている。絶縁層22における、筒部31とリード電極部42との間、及び筒部31と装着電極部43との間に位置する部位の最小厚みは、4μm以上である。最小厚みとは、最も厚みが小さくなった部位の厚みのことをいう。この絶縁層22の最小厚みが4μ未満になると、絶縁効果が十分に得られないおそれがある。絶縁層22の厚みは、製造上の観点より、例えば10μm以下とすることができる。 The insulating layer 22 of this embodiment is formed on the outer surface 301 of the solid electrolyte body 3 so as to have a uniform thickness as much as possible. In the insulating layer 22, the minimum thickness of the part located between the cylinder part 31 and the lead electrode part 42 and between the cylinder part 31 and the mounting electrode part 43 is 4 μm or more. The minimum thickness means the thickness of the portion where the thickness is the smallest. If the minimum thickness of the insulating layer 22 is less than 4 μm, the insulating effect may not be sufficiently obtained. The thickness of the insulating layer 22 can be set to, for example, 10 μm or less from the viewpoint of manufacturing.
(ヒータ5)
 図3に示すように、センサ素子2の固体電解質体3の内側には、固体電解質体3を加熱するためのヒータ5が配置されている。ヒータ5は、セラミックスの基材51A,51Bと、基材51Bに設けられた導体からなる発熱体52とを有する。発熱体52の先端部には、断面積が最も縮小し、発熱体52に通電したときにジュール熱によって発熱する発熱部521が形成されている。
(Heater 5)
As shown in FIG. 3, a heater 5 for heating the solid electrolyte body 3 is disposed inside the solid electrolyte body 3 of the sensor element 2. The heater 5 includes ceramic bases 51A and 51B and a heating element 52 made of a conductor provided on the base 51B. A heat generating portion 521 that has the smallest cross-sectional area and generates heat by Joule heat when the heat generating member 52 is energized is formed at the tip of the heat generating member 52.
 発熱部521は、発熱体52における先端部において軸方向Lに蛇行する形状に形成されている。発熱部521は、検出電極4Aの検知電極部41の内周側に対向する位置に配置されており、検知電極部41が目標とする温度になるよう、固体電解質体3、基準電極4B及び検出電極4Aを加熱するものである。ヒータ5は、心棒となる基材51Aの周りに、発熱体52が設けられたシート状の基材51Bを巻き付けて形成されている。 The heat generating portion 521 is formed in a shape meandering in the axial direction L at the tip portion of the heat generating body 52. The heat generating portion 521 is disposed at a position facing the inner peripheral side of the detection electrode portion 41 of the detection electrode 4A, and the solid electrolyte body 3, the reference electrode 4B, and the detection are performed so that the detection electrode portion 41 reaches a target temperature. The electrode 4A is heated. The heater 5 is formed by winding a sheet-like base material 51B provided with a heating element 52 around a base material 51A serving as a mandrel.
(ガスセンサ1の他の構成)
 図1に示すように、ガスセンサ1は、センサ素子2及びヒータ5以外に、センサ素子2を保持するハウジング61、ハウジング61の先端側L1の部分に装着された先端側カバー62、ハウジング61の基端側L2の部分に装着された基端側カバー63、センサ素子2の基端側L2の部分の外側面301に装着された端子金具71、センサ素子2の基端側L2の部分の内側面302に装着された内側端子金具72等を備える。
(Other configurations of the gas sensor 1)
As shown in FIG. 1, in addition to the sensor element 2 and the heater 5, the gas sensor 1 includes a housing 61 that holds the sensor element 2, a distal end side cover 62 that is attached to the distal end side L 1 of the housing 61, and a base of the housing 61. The base end side cover 63 attached to the end side L2 portion, the terminal fitting 71 attached to the outer side surface 301 of the base end side L2 portion of the sensor element 2, and the inner side surface of the base end side L2 portion of the sensor element 2 Inner terminal fitting 72 attached to 302 is provided.
(ハウジング61)
 図1に示すように、ハウジング61には、センサ素子2を保持するために、軸方向Lに向けて貫通する挿通穴611が形成されている。挿通穴611は、軸方向Lの先端側L1に位置する小径穴部612と、軸方向Lの基端側L2に位置して小径穴部612よりも拡径した大径穴部613とを有する。センサ素子2は、挿通穴611の小径穴部612内及び大径穴部613内に挿通され、センサ素子2と大径穴部613との隙間内に配置されるタルク粉末、スリーブ等のシール材64を介して保持されている。
(Housing 61)
As shown in FIG. 1, the housing 61 is formed with an insertion hole 611 penetrating in the axial direction L in order to hold the sensor element 2. The insertion hole 611 has a small diameter hole 612 located on the distal end side L1 in the axial direction L, and a large diameter hole 613 located on the proximal side L2 in the axial direction L and having a diameter larger than that of the small diameter hole 612. . The sensor element 2 is inserted into the small-diameter hole portion 612 and the large-diameter hole portion 613 of the insertion hole 611, and a sealing material such as talc powder and a sleeve disposed in the gap between the sensor element 2 and the large-diameter hole portion 613. 64 is held.
 また、センサ素子2における最も外径が大きい部分であるフランジ部34が小径穴部612の端部に係止されることにより、センサ素子2の挿通穴611から先端側L1への抜け出しが防止されている。ハウジング61の軸方向Lの基端側L2の部分には、内周側に屈曲するかしめ部615が形成されている。そして、かしめ部615とフランジ部34との間においてシール材64が軸方向Lに圧縮されて、センサ素子2がハウジング61に保持されている。センサ素子2の先端側L1の部分であって、特に検知電極部41及びリード電極部42が形成された部位は、ハウジング61から軸方向Lの先端側L1に突出して配置されている。 Further, the flange portion 34 which is the portion having the largest outer diameter in the sensor element 2 is locked to the end portion of the small-diameter hole portion 612, so that the sensor element 2 is prevented from coming out from the insertion hole 611 to the distal end side L1. ing. A caulking portion 615 that is bent toward the inner peripheral side is formed in a portion on the base end side L2 in the axial direction L of the housing 61. The sealing material 64 is compressed in the axial direction L between the caulking portion 615 and the flange portion 34, and the sensor element 2 is held by the housing 61. A portion of the sensor element 2 on the distal end side L1, particularly where the detection electrode portion 41 and the lead electrode portion 42 are formed, is disposed so as to protrude from the housing 61 to the distal end side L1 in the axial direction L.
(先端側カバー62及び基端側カバー63)
 図1に示すように、ハウジング61の軸方向Lの先端側L1の部分には、ハウジング61から先端側L1に突出するセンサ素子2の部分を覆って、センサ素子2を保護するための先端側カバー62が装着されている。先端側カバー62は、排気管81内に配置される。先端側カバー62には、検出ガスGを通過させるためのガス通過孔621が形成されている。先端側カバー62は、二重構造のものとすることができ、一重構造のものとすることもできる。先端側カバー62のガス通過孔621から先端側カバー62内に流入する検出ガスGとしての排ガスは、センサ素子2の保護層21を通過して検出電極4Aへと導かれる。
(Front end side cover 62 and proximal end side cover 63)
As shown in FIG. 1, the portion of the housing 61 on the distal end side L1 in the axial direction L covers the portion of the sensor element 2 that protrudes from the housing 61 to the distal end side L1, and protects the sensor element 2 A cover 62 is attached. The front end side cover 62 is disposed in the exhaust pipe 81. A gas passage hole 621 for allowing the detection gas G to pass therethrough is formed in the distal end side cover 62. The front end side cover 62 can have a double structure or a single structure. The exhaust gas as the detection gas G flowing into the tip side cover 62 from the gas passage hole 621 of the tip side cover 62 passes through the protective layer 21 of the sensor element 2 and is guided to the detection electrode 4A.
 ハウジング61の軸方向Lの基端側L2の部分には、基端側カバー63が装着されている。基端側カバー63は、排気管81の外部に配置される。基端側カバー63の一部には、基端側カバー63内へ基準ガスAとしての大気を導入するための導入孔631が形成されている。導入孔631には、液体を通過させない一方、気体を通過させるフィルタ632が配置されている。導入孔631から基端側カバー63内に導入される基準ガスAは、基端側カバー63内の隙間を通過して、センサ素子2の内側面302における基準電極4Bへと導かれる。 The base end side cover 63 is attached to a portion of the housing 61 on the base end side L2 in the axial direction L. The proximal end cover 63 is disposed outside the exhaust pipe 81. An introduction hole 631 for introducing the atmosphere as the reference gas A into the proximal end side cover 63 is formed in a part of the proximal end side cover 63. A filter 632 that does not allow liquid to pass while allowing gas to pass is disposed in the introduction hole 631. The reference gas A introduced into the base end side cover 63 from the introduction hole 631 passes through the gap in the base end side cover 63 and is guided to the reference electrode 4B on the inner side surface 302 of the sensor element 2.
 図1に示すように、センサ素子2の基端側L2の部分の外側面301には、検出電極4Aの装着電極部43に接触する端子金具71が装着されている。また、センサ素子2の基端側L2の部分の内側面302には、基準電極4Bの基端側L2の部分に接触する内側端子金具72が装着されている。端子金具71及び内側端子金具72には、センサ素子2の検出電極4A及び基準電極4Bを、外部の制御装置10に電気的に接続するためのリード線65が取り付けられている。リード線65は、基端側カバー63内に配置されたブッシュ66によって保持されている。 As shown in FIG. 1, a terminal fitting 71 that contacts the mounting electrode portion 43 of the detection electrode 4 </ b> A is mounted on the outer surface 301 of the base end side L <b> 2 portion of the sensor element 2. Further, an inner terminal fitting 72 that is in contact with the base end side L2 portion of the reference electrode 4B is mounted on the inner side surface 302 of the base end side L2 portion of the sensor element 2. A lead wire 65 for electrically connecting the detection electrode 4A and the reference electrode 4B of the sensor element 2 to the external control device 10 is attached to the terminal fitting 71 and the inner terminal fitting 72. The lead wire 65 is held by a bush 66 disposed in the proximal end side cover 63.
(作用効果)
 本形態のガスセンサ1においては、検出電極4Aにおけるリード電極部42と固体電解質体3の筒部31との間に絶縁層22を設けるだけでなく、検出電極4Aにおける、端子金具71が装着される部位である装着電極部43と固体電解質体3の筒部31との間にまで絶縁層22を設けている。これにより、センサ素子2の基端側L2の部分が400℃以上の高温に加熱されるような場合において、検出電極4Aの装着電極部43と基準電極4Bとの間にリーク電流が生じることを防止することができる。
(Function and effect)
In the gas sensor 1 of this embodiment, not only the insulating layer 22 is provided between the lead electrode portion 42 in the detection electrode 4A and the cylindrical portion 31 of the solid electrolyte body 3, but the terminal fitting 71 in the detection electrode 4A is mounted. The insulating layer 22 is provided up to the portion between the mounting electrode portion 43 which is a part and the cylindrical portion 31 of the solid electrolyte body 3. As a result, in the case where the base end L2 portion of the sensor element 2 is heated to a high temperature of 400 ° C. or higher, a leakage current is generated between the mounting electrode portion 43 of the detection electrode 4A and the reference electrode 4B. Can be prevented.
 そのため、ガスセンサ1を空燃比センサとして用いる場合には、センサ素子2の基端側L2の部分が400℃以上の高温環境下に晒されるときでも、理論空燃比の近傍において、センサ出力としての出力電流にオフセット電流が含まれないようにすることができる。また、ガスセンサ1を酸素センサとして用いる場合には、センサ素子2の基端側L2の部分が400℃以上の高温環境下に晒されるときでも、センサ出力としての出力電圧に誤差電圧が含まれないようにすることができる。 For this reason, when the gas sensor 1 is used as an air-fuel ratio sensor, even when the base end L2 portion of the sensor element 2 is exposed to a high temperature environment of 400 ° C. or higher, output as a sensor output in the vicinity of the theoretical air-fuel ratio. It is possible to prevent the offset current from being included in the current. Further, when the gas sensor 1 is used as an oxygen sensor, the output voltage as the sensor output does not include an error voltage even when the base end side L2 portion of the sensor element 2 is exposed to a high temperature environment of 400 ° C. or higher. Can be.
 有底筒状の固体電解質体3を有するセンサ素子2においては、排ガスの温度が高温になったときに、センサ素子2の全体が高温になりやすい。このとき、基準電極4Bと検出電極4Aとの間に微小なリーク電流が流れることが分かった。従来のガスセンサ1においては、微小なリーク電流がガスセンサ1の検出精度に及ぼす影響はそれほど問題視されてこなかった。しかし、近年のエミッション低減と低燃費をより促進する観点から、微小なリーク電流がガスセンサ1の検出精度に与える影響、特に微小な電流によってストイキ点(排ガスの空燃比が理論空燃比であることを検出する点)がずれることが問題視されるようになった。本形態のガスセンサ1は、このような近年、新たに発生してきた課題を解決するものである。 In the sensor element 2 having the bottomed cylindrical solid electrolyte body 3, when the temperature of the exhaust gas becomes high, the entire sensor element 2 tends to become high temperature. At this time, it was found that a minute leak current flows between the reference electrode 4B and the detection electrode 4A. In the conventional gas sensor 1, the influence of a minute leak current on the detection accuracy of the gas sensor 1 has not been regarded as a problem. However, from the viewpoint of further promoting emission reduction and fuel efficiency in recent years, the influence of minute leak currents on the detection accuracy of the gas sensor 1, particularly the stoichiometric point (the air-fuel ratio of the exhaust gas is the stoichiometric air-fuel ratio) due to the minute current. The point of detection) has become a problem. The gas sensor 1 of the present embodiment solves such a problem that has newly occurred in recent years.
 本形態の絶縁層22は、検知電極部41の形成面積を規定して、ガスセンサ1のセンサ出力のばらつきを抑えるだけでなく、大気等の基準ガスA中の酸素が固体電解質体3を移動することに基づくリーク電流をなくすために設けている。
 ガスセンサ1においては、検出電極4Aの検知電極部41を含む、センサ素子2の先端側L1の部分における固体電解質体3が、酸素のイオン伝導を活性化する温度に加熱される。そして、センサ素子2の基端側L2の部分は、固体電解質体3が活性化する温度までは加熱されないことが多い。
The insulating layer 22 of this embodiment not only defines the formation area of the detection electrode portion 41 and suppresses variations in the sensor output of the gas sensor 1, but also oxygen in the reference gas A such as the atmosphere moves through the solid electrolyte body 3. It is provided in order to eliminate the leakage current.
In the gas sensor 1, the solid electrolyte body 3 in the portion on the tip side L1 of the sensor element 2 including the detection electrode portion 41 of the detection electrode 4A is heated to a temperature that activates the ionic conduction of oxygen. And the part of the base end side L2 of the sensor element 2 is often not heated up to the temperature at which the solid electrolyte body 3 is activated.
 しかし、内燃機関8における燃焼の仕方によって、排ガスの温度が高温になり、センサ素子2の基端側L2の部分における固体電解質体3が活性化する温度に加熱される場合も起こり得る。この場合には、検出電極4A及び基準電極4Bの周辺に基準ガスA中の酸素が存在することにより、この酸素がイオン化して、検出電極4Aから基準電極4Bへ固体電解質体3中を通過することが起こり得る。つまり、検出ガスGとしての排ガスが到達しない、固体電解質体3の基端側L2の部分において、酸素のイオンが伝導することによって電流が生じることになる。この電流は、検出ガスGの組成の変化に基づいて流れるものではなく、空燃比等の検出に誤差を生じさせるリーク電流となる。 However, depending on the manner of combustion in the internal combustion engine 8, the temperature of the exhaust gas may become high, and the solid electrolyte body 3 in the portion on the base end side L2 of the sensor element 2 may be heated to a temperature at which it is activated. In this case, since oxygen in the reference gas A exists around the detection electrode 4A and the reference electrode 4B, this oxygen is ionized and passes through the solid electrolyte body 3 from the detection electrode 4A to the reference electrode 4B. Can happen. In other words, an electric current is generated by the conduction of oxygen ions in the portion on the base end side L2 of the solid electrolyte body 3 where the exhaust gas as the detection gas G does not reach. This current does not flow based on the change in the composition of the detection gas G, but becomes a leak current that causes an error in detection of the air-fuel ratio or the like.
 ガスセンサ1を空燃比センサとして用いる場合には、検出電極4Aと基準電極4Bとの間に、基準電極4Bがプラス側になるように電圧が印加されていることにより、イオン化した酸素が検出電極4Aから基準電極4Bへ固体電解質体3中を通過して、リーク電流が生じることが起こり得る。また、ガスセンサ1を酸素センサとして用いる場合には、検出電極4A及び端子金具71に接触する基準ガスAの酸素濃度と、基準電極4B及び内側端子金具72に接触する基準ガスAの酸素濃度とが若干異なることにより、イオン化した酸素が固体電解質体3中を通過して、リーク電流が生じることが起こり得る。 When the gas sensor 1 is used as an air-fuel ratio sensor, a voltage is applied between the detection electrode 4A and the reference electrode 4B so that the reference electrode 4B is on the positive side, so that ionized oxygen is detected by the detection electrode 4A. It is possible that a leakage current is generated by passing through the solid electrolyte body 3 from the reference electrode 4B to the reference electrode 4B. When the gas sensor 1 is used as an oxygen sensor, the oxygen concentration of the reference gas A that contacts the detection electrode 4A and the terminal fitting 71 and the oxygen concentration of the reference gas A that contacts the reference electrode 4B and the inner terminal fitting 72 are as follows. By being slightly different, it is possible that ionized oxygen passes through the solid electrolyte body 3 and a leak current is generated.
 本形態のガスセンサ1においては、絶縁層22の配置によって、このようなリーク電流の発生を防止することができる。それ故、本形態のガスセンサ1によれば、検出電極4Aの装着電極部43と基準電極4Bとの間にリーク電流が生じることを防止して、ガス検出の精度を向上させることができる。 In the gas sensor 1 of this embodiment, the occurrence of such a leakage current can be prevented by the arrangement of the insulating layer 22. Therefore, according to the gas sensor 1 of the present embodiment, it is possible to prevent leak current from being generated between the mounting electrode portion 43 of the detection electrode 4A and the reference electrode 4B, thereby improving the accuracy of gas detection.
<実施形態2>
 本形態のセンサ素子2においては、検出電極4Aのリード電極部42及び装着電極部43と固体電界質体の筒部31との間に設ける絶縁層22の形成の仕方に工夫をしている。
 図8及び図9に示すように、絶縁層22における軸方向Lの基端側L2の端部は、装着電極部43における軸方向Lの基端側L2の端部よりも基端側L2まで設けられている。絶縁層22の基端側L2の端部は、筒部31の外側面301の最外殻部を構成しており、筒部31の外側面301において露出している。また、絶縁層22の基端側L2の端部は、筒部31の基端側L2へ行くほど中心軸線Oを中心とする径方向Rの厚みが縮小するテーパ状表面221を有する。テーパ状表面221は、筒部31の基端側L2から先端側L1に向けて筒部31の外周に装着される端子金具71の装着を案内する表面である。絶縁層22における、基端側L2の端部を除く一般部は、均一な厚みになるよう固体電解質体3の外側面301に設けられている。
<Embodiment 2>
In the sensor element 2 of this embodiment, the method of forming the insulating layer 22 provided between the lead electrode portion 42 and the mounting electrode portion 43 of the detection electrode 4A and the cylindrical portion 31 of the solid electrolyte element is devised.
As shown in FIGS. 8 and 9, the end portion on the base end side L2 in the axial direction L of the insulating layer 22 extends from the end portion on the base end side L2 in the axial direction L of the mounting electrode portion 43 to the base end side L2. Is provided. An end portion of the insulating layer 22 on the base end side L <b> 2 constitutes an outermost shell portion of the outer side surface 301 of the cylindrical portion 31 and is exposed on the outer side surface 301 of the cylindrical portion 31. Further, the end portion on the base end side L2 of the insulating layer 22 has a tapered surface 221 whose thickness in the radial direction R centering on the central axis O decreases toward the base end side L2 of the cylindrical portion 31. The tapered surface 221 is a surface that guides the mounting of the terminal fitting 71 that is mounted on the outer periphery of the cylindrical portion 31 from the proximal end L2 of the cylindrical portion 31 toward the distal end L1. A general portion of the insulating layer 22 excluding the end portion on the base end side L2 is provided on the outer surface 301 of the solid electrolyte body 3 so as to have a uniform thickness.
 本形態においては、端子金具71を固体電解質体3に装着する際に、端子金具71を絶縁層22の基端側L2の端部のテーパ状表面221に接触させることができる。そして、端子金具71を、テーパ状表面221上を滑らせることができる。これにより、絶縁層22の基端側L2の端部に端子金具71が接触しても、この基端側L2の端部に剥離、欠け等が生じにくくすることができる。 In this embodiment, when the terminal fitting 71 is attached to the solid electrolyte body 3, the terminal fitting 71 can be brought into contact with the tapered surface 221 at the end portion on the proximal side L2 of the insulating layer 22. Then, the terminal fitting 71 can be slid on the tapered surface 221. Thereby, even if the terminal fitting 71 comes into contact with the end portion of the insulating layer 22 on the base end side L2, it is possible to prevent the end portion on the base end side L2 from being peeled off or chipped.
 本形態においては、絶縁層22の基端側L2の端部におけるテーパ状表面221の全体が露出している。これ以外にも、テーパ状表面221の先端側L1の位置の表面には、装着電極部43が設けられていてもよい。この場合には、テーパ状表面221の基端側L2の位置の表面のみが露出する。テーパ状表面221は、筒部31の外側面301の最外殻部を構成することにより、端子金具71を固体電解質体3に装着する際に、端子金具71と接触する表面となる。 In the present embodiment, the entire tapered surface 221 at the end portion on the base end side L2 of the insulating layer 22 is exposed. In addition to this, a mounting electrode portion 43 may be provided on the surface of the tapered surface 221 at the front end side L1. In this case, only the surface at the position of the base end side L2 of the tapered surface 221 is exposed. The tapered surface 221 constitutes the outermost shell portion of the outer side surface 301 of the cylindrical portion 31, and becomes a surface that comes into contact with the terminal fitting 71 when the terminal fitting 71 is attached to the solid electrolyte body 3.
 図9に示すように、中心軸線Oに平行な軸方向Lに対するテーパ状表面221の傾斜角度θは、60°以下である。このテーパ状表面221の傾斜角度θが60°を超えると、絶縁層22の基端側L2の端部に剥離、欠け等が生じるおそれがある。テーパ状表面221の傾斜角度θが小さくなると、絶縁層22の基端側L2の端部の軸方向Lの長さが大きくなる。そのため、製造上の観点より、テーパ状表面221の傾斜角度θは、例えば、15°以上とすることができる。 As shown in FIG. 9, the inclination angle θ of the tapered surface 221 with respect to the axial direction L parallel to the central axis O is 60 ° or less. When the inclination angle θ of the tapered surface 221 exceeds 60 °, there is a possibility that peeling, chipping, or the like may occur at the end portion on the base end side L2 of the insulating layer 22. When the inclination angle θ of the tapered surface 221 decreases, the length in the axial direction L of the end portion on the base end side L2 of the insulating layer 22 increases. Therefore, from the viewpoint of manufacturing, the inclination angle θ of the tapered surface 221 can be set to 15 ° or more, for example.
 なお、絶縁層22の基端側L2の端部にテーパ状表面221を形成する代わりに、絶縁層22の基端側L2の角部に曲面を形成することもできる。この場合にも、絶縁層22の剥離、欠け等が生じにくくすることができる。 In addition, instead of forming the tapered surface 221 at the end portion on the base end side L2 of the insulating layer 22, a curved surface may be formed at the corner portion on the base end side L2 of the insulating layer 22. Also in this case, it is possible to make it difficult for the insulating layer 22 to be peeled off or chipped.
 本形態のガスセンサ1におけるその他の構成、作用効果等については、実施形態1の場合と同様である。また、本形態においても、実施形態1に示した符号と同一の符号が示す構成要素は、実施形態1の場合と同様である。 Other configurations, operational effects, etc. of the gas sensor 1 of the present embodiment are the same as those of the first embodiment. Also in this embodiment, the components indicated by the same reference numerals as those shown in the first embodiment are the same as those in the first embodiment.
<実施形態3>
 本形態のセンサ素子2においても、検出電極4Aのリード電極部42及び装着電極部43と固体電界質体の筒部31との間に設ける絶縁層22の形成の仕方に工夫をしている。
 図10に示すように、本形態の絶縁層22の軸方向Lにおける基端側L2の端部222は、筒部31の外側面301から筒部31の基端側L2の端面311まで連続して設けられている。筒部31の基端側L2の角部に位置する絶縁層22の角部223は、曲面状等に形成することが好ましい。絶縁層22の端部222は、筒部31の基端側L2の端面311の全体に設ける必要はない。絶縁層22の端部222は、筒部31の基端側L2の端面311の外周側位置に設けられており、筒部31の基端側L2の端面311の中心側位置には設けられていない。
<Embodiment 3>
Also in the sensor element 2 of this embodiment, the method of forming the insulating layer 22 provided between the lead electrode portion 42 and the mounting electrode portion 43 of the detection electrode 4A and the cylindrical portion 31 of the solid electrolyte element is devised.
As shown in FIG. 10, the end portion 222 on the base end side L2 in the axial direction L of the insulating layer 22 of this embodiment is continuous from the outer surface 301 of the tube portion 31 to the end surface 311 on the base end side L2 of the tube portion 31. Is provided. The corner portion 223 of the insulating layer 22 positioned at the corner portion on the base end side L2 of the cylindrical portion 31 is preferably formed in a curved surface shape or the like. The end portion 222 of the insulating layer 22 need not be provided on the entire end surface 311 on the base end side L2 of the cylindrical portion 31. The end portion 222 of the insulating layer 22 is provided on the outer peripheral side position of the end surface 311 on the base end side L2 of the cylindrical portion 31, and is provided on the center side position of the end surface 311 on the base end side L2 of the cylindrical portion 31. Absent.
 ロール転写法によって、固体電解質体3の筒部31の外側面301に、絶縁層22を形成するための絶縁材料のペーストを塗布する際に、このペーストを筒部31の基端側L2の端面311にまで塗布することができる。その後、このペーストを固体電解質体3とともに焼結して、ペーストから絶縁層22を形成することができる。
 本形態においても、実施形態2の場合と同様に、絶縁層22の基端側L2の角部223に端子金具71が接触しても、この基端側L2の角部223に剥離、欠け等が生じにくくすることができる。本形態のガスセンサ1におけるその他の構成、作用効果等については、実施形態1の場合と同様である。また、本形態においても、実施形態1に示した符号と同一の符号が示す構成要素は、実施形態1の場合と同様である。
When a paste of an insulating material for forming the insulating layer 22 is applied to the outer surface 301 of the cylindrical portion 31 of the solid electrolyte body 3 by a roll transfer method, this paste is applied to the end surface of the proximal end L2 of the cylindrical portion 31. It can be applied up to 311. Thereafter, the paste can be sintered together with the solid electrolyte body 3 to form the insulating layer 22 from the paste.
Also in the present embodiment, as in the case of the second embodiment, even when the terminal fitting 71 contacts the corner portion 223 on the base end side L2 of the insulating layer 22, the corner portion 223 on the base end side L2 is peeled off, chipped, or the like. Can be made difficult to occur. Other configurations, operational effects, and the like in the gas sensor 1 of the present embodiment are the same as those of the first embodiment. Also in this embodiment, the components indicated by the same reference numerals as those shown in the first embodiment are the same as those in the first embodiment.
 本開示は、各実施形態のみに限定されるものではなく、その要旨を逸脱しない範囲においてさらに異なる実施形態を構成することが可能である。 The present disclosure is not limited to each embodiment, and further different embodiments can be configured without departing from the scope of the disclosure.
<確認試験1>
 本試験においては、センサ素子2の温度と、空燃比センサとして用いられるガスセンサ1のセンサ出力に生じる誤差との関係を、センサ素子2に絶縁層22が設けられた実施形態1のガスセンサ1(試験品)と、センサ素子2に絶縁層22が設けられていないガスセンサ(比較品)とについて確認した。図11には、センサ素子2の温度[℃]を適宜変化させたときに、ガスセンサ1のセンサ出力にどれだけ誤差が生じたかを示す。
<Confirmation test 1>
In this test, the relationship between the temperature of the sensor element 2 and the error that occurs in the sensor output of the gas sensor 1 used as an air-fuel ratio sensor is shown in the gas sensor 1 of the first embodiment in which the insulating layer 22 is provided on the sensor element 2 (test Product) and a gas sensor (comparative product) in which the insulating layer 22 is not provided on the sensor element 2. FIG. 11 shows how much error has occurred in the sensor output of the gas sensor 1 when the temperature [° C.] of the sensor element 2 is appropriately changed.
 実施形態1のガスセンサ1は空燃比センサとして用いるため、センサ出力に生じる誤差は、空燃比の検出値からのオフセット量を示す出力シフト量[A/F](空燃比の変化量)とした。この出力シフト量とは、例えば、空燃比の検出値が、理論空燃比を示す14.7と示されるはずのところ、14.7よりも若干大きな値として示される場合の誤差量のことをいう。センサ素子2の温度は、センサ素子2の軸方向Lの先端側L1の部分から基端側L2の部分までの温度の平均値とした。また、絶縁層22の一般部の膜厚は10μmとした。 Since the gas sensor 1 of the first embodiment is used as an air-fuel ratio sensor, the error generated in the sensor output is an output shift amount [A / F] (amount of change in air-fuel ratio) indicating an offset amount from the detected value of the air-fuel ratio. The output shift amount is, for example, an error amount when the detected value of the air-fuel ratio is supposed to be 14.7 indicating the stoichiometric air-fuel ratio but is shown as a value slightly larger than 14.7. . The temperature of the sensor element 2 was the average value of the temperature from the portion on the distal end side L1 in the axial direction L of the sensor element 2 to the portion on the proximal end side L2. The film thickness of the general part of the insulating layer 22 was 10 μm.
 同図に示すように、試験品のガスセンサ1においては、センサ素子2の温度が約280℃以上約540℃以下である高温の範囲において、センサ出力の出力シフト量はほぼ0(ゼロ)であることが分かった。一方、比較品のガスセンサにおいては、センサ素子2の温度が約420℃以上になると出力シフト量が発生し、センサ素子2の温度が高くなるほど、出力シフト量が増加することが分かった。この結果より、実施形態1の空燃比を検出するガスセンサ1により、センサ素子2の基準電極4Bと検出電極4Aとの間に生じるリーク電流を抑え、センサ出力に、リーク電流によるオフセット誤差がほとんど生じないようにできることが分かった。 As shown in the figure, in the test gas sensor 1, the output shift amount of the sensor output is almost 0 (zero) in the high temperature range where the temperature of the sensor element 2 is about 280 ° C. or more and about 540 ° C. or less. I understood that. On the other hand, in the comparative gas sensor, it was found that an output shift amount occurs when the temperature of the sensor element 2 reaches about 420 ° C. or higher, and the output shift amount increases as the temperature of the sensor element 2 increases. As a result, the gas sensor 1 for detecting the air-fuel ratio of the first embodiment suppresses a leak current generated between the reference electrode 4B and the detection electrode 4A of the sensor element 2, and an offset error due to the leak current almost occurs in the sensor output. I found out that I can do it.
<確認試験2>
 本試験においては、固体電解質体3の筒部31の外側面301に設けられた絶縁層22の厚みと、ガスセンサ1のセンサ出力に生じる誤差との関係を確認した。図12には、絶縁層22の厚み[μm]を適宜変化させたときに、実施形態1のガスセンサ1のセンサ出力にどれだけ誤差が生じたかを示す。実施形態1のガスセンサ1は空燃比センサとして用いるため、センサ出力に生じる誤差は、空燃比の検出値からのオフセット量を示す出力シフト量[A/F](空燃比の変化量)とした。
<Confirmation test 2>
In this test, the relationship between the thickness of the insulating layer 22 provided on the outer surface 301 of the cylindrical portion 31 of the solid electrolyte body 3 and the error generated in the sensor output of the gas sensor 1 was confirmed. FIG. 12 shows how much error occurs in the sensor output of the gas sensor 1 of the first embodiment when the thickness [μm] of the insulating layer 22 is appropriately changed. Since the gas sensor 1 of the first embodiment is used as an air-fuel ratio sensor, the error generated in the sensor output is an output shift amount [A / F] (amount of change in air-fuel ratio) indicating an offset amount from the detected value of the air-fuel ratio.
 絶縁層22の厚みは、テーパ状表面221が形成された絶縁層22の基端側L2の端部を除く、絶縁層22の一般部の厚みの平均値とした。この絶縁層22の厚みは、絶縁層22における、筒部31とリード電極部42との間、及び筒部31と装着電極部43との間に位置する部位の最小厚みを示す。センサ素子2の軸方向Lの先端側L1の部分から基端側L2の部分までの温度の平均値であるセンサ素子2の温度は、550℃とした。 The thickness of the insulating layer 22 was the average value of the thickness of the general portion of the insulating layer 22 excluding the end portion on the base end side L2 of the insulating layer 22 on which the tapered surface 221 was formed. The thickness of the insulating layer 22 indicates the minimum thickness of a portion of the insulating layer 22 that is located between the cylindrical portion 31 and the lead electrode portion 42 and between the cylindrical portion 31 and the mounting electrode portion 43. The temperature of the sensor element 2, which is an average value of the temperature from the portion on the distal end side L1 in the axial direction L of the sensor element 2 to the portion on the proximal end side L2, was 550 ° C.
 同図に示すように、絶縁層22の厚みが薄くなるほど、センサ出力の出力シフト量が大きくなることが分かる。そして、絶縁層22の厚みが4μmよりも薄くなると、出力シフト量が急激に増加していることが分かる。絶縁層22の厚みが4μmよりも薄くなると、固体電解質体3の表面に形成された凹凸の凸部が絶縁層22の表面に出現し、絶縁層22によって、固体電解質体3と検出電極4Aの装着電極部43との絶縁を十分に行えなくなるためであると考える。そのため、絶縁層22による絶縁効果を十分に得るためには、絶縁層22の最小厚みを4μm以上とすることが好ましいと言える。 As shown in the figure, it can be seen that the output shift amount of the sensor output increases as the thickness of the insulating layer 22 decreases. And when the thickness of the insulating layer 22 becomes thinner than 4 micrometers, it turns out that the output shift amount is increasing rapidly. When the thickness of the insulating layer 22 is less than 4 μm, the uneven protrusions formed on the surface of the solid electrolyte body 3 appear on the surface of the insulating layer 22, and the insulating layer 22 causes the solid electrolyte body 3 and the detection electrode 4A to be formed. This is considered to be because the insulation with the mounting electrode portion 43 cannot be sufficiently performed. Therefore, it can be said that the minimum thickness of the insulating layer 22 is preferably 4 μm or more in order to sufficiently obtain the insulating effect of the insulating layer 22.
<確認試験3>
 本試験においては、センサ素子2の温度と、酸素センサとして用いられるガスセンサ1のセンサ出力に生じる誤差との関係を、センサ素子2に絶縁層22が設けられた実施形態1のガスセンサ1(試験品)と、センサ素子2に絶縁層22が設けられていないガスセンサ(比較品)とについて確認した。図13には、センサ素子2の温度を適宜変化させたときに、ガスセンサ1のセンサ出力にどれだけ誤差が生じたかを示す。
<Confirmation test 3>
In this test, the relationship between the temperature of the sensor element 2 and the error that occurs in the sensor output of the gas sensor 1 used as an oxygen sensor is expressed as the gas sensor 1 of the first embodiment in which the insulating layer 22 is provided on the sensor element 2 (test product). ) And a gas sensor (comparative product) in which the sensor element 2 is not provided with the insulating layer 22. FIG. 13 shows how much error has occurred in the sensor output of the gas sensor 1 when the temperature of the sensor element 2 is appropriately changed.
 センサ出力に生じる誤差は、センサ素子2の温度が変化したときに、検出ガスGが理論空燃比にある場合のガスセンサ1の出力電圧(起電力)がどれだけ変化したかを、出力電圧のシフト量[V]によって示す。センサ素子2の温度は、センサ素子2の軸方向Lの先端側L1の部分から基端側L2の部分までの温度の平均値とした。また絶縁層22の一般部の膜厚は10μmとした。 The error that occurs in the sensor output is a shift in the output voltage that indicates how much the output voltage (electromotive force) of the gas sensor 1 changes when the detected gas G is at the stoichiometric air-fuel ratio when the temperature of the sensor element 2 changes. Indicated by quantity [V]. The temperature of the sensor element 2 was the average value of the temperature from the portion on the distal end side L1 in the axial direction L of the sensor element 2 to the portion on the proximal end side L2. The film thickness of the general part of the insulating layer 22 was 10 μm.
 同図に示すように、試験品のガスセンサ1においては、センサ素子2の温度が約270℃以上約600℃以下である高温の範囲において、出力電圧のシフト量はほぼ0(ゼロ)に近いことが分かった。一方、比較品のガスセンサにおいては、センサ素子2の温度が約380℃以上になると出力電圧のシフト量が発生し、センサ素子2の温度が高くなるほど、出力電圧のシフト量が増加することが分かった。この結果より、実施形態1の酸素濃度を検出するガスセンサ1により、センサ素子2の基準電極4Bと検出電極4Aとの間に生じるリーク電流を抑え、センサ出力に、リーク電流によるオフセット誤差がほとんど生じないようにできることが分かった。 As shown in the figure, in the test gas sensor 1, the shift amount of the output voltage is close to 0 (zero) in the high temperature range where the temperature of the sensor element 2 is about 270 ° C. or more and about 600 ° C. or less. I understood. On the other hand, in the comparative gas sensor, when the temperature of the sensor element 2 reaches about 380 ° C. or higher, the output voltage shift amount occurs, and as the sensor element 2 temperature increases, the output voltage shift amount increases. It was. As a result, the gas sensor 1 for detecting the oxygen concentration according to the first embodiment suppresses a leak current generated between the reference electrode 4B and the detection electrode 4A of the sensor element 2, and an offset error due to the leak current almost occurs in the sensor output. I found out that I can do it.
<確認試験4>
 本試験においては、固体電解質体3の筒部31の外側面301に設けられた絶縁層22の厚みと、酸素センサとして用いられるガスセンサ1のセンサ出力に生じる誤差との関係を確認した。図14には、絶縁層22の厚み[μm]を適宜変化させたときに、実施形態1のガスセンサ1のセンサ出力にどれだけ誤差が生じたかを示す。センサ出力に生じる誤差は、絶縁層22の厚みが変化したときに、検出ガスGが理論空燃比にある場合のガスセンサ1の出力電圧(起電力)がどれだけ変化したかを、出力電圧のシフト量[V]によって示す。絶縁層22の厚み及びセンサ素子2の温度については、確認試験2と同様である。
<Confirmation test 4>
In this test, the relationship between the thickness of the insulating layer 22 provided on the outer surface 301 of the cylindrical portion 31 of the solid electrolyte body 3 and the error generated in the sensor output of the gas sensor 1 used as an oxygen sensor was confirmed. FIG. 14 shows how much error occurs in the sensor output of the gas sensor 1 of the first embodiment when the thickness [μm] of the insulating layer 22 is appropriately changed. The error that occurs in the sensor output is a shift in the output voltage that indicates how much the output voltage (electromotive force) of the gas sensor 1 changes when the detected gas G is at the stoichiometric air-fuel ratio when the thickness of the insulating layer 22 changes. Indicated by quantity [V]. The thickness of the insulating layer 22 and the temperature of the sensor element 2 are the same as in the confirmation test 2.
 同図に示すように、絶縁層22の厚みが薄くなるほど、出力電圧のシフト量が大きくなることが分かる。そして、絶縁層22の厚みが4μmよりも薄くなると、シフト量が急激に増加していることが分かる。絶縁層22の厚みが4μmよりも薄くなると、固体電解質体3の表面に形成された凹凸の凸部が絶縁層22の表面に反映され、絶縁層22によって、固体電解質体3と検出電極4Aの装着電極部43との絶縁を十分に行えなくなるためであると考える。そのため、絶縁層22による絶縁効果を十分に得るためには、絶縁層22の最小厚みを4μm以上とすることが好ましいと言える。 As shown in the figure, it can be seen that the shift amount of the output voltage increases as the thickness of the insulating layer 22 decreases. And when the thickness of the insulating layer 22 becomes thinner than 4 micrometers, it turns out that the shift amount is increasing rapidly. When the thickness of the insulating layer 22 is less than 4 μm, the uneven protrusions formed on the surface of the solid electrolyte body 3 are reflected on the surface of the insulating layer 22, and the insulating layer 22 causes the solid electrolyte body 3 and the detection electrode 4A to be formed. This is considered to be because the insulation with the mounting electrode portion 43 cannot be sufficiently performed. Therefore, it can be said that the minimum thickness of the insulating layer 22 is preferably 4 μm or more in order to sufficiently obtain the insulating effect of the insulating layer 22.
<確認試験5>
 本試験においては、実施形態2に示したガスセンサ1について、絶縁層22の基端側L2の端部におけるテーパ状表面221の傾斜角度θと、絶縁層22における剥離、欠け等の欠陥の発生数との関係を確認した。この欠陥の発生数は、固体電解質体3の外側面301に端子金具71を装着する際に、絶縁層22に剥離又は欠けが生じたときにカウントした。剥離又は欠けの発生の有無の確認は、各傾斜角度θの場合について、20回ずつ行った。
<Confirmation test 5>
In this test, with respect to the gas sensor 1 shown in the second embodiment, the inclination angle θ of the tapered surface 221 at the end of the base layer L2 of the insulating layer 22 and the number of defects such as peeling and chipping in the insulating layer 22 are generated. And confirmed the relationship. The number of occurrences of this defect was counted when peeling or chipping occurred in the insulating layer 22 when the terminal fitting 71 was mounted on the outer surface 301 of the solid electrolyte body 3. The presence or absence of peeling or chipping was confirmed 20 times for each inclination angle θ.
 図15に示すように、テーパ状表面221の傾斜角度θが60°以下である場合には、絶縁層22に剥離又は欠けが発生しないことが分かった。一方、テーパ状表面221の傾斜角度θが60°を超える場合には、剥離又は欠けが数回発生することが分かった。この結果より、テーパ状表面221の傾斜角度θは60°以下にすることにより、センサ素子2への端子金具71の組付時に、絶縁層22を保護することができると言える。 As shown in FIG. 15, it was found that no peeling or chipping occurred in the insulating layer 22 when the inclination angle θ of the tapered surface 221 was 60 ° or less. On the other hand, when the inclination angle θ of the tapered surface 221 exceeds 60 °, it has been found that peeling or chipping occurs several times. From this result, it can be said that the insulating layer 22 can be protected when the terminal fitting 71 is assembled to the sensor element 2 by setting the inclination angle θ of the tapered surface 221 to 60 ° or less.

Claims (9)

  1.  筒状の筒部(31)の先端部が曲面状の底部(32)によって閉塞された有底筒状の固体電解質体(3)と、
     少なくとも前記筒部の外側面(301)に設けられて、前記固体電解質体の外側に導かれる検出ガス(G)に晒される検出電極(4A)と、
     少なくとも前記筒部の内側面(302)に設けられて、前記固体電解質体の内側に導かれる基準ガス(G)に晒される基準電極(4B)と、を有するセンサ素子(2)を備えるガスセンサ(1)において、
     前記検出電極は、
     前記筒部の中心軸線(O)に沿った軸方向(L)の先端側の位置において、前記中心軸線を中心とする周方向(C)の全周又は一部に設けられた検知電極部(41)と、
     前記軸方向の基端側の位置において、前記周方向の全周又は一部に設けられ、前記筒部の外周に装着された端子金具(71)と接触する装着電極部(43)と、
     前記検知電極部と前記装着電極部とを繋ぐ位置において、前記周方向の一部に設けられ、前記装着電極部に比べて前記周方向における形成範囲が狭いリード電極部(42)と、を有し、
     前記固体電解質体の前記筒部と前記装着電極部及び前記リード電極部との間には、前記固体電解質体と前記装着電極部及び前記リード電極部との間を絶縁する絶縁層(22)が設けられている、ガスセンサ。
    A bottomed cylindrical solid electrolyte body (3) in which the tip of the cylindrical cylinder (31) is closed by a curved bottom (32);
    A detection electrode (4A) provided on at least the outer surface (301) of the cylindrical portion and exposed to a detection gas (G) guided to the outside of the solid electrolyte body;
    A gas sensor comprising a sensor element (2) provided at least on an inner surface (302) of the cylindrical portion and having a reference electrode (4B) exposed to a reference gas (G) guided to the inside of the solid electrolyte body In 1)
    The detection electrode is
    Detecting electrode portions provided on the entire circumference or a part of the circumferential direction (C) centered on the central axis line at a position on the distal end side in the axial direction (L) along the central axis line (O) of the cylindrical portion ( 41),
    A mounting electrode portion (43) that is provided on the entire circumference or a part of the circumferential direction at a position on the base end side in the axial direction and that contacts a terminal fitting (71) mounted on the outer periphery of the cylindrical portion;
    A lead electrode portion (42) provided in a part of the circumferential direction at a position connecting the detection electrode portion and the mounting electrode portion and having a narrower formation range in the circumferential direction than the mounting electrode portion; And
    Between the cylindrical portion of the solid electrolyte body and the mounting electrode portion and the lead electrode portion, there is an insulating layer (22) that insulates the solid electrolyte body from the mounting electrode portion and the lead electrode portion. A gas sensor is provided.
  2.  前記基準電極に接触する前記基準ガスと、前記検出電極に接触する前記検出ガスとの酸素濃度の差によって、前記固体電解質体を介して前記検出電極と前記基準電極との間に生じる起電力を検出するよう構成されている、請求項1に記載のガスセンサ。 An electromotive force generated between the detection electrode and the reference electrode via the solid electrolyte body due to a difference in oxygen concentration between the reference gas in contact with the reference electrode and the detection gas in contact with the detection electrode. The gas sensor according to claim 1, configured to detect.
  3.  前記固体電解質体の前記筒部の外側面には、少なくとも前記検出電極の前記検知電極部の全体を覆い、前記検出ガスの拡散を制限する拡散抵抗層(21)が設けられており、
     前記検出電極と前記基準電極との間に電圧が印加された状態において、前記固体電解質体を介して前記検出電極と前記基準電極との間に生じる限界電流を検出するよう構成されている、請求項1に記載のガスセンサ。
    A diffusion resistance layer (21) that covers at least the entire detection electrode portion of the detection electrode and restricts diffusion of the detection gas is provided on the outer surface of the cylindrical portion of the solid electrolyte body,
    The device is configured to detect a limit current generated between the detection electrode and the reference electrode via the solid electrolyte body in a state where a voltage is applied between the detection electrode and the reference electrode. Item 2. The gas sensor according to Item 1.
  4.  前記絶縁層における前記軸方向の基端側の端部は、前記装着電極部における前記軸方向の基端側の端部よりも基端側まで設けられて、前記筒部の外側面に露出しており、かつ、前記筒部の前記軸方向の基端側から先端側に向けて前記筒部の外周に装着される前記端子金具を案内するよう、前記筒部の前記軸方向の基端側へ行くほど前記中心軸線を中心とする径方向(R)の厚みが縮小するテーパ状表面(221)を有する、請求項1~3のいずれか1項に記載のガスセンサ。 An end portion on the base end side in the axial direction of the insulating layer is provided to a base end side rather than an end portion on the base end side in the axial direction of the mounting electrode portion, and is exposed to an outer surface of the cylindrical portion. And the axial base end side of the cylindrical portion so as to guide the terminal fitting mounted on the outer periphery of the cylindrical portion from the base end side in the axial direction of the cylindrical portion toward the distal end side. The gas sensor according to any one of claims 1 to 3, further comprising a tapered surface (221) in which a thickness in a radial direction (R) centering on the central axis decreases.
  5.  前記中心軸線に対する前記テーパ状表面の傾斜角度は、60°以下である、請求項4に記載のガスセンサ。 The gas sensor according to claim 4, wherein an inclination angle of the tapered surface with respect to the central axis is 60 ° or less.
  6.  前記絶縁層の前記軸方向における基端側の端部(222)は、前記筒部の外側面から前記筒部の基端側の端面(311)まで連続して設けられている、請求項1~3のいずれか1項に記載のガスセンサ。 The end (222) on the base end side in the axial direction of the insulating layer is continuously provided from the outer surface of the tube portion to the end surface (311) on the base end side of the tube portion. 4. The gas sensor according to any one of items 1 to 3.
  7.  前記絶縁層における、前記筒部と前記装着電極部及び前記リード電極部との間に位置する部位の最小厚みは、4μm以上である、請求項1~6のいずれか1項に記載のガスセンサ。 The gas sensor according to any one of claims 1 to 6, wherein a minimum thickness of a portion of the insulating layer located between the cylindrical portion and the mounting electrode portion and the lead electrode portion is 4 μm or more.
  8.  前記固体電解質体は、ジルコニアを含有し、
     前記基準電極及び前記検出電極は、貴金属を含有し、
     前記絶縁層は、酸化アルミニウム、スピネル及び絶縁性ガラスのうちの少なくとも1種類以上を含有する、請求項1~7のいずれか1項に記載のガスセンサ。
    The solid electrolyte body contains zirconia,
    The reference electrode and the detection electrode contain a noble metal,
    The gas sensor according to any one of claims 1 to 7, wherein the insulating layer contains at least one of aluminum oxide, spinel, and insulating glass.
  9.  前記ガスセンサは、前記検出ガスとしての排ガスが流れる、内燃機関(8)の排気管(81)内に配置されるものであり、
     前記排気管内には、1つの触媒(82A)、又は前記排ガスの流れの方向に並んで複数の触媒(82A,82B)が配置されており、
     前記ガスセンサは、少なくとも1つの前記触媒よりも、前記排気管内の前記排ガスの流れの下流側に配置されるものである、請求項1~8のいずれか1項に記載のガスセンサ。
    The gas sensor is disposed in an exhaust pipe (81) of an internal combustion engine (8) through which exhaust gas as the detection gas flows.
    In the exhaust pipe, one catalyst (82A) or a plurality of catalysts (82A, 82B) are arranged in the direction of the flow of the exhaust gas,
    The gas sensor according to any one of claims 1 to 8, wherein the gas sensor is arranged downstream of at least one of the catalysts in the flow of the exhaust gas in the exhaust pipe.
PCT/JP2018/015747 2017-04-21 2018-04-16 Gas sensor WO2018194034A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880026205.3A CN110573870B (en) 2017-04-21 2018-04-16 Gas sensor
DE112018002089.4T DE112018002089T5 (en) 2017-04-21 2018-04-16 gas sensor
US16/656,959 US11604160B2 (en) 2017-04-21 2019-10-18 Gas sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-084568 2017-04-21
JP2017084568 2017-04-21
JP2018018540A JP6702342B2 (en) 2017-04-21 2018-02-05 Gas sensor
JP2018-018540 2018-02-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/656,959 Continuation US11604160B2 (en) 2017-04-21 2019-10-18 Gas sensor

Publications (1)

Publication Number Publication Date
WO2018194034A1 true WO2018194034A1 (en) 2018-10-25

Family

ID=63856635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015747 WO2018194034A1 (en) 2017-04-21 2018-04-16 Gas sensor

Country Status (1)

Country Link
WO (1) WO2018194034A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036754A (en) * 2007-07-11 2009-02-19 Ngk Spark Plug Co Ltd Ammonia gas sensor
JP2009281727A (en) * 2008-05-19 2009-12-03 Denso Corp Oxygen sensor element
JP2012233786A (en) * 2011-05-02 2012-11-29 Ngk Spark Plug Co Ltd Gas sensor
JP2014178303A (en) * 2013-02-14 2014-09-25 Ngk Spark Plug Co Ltd Method for manufacturing gas sensor element
JP2015225020A (en) * 2014-05-29 2015-12-14 日本特殊陶業株式会社 Gas sensor
JP2016011884A (en) * 2014-06-30 2016-01-21 株式会社デンソー Gas sensor element and gas sensor element manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036754A (en) * 2007-07-11 2009-02-19 Ngk Spark Plug Co Ltd Ammonia gas sensor
JP2009281727A (en) * 2008-05-19 2009-12-03 Denso Corp Oxygen sensor element
JP2012233786A (en) * 2011-05-02 2012-11-29 Ngk Spark Plug Co Ltd Gas sensor
JP2014178303A (en) * 2013-02-14 2014-09-25 Ngk Spark Plug Co Ltd Method for manufacturing gas sensor element
JP2015225020A (en) * 2014-05-29 2015-12-14 日本特殊陶業株式会社 Gas sensor
JP2016011884A (en) * 2014-06-30 2016-01-21 株式会社デンソー Gas sensor element and gas sensor element manufacturing method

Similar Documents

Publication Publication Date Title
US7407567B2 (en) Gas sensor element and gas sensor
EP2107364B1 (en) Gas sensor
US20120145543A1 (en) Multigas sensor
US4824550A (en) Heated solid electrolyte oxygen sensor and securing element therefor
US7713393B2 (en) Gas sensor and method for manufacturing the same
US8152979B2 (en) Ammonia gas sensor
JP2017198659A (en) Gas sensor element and gas sensor
JP5770773B2 (en) Gas sensor
JP2015102384A (en) Oxygen sensor element
US11604160B2 (en) Gas sensor
JP7125372B2 (en) gas sensor
WO2018194034A1 (en) Gas sensor
US11029277B2 (en) Gas sensor
US11255812B2 (en) Gas sensor element, heater and gas sensor
JP4496104B2 (en) Gas sensor evaluation method and gas sensor evaluation apparatus
JP3771018B2 (en) Gas concentration detection element
JP4015569B2 (en) Air-fuel ratio detection device
JP6943575B2 (en) Gas sensor
JP2006343184A (en) Gas sensor evaluation method and gas sensor evaluator
WO2020230515A1 (en) Gas sensor
JP4527580B2 (en) Gas sensor evaluation method and gas sensor evaluation apparatus
JP7114701B2 (en) Gas sensor element and gas sensor
JP4542950B2 (en) Gas sensor evaluation method and gas sensor evaluation apparatus
JPS6125053A (en) Oxygen concentration detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788109

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18788109

Country of ref document: EP

Kind code of ref document: A1