JP2014178303A - Method for manufacturing gas sensor element - Google Patents

Method for manufacturing gas sensor element Download PDF

Info

Publication number
JP2014178303A
JP2014178303A JP2013243655A JP2013243655A JP2014178303A JP 2014178303 A JP2014178303 A JP 2014178303A JP 2013243655 A JP2013243655 A JP 2013243655A JP 2013243655 A JP2013243655 A JP 2013243655A JP 2014178303 A JP2014178303 A JP 2014178303A
Authority
JP
Japan
Prior art keywords
electrode
gas sensor
sensor element
noble metal
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013243655A
Other languages
Japanese (ja)
Other versions
JP6104137B2 (en
Inventor
Takashi Saguchi
孝 佐口
Takashi Takagi
貴史 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2013243655A priority Critical patent/JP6104137B2/en
Publication of JP2014178303A publication Critical patent/JP2014178303A/en
Application granted granted Critical
Publication of JP6104137B2 publication Critical patent/JP6104137B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a gas sensor element capable of easily forming an electrode on the surface of a solid electrolyte and suppressing reduction of gas detection accuracy.SOLUTION: The method for manufacturing a gas sensor element 3 in manufacturing the gas sensor element having an electrode formed on a solid electrolyte 3s and on its surface includes: a core sticking process of forming a nucleus formation part by adhering noble metal particles to electrode planned parts 450x, 450y at which electrodes are planned to be formed among the surfaces; and a plating process of applying plating to the nucleus formation part and forming an electrode. The core sticking process includes: a coating process of coating the electrode planned part with a solution or a paste containing a solvent and noble metal particles composed of a single noble metal element in which particle diameter (D90) whose accumulated numbers are 90% is less than 100 nm; and a removable process of heating the electrode planned part coated with the solution or the paste to a heating temperature equal to or more than a lower temperature of either a volatilization temperature of the solvent or a boiling point.

Description

本発明は、被検出ガスの濃度を検出するガスセンサ素子の製造方法に関する。   The present invention relates to a method of manufacturing a gas sensor element that detects the concentration of a gas to be detected.

自動車等の排気ガス中の酸素濃度を検出するガスセンサとして、軸線方向に延びつつ先端が閉じた略円筒状のガスセンサ素子を、筒状の主体金具の内側に挿通して保持するものが知られている。このガスセンサ素子は、筒体の固体電解質体と、固体電解質体の内外表面にそれぞれ形成された内側電極及び外側電極とを有している。
これらの内側電極及び外側電極を形成する方法として、固体電解質体の表面の電極形成部分に白金の有機化合物を印刷等で塗布した後、この化合物の熱分解温度以上に加熱して還元することで単一の白金からなる白金の核を形成し、次いでこの核に白金を無電解めっきする方法が開発されている(特許文献1)。
又、上述の白金の核を物理蒸着法(PVD)によって形成する方法が開発されている(特許文献2)。
As a gas sensor for detecting an oxygen concentration in an exhaust gas of an automobile or the like, a gas sensor that extends in an axial direction and has a substantially cylindrical gas sensor element that is inserted and held inside a cylindrical metal shell is known. Yes. This gas sensor element has a cylindrical solid electrolyte body and inner and outer electrodes formed on the inner and outer surfaces of the solid electrolyte body, respectively.
As a method of forming these inner electrode and outer electrode, after applying an organic compound of platinum to the electrode forming portion on the surface of the solid electrolyte body by printing or the like, it is reduced by heating above the thermal decomposition temperature of this compound. A method of forming a platinum nucleus composed of a single platinum and then electrolessly plating platinum on the nucleus has been developed (Patent Document 1).
Further, a method for forming the above-described platinum nucleus by physical vapor deposition (PVD) has been developed (Patent Document 2).

特開平9−304334号公報JP-A-9-304334 特開2004−170404号公報JP 2004-170404 A

しかしながら、特許文献1記載の技術の場合、白金の有機化合物を熱分解温度以上に加熱して析出した白金の金属粒子同士が凝集し、最終的に得られる白金の核のサイズが不均一になるという問題がある。そのため、核の表面にめっきされる電極の厚みも不均一になり、得られたガスセンサ素子のガス検出精度が低下するおそれがある。
一方、特許文献2記載の技術の場合、固体電解質体の表面に白金を直接析出させるため、白金の核のサイズが不均一になることを防止できるが、蒸着設備が複雑となり、製造コストの上昇を招く。
従って、本発明は、固体電解質体の表面に電極を容易に形成できると共に、ガス検出精度の低下を抑制したガスセンサ素子の製造方法の提供を目的とする。
However, in the case of the technique described in Patent Document 1, platinum metal particles deposited by heating an organic compound of platinum at a temperature equal to or higher than the thermal decomposition temperature aggregate to make the size of the finally obtained platinum nucleus nonuniform. There is a problem. Therefore, the thickness of the electrode plated on the surface of the nucleus also becomes uneven, and the gas detection accuracy of the obtained gas sensor element may be lowered.
On the other hand, in the case of the technique described in Patent Document 2, since the platinum is directly deposited on the surface of the solid electrolyte body, it is possible to prevent the size of the platinum nucleus from becoming non-uniform, but the deposition equipment becomes complicated and the manufacturing cost increases. Invite.
Accordingly, an object of the present invention is to provide a method of manufacturing a gas sensor element that can easily form an electrode on the surface of a solid electrolyte body and suppresses a decrease in gas detection accuracy.

上記課題を解決するため、本発明のガスセンサ素子の製造方法は、固体電解質体と、該固体電解質体の表面に形成された電極とを有するガスセンサ素子を製造するにあたり、該表面のうち前記電極を形成する予定の電極予定部に貴金属粒子を付着させて核形成部を形成する核付け工程と、前記核形成部に対してメッキを施して前記電極を形成するメッキ工程と、を有し、前記核付け工程は、溶媒と、累積個数が90%となる粒子径(D90)が100nm未満である、単一の貴金属元素からなる前記貴金属粒子と、を含有する溶液又はペーストを前記電極予定部に塗布する塗布工程と、前記溶液又は前記ペーストを塗布した前記電極予定部を、前記溶媒の揮発温度又は沸点のいずれか低い方の温度以上の加熱温度に加熱して、該溶媒を除去して前記核形成部を形成する除去工程と、を有する。
このガスセンサ素子の製造方法によれば、電極予定部に溶液又はペーストを用いて核形成部を形成する際に、溶媒をその揮発温度又は沸点のいずれか低い方の温度以上に加熱して除去すれば済むので、加熱温度が比較的低温となり、貴金属粒子同士が凝集し難くなる。これにより、最終的に得られる貴金属粒子の核のサイズ及び厚みが均一になり、核の表面にメッキされる電極の厚みも均一になり、得られたガスセンサ素子のガス検出精度の低下を抑制することができる。
In order to solve the above-described problems, a method of manufacturing a gas sensor element according to the present invention provides a gas sensor element having a solid electrolyte body and an electrode formed on the surface of the solid electrolyte body. A nucleation step for forming a nucleation portion by attaching noble metal particles to an electrode planned portion to be formed, and a plating step for forming the electrode by plating the nucleation portion, In the nucleation step, a solution or paste containing a solvent and the noble metal particles composed of a single noble metal element having a particle diameter (D90) of 90% and a cumulative number of less than 100 nm is used as the electrode planned portion. The application step of applying, and the electrode portion to which the solution or paste has been applied are heated to a heating temperature equal to or higher than the volatile temperature or boiling point of the solvent, to remove the solvent. Having a removal step of forming the nucleation section.
According to this method of manufacturing a gas sensor element, when a nucleation part is formed using a solution or a paste on a predetermined electrode part, the solvent is removed by heating to a temperature lower than its volatilization temperature or boiling point, whichever is lower. Therefore, the heating temperature becomes relatively low, and the noble metal particles hardly aggregate. Thereby, the size and thickness of the core of the noble metal particles finally obtained become uniform, the thickness of the electrode plated on the surface of the core also becomes uniform, and the deterioration of the gas detection accuracy of the obtained gas sensor element is suppressed. be able to.

前記加熱温度は、前記貴金属粒子同士が凝集する温度以下であることが好ましい。
このガスセンサ素子の製造方法によれば、貴金属粒子同士の凝集を確実に抑制し、貴金属粒子の核のサイズ及び厚みがより一層均一になる。
The heating temperature is preferably equal to or lower than a temperature at which the noble metal particles aggregate.
According to this method for manufacturing a gas sensor element, aggregation of noble metal particles is reliably suppressed, and the size and thickness of the nuclei of the noble metal particles become even more uniform.

前記ペーストは、バインダを更に含有してもよい。
このガスセンサ素子の製造方法によれば、ペーストが粘性を有するので、ペーストを電極予定部に塗布し易くなる。
The paste may further contain a binder.
According to this method for manufacturing a gas sensor element, since the paste has viscosity, it becomes easy to apply the paste to the planned electrode part.

前記貴金属粒子の個数基準による粒子径分布幅(D90−D10)が50nm以下であることが好ましい。
このガスセンサ素子の製造方法によれば、貴金属粒子の核のサイズ及び厚みがより一層均一になる。
The particle size distribution width (D90-D10) based on the number of the noble metal particles is preferably 50 nm or less.
According to this method for manufacturing a gas sensor element, the size and thickness of the nuclei of the noble metal particles become even more uniform.

この発明によれば、固体電解質体の表面に電極を容易に形成できると共に、ガス検出精度の低下を抑制したガスセンサ素子が得られる。   According to the present invention, an electrode can be easily formed on the surface of the solid electrolyte body, and a gas sensor element in which a decrease in gas detection accuracy is suppressed can be obtained.

本発明によって製造されたガスセンサ素子を組み付けたガスセンサを軸線方向に沿う面で切断した断面図である。It is sectional drawing which cut | disconnected the gas sensor which assembled | attached the gas sensor element manufactured by this invention by the surface in alignment with an axial direction. ガスセンサ素子の内側電極、外側電極の構成を示す斜視図である。It is a perspective view which shows the structure of the inner side electrode of a gas sensor element, and an outer side electrode. ガスセンサ素子の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a gas sensor element.

以下、本発明の実施形態について説明する。
図1は、本発明によって製造されたガスセンサ素子3を有するガスセンサ100を、軸線O方向に沿う面で切断した断面構造を示す。この実施形態において、ガスセンサ100は自動車の排気管内に挿入されて先端が排気ガス中に曝され、排気ガス中の酸素濃度を検出する酸素センサになっている。ガスセンサ素子3は、酸素イオン伝導性の固体電解質体に一対の電極を積層した酸素濃淡電池を構成し、酸素量に応じた検出値を出力する公知の酸素センサ素子である。
なお、図1の下側をガスセンサ100の先端側とし、図1の上側をガスセンサ100の後端側とする。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 shows a cross-sectional structure of a gas sensor 100 having a gas sensor element 3 manufactured according to the present invention, cut along a plane along the axis O direction. In this embodiment, the gas sensor 100 is an oxygen sensor that is inserted into an exhaust pipe of an automobile and has a tip exposed to the exhaust gas to detect the oxygen concentration in the exhaust gas. The gas sensor element 3 is a known oxygen sensor element that constitutes an oxygen concentration cell in which a pair of electrodes are laminated on an oxygen ion conductive solid electrolyte body and outputs a detection value corresponding to the amount of oxygen.
In addition, let the lower side of FIG. 1 be the front end side of the gas sensor 100, and let the upper side of FIG.

ガスセンサ100は、先端が閉じた略円筒状(中空軸状)のガスセンサ素子(この例では酸素センサ素子)3を、筒状の金具本体(主体金具)20の内側に挿通して保持するよう組み付けられている。ガスセンサ素子3は、先端に向かってテーパ状に縮径する筒状の固体電解質体3sと、固体電解質体の内周面と外周面にそれぞれ形成された内側電極50(図2参照)及び外側電極450(図2参照)とからなる。又、ガスセンサ素子3の中空部には丸棒状のヒータ15が挿入され、固体電解質体3sを活性化温度に昇温するようになっている。
なお、内側電極50及び外側電極450が特許請求の範囲の「電極」に相当する。
金具本体20の後端部には、ガスセンサ素子3の後端側に設けられたリード線や端子(後述)を保持し、センサ素子3の後端部を覆う筒状の外筒40が接合されている。さらに、ガスセンサ素子3の後端側の外筒40内側には、絶縁性で円柱状のセパレータ121が加締め固定されている。一方、ガスセンサ素子3先端の検出部はプロテクタ7で覆われている。そして、このようにして製造されたガスセンサ100の金具本体20の雄ねじ部20dを排気管等のネジ孔に取付けることで、ガスセンサ素子3先端の検出部を排気管内に露出させて被検出ガス(排気ガス)を検知している。なお、金具本体20の中央付近には、六角レンチ等を係合するための多角形の鍔部20cが設けられ、鍔部20cと雄ねじ部20dとの間の段部には、排気管に取付けた際のガス抜けを防止するガスケット14が嵌挿されている。
The gas sensor 100 is assembled so that a substantially cylindrical (hollow shaft-shaped) gas sensor element (in this example, an oxygen sensor element) 3 having a closed tip is inserted and held inside a cylindrical metal fitting body (main metal fitting) 20. It has been. The gas sensor element 3 includes a cylindrical solid electrolyte body 3s having a tapered diameter toward the tip, an inner electrode 50 (see FIG. 2) and an outer electrode formed on the inner and outer peripheral surfaces of the solid electrolyte body, respectively. 450 (see FIG. 2). Further, a round bar heater 15 is inserted into the hollow portion of the gas sensor element 3 so as to raise the temperature of the solid electrolyte body 3s to the activation temperature.
The inner electrode 50 and the outer electrode 450 correspond to “electrodes” in the claims.
A cylindrical outer tube 40 that holds lead wires and terminals (described later) provided on the rear end side of the gas sensor element 3 and covers the rear end portion of the sensor element 3 is joined to the rear end portion of the metal fitting body 20. ing. Further, an insulating and cylindrical separator 121 is caulked and fixed inside the outer cylinder 40 on the rear end side of the gas sensor element 3. On the other hand, the detection part at the tip of the gas sensor element 3 is covered with a protector 7. The male screw part 20d of the metal fitting body 20 of the gas sensor 100 manufactured in this way is attached to a screw hole such as an exhaust pipe, so that the detection part at the tip of the gas sensor element 3 is exposed in the exhaust pipe and the gas to be detected (exhaust gas) Gas). A polygonal flange 20c for engaging a hexagon wrench or the like is provided near the center of the metal fitting body 20, and the step between the flange 20c and the male thread 20d is attached to the exhaust pipe. A gasket 14 is inserted to prevent the gas from leaking when it is blown.

ガスセンサ素子3の中央側に鍔部3aが設けられ、金具本体20の先端寄りの内周面には内側に縮径する段部が設けられている。又、段部の後端向き面にワッシャ12を介して筒状のセラミックホルダ5が配置されている。そして、ガスセンサ素子3が金具本体20及びセラミックホルダ5の内側に挿通され、セラミックホルダ5に後端側からワッシャ13を介してガスセンサ素子3の鍔部3aが当接している。
さらに、鍔部3aの後端側におけるガスセンサ素子3と金具本体20との径方向の隙間に、筒状の滑石粉末6、及び筒状のセラミックスリーブ10が配置されている。そして、セラミックスリーブ10の後端側に金属リング30を配し、金具本体20後端部を内側に屈曲して加締め部20aを形成することにより、セラミックスリーブ10が先端側に押し付けられる。これにより滑石リング6を押し潰し、セラミックスリーブ10及び滑石粉末6が加締め固定されるとともに、ガスセンサ素子3と金具本体20の隙間がシールされている。
A flange portion 3 a is provided at the center side of the gas sensor element 3, and a step portion that is reduced in diameter is provided on the inner peripheral surface near the tip of the metal fitting body 20. In addition, a cylindrical ceramic holder 5 is disposed on the surface facing the rear end of the step portion via a washer 12. The gas sensor element 3 is inserted inside the metal fitting body 20 and the ceramic holder 5, and the flange 3 a of the gas sensor element 3 is in contact with the ceramic holder 5 through the washer 13 from the rear end side.
Furthermore, a cylindrical talc powder 6 and a cylindrical ceramic sleeve 10 are arranged in the radial gap between the gas sensor element 3 and the metal fitting body 20 on the rear end side of the flange 3a. And the ceramic sleeve 10 is pressed to the front end side by arranging the metal ring 30 on the rear end side of the ceramic sleeve 10 and bending the rear end portion of the metal fitting body 20 inward to form the crimped portion 20a. Thereby, the talc ring 6 is crushed and the ceramic sleeve 10 and the talc powder 6 are caulked and fixed, and the gap between the gas sensor element 3 and the metal fitting body 20 is sealed.

ガスセンサ素子3の後端側に配置されたセパレータ121には、挿通孔(この例では4個)が設けられ、そのうち2個の挿通孔にそれぞれ内側端子金具71、外側端子金具91の板状基部74、94が挿入されて固定されている。各板状基部74、94の後端にはそれぞれコネクタ部75、95が形成され、コネクタ部75、95にそれぞれリード線41、41が加締め接続されている。又、セパレータ121の図示しない2個の挿通孔(ヒータリード孔)に、ヒータ15から引き出されたヒータリード線43(図1では1個のみ図示)が挿通されている。
セパレータ121の後端側の外筒40内側には筒状のグロメット131が加締め固定され、グロメット131の4個の挿通孔からそれぞれ2個のリード線41、及び2個のヒータリード線43が外部に引き出されている。
なお、グロメット131の中心には貫通孔131aが形成され、ガスセンサ素子3の内部空間に連通している。そして、グロメット131の貫通孔131aに撥水性の通気フィルタ140が介装され、外部の水を通さずにガスセンサ素子3の内部空間に基準ガス(大気)を導入するようになっている。
The separator 121 disposed on the rear end side of the gas sensor element 3 is provided with insertion holes (four in this example), and two of the insertion holes are plate-like base portions of the inner terminal fitting 71 and the outer terminal fitting 91, respectively. 74 and 94 are inserted and fixed. Connector portions 75 and 95 are formed at the rear ends of the plate-like base portions 74 and 94, respectively, and lead wires 41 and 41 are crimped to the connector portions 75 and 95, respectively. Further, a heater lead wire 43 (only one is shown in FIG. 1) drawn from the heater 15 is inserted into two insertion holes (heater lead holes) (not shown) of the separator 121.
A cylindrical grommet 131 is caulked and fixed inside the outer cylinder 40 on the rear end side of the separator 121, and two lead wires 41 and two heater lead wires 43 are respectively inserted from the four insertion holes of the grommet 131. Has been pulled out.
A through hole 131 a is formed at the center of the grommet 131 and communicates with the internal space of the gas sensor element 3. A water-repellent ventilation filter 140 is interposed in the through-hole 131a of the grommet 131 so that the reference gas (atmosphere) is introduced into the internal space of the gas sensor element 3 without passing outside water.

一方、金具本体20の先端側には筒状のプロテクタ7が外嵌され、金具本体20から突出するガスセンサ素子3の先端側がプロテクタ7で覆われている。プロテクタ7は、複数の孔部(図示せず)を有する有底筒状で金属製(例えば、ステンレスなど)二重の外側プロテクタ7bおよび内側プロテクタ7aを、溶接等によって取り付けて構成されている。   On the other hand, a cylindrical protector 7 is fitted on the distal end side of the metal fitting body 20, and the distal end side of the gas sensor element 3 protruding from the metal fitting body 20 is covered with the protector 7. The protector 7 is configured by attaching a bottomed cylindrical metal (for example, stainless steel, etc.) double outer protector 7b and an inner protector 7a having a plurality of holes (not shown) by welding or the like.

次に、図2を参照して外側電極450及び内側電極50の構成について説明する。図2に示すように、内側電極50は固体電解質体3sの内周面に形成され、先端側に位置して周方向全周にわたって形成された内側検知部51と、内側検知部51から後端に向かって延びると共に周方向の一部に形成され、内側検知部51より径方向に幅狭の細長い内側リード部52と、内側リード部52より後端側に延びる内側端子接続部53とを一体に有している。なお、この例では、内側検知部51は固体電解質体3sの内周面の底部にも形成されている。又、内側端子接続部53は内側リード部52より幅広で、固体電解質体3sの内周面の周方向の一部に形成されている。但し、内側端子接続部53は内側リード部52と同じ幅であってもよく、周方向の全周にわたって形成されていてもよい。   Next, the configuration of the outer electrode 450 and the inner electrode 50 will be described with reference to FIG. As shown in FIG. 2, the inner electrode 50 is formed on the inner peripheral surface of the solid electrolyte body 3 s and is located on the front end side and formed over the entire circumference in the circumferential direction. And an elongated inner lead portion 52 that is formed in a part in the circumferential direction and narrower in the radial direction than the inner detection portion 51, and an inner terminal connection portion 53 that extends to the rear end side from the inner lead portion 52 are integrated. Have. In this example, the inner side detector 51 is also formed on the bottom of the inner peripheral surface of the solid electrolyte body 3s. The inner terminal connection portion 53 is wider than the inner lead portion 52 and is formed on a part of the inner peripheral surface of the solid electrolyte body 3s in the circumferential direction. However, the inner terminal connection portion 53 may have the same width as the inner lead portion 52 or may be formed over the entire circumference in the circumferential direction.

一方、外側電極450は固体電解質体3sの外周面に形成され、先端側に位置して周方向の一部にわたって形成された外側検知部451と、外側検知部451から後端に向かって延びると共に周方向の一部に形成され、外側検知部451より径方向に幅狭の細長い外側リード部452と、外側リード部452より後端側に延びる外側端子接続部453とを一体に有している。なお、この例では、外側検知部451は固体電解質体3sの内周面の底部にも一部形成されている。又、外側端子接続部453は外側リード部452より幅広で、固体電解質体3sの外表面の周方向に全周の1/3の長さだけ形成されている。但し、外側端子接続部453は外側リード部452と同じ幅であってもよく、周方向の全周にわたって形成されていてもよい。   On the other hand, the outer electrode 450 is formed on the outer peripheral surface of the solid electrolyte body 3s, is located on the front end side and is formed over a part of the circumferential direction, and extends from the outer detector 451 toward the rear end. The outer lead portion 452 that is formed in a part in the circumferential direction and is narrower in the radial direction than the outer detection portion 451, and the outer terminal connection portion 453 that extends to the rear end side from the outer lead portion 452 are integrally provided. . In this example, the outer side detector 451 is also partially formed at the bottom of the inner peripheral surface of the solid electrolyte body 3s. The outer terminal connection portion 453 is wider than the outer lead portion 452 and is formed in the circumferential direction of the outer surface of the solid electrolyte body 3s by a length of 1/3 of the entire circumference. However, the outer terminal connection portion 453 may have the same width as the outer lead portion 452, or may be formed over the entire circumference in the circumferential direction.

この内側検知部51は、ガスセンサ素子3の内部空間に導入される基準ガス雰囲気に曝される。一方、ガスセンサ素子3の外面に形成された外側電極450は被検出ガスに曝され、固体電解質体3sを介して内側電極50(の内側検知部51)と外側電極450(の外側検知部451)との間でガスの検知を行うようになっている。
内側端子接続部53は、固体電解質体3sの開口部に挿入された内側端子金具71に電気的に接続され、ガスセンサ素子3の検出出力を内側端子金具71から外部に取り出すようになっている。また、外側端子接続部453は、固体電解質体3sに嵌めこまれた外側端子金具91に電気的に接続され、ガスセンサ素子3の検出出力を内側端子金具91から外部に取り出すようになっている。
This inner side detection unit 51 is exposed to a reference gas atmosphere introduced into the internal space of the gas sensor element 3. On the other hand, the outer electrode 450 formed on the outer surface of the gas sensor element 3 is exposed to the gas to be detected, and the inner electrode 50 (the inner detection unit 51) and the outer electrode 450 (the outer detection unit 451) through the solid electrolyte body 3s. Gas is detected between the two.
The inner terminal connecting portion 53 is electrically connected to the inner terminal fitting 71 inserted in the opening of the solid electrolyte body 3s, and the detection output of the gas sensor element 3 is taken out from the inner terminal fitting 71 to the outside. The outer terminal connection portion 453 is electrically connected to the outer terminal fitting 91 fitted in the solid electrolyte body 3s, and the detection output of the gas sensor element 3 is taken out from the inner terminal fitting 91 to the outside.

次に、図3を参照し、本発明の実施形態に係るガスセンサ素子の製造方法について説明する。なお、本発明は、外側電極450と内側電極50の少なくとも一方に適用されるが、外側電極450に本発明を適用して製造する場合について例示する。
図3は、固体電解質体3sの外周面(表面)のうち、外側電極450を形成する予定の電極予定部450xを示す。電極予定部450xは外側電極450と同一寸法の領域であり、外側検知部予定部451xと、外側リード部予定部452xと、外側端子接続部予定部453xとを一体に有している。
Next, with reference to FIG. 3, the manufacturing method of the gas sensor element which concerns on embodiment of this invention is demonstrated. Although the present invention is applied to at least one of the outer electrode 450 and the inner electrode 50, the case where the present invention is applied to the outer electrode 450 and manufactured is illustrated.
FIG. 3 shows a planned electrode portion 450x that is to form the outer electrode 450 on the outer peripheral surface (surface) of the solid electrolyte body 3s. The planned electrode portion 450x is a region having the same dimensions as the outer electrode 450, and integrally includes a planned outer detection portion 451x, a planned outer lead portion 452x, and a planned outer terminal connection portion 453x.

まず、核付け工程では、電極予定部450xに貴金属粒子を付着させて核形成部を形成する。核付け工程は、溶媒と、累積個数が90%となる粒子径(D90)が100nm未満である、単一の貴金属元素からなる貴金属粒子とを含有する溶液又はペーストを電極予定部450xに塗布する塗布工程と、この溶液又はペーストを塗布した電極予定部450xを溶媒の揮発温度又は沸点のいずれか低い方の温度以上の加熱温度に加熱して溶媒を除去する除去工程と、を有する。
貴金属粒子としては、白金族、又はそれらの合金のうち1種類からなる(これを「単一」という)粒子が挙げられるが、白金粒子やパラジウム粒子が好ましい。この貴金属粒子の平均粒子径は100nm以下であることが好ましい。上記平均粒子粒径が100nmを超えると、貴金属粒子を電極予定部上に成膜した際、膜の凹凸が大きくなり、膜の上に形成される電極の厚みも不均一になる場合がある。
First, in the nucleation step, noble metal particles are attached to the planned electrode portion 450x to form a nucleation portion. In the nucleation step, a solution or paste containing a solvent and a noble metal particle made of a single noble metal element having a particle diameter (D90) with a cumulative number of 90% of less than 100 nm is applied to the planned electrode portion 450x. An application step, and a removal step of removing the solvent by heating the pre-electrode portion 450x to which the solution or paste has been applied to a heating temperature equal to or higher than the solvent's volatilization temperature or boiling point.
Examples of the noble metal particles include particles composed of one kind of platinum group or alloys thereof (this is referred to as “single”), and platinum particles and palladium particles are preferable. The average particle diameter of the noble metal particles is preferably 100 nm or less. When the average particle diameter exceeds 100 nm, when the noble metal particles are formed on the planned electrode part, the unevenness of the film becomes large, and the thickness of the electrode formed on the film may be nonuniform.

ここで、貴金属粒子の粒子径は、以下のようにして測定する。まず、上記溶液又はペーストをアルミナ製の平板に塗布する。次に、上記溶媒の揮発温度又は沸点のうち低い方の温度(下記の有機バインダをさらに含む場合は、溶媒と有機バインダの揮発温度又は沸点のうち高い方の温度)で加熱処理する。そして、倍率100000倍のSEM(走査電子顕微鏡)写真にて、ランダムに100個の粒子を選定し(SEM写真上では、背景となるアルミナに対し、貴金属粒子が白い画像として区別される)、画像解析ソフトにて、各粒子毎の粒子径(粒子面積の円換算径)をそれぞれ測定する。そして、100個の粒子につき、細かい粒子の側をゼロとして粒子の累積個数が90%となる粒子径をD90と定める。なお、粒子の累積個数が10%となる粒子径をD10、粒子の累積個数が50%となる粒子径をD50とする。
貴金属粒子のD90が100nm以上になると、貴金属粒子同士が凝集し、最終的に得られる核のサイズや厚みが不均一になり、核の表面にめっきされる電極の厚みも不均一になり、得られたガスセンサ素子のガス検出精度が低下する。なお、D90の下限は特に限定されないが、例えば10nmとする。D90が10nm以下のものは製造が難しい。
Here, the particle diameter of the noble metal particles is measured as follows. First, the solution or paste is applied to a flat plate made of alumina. Next, heat treatment is performed at a lower temperature of the volatilization temperature or boiling point of the solvent (in the case where the following organic binder is further included, the higher one of the volatilization temperature or boiling point of the solvent and the organic binder). Then, 100 particles are randomly selected from a SEM (scanning electron microscope) photograph at a magnification of 100,000 (on the SEM photograph, noble metal particles are distinguished as a white image with respect to alumina as a background). Analytical software measures the particle size (diameter equivalent of particle area) for each particle. For 100 particles, the fine particle side is zero, and the particle diameter at which the cumulative number of particles is 90% is defined as D90. The particle diameter at which the cumulative number of particles is 10% is D10, and the particle diameter at which the cumulative number of particles is 50% is D50.
When the D90 of the noble metal particles is 100 nm or more, the noble metal particles are aggregated, the size and thickness of the finally obtained nucleus become non-uniform, and the thickness of the electrode plated on the surface of the core becomes non-uniform. The gas detection accuracy of the obtained gas sensor element is lowered. The lower limit of D90 is not particularly limited, but is set to 10 nm, for example. Those having a D90 of 10 nm or less are difficult to produce.

貴金属粒子の個数基準による粒子径分布幅(D90−D10)が50nm以下であることが好ましい。(D90−D10)が50nm以下であると、貴金属粒子の粒径分布がシャープであり、貴金属粒子の核のサイズ及び厚みがより一層均一になる。なお、(D90−D10)の下限は特に限定されないが、例えば10nmとする。(D90−D10)が10nm以下のものは製造が難しい。   The particle size distribution width (D90-D10) based on the number of noble metal particles is preferably 50 nm or less. When (D90-D10) is 50 nm or less, the particle size distribution of the noble metal particles is sharp, and the core size and thickness of the noble metal particles become even more uniform. In addition, although the minimum of (D90-D10) is not specifically limited, For example, you may be 10 nm. Those having (D90-D10) of 10 nm or less are difficult to produce.

表1は、貴金属粒子の粒子径の分布状態を実際に測定した結果を示し、表1の各データ区間の数は、該当する粒子径の粒子の個数を表す。なお、表1の実施例1〜3,2については、SEM写真上で各粒子がほぼ円形であるので、単体粒子(つまり、2個以上の粒子が凝集していない)とみなした。
なお、表1の「実施例1〜3」はそれぞれD90が異なる貴金属粒子である白金粒子を、溶媒(ターピネオールとアルキルアミン)で混合した溶液を用いた。そして、この溶液をアルミナ上に塗布し、250℃に加熱して溶媒を除去し、上述の方法により貴金属粒子のD10,D50,D90を測定した。
又、「従来例」としては、白金錯塩と還元剤を混合した溶液を用いた。そして、この溶液をアルミナ上に塗布し、70℃に加熱して還元反応を生じさせて核を析出させた。その後120℃まで昇温して水分を揮発させ、上述の方法により核のD10,D50,D90を測定した。
Table 1 shows the results of actual measurement of the particle size distribution state of the noble metal particles, and the number of each data section in Table 1 represents the number of particles having the corresponding particle size. In addition, about Examples 1-3, and 2 of Table 1, since each particle | grain was substantially circular on a SEM photograph, it was considered that it was a single particle (that is, two or more particle | grains have not aggregated).
In Examples 1 to 3 in Table 1, a solution in which platinum particles, which are noble metal particles having different D90, were mixed with a solvent (terpineol and alkylamine) was used. Then, this solution was applied onto alumina, heated to 250 ° C. to remove the solvent, and D10, D50, and D90 of the noble metal particles were measured by the method described above.
As a “conventional example”, a solution in which a platinum complex salt and a reducing agent are mixed was used. And this solution was apply | coated on the alumina, it heated at 70 degreeC, the reduction reaction was produced, and the nucleus was deposited. Thereafter, the temperature was raised to 120 ° C. to volatilize the water, and nuclei D10, D50, and D90 were measured by the method described above.

Figure 2014178303
Figure 2014178303

貴金属粒子は、溶液又はペースト全体に対して、例えば0.5〜5.0質量%配合することができる。
溶媒としては、水の他、水系溶媒、有機溶媒(例えば、アルコール、トルエン、クロロホルム、ヘキサン、ターピネオール)を用いることができる。有機溶媒の具体例としては、アルキルアセタール化ポリビニルアルコールが挙げられる。
又、貴金属粒子を凝集させずに溶媒に分散させるため、ポリカルボン酸系、ウレタン系、アクリル樹脂系、エステル類、アミン類、イミン類、チオール類などの公知の分散剤を用いることができる。分散剤の具体例としては、アルキルアミン、カルボン酸アミド、脂肪酸、アルコキシシリル、ポリエチレンイミン、ポリビニルピロリドンが挙げられる。分散剤は、貴金属粒子を覆い、金属コロイドとして溶媒中に分散させる。又、分散剤と貴金属粒子とを混合してもよい。
さらに、溶媒と、貴金属粒子を含む溶液に対し、各種の有機バインダを加えて粘度を高めることにより、ペーストとすることができる。なお、溶媒が有機溶媒であるときの有機バインダとしては、アクリル系樹脂、ウレタン系樹脂等が挙げられる。また、溶媒が水系溶媒であるときの有機バインダとしては、セルロース系樹脂が挙げられる。
以上のようにして、溶液又はペーストを調製することができる。
The noble metal particles can be blended, for example, in an amount of 0.5 to 5.0% by mass with respect to the entire solution or paste.
As the solvent, water, an aqueous solvent, and an organic solvent (for example, alcohol, toluene, chloroform, hexane, terpineol) can be used. Specific examples of the organic solvent include alkyl acetalized polyvinyl alcohol.
In addition, in order to disperse the noble metal particles in the solvent without agglomerating, known dispersants such as polycarboxylic acid, urethane, acrylic resin, esters, amines, imines, thiols and the like can be used. Specific examples of the dispersant include alkylamine, carboxylic acid amide, fatty acid, alkoxysilyl, polyethyleneimine, and polyvinylpyrrolidone. The dispersant covers the noble metal particles and is dispersed in the solvent as a metal colloid. Further, a dispersant and noble metal particles may be mixed.
Furthermore, it can be set as a paste by adding a various organic binder with respect to the solution containing a solvent and a noble metal particle, and raising a viscosity. Examples of the organic binder when the solvent is an organic solvent include acrylic resins and urethane resins. Moreover, a cellulose resin is mentioned as an organic binder when a solvent is an aqueous solvent.
As described above, a solution or paste can be prepared.

そして、塗布工程では、この溶液又はペーストを、例えば、印刷(転写を含む)、スプレー、ディップ(浸漬)法、インクジェット方式等によって電極予定部450xに塗布することができる。
上記塗布工程では、電極予定部450xの少なくとも一部を塗布すればよく、例えば、図3の電極予定部450xのうち、外側検知部予定部451xと、外側リード部予定部452xのうち鍔部3aよりも先端側の部分(これらの領域を合わせて図3に電極予定部450yとして表記)にのみ溶液又はペーストを塗布し、それ以外の部分は本発明と別の方法で電極を形成してもよい。
又、上記ディップ法は、固体電解質体3sの表面のうち周方向の全面を塗布する場合に好適に用いることができる。例えば、図2の内側検知部51を形成する場合、固体電解質体3sの内部空間の底面(先端)側から所定深さまで上記溶液を満たすことで、ディップ(浸漬)法により塗布を行うことができる。同様に、外側検知部451を固体電解質体3sの外面の周方向全周に形成する場合、固体電解質体3sを先端側から所定深さまで上記溶液に浸漬することで、ディップ(浸漬)法により塗布を行うことができる。
以上のようにして、マスクを用いずに、所定形状の電極予定部450xに溶液又はペーストを塗布することができる。
In the application step, the solution or paste can be applied to the electrode planned portion 450x by, for example, printing (including transfer), spraying, a dip (immersion) method, an ink jet method, or the like.
In the application step, at least a part of the planned electrode portion 450x may be applied. For example, the outer detection portion planned portion 451x of the planned electrode portion 450x in FIG. 3 and the flange portion 3a of the planned outer lead portion 452x. Even if the solution or paste is applied only to the tip side portion (the regions are combined and represented as the electrode predetermined portion 450y in FIG. 3), and the other portions may be formed with an electrode by a method different from that of the present invention. Good.
The dipping method can be preferably used when the entire surface of the solid electrolyte body 3s is applied in the circumferential direction. For example, when forming the inner side detection part 51 of FIG. 2, it can apply | coat by a dip (immersion) method by filling the said solution from the bottom face (tip) side of the internal space of 3 s of solid electrolyte bodies to the predetermined depth. . Similarly, when the outer side detection unit 451 is formed on the entire circumference in the circumferential direction of the outer surface of the solid electrolyte body 3s, the solid electrolyte body 3s is applied by the dip (immersion) method by immersing the solid electrolyte body 3s from the tip side to a predetermined depth. It can be performed.
As described above, the solution or paste can be applied to the predetermined electrode portion 450x having a predetermined shape without using a mask.

次に、除去工程では、上記溶液又はペーストを塗布した電極予定部450xを、溶媒の揮発温度又は沸点のいずれか低い方の温度以上の加熱温度に加熱することで溶媒を除去し、貴金属粒子を含む核形成部を電極予定部450xの表面に均一に成膜する。ここで、揮発温度又は沸点が低い溶媒を用いるほど、加熱温度が低温となるので、貴金属粒子同士が凝集し難くなる。これにより、最終的に得られる貴金属粒子の核のサイズ及び厚みが均一になり、核の表面にメッキされる電極の厚みも均一になり、得られたガスセンサ素子のガス検出精度の低下を抑制することができる。
例えば、溶媒として水を用いた場合、加熱温度を120℃程度とすることができ、貴金属粒子同士の凝集を抑制することができる。特に、溶媒の揮発温度又は沸点を200℃未満とし、加熱温度を200℃未満とすることが好ましい。
又、加熱温度は、貴金属粒子同士が凝集する温度以下とすることが好ましい。ここで、「貴金属粒子同士が凝集する温度」は、貴金属粒子の粒径、分散剤の種類等によっても異なるので、上記溶液又はペーストを加熱したとき、上述の粒子径の測定方法(SEM写真)で、2個以上の粒子が凝集したものが1つでも確認されたときの温度とする。
なお、溶液又はペーストに、貴金属粒子の凝集を抑制する凝集抑制剤を添加してもよい。凝集抑制剤としては、ジルコニウム、アルミニウム、チタン、マグネシウムのいずれかの有機金属化合物とレジンを含有するものが挙げられる。レジンとしては、セルロース系樹脂、ビニル系樹脂が例示され、具体的には、エチルセルロース、ニトロセルロース、ポリビニルアセタール、ポリビニルアルコールが挙げられる。
Next, in the removal step, the solvent is removed by heating the electrode planned portion 450x coated with the solution or paste to a heating temperature equal to or higher than the lower one of the volatilization temperature and boiling point of the solvent, and the noble metal particles are removed. The nucleation part including the film is uniformly formed on the surface of the planned electrode part 450x. Here, the lower the volatilization temperature or the boiling point of the solvent, the lower the heating temperature, so that the noble metal particles are less likely to aggregate. Thereby, the size and thickness of the core of the noble metal particles finally obtained become uniform, the thickness of the electrode plated on the surface of the core also becomes uniform, and the deterioration of the gas detection accuracy of the obtained gas sensor element is suppressed. be able to.
For example, when water is used as the solvent, the heating temperature can be about 120 ° C., and aggregation of noble metal particles can be suppressed. In particular, the volatilization temperature or boiling point of the solvent is preferably less than 200 ° C, and the heating temperature is preferably less than 200 ° C.
Further, the heating temperature is preferably not more than the temperature at which the noble metal particles aggregate. Here, “the temperature at which the noble metal particles agglomerate” varies depending on the particle size of the noble metal particles, the type of the dispersant, and the like. Therefore, when the solution or paste is heated, the above-mentioned particle diameter measurement method (SEM photograph) Thus, the temperature is the temperature at which at least one aggregate of two or more particles is confirmed.
In addition, you may add the aggregation inhibitor which suppresses aggregation of a noble metal particle to a solution or a paste. Examples of the aggregation inhibitor include those containing an organometallic compound of any of zirconium, aluminum, titanium, and magnesium and a resin. Examples of the resin include cellulose resins and vinyl resins, and specific examples include ethyl cellulose, nitrocellulose, polyvinyl acetal, and polyvinyl alcohol.

次に、メッキ工程に進み、電極予定部450xに形成された核形成部が触媒として作用するメッキ液を用いて、メッキ液中の貴金属(白金等)を電極予定部450xの表面に析出させ、外側電極450を形成する。
具体的には、電極予定部450xを含む固体電解質体3sをメッキ液中に浸漬させた状態で、メッキ液を加熱し、その後、所定時間放置する。これにより、メッキ液中の貴金属(白金等)を、固体電解質体3sの上記電極予定部450xに析出させることができる。その後、熱処理工程に進み、メッキ済みの固体電解質体3sを、例えば1200℃で加熱処理する。これにより、外側電極450(メッキ層)を固体電解質体3sの内表面に焼き付けて、所定の特性を付与することができる。このようにして外側電極450を形成し、得られたガスセンサ素子3は、公知の組立方法(例えば、特開2004−053425号参照)により、ガスセンサ100(図1参照)に組み付けることができる。なお、分散剤やバインダ等の有機物は上記熱処理工程にて焼失する。
なお、メッキ液として、例えば、白金錯塩水溶液(白金濃度;15g/L)とヒドラジンの水溶液(濃度;85質量%)とを混合して調整した組成を用いることができる。
又、内側電極50を形成する場合は、注液装置を用いて、固体電解質体3sの内部空間にメッキ液を注入すればよい。
Next, proceeding to the plating step, using a plating solution in which the nucleation part formed in the planned electrode part 450x acts as a catalyst, a noble metal (platinum, etc.) in the plating solution is deposited on the surface of the planned electrode part 450x, The outer electrode 450 is formed.
Specifically, the plating solution is heated in a state in which the solid electrolyte body 3s including the planned electrode portion 450x is immersed in the plating solution, and then left for a predetermined time. Thereby, the noble metal (platinum etc.) in a plating solution can be deposited on the said electrode scheduled part 450x of 3 s of solid electrolyte bodies. Thereafter, the process proceeds to a heat treatment process, and the plated solid electrolyte body 3s is heat-treated at 1200 ° C., for example. As a result, the outer electrode 450 (plating layer) can be baked onto the inner surface of the solid electrolyte body 3s to give predetermined characteristics. The outer electrode 450 is formed in this way, and the obtained gas sensor element 3 can be assembled to the gas sensor 100 (see FIG. 1) by a known assembling method (for example, see Japanese Patent Application Laid-Open No. 2004-053425). Note that organic substances such as a dispersant and a binder are burned out in the heat treatment step.
As the plating solution, for example, a composition prepared by mixing an aqueous platinum complex salt solution (platinum concentration: 15 g / L) and an aqueous solution of hydrazine (concentration: 85 mass%) can be used.
When the inner electrode 50 is formed, a plating solution may be injected into the internal space of the solid electrolyte body 3s using a liquid injection device.

本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。例えば、内側電極及び外側電極の形状は上記に限定されない。   It goes without saying that the present invention is not limited to the above-described embodiment, but extends to various modifications and equivalents included in the spirit and scope of the present invention. For example, the shapes of the inner electrode and the outer electrode are not limited to the above.

3 ガスセンサ素子
3s 固体電解質体
50、450 電極
450x、450y 電極予定部
3 Gas sensor element 3s Solid electrolyte body 50, 450 Electrode 450x, 450y Electrode scheduled part

Claims (4)

固体電解質体と、該固体電解質体の表面に形成された電極とを有するガスセンサ素子を製造するにあたり、
該表面のうち前記電極を形成する予定の電極予定部に貴金属粒子を付着させて核形成部を形成する核付け工程と、
前記核形成部に対してメッキを施して前記電極を形成するメッキ工程と、
を有するガスセンサ素子の製造方法であって、
前記核付け工程は、溶媒と、累積個数が90%となる粒子径(D90)が100nm未満である、単一の貴金属元素からなる前記貴金属粒子と、を含有する溶液又はペーストを前記電極予定部に塗布する塗布工程と、前記溶液又は前記ペーストを塗布した前記電極予定部を、前記溶媒の揮発温度又は沸点のいずれか低い方の温度以上の加熱温度に加熱して、該溶媒を除去して前記核形成部を形成する除去工程と、を含むガスセンサ素子の製造方法。
In manufacturing a gas sensor element having a solid electrolyte body and an electrode formed on the surface of the solid electrolyte body,
A nucleation step of forming a nucleation part by adhering noble metal particles to an electrode planned part to form the electrode of the surface;
A plating step of plating the nucleation part to form the electrode;
A gas sensor element manufacturing method comprising:
In the nucleation step, a solution or paste containing a solvent and the noble metal particles made of a single noble metal element having a particle diameter (D90) with a cumulative number of 90% of less than 100 nm is the electrode portion. Heating the coating portion to which the solution or the paste is applied to a heating temperature equal to or higher than the lower one of the volatile temperature and boiling point of the solvent to remove the solvent. And a removing step of forming the nucleation part.
前記加熱温度は、前記貴金属粒子同士が凝集する温度以下である請求項1記載のガスセンサ素子の製造方法。   The method for manufacturing a gas sensor element according to claim 1, wherein the heating temperature is equal to or lower than a temperature at which the noble metal particles aggregate. 前記ペーストは、バインダを更に含有する請求項1又は2記載のガスセンサ素子の製造方法。   The method for manufacturing a gas sensor element according to claim 1, wherein the paste further contains a binder. 前記貴金属粒子の個数基準による粒子径分布幅(D90−D10)が50nm以下である請求項1〜3のいずれか記載のガスセンサ素子の製造方法。   The method for producing a gas sensor element according to any one of claims 1 to 3, wherein a particle diameter distribution width (D90-D10) based on the number basis of the noble metal particles is 50 nm or less.
JP2013243655A 2013-02-14 2013-11-26 Method for manufacturing gas sensor element Expired - Fee Related JP6104137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013243655A JP6104137B2 (en) 2013-02-14 2013-11-26 Method for manufacturing gas sensor element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013026503 2013-02-14
JP2013026503 2013-02-14
JP2013243655A JP6104137B2 (en) 2013-02-14 2013-11-26 Method for manufacturing gas sensor element

Publications (2)

Publication Number Publication Date
JP2014178303A true JP2014178303A (en) 2014-09-25
JP6104137B2 JP6104137B2 (en) 2017-03-29

Family

ID=51698381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013243655A Expired - Fee Related JP6104137B2 (en) 2013-02-14 2013-11-26 Method for manufacturing gas sensor element

Country Status (1)

Country Link
JP (1) JP6104137B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133423A (en) * 2015-01-20 2016-07-25 株式会社デンソー Method of manufacturing gas sensor element, active solution dripping apparatus and gas sensor element
WO2018194034A1 (en) * 2017-04-21 2018-10-25 株式会社デンソー Gas sensor
JP2018185289A (en) * 2017-04-21 2018-11-22 株式会社デンソー Gas sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339191A (en) * 1976-09-22 1978-04-10 Hitachi Ltd Structure of electrode for oxygen concentration detector
JPH0798294A (en) * 1993-05-27 1995-04-11 Sumitomo Metal Ind Ltd Oxygen sensor, electrode formation thereof and lead-wire attaching method thereto
JPH09304334A (en) * 1996-05-21 1997-11-28 Denso Corp Manufacture of oxygen sensor element and oxygen sensor element
JP2010269290A (en) * 2009-05-25 2010-12-02 Tanaka Kikinzoku Kogyo Kk Colloidal solution containing metal nano-particle
JP2011143339A (en) * 2010-01-14 2011-07-28 Toyota Central R&D Labs Inc Method for producing exhaust cleaning catalyst
JP2012211046A (en) * 2011-03-31 2012-11-01 Tdk Corp Method for producing barium titanate powder, and method for producing electronic component using the barium titanate powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339191A (en) * 1976-09-22 1978-04-10 Hitachi Ltd Structure of electrode for oxygen concentration detector
JPH0798294A (en) * 1993-05-27 1995-04-11 Sumitomo Metal Ind Ltd Oxygen sensor, electrode formation thereof and lead-wire attaching method thereto
JPH09304334A (en) * 1996-05-21 1997-11-28 Denso Corp Manufacture of oxygen sensor element and oxygen sensor element
JP2010269290A (en) * 2009-05-25 2010-12-02 Tanaka Kikinzoku Kogyo Kk Colloidal solution containing metal nano-particle
JP2011143339A (en) * 2010-01-14 2011-07-28 Toyota Central R&D Labs Inc Method for producing exhaust cleaning catalyst
JP2012211046A (en) * 2011-03-31 2012-11-01 Tdk Corp Method for producing barium titanate powder, and method for producing electronic component using the barium titanate powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133423A (en) * 2015-01-20 2016-07-25 株式会社デンソー Method of manufacturing gas sensor element, active solution dripping apparatus and gas sensor element
WO2018194034A1 (en) * 2017-04-21 2018-10-25 株式会社デンソー Gas sensor
JP2018185289A (en) * 2017-04-21 2018-11-22 株式会社デンソー Gas sensor
CN110573870A (en) * 2017-04-21 2019-12-13 株式会社电装 Gas sensor
US11604160B2 (en) 2017-04-21 2023-03-14 Denso Corporation Gas sensor

Also Published As

Publication number Publication date
JP6104137B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP6104137B2 (en) Method for manufacturing gas sensor element
JP6003928B2 (en) Gas sensor element, method of manufacturing the same, and gas sensor
JP6359373B2 (en) Gas sensor element and gas sensor
JP5005745B2 (en) LAMINATED GAS SENSOR ELEMENT, GAS SENSOR HAVING LAMINATED GAS SENSOR ELEMENT, AND METHOD FOR PRODUCING LAMINATED GAS SENSOR ELEMENT
JPH09304334A (en) Manufacture of oxygen sensor element and oxygen sensor element
KR101813346B1 (en) Metal paste for gas sensor electrode formation
JP5187417B2 (en) Gas sensor element and manufacturing method thereof
EP2565639A1 (en) Ammonia gas sensor
JP2014218704A (en) Method for manufacturing main metallic body for spark plug and method for manufacturing spark plug
TWI676994B (en) Metal paste for forming gas sensing electrodes
JP5639032B2 (en) Gas sensor element and gas sensor
US8567231B2 (en) Gas sensor
JP2014239026A (en) Ignition plug
JP2011247620A (en) Manufacturing method of gas sensor element and manufacturing method of gas sensor
JP5868276B2 (en) Ceramic heater, gas sensor, and method of manufacturing ceramic heater
JP5469691B2 (en) Spark plug
JP2007248123A (en) Gas sensor element and manufacturing method of gas sensor
TWI648537B (en) Gas sensing electrode and method of manufacturing same
JP4993307B2 (en) Spark plug and manufacturing method thereof
JP2018009817A (en) Gas sensor
JP4443453B2 (en) Manufacturing method of spark plug
JP2013178228A (en) Gas sensor
JP4620647B2 (en) Gas sensor element and gas sensor
JP6675340B2 (en) Bar member
JP2005293954A (en) Spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170228

R150 Certificate of patent or registration of utility model

Ref document number: 6104137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees