WO2018147239A1 - 試験計画装置及び試験計画方法 - Google Patents

試験計画装置及び試験計画方法 Download PDF

Info

Publication number
WO2018147239A1
WO2018147239A1 PCT/JP2018/003864 JP2018003864W WO2018147239A1 WO 2018147239 A1 WO2018147239 A1 WO 2018147239A1 JP 2018003864 W JP2018003864 W JP 2018003864W WO 2018147239 A1 WO2018147239 A1 WO 2018147239A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
input
process value
parameter
model data
Prior art date
Application number
PCT/JP2018/003864
Other languages
English (en)
French (fr)
Inventor
和貴 小原
義倫 山崎
和宏 堂本
アルン クマール チャウラシア
尚 三田
悠智 平原
淳史 宮田
啓吾 松本
博義 久保
寿宏 馬場
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020197026439A priority Critical patent/KR102216820B1/ko
Priority to CN201880010974.4A priority patent/CN110268349B/zh
Priority to US16/484,778 priority patent/US20210286922A1/en
Priority to DE112018000771.5T priority patent/DE112018000771T5/de
Publication of WO2018147239A1 publication Critical patent/WO2018147239A1/ja
Priority to PH12019501844A priority patent/PH12019501844A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • G05B23/0216Human interface functionality, e.g. monitoring system providing help to the user in the selection of tests or in its configuration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/18Applications of computers to steam boiler control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Definitions

  • the present invention relates to a test planning apparatus and a test planning method for presenting test conditions for model data of a power generation facility.
  • each output process value for example, the concentration of NOx or CO, the metal temperature of each heat transfer tube
  • each output process value for example, the concentration of NOx or CO, the metal temperature of each heat transfer tube
  • Operation control parameters of the boiler are complicated because there are a mixture of parameters that improve and deteriorate the output process value when the value is changed, and the output process value varies depending on the operating conditions. There is a fact that there is.
  • model data for behavioral simulation in the boiler may be used as part of driving support.
  • Patent Document 1 discloses that operation data regarding the relationship between operation input parameters and output process values is used as learning data for creating model data.
  • test operation is performed and learning data is acquired.
  • learning data is acquired.
  • the test cases become enormous if conditions are set in multiple stages.
  • the test period becomes longer and the start of operation is delayed.
  • the number of parameters for learning model data increases, requiring time and labor.
  • model inputs and model outputs input to a model are divided into a plurality of groups.
  • the method of generating the model input of each group is learned so that the model output of each group achieves a predetermined target value (see paragraph 0013 of the same document), but the model input between the groups is changed at that time. Because the order is not taken into account, if the model output changes as a result of changing the model input of multiple groups, it cannot be understood which model input change has an effect on the change in the model output. There are challenges.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an apparatus and a method capable of creating model data while confirming the accuracy of the model data with learning data having a small number of test cases.
  • the present invention provides a test planning apparatus for presenting test conditions for a plurality of input parameters for model data of a power generation facility, and presenting input parameters for presenting test conditions for the plurality of input parameters.
  • a simulation unit for calculating a virtual process value by applying a test condition of the input parameter to model data defining a virtual operation of the power generation facility, and setting a test condition of the input parameter in the power generation facility.
  • An actual process value acquisition unit that acquires an actual process value obtained by performing an actual operation, a model data learning unit that performs correction processing on the model data, and the virtual process value obtained by applying the test conditions
  • an output control unit that outputs the actual process value, and the input parameter test condition is that each of the plurality of input parameters is Based on the mutual relationship of each input parameter with respect to the process value, it is classified into a plurality of parameter groups, and the input parameter presentation unit selects one learning target parameter group from the plurality of parameter groups, and inputs the learning target parameter group
  • the parameter is a variable
  • the remaining other parameter group is a non-learning target parameter group
  • the test parameters are set such that the input parameter of the non-learning target parameter group is a fixed value
  • the model data learning unit When the deviation of the virtual process value is outside a predetermined allowable range, the actual process value is used to correct the model data.
  • the virtual process value and the actual process value using the condition are compared. If the deviation is within the allowable range, the model data does not need to be corrected. If the deviation is outside the allowable range, the model data is corrected. Therefore, all the combinations of the input parameters are tested to find the optimum value and the model data is corrected at once. The number of tests can be reduced compared to the case of doing.
  • the engineer can easily recognize the accuracy of the model data by referring to the deviation output from the output control unit. It becomes easier to understand how the model data has changed by changing the input parameters.
  • the input parameter presenting unit selects a new learning target parameter group from the plurality of parameter groups
  • the input parameter of the new learning parameter group is a variable, and is selected as a learning target parameter group in the past.
  • the input parameter may present a new test condition in which the input parameter of the test condition having a relatively good test result among the test conditions presented using the learning target parameter group is a fixed value. .
  • the power generation facility is a boiler
  • the parameter group is configured by dividing the plurality of input parameters into a plurality of regions along an order from the downstream side to the upstream side of the combustion gas of the boiler.
  • the parameter presenting unit may select the learning target parameter group in the order.
  • Engineers can more easily recognize the types of input parameters included in the same parameter group and the selection order of learning parameters. Furthermore, it is possible to realize grouping according to the mutual relationship of input parameters given to the actual process value of the boiler.
  • a learning trial number determination unit for determining the number of learning trials according to a predetermined number of learning trial determination conditions based on the number of variables set for each input parameter included in the learning target parameter group; Also good.
  • the “learning trial number determination condition” is a test that can be considered to be statistically more than a certain level of reliability when, for example, all combinations in the parameter group to be learned by a statistical method are tried. Conditions provided for calculating the number of times may be used. As a result, the number of learning trials is reduced to less than the total number of combinations of the input parameters in the learning target parameter group, so that the accuracy of the model data can be increased efficiently while further reducing the number of tests.
  • the input parameter presentation unit When the deviation of the virtual process value calculated by the simulation unit using the actual process value and the model data subjected to the correction process is outside a predetermined allowable range, the input parameter presentation unit The interval or range of the input parameters set as variables of the learning target parameter group may be changed.
  • the accuracy of the model data after the correction process is still not good, change the interval or range of the input parameters that are variables of the learning target parameter group. Thereby, even when the accuracy of the model data is not sufficiently obtained under the test conditions presented by the input parameter presentation unit for the first time, the accuracy of the model data can be improved by presenting more suitable test conditions.
  • the present invention is a test planning method for presenting test conditions for model data of a power generation facility, wherein each input parameter with respect to an actual process value obtained by performing an actual operation by setting the plurality of input parameters in the power generation facility is provided.
  • the step of presenting the test conditions of a plurality of input parameters in which the input parameters of the learning target parameter group are fixed values, and the actual process values obtained by performing the actual operation by setting the test conditions of the input parameters in the power generation equipment And applying a test condition of the input parameter to the model data to calculate a virtual process value. And when the deviation between the actual process value and the virtual process value is outside a predetermined allowable range, executing a correction process on the model data using the actual process value.
  • test planning apparatus presents test conditions for model data defining virtual operation of a boiler installed in a thermal power plant as power generation equipment, but the power generation equipment is not limited to a boiler.
  • FIG. 1 is a schematic configuration diagram showing the boiler.
  • the boiler 1 shown in FIG. 1 uses, for example, pulverized coal obtained by pulverizing coal as a pulverized fuel (solid fuel), and burns the pulverized coal with a combustion burner of a furnace and generates the combustion.
  • This is a coal fired boiler capable of generating steam by exchanging heat with water or steam.
  • the boiler 1 has a furnace 11, a combustion device 12, and a flue 13.
  • the furnace 11 has a hollow shape of, for example, a square tube and is installed along the vertical direction.
  • the wall surface is comprised by the fin which connects an evaporation pipe (heat-transfer pipe) and an evaporation pipe, and is suppressing the temperature rise of a furnace wall by heat-exchanging with water supply or a vapor
  • a plurality of evaporator tubes are arranged, for example, along the vertical direction and arranged side by side in the horizontal direction.
  • the fin closes between the evaporation pipe and the evaporation pipe.
  • the furnace 11 has an inclined surface at the furnace bottom, and a bottom surface with a furnace bottom evaporation tube provided on the inclined surface.
  • the combustion device 12 is provided on the vertical lower side of the furnace wall constituting the furnace 11.
  • the combustion device 12 has a plurality of combustion burners (for example, 21, 22, 23, 24, 25) mounted on the furnace wall.
  • a plurality of the combustion burners (burners) 21, 22, 23, 24, and 25 are arranged at equal intervals along the circumferential direction of the furnace 11.
  • the shape of the furnace, the number of combustion burners in one stage, and the number of stages are not limited to this embodiment.
  • the combustion burners 21, 22, 23, 24, 25 are fed to pulverizers (pulverized coal machines / mills) 31, 32, 33, 34, 35 via pulverized coal supply pipes 26, 27, 28, 29, 30. It is connected.
  • pulverizers pulverized coal machines / mills
  • the pulverized coal can be supplied from the pulverized coal supply pipes 26, 27, 28, 29, 30 to the combustion burners 21, 22, 23, 24, 25.
  • the furnace 11 is provided with a wind box 36 at the mounting position of each combustion burner 21, 22, 23, 24, 25, and one end of an air duct 37b is connected to the wind box 36, and the other end. Is connected to an air duct 37a for supplying air at a connection point 37d.
  • a flue 13 is connected vertically above the furnace 11, and a plurality of heat exchangers (41, 42, 43, 44, 45, 46, 47) for generating steam in the flue 13 are provided. Is arranged. Therefore, the combustion burners 21, 22, 23, 24, 25 inject a mixture of pulverized coal fuel and combustion air into the furnace 11 to form a flame, generate combustion gas, and flow into the flue 13. . Then, the superheated steam is generated by heating the feed water and steam flowing through the furnace wall and the heat exchangers (41 to 47) with the combustion gas, and the generated superheated steam is supplied to rotate and drive a steam turbine (not shown). Electric power can be generated by rotationally driving a generator (not shown) connected to the rotating shaft of the turbine.
  • the flue 13 is connected to an exhaust gas passage 48, and is connected between the denitration device 50 for purifying the combustion gas, the air sent from the blower 38 to the air duct 37 a and the exhaust gas sent through the exhaust passage 48.
  • An air heater 49, a dust processing device 51, an induction blower 52, and the like that perform heat exchange are provided, and a chimney 53 is provided at the downstream end.
  • Furnace 11 introduces new combustion air (after air) after fuel overcombustion with air for conveying pulverized coal (primary air) and combustion air (secondary air) that is introduced into furnace 11 from wind box 36
  • This is a so-called two-stage combustion furnace that performs lean fuel combustion. Therefore, the furnace 11 is provided with an after air port 39, one end of an air duct 37c is connected to the after air port 39, and the other end is connected to an air duct 37a for supplying air at a connecting point 37d.
  • the air sent from the blower 38 to the air duct 37a is heated by the air heater 49 by heat exchange with the combustion gas, and is guided to the wind box 36 via the air duct 37b at the connection point 37d, and the air duct. Branches to after-air led to the after-air port 39 via 37c.
  • FIG. 2 is a hardware configuration diagram of the test planning apparatus 210.
  • the test planner 210 includes a CPU (Central Processing Unit) 211, a RAM (Random Access Memory) 212, a ROM (Read Only Memory) 213, an HDD (Hard Disk Drive) 214, an input / output interface (I / F) 215, and a communication
  • An interface (I / F) 216 is included, and these are connected to each other via a bus 217.
  • An input device 218 such as a keyboard and an output device 219 such as a display or a printer are connected to the input / output interface (I / F) 215.
  • the communication I / F 216 and the boiler 1 of the test planning apparatus 210 may be connected via the network 100, or connected to the storage medium 201, for example, a memory card, and acquire actual process values described later.
  • the hardware configuration of the test planning apparatus 210 is not limited to the above, and may be configured by a combination of a control circuit and a storage device.
  • FIG. 3 is a functional block diagram of the test planning apparatus 210.
  • the test planning apparatus 210 includes an input parameter presentation unit 211a, a simulation unit 211b, an actual process value acquisition unit 211c, a model data learning unit 211d, a score calculation unit 211e, a learning trial number determination unit 211f, and an output control unit 211g.
  • Each of these components may be configured such that the software and hardware cooperate with each other when the CPU 211 loads and executes software that realizes each function stored in advance in the ROM 213 or the HDD 214 onto the RAM 212. However, it may be configured by a control circuit that realizes each function.
  • the test planning apparatus 210 includes an input parameter storage unit 214a, a model data storage unit 214b, a test result storage unit 214c, and a score converted data storage unit 214d.
  • the test result storage unit 214c includes a test condition storage area 214c1, a virtual process value storage area 214c2, an actual process value storage area 214c3, and a score storage area 214c4, and the storage areas are related to each other.
  • Each of the storage units and storage areas may be configured as a partial area of the RAM 212, the ROM 213, or the HDD 214.
  • FIGS. 4 and 5 are flowcharts showing the flow of operations of the test planning apparatus 210.
  • FIG. FIG. 6 is an explanatory diagram of grouping of input parameters. In FIG. 6, the process value is simply described without distinguishing between the virtual process value and the actual process value.
  • FIG. 7 is a diagram showing an example of initial setting of test conditions.
  • FIG. 8 is a correlation diagram between virtual process values and actual process values.
  • FIG. 9 is a diagram showing an example of score conversion data.
  • FIG. 10 is a diagram illustrating a second example of setting test conditions.
  • the input parameters used for the simulation are grouped into a plurality of parameter groups based on the mutual relationship of the input parameters with respect to each process value.
  • the mutual relationship between the input parameters takes into account the influence on the process value.
  • the position of the input parameter in the boiler (the position of the device related to the input parameter, the position of the influence range when the input parameter is changed, etc.) is also considered.
  • input parameters whose mutual relationship between input parameters has little influence on the process value are set as a group of parameters grouped in advance in advance.
  • the parameter group is configured by dividing a plurality of input parameters into a plurality of regions along the order from the downstream side to the upstream side of the combustion gas of the boiler 1.
  • the input parameter group G1 includes input parameter values pA1 and pA2 in the vicinity of the boiler outlet (for example, in the vicinity of the furnace 11 outlet to the heat exchanger 41).
  • the input parameter group G2 is the input parameter values pB1 and pB2 from the boiler outlet to the burner (for example, near the furnace 11 outlet to the combustion burner 21), and the input parameter group G3 is the burner (for example, the combustion burners 21, 22, 23, 24, and 25 vicinity).
  • the input parameter group G4 includes input parameter values pD1, pD2, and pD3 related to the fuel supply facility (for example, the vicinity of the crushers 31, 32, 33, 34, and 35).
  • the model data storage unit 214b includes seven types of virtual process values vA, vB, vC, vD, vE, vF, and vG (in FIG. 6, without distinguishing between the virtual process value and the actual process value, the process value A, the process Seven model data fA (p), fB (p), fC (p), fD (p), fE (p), fF (p), for calculating the value B,. fG (p) is stored.
  • each input parameter has a relatively strong relationship (high responsiveness to the actual process value for each input parameter, a high rate of change of the value, etc.) and a relatively low relationship (the actual process for each input parameter).
  • the response to the value and the rate of change of the value are low), and grouped into a plurality of parameter groups based on the mutual relationship.
  • the input parameter group G1 is an actual process value rA, rB, rC, rD, rE (in FIG. 6, without distinguishing between the virtual process value and the actual process value, the process value A, process value B,...
  • process value G are formed as a set of input parameter values pA1 and pA2 having relatively high responsiveness and rate of change of values, and the like, which are relatively strongly related.
  • the input parameter group G2 forms a set of input parameter values pB1 and pB2 that are relatively related to the actual process values rA, rC, rD, rE, and rF.
  • the input parameter group G3 is formed to include input parameter values pC1 that have a relatively strong relationship with the actual process values rA, rF, and rG.
  • the input parameter group G4 is formed as a set including input parameter values pD1, pD2, and pD3 that have a relatively strong relationship with the actual process values rA and rF.
  • the input parameters in the case of the boiler 1, there are a combustion air supply amount, a burner angle, the number of operating fuel supply facilities, a valve opening degree of an after air port (after air supply flow rate), and a specific example of a process value
  • the input parameter presentation unit 211a refers to the test condition storage area 214c1, determines one of a plurality of parameter groups as a learning target parameter group, determines the other as a non-learning target parameter group, A parameter is acquired (S101).
  • the input parameter presentation unit 211a selects the learning target parameter group in the order from the downstream region of the combustion gas to the upstream region. Therefore, in the first test condition presentation, as shown in the example of FIG. 7, the learning target parameter group is determined as the input parameter group G1, and the non-learning target parameter group is determined as the input parameter groups G2, G3, and G4.
  • the learning trial number determining unit 211f determines the number of learning trials n based on the number of types of input parameters included in the learning target parameter group and the number of variables of each input parameter (S102).
  • the input parameter presentation unit 211a determines the test conditions to be used for the n tests determined by the learning trial number determination unit 211f, that is, each input parameter of the n pattern test conditions, and presents the test conditions (S103).
  • the parameters of the input parameter group G1 are variables
  • the parameters of the input parameter groups G2, G3, and G4 are fixed values.
  • the fixed value a standard value or a design value of each input parameter, or a value expected to be an optimum value may be used.
  • the input parameter presenting unit 211a stores the presented n pattern test conditions in the test condition storage area 214c1 and outputs them to the output control unit 211g.
  • the actual process value acquisition unit 211c acquires the actual process values rAk to rGk via the network 100, the storage medium 201, and the input device 218 (S104), and stores them in the actual process value storage area 214c3.
  • the simulation unit 211b reads each test condition from the test condition storage area 214c1, and models data fA (p), fB (p),..., FG (p) provided for calculating the virtual process values vAk to vGk. ) To calculate each of the virtual process values vAk to vGk. Then, the output control unit 211g outputs the test condition and the virtual process value and the actual process value when the test condition is applied (S105).
  • the model data fA (p), fB (p)..., FG (p) determined according to the types of virtual process values vA to vG are the same as the number of types of virtual process values. ,
  • the simulation unit 211b sequentially applies the test condition k (pA1k, pA2k, pB1k, pB2k, pC1k, pD1k, pD2k, pD3k) to each model data, and the virtual process values vAk to vGk of the test condition k according to the following equation (1). Is calculated.
  • Equation (1) pA1k and pA2k are variables under test conditions 1 to 3, and pB1k, pB2k, pC1k, pD1k, pD2k, and pD3k are fixed values.
  • the model data learning unit 211d compares the virtual process value and the actual process value for each process value type, and for all the process values, the divergence of the virtual process value and the actual process value (the difference between the virtual process value and the actual process value). Is determined to be within a predetermined allowable range (hereinafter abbreviated as “allowable range”) (S106). If there is at least one model data outside the allowable range (S106 / No), only the model data outside the allowable range is corrected to generate corrected model data (S107). In the example of FIG. 7, the corrected model data fAa (p) is generated.
  • FIG. 8 is a correlation diagram of virtual process values and actual process values.
  • Graph 1 is a graph (for example, by the least square method) generated based on plotting actual process values, for example, rA1, rA2, and rA3, obtained by performing a test run in boiler 1 under test conditions 1, 2, and 3. is there. Centering on this graph, an allowable range used for determining whether or not the model data fA (p) needs to be corrected is provided. If the virtual process value is included in the allowable range, the model data fA (p) does not need to be corrected. If the virtual process value is not included, the model data learning unit 211d obtains the actual process value rA1 for the input parameter. The model data fA (p) is corrected to generate corrected model data fAa (p). Other model data is also corrected in the same procedure as the model data fA (p) in the determination of necessity of correction and when correction is necessary.
  • the model data learning unit 211d executes the simulation process again using the corrected model data, and calculates the corrected virtual process value.
  • the output control unit 211g outputs the test condition applied to the corrected model data, the virtual process value at that time, and the actual process value (S108).
  • the virtual process values vA1a, vA2a, and vA3a are calculated again by applying the test conditions 1 to 3 to the corrected model data fAa (p). If the deviation between the virtual process values vA1a, vA2a, vA3a and the actual process values rA, rB, rC is within the allowable range (S109 / Yes), it is stored in the model data storage unit 214b as having been corrected appropriately.
  • the model data fA (p) that has been corrected is rewritten with the corrected model data fAa (p) (S110), and the process returns to step S106.
  • the virtual process values obtained from the corrected model data for example, the virtual process values vA1a, vA2a, and vA3a are not within the allowable ranges of the actual process values rA, rB, and rC (S109 / No), retest condition presentation Processing is executed (S111).
  • the input parameter presenting unit 211a has a deviation between the actual process value and the virtual process value calculated by the simulation unit 211b using the corrected model data outside the predetermined allowable range. If there is, the interval or range of the input parameters set as variables of the learning target parameter group is changed, and the test conditions are presented again. Then, step S104 to step S111 are executed using the re-presented test conditions. Thereafter, the process returns to step S106.
  • the model data learning unit 211d does not need to modify the model data if the deviation between all the virtual process values and the corresponding actual process values is within the allowable range (S106 / Yes). Therefore, as shown in FIG. 5, the input parameter presenting unit 211a determines whether there remains an input parameter group that has not been selected as a learning target parameter group (S112), and if it remains, a new learning target parameter group is used. The test condition presentation process is started (S112 / No).
  • the score calculation unit 211e uses the score conversion data (see FIG. 9) preset in the score conversion data storage unit 214d, and uses the learning target parameter group selected in step S101 to evaluate the evaluation scores of the test conditions 1 to k. Is calculated and stored in the score storage area 214c4 (S113).
  • FIG. 9 is a diagram showing an example of score conversion data.
  • Each actual process value is assumed to have a score value that decreases as the distance from the predetermined target increases.
  • the characteristic value of each actual process value is such that the score value increases as the process value decreases.
  • the score conversion data storage unit 214d stores score conversion data corresponding to the types of the actual process values rA to rG.
  • the score calculation unit 211e reads the actual process value rA1 and calculates a score for the actual process value rA1 using the score conversion data corresponding to the actual process value rA1.
  • scores for all actual process values rB1 to rG1 are calculated.
  • the total score of the test condition 1 is calculated using the total value of the scores calculated based on each actual process value obtained under the test condition 1.
  • the overall score of test conditions 2 and 3 is also calculated.
  • the overall score for each test condition is calculated using the actual process value. If the deviation from the actual process value is within the allowable range, the virtual process value is scored for each virtual process value. An overall score for the test conditions may be calculated.
  • the input parameter presenting unit 211a refers to the evaluation score stored in the score storage area 214c4 and is relatively good if the test result is closer to the predetermined target value (optimum value) of the actual process value, preferably the best A thing is selected (S114).
  • the input parameter presentation unit 211a selects the next new learning target parameter group, for example, the input parameter group G2 (S115), and the learning trial number determination unit 211f includes the number of types of input parameters and the number of variables included in the input parameter group G2.
  • the number n of learning trials is newly determined based on (S116).
  • the input parameter presentation unit 211a presents a new test condition having the same number of patterns as the newly determined number of learning trials n (S117).
  • the input parameter of the newly selected learning target parameter group is a variable
  • the input parameter of the input parameter group already selected as the learning target parameter group (for example, the input parameter group G1) is a preset score.
  • the input parameter of the test condition selected as being closest to the optimum condition closer to the predetermined target value (optimum value) of the actual process value is used.
  • the test condition is set for the second time
  • a new learning target parameter group is set as the input parameter group G2
  • the input parameter values pB1k and pB2k are one of the variables and the non-learning target parameter group. It is assumed that the input parameters G1 are the optimum parameters pA13 and pA23, and the input parameters G3 and G4 are the fixed parameters pC1f, pD1f, and pD2f.
  • the input parameters are grouped in advance into a plurality of parameter groups based on the mutual relationship between the input parameters. For example, a plurality of input parameter groups are grouped in advance so that the mutual relationship between the input parameters has little influence on the process value.
  • the model data is first modified and optimized. If a value is found, it is used as a fixed value, and the model data is modified while sequentially changing the learning target parameter group.
  • the number of tests can be reduced as compared with a case where the test is performed for the total number of combinations of the input parameters without grouping the input parameters in advance and the optimum value is found and the model data is corrected at once. Further, by outputting the actual process value and the virtual process value together with the test condition, the engineer can easily understand which input parameter is changed and how the model data is changed. In addition, the engineer can easily grasp the accuracy of the model data based on the difference between the actual process value and the virtual process value.
  • the engineer divides a plurality of input parameters into a plurality of regions along the order from the downstream side to the upstream side of the combustion gas of the boiler, and the engineer selects the learning target parameter group along this order, so that the engineer can select the same parameter. It becomes easier to recognize the types of input parameters included in the group. Furthermore, since grouping along the mutual relationship of input parameters given to the actual process value of the boiler can be realized, the accuracy of the process value obtained from the grouped parameter group is improved.
  • the input parameter presentation unit 211a changes the interval or range of the input parameters set as variables of the learning target parameter group and presents new test conditions. Later model data accuracy can be improved.
  • step S104 and S105 in FIG. 4 the actual process value acquisition and the virtual process value calculation order may be switched.
  • acquisition of actual process values and output of virtual process values to the engineer are not performed in step S105 or step S108, and for example, acquisition of actual process values and virtual process values are output to the model data learning unit within the test planning apparatus. You may replace with an aspect.
  • the calculation of the evaluation score by the score calculation unit 211e is only an example of extracting conditions with good test results, and by using the actual process values and the actual values of the virtual process values without using the scores, Also good.
  • the present invention may be applied to learning model data of operating equipment different from a boiler as power generation equipment.
  • the input parameter presenting unit 211a may be configured to output the presented test conditions from the output control unit 211g to the output device 219 so that the technician can visually recognize the presented test conditions at any time. Furthermore, it may be configured such that a technician can perform a correction operation via the input device 218 with respect to the presented test conditions.
  • Boiler 100 Network 210: Test plan device 211a: Input parameter presentation unit 211b: Simulation unit 211c: Real process value acquisition unit 211d: Model data learning unit 211e: Score calculation unit 211f: Number of times of learning trial determination unit 214a: Input parameter Storage unit 214b: Model data storage unit 214c: Test result storage unit 214d: Score converted data storage unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Feedback Control In General (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)

Abstract

少ない試験ケース数の学習データにより、モデルデータの精度を確認しながらモデルデータを作成できる装置及び方法を提供する。複数の入力パラメータを各プロセス値に対する各入力パラメータの相互の関係に基づき複数のパラメータ群に分類しておく。入力パラメータ提示部(211a)は、複数のパラメータ群のうちの一つを学習対象パラメータ群として選択しその入力パラメータは変数、非学習対象パラメータ群の入力パラメータは固定値とする試験条件を提示する。モデルデータ学習部(211d)は、提示された試験条件を用いた実プロセス値及び仮想プロセス値の比較結果に基づいてモデルデータを修正する。入力パラメータ提示部(211a)は新たな学習対象パラメータを選択し、前回の学習対象パラメータ群の入力パラメータは最適な試験条件の入力パラメータを固定値として用いた新たな試験条件を提示する。更に出力制御部(211g)は試験条件を適用して得られた実プロセス値及び仮想プロセス値を出力する。

Description

試験計画装置及び試験計画方法
 本発明は、発電設備のモデルデータ用の試験条件を提示する試験計画装置及び試験計画方法に関する。
 火力発電所に設置されるボイラの運転に際しては、ボイラを運転させた結果のアウトプットとして各出力プロセス値、例えばNOxやCOの濃度、各伝熱管のメタル温度を得て、各出力プロセス値が最適となるように多くの操作入力パラメータを設定する必要がある。操作入力パラメータには値を変化させると出力プロセス値が改善するものと悪化するものとが混在しており、更に運転条件により出力プロセス値の変動も変化することから、ボイラの運転制御は複雑であるという実情がある。
 そのため、運転支援の一環としてボイラ内の挙動シミュレーションのモデルデータを使用することがある。この点に関し、特許文献1には、運転入力パラメータと出力プロセス値との関係についての運転データをモデルデータ作成の学習データとして使用することが開示されている。
特許第4989421号公報
 ボイラの新設、設備修正時の際は試験運転を行い、学習用データを取得する。しかし操作入力パラメータは複数あり、それぞれ多段階で条件設定を行うと試験ケースは莫大となる。その結果試験期間が長くなり、運転開始が遅れる。更にモデルデータ学習用パラメータが多くなり、時間・手間を要する。
 一方で、試験ケースを根拠なく減らすと、モデルデータによる挙動シミュレーションの精度が悪化し、運転の参考とならならないという課題がある。
 この点に関し、特許文献1ではモデル入力数にかかわらず、制御周期以内での学習を行うために(同文献段落0012参照)、モデルに入力するモデル入力及びモデル出力を複数のグループに分割して、各グループのモデル出力が予め定めた目標値を達成するように、各グループのモデル入力の生成方法を学習させるが(同文献段落0013参照)、その際にグループ間についてのモデル入力を変化させる順序は考慮していないので、複数のグループのモデル入力を変化させた結果モデル出力が変化した場合には、どのモデル入力の変化がモデル出力の変化に対して影響を及ぼしたのかが把握できないという課題がある。
 またボイラ内の例えば各燃焼バーナにおける燃焼用空気と燃料による燃焼挙動は複雑で、ボイラの形式、使用する燃料、その他条件で結果のアウトプットの各出力プロセス値として、NOx,COの濃度、伝熱管表面温度、蒸気温度等が変化しうる。ニューラルネットワーク等を用いて多変数入力―多変数出力モデルデータを一気に作成することは可能だが、この場合、技術者が経験や物理的な理論と整合するかという観点からチェックすることが困難であるという課題もある。
 本発明は上記課題を解決するためになされたものであり、少ない試験ケース数の学習データにより、モデルデータの精度を確認しながらモデルデータを作成できる装置及び方法を提供することを目的とする。
 上記課題を達成するために、本発明は発電設備のモデルデータに対して複数の入力パラメータの試験条件を提示する試験計画装置であって、前記複数の入力パラメータの試験条件を提示する入力パラメータ提示部と、前記入力パラメータの試験条件を発電設備の仮想的な動作を規定したモデルデータへ適用して仮想プロセス値を演算するシミュレーション部と、前記入力パラメータの試験条件を前記発電設備に設定して実運転を行って得られる実プロセス値を取得する実プロセス値取得部と、前記モデルデータに対して修正処理を行うモデルデータ学習部と、前記試験条件を適用して得られた前記仮想プロセス値及び前記実プロセス値を出力する出力制御部と、を備え、前記入力パラメータの試験条件は、前記複数の入力パラメータが、各実プロセス値に対する各入力パラメータの相互の関係に基づき複数のパラメータ群に分類され、前記入力パラメータ提示部は、前記複数のパラメータ群から学習対象パラメータ群を一つ選択し、当該学習対象パラメータ群の入力パラメータは変数とし、残りの他のパラメータ群は非学習対象パラメータ群として、当該非学習対象パラメータ群の入力パラメータは固定値とする試験条件を提示し、前記モデルデータ学習部は、前記実プロセス値及び前記仮想プロセス値の乖離が予め定めた許容範囲外にある場合、前記実プロセス値を用いて前記モデルデータに対する修正処理を行う、ことを特徴とする。
 入力パラメータを各入力パラメータの相互の関係に基づいて、予め複数のパラメータ群にグルーピングしておき、学習対象パラメータ群の入力パラメータは変数とし、非学習対象パラメータ群の入力パラメータは固定値とする試験条件を用いた仮想プロセス値及び実プロセス値の比較を行う。そして、乖離が許容範囲内であればモデルデータの修正は不要、許容範囲外であればモデルデータを修正するので、入力パラメータの全組み合わせ数の試験を行って最適値を見つけモデルデータを一気に修正する場合と比較して試験回数を減らすことができる。また、仮想プロセス値及び実プロセス値の乖離が小さいほどモデルデータの精度が高いことから、技術者は出力制御部から出力された乖離を参照することでモデルデータの精度を認識しやすくなり、どの入力パラメータを変化させてどのようにモデルデータが変化したかを把握しやすくなる。
 また前記入力パラメータ提示部は、前記複数のパラメータ群から新たな学習対象パラメータ群を選択した場合、当該新たな学習パラメータ群の入力パラメータは変数とし、過去に学習対象パラメータ群として選択して行った入力パラメータは、当該学習対象パラメータ群を用いて提示された試験条件のうち、試験結果が相対的に良好であった試験条件の入力パラメータを固定値とする新たな試験条件を提示してもよい。
 上記「相対的に良好」とは実プロセス値もしくは仮想プロセス値が、発電設備のプロセス値の目標値(最適値)により近いことを意味する。
 これにより、学習対象パラメータ群を順次変更しながら新たな試験条件を提示する際に、既に学習対象パラメータ群として選択された入力パラメータは、試験結果が良好であった値を固定値として採用するため、より発電設備の運転結果が良好となりやすい試験条件を提示することができる。
 また前記発電設備はボイラであって、前記パラメータ群は、前記複数の入力パラメータを前記ボイラの燃焼ガスの下流側から上流側に向かう順序に沿って複数の領域で区分けされて構成され、前記入力パラメータ提示部は、前記順序に沿って前記学習対象パラメータ群を選択してもよい。
 技術者が同一のパラメータ群に含まれる入力パラメータの種類や学習パラメータの選択順序をより認識しやすくなる。更にボイラの実プロセス値に与える入力パラメータの相互の関係に沿ったグルーピングが実現できる。
 また、前記学習対象パラメータ群に含まれる各入力パラメータに対して設定された変数の個数を基に予め定められた学習試行回数決定条件に従って学習試行回数を決定する学習試行回数決定部を更に備えてもよい。
 上記「学習試行回数決定条件」とは例えば統計的手法による学習対象パラメータ群内の全組み合わせを試行した場合の信頼性に対して、統計学的に一定以上の信頼性があると見做せる試験回数を算出するために設けられた条件でもよい。これにより、学習対象パラメータ群内の入力パラメータの全組み合わせよりも少ない学習試行回数に絞り込むので、更に試験回数を減らしつつ、効率的にモデルデータの精度を高めることができる。
 また前記実プロセス値及び前記修正処理が行われたモデルデータを用いて前記シミュレーション部により演算された仮想プロセス値の乖離が予め定められた許容範囲外にある場合、前記入力パラメータ提示部は、前記学習対象パラメータ群の変数とされた入力パラメータの間隔もしくは範囲を変更してもよい。
 修正処理後のモデルデータの精度が未だに良好でない場合には、学習対象パラメータ群の変数とされた入力パラメータの間隔もしくは範囲を変更する。これにより、入力パラメータ提示部が初回に提示した試験条件ではモデルデータの精度が十分に得られない場合でも、更に好適な試験条件を提示してモデルデータの精度を向上させることができる。
 また本発明は発電設備のモデルデータ用の試験条件を提示する試験計画方法であって、前記複数の入力パラメータを発電設備に設定して実運転を行って得られる実プロセス値に対する各入力パラメータの相互の関係に基づき、複数のパラメータ群に分類された複数の入力パラメータを取得するステップと、前記複数のパラメータ群のうち、1つ選択した学習対象パラメータ群の入力パラメータは変数とし、他の非学習対象パラメータ群の入力パラメータは固定値とされた複数の入力パラメータの試験条件を提示するステップと、前記入力パラメータの試験条件を前記発電設備に設定して実運転を行って得られる実プロセス値を取得するステップと、前記入力パラメータの試験条件を前記モデルデータへ適用して仮想プロセス値を演算するステップと、前記実プロセス値及び前記仮想プロセス値の乖離が予め定めた許容範囲外にある場合、前記実プロセス値を用いて前記モデルデータに対する修正処理を実行するステップと、を含むことを特徴とする。
 これにより、入力パラメータの全組み合わせ数の試験を行って最適値を見つけモデルデータを一気に修正する場合と比較して試験回数を減らすことができる。また、技術者は乖離を参照することでモデルデータの精度を認識しやすくなり、どの入力パラメータを変化させてどのようにモデルデータが変化したかを把握しやすくなる。
 本発明によれば、少ない試験ケース数の学習データにより、モデルデータの精度を確認しながらモデルデータを作成できる装置及び方法を提供することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
ボイラを表す概略構成図 試験計画装置のハードウェア構成図 試験計画装置の機能ブロック図 試験計画装置の動作の流れを示すフローチャート 試験計画装置の動作の流れを示すフローチャート 入力パラメータのグループ分けの説明図 試験条件の初回設定例を示す図 仮想プロセス値と実プロセス値との相関図 スコア換算データ例を示す図 試験条件の2回目設定例を示す図
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一又は関連する符号を付し、その繰り返しの説明は省略する。以下の実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。
 以下では、発電設備として火力発電所に設置されたボイラの仮想的な動作を規定したモデルデータ用の試験条件を試験計画装置が提示する例について説明するが、発電設備はボイラに限定されない。
 図1は上記ボイラを表す概略構成図である。図1に示すボイラ1は、例えば固体燃料を燃焼させるものとして、石炭を粉砕した微粉炭を微粉燃料(固体燃料)として用い、この微粉炭を火炉の燃焼バーナにより燃焼させ、この燃焼により発生した熱を給水や蒸気と熱交換して蒸気を生成することが可能な石炭焚きボイラである。
 ボイラ1は、火炉11と燃焼装置12と煙道13を有している。火炉11は、例えば四角筒の中空形状をなして鉛直方向に沿って設置されている。火炉11は、壁面が、蒸発管(伝熱管)と蒸発管を接続するフィンとで構成され、給水や蒸気と熱交換することにより火炉壁の温度上昇を抑制している。具体的には、火炉11の側壁面には、複数の蒸発管が例えば鉛直方向に沿って配置され、水平方向に並んで配置されている。フィンは、蒸発管と蒸発管との間を閉塞している。火炉11は、炉底に傾斜面が設けられており、傾斜面に炉底蒸発管が設けられて底面となる。
 燃焼装置12は、この火炉11を構成する火炉壁の鉛直下部側に設けられている。本実施形態では、この燃焼装置12は、火炉壁に装着された複数の燃焼バーナ(例えば21,22,23,24,25)を有している。例えば、この燃焼バーナ(バーナ)21,22,23,24,25は、火炉11の周方向に沿って均等間隔で複数配設されている。但し、火炉の形状や一つの段における燃焼バーナの数、段数はこの実施形態に限定されるものではない。
 この各燃焼バーナ21,22,23,24,25は、微粉炭供給管26,27,28,29,30を介して粉砕機(微粉炭機/ミル)31,32,33,34,35に連結されている。石炭が図示しない搬送系統で搬送されて、この粉砕機31,32,33,34,35に投入されると、ここで所定の微粉の大きさに粉砕され、搬送用空気(1次空気)とともに微粉炭供給管26,27,28,29,30から燃焼バーナ21,22,23,24,25に粉砕された石炭(微粉炭)を供給することができる。
 また、火炉11は、各燃焼バーナ21,22,23,24,25の装着位置に風箱36が設けられており、この風箱36に空気ダクト37bの一端部が連結されて、他端部は空気を供給する空気ダクト37aに連結点37dにおいて連結される。
 また、火炉11の鉛直方向上方には煙道13が連結されており、この煙道13に蒸気を生成するための複数の熱交換器(41,42,43,44,45,46,47)が配置されている。そのため、燃焼バーナ21,22,23,24,25が火炉11内に微粉炭燃料と燃焼用空気との混合気を噴射することで火炎が形成され、燃焼ガスを生成されて煙道13に流れる。そして、燃焼ガスにより火炉壁及び熱交換器(41~47)を流れる給水や蒸気を加熱して過熱蒸気が生成され、生成された過熱蒸気を供給して図示しない蒸気タービンを回転駆動させ、蒸気タービンの回転軸に連結した図示しない発電機を回転駆動して発電を行うことができる。また、この煙道13は、排ガス通路48が連結され、燃焼ガスの浄化を行うための脱硝装置50、送風機38から空気ダクト37aへ送気する空気と排ガス通路48を送気する排ガスとの間で熱交換を行うエアヒータ49、煤塵処理装置51、誘引送風機52などが設けられ、下流端部に煙突53が設けられている。
 火炉11は、微粉炭の搬送用空気(1次空気)及び風箱36から火炉11に投入される燃焼用空気(2次空気)による燃料過剰燃焼後、新たに燃焼用空気(アフタエア)を投入して燃料希薄燃焼を行わせる、所謂2段燃焼方式の火炉である。そのため、火炉11にはアフタエアポート39が備えられ、アフタエアポート39に空気ダクト37cの一端部が連結され、他端部は連結点37dにおいて空気を供給する空気ダクト37aに連結される。
 送風機38から空気ダクト37aに送気された空気は、エアヒータ49で燃焼ガスと熱交換により温められ、連結点37dにおいて空気ダクト37bを経由して風箱36へ導かれる2次空気と、空気ダクト37cを経由してアフタエアポート39へと導かれるアフタエアとに分岐する。
 図2は、試験計画装置210のハードウェア構成図である。試験計画装置210は、CPU(Central Processing Unit)211、RAM(Random Access Memory)212、ROM(Read Only Memory)213、HDD (Hard Disk Drive) 214、入出力インターフェース(I/F)215、及び通信インターフェース(I/F)216を含み、これらがバス217を介して互いに接続されて構成される。入出力インターフェース(I/F)215にはキーボード等の入力装置218及びディスプレイやプリンタ等の出力装置219がそれぞれ接続される。また試験計画装置210の通信I/F216及びボイラ1は、ネットワーク100を介して接続されてもよいし、記憶媒体201、例えばメモリーカードに接続され、後述する実プロセス値を取得する。なお、試験計画装置210のハードウェア構成は上記に限定されず、制御回路と記憶装置との組み合わせにより構成されてもよい。
 図3は、試験計画装置210の機能ブロック図である。試験計画装置210は、入力パラメータ提示部211a、シミュレーション部211b、実プロセス値取得部211c、モデルデータ学習部211d、スコア算出部211e、学習試行回数決定部211f、出力制御部211gを含む。これらの各構成要素は、ROM213やHDD214に予め格納された各機能を実現するソフトウェアをCPU211がRAM212上にロードして実行することで、ソフトウェアとハードウェアとが協働して構成されてもよいし、各機能を実現する制御回路により構成されてもよい。更に試験計画装置210は、入力パラメータ記憶部214a、モデルデータ記憶部214b、試験結果記憶部214c、及びスコア換算データ記憶部214dを含む。試験結果記憶部214cには、試験条件記憶領域214c1、仮想プロセス値記憶領域214c2、実プロセス値記憶領域214c3、及びスコア記憶領域214c4が含まれ、各記憶領域が互いに関係付けられて構成される。上記各記憶部及び記憶領域は、RAM212、ROM213、又はHDD214の一部領域に構成されてもよい。
 図4から図10を参照して試験計画装置210の動作について説明する。図4及び図5は、試験計画装置210の動作の流れを示すフローチャートである。図6は、入力パラメータのグループ分けの説明図である。なお図6では仮想プロセス値及び実プロセス値の区別をすることなく単にプロセス値と記載している。図7は試験条件の初回設定例を示す図である。図8は、仮想プロセス値と実プロセス値との相関図である。図9はスコア換算データ例を示す図である。図10は試験条件の2回目設定例を示す図である。
 以下の処理に先立ち、図3に示した試験条件記憶領域214c1には予めシミュレーションに用いる入力パラメータが各プロセス値に対する各入力パラメータの相互の関係に基づき複数のパラメータ群にグルーピングされて記憶される。
 本実施形態では入力パラメータの相互の関係はプロセス値への影響を考慮する。また、ボイラ内における入力パラメータの位置(入力パラメータに関係する機器の位置、入力パラメータを変更した場合の影響範囲の位置など)も考慮する。例えば、本実施形態では、各入力パラメータの相互関係がプロセス値への影響が少ない入力パラメータを、予め複数にグルーピングされたパラメータ群とする。そして、このパラメータ群は、複数の入力パラメータをボイラ1の燃焼ガスの下流側から上流側に向かう順序に沿って複数の領域で区分けされて構成される。結果が一層に決定されている燃焼ガスの下流側の領域でのプロセス値から、今後結果が決定される燃焼ガスの上流側の領域へと順次区分けすることで、入力パラメータの相互関係に沿ったグルーピングが実現できるので、グルーピングしたパラメータ群から得られるプロセス値の精度が向上する。そこで本実施形態では図6に示すように複数の領域で区分けされ、例えば、入力パラメータ群G1はボイラ出口近傍(例えば火炉11出口から熱交換器41近傍)の入力パラメータの値pA1、pA2を含む。また入力パラメータ群G2はボイラ出口からバーナ(例えば火炉11出口から燃焼バーナ21近傍)の入力パラメータの値pB1、pB2、入力パラメータ群G3はバーナ(例えば燃焼バーナ21,22,23,24,25近傍)の入力パラメータの値pC1を、入力パラメータ群G4は燃料供給設備(例えば粉砕機31,32,33,34,35近傍)に関する入力パラメータの値pD1、pD2、pD3を含む。
 モデルデータ記憶部214bには7種類の仮想プロセス値vA、vB、vC、vD、vE、vF、vG(図6では仮想プロセス値及び実プロセス値の区別をすることなく単に、プロセス値A、プロセス値B、・・プロセス値Gと記載)を演算するための7つのモデルデータfA(p)、fB(p)、fC(p)、fD(p)、fE(p)、fF(p)、fG(p)が記憶される。
 各モデルデータfA(p)、fB(p)、fC(p)、fD(p)、fE(p)、fF(p)、fG(p)に対してすべての入力パラメータの値pA1、pA2、pB1、pB2、pC1、pD1、pD2、pD3を当てはめて7つの仮想プロセス値vA、vB、vC、vD、vE、vF、vGを算出する。
 ここで各入力パラメータは、相対的に関係が強い(各入力パラメータに対する実プロセス値への応答性や値の変化率などが高い)ものと、相対的に関係が低い(各入力パラメータに対する実プロセス値への応答性や値の変化率などが低い)ものとがあり、相互の関係に基づき複数のパラメータ群へグルーピングする。上記燃焼ガスから順に入力パラメータをグルーピングした結果、入力パラメータ群G1は実プロセス値rA、rB、rC、rD、rE(図6では仮想プロセス値及び実プロセス値の区別をすることなく単に、プロセス値A、プロセス値B、・・プロセス値Gと記載)に対する応答性や値の変化率などが比較的高く相対的に関係が強い入力パラメータの値pA1、pA2の集合を形成している。同様に、入力パラメータ群G2は実プロセス値rA、rC、rD、rE、rFに対する相対的に関係が強い入力パラメータの値pB1、pB2の集合を形成している。入力パラメータ群G3は実プロセス値rA、rF、rGに対する相対的に関係が強い入力パラメータの値pC1を含んで形成される。入力パラメータ群G4は実プロセスの値rA、rFに対する相対的に関係が強い入力パラメータの値pD1、pD2、pD3を含む集合として形成される。
 上記入力パラメータの具体例として、ボイラ1の場合では燃焼用空気の供給量、バーナ角度、燃料供給設備の稼働台数、アフタエアポートの弁開度(アフタエア供給流量)があり、プロセス値の具体例として環境負荷量(NOx,COの濃度)、設備効率、部品温度、蒸気温度、伝熱管メタル温度などがある。
 図4に戻り、試験計画装置210の動作の流れを示すフローチャートを説明する。まず、入力パラメータ提示部211aは、試験条件記憶領域214c1を参照し、複数のパラメータ群のうちの1つを学習対象パラメータ群として決定し、それ以外を非学習対象パラメータ群として決定し、各入力パラメータを取得する(S101)。特に本実施形態の例では入力パラメータ提示部211aは、燃焼ガスの下流側の領域から上流側の領域に向かう順序に沿って学習対象パラメータ群を選択する。よって、初回の試験条件提示は図7の例に示すように学習対象パラメータ群を入力パラメータ群G1、非学習対象パラメータ群を入力パラメータ群G2、G3、G4と決定する。
 学習試行回数決定部211fは学習対象パラメータ群に含まれる入力パラメータの種類数及び各入力パラメータの変数の数を基に学習試行回数nを決定する(S102)。図7の例では入力パラメータ群G1の変数の種類数はpA1とpA2の2個、変数の数は試験条件1,2,3の3個であるので、G1の全ての変数の組み合わせの試験を実行しようとすると、3(3×3)で9パターンの試験条件でシミュレーションを行う必要がある。そこで、学習試行回数決定部211fは、統計的手法を用いて予め定められた学習試行回数決定条件に従って、全ての変数の組み合わせを網羅した試験回数よりも少ない学習試行回数nを決定する。本例ではn=3とする。
 入力パラメータ提示部211aは、学習試行回数決定部211fが決定したn回の試験に用いるための試験条件、すなわちnパターンの試験条件の各入力パラメータを決定し、試験条件を提示する(S103)。本例では3パターンの試験条件1~3の全てにおいて、入力パラメータ群G1のパラメータは変数とし、入力パラメータ群G2、G3、G4のパラメータは固定値とする。この固定値は、各入力パラメータの標準的な値や設計値、また最適値と予想される値を用いてもよい。
 入力パラメータ提示部211aは提示したnパターンの試験条件を試験条件記憶領域214c1に記憶すると共に、出力制御部211gに出力する。
 出力制御部211gから出力されたnパターンの試験条件はボイラ1で実際に試運転を行い実プロセス値rAk~rGk(k=1~n)が得られる。実プロセス値取得部211cはこの実プロセス値rAk~rGkをネットワーク100や記憶媒体201、また入力装置218を介して取得し(S104)、実プロセス値記憶領域214c3に記憶する。
 シミュレーション部211bは、試験条件記憶領域214c1から各試験条件を読み出し、各仮想プロセス値vAk~vGkを演算するために設けられたモデルデータfA(p)、fB(p)・・・、fG(p)にあてはめて、仮想プロセス値vAk~vGkの其々を演算する。そして出力制御部211gは、試験条件とそれを適用した場合の仮想プロセス値及び実プロセス値を出力する(S105)。
 モデルデータ記憶部214bには、仮想プロセス値vA~vGの種類に応じて決定されたモデルデータfA(p)、fB(p)・・・、fG(p)が仮想プロセス値の種類数と同数、記憶されている。シミュレーション部211bは順次試験条件k(pA1k、pA2k、pB1k、pB2k、pC1k、pD1k、pD2k、pD3k)を各モデルデータに適用し、下式(1)により試験条件kの各仮想プロセス値vAk~vGkを算出する。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、試験条件1~3ではpA1k、pA2kは変数であり、pB1k、pB2k、pC1k、pD1k、pD2k、pD3kは固定値である。
 モデルデータ学習部211dは、各プロセス値の種類ごとに仮想プロセス値及び実プロセス値を比較し、全てのプロセス値について、仮想プロセス値及び実プロセス値の乖離(仮想プロセス値と実プロセス値の差の絶対値)が所定値として予め定められた許容範囲(以下「許容範囲」と略記する)内にあるかを判断する(S106)。許容範囲外となるモデルデータが一つでもあれば(S106/No)、許容範囲外となるモデルデータのみを修正して修正後のモデルデータを生成する(S107)。図7の例では修正後のモデルデータfAa(p)を生成する。
 図8は、仮想プロセス値及び実プロセス値の相関図である。グラフ1は、試験条件1,2,3によりボイラ1で試運転を行って得られた実プロセス値、例えばrA1、rA2、rA3をプロットした点を基に生成したグラフ(例えば最小二乗法による)である。このグラフを中心に、モデルデータfA(p)の修正の要否判断に用いる許容範囲を設けておく。そして仮想プロセス値がその許容範囲内に含まれていればモデルデータfA(p)は修正不要、含まれていなければモデルデータ学習部211dは入力パラメータに対して実プロセス値rA1が得られるようにモデルデータfA(p)を修正して修正後のモデルデータfAa(p)を生成する。他のモデルデータについてもモデルデータfA(p)と同様の手順で修正要否の判断及び修正要の場合は修正する。
 モデルデータ学習部211dは、修正後のモデルデータを用いて再度シミュレーション処理を実行し、修正後の仮想プロセス値を演算する。出力制御部211gは、修正後のモデルデータに適用した試験条件とそのときの仮想プロセス値、及び実プロセス値とを出力する(S108)。図7の例では、修正後のモデルデータfAa(p)に試験条件1~3をあてはめて仮想プロセス値vA1a、vA2a、vA3aを再度算出する。この仮想プロセス値vA1a、vA2a、vA3aと実プロセス値rA、rB、rCとの乖離が許容範囲に入っていれば(S109/Yes)修正が適切に行われたとしてモデルデータ記憶部214bに記憶されているモデルデータfA(p)を修正後のモデルデータfAa(p)に書き換え(S110)、ステップS106へ戻る。
 修正後のモデルデータで得られた仮想プロセス値、例えば上記仮想プロセス値vA1a、vA2a、vA3aが実プロセス値rA、rB、rCの許容範囲に入っていなければ(S109/No)、再試験条件提示処理を実行する(S111)。
 再試験条件提示処理(S111)では、入力パラメータ提示部211aは、実プロセス値と修正後のモデルデータを用いてシミュレーション部211bにより演算された仮想プロセス値との乖離が予め定められた許容範囲外にある場合、学習対象パラメータ群の変数とされた入力パラメータの間隔もしくは範囲を変更し、再度試験条件を提示する。そして、再提示された試験条件を用いてステップS104からステップS111を実行する。その後ステップS106へ戻る。
 モデルデータ学習部211dは、全ての仮想プロセス値及びそれに対応する実プロセス値の乖離が許容範囲内であれば(S106/Yes)、モデルデータの修正は不要である。そこで、図5に示すように入力パラメータ提示部211aは学習対象パラメータ群として選択していない入力パラメータ群が残っているかを判定し(S112)、残っていれば新たな学習対象パラメータ群を用いた試験条件の提示処理を開始する(S112/No)。
 そこでスコア算出部211eは、スコア換算データ記憶部214dに予め設定されたスコア換算データ(図9参照)を用いて、ステップS101で選択した学習対象パラメータ群を用いた試験条件1~kの評価スコアを算出し、スコア記憶領域214c4に記憶する(S113)。
 図9はスコア換算データの一例を示す図である。各実プロセス値は、所定の目標より遠ざかるに従いスコアの値が小さくなるものとし、各実プロセス値の特性には、例えばプロセス値が小さいほどスコアの値が増加するものを例示している。スコア換算データ記憶部214dには、各実プロセス値rA~rGの種類の其々に対応するスコア換算データが記憶されている。スコア算出部211eは実プロセス値rA1を読み出し、実プロセス値rA1に対応するスコア換算データを用いて実プロセス値rA1に対するスコアを算出する。同様に、全ての実プロセス値rB1~rG1に対するスコアを算出する。そして、試験条件1で得られた各実プロセス値を基に算出したスコアの集計値を用いて試験条件1の全体スコアを算出する。同様に試験条件2、3の全体スコアも算出する。
 上記では、実プロセス値を用いて各試験条件の全体スコアを算出するとしたが、仮想プロセス値は実プロセス値との乖離が許容範囲内にあれば仮想プロセス値に対してスコア付を行い、各試験条件の全体スコアを算出してもよい。
 入力パラメータ提示部211aはスコア記憶領域214c4に記憶された評価スコアを参照し、試験結果が実プロセス値の所定の目標値(最適値)により近いとして相対的に良好なもの、望ましくは最も良好なものを選択する(S114)。
 入力パラメータ提示部211aは次の新たな学習対象パラメータ群、例えば入力パラメータ群G2を選択し(S115)、学習試行回数決定部211fが入力パラメータ群G2に含まれる入力パラメータの種類数及び変数の数を基に学習試行回数nを新たに決定する(S116)。
 入力パラメータ提示部211aは新たに決定された学習試行回数nと同数のパターン数からなる新たな試験条件を提示する(S117)。
 本ステップでは、新たに選択された学習対象パラメータ群の入力パラメータは変数とし、既に学習対象パラメータ群として選択された入力パラメータ群の入力パラメータ(例えば、入力パラメータ群G1)は、予め設定されたスコア換算データを用いて算出した評価スコアを基に、実プロセス値の所定の目標値(最適値)により近い最適条件に最も近いとして選択された試験条件の入力パラメータを用いる。図10の例では、試験条件が2回目の設定として、新たな学習対象パラメータ群を入力パラメータ群G2とし入力パラメータの値pB1k、pB2kは変数、非学習対象パラメータ群の1つである入力パラメータ群G1の入力パラメータは最適条件と判断された試験条件3の入力パラメータの値pA13、pA23、入力パラメータ群G3、G4の入力パラメータの値は固定値pC1f、pD1f、pD2fとする。
 全ての入力パラメータ群を学習対象パラメータ群として選択し終えた場合は(S112/Yes)、一連の処理を終了する。
 発電設備として、火力発電所に設置されるボイラの運転に用いられる入力パラメータは例えば10項目以上の多数あり、プロセス値も多数ある。しかもある入力パラメータを変更すると良好となるプロセス値と悪化するプロセス値とが混在しており運転制御が複雑であるため、運転支援の一環として、ボイラの仮想的な動作を規定したモデルデータを構成し、これを用いたシミュレーションを行うことがある。このシミュレーションの精度を向上させるために、入力パラメータを多段階に設定して試運転をする際に、試行する試験条件が増えるほど試運転の時間が長くかかる一方、試験条件を特別な根拠なく減らすとモデルデータの精度が悪化することから、試験条件を適切に設定したいという要望がある。
 本実施形態によれば、入力パラメータを各入力パラメータの相互の関係に基づいて、予め複数のパラメータ群にグルーピングしてある。例えば各入力パラメータの相互関係がプロセス値への影響が少ないものを予めグルーピングして複数の入力パラメータ群としてある。学習対象パラメータ群の入力パラメータは変数とし、非学習対象パラメータ群の入力パラメータは固定値とする試験条件を用いた仮想プロセス値及び実プロセス値の比較を基に、最初にモデルデータを修正し最適値が見つかればそれを固定値として用い、順次学習対象パラメータ群を変更しながらモデルデータを修正する。そのため、入力パラメータを予めグルーピングをすることなく入力パラメータの全組み合わせ数の試験を行って最適値を見つけモデルデータを一気に修正する場合と比較して、試験回数を減らすことができる。また試験条件と共に実プロセス値及び仮想プロセス値を出力することで、技術者はどの入力パラメータを変化させてどのようにモデルデータが変化したかを把握しやすくなる。また技術者は実プロセス値及び仮想プロセス値の乖離の大小を基にモデルデータの精度を把握しやすくなる。
 また複数の入力パラメータをボイラの燃焼ガスの下流側から上流側に向かう順序に沿って複数の領域で区分けし、この順序に沿って学習対象パラメータ群を選択することにより、技術者が同一のパラメータ群に含まれる入力パラメータの種類をより認識しやすくなる。更にボイラの実プロセス値に与える入力パラメータの相互の関係に沿ったグルーピングが実現できるので、グルーピングしたパラメータ群から得られるプロセス値の精度が向上する。
 また、学習試行回数決定部211fにより、学習対象パラメータ群内の入力パラメータの全組み合わせ(例えば3=9パターン)よりも少ない学習試行回数(例えば3回)に絞り込むので、入力パラメータのグルーピングの効果による試験回数の低減に加えて、更なる試験回数の低減を図りつつ、効率的にモデルデータの精度を高めることができる。
 また修正後モデルデータの精度が不十分な場合には、入力パラメータ提示部211aが学習対象パラメータ群の変数とされた入力パラメータの間隔もしくは範囲を変更して新たな試験条件を提示するので、修正後のモデルデータの精度不良の改善が行える。
 上記実施形態は本発明を限定するものではなく、本発明の趣旨を逸脱しない様々な変更態様は、本実施形態に含まれる。例えば図4のステップS104、S105において、実プロセス値の取得と仮想プロセス値の演算順序を入れ替えてもよい。また、ステップS105やステップS108において実プロセス値の取得と仮想プロセス値の技術者に対する出力は行わず、試験計画装置内部において、例えば実プロセス値の取得と仮想プロセス値をモデルデータ学習部に出力する態様に代えてもよい。またスコア算出部211eによる評価スコアの算出は試験結果が良好な条件の抽出例に過ぎず、スコアを用いることなく実プロセス値及び仮想プロセス値の実値を用いて良好な試験条件を抽出してもよい。
 更に発電設備としてボイラとは異なる運転設備のモデルデータの学習に本発明を適用してもよい。
 また入力パラメータ提示部211aは提示した試験条件を出力制御部211gから出力装置219に出力し、技術者が随時提示された試験条件を視認できるように構成してもよい。更に提示された試験条件に対して入力装置218を介して技術者が修正操作が行えるように構成してもよい。
1:ボイラ
100:ネットワーク
210:試験計画装置
211a:入力パラメータ提示部
211b:シミュレーション部
211c:実プロセス値取得部
211d:モデルデータ学習部
211e:スコア算出部
211f:学習試行回数決定部
214a:入力パラメータ記憶部
214b:モデルデータ記憶部
214c:試験結果記憶部
214d:スコア換算データ記憶部

Claims (6)

  1.  発電設備のモデルデータに対して複数の入力パラメータの試験条件を提示する試験計画装置であって、
     前記複数の入力パラメータの試験条件を提示する入力パラメータ提示部と、
     前記入力パラメータの試験条件を発電設備の仮想的な動作を規定したモデルデータへ適用して仮想プロセス値を演算するシミュレーション部と、
     前記入力パラメータの試験条件を前記発電設備に設定して実運転を行って得られる実プロセス値を取得する実プロセス値取得部と、
     前記モデルデータに対して修正処理を行うモデルデータ学習部と、
     前記試験条件を適用して得られた前記仮想プロセス値及び前記実プロセス値を出力する出力制御部と、を備え、
     前記入力パラメータの試験条件は、
     前記複数の入力パラメータが、各実プロセス値に対する各入力パラメータの相互の関係に基づき複数のパラメータ群に分類され、
     前記入力パラメータ提示部は、前記複数のパラメータ群から学習対象パラメータ群を一つ選択し、当該学習対象パラメータ群の入力パラメータは変数とし、残りの他のパラメータ群は非学習対象パラメータ群として、当該非学習対象パラメータ群の入力パラメータは固定値とする試験条件を提示し、
     前記モデルデータ学習部は、前記実プロセス値及び前記仮想プロセス値の乖離が予め定めた許容範囲外にある場合、前記実プロセス値を用いて前記モデルデータに対する修正処理を行う、
     ことを特徴とする試験計画装置。
  2.  請求項1に記載の試験計画装置において、
     前記入力パラメータ提示部は、前記複数のパラメータ群から新たな学習対象パラメータ群を選択した場合、当該新たな学習パラメータ群の入力パラメータは変数とし、過去に学習対象パラメータ群として選択して行った入力パラメータは、当該学習対象パラメータ群を用いて提示された試験条件のうち、試験結果が相対的に良好であった試験条件の入力パラメータを固定値とする新たな試験条件を提示する、
     ことを特徴とする試験計画装置。
  3.  請求項1に記載の試験計画装置において、
     前記発電設備はボイラであって、前記パラメータ群は、前記複数の入力パラメータを前記ボイラの燃焼ガスの下流側から上流側に向かう順序に沿って複数の領域で区分けされて構成され、
     前記入力パラメータ提示部は、前記順序に沿って前記学習対象パラメータ群を選択する、
     ことを特徴とする試験計画装置。
  4.  請求項1に記載の試験計画装置において、
     前記学習対象パラメータ群に含まれる各入力パラメータに対して設定された変数の個数を基に予め定められた学習試行回数決定条件に従って学習試行回数を決定する学習試行回数決定部を更に備える、
     ことを特徴とする試験計画装置。
  5.  請求項1に記載の試験計画装置において、
     前記実プロセス値及び前記修正処理が行われたモデルデータを用いて前記シミュレーション部により演算された仮想プロセス値の乖離が予め定められた許容範囲外にある場合、前記入力パラメータ提示部は、前記学習対象パラメータ群の変数とされた入力パラメータの間隔もしくは範囲を変更する、
     ことを特徴とする試験計画装置。
  6.  発電設備の仮想的な動作を規定したモデルデータに対して複数の入力パラメータの試験条件を提示する試験計画方法であって、
     前記複数の入力パラメータを発電設備に設定して実運転を行って得られる実プロセス値に対する各入力パラメータの相互の関係に基づき、複数のパラメータ群に分類された複数の入力パラメータを取得するステップと、
     前記複数のパラメータ群のうち、1つ選択した学習対象パラメータ群の入力パラメータは変数とし、他の非学習対象パラメータ群の入力パラメータは固定値とされた複数の入力パラメータの試験条件を提示するステップと、
     前記入力パラメータの試験条件を前記発電設備に設定して実運転を行って得られる実プロセス値を取得するステップと、
     前記入力パラメータの試験条件を前記モデルデータへ適用して仮想プロセス値を演算するステップと、
     前記実プロセス値及び前記仮想プロセス値の乖離が予め定めた許容範囲外にある場合、前記実プロセス値を用いて前記モデルデータに対する修正処理を実行するステップと、
     前記修正されたモデルデータに前記試験条件を適用して得られた前記仮想プロセス値及び前記実プロセス値を出力するステップと、
     を含むことを特徴とする試験計画方法。
PCT/JP2018/003864 2017-02-10 2018-02-05 試験計画装置及び試験計画方法 WO2018147239A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197026439A KR102216820B1 (ko) 2017-02-10 2018-02-05 시험 계획 장치 및 시험 계획 방법
CN201880010974.4A CN110268349B (zh) 2017-02-10 2018-02-05 试验规划装置以及试验规划方法
US16/484,778 US20210286922A1 (en) 2017-02-10 2018-02-05 Test planning device and test planning method
DE112018000771.5T DE112018000771T5 (de) 2017-02-10 2018-02-05 Testplanungsvorrichtung und testplanungsverfahren
PH12019501844A PH12019501844A1 (en) 2017-02-10 2019-08-08 Test planning device and test planning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-023543 2017-02-10
JP2017023543A JP6881997B2 (ja) 2017-02-10 2017-02-10 試験計画装置及び試験計画方法

Publications (1)

Publication Number Publication Date
WO2018147239A1 true WO2018147239A1 (ja) 2018-08-16

Family

ID=63108295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003864 WO2018147239A1 (ja) 2017-02-10 2018-02-05 試験計画装置及び試験計画方法

Country Status (8)

Country Link
US (1) US20210286922A1 (ja)
JP (1) JP6881997B2 (ja)
KR (1) KR102216820B1 (ja)
CN (1) CN110268349B (ja)
DE (1) DE112018000771T5 (ja)
PH (1) PH12019501844A1 (ja)
TW (2) TWI668583B (ja)
WO (1) WO2018147239A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110941561A (zh) * 2019-12-05 2020-03-31 北京星际荣耀空间科技有限公司 一种飞行控制软件测评方法、装置及系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7220047B2 (ja) * 2018-10-25 2023-02-09 三菱重工業株式会社 プラントの運転支援装置
KR102176765B1 (ko) 2018-11-26 2020-11-10 두산중공업 주식회사 연소 최적화를 위한 학습 데이터를 생성하기 위한 장치 및 이를 위한 방법
KR102245794B1 (ko) * 2019-04-03 2021-04-28 두산중공업 주식회사 보일러 연소 모델 자동 생성 장치 및 방법
JP2023017358A (ja) * 2021-07-26 2023-02-07 株式会社日立製作所 実験計画装置、実験計画方法および実験計画システム
CN116520816B (zh) * 2023-07-05 2023-09-05 天津信天电子科技有限公司 伺服控制驱动器测试方法、装置、测试设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205001A (ja) * 2006-02-01 2007-08-16 Fuji Electric Systems Co Ltd 流量予測装置
JP4989421B2 (ja) * 2007-10-30 2012-08-01 株式会社日立製作所 プラントの制御装置および火力発電プラントの制御装置
WO2016133049A1 (ja) * 2015-02-17 2016-08-25 富士通株式会社 判定装置、判定方法および判定プログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2907672B2 (ja) * 1993-03-12 1999-06-21 株式会社日立製作所 プロセスの適応制御方法およびプロセスの制御システム
JP2008009934A (ja) * 2006-06-30 2008-01-17 Kagawa Univ データ処理装置,データ処理方法,作業機械の遠隔診断システム及び作業機械の遠隔診断方法
JP4427074B2 (ja) * 2007-06-07 2010-03-03 株式会社日立製作所 プラントの制御装置
JP5277064B2 (ja) * 2009-04-22 2013-08-28 株式会社日立製作所 プラントの制御装置、火力発電プラントの制御装置及び火力発電プラント
CN102494336B (zh) * 2011-12-16 2013-09-25 浙江大学 一种循环流化床锅炉燃烧过程多变量控制方法
CN104763999A (zh) * 2015-03-04 2015-07-08 内蒙古瑞特优化科技股份有限公司 电厂煤粉锅炉燃烧性能在线优化方法和系统
JP6522445B2 (ja) * 2015-06-30 2019-05-29 三菱日立パワーシステムズ株式会社 制御パラメータ最適化システム及びそれを備えた運転制御最適化装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205001A (ja) * 2006-02-01 2007-08-16 Fuji Electric Systems Co Ltd 流量予測装置
JP4989421B2 (ja) * 2007-10-30 2012-08-01 株式会社日立製作所 プラントの制御装置および火力発電プラントの制御装置
WO2016133049A1 (ja) * 2015-02-17 2016-08-25 富士通株式会社 判定装置、判定方法および判定プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110941561A (zh) * 2019-12-05 2020-03-31 北京星际荣耀空间科技有限公司 一种飞行控制软件测评方法、装置及系统

Also Published As

Publication number Publication date
TW201941091A (zh) 2019-10-16
JP6881997B2 (ja) 2021-06-02
CN110268349B (zh) 2022-02-11
PH12019501844A1 (en) 2020-06-15
US20210286922A1 (en) 2021-09-16
JP2018128995A (ja) 2018-08-16
DE112018000771T5 (de) 2020-02-13
CN110268349A (zh) 2019-09-20
KR102216820B1 (ko) 2021-02-17
KR20190117606A (ko) 2019-10-16
TWI668583B (zh) 2019-08-11
TW201841125A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
WO2018147239A1 (ja) 試験計画装置及び試験計画方法
US8355996B2 (en) Plant control apparatus that uses a model to simulate the plant and a pattern base containing state information
US20120052450A1 (en) System and method for control and optimization of a pulverized coal boiler system
US9841185B2 (en) Steam temperature control using model-based temperature balancing
US9335042B2 (en) Steam temperature control using dynamic matrix control
CN105276611A (zh) 火电厂锅炉燃烧调整优化方法与系统
WO2019159883A1 (ja) モデル作成方法、プラントの運転支援方法、モデル作成装置、モデル、プログラム、及びプログラムを記録した記録媒体
CN104571022A (zh) 基于煤耗与可控因子关系的耗差分析模型实验系统及方法
Richter et al. Flexibilization of coal-fired power plants by dynamic simulation
WO2018147240A1 (ja) シミュレーション結果の評価装置及び方法
KR102329372B1 (ko) 운전 조건 평가 장치, 운전 조건 평가 방법, 및 보일러의 제어 시스템
JP4333766B2 (ja) ボイラの制御装置、及び制御方法
WO2021220901A1 (ja) 制御装置
TWI735042B (zh) 廠房的運轉支援裝置及廠房的運轉支援方法
Braun et al. Dynamic Simulation of a Sub-Critical Coal Fired Power Plant
WO2022137785A1 (ja) ボイラの運転支援装置及びボイラの運転支援システム
Kuronen Improving transient simulation of pulverized coal-fired power plants in dynamic simulation software
Kellerman et al. Modelling of boiler fireside control in flownex software environment
DOŞA et al. ENERGY CHARACTERISTICS OF Pp-330/140-P55 STEAM BOILER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197026439

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18751147

Country of ref document: EP

Kind code of ref document: A1