WO2022137785A1 - ボイラの運転支援装置及びボイラの運転支援システム - Google Patents

ボイラの運転支援装置及びボイラの運転支援システム Download PDF

Info

Publication number
WO2022137785A1
WO2022137785A1 PCT/JP2021/039466 JP2021039466W WO2022137785A1 WO 2022137785 A1 WO2022137785 A1 WO 2022137785A1 JP 2021039466 W JP2021039466 W JP 2021039466W WO 2022137785 A1 WO2022137785 A1 WO 2022137785A1
Authority
WO
WIPO (PCT)
Prior art keywords
boiler
firing rate
value
support device
fuel
Prior art date
Application number
PCT/JP2021/039466
Other languages
English (en)
French (fr)
Inventor
和宏 堂本
一彦 斉藤
雅樹 北村
裕基 芳川
優太 小林
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Publication of WO2022137785A1 publication Critical patent/WO2022137785A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/18Applications of computers to steam boiler control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/38Determining or indicating operating conditions in steam boilers, e.g. monitoring direction or rate of water flow through water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/06Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air lump and pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/033Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment comminuting or crushing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/26Details

Definitions

  • the present invention relates to a boiler operation support device and a boiler operation support system, and particularly relates to a pulverized fuel-fired boiler operation support device and an operation control device that pulverize coal, biomass, etc. and burn them with a burner.
  • the multi-coal type control logic that improves the controllability of the boiler for the multi-coal type by correcting the set value set at the operation end while responding to changes in the boiler characteristics such as coal properties and dirt.
  • constraint parameters rotational classifier rotation speed, hydraulic pressure, etc.
  • process values for example, mill motor current, mill table differential pressure.
  • Patent Document 1 states that in a boiler for co-firing different kinds of fuels, the fluid temperature at the outlet of the furnace evaporation pipe does not exceed the permissible range even when the co-firing ratio changes.
  • the steam temperature control device of the boiler is disclosed.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an operation support device and an operation support system for operating a boiler by further increasing the co-firing rate of biomass and low-grade coal.
  • the present invention has the configuration described in the claims.
  • it is a boiler operation support device that co-fires multiple types of fuel, and co-firing of a first-class fuel that wants to increase the co-firing rate and a second-class fuel that is different from the first-class fuel.
  • a constraint parameter that changes significantly when the rate and the set value of at least one operating end of the boiler or the auxiliary equipment of the boiler are used as input parameters and the co-firing rate of the first-class fuel is relatively increased.
  • the reference value storage unit that stores the reference value corresponding to the type of the constraint parameter and is determined from the equipment specifications, the optimization unit used to increase the co-firing rate, or the upper limit of the co-firing rate.
  • An operation support device for a boiler including a mixed combustion rate upper limit estimation unit used for estimation and an output unit that outputs a calculation result in the optimization unit or the mixed combustion rate upper limit estimation unit, and the optimization unit is a unit.
  • the virtual co-firing rate input to the prediction model is increased to calculate the prediction value of the constraint parameter, and the setting of the operation end is adjusted based on the comparison result between the prediction value and the reference value.
  • An operation is performed to change the constraint parameter in a direction equal to or higher than the reference value, and the co-firing rate upper limit estimation unit increases the virtual co-firing rate input to the prediction model to obtain the constraint parameter.
  • the predicted value of the above is calculated, and the upper limit of the co-firing rate is estimated in the range where the predicted value of the constraint parameter is equal to or more generous than the reference value of the constraint parameter.
  • the set value of the operation end obtained from the calculation in the optimization unit, or the upper limit value of the mixed combustion rate obtained from the calculation in the mixed combustion rate upper limit estimation unit is output.
  • FIG. 1 Schematic block diagram showing a boiler.
  • Schematic diagram of the boiler driving support system The figure which shows the hardware composition of a driving support device.
  • the figure which shows the constraint process value example The figure which shows the example of the prediction model created by the model building part.
  • the flowchart which shows the flow from the detail of optimization of S2 to S5.
  • the flowchart which shows the detailed flow of S5.
  • the boiler 1 has a fireplace 11, a combustion device 12, and a flue 13.
  • the furnace 11 is installed along the vertical direction, for example, in the shape of a hollow square cylinder.
  • the wall surface of the furnace 11 is composed of an evaporation pipe (heat transfer tube) and fins connecting the evaporation pipes, and the temperature of the furnace wall is reached by heat exchange between the water supply and steam flowing in the evaporation pipe and the combustion gas in the furnace 11. The rise is suppressed.
  • a plurality of evaporation pipes are arranged, for example, along the vertical direction and arranged side by side in the horizontal direction.
  • the fins block between the evaporation pipes.
  • the furnace 11 is provided with an inclined surface 62 on the bottom of the furnace, and the bottom evaporation pipe 70 is provided on the inclined surface 62 to form a bottom surface.
  • the combustion device 12 is provided on the vertically lower side of the furnace wall constituting the fireplace 11.
  • the combustion device 12 has a plurality of combustion burners (for example, 21, 22, 23, 24, 25) mounted on the furnace wall.
  • a plurality of the combustion burners (burners) 21, 22, 23, 24, 25 are arranged at equal intervals along the circumferential direction of the furnace 11.
  • the shape of the furnace, the arrangement of the burners, the number of combustion burners in one stage, and the number of stages are not limited to this embodiment.
  • Each of the combustion burners 21, 22, 23, 24, 25 is a crusher (pulverized coal machine / mill: corresponding to an auxiliary machine) 31, 32 via the pulverized coal supply pipes 26, 27, 28, 29, 30. , 33, 34, 35 are connected.
  • a transport system not shown
  • the pulverized coal can be supplied to the combustion burners 21, 22, 23, 24, 25 from the pulverized coal supply pipes 26, 27, 28, 29, 30.
  • the fireplace 11 is provided with a wind box 36 at the mounting positions of the combustion burners 21, 22, 23, 24, 25, and one end of the air duct 37b is connected to the wind box 36 at the other end. Is connected to the air duct 37a that supplies air at the connection point 37d.
  • a flue 13 is connected vertically above the furnace 11, and a plurality of heat exchangers (41, 42, 43, 44, 45, 46, 47) for generating steam in the flue 13 are connected. Is placed. Therefore, the combustion burners 21, 22, 23, 24, 25 inject a mixture of pulverized fuel and combustion air into the furnace 11 to form a flame, and combustion gas is generated and flows into the flue 13. .. Then, the combustion gas heats the water supply and steam flowing through the furnace wall and the heat exchanger (41 to 47) to generate superheated steam, and the generated superheated steam is supplied to rotate and drive a steam turbine (not shown) to steam. A generator (not shown) connected to the rotating shaft of the turbine can be rotationally driven to generate power.
  • the chimney 13 is connected to the exhaust gas passage 48, and is between the denitration device 50 for purifying the combustion gas, the air sent from the blower 38 to the air duct 37a, and the exhaust gas sent through the exhaust gas passage 48.
  • An air heater 49, a soot dust processing device 51, an attracting blower 52, and the like for heat exchange are provided, and a chimney 53 is provided at the downstream end.
  • the denitration device 50 may not be provided if the exhaust gas standard is satisfied.
  • the fireplace 11 of the present embodiment is newly used for combustion air (primary air) after excessive fuel combustion by the air for transporting pulverized coal (primary air) and the combustion air (secondary air) introduced into the fireplace 11 from the air box 36. It is a so-called two-stage combustion type fireplace in which after-air) is charged to perform lean fuel combustion. Therefore, the furnace 11 is provided with an after airport 39, one end of the air duct 37c is connected to the after airport 39, and the other end is connected to the air duct 37a that supplies air at the connection point 37d. If the two-stage combustion method is not adopted, the after airport 39 may not be provided.
  • the air sent from the blower 38 to the air duct 37a is heated by heat exchange with the combustion gas at the air heater 49, and is guided to the air box 36 via the air duct 37b at the connection point 37d, and the air duct. It branches to the after air guided to the after airport 39 via 37c.
  • FIG. 2 is a schematic explanatory view of the operation support system 10 of the boiler 1.
  • the driving support system 10 includes a boiler 1, a driving support device 100 of the boiler 1, and a driving control device 120 of the boiler 1.
  • the operation support device 100 constructs a prediction model for predicting various process values that occur when the boiler 1 performs a dedicated coal combustion operation or a co-firing operation of different types of fuel by machine learning, and the fuel using the prediction model. Optimize the operating conditions according to the properties, or calculate the upper limit of the co-firing rate.
  • High-moisture coal (low-grade coal) and biomass fuel which have a relatively high water content as different types of fuel, are fuels for which the co-firing rate is desired to be increased, and therefore correspond to the first-class fuel.
  • High-grade coal that is co-fired with high-moisture coal or biomass fuel corresponds to type 2 fuel.
  • the operation support device 100 aims to support operation in which the co-firing rate of the first-class fuel is increased.
  • FIG. 3 is a diagram showing a hardware configuration of the driving support device 100.
  • the operation support device 100 includes a processor 301, a RAM (Random Access Memory) 302, a ROM (Read Only Memory) 303, an HDD (Hard Disk Drive) 304, an input I / F305, an output I / F306, and a communication I / F307. , These are configured using computers connected to each other via bus 308.
  • the processor 301 may be a GPU (Graphics Processing Unit) or a CPU (Central Processing Unit), and may be of any type as long as it is a device that executes an arithmetic function.
  • the hardware configuration of the driving support device 100 is not limited to the above, and may be configured by a combination of a control circuit and a storage device.
  • the driving support device 100 is configured by the processor 301 executing a driving support program that realizes each function of the driving support device 100, or by calculating by a control circuit.
  • An input device 311 such as a mouse, keyboard, and touch panel is connected to the input I / F305.
  • a display 312 made of an LCD or the like is connected to the output I / F 306.
  • Each of the boiler 1 and the operation control device 120 is connected to the communication I / F 307.
  • FIG. 4 is a flowchart showing the main flow from model construction to operation by the operation support system 10 of the boiler 1.
  • FIG. 5 is a flowchart showing the details of the process from the acquisition of the operation data to the construction of the prediction model.
  • the data acquisition unit 110 acquires operation data from the boiler 1 and stores it in the operation data storage unit 112 (S101).
  • the data acquisition unit 110 has the actual process values measured by the sensors 1, 2, ..., M during the actual operation, and the operation control device 120 at the operation ends 1, 2, ..., N, respectively.
  • the set operation end parameter (operation end set value) and the actual co-firing rate of the first-class fuel and the second-class fuel during the co-firing operation are acquired, and the operation data associated with the process value, the operating end parameter and the co-firing rate are obtained. It is generated and stored in the operation data storage unit 112.
  • the above process values include trace components such as the concentration of nitrogen oxides contained in the gas discharged from the thermal power plant, the metal temperature of the heat transfer tube, and the like.
  • the data acquisition unit 110 may generate operation data consisting of time-series data by adding time information from RTC 118 to each of the operation end parameter and the actual process value.
  • the operation data acquired in this embodiment is teacher data for constructing a prediction model for calculating predicted values of constraint process values and other process values.
  • the teacher data is not limited to the actual process value and the operating conditions (operation end parameter and co-firing rate) when the actual process value is obtained, and the calculated value obtained by analyzing the boiler 1 may be used.
  • Preprocessing by the data extraction unit 114 is executed (S102).
  • the data extraction unit 114 reads the operation data described above in the operation data storage unit 112, and the missing data is supplemented by causing the soft sensor value calculation unit 116 to execute the calculation of the variable and obtain the soft sensor value.
  • the operating conditions including the co-firing rate are read from the operating data, and the settling data is extracted.
  • the soft sensor value calculation unit 116 uses the actual process values actually measured by the sensors 1, 2, ..., M to obtain the values of the sensors (soft sensors) that are not mounted on the boiler 1. It calculates and outputs the soft sensor value consisting of the measured values to the data acquisition unit 110.
  • the model construction unit 220 acquires the settling data extracted by the data extraction unit 114, generates learning data (S103), and sets learning conditions (S104).
  • the model building unit 220 builds a machine learning model based on the learning data and the set learning conditions.
  • FIG. 6 is a diagram showing an example of constraint process values.
  • the constraint process value is a process value that changes significantly when operating by co-firing high-moisture coal (so-called low-grade coal) or biomass fuel. By suppressing the behavior of the constraint process value, the co-firing rate can be increased.
  • the constraint process value is a process value that may make it difficult to continue the operation by reaching the control limit value beyond the appropriate range when the co-firing rate is increased. Examples of constraint process values are the air temperature for drying and transporting pulverized fuel and the motor current of the pulverized coal machine (mill).
  • FIG. 7 is a diagram showing an example of a prediction model created by the model construction unit 220.
  • the model building unit 220 builds a prediction model corresponding to each of the constraint process values shown in FIG. Specifically, the model building unit 220 uses the control values (operation end parameters) set in the operation ends 1 to N, the soft sensor values, and the co-firing rate of the first-class fuel as input parameters, and the input parameters are boilers.
  • the teacher data with each constraint process value actual measurement value obtained by setting to 1 as the output parameter
  • the model building unit 220 builds a prediction model using a regression model
  • the operating end parameter the fuel parameter (including the co-firing rate), and other parameters (for example, environmental conditions such as temperature) are used.
  • Etc. as the explanatory variables
  • the regression model is machine-learned with the air temperature for drying and transporting fine powder fuel as the objective variable.
  • the constructed prediction model is stored in the model storage unit 222.
  • a plurality of prediction models including the prediction model 2 for calculating the predicted value of the motor current of the pulverized coal machine (mill) were constructed, but one of the most notable constraint process values was modeled. You may build one predictive model.
  • FIG. 8 is a flowchart showing the flow from the details of the optimization of S2 to S5.
  • the optimization unit 230 sets the optimization conditions (S201). Specifically, it is set in which operation mode the operating conditions for performing mixed combustion operation are optimized. Further, the optimization unit 230 also sets a score as one of the settings of the optimization condition. In this embodiment, the soundness mode is set, and the score setting is adjusted so that the constraint process value is improved (additional points are increased compared to other soundness process values).
  • the optimization unit 230 executes optimization (S202).
  • the optimization unit 230 executes a process of changing the weighting of the constraint process value to give the constraint process value a margin in order to improve the constraint process value that fluctuates greatly when the co-firing rate is increased.
  • the timing at which the optimization unit 230 performs the optimization process is a) When the margin of a particular constraint process value is exhausted, b) This is performed when one or both of the time when the co-firing rate of the unlearned region is reached (when the range of the co-firing rate of the training data at the time of model construction is exceeded) or both are satisfied.
  • the measures taken by the optimization unit 230 at the above timing are: c) Review the weighting for specific process values with low wealth and increase the wealth. Here, review the score settings for each process value, d) Perform optimization again in sanity mode (increase the overall margin of constraint process values), one or both. Therefore, the optimization unit 230 adjusts the setting of the operation end parameter based on the comparison result between the predicted value and the reference value of the constraint process value obtained from the prediction model, and the constraint process value is set with respect to the reference value. Change the margin in a certain direction.
  • the optimization unit 230 confirms whether the constraint process value has been improved by the optimization (S203). Also, confirm that the optimum setting of S202 does not conflict with the concept of equipment design and past operation results.
  • the reference value storage unit 232 stores in advance reference values to be compared with individual constraint process values. The optimization unit 230 confirms the presence or absence of improvement based on the comparison result with the reference value. If the improvement is not sufficient, the process returns to step S201 (S203: No) and the optimization conditions are reviewed. If it is sufficiently improved (S203: Yes), the process proceeds to the estimation process of the co-firing rate.
  • the mixed combustion rate upper limit estimation unit 240 calculates the predicted value of the constraint process value by increasing the virtual mixed combustion rate among the operating conditions input to the prediction model. Then, the upper limit of the co-firing rate is estimated in the range where the predicted value of the constraint process value is equal to or less than the reference value of the constraint process value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

バイオマスや低品位炭の混焼率をより増加させてボイラを運転すること。ボイラの運転支援装置であって、混焼率を増加させたい第1種燃料の混焼率及びボイラ又はボイラの補機の操作端の設定値を入力パラメータとし、混焼率を相対的に増加させた場合に大きく変化する制約パラメータを出力パラメータとする予測モデルを構築し、混焼率を上昇させたときの予測値を予測モデルから求め、制約パラメータの種類に対応した設備仕様面から決まる基準値と比較し、比較結果に基づいて操作端の設定を調整して制約パラメータを基準値に対して裕度がある方向に変更し混焼率の上限値を推定する。

Description

ボイラの運転支援装置及びボイラの運転支援システム
 本発明は、ボイラの運転支援装置及びボイラの運転支援システムに係り、特に石炭やバイオマスなどを微粉化しバーナ燃焼する微粉燃料焚きのボイラの運転支援装置及び運転制御装置に関する。
 火力発電プラントに設置されるボイラでは、石炭性状や汚れなどボイラ特性の変化に対応しながら操作端に設定する設定値を補正し、多炭種に対するボイラの制御性を向上させる多炭種制御ロジックが用いられる。多炭種制御ロジックでは、種々のプロセス値(例えばミルモータ電流、ミルテーブル差圧)に基づいて、予め定められたロジックで制約パラメータ(回転分級機の回転数、油圧等)をフィードバック制御している。
 また異種の燃料を混焼する場合の運転制御例として、特許文献1には、異種の燃料を混焼させるボイラにおいて、混焼比が変化した時にも火炉蒸発管出口の流体温度が許容範囲を超えないようにするボイラの蒸気温度制御装置が開示されている。
特開平9-89208号公報
 ボイラで石炭にバイオマスを混ぜて混焼運転をする場合、多炭種制御ロジックを流用して通常の運転制御を行っている。
 しかし、バイオマスや低品位炭の混焼率を増加させた場合、通常の石炭の燃焼時ではあまり変動しない特定のプロセス値が大きく変化し、設備設計上の制限に到達して、それが要因となって混焼率を増加できないという実情がある。
 本発明は上記実情に鑑みてなされたものであり、バイオマスや低品位炭の混焼率をより増加させてボイラを運転するための運転支援装置及び運転支援システムを提供することを目的とする。
 上記課題を達成するために、本発明は特許請求の範囲に記載の構成を備える。その一例をあげるならば、 複数種類の燃料を混焼させるボイラの運転支援装置であって、混焼率を増加させたい第1種燃料と当該第1種燃料とは異種の第2種燃料との混焼率と、前記ボイラ又は前記ボイラの補機の少なくとも一つ以上の操作端の設定値とを入力パラメータとし、前記第1種燃料の混焼率を相対的に増加させた場合に大きく変化する制約パラメータを出力パラメータとする予測モデルであって、前記第1種燃料及び前記第2種燃料を前記ボイラで混焼させたときの運転データを教師データとして機械学習させた予測モデルを記憶するモデル記憶部と、前記制約パラメータの種類に対応した基準値であって、設備仕様面から決まる基準値を記憶する基準値記憶部と、前記混焼率を増加させるために用いる最適化部、又は混焼率の上限を推定するために用いる混焼率上限推定部と、前記最適化部又は前記混焼率上限推定部での演算結果を出力する出力部と、を含むボイラの運転支援装置であって、前記最適化部は、前記予測モデルに対して入力する仮想混焼率を増加させて前記制約パラメータの予測値を演算し、予測値と前記基準値との比較結果に基づいて、前記操作端の設定を調整して前記制約パラメータを前記基準値と同等またはそれよりも裕度がある方向に変化させる演算を行い、前記混焼率上限推定部は、前記予測モデルに対して入力する仮想混焼率を増加させて前記制約パラメータの予測値を演算し、前記制約パラメータの予測値が当該制約パラメータの基準値と同等またはそれよりも裕度がある範囲での前記混焼率の上限値を推定する演算を行い、前記出力部は、前記最適化部での演算から得られた前記操作端の設定値、又は前記混焼率上限推定部での演算から得られた前記混焼率の上限値を出力する。
 本発明によれば、バイオマスや低品位炭の混焼率をより増加させてボイラを運転するための運転支援装置及び運転制御装置を提供できる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
ボイラを表す概略構成図。 ボイラの運転支援システムの概略説明図。 運転支援装置のハードウェア構成を示す図。 ボイラの運転支援システムによるモデル構築から運用までの主な流れを示すフローチャート。 運転データの取得から予測モデル構築までの処理の詳細を示すフローチャート。 制約プロセス値例を示す図。 モデル構築部が作成する予測モデルの例を示す図。 S2の最適化の詳細からS5までの流れを示すフローチャート。 S5の詳細な流れを示すフローチャート。 運転支援システムを用いたボイラの運用プロセスフローを示す図。
 以下に添付図面を参照して、本発明に係る好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含む。全図を通じて同一の構成、ステップには同一の符号を付し、重複説明を省略する。
 図1は、ボイラ1の概略構成図である。本実施形態のボイラ1は、石炭やバイオマスなどの固体燃料を微粉化し、石炭の専焼運転、及び石炭とバイオマス等、複数種類の燃料の混焼運転が可能なボイラ1である。
 ボイラ1は、火炉11と燃焼装置12と煙道13を有している。火炉11は、例えば四角筒の中空形状をなして鉛直方向に沿って設置されている。火炉11は、壁面が、蒸発管(伝熱管)と蒸発管を接続するフィンとで構成され、蒸発管内を流れる給水や蒸気と火炉11内の燃焼ガスとが熱交換することにより火炉壁の温度上昇を抑制している。具体的には、火炉11の側壁面には、複数の蒸発管が例えば鉛直方向に沿って配置され、水平方向に並んで配置されている。フィンは、蒸発管と蒸発管との間を閉塞している。火炉11は、炉底に傾斜面62が設けられており、傾斜面62に炉底蒸発管70が設けられて底面となる。
 燃焼装置12は、この火炉11を構成する火炉壁の鉛直下部側に設けられている。本実施形態では、この燃焼装置12は、火炉壁に装着された複数の燃焼バーナ(例えば21,22,23,24,25)を有している。例えば、この燃焼バーナ(バーナ)21,22,23,24,25は、火炉11の周方向に沿って均等間隔で複数配設されている。但し、火炉の形状、バーナの配置や一つの段における燃焼バーナの数、段数はこの実施形態に限定されるものではない。
 この各燃焼バーナ21,22,23,24,25は、微粉炭供給管26,27,28,29,30を介して粉砕機(微粉炭機/ミル:補機に相当する。)31,32,33,34,35に連結されている。石炭が図示しない搬送系統で搬送されて、この粉砕機31,32,33,34,35に投入されると、ここで所定の微粉の大きさに粉砕され、搬送用空気(1次空気)と共に微粉炭供給管26,27,28,29,30から燃焼バーナ21,22,23,24,25に粉砕された石炭(微粉炭)を供給することができる。
 また、火炉11は、各燃焼バーナ21,22,23,24,25の装着位置に風箱36が設けられており、この風箱36に空気ダクト37bの一端部が連結されて、他端部は空気を供給する空気ダクト37aに連結点37dにおいて連結される。
 また、火炉11の鉛直方向上方には煙道13が連結されており、この煙道13に蒸気を生成するための複数の熱交換器(41,42,43,44,45,46,47)が配置されている。そのため、燃焼バーナ21,22,23,24,25が火炉11内に微粉化燃料と燃焼用空気との混合気を噴射することで火炎が形成され、燃焼ガスを生成されて煙道13に流れる。そして、燃焼ガスにより火炉壁及び熱交換器(41~47)を流れる給水や蒸気を加熱して過熱蒸気が生成され、生成された過熱蒸気を供給して図示しない蒸気タービンを回転駆動させ、蒸気タービンの回転軸に連結した図示しない発電機を回転駆動して発電を行うことができる。また、この煙道13は、排ガス通路48が連結され、燃焼ガスの浄化を行うための脱硝装置50、送風機38から空気ダクト37aへ送気する空気と排ガス通路48を送気する排ガスとの間で熱交換を行うエアヒータ49、煤塵処理装置51、誘引送風機52などが設けられ、下流端部に煙突53が設けられている。なお、脱硝装置50は排ガス基準を満足できれば設けなくてもよい。
 本実施形態の火炉11は、微粉炭の搬送用空気(1次空気)及び風箱36から火炉11に投入される燃焼用空気(2次空気)による燃料過剰燃焼後、新たに燃焼用空気(アフタエア)を投入して燃料希薄燃焼を行わせる、所謂2段燃焼方式の火炉である。そのため、火炉11にはアフタエアポート39が備えられ、アフタエアポート39に空気ダクト37cの一端部が連結され、他端部は連結点37dにおいて空気を供給する空気ダクト37aに連結される。なお、2段燃焼方式を採用しない場合、アフタエアポート39は設けなくてもよい。
 送風機38から空気ダクト37aに送気された空気は、エアヒータ49で燃焼ガスと熱交換により温められ、連結点37dにおいて空気ダクト37bを経由して風箱36へ導かれる2次空気と、空気ダクト37cを経由してアフタエアポート39へと導かれるアフタエアとに分岐する。
 図2は、ボイラ1の運転支援システム10の概略説明図である。運転支援システム10は、ボイラ1と、ボイラ1の運転支援装置100と、ボイラ1の運転制御装置120とを含んで構成される。
 運転支援装置100は、ボイラ1が石炭の専焼運転、又は異種燃料の混焼運転を行ったときに生じる各種プロセス値を予測するための予測モデルを機械学習により構築し、その予測モデルを用いて燃料性状にあった運転条件の最適化、又は混焼率の上限値の算出を行う。異種燃料として相対的に含有水分量が多い高水分炭(低品位炭)やバイオマス燃料は、混焼率を上昇させたい燃料であるので、第1種燃料に相当する。また高水分炭やバイオマス燃料と混焼させる高品位炭は、第2種燃料に相当する。運転支援装置100は、第1種燃料の混焼率を上昇させた運転の支援を目的とする。
 運転支援装置100は、データ取得部110、運転データ記憶部112、データ抽出部114、ソフトセンサ値計算部116、RTC118、モデル構築部220、モデル記憶部222、最適化部230、基準値記憶部232、混焼率上限推定部240、運転条件評価部242、出力部250を含む。各部の機能は後述する。
 図3は、運転支援装置100のハードウェア構成を示す図である。運転支援装置100は、プロセッサ301、RAM(Random Access Memory)302、ROM(Read Only Memory)303、HDD(Hard Disk Drive)304、入力I/F305、出力I/F306、及び通信I/F307を含み、これらがバス308を介して互いに接続されたコンピュータを用いて構成される。プロセッサ301は、GPU(Graphics Processing Unit)でもCPU(Central Processing Unit)でもよく、演算機能を実行するデバイスであれば種類を問わない。また、運転支援装置100のハードウェア構成は上記に限定されず、制御回路と記憶装置との組み合わせにより構成されてもよい。運転支援装置100は、運転支援装置100の各機能を実現する運転支援プログラムをプロセッサ301が実行する、又は制御回路が演算することにより構成される。
 入力I/F305には、マウス、キーボード、タッチパネル等の入力装置311が接続される。
 出力I/F306には、LCD等からなるディスプレイ312が接続される。
 通信I/F307には、ボイラ1及び運転制御装置120のそれぞれが接続される。
 図4は、ボイラ1の運転支援システム10によるモデル構築から運用までの主な流れを示すフローチャートである。
<S1:予測モデルの構築>
 運転支援装置100のモデル構築部220は、混焼率を入力パラメータ(回帰モデルでは説明変数)に追加して、制約プロセス値をモデル化する、すなわち制約プロセス値の予測モデルを構築する(S1)。構築された予測モデルは、モデル記憶部222に記憶される。図5は、運転データの取得から予測モデル構築までの処理の詳細を示すフローチャートである。
 データ取得部110は、ボイラ1から運転データを取得し、運転データ記憶部112に記憶する(S101)。データ取得部110は、各センサ1,2,・・・,Mが実運転中に計測した実プロセス値と、運転制御装置120が各操作端1,2,・・・,Nの其々に設定した操作端パラメータ(操作端設定値)、及び混焼運転時の第1種燃料と第2種燃料との実混焼率を取得し、プロセス値、操作端パラメータ及び混焼率を関連付けた運転データを生成し、運転データ記憶部112に記憶する。
 上記プロセス値には、制約プロセス値の他、例えば火力発電プラントから排出されるガスに含まれる窒素酸化物濃度などの微量成分、伝熱管のメタル温度なども含まれる。
 データ取得部110は、操作端パラメータ及び実プロセス値の其々にRTC118からの時刻情報を付加して時系列データからなる運転データを生成してもよい。
 本実施形態で取得された運転データは、制約プロセス値や他のプロセス値の予測値を演算する予測モデルを構築するための教師データとなる。教師データは、実プロセス値及びそれが得られた際の運転条件(操作端パラメータ及び混焼率)に限らず、ボイラ1を解析して得られた計算値を用いてもよい。
 データ抽出部114による前処理が実行される(S102)。データ抽出部114は、運転データ記憶部112に既述された運転データを読み出し、欠損データはソフトセンサ値計算部116に変数の計算を実行させてソフトセンサ値を得ることで補う。また、運転データから混焼率を含む運転条件を読み込み、整定データを抽出する。
 ソフトセンサ値計算部116は、実際にセンサ1,2,・・・,Mにより計測して得られた実プロセス値を用いて、ボイラ1には実装されていないセンサ(ソフトセンサ)の値を計算し、計測値からなるソフトセンサ値をデータ取得部110に出力する。
 モデル構築部220は、データ抽出部114が抽出した整定データを取得して学習データを生成し(S103)、学習条件を設定する(S104)。
 モデル構築部220は、学習データ、および設定した学習条件により、機械学習モデルを構築する。
 図6は、制約プロセス値例を示す図である。制約プロセス値とは高水分炭(所謂、低品位炭)やバイオマス燃料を混焼させて運転した際に大きく変化するプロセス値である。制約プロセス値の挙動を抑えることで、混焼率を上げることができる。ここで、制約プロセス値とは、混焼率を増加させた場合に、適正範囲を超えて管理限界値に到達することで運転の継続が困難になる可能性のあるプロセス値のことである。制約プロセス値の一例として、微粉燃料乾燥・搬送用空気温度や微粉炭機(ミル)のモータ電流がある。
 図7は、モデル構築部220が作成する予測モデルの例を示す図である。モデル構築部220は、図6に示す制約プロセス値のそれぞれに対応する予測モデルを構築する。具体的には、モデル構築部220は、操作端1~Nに設定される制御値(操作端パラメータ)、ソフトセンサ値、及び第1種燃料の混焼率を入力パラメータとし、その入力パラメータをボイラ1に設定して実運転して得られた各制約プロセス値(実測値)を出力パラメータとする教師データを用いて、各制約プロセス値に対応した予測モデルを機械学習し、予測モデルを構築する。
 モデル構築部220は、回帰モデルを用いて予測モデルを構築する場合、図7の予測モデル1の例では、操作端パラメータ、燃料パラメータ(混焼率を含む)、その他パラメータ(例えば気温等の環境条件等)を説明変数とし、微粉燃料乾燥・搬送用空気温度を目的変数として回帰モデルを機械学習させる。構築された予測モデルはモデル記憶部222に記憶される。図7の例では本例では微粉炭機(ミル)のモータ電流の予測値を演算する予測モデル2を含む複数の予測モデルを構築したが、最も注目すべき一つの制約プロセス値をモデリングした一つの予測モデルを構築してもよい。
<S2:運転条件の最適化>
 最適化部230は、制約プロセス値の改善を行う(S2)。図8は、S2の最適化の詳細からS5までの流れを示すフローチャートである。
 最適化部230は、最適化条件の設定を行う(S201)。具体的には、どの運転モードで混焼運転を行う際の運転条件を最適化するかを設定する。更に最適化部230は、最適化条件の設定の一つとしてスコア設定も行う。本実施形態では、健全性モードに設定、制約プロセス値が改善するよう(他の健全性プロセス値より加点を大きくする)スコア設定を調整する。
 最適化部230が最適化を実行する(S202)。最適化部230は、混焼率を増加させたときに大きく変動する制約プロセス値を改善するために、制約プロセス値の重みづけを変えて制約プロセス値に裕度を持たせる処理を実行する。
 最適化部230が最適化処理を行うタイミングは、
 a) 特定の制約プロセス値の裕度がなくなった時点、
 b) 学習していない領域の混焼率になった時点(モデル構築時の学習データの混焼率の範囲を超えた時点)、のいずれか一つ、又は両方を充足した時に行う。
 最適化部230が上記のタイミングで行う対策は、
 c) 裕度が少ない特定のプロセス値に対して重みづけを見直し、裕度を増やす。ここでは、個々のプロセス値について、スコア設定を見直す、
 d) 再度健全性モードで最適化を行う(制約プロセス値全般の裕度を増加させる)、のいずれか一つ、又は両方を行う。そのために、最適化部230は、予測モデルから求めた制約プロセス値の予測値と基準値との比較結果に基づいて、操作端パラメータの設定を調整して、制約プロセス値が基準値に対して裕度がある方向に変化させる。
 「基準値」は、設備仕様面から定まる各制約プロセス値の限界値である。また変形例として限界値よりも裕度はあるが、警報が発出される警報値であってもよい。
 最適化部230は、制約プロセス値が最適化により改善したかを確認する(S203)。またS202の最適設定が設備設計の考え方や過去の運転実績と齟齬がないことを確認する。基準値記憶部232には、予め個々の制約プロセス値と比較する基準値が記憶されている。最適化部230は、基準値との比較結果に基づいて改善の有無を確認する。十分改善していない場合は(S203:No)ステップS201に戻り最適化条件を見直す。十分改善している場合は(S203:Yes)混焼率の推定処理に進む。
<S3:混焼率の推定処理>
 混焼率上限推定部240は、ステップS105で構築した予測モデル、及びステップS107の最適設定を用いて、混焼率を上げた場合の制約プロセス値を求め、基準値に到達するまでの最大混焼率を推定する(S3)。
 混焼率上限推定部240は、予測モデルに対して入力する運転条件のうち、仮想混焼率を増加させて制約プロセス値の予測値を演算する。そして、制約プロセス値の予測値が当該制約プロセス値の基準値以下となる範囲での混焼率の上限値を推定する。
 運転条件評価部242は、S3で得られた制約プロセス値の予測値に基づいて、混焼率増加時の運転バランス評価や経済性評価を行い、目標混焼率を設定する(S4)。運転条件評価部242は、ステップS201で設定されたスコア設定に従って運転条件を評価する。各制約プロセス値の予測値からレーダチャートを作成し、その形状から運転バランスの評価を行ってもよい。
 運転条件評価部242は運転バランス評価や経済性評価を基に、運転条件の評価演算を行い、その演算結果(高評価の運転条件や、増加させた混焼率)を出力部250に出力する。
<S5:実機で混焼開始>
 出力部250は、最適化部230での演算から得られた操作端の設定値、又は混焼率上限推定部240での演算から得られた混焼率の上限値を運転制御装置120に出力し、実機での混焼を開始する(S5)。図9は、S5の詳細な流れを示すフローチャートである。
 出力部250は、第1条件及び第2条件を両方充足する場合は(S501:Yes)、実機での混焼率増加運転を開始するために、運転制御装置120に対して混焼率増加開始の指示信号を出力する(S505)。e)実際の混焼率が学習範囲内(第1条件)。f)全ての制約プロセス値に裕度がある(第2条件)。
 一方、出力部250は、上記第1条件及び第2条件のいずれか、又は両方がNoの場合(S501:No)、最適化部230に対して最適化の要求を行う。
 最適化部230は、ステップS502からステップS504において、ステップS201からステップS203と同様の最適化処理を行う。ステップS504で制約プロセス値が改善していないと判定する(S504:No)と、ステップS502へ戻り最適化条件を再設定する。
 一方、最適化部230は、ステップS504で制約プロセス値が改善したと判定する(S504:Yes)とその結果を出力部250へ返す。これを受けて出力部250は、実機での混焼率増加運転を開始するための指示信号を運転制御装置120へ出力する(S505)。
 図10は、運転支援システム10を用いたボイラ1の運用プロセスフローを示す図である。
 運転支援装置100は運転データを取得すると前処理を行い、学習データを生成する。その学習データを用いて予測モデルを構築する。その予測モデルを用いて、健全性モードの最適化を行った結果、制約プロセス値が下がり、制約プロセス値の上限値に対する裕度が確保される(t1時)。
 次いで運転支援装置100は混焼率の上限の推定処理を行い、予測モデルから推定される混焼率上限での運転バランス評価に基づき、実機で混焼率を増加させる(t2時)。混焼率の増加に伴い制約プロセス値も増加する。そこで、運転支援装置100は制約プロセス値の挙動を確認し、最適化のスコア設定を見直した最適設定を実機に反映した結果、再度、制約プロセス値が下がり、制約プロセス値の上限値に対する裕度が確保される(t3時)。
 実機の混焼率増加後の運転データを再学習・最適化して、最適設定を実機に反映すると、混焼率をt2以前よりも増加させつつも、制約プロセス値の上限値に対する裕度が確保される(t4時)。
 本実施形態によれば、バイオマス燃料や低品位炭を高品位炭と混焼させた場合、従来は大きく変動する制約プロセス値が混焼率の増加に対する制約要因となっていた。本実施形態によれば、運転支援装置100により、混焼率を増加させたときの制約プロセス値の裕度が増加するように操作端の設定値を決めるので、制約プロセス値が警報値に至らない範囲で混焼率の増加が行える。
 上記実施形態は本発明を限定するものではなく、本発明の趣旨を逸脱しない範囲での様々な変更態様がある。例えば、上記運転支援装置100では最適化部230と混焼率上限推定部240とを両方備えた例を示したが、どちらか一方のみを備えてもよい。例えば、最適化部230のみを備え、運転条件を最適化し、そのときの混焼率を増加させたときの操作端パラメータを出力部250に渡してもよい。また、混焼率上限推定部240のみを備え、混焼率上限値を推定するためのシミュレーションを行った結果得られた混焼率上限値を出力部250に渡してもよい。
1    :ボイラ
10   :運転支援システム
11   :火炉
12   :燃焼装置
13   :煙道
21~25:燃焼バーナ
26~30:微粉炭供給管
31~35:粉砕機
36   :風箱
37a~37c:空気ダクト
37d  :連結点
38   :送風機
39   :アフタエアポート
48   :排ガス通路
49   :エアヒータ
50   :脱硝装置
51   :煤塵処理装置
52   :誘引送風機
53   :煙突
62   :傾斜面
70   :炉底蒸発管
100  :運転支援装置
110  :データ取得部
112  :運転データ記憶部
114  :データ抽出部
116  :ソフトセンサ値計算部
118  :RTC
120  :運転制御装置
220  :モデル構築部
222  :モデル記憶部
230  :最適化部
232  :基準値記憶部
240  :混焼率上限推定部
242  :運転条件評価部
250  :出力部
301  :プロセッサ
305  :入力I/F
306  :出力I/F
307  :通信I/F
308  :バス
311  :入力装置
312  :ディスプレイ

Claims (6)

  1.  複数種類の燃料を混焼させるボイラの運転支援装置であって、
     混焼率を増加させたい第1種燃料と当該第1種燃料とは異種の第2種燃料との混焼率と、前記ボイラ又は前記ボイラの補機の少なくとも一つ以上の操作端の設定値とを入力パラメータとし、
     前記第1種燃料の混焼率を相対的に増加させた場合に大きく変化する制約パラメータを出力パラメータとする予測モデルであって、
     前記第1種燃料及び前記第2種燃料を前記ボイラで混焼させたときの運転データを教師データとして機械学習させた予測モデルを記憶するモデル記憶部と、
     前記制約パラメータの種類に対応した基準値であって、設備仕様面から決まる基準値を記憶する基準値記憶部と、
     前記混焼率を増加させるために用いる最適化部、又は混焼率の上限を推定するために用いる混焼率上限推定部と、
     前記最適化部又は前記混焼率上限推定部での演算結果を出力する出力部と、を含むボイラの運転支援装置であって、
     前記最適化部は、前記予測モデルに対して入力する仮想混焼率を増加させて前記制約パラメータの予測値を演算し、予測値と前記基準値との比較結果に基づいて、前記操作端の設定を調整して前記制約パラメータを前記基準値と同等またはそれよりも裕度がある方向に変化させる演算を行い、
     前記混焼率上限推定部は、前記予測モデルに対して入力する仮想混焼率を増加させて前記制約パラメータの予測値を演算し、前記制約パラメータの予測値が当該制約パラメータの基準値と同等またはそれよりも裕度がある範囲での前記混焼率の上限値を推定する演算を行い、
     前記出力部は、前記最適化部での演算から得られた前記操作端の設定値、又は前記混焼率上限推定部での演算から得られた前記混焼率の上限値を出力する、
     ボイラの運転支援装置。
  2.  請求項1に記載のボイラの運転支援装置であって、
     前記モデル記憶部は、前記混焼率及び前記操作端に設定する設定値を説明変数とし、前記制約パラメータを目的変数とする回帰モデルを用いた予測モデルを記憶する、
     ボイラの運転支援装置。
  3.  請求項1に記載のボイラの運転支援装置であって、
     前記最適化部は、前記予測モデルから出力される制約パラメータの予測値の一つが当該制約パラメータの基準値よりも裕度が小さくなる、又は前記ボイラに適用する運転条件に含まれる混焼率が過去に前記予測モデルで学習された範囲を超えると再度最適化を行う、
     ボイラの運転支援装置。
  4.  請求項1に記載のボイラの運転支援装置であって、
     前記補機は、前記第1種燃料を粉砕するミルであり、
     前記制約パラメータは、微粉燃料乾燥・搬送用空気温度、及び前記ミルのモータ電流の少なくとも1つ以上である、
     ボイラの運転支援装置。
  5.  請求項1に記載のボイラの運転支援装置であって、
     前記第1種燃料は、バイオマス燃料又は相対的に含有水分量が多い低品位炭であり、前記第2種燃料は相対的に含有水分量が低い高品位炭である、
     ボイラの運転支援装置。
  6.  複数の燃料を混焼させるボイラの運転支援システムであって、
     請求項1から5のいずれか一つに記載のボイラの運転支援装置と、
     前記ボイラの操作端に設定値を設定する運転制御装置と、を備え、
     前記ボイラの運転制御装置は、
     前記運転支援装置から前記第1種燃料の目標混焼率を示す情報を取得し、当該目標混焼率に基づいて前記ボイラ及び前記ボイラの補機の各操作端に操作端パラメータを設定する、
     ボイラの運転支援システム。
PCT/JP2021/039466 2020-12-24 2021-10-26 ボイラの運転支援装置及びボイラの運転支援システム WO2022137785A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-215393 2020-12-24
JP2020215393A JP2022101041A (ja) 2020-12-24 2020-12-24 ボイラの運転支援装置及びボイラの運転支援システム

Publications (1)

Publication Number Publication Date
WO2022137785A1 true WO2022137785A1 (ja) 2022-06-30

Family

ID=82159004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039466 WO2022137785A1 (ja) 2020-12-24 2021-10-26 ボイラの運転支援装置及びボイラの運転支援システム

Country Status (4)

Country Link
JP (1) JP2022101041A (ja)
KR (1) KR102627013B1 (ja)
TW (1) TW202225881A (ja)
WO (1) WO2022137785A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281536A (ja) * 2009-06-08 2010-12-16 Tokyo Electric Power Co Inc:The 配合計算装置及びプログラム
JP2014214942A (ja) * 2013-04-24 2014-11-17 Jfeスチール株式会社 ボイラの燃焼制御装置及び燃焼制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989208A (ja) 1995-09-22 1997-04-04 Mitsubishi Heavy Ind Ltd ボイラの蒸気温度制御装置
JP5051721B2 (ja) * 2008-05-16 2012-10-17 川崎重工業株式会社 バイオマス混焼微粉炭焚きボイラ
JP5854620B2 (ja) * 2011-04-01 2016-02-09 三菱日立パワーシステムズ株式会社 ボイラ及びボイラの運転方法
JP7053244B2 (ja) * 2017-12-15 2022-04-12 三菱重工業株式会社 燃焼炉の燃焼条件決定装置、燃焼条件決定方法、および燃焼システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281536A (ja) * 2009-06-08 2010-12-16 Tokyo Electric Power Co Inc:The 配合計算装置及びプログラム
JP2014214942A (ja) * 2013-04-24 2014-11-17 Jfeスチール株式会社 ボイラの燃焼制御装置及び燃焼制御方法

Also Published As

Publication number Publication date
JP2022101041A (ja) 2022-07-06
TW202225881A (zh) 2022-07-01
KR102627013B1 (ko) 2024-01-18
KR20220092408A (ko) 2022-07-01

Similar Documents

Publication Publication Date Title
TWI705316B (zh) 鍋爐之運轉支援裝置、鍋爐之運轉支援方法、及鍋爐之學習模型之作成方法
Magnanelli et al. Dynamic modeling of municipal solid waste incineration
Gao et al. Exergy and exergoeconomic analyses with modeling for CO2 allocation of coal-fired CHP plants
WO2019159883A1 (ja) モデル作成方法、プラントの運転支援方法、モデル作成装置、モデル、プログラム、及びプログラムを記録した記録媒体
Taler et al. The flexible boiler operation in a wide range of load changes with considering the strength and environmental restrictions
JP6732676B2 (ja) シミュレーション結果の評価装置及び方法
WO2022137785A1 (ja) ボイラの運転支援装置及びボイラの運転支援システム
JP6851501B2 (ja) 運転条件評価装置、運転条件評価方法、及びボイラの制御システム
De Meulenaere et al. Quantifying the impact of furnace heat transfer parameter uncertainties on the thermodynamic simulations of a biomass retrofit
Wejkowski Triple-finned tubes–Increasing efficiency, decreasing CO2 pollution of a steam boiler
Tugov et al. Experience of implementation of in-furnace methods of decreasing NO x in E-320-13.8-560GM boilers: Problems and ways for their solution
JP7348359B1 (ja) ボイラ用のコントローラ、ボイラシステム、および、ボイラ制御プログラム
Matsui et al. A new approach of thermal power plant model using VVVF inverter for accuracy improvement
Matsui et al. Improvement of transient response of thermal power plant using VVVF inverter
Shahnazari et al. Repowering of lowshan power plant
JP2022157118A (ja) ボイラの運転支援装置、ボイラの運転制御システム、ボイラの運転支援方法、及びボイラの運転支援プログラム
JP2022157124A (ja) ボイラの運転支援装置、ボイラの運転制御システム、ボイラの運転支援方法、及びボイラの運転支援プログラム
TW202338262A (zh) 氨燃料鍋爐系統
JP2022144706A (ja) ボイラ制御システム及び発電プラント、並びにボイラ制御方法
Pronobis Modernization Potential of Pulverized Coal Boilers in Response to Contemporary Ecological Challenges
JP2022097122A (ja) ボイラ及びその制御方法
JP2023106935A (ja) ボイラ制御装置、ボイラ制御方法、及び、プログラム
Shahnazari Repowering as a Competitive Technology for Upgrading the Existing Power Plants
JP2023108773A (ja) ボイラ制御装置、ボイラ制御方法、及び、プログラム
Suryavanshi et al. ENERGY AUDIT OF BOILER WHILE USING ALTERNATE FUEL SUCH AS RICE HUSK

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909942

Country of ref document: EP

Kind code of ref document: A1