WO2018147144A1 - デキストランエステル誘導体を含む被覆材料 - Google Patents

デキストランエステル誘導体を含む被覆材料 Download PDF

Info

Publication number
WO2018147144A1
WO2018147144A1 PCT/JP2018/003240 JP2018003240W WO2018147144A1 WO 2018147144 A1 WO2018147144 A1 WO 2018147144A1 JP 2018003240 W JP2018003240 W JP 2018003240W WO 2018147144 A1 WO2018147144 A1 WO 2018147144A1
Authority
WO
WIPO (PCT)
Prior art keywords
dextran
ester derivative
coating material
substitution
degree
Prior art date
Application number
PCT/JP2018/003240
Other languages
English (en)
French (fr)
Inventor
忠久 岩田
梓 都甲
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to JP2018567386A priority Critical patent/JPWO2018147144A1/ja
Publication of WO2018147144A1 publication Critical patent/WO2018147144A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D105/00Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
    • C09D105/02Dextran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J105/00Adhesives based on polysaccharides or on their derivatives, not provided for in groups C09J101/00 or C09J103/00
    • C09J105/02Dextran; Derivatives thereof

Definitions

  • the present invention relates to a coating material containing a dextran ester derivative, and an adhesive or film containing the coating material.
  • the present invention also relates to a method for producing the dextran ester derivative.
  • polymers such as vinyl acetate are used as adhesives for wood and the like, but this is not preferable in terms of influence on the environment and the human body, and development of more environmentally friendly materials is desired.
  • many of the conventional wood adhesives are vulnerable to water and have a problem of peeling off in about several hours.
  • polysaccharides which are one of natural polymers, can be molded by improving the thermoplasticity and solubility in organic solvents by esterifying hydroxyl groups.
  • One such polysaccharide, dextran has glucose linked by ⁇ - (1 ⁇ 6) bonds, partially ⁇ - (1 ⁇ 4), ⁇ - (1 ⁇ 3), ⁇ - (1 ⁇ 2 ) It has a structure branched by a bond and is synthesized by Leuconostoc mesenteroides, which is a kind of lactic acid bacteria (for example, Non-Patent Document 1).
  • Dextran has been used as an additive for pharmaceuticals such as plasma expanders and cosmetics, but has not been used as a plastic or adhesive.
  • an object of the present invention is to provide a coating material having excellent solubility and adhesion ability using a high-molecular polysaccharide which is an environmentally friendly material.
  • the present inventors have found that a dextran ester derivative having a structure in which the hydroxyl group of dextran is esterified with various carboxylic acids is dissolved in a safe solvent such as ethanol, and It has been found that the adhesive ability can be maintained for more than one week even in the presence of water. Moreover, it discovered that adhesive strength and a softness
  • each R is a hydrogen atom or an acyl group having an alkyl chain having 1 to 20 carbon atoms, which may be the same or different, and n is 100 to 20,000).
  • the acyl group is —C ( ⁇ O) (CH 2 ) m CH 3 (wherein, m is an integer of 0 to 10)
  • the coating material according to ⁇ 1> represented by: ⁇ 3>
  • ⁇ 4> The coating material according to any one of ⁇ 1> to ⁇ 3>, wherein the polydispersity (Mw / Mn) of the dextran ester derivative is in the range of 2.0 to 12.0; ⁇ 5>
  • Mw weight average mo
  • each R is a hydrogen atom or an acyl group having an alkyl chain of 1 to 20 carbon atoms, which may be the same or different, provided that the substitution degree (DS) by the acyl group is 1.0. And n is in the range of 100 to 20,000.)
  • a solution of dextran dissolved in an organic solvent A base and a carboxylic acid anhydride or carboxylic acid halide are added to the solution, and an esterification reaction between the dextran and the carboxylic acid anhydride or carboxylic acid halide is performed.
  • the production method comprising producing a dextran ester derivative having a desired degree of substitution by changing the addition amount of carboxylic acid anhydride or carboxylic acid halide and the reaction time; ⁇ 10> The production method according to ⁇ 9>, wherein the degree of substitution is less than 3.0. ⁇ 11> The production method according to ⁇ 9> or ⁇ 10>, wherein the base is pyridine; ⁇ 12> A method for producing a dextran ester derivative represented by formula (1): (In the formula, each R is a hydrogen atom or an acyl group having an alkyl chain of 1 to 20 carbon atoms, which may be the same or different, provided that the substitution degree (DS) by the acyl group is 1.0.
  • n is in the range of 100 to 20,000.
  • dextran and carboxylic acid are esterified.
  • natural dextran is used as a raw material, and by using a dextran ester derivative having a structure in which the hydroxyl group of dextran is esterified, it can be dissolved in a safe solvent such as ethanol, and in a water-existing environment for one week or more. It is possible to provide a coating material capable of maintaining the adhesive ability of The coating material can be suitably used as an adhesive for not only wood but also glass, metal, polymer material, and the like, or can be used in the form of a cast film or the like.
  • the alkyl chain length and substitution degree of the ester moiety in the dextran ester derivative can be controlled, whereby the adhesive strength and flexibility of the coating material can be adjusted according to the application. There is an effect that it can be controlled.
  • FIG. 1 is a graph showing TGA thermograms of various dextran ester derivatives of the present invention.
  • FIG. 2 shows the results of DSC measurement.
  • FIG. 3 shows the results of the solubility test.
  • FIG. 4 illustrates a test method for the adhesion test.
  • FIG. 5 shows the maximum value and the minimum value of the adhesive strength of each sample.
  • FIG. 6 shows the presence / absence of adhesive ability depending on the immersion time of PVA, Bond and DexVa (upper figure), and the difference in adhesion strength after immersion for 24 hours and before immersion (lower figure).
  • FIG. 7 shows the presence or absence of adhesion performance for each adherend of the dextran ester adhesive under various solvent conditions.
  • FIG. 1 is a graph showing TGA thermograms of various dextran ester derivatives of the present invention.
  • FIG. 2 shows the results of DSC measurement.
  • FIG. 3 shows the results of the solubility test.
  • FIG. 4 illustrates a test method for the adhesion test
  • FIG. 8 shows the maximum stress, breaking elongation, and elastic modulus of a dextran ester cast film having a substitution degree of 3.
  • FIG. 9 shows the maximum stress, elongation at break and elastic modulus of a dextran ester cast film having a substitution degree of less than 3.
  • FIG. 10 shows a graph of the loss tangent in the DMA measurement and the glass transition temperature calculated therefrom.
  • FIG. 11 is a graph showing the light transmittance of dextran ester cast films having different degrees of substitution.
  • the coating material according to the present invention includes a dextran ester derivative represented by the following formula (1), and the substitution degree (DS) with an acyl group in R in the formula is 1.0 to It is characterized by being in the range of 3.0.
  • the dextran ester derivative represented by the formula (1) is a dextran having a structure in which a glucose unit is polymerized, and has a structure in which three hydroxyl groups (OH groups) in the glucose unit are esterified with an acyl group. It is what you have.
  • the “degree of substitution” means the average number of hydroxyl groups substituted with the ester per glucose unit. That is, if the degree of substitution is 3, all three Rs in formula (1) are acyl groups, and all three OH groups in each glucose unit are esterified. If the degree of substitution is 1, one of the three OR groups in formula (1) is esterified on average, and the remaining two ORs remain hydroxyl groups (that is, R is a hydrogen atom). Indicates.
  • each R is a hydrogen atom or an acyl group having an alkyl chain having 1 to 20 carbon atoms which may be the same or different, and preferably an acyl group having an alkyl chain having 1 to 12 carbon atoms. is there.
  • the acyl group in R is —C ( ⁇ O) (CH 2 ) m CH 3 And an acyl group having a linear alkyl.
  • m is preferably an integer of 0 to 10.
  • Specific examples of the acyl group include, but are not limited to, acetyl group, propionyl group, butyryl group, valeryl group, hexanoyl group, octanoyl group, decanoyl group, lauroyl group and the like.
  • the heat resistance can be improved, and as described later, by changing the alkyl chain length of the acyl group, the adhesive strength and tensile strength of the coating material, etc. Can control the flexibility.
  • the substitution degree (DS) of R with an acyl group is in the range of 1.0 to 3.0, preferably in the range of 1.0 to 2.7.
  • the adhesive strength and the like of the coating material can be controlled by changing the substitution degree.
  • the ester groups obtained by substituting three OH groups (four OH groups in the terminal glucose unit) present in each glucose unit in dextran may be the same or different. That is, in the ester group within each glucose unit, each R can be the same or different acyl group. For example, R can be randomly different ester groups, or a plurality of different ester groups can be obtained at a ratio of 2: 1 or the like by controlling the esterification method.
  • N in the formula (1) is 100 to 20,000.
  • Mw weight average molecular weight
  • the polydispersity (PDI; also referred to as molecular weight distribution) represented by the ratio Mw / Mn between the weight average molecular weight (Mw) and the number average molecular weight (Mn) is preferably in the range of 2.0 to 12.0. It is.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • HPLC high pressure liquid chromatography
  • SEC size exclusion chromatography
  • GPC gel permeation chromatography
  • the adhesive strength of the coating material of the present invention can be controlled by the range of the degree of substitution (DS) in the dextran ester derivative and the alkyl chain length of the ester site (type of R acyl group). Those having low adhesive strength are expected to be used for short-time bonding applications that require peeling after bonding, and those having high adhesive strength are expected to be used for long-term bonding applications.
  • the coating material of the present invention can have a strong adhesive strength comparable to that of polyvinyl alcohol (PVA) conventionally used as an adhesive.
  • the coating material of the present invention can be used after being dissolved in a safe solvent with little environmental load.
  • a safe solvent with little environmental load.
  • it can be dissolved in a solvent selected from the group consisting of methanol, ethanol, and acetone.
  • Unsubstituted dextran that has not been esterified does not dissolve in these solvents, but can be solubilized in these solvents by using dextran ester derivatives as in the present invention.
  • chloroform can be used as a solvent, for example, it is suitable when adhere
  • the glass transition temperature (Tg) of a dextran ester derivative varies depending on the alkyl chain length and substitution degree (DS) of the ester moiety. However, when the glass transition temperature is higher than room temperature, a high machine is used for a film or an adhesive. This is preferable because a high strength can be obtained.
  • the present invention is also intended for use in the form of an adhesive containing a coating material containing the dextran ester derivative or a film made of the coating material.
  • a solvent suitable for the application is selected from the solvents listed above to form a solution, and the solution is a material to be bonded as it is. It can be used by coating on the surface.
  • the adhesive comprising the coating material should be used as a non-toxic solvent volatile adhesive. Can do.
  • the adhesive strength of the adhesive can be controlled by the range of the degree of substitution (DS) in the dextran ester derivative and the alkyl chain length of the ester site (the type of R acyl group).
  • the adhesive using the coating material of the present invention can be suitably used for bonding materials such as wood, glass and metal. It has excellent performance that it can maintain the adhesion ability for more than one week even in the presence of water.
  • the film made of the coating material of the present invention can be formed using a technique known in the art.
  • a film having a desired thickness can be obtained by applying a solution obtained by dissolving the ester derivative in the above-described solvent by a solvent cast method and removing the solvent.
  • the film can be formed using a method such as spin coating or spraying. Such a film can be applied to the material surface by a hot melt method to bond the materials together.
  • physical properties such as elongation at break and maximum stress can be changed by changing the alkyl chain length and substitution degree (DS) of the ester moiety in the dextran ester derivative.
  • DS alkyl chain length and substitution degree
  • the alkyl chain length at the ester site is increased, the chain becomes soft and the elongation at break increases, and when the chain length is shortened, the rigidity becomes brittle instead of increasing the rigidity.
  • reducing the degree of substitution increases the rigidity, and the flexibility can be controlled. Further, by reducing the substitution degree, it is possible to obtain a film with higher transparency than when the substitution degree is 3.
  • a dextran ester derivative having a glass transition point higher than room temperature can be obtained by changing the alkyl chain length and substitution degree (DS) of the ester moiety in the dextran ester derivative.
  • Derivatives are preferred in that high mechanical strength can be obtained in film and adhesive applications.
  • the dextran ester derivative according to the present invention can be synthesized by using dextran, preferably unsubstituted dextran as a raw material, and esterifying the hydroxyl group of the dextran.
  • esterification method for example, a homogeneous reaction in which dextran is dissolved in an organic solvent or a heterogeneous reaction in which dextran is allowed to proceed from a solid state can be used.
  • the production method of the present invention using a homogeneous reaction is: a) preparing a solution in which dextran is dissolved in an organic solvent; b) adding a base and a carboxylic acid anhydride or a carboxylic acid halide to the solution, and performing an esterification reaction between the dextran and the carboxylic acid anhydride or carboxylic acid halide, c) A dextran ester derivative having a desired degree of substitution is generated by changing the addition amount of carboxylic acid anhydride or carboxylic acid halide and the reaction time. It is a method including each process.
  • the degree of substitution in the dextran ester derivative obtained can be controlled by changing the equivalent ratio of the carboxylic acid anhydride or carboxylic acid halide added in step b).
  • the degree of substitution can be controlled by changing the reaction time. Thereby, a desired dextran ester derivative having a substitution degree of less than 3.0 can be obtained.
  • the base added in step b) is preferably pyridine.
  • a lithium halide such as lithium chloride can be used.
  • any organic solvent can be used as long as it can dissolve dextran.
  • dimethylacetamide can be used.
  • carboxylic acid chloride can be used in place of the carboxylic acid anhydride.
  • it is desirable that the carboxylic acid chloride has 3 or more carbon atoms. When the number of carbon atoms is 2 or less, the reactivity becomes extremely high, which may cause a reaction with a substance other than dextran, and the esterification may not proceed well.
  • the heterogeneous reaction is to convert a hydroxyl group present in the glucose unit of dextran into an ester group by reacting with a carboxylic acid having a desired alkyl chain length in the presence of a strong acid and an acid anhydride.
  • the production method of the present invention using a heterogeneous reaction is as follows. d) An esterification reaction between dextran and the desired carboxylic acid in the presence of a strong acid, e) A method comprising each step of producing a dextran ester derivative.
  • the dextran used in step d) can be lyophilized.
  • the method further includes a step f) of obtaining a dextran ester derivative having a desired degree of substitution by hydrolyzing a part of the ester group in the dextran ester derivative produced in step e). Can do.
  • a desired dextran ester derivative having a degree of substitution of less than 3 can be obtained by once generating a dextran ester derivative having a degree of substitution of 3 and then performing hydrolysis.
  • the strong acid added in step d) is preferably trifluoroacetic anhydride.
  • the reaction solution can be neutralized with sodium hydrogen carbonate or the like to recover the target dextran ester derivative.
  • reaction since the molecular weight of a dextran ester derivative falls when reaction time becomes long, it is preferable that reaction is as short as possible. For example, a reaction time of 30 minutes to 1 hour is preferable.
  • the degree of substitution can be easily controlled by the reaction time as described above, but on the other hand, since a base such as pyridine is used, The point that coloring is seen in a certain dextran ester derivative is mentioned.
  • a base such as pyridine
  • the molecular weight of the product dextran ester derivative is reduced, and the ester is completely esterified.
  • a dextran ester derivative as a target product can be obtained with high transparency. Therefore, depending on the application of the coating material of the present invention, for example, a homogeneous reaction is used in the case of adhesives, and a heterogeneous reaction is used in the case of films that require transparency. These manufacturing methods can be used properly.
  • the coating material containing the dextran ester derivative obtained by the production method of the present invention can have desired properties such as adhesive strength, flexibility, and transparency. It can be suitably applied to other uses.
  • the dextran used as a raw material is as follows. Low molecular weight dextran Wako Pure Chemical Industries, Ltd. Molecular weight (Mw) 15 ⁇ 10 4 High molecular weight dextran Sigma-Aldrich, molecular weight (Mw) 150-280 ⁇ 10 4
  • substitution degree (DS) of the hydroxyl group in the glucose unit was measured using 1 H-NMR spectrum.
  • Heavy chloroform (CDCl 3 ), heavy TFA, heavy acetone, heavy methanol and tetramethylsilane (TMS) were used as internal standard substances as solvents.
  • About 20 mg of each dextran ester derivative was dissolved in 1 mL of a heavy solvent to prepare a sample for NMR.
  • 500 MHz JNM-A500 (JEOL) was used.
  • the degree of substitution (DS) of the compound was calculated from the total peak area of the ring protons of dextran and the peak area of the methyl group of the alkyl side chain.
  • the degree of polymerization was calculated from the number average molecular weight (Mn) determined by GPC measurement and the degree of substitution determined by 1 H-NMR.
  • DexAc is dextran acetate ester
  • DexPr is dextran propionate ester
  • DexBu is dextran butyrate ester
  • DexVa is dextran valerate ester
  • DexHe is , Dextran hexanoate ester
  • DexOc stands for dextran octanoate ester
  • DexDe stands for dextran decanoate ester
  • DexLa stands for dextran laurate ester.
  • TGA Thermogravimetry
  • DSC Differential scanning calorimetry
  • each dextran ester derivative is dissolved in 1 mL of each solvent and applied to a birch material that is a test body with a glass rod, and then crimped in a cross shape at 1 MPa as shown in FIG.
  • the adhesive strength was evaluated by measuring the rate.
  • commercially available wood bond (55% vinyl acetate, 45% water) and PVA (polyvinyl alcohol) were used. The results are shown in FIG.
  • This result shows that the dextran ester derivative of the present invention has excellent water resistance.
  • FIG. 7 shows the difference in adhesive ability for each adherend when various solvents are used. Methanol, ethanol, acetone, and chloroform were used as the solvent. As a result, it was found that the dextran ester derivative of the present invention exhibits high adhesion performance to wood, paper, glass, PVA film, collagen film, squid soft shell, and the like. This is presumably due to the presence or absence of oxygen atoms in the adherend. Moreover, when chloroform was used as a solvent, it turned out that the adhesion performance excellent also with respect to the metal (aluminum board) by the dextran ester derivative of this invention is shown.
  • a dextran ester film was produced by the solvent casting method for each dextran ester derivative by the following method. 0.5 g of each dextran ester derivative was dissolved in 7.5 mL of a solvent (chloroform or acetone), and left in a Teflon petri dish for 3 days to completely evaporate the solvent, thereby obtaining a film having a thickness of about 70 ⁇ m (Table) 5 has a substitution degree of 3, and Table 6 has a substitution degree of less than 3.
  • a dextran ester derivative film having a degree of substitution of 3 cast films having a thickness of about 70 ⁇ m of DexOc and DexDe were too soft to be taken out of the Teflon petri dish because they had a glass transition point lower than room temperature. Conceivable. DexPr with a degree of substitution of 3 has a hard and brittle nature and sometimes cracked during removal from the petri dish. In the dextran ester derivative film having a substitution degree of less than 3, transparent self-supporting films were obtained with DexBu and DexVa, but with DexPr, the film was brittle as in the case of the substitution degree 3.
  • Example 8 Cast Film Tensile Test
  • the cast film produced in Example 6 was cut into a strip shape having a width of 4 mm and a length of 3 cm.
  • a small tabletop tester EZ test, manufactured by Shimadzu Corporation
  • the crosshead speed was 10 mm / min at room temperature.
  • the measured value of the tensile test of the film which consists of each dextran ester derivative (substitution degree 3) is shown in FIG.
  • substitution degree 3 the same result about the film which consists of a dextran ester derivative with a substitution degree of less than 3 is shown in FIG.
  • the breaking elongation and the maximum stress were changed by changing the alkyl chain length at the ester site of the dextran ester derivative. It was found that the longer the side chain, the softer the elongation at break, and the shorter the side chain, the more rigid but instead brittle. It was also found that the rigidity can be increased and the flexibility can be controlled by reducing the degree of substitution.
  • Dynamic viscoelasticity measurement of cast film About the cast film produced in Example 6, the dynamic viscoelasticity measurement (DMA) was performed on condition of the following. The results are shown in FIG. ⁇ Measurement condition ⁇ Film dimensions: width: 5mm, length: 20mm, thickness: 0.3mm (cast film) Device: Dynamic viscoelastic device (DVA 200S, manufactured by IT Measurement Control Co., Ltd.) Mode: Tensile mode Measurement frequency: 10Hz Strain: 0.05% Atmosphere: Temperature increase under nitrogen atmosphere: Temperature increase from -50 °C to 250 °C at 10 °C / min

Abstract

【課題】 本発明は、環境にやさしい材料である高分子多糖類を用い、優れた溶解性や接着能力を有する被覆材料を提供することを課題とする 【解決手段】 式(1)で表されるデキストランエステル誘導体を含む被覆材料であって (1)(式中、各Rは、水素原子、又はそれぞれ同一でも異なっていてもよい炭素数1~20のアルキル鎖を有するアシル基であり、nは、100~20,000である。)、前記デキストランエステル誘導体における前記アシル基による置換度(DS)が、1.0~3.0の範囲である、該被覆材料。

Description

デキストランエステル誘導体を含む被覆材料
 本発明は、デキストランエステル誘導体を含む被覆材料、及び当該被覆材料を含む接着剤又はフィルムに関する。また、当該デキストランエステル誘導体の製造方法にも関する。
 一般に、木材等の接着剤としては、酢酸ビニル等のポリマーが用いられているが、環境や人体への影響の面で好ましくなく、より環境にやさしい材料の開発が望まれている。また、従来の木材接着剤の多くは、水に弱く、数時間程度で剥離してしまうという問題もあった。
 一方、天然高分子の一つである多糖類は、水酸基をエステル化することで熱可塑性や有機溶媒への溶解性が向上し、成型加工が可能となることが知られている。そのような多糖類の一種であるデキストランは、グルコースがα-(1→6)結合で連なり、部分的にα-(1→4)、α-(1→3)、α-(1→2)結合で分岐した構造を持ち、乳酸菌の1種であるLeuconostoc mesenteroidesによって合成される(例えば、非特許文献1)。デキストランは、これまで血漿増量剤などの医薬品や化粧品などの添加剤として利用されているが、プラスチックや接着剤などとしての利用はなされていないのが現状である。
Uzochukwuaら、Food Chemistry、 76、287-291、2002年
 そこで、本発明は、環境にやさしい材料である高分子多糖類を用い、優れた溶解性や接着能力を有する被覆材料を提供することを課題とするものである。
 本発明者らは、上記課題を解決するべく鋭意検討を行った結果、デキストランの水酸基を種々のカルボン酸によってエステル化した構造を有するデキストランエステル誘導体が、エタノール等の安全な溶媒に溶解し、かつ水の存在環境でも1週間以上の接着能を維持し得ることを見出した。また、当該エステルのアルキル鎖長や置換度により、接着強度や柔軟性を制御可能であることを見出した。これらの新たな知見に基づき、本発明を完成するに至ったものである。
 すなわち、本発明は、一態様において、
<1>式(1)で表されるデキストランエステル誘導体を含む被覆材料であって
Figure JPOXMLDOC01-appb-C000004
(式中、各Rは、水素原子、又はそれぞれ同一でも異なっていてもよい炭素数1~20のアルキル鎖を有するアシル基であり、nは、100~20,000である。)、
前記デキストランエステル誘導体における前記アシル基による置換度(DS)が、1.0~3.0の範囲である、該被覆材料;
<2>前記アシル基が、
    -C(=O)(CHCH(式中、mは0~10の整数である。)
で表される、上記<1>に記載の被覆材料;
<3>前記置換度(DS)が、1.0~2.7の範囲である、上記<1>又は<2>に記載の被覆材料;
<4>前記デキストランエステル誘導体の多分散度(Mw/Mn)が、2.0~12.0の範囲である、上記<1>~<3>のいずれかに記載の被覆材料;
<5>前記デキストランエステル誘導体の重量平均分子量(Mw)が、10×10より大きい、上記<1>~<4>のいずれかに記載の被覆材料;
<6>メタノール、エタノール、クロロホルム、及びアセトンよりなる群から選択される溶媒に可溶である、上記<1>~<5>のいずれかに記載の被覆材料;
<7>上記<1>~<6>のいずれかに記載の被覆材料を含んでなる接着剤;
<8>上記<1>~<6>のいずれかに記載の被覆材料よりなるフィルム
を提供するものである。
 また、別の態様において、本発明は、
<9>
 式(1)表されるデキストランエステル誘導体の製造方法であって、
Figure JPOXMLDOC01-appb-C000005
(式中、各Rは、水素原子、又はそれぞれ同一でも異なっていてもよい炭素数1~20のアルキル鎖を有するアシル基であり、ただし、アシル基による置換度(DS)が、1.0~3.0の範囲であり、nは、100~20,000である。)
 デキストランを有機溶媒中に溶解させた溶液を調製し、
 当該溶液に塩基とカルボン酸無水物又はカルボン酸ハロゲン化物を添加して、前記デキストランとカルボン酸無水物又はカルボン酸ハロゲン化物とのエステル化反応を行い、
 カルボン酸無水物又はカルボン酸ハロゲン化物の添加量及び反応時間を変化することにより、所望の置換度を有するデキストランエステル誘導体を生成させること
を含む、該製造方法;
<10>前記置換度が、3.0未満である、上記<9>に記載の製造方法。
<11>前記塩基がピリジンである、上記<9>又は<10>に記載の製造方法;
<12>式(1)表されるデキストランエステル誘導体の製造方法であって、
Figure JPOXMLDOC01-appb-C000006
(式中、各Rは、水素原子、又はそれぞれ同一でも異なっていてもよい炭素数1~20のアルキル鎖を有するアシル基であり、ただし、アシル基による置換度(DS)が、1.0~3.0の範囲であり、nは、100~20,000である。)
 強酸の存在下で、デキストランをとカルボン酸のエステル化反応を行い、
 デキストランエステル誘導体を生成させること
 を含む、該製造方法;
<13>生成したデキストランエステル誘導体におけるエステル基の一部を加水分解することによって、所望の置換度を有するデキストランエステル誘導体を得ることをさらに含む、上記<12>に記載の製造方法;
<14>前記置換度が、3.0未満である、上記<13>に記載の製造方法;
<15>前記強酸が、トリフルオロ酢酸無水物である、上記<12>~<14>のいずれかに記載の製造方法
を提供するものである。
 本発明によれば、天然のデキストランを原料とし、デキストランの水酸基をエステル化した構造を有するデキストランエステル誘導体を用いることにより、エタノール等の安全な溶媒に溶解でき、かつ水の存在環境でも1週間以上の接着能を維持し得る被覆材料を提供することができる。当該被覆材料は、木材のみならずガラスや金属、ポリマー素材等に対する接着剤として好適に用いることができ、或いはキャストフィルム等の形態として用いることもできる。
 また、本発明の製造方法によれば、上記デキストランエステル誘導体における当該エステル部位のアルキル鎖長や置換度を制御することができ、これにより、被覆材料の接着強度や柔軟性をその用途に応じて制御可能であるという効果を奏する。
図1は、本発明の各種デキストランエステル誘導体のTGAサーモグラムを示すグラフである。 図2は、DSC測定の結果を示したものである。 図3は、溶解性試験の結果を示したものである。 図4は、接着試験の試験方法を図示したものである。 図5は、各サンプルの接着強度の最大値と最小値を示したものである。 図6は、PVAとボンドとDexVaの浸漬時間による接着能の有無(上図)と、24時間浸漬後と浸漬前の接着強度の差異(下図)を示したものである。 図7は、各種溶媒条件におけるデキストランエステル接着剤の被着体ごとの接着性能の有無を示したものである。 図8は、置換度3のデキストランエステルキャストフィルムの最大応力、破断伸び、弾性率を示したものである。 図9は、置換度3未満のデキストランエステルキャストフィルムの最大応力、破断伸び、弾性率を示したものである。 図10は、DMA測定における損失正接のグラフとそこから算出されるガラス転移温度を示している 図11は、置換度の異なるデキストランエステルキャストフィルムの光透過率を示したグラフである。
 以下、本発明の実施形態について説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。
1.デキストランエステル誘導体を含む被覆材料
 本発明に係る被覆材料は、以下の式(1)で表されるデキストランエステル誘導体を含み、かつ式中のRにおけるアシル基による置換度(DS)が1.0~3.0の範囲であることを特徴とする。
Figure JPOXMLDOC01-appb-C000007
 式(1)で表されるデキストランエステル誘導体は、グルコース単位が重合した構造を有するデキストランにおいて、当該グルコース単位における3つの水酸基(OH基)がアシル基によりエステル化されたOR基とされた構造を有するものである。ここで、「置換度」とは、この1グルコース単位当たりのエステルに置換された水酸基の平均数を意味する。すなわち、置換度が3であれば、式(1)における3つのRがいずれもアシル基であり、各グルコース単位における3つのOH基がすべてエステル化されている状態を示す。また、置換度が1であれば、式(1)における3つのOR基のうち平均して1つがエステル化され、残りの2つのORは水酸基のまま(すなわち、Rが水素原子)であることを示す。
 式中、各Rは、水素原子、又はそれぞれ同一でも異なっていてもよい炭素数1~20のアルキル鎖を有するアシル基であり、好ましくは、炭素数1~12のアルキル鎖を有するアシル基である。
 好ましくは、Rにおけるアシル基は、
    -C(=O)(CHCH
で表される、直鎖アルキルを有するアシル基である。式中、mは、好ましくは、0~10の整数である。具体的なアシル基の例としては、これらに限定されるものではないが、アセチル基、プロピオニル基、ブチリル基、バレリル基、ヘキサノイル基、オクタノイル基、デカノイル基、ラウロイル基等が挙げられる。
 グルコース単位におけるOH基をエステル化することによって、耐熱性を向上させることができ、また、後述のように、上記アシル基のアルキル鎖長を変更することにより、被覆材料の接着強度や引っ張り強度等の柔軟性を制御することができる。
 Rにおけるアシル基による置換度(DS)は、上述のように、1.0~3.0の範囲であり、好ましくは、1.0~2.7の範囲である。後述のように、置換度を変更することによって、被覆材料の接着強度等を制御することができる。
 なお、デキストランにおける各グルコース単位内に存在する3つのOH基(末端のグルコース単位では4つのOH基)を置換して得られるエステル基は、それぞれ同一でも異なっていてもよい。すなわち、各グルコース単位内のエステル基において、各Rは同一または異なるアシル基であることができる。例えば、Rがランダムに異なるエステル基とすることができ、或いは、エステル化の手法を制御することによって異なる複数のエステル基を2:1等の比率で得ることもできる。
 式(1)におけるnは、100~20,000である。当該nの値により、デキストランエステル誘導体の分子量等が変化することになるが、デキストランエステル誘導体の重量平均分子量(Mw)は、好ましくは、10×10より大きい。
 また、重量平均分子量(Mw)と数平均分子量(Mn)との比Mw/Mnで表される多分散度(PDI;又は分子量分布ともいう)が、好ましくは2.0~12.0の範囲である。
 重量平均分子量(Mw)及び数平均分子量(Mn)の測定には、当該技術分野における公知の手法を用いることができ、例えば、高圧液体クロマトグラフィー(HPLC)、サイズ排除クロマトグラフィー(SEC)、またはゲル透過クロマトグラフィー(GPC)などの手段を用いることができる。
 本発明の被覆材料の接着強度は、デキストランエステル誘導体における置換度(DS)の範囲やエステル部位のアルキル鎖長(Rのアシル基の種類)によって制御することができる。接着強度が低いものは接着後に剥離の必要がある短時間の接着用途に、接着強度が高いものは長期的な接着用途に用いられることが期待される。本発明の被覆材料は、接着剤として従来用いられているポリビニルアルコール(PVA)と同程度の強い接着強度を有することができる。
 また、本発明の被覆材料は、環境負荷が少なく安全な溶媒に溶解させて用いることができる。例えば、メタノール、エタノール、及びアセトンよりなる群から選択される溶媒に溶解させることができる。エステル化していない未置換のデキストランではこれらの溶媒に溶解しないが、本発明のようにデキストランエステル誘導体とすることによってこれらの溶媒に可溶化することができる。また、溶媒としてクロロホルムを用いることができ、例えば、本発明の被覆材料を用いて金属材料を接着する場合に好適である。
 デキストランエステル誘導体のガラス転移温度(Tg)は、エステル部位のアルキル鎖長や置換度(DS)に依存して異なるが、ガラス転移温度が室温よりも高い場合には、フィルムや接着剤で高い機械的強度が得られるため好ましい。
 本発明は、また、上記デキストランエステル誘導体を含む被覆材料を含んでなる接着剤、或いは、当該被覆材料よりなるフィルムの形態での使用もその対象とする。
 本発明の被覆材料を用いる接着剤(塗料)として使用する場合、例えば、上記に挙げたような溶媒の中から用途に適した溶媒を選定して溶液とし、溶液をそのまま接着の対象である材料の表面に塗布して用いることができる。上述のように、本発明の被覆材料は、エタノールのような安全な溶媒に可溶化することできるため、当該被覆材料を含んでなる接着剤は、有毒性のない溶剤揮発型接着剤として用いることができる。上述のように、接着剤の接着強度は、デキストランエステル誘導体における置換度(DS)の範囲やエステル部位のアルキル鎖長(Rのアシル基の種類)によって制御することができる。
 本発明の被覆材料を用いる接着剤は、木材やガラス、金属等の材料を接着するために好適に用いることができる。水の存在環境でも1週間以上の接着能を維持できるという優れた性能を有する。
 また、本発明の被覆材料よりなるフィルムは、当該技術分野において公知の手法を用いて成形することができる。例えば、ソルベントキャスト法により、当該エステル誘導体を上述の溶媒に溶解させた溶液を塗布し、溶媒を除去することにより、所望の厚さのフィルムを得ることができる。また、スピンコートや噴霧等の方法を用いてフィルムを成形することもできる。かかるフィルムをホットメルト法により材料表面に適用して、材料同士を接着することもできる。
 かかるフィルムの態様では、デキストランエステル誘導体におけるエステル部位のアルキル鎖長や置換度(DS)を変化させることで、破断伸び、最大応力等の物性を変化させることができる。具体的には、エステル部位のアルキル鎖長が長くなると柔らかくなり破断伸びが上昇し、鎖長が短くなると剛直性が増すかわりに脆くなる。また、置換度を低下させることでも剛直性が増加し、柔軟性をコントロールすることが出来る。さらに、置換度を低下させることで、置換度が3の場合よりも、透明性の高いフィルムを得ることができる。
 上述のように、デキストランエステル誘導体におけるエステル部位のアルキル鎖長や置換度(DS)を変化させることで、ガラス転移点が室温より高いデキストランエステル誘導体を得ることができるが、かかる特性を有するデキストランエステル誘導体は、フィルムや接着剤の用途において、高い機械的強度が得られる点で好ましい。
.デキストランエステル誘導体の製造方法
 本発明に係るデキストランエステル誘導体は、デキストラン、好ましくは無置換のデキストランを原料とし、当該デキストランの水酸基をエステル化することで合成することができる。当該エステル化の手法としては、例えば、デキストランを有機溶媒中に溶解させた状態で反応を行う均一系反応、或いは、デキストランを固体状態から反応を進行させる不均一系反応を用いることができる。
 均一系反応は、塩基の存在下で所望のアルキル鎖長を有する酸無水物と反応させることにより、デキストランのグルコース単位に存在する水酸基をエステル基に変換するものである。具体的には、均一系反応を用いる本発明の製造方法は、
a)デキストランを有機溶媒中に溶解させた溶液を調製し、
b)当該溶液に塩基とカルボン酸無水物又はカルボン酸ハロゲン化物を添加して、前記デキストランとカルボン酸無水物又はカルボン酸ハロゲン化物とのエステル化反応を行い、
c)カルボン酸無水物又はカルボン酸ハロゲン化物の添加量及び反応時間を変化することにより、所望の置換度を有するデキストランエステル誘導体を生成させる、
各工程を含む方法である。
 かかる均一系の反応を用いる場合には、工程b)で添加するカルボン酸無水物又はカルボン酸ハロゲン化物の当量比を変化させることで、得られるデキストランエステル誘導体における置換度を制御することができる。また、反応時間を変化させることで、当該置換度を制御することもできる。これにより、置換度が3.0未満の所望のデキストランエステル誘導体を得ることができる。
 工程b)で添加される塩基は、好ましくはピリジンである。また、工程a)においてデキストランを有機溶媒中に溶解させる場合、塩化リチウム等のハロゲン化リチウムを用いることができる。反応に用いる溶媒としては、デキストランが溶解可能なものであれば、任意の有機溶媒を用いることができるが、例えば、ジメチルアセトアミドを用いることができる。
 なお、工程b)において、カルボン酸無水物に代えて、カルボン酸クロリドを用いることも出来るが、その場合は、炭素数が3以上のカルボン酸クロリドであることが望ましい。炭素数2以下であると反応性が極めて高くなることによってデキストラン以外の物質とも反応してしまい、うまくエステル化が進行しない場合がある。
 一方、不均一系反応は、強酸及び酸無水物の存在下で、所望のアルキル鎖長を有するカルボン酸と反応させることにより、デキストランのグルコース単位に存在する水酸基をエステル基に変換するものである。具体的には、不均一系反応を用いる本発明の製造方法は、
d)強酸の存在下で、デキストランと所望のカルボン酸とのエステル化反応を行い、
e)デキストランエステル誘導体を生成させる
各工程を含む方法である。好ましくは、工程d)で用いられるデキストランは、凍結乾燥したものを用いることができる。
 当該不均一系反応の場合には、工程e)で生成したデキストランエステル誘導体におけるエステル基の一部を加水分解することによって、所望の置換度を有するデキストランエステル誘導体を得る工程f)をさらに含むことができる。これにより、一旦置換度3のデキストランエステル誘導体を生成させ、その後、加水分解を行うことにより、置換度が3未満の所望のデキストランエステル誘導体を得ることができる。
 工程d)において添加される強酸は、好ましくはトリフルオロ酢酸無水物である。工程e)の後、炭酸水素ナトリウム等により反応溶液を中和して目的物であるデキストランエステル誘導体を回収することができる。なお、反応時間が長くなると、デキストランエステル誘導体の分子量が低下するため、できる限り反応は短いことが好ましい。例えば、30分~1時間の反応時間が好ましい。
 これらデキストランエステル誘導体の製造方法の利害得失としては、均一系では、上述のように反応時間等により置換度を容易に制御可能であるが、一方で、ピリジン等の塩基を用いるため、生成物であるデキストランエステル誘導体に着色が見られる点が挙げられる。これに対し、不均一系では、トリフルオロ酢酸無水物等の強酸を用いるため長い反応時間を用いる場合には、生成物であるデキストランエステル誘導体の分子量の低下が見られる点、また、完全にエステル化された置換度が3の誘導体が得られ易いという点がある一方、目的物のデキストランエステル誘導体は透明度が高いものが得られるという利点もある。したがって、例えば、接着剤の用途の場合には均一系の反応を用い、透明性等が求められるフィルムの用途の場合には不均一系の反応を用いる等、本発明の被覆材料の用途に応じてこれらの製造方法を使い分けることができる。
 本発明の製造方法により得られたデキストランエステル誘導体を含む被覆材料は、上述のように、その接着強度や柔軟性、透明性等の物性を所望のものとすることができるため、接着剤やフィルム以外の用途にも好適に応用することができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
1.デキストランエステル誘導体の合成
 以下に示す合成スキームにより、不均一系反応と均一系反応のそれぞれを用いて、デキストランエステル誘導体の合成を行った。
Figure JPOXMLDOC01-appb-C000008
a)試薬
 本実施例では、以下の試薬を用いた。
Figure JPOXMLDOC01-appb-T000009
 原料となるデキストランは、以下のとおりである。
 低分子量デキストラン  和光純薬(株) 分子量(Mw)15×10
 高分子量デキストラン シグマアルドリッチ社、分子量(Mw)150~280×10
b)各種測定
<置換度の算出>
 H―NMRスペクトルを用いてグルコース単位における水酸基の置換度(DS)を測定した。
 溶媒には重クロロホルム(CDCl3)、重TFA、重アセトン、重メタノール、内部標準物質にテトラメチルシラン(TMS)を用いた。各デキストランエステル誘導体約20 mgを重溶媒1mLに溶解させ、NMR用サンプルを調整した。測定には、500MHz JNM-A500(日本電子)を用いた。
 化合物の置換度(DS)は、デキストランのリングプロトンのピーク面積の合計と、アルキル側鎖のメチル基のピーク面積から算出した。リングプロトンには7つ、アルキル側鎖のメチル基には3つの水素が存在するため、置換度の算出式は以下で表される。
            DS= (Iacyl/3)/(IringH/7)
(Iacyl=アルキル側鎖のメチル基のピーク面積; IringH=リングプロトンのピーク面積)
<分子量の測定>
 分子量は、ゲル浸透クロマトグラフィー(GPC)により測定した。
カラム:K-802MとK-806M(昭和電工(株))
検出器:RID-16A(島津製作所)
溶媒:HPLC用クロロホルム、HPLC用DMAcの%LiCl溶液
流速:0.800 ml/min
カラム温度:40℃
オーブン温度:40℃
注入量:50 μL
サンプル濃度:1.7 mg/mL
 スタンダード:
クロロホルムはポリスチレンスタンダード(昭和電工(株))(Mp=1.32×106, 8.15×105, 2.75×105, 1.33×105, 5.51×104, 1.96×104, 7.21×103, 3.01×103, 1.20×103 )
DMAc/LiClではポリエチレンオキサイドスタンダード(Aldrich製)(Mp=9.41×105, 4.96×105, 2.20×105, 8.78×104, 4.01×104, 1.79×104, 6.55×103, 2.01×103,6.01×102, 2.32×102
プルランスタンダード(昭和電工(株))(Mp=6.42×106, 3.37×105, 1.94×105, 1.07×105, 4.71×104, 2.11×104, 9.6×103, 6.1×103
を用いて重量平均分子量(Mw)と数平均分子量(Mn)を測定した。
 不均一系で合成した3置換体はクロロホルム、均一系で合成したデキストランエステルはDMAc/LiClで測定を行った。
<重合度の決定>
 GPC測定により求めた数平均分子量(Mn)と、H-NMRにより求めた置換度から、重合度(DP)を算出した。
c)不均一系合成
 不均一系合成により、以下に示すとおり、エステル側鎖の異なる種々のデキストランエステル誘導体を合成した。
 前処理工程として、蒸留水30 mL~70 mLにデキストラン1~2gを溶解させ、20時間かけて凍結乾燥させた。
 次いで、凍結乾燥させたデキストラン2.0 gを20 時間トリフルオロ酢酸無水物(TFAA)40 mL、カルボン酸40 mL(当量数20~56当量)とともにナスフラスコに入れ、40℃~60℃のオイルバス中で2~4時間(完全に溶解後30分~1時間)撹拌させてから反応を止めた。反応液をエタノール2Lと蒸留水2Lの混合液中に滴下し、炭酸水素ナトリウムを用いて中和させた。得られたデキストランエステル誘導体の沈殿を吸引濾過で回収した。
 当該工程に従い、異なる炭素数のカルボン酸を用いて、以下の表に示すエステル側鎖の異なる種々のデキストランエステル誘導体を合成した。表中には、置換度(DS)、GPCによって算出した重量平均分子量(Mw)及び数平均分子量(Mn)、多分散度(Mw/Mn)並びに重合度(DP)を併せて示している。
Figure JPOXMLDOC01-appb-T000010
 表中、「DexAc」はデキストランのアセテートエステル;「DexPr」は、デキストランのプロピオネートエステル;「DexBu」は、デキストランのブチレートエステル;「DexVa」は、デキストランのバレレートエステル;「DexHe」は、デキストランのヘキサノエートエステル;「DexOc」はデキストランのオクタノエートエステル;「DexDe」はデキストランのデカノエートエステル;及び「DexLa」はデキストランのラウレートエステルを表す。
d)均一系合成
 均一系合成を用いて、以下に示すとおり、エステル側鎖の異なる種々のデキストランエステル誘導体を合成した。
 デキストラン1.0 g、ジメチルアセトアミド(DMAc)20mLをナスフラスコに入れ80℃~100℃のオイルバス中で5分間加熱攪拌を行った後、塩化リチウム1.7gを加え、完全に溶解させた(デキストランの分子量と前処理によって溶解に要する時間は、3~15時間の差がある。)。完全に溶解後、オイルバスの温度を60~80 ℃に下げ、ピリジン2.5 mLとカルボン酸無水物(酢酸無水物以外についてはカルボン酸クロリドを用いることも出来る。)を2~10当量加え、24 時間加熱攪拌した後、蒸留水2 L中に滴下・沈殿させ、吸引濾過で回収した。ここで当量数や時間を変化させることで置換度を制御することが出来る。
 当該工程に従い、異なる炭素数のカルボン酸無水物を用いて、以下の表に示すエステル側鎖の異なる種々のデキストランエステル誘導体を合成した。表中には、置換度(DS)、GPCによって算出した重量平均分子量(Mw)及び数平均分子量(Mn)、多分散度(Mw/Mn)並びに重合度(DP)を併せて示している。
Figure JPOXMLDOC01-appb-T000011
2.デキストランエステル誘導体の熱的性質の評価
 実施例1で得られたデキストランエステル誘導体の熱的性質を熱重量測定(TGA)及び(DSC)によって評価した。
<熱重量測定(TGA)>
 約7mgの試料重量でデキストラン及びデキストランエステル誘導体をそれぞれアルミニウム製のパンの中に入れ、対照用に空のアルミパンを用い、測定温度範囲は30℃から450℃、昇温速度を10℃/minとし、窒素雰囲気下の条件で熱重量・熱量同時測定装置(STA66000、Perkin Elmer社製)を用いて測定を行った。図1に各デキストランエステル誘導体のTGAサーモグラムを示す。また、測定試料の重量が90重量%又は50重量%となるときの温度を以下の表に示す。その結果、各デキストランエステル誘導体はデキストランよりも高い熱分解温度を示したため、エステル化することによって耐熱性が向上することが分かった。
Figure JPOXMLDOC01-appb-T000012
 <示差走査熱量測定(DSC)>
 以下に示す方法で実施例の各デキストランエステル誘導体の示差走査熱量測定(DSC)を行った。約3mgの実施例の各デキストランエステル誘導体をそれぞれアルミニウム製のパン(アルミパン)の中に入れ、対照用に空のアルミパンを用い、示差走査熱量測定装置(DSC 8500、Perkin Elmer社製)で測定した。測定は、セカンドランまで行い、-70℃で1分等温し、100℃/minで300℃または250℃まで昇温させ、300℃または250℃で等温させた後、-70℃まで100 ℃/minで冷却し、再び100 ℃/minで300 ℃または250 ℃まで昇温させた。測定は窒素雰囲気下で行い、対照物質には空のアルミパンを用いた。なお、DexAc、DexPr、 DexBuの3種類について300℃まで昇温させ、DexVa、 DexHe、DexOc、DexDe、 DexLa の5種類について250℃まで昇温させた。結果を図2に示す。その結果、ファーストランにおいてもセカンドランにおいても、ガラス転移点、融点を観察することはできなかった。図2中の吸熱ピークは洗浄過程で除去しきれなかったカルボン酸由来のものと考えられる。
3.デキストランエステル誘導体の溶解性試験
 以下に示す方法で、実施例1で合成した各デキストランエステル誘導体の溶媒への溶解性の試験を行った。実施例の各デキストランエステル誘導体を、水、メタノール、エタノール、アセトン、クロロホルムいずれかの溶媒にそれぞれ添加した。結果を図3に示す。
 その結果、置換度を上げるとクロロホルムやアセトンといった疎水性溶媒への溶解性が高まり、置換度を下げるとメタノールやエタノールといった親水性溶媒への溶解性が高まった。これは、極性が高く親水性のある水酸基がアセチル基に置換されると疎水性が高まるためであると考えられる。置換度の制御により溶解性をコントロールすることができることを示すものである。
4.接着性の評価
 実施例1で合成した各デキストランエステル誘導体の接着能を評価した。
 各デキストランエステル誘導体0.6gを1mLの各溶媒に溶解させガラス棒で試験体であるカバ材に塗布し、図4に示すように1MPaでクロス状に圧着して、その破壊強度と木部破断率を測定することで接着強度を評価した。比較例として、市販の木工用ボンド(酢酸ビニル55%、水45%)及びPVA(ポリビニルアルコール)を用いた。結果を図5に示す。
〔測定条件〕
装置:テンシロン UCT-5T  (orientec corporation 製)
室温:23℃
相対湿度:50%RH
被着体:カバ材(6.0cm×2.5cm×1.5cm)
クロスヘッドスピード:10mm/min
圧着時間:5日間
圧力:1MPa
接着面積:6.25cm2
塗布量(各試験体につき):デキストランエステル0.1g
    溶媒 0.1~0.2mL
測定装置:テンシロン
 その結果、置換度や側鎖の種類を変化させることによって、接着強度や各種溶媒に対する溶解性を変化させることが出来る。側鎖長は、DexAc、DexPr、DexBu、DexVaの短鎖デキストランエステル群とDexHe、DexOc、DexDe、DexLaの長鎖デキストランエステル群に分けるとき、短鎖群の方がより高い接着強度を示す。また、置換度を変化させることでも接着強度に変化が生じることも分かっており、高強度のデキストランエステル接着剤においてはPVAと同等の接着強度を示すことが分かった。さらに、エステル鎖の種類と置換度によって溶解性は変化する。置換度が高く、側鎖が長いほど、クロロホルムやアセトンなどの疎水性溶媒への溶解性が高まり、置換度が短く、側鎖が短いほど、メタノールやエタノールなどの親水性溶媒への溶解性が高まる。特に、水には溶解せずエタノールへは溶解するデキストランエステルの調整も可能であり、これは、有毒性のない溶剤揮発型接着剤として応用できると考えられる。
5.接着の耐水性の評価
 次いで、実施例4の接着試験と同様の手順で5日間圧着した後、圧力から解放し、試験体を水中に24時間沈めた後、48時間、室温23℃、相対湿度50%の環境下で乾燥させ、接着試験と同様の装置と条件で破壊した。その結果を図6に示す。図6の上図はボンド(酢酸ビニルエマルジョン)、PVA、及びDexVaの浸漬時間による各接着能の有無を示したものであり、図6の下図は24時間浸漬後と浸漬前の接着強度の差異を示したものである。
 その結果、DexPr-4-H(DS=2.1)、DexBu-3-H(DS=1.0)、DexBu-6-H(DS=2.5)、及びDexVa-4-H(DS=2.0)は、いずれも24時間水中に浸漬させていても乾燥状態の50~60%の強度(図中の保持率(%))を有しており、一方、市販のボンド(酢酸ビニルエマルジョン接着剤)の39%、市販のPVAは0%であった(24時間浸漬後、はく離したため測定できなかった)。この結果は、本発明のデキストランエステル誘導体が優れた耐水性を有することを示すものである。
6.被着体ごとの接着能の評価
 図7に、各種溶媒を用いた場合の各被着体ごとの接着能の差異を示す。溶媒として、メタノール、エタノール、アセトン、クロロホルムを用いた。その結果、本発明のデキストランエステル誘導体が、木材や紙、ガラス、PVAフィルム、コラーゲンフィルム、イカの軟甲などに対して高い接着性能を示すことが分かった。これは、被着体中の酸素原子の有無に起因していると推察される。また、溶媒としてクロロホルムを用いた場合には、本発明のデキストランエステル誘導体によって金属(アルミニウム板)に対しても優れた接着性能を示すことが分かった。
7.キャストフィルムの作製
 以下に示す方法で各デキストランエステル誘導体をソルベントキャスト法により、デキストランエステルフィルムを作製した。各デキストランエステル誘導体0.5gを溶媒(クロロホルム又はアセトン)7.5mLに溶解させ、テフロンシャーレ中で3日間静置することで溶媒を完全に揮発させ、厚さ約70μmのフィルムを得た(表5は置換度が3のもの、表6は置換度が3未満のものである)。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 置換度が3のデキストランエステル誘導体フィルムにおいて、DexOcやDexDeの厚さが70μm程度のキャストフィルムは柔らかすぎてテフロンシャーレから取り出すことが出来なかったが、これらはガラス転移点が室温よりも低いためと考えられる。置換度が3のDexPrは硬くて脆い性質を持ち、シャーレから取り出す過程で割れてしまうことがあった。置換度が3未満のデキストランエステル誘導体フィルムにおいては、DexBuとDexVaにおいては透明な自立フィルムが得られたものの、DexPrでは置換度3のときと同様に脆いフィルムとなった。
8.キャストフィルムの引張試験
 実施例6で作製したキャストフィルムを幅4mm、長さ3cmの短冊状に切り出した。測定には、小型卓上試験機(EZ test、株式会社島津製作所製)を用い、室温下、クロスヘッドスピード10 mm/minで行った。各デキストランエステル誘導体(置換度3)からなるフィルムの引張試験の測定値を図8に示す。また、置換度が3未満のデキストランエステル誘導体からなるフィルムについての同様の結果を図9に示す。
 デキストランエステル誘導体のエステル部位におけるアルキル鎖長を変化させることで、破断伸び、最大応力が変化した。側鎖が長くなると柔らかくなり破断伸びが上昇し、側鎖が短くなると剛直性が増すかわりに脆くなることが分かった。また、置換度を低下させることでも剛直性が増加し、柔軟性をコントロールすることが出来ることが分かった。
9.キャストフィルムの動的粘弾性測定(DMA)
 実施例6で作製したキャストフィルムについて、以下の条件で動的粘弾性測定(DMA)を行った。結果を図10に示す。
〔測定条件〕
フィルム寸法:幅:5mm、長さ:20mm、厚さ:0.3mm(キャストフィルム)
装置:動的粘弾性装置(DVA 200S、アイティー計測制御株式会社製)
モード:引張モード
測定周波数:10Hz
ひずみ:0.05%
雰囲気:窒素雰囲気下
昇温条件:-50℃から250℃まで10℃/minで昇温
 損失正接からガラス転移点を算出した結果、ガラス転移点は側鎖によって異なり、ガラス転移点が室温よりも高いものにおいて、フィルムや接着剤で高い機械的強度が見られることが分かった。
10.キャストフィルムの光透過度測定
 実施例6で作製したキャストフィルムの光透過度を、U-2910(株式会社日立ハイテクノロジーズ製)を用いて測定した。室温において波長範囲250nmから800nm、スキャンスピード400nm/minで測定した。置換度3のデキストランエステル誘導体からなるフィルム、及び、置換度が3未満のデキストランエステル誘導体からなるフィルムについての結果を図11にそれぞれ示す。その結果、置換度を下げることによって、置換度3のデキストランエステル誘導体よりも透明性の高いフィルムが得られることが分かった。

Claims (15)

  1.  式(1)で表されるデキストランエステル誘導体を含む被覆材料であって
    Figure JPOXMLDOC01-appb-C000001
    (式中、各Rは、水素原子、又はそれぞれ同一でも異なっていてもよい炭素数1~20のアルキル鎖を有するアシル基であり、nは、100~20,000である。)、
    前記デキストランエステル誘導体における前記アシル基による置換度(DS)が、1.0~3.0の範囲である、該被覆材料。
  2.  前記アシル基が、
        -C(=O)(CHCH(式中、mは0~10の整数である。)
    で表される、請求項1に記載の被覆材料。
  3.  前記置換度(DS)が、1.0~2.7の範囲である、請求項1又は2に記載の被覆材料。
  4.  前記デキストランエステル誘導体の多分散度(Mw/Mn)が、2.0~12.0の範囲である、請求項1~3のいずれかに記載の被覆材料。
  5.  前記デキストランエステル誘導体の重量平均分子量(Mw)が、10×10より大きい、請求項1~4のいずれかに記載の被覆材料。
  6.  メタノール、エタノール、クロロホルム及びアセトンよりなる群から選択される溶媒に可溶である、請求項1~5のいずれかに記載の被覆材料。
  7.  請求項1~6のいずれかに記載の被覆材料を含んでなる接着剤。
  8.  請求項1~6のいずれかに記載の被覆材料よりなるフィルム。
  9.  式(1)表されるデキストランエステル誘導体の製造方法であって、
    Figure JPOXMLDOC01-appb-C000002
    (式中、各Rは、水素原子、又はそれぞれ同一でも異なっていてもよい炭素数1~20のアルキル鎖を有するアシル基であり、ただし、アシル基による置換度(DS)が、1.0~3.0の範囲であり、nは、100~20,000である。)
     デキストランを有機溶媒中に溶解させた溶液を調製し、
     当該溶液に塩基とカルボン酸無水物又はカルボン酸ハロゲン化物を添加して、前記デキストランとカルボン酸無水物又はカルボン酸ハロゲン化物とのエステル化反応を行い、
     カルボン酸無水物又はカルボン酸ハロゲン化物の添加量及び反応時間を変化することにより、所望の置換度を有するデキストランエステル誘導体を生成させること
    を含む、該製造方法。
  10.  前記置換度が、3.0未満である、請求項9に記載の製造方法。
  11.  前記塩基がピリジンである、請求項9又は10に記載の製造方法。
  12.  式(1)表されるデキストランエステル誘導体の製造方法であって、
    Figure JPOXMLDOC01-appb-C000003
    (式中、各Rは、水素原子、又はそれぞれ同一でも異なっていてもよい炭素数1~20のアルキル鎖を有するアシル基であり、ただし、アシル基による置換度(DS)が、1.0~3.0の範囲であり、nは、100~20,000である。)
     強酸の存在下で、デキストランをとカルボン酸のエステル化反応を行い、デキストランエステル誘導体を生成させること
     を含む、該製造方法。
  13.  生成したデキストランエステル誘導体におけるエステル基の一部を加水分解することによって、所望の置換度を有するデキストランエステル誘導体を得ることをさらに含む、請求項12に記載の製造方法。
  14.  前記置換度が、3.0未満である、請求項13に記載の製造方法。
  15.  前記強酸が、トリフルオロ酢酸無水物である、請求項12~14のいずれかに記載の製造方法。
PCT/JP2018/003240 2017-02-13 2018-01-31 デキストランエステル誘導体を含む被覆材料 WO2018147144A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018567386A JPWO2018147144A1 (ja) 2017-02-13 2018-01-31 デキストランエステル誘導体を含む被覆材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017024419 2017-02-13
JP2017-024419 2017-02-13

Publications (1)

Publication Number Publication Date
WO2018147144A1 true WO2018147144A1 (ja) 2018-08-16

Family

ID=63108188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003240 WO2018147144A1 (ja) 2017-02-13 2018-01-31 デキストランエステル誘導体を含む被覆材料

Country Status (2)

Country Link
JP (1) JPWO2018147144A1 (ja)
WO (1) WO2018147144A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2802904A1 (es) * 2019-07-19 2021-01-21 Consejo Superior Investigacion Uso de una composicion acuosa como adhesivo
WO2023228951A1 (ja) * 2022-05-24 2023-11-30 日東電工株式会社 粘着剤組成物、粘着シート、積層体、及びグルカン誘導体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123587A (ja) * 1974-08-22 1976-02-25 Meito Sangyo Kk
JPH09502752A (ja) * 1993-09-17 1997-03-18 ビーエーエスエフ アクチェンゲゼルシャフト デキストランエステル、その製造方法および医薬を被覆または埋め込むためのその使用法
JPH1192501A (ja) * 1997-07-25 1999-04-06 Natl Starch & Chem Investment Holding Corp 高密度化流体中での多糖類の変性
US20120058196A1 (en) * 2010-09-03 2012-03-08 Bend Research Inc. Pharmaceutical compositions of dextran polymer derivatives and a carrier material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123587A (ja) * 1974-08-22 1976-02-25 Meito Sangyo Kk
JPH09502752A (ja) * 1993-09-17 1997-03-18 ビーエーエスエフ アクチェンゲゼルシャフト デキストランエステル、その製造方法および医薬を被覆または埋め込むためのその使用法
JPH1192501A (ja) * 1997-07-25 1999-04-06 Natl Starch & Chem Investment Holding Corp 高密度化流体中での多糖類の変性
US20120058196A1 (en) * 2010-09-03 2012-03-08 Bend Research Inc. Pharmaceutical compositions of dextran polymer derivatives and a carrier material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2802904A1 (es) * 2019-07-19 2021-01-21 Consejo Superior Investigacion Uso de una composicion acuosa como adhesivo
WO2023228951A1 (ja) * 2022-05-24 2023-11-30 日東電工株式会社 粘着剤組成物、粘着シート、積層体、及びグルカン誘導体

Also Published As

Publication number Publication date
JPWO2018147144A1 (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
de Castro et al. Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process
Yu et al. Integration of renewable cellulose and rosin towards sustainable copolymers by “grafting from” ATRP
Jia et al. PVC materials without migration obtained by chemical modification of azide-functionalized PVC and triethyl citrate plasticizer
Wilpiszewska et al. The effect of citric acid on physicochemical properties of hydrophilic carboxymethyl starch-based films
Dai et al. Polyesters derived from itaconic acid for the properties and bio-based content enhancement of soybean oil-based thermosets
Wilpiszewska et al. Citric acid modified potato starch films containing microcrystalline cellulose reinforcement–properties and application
Peng et al. Synthesis and characterization of carboxymethyl xylan-g-poly (propylene oxide) and its application in films
WO2012159106A2 (en) Ph responsive self-healing hydrogels formed by boronate-catechol complexation
Chen et al. Synthesis and characterization of starch-g-poly (vinyl acetate-co-butyl acrylate) bio-based adhesive for wood application
BR112014013706B1 (pt) Construção de adesivo sensível à pressão e processo para produzir uma construção ou composição sensível à pressão
US7678187B2 (en) Compositions comprising a (poly)amine and a carboxylated carbohydrate
Liu et al. Controlled acetylation of water-soluble glucomannan from Bletilla striata
WO2010083039A1 (en) Preparing biodgradable hydrogel for biomedical application
Zhang et al. Effect of hyperbranched poly (trimellitic glyceride) with different molecular weight on starch plasticization and compatibility with polyester
WO2018147144A1 (ja) デキストランエステル誘導体を含む被覆材料
US11505682B2 (en) Molded article comprising polysaccharide
Wilpiszewska Hydrophilic films based on starch and carboxymethyl starch
Matsumoto et al. Synthesis and characterization of alginic acid ester derivatives
TW201936658A (zh) 樹脂材料、其製造方法、及水溶性薄膜
Danjo et al. Syntheses and properties of glucomannan acetate butyrate mixed esters
CN105669959B (zh) 一种水溶性聚酯及其制备方法
Liu et al. Facile preparation of epoxidized soybean oil-hexanediamine resin for fabrication of pressure-sensitive adhesives
JP2002201327A (ja) Pvc可塑剤用の高密度分枝構造型脂肪族ポリエステル及びこれを含む軟質pvcブレンド
JP5323838B2 (ja) キトサンの官能化に使用できる感熱性((ポリエチレンオキシド)ポリ(プロピレンオキシド))誘導体の製造方法
Geitel et al. Meltable fatty acid esters of α-1, 3-glucan as potential thermoplastics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018567386

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751429

Country of ref document: EP

Kind code of ref document: A1