WO2018146862A1 - ファンブレード - Google Patents

ファンブレード Download PDF

Info

Publication number
WO2018146862A1
WO2018146862A1 PCT/JP2017/036669 JP2017036669W WO2018146862A1 WO 2018146862 A1 WO2018146862 A1 WO 2018146862A1 JP 2017036669 W JP2017036669 W JP 2017036669W WO 2018146862 A1 WO2018146862 A1 WO 2018146862A1
Authority
WO
WIPO (PCT)
Prior art keywords
guard
sheath
wing
fan blade
section
Prior art date
Application number
PCT/JP2017/036669
Other languages
English (en)
French (fr)
Inventor
茜 大保
広幸 八木
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to CA3049314A priority Critical patent/CA3049314C/en
Priority to RU2019127200A priority patent/RU2718381C1/ru
Priority to JP2018566748A priority patent/JP6631822B2/ja
Priority to CN201780083122.3A priority patent/CN110168197B/zh
Priority to EP17895575.3A priority patent/EP3581764B1/en
Publication of WO2018146862A1 publication Critical patent/WO2018146862A1/ja
Priority to US16/533,342 priority patent/US20190360344A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/0026Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor an edge face with strip material, e.g. a panel edge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/10Manufacturing or assembling aircraft, e.g. jigs therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/04Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
    • F01D21/08Restoring position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/20Constructional features
    • B64C11/26Fabricated blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/148Blades with variable camber, e.g. by ejection of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/36Application in turbines specially adapted for the fan of turbofan engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/501Elasticity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present disclosure relates to a fan blade of an aircraft turbofan engine, particularly a composite material fan blade.
  • An aircraft turbofan engine is composed of a fan and a core engine provided coaxially with the fan behind the fan and provided with a turbine for driving the fan.
  • the fan includes a substantially cylindrical fan case, a fan disk configured to rotate inside the fan case, and a plurality of fan blades attached to the outer periphery of the fan disk.
  • the fan disk is driven to rotate by a low-pressure turbine connected through a shaft.
  • the fan blade rotates with the fan disk, and air is sucked into the fan. Part of the air flows into the core engine and generates high-temperature and high-pressure gas for driving the low-pressure turbine, and the remaining part bypasses the core engine and is discharged from the rear, contributing to the generation of most of the thrust.
  • the weight of the fan blade can be reduced while maintaining the strength by changing the material of the fan blade from a titanium alloy to a composite material. can do.
  • the composite material is inferior in wear resistance and impact resistance as compared with the titanium alloy.
  • foreign matter such as sand particles and pebbles
  • the foreign matter collides with the wing part of the fan blade, and damage (FOD (Foreign Object) Damage).
  • the fan blade wing is greatly deformed by the collision with the foreign object. Deformation begins as a bending deformation at the leading edge and then propagates to other regions.
  • the trailing edge of the wing part is a part where large distortion is likely to occur on the surface due to the propagated deformation, and if the wing part is composed of a composite material, there is a high possibility of cracking or peeling. .
  • the front edge of the composite material wing body is covered with a metal sheath, and the rear edge was covered with a metal guard.
  • the front edge of the composite material wing body (“airfoil 154”) is a metal sheath (“metal leading edge”). 158 ”) and the rear edge is covered with metal guards (“ trailing edge guard 156 "and” blade tip cap 150 ”) (see FIG. 2).
  • the rear end portion of the sheath and the front end portion of the guard have a dimensional tolerance at the time of production of both. It is considered that they are arranged so as not to overlap each other in consideration. That is, it can be considered that there is a gap G between the rear end of the sheath 122 having a nominal design (reference) shape and the front end of the guard 123 as shown in FIG. 4A.
  • the profile of the wing part of the fan blade 120 has a discontinuous recess in the gap G, as described above. Even in a state where no serious damage has occurred, it becomes a factor that impairs the aerodynamic performance of the wing.
  • the recesses that cause the aerodynamic performance to be impaired as described above can be eliminated by raising the surface of the composite wing main body 121 in such a manner as to fill the gap G as shown in FIG. 4C.
  • symbol 124 in a figure is an adhesive bond layer for joining the sheath 122 and the guard 123 to the wing
  • FIG. However, in such a wing body 121, the reinforcing fiber (shown by a broken line in the figure) constituting the composite material is partially bent at the raised portion, and as a result, the strength of the wing body 121 is increased. Since it falls, it is not preferable.
  • the present disclosure has been made in view of the above problems, and provides a fan blade that is made of a composite material and that is not damaged even when a large foreign object collides. Objective.
  • a fan blade includes a wing part body made of a composite material of a thermoplastic resin or a thermosetting resin and a reinforcing fiber, and a front edge part of the wing part body.
  • a metal sheath covering at least a part of the metal sheath and a metal guard covering at least a part of a rear edge of the wing body, and the rear end of the sheath and the front end of the guard The pressure part of the wing part body is overlapped in the thickness direction of the wing part body on each of the pressure surface and the suction surface, and in the overlapped section, the front end part of the guard is the rear end part of the sheath And the wing part body.
  • the wear resistance and impact resistance of a composite fan blade can be improved while minimizing the loss of aerodynamic performance, and even when a large foreign object collides, The outstanding effect that generation
  • FIG. 1 is an overall perspective view of a composite material fan blade of the present disclosure.
  • FIG. 3 is a cross-sectional view of the composite material fan blade of the present disclosure (cross section AA in FIG. 2A). It is an enlarged view of IF section in Drawing 2B showing the relation between the rear end part of the sheath in the fan blade made from a composite material of this indication, and the front end part of a guard. It is the whole composite material fan blade perspective view.
  • FIG. 4B is a cross-sectional view of a conventional composite material fan blade (cross section AA in FIG. 4A).
  • FIG. 4 is an enlarged view showing a gap portion between a rear end portion of a sheath and a front end portion of a guard in a cross-sectional view (cross section AA in FIG. 4A) of a conventional composite material fan blade.
  • Fig. 4 illustrates a method for eliminating the resulting fan blade wing profile recess.
  • FIG. 4 is an enlarged view showing a gap portion between a rear end portion of a sheath and a front end portion of a guard in a cross-sectional view (cross section AA in FIG. 4A) of a conventional composite material fan blade.
  • FIG. 6 illustrates another method for eliminating the resulting fan blade wing profile recess.
  • FIG. 1 is a schematic cross-sectional side view of a general turbofan engine equipped with fan blades.
  • the turbofan engine 1 includes a fan 2 that generates most of the thrust, and a core engine 3 that is disposed behind the fan 2 and coaxially with the fan 2 and includes a turbine for driving the fan 2. .
  • the core engine 3 is configured as a turbojet engine in which a low-pressure compressor 31, a high-pressure compressor 32, a combustor 33, a high-pressure turbine 34, and a low-pressure turbine 35 are arranged in order from the upstream side to the downstream side.
  • the high pressure turbine 34 is connected to the high pressure compressor 32 via a high pressure shaft 37
  • the low pressure turbine 35 is connected to the low pressure compressor 31 and the fan 2 via a low pressure shaft 38.
  • the fan 2 is attached to a fan case 26 formed in a substantially cylindrical shape, a fan disk 25 configured to rotate inside the fan case 26, and an outer periphery of the fan disk 25 with a circumferential interval.
  • a plurality of fan blades 20 are provided.
  • the fan case 26 is attached to the casing 30 of the core engine 3 via a plurality of struts (posts) 4 arranged at intervals in the circumferential direction.
  • the fan disk 25 is rotationally driven by a low pressure turbine 35 connected via a low pressure shaft 38.
  • FIG. 2A is an overall perspective view of the fan blade 20 of the present disclosure
  • FIG. 2B is a cross-sectional view taken along the line AA in FIG. 2A.
  • the fan blade 20 of the present disclosure includes a wing body 21 made of a composite material, a metal sheath 22 that covers the front edge LE of the wing body 21, and a metal that covers the rear edge TE of the wing body 21. It is comprised from the guard 23.
  • FIG. 1 A wing body 21 made of a composite material, a metal sheath 22 that covers the front edge LE of the wing body 21, and a metal that covers the rear edge TE of the wing body 21. It is comprised from the guard 23.
  • the fan blade 20 can be divided into a blade portion 20A and a blade root portion 20R in terms of function.
  • the blade root portion 20R is a proximal end portion of the blade portion main body 21, and this portion is fitted into a groove (not shown) provided on the outer periphery of the fan disk 25 at a circumferential interval, whereby the fan blade 20 Is attached to the fan disk 25.
  • the wing portion 20A is a portion of the fan blade 20 excluding the blade root portion 20R, and includes the wing portion main body 21, the sheath 22, and the guard 23 as described above, and exhibits an aerodynamic function.
  • FRP Fiber Reinforced Plastics
  • Thermoplastic resin is a resin that has the property of softening by heating to exhibit plasticity and solidifying by cooling.
  • the thermoplastic resin used for the fan blade 20 of the present disclosure is, for example, polyethylene resin, polypropylene resin, polystyrene resin, ABS resin, vinyl chloride resin, methyl methacrylate resin, nylon resin, fluorine resin, polycarbonate resin, polyester resin, or the like. .
  • thermosetting resin is a resin having a property of being cured by heating.
  • the thermosetting resin used for the fan blade 20 of the present disclosure is, for example, an epoxy resin, a phenol resin, a polyimide resin, or the like.
  • the reinforcing fiber used for the fan blade 20 of the present disclosure is, for example, carbon fiber, aramid fiber, glass fiber, or the like.
  • the wing body 21 is manufactured, for example, by laminating a plurality of sheet-like prepregs in which a reinforcing fiber is impregnated with a thermoplastic resin, and press-molding so as to obtain a final shape in a heated state.
  • a plurality of sheet-like prepregs in which a reinforcing fiber is impregnated with a thermosetting resin may be laminated so as to obtain a final shape, and then the resin may be cured under heating.
  • the sheath 22 is made of a metal such as a titanium alloy, and has a structure in which a base 22B, a pressure-side protective wall 22P and a suction-side protective wall 22S protruding from the base 22B are integrated, as shown in FIG. 2B. .
  • the pressure surface protection wall 22P and the suction surface protection wall 22S are opposed to each other across the recess 22R, and the recess 22R is configured to receive a front portion of the wing body 21 including the front edge portion LE. .
  • the pressure surface 21P and the pressure surface protection wall 22P of the wing body 21 and the suction surface 21S and the suction surface protection wall 22S of the wing body 21 are joined by an adhesive layer 24 such as an epoxy adhesive.
  • the sheath 22 covers the leading edge LE of the wing body 21 in almost the entire region from the blade root H to the blade tip T in the height direction of the wing body 21. This prevents the front edge LE of the wing body 21 from being damaged by collision with foreign matter even when foreign matter such as sand particles and pebbles is mixed in the air sucked into the fan 2. Can do.
  • blade part main body 21 covered with the sheath 22 can be selected suitably.
  • the blade tip T may be covered by extending the pressure surface protection wall 22P and the suction surface protection wall 22S rearward. Thereby, even when the contact with the inner peripheral surface of the fan case 26 occurs, it is possible to prevent excessive wear from occurring at the blade tip T.
  • the guard 23 is made of a metal such as a titanium alloy and, as shown in FIGS. 2A and 2B, includes a pressure surface protective wall 23P and a suction surface protective wall 23S.
  • the positive pressure surface protective wall 23P and the negative pressure surface protective wall 23S may be integrally connected over a part or the whole in the height direction at the rear end.
  • the connection method the pressure-side protective wall 23P and the suction-side protective wall 23S may be formed separately and then joined by welding, brazing, or the like, or may be integrally formed from a single material by plastic working or the like. .
  • the pressure surface protection wall 23P and the suction surface protection wall 23S face each other across the recess 23R, and the recess 23R is configured to receive the rear portion of the wing body 21 including the trailing edge TE. .
  • the pressure surface 21P and the pressure surface protection wall 23P of the wing body 21 and the suction surface 21S and the suction surface protection wall 23S of the wing body 21 are joined by an adhesive layer 24 made of an adhesive such as an epoxy adhesive.
  • the guard 23 covers the trailing edge TE of the wing body 21 in almost the entire region from the blade root H to the blade tip T in the height direction of the wing body 21. Therefore, even when a large foreign object B such as a bird collides with the wing part 20A of the fan blade 20, the distortion generated on the surface of the trailing edge part TE of the wing part body 21 due to the deformation caused thereby is suppressed. And it can prevent that a crack and peeling generate
  • blade part main body 21 covered with the guard 23 can be selected suitably.
  • the deformation behavior of the wing portion 20A of the fan blade 20 when a large foreign object B collides is obtained by analysis, and a range including a portion where a large strain exceeding the allowable value is predicted is covered with the guard 23. good.
  • FIG. 2B is an enlarged view of the IF portion in FIG. 2B regarding the configuration of the interface portion between the rear end portion of the sheath 22 (rear end portion and its vicinity) and the front end portion of the guard 23 (front end and its vicinity portion). This will be described with reference to FIG.
  • the configuration is the same on both the pressure surface side and the suction surface side of the wing body 21. Therefore, in the following description, the description on the suction surface side is written in parentheses, so that redundant description is omitted. To do.
  • the rear end portion of the pressure surface protection wall 22P (suction surface protection wall 22S) of the sheath 22 and the front end portion of the pressure surface protection wall 23P (suction surface protection wall 23S) of the guard 23 are the former.
  • the pressure surface 21P (negative pressure surface 21S) of the wing body 21 are overlapped in the thickness direction of the wing body 21 so that the latter is interposed between the pressure surfaces 21P (negative pressure surfaces 21S). Is formed.
  • a forward transition section TF1 (TF2) and a rear transition section TR1 (TR2) are formed, respectively.
  • the rear side of the rear end of the pressure surface protective wall 22P (negative pressure surface protective wall 22S) of the sheath 22 and the guard The concave portion formed outside the pressure surface protective wall 23P (pressure surface protective wall 23S) is filled with an additional adhesive layer 24A.
  • the pressure surface SP (negative pressure surface SS) of the wing portion 20A in the front and rear of the rear transition section TR1 (TR2) is smoothly connected by the outer surface of the filled additional adhesive layer 24A.
  • the pressure surface SP (negative pressure surface SS) of the wing portion 20A is the pressure surface protection of the sheath 22 in front of the rear transition section TR1 (TR2), that is, in the overlap section OL1 (OL2) and the front transition section TF1 (TF2). It is formed by the outer surface of the wall 22P (sucking surface protection wall 22S). Further, at the rear of the rear transition section TR1 (TR2), the pressure surface SP (negative pressure surface SS) of the wing portion 20A is formed by the outer surface of the pressure surface protective wall 23P (negative pressure surface protective wall 23S) of the guard 23. .
  • the inner surface of the pressure surface protective wall 22P (negative pressure surface protective wall 22S) of the sheath 22 and the outer surface of the pressure surface protective wall 23P (negative pressure surface protective wall 23S) of the guard 23 Are bonded to each other via an adhesive layer 24.
  • the thickness of the pressure surface protective wall 23P (negative pressure surface protective wall 23S) of the guard 23 is kept constant in the rear transition section TR1 (TR2) and the rear thereof, but in the overlap section OL1 (OL2) It is decreasing continuously toward.
  • the thickness of the pressure surface protection wall 22P (suction surface protection wall 22S) of the sheath 22 continuously decreases toward the rear in the forward transition section TF1 (TF2) and the overlap section OL1 (OL2). For example, it increases continuously toward the front.
  • the thickness of the pressure surface protective wall 23P (negative pressure surface protective wall 23S) of the guard 23 continuously decreases toward the front, and the pressure surface protective wall 22P of the sheath 22 is reduced.
  • the thickness of the (suction surface protection wall 22S) increases continuously toward the front.
  • the thickness of the wing body 21 decreases continuously toward the front. Therefore, partial bending of the reinforcing fiber of the composite material constituting the wing body 21 is avoided, and as a result, a decrease in strength of the wing body 21 can be prevented.
  • the thickness of the wall that protects the pressure surface 21P (suction surface 21S) of the wing body 21 is not necessarily constant, and the pressure surface protection wall 22P (suction surface protection wall 22S) and the guard of the sheath 22 are not necessarily constant.
  • the thickness of each of the pressure-side surface protection walls 23P (suction-side surface protection walls 23S) is appropriately selected within the range in which partial bending does not occur in the reinforcing fibers of the composite material constituting the wing body 21. Can do.
  • the thickness of the pressure-side protective wall 23P (suction-side protective wall 23S) of the guard 23 may be kept the same as the thickness of the rear transition zone TR1 (TR2) and the rear thereof in the overlap zone OL1 (OL2). Good.
  • the pressure surface 21P (pressure surface) of the wing body 21 is increased. 21S), that is, the entire thickness of the pressure side protective wall 22P (negative pressure side protective wall 22S) of the sheath 22 and the pressure side protective wall 23P (negative pressure side protective wall 23S) of the guard 23 is also forward. It will increase continuously. Thereby, the front edge part LE of the wing
  • the thickness of the adhesive layer 24 is changed in the front-rear direction with respect to the shape of the wing body 21 determined so that partial bending does not occur in the reinforcing fiber of the composite material.
  • the change in the front-rear direction of the thickness of the pressure-side protective wall 22P (suction-side protective wall 22S) of the sheath 22 is compensated.
  • the thickness of the pressure surface protection wall 22P (suction surface protection wall 22S) of the sheath 22 is 1.2 mm at the front end of the front transition section TF1 (TF2), and the rear end of the overlap section OL1 (OL2). It is 0.2 mm at this time, and changes continuously during this time.
  • the thickness of the pressure surface protective wall 23P (negative pressure surface protective wall 23S) of the guard 23 is 0.5 mm (constant) behind the rear end of the overlap section OL1 (OL2), and the thickness of the overlap section OL1 (OL2). 0.2mm at the front end.
  • any of these thicknesses can be selected as appropriate.
  • the rear end of the sheath 22 that covers the front of the wing body 21 and the front end of the guard 23 that covers the rear of the wing body 21 are the wing body 21. It overlaps in the thickness direction.
  • the wing part main body 21 made of the composite material is covered with the metal sheath 22 and the metal guard 23 over the entire region in the front-rear direction.
  • the wing body 21 is deformed in a smoothly curved manner without being bent, and stress concentration may occur in the wing body 21.
  • the surface of the composite material constituting the wing body 21 does not crack.
  • the composite material constituting the wing body 21 is composed of a plurality of layers laminated in the thickness direction of the wing body 21, delamination may occur in a conventional composite material fan blade.
  • the fan blade 20 of the present disclosure can eliminate that possibility.
  • the front end portion of the guard 23 is covered by the rear end portion of the sheath 22. Therefore, the front end portion of the guard 23 does not peel off from the pressure surface 21P of the wing portion main body 21 and is not lifted.
  • the fan blade 20 of the present disclosure even when a large foreign object B such as a bird collides, the wing body 21 is cracked or delaminated, or the sheath 22 or the guard 23 is peeled off. Such damage will not occur.
  • the fan blade 20 of the present disclosure can withstand a greater load than a conventional composite fan blade before being damaged.
  • the concave portion generated by overlapping the rear end portion of the sheath 22 and the front end portion of the guard 23 in the thickness direction of the wing portion main body 21 is an additional adhesive layer. Since it is filled with 24A, the loss of aerodynamic performance can be minimized.
  • the wear resistance and impact resistance of a composite material fan blade can be improved while minimizing the loss of aerodynamic performance, and when a large foreign object collides. Even if it exists, generation
  • the fan blade according to the first aspect of the present disclosure is made of a metal that covers at least a part of a front edge portion of a wing body made of a composite material of a thermoplastic resin or a thermosetting resin and a reinforcing fiber, and the wing body.
  • a metal guard that covers at least a part of the rear edge of the wing body, and the rear end of the sheath and the front end of the guard include a pressure surface of the wing body and On each surface of the suction surface, it overlaps in the thickness direction of the wing body, and in the overlapped section, the front end of the guard is between the rear end of the sheath and the wing body. Is intervening.
  • the thickness of the sheath continuously decreases toward the rear, and the thickness of the guard decreases continuously toward the front. ing.
  • the thickness of the wing body in the transition section at the rear of the overlapped section is the normal value with respect to the camber line of the wing section of the fan blade.
  • the pressure surface and the suction surface continuously decrease toward the front, and the sheath and the wing body, the guard and the wing body, and the sheath and the guard in the overlapping section are Are joined by adhesive layers, respectively, and an additional adhesive layer is disposed outside the guard in the transition section.
  • the fan blade according to the fifth aspect of the present disclosure satisfies the following (1) or (2).
  • (1) The length in the front-rear direction of the section where the rear end portion of the sheath and the front end portion of the guard overlap on the positive pressure surface is equal to or greater than the thickness of the fan blade at the rear end of the section.
  • (2) The length in the front-rear direction of the section where the rear end portion of the sheath and the front end portion of the guard overlap on the suction surface is equal to or greater than the thickness of the fan blade at the rear end of the section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Composite Materials (AREA)
  • Architecture (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

複合材料製でありながら、大きな異物が衝突した場合であっても損傷を受けることのないファンブレードを提供する。ファンブレード(20)は、熱可塑性樹脂または熱硬化性樹脂と強化繊維との複合材料から成る翼部本体(21)と、翼部本体の前縁部(LE)の少なくとも一部を覆う金属製のシース(22)と、翼部本体の後縁部(TE)の少なくとも一部を覆う金属製のガード(23)と、を備え、シースの後端部とガードの前端部とは、翼部本体の正圧面(SP)及び負圧面(SS)のそれぞれの面上で翼部本体の厚さ方向にオーバーラップしており、該オーバーラップした区間(OL1,OL2)において、ガードの前端部は、シースの後端部と翼部本体との間に介在している。

Description

ファンブレード
 本開示は、航空機用ターボファンエンジンのファンブレード、特に複合材料製のファンブレードに関する。
 航空機用ターボファンエンジンは、ファンと、ファンの後方にファンと同軸に配置され、ファンを駆動するためのタービンを備えたコアエンジンとから構成されている。
 ファンは、略円筒状のファンケースと、ファンケースの内部において回転するように構成されたファンディスクと、ファンディスクの外周に取り付けられた複数のファンブレードとを備えている。ファンディスクは、シャフトを介して連結された低圧タービンによって回転駆動される。
 ターボファンエンジンの運転中、ファンディスクと共にファンブレードが回転することにより、ファンに空気が吸い込まれる。空気の一部はコアエンジンに流入し、低圧タービンを駆動するための高温高圧のガスを発生させ、残部はコアエンジンをバイパスして後方から排出され、推力の大部分の発生に寄与する。
 航空機用ターボファンエンジンのファンブレードとしては、従来は主にチタン合金製のものが用いられていた。しかしながら、近年においては、FRP(Fiber Reinforced Plastics;繊維強化プラスチック)等の複合材料で製造されたものが用いられることが多い。
 複合材料は、チタン合金と比べて比強度(引張強度を密度で除した値)が大きいため、ファンブレードの材料をチタン合金から複合材料に変更することにより、強度を維持したまま軽量化を実現することができる。
 その一方で、複合材料は、チタン合金と比べて耐摩耗性及び耐衝撃性において劣っている。ファンに吸い込まれる空気に砂粒、小石等の異物が混入していると、異物はファンブレードの翼部に衝突し、翼部が複合材料により構成されている場合には、損傷(FOD(Foreign Object Damage))を引き起こす可能性がある。
 そのため、従来の複合材料製ファンブレード120においては、図4Aに示すように、異物との衝突の可能性が高い複合材料製の翼部本体121の前縁部LEを金属製のシース122で覆うことにより、損傷の発生を防止している(特許文献1参照)。
 また、ファンが、鳥等の大きな異物を吸い込むと、ファンブレードの翼部は、異物との衝突によって大きく変形する。変形は、前縁部における曲げ変形として始まり、その後、他の領域へ伝播してゆく。このうち翼部の後縁部は、伝播してきた変形により表面に大きな歪が発生しやすい部位であり、翼部が複合材料により構成されている場合には、亀裂や剥離が生じる可能性が高い。
 そのため、従来の複合材料製ファンブレード120においては、図4Aに示すように、複合材料製の翼部本体121の後縁部TEのうち、異物衝突時の変形により表面に大きな歪が発生すると予測される部位を、金属製のガード123で覆って保護している。これにより、翼部の後縁部の強度が向上し、亀裂や剥離の発生が回避される(特許文献1参照)。
 このように、従来の複合材料製ファンブレードにおいては、耐摩耗性及び耐衝撃性を向上させるために、複合材料製の翼部本体の前縁部を金属製のシースで覆うと共に、後縁部を金属製のガードで覆っていた。
米国特許第7,780,410号明細書
 特許文献1に記載された複合材料製ファンブレード(「fan blade assembly 114」)においては、複合材料製の翼部本体(「airfoil 154」)の前縁部が金属製のシース(「metal leading edge 158」)で覆われ、後縁部が金属製のガード(「trailing edge guard 156」及び「blade tip cap 150」)で覆われている(FIG.2参照)。
 ところで、シースとガードとのインターフェース部の構成、より具体的には、シースの後端部(後端及びその近傍の部分)とガードの前端部(前端及びその近傍の部分)とが互いにどのように配置されているのかについて、特許文献1には記載されていない。
 しかし、金属製のシース及び金属製のガードは、複合材料製の翼部本体に接着剤により接合されるので、シースの後端部とガードの前端部とは、両者の製造時の寸法公差を考慮して互いに重なり合うことがないよう配置されているものと考えられる。すなわち、設計上のノミナル(基準)形状を有するシース122の後端とガード123の前端との間には、図4Aに示すように、隙間Gがあると考えらえる。
 このように、シース122の後端とガード123の前端との間に隙間Gがある場合、ファンブレード120に大きな異物Bが衝突すると、翼部本体121は、図4AにおけるA-A断面図である図4Bに示すように、異物Bの衝突による曲げ荷重Fの作用によって、隙間Gの存在する部分において屈曲するように曲げられる。これにより、ファンブレード120は、以下に示すような損傷を受ける可能性が高い。
(1)屈曲により生じる応力集中により、翼部本体121を構成する複合材料の表面に亀裂が生じる。また、翼部本体121を構成する複合材料が、翼部本体121の厚さ方向に積層された複数の層から成る場合には、層間剥離(隣接する層が互いに剥がれる現象)が発生する。
(2)翼部本体121のうち異物が衝突する側の面(正圧面121P)が、図4Bに示すように、発生した曲げ変形に起因して隙間Gの近傍において一時的に凸面となり、これにより、シース122及びガード123の一方または両方のうち、翼部本体121の正圧面121Pに接合された部分が剥がれ、翼部本体121の正圧面121Pから浮き上がった状態となる。
 (1)の損傷が発生した場合には、翼部本体の強度が大幅に低下してしまい、また、(2)の損傷が発生した場合には、プロファイル(断面形状)の変化により翼部の空力性能が大幅に低下してしまい、いずれも好ましくない。
 また、シース122の後端とガード123の前端との間に隙間Gがある場合、ファンブレード120の翼部のプロファイルは、隙間Gの部分において不連続的な凹部を有することとなり、上述したような損傷が発生していない状態においても、翼部の空力性能を損なう要因となる。
 このように空力性能を損なう要因となる凹部は、図4Cに示すように、複合材料製の翼部本体121の表面を、隙間Gを埋めるような態様で隆起させることにより、解消することができる。なお、図中の符号124は、シース122及びガード123を翼部本体121に接合するための接着剤層である。しかし、このような翼部本体121では、隆起した部分において、複合材料を構成する強化繊維(図中、破線で示す。)に部分的な屈曲が生じ、結果的に翼部本体121の強度が低下してしまうので、好ましくない。このような強度低下を生じさせずに空力性能を損なう凹部を解消する方法として、図4Dに示すように接着剤を隙間Gに充填して埋める方法がある。しかし、隙間Gを埋めている接着剤の剛性、強度は複合材料製の翼部本体や金属製のシース、ガードと比較して著しく低いため、異物の衝突によりシース、ガードの不連続部に発生する部分的な屈曲に起因する損傷を防ぐ効果はない。
 本開示は、以上のような問題点に鑑みてなされたものであって、複合材料製でありながら、大きな異物が衝突した場合であっても損傷を受けることのないファンブレードを提供することを目的とする。
 上記課題を解決するために、本開示の一実施態様のファンブレードは、熱可塑性樹脂または熱硬化性樹脂と強化繊維との複合材料から成る翼部本体と、前記翼部本体の前縁部の少なくとも一部を覆う金属製のシースと、前記翼部本体の後縁部の少なくとも一部を覆う金属製のガードと、を備え、前記シースの後端部と前記ガードの前端部とは、前記翼部本体の正圧面及び負圧面のそれぞれの面上で前記翼部本体の厚さ方向にオーバーラップしており、該オーバーラップした区間において、前記ガードの前端部は、前記シースの後端部と前記翼部本体との間に介在している。
 本開示によれば、複合材料製ファンブレードの耐摩耗性及び耐衝撃性を、空力性能の損失を最小限に抑えつつ向上させることができると共に、大きな異物が衝突した場合であっても、損傷の発生を防止することができるという、優れた効果を得ることができる。
ファンブレードを備えるターボファンエンジンの概略側断面図である。 本開示の複合材料製ファンブレードの全体斜視図である。 本開示の複合材料製ファンブレードの断面図(図2AにおけるA-A断面)である。 本開示の複合材料製ファンブレードにおけるシースの後端部とガードの前端部との関係を示す、図2BにおけるIF部の拡大図である。 従来の複合材料製ファンブレードの全体斜視図である。 従来の複合材料製ファンブレードの断面図(図4AにおけるA-A断面)である。 従来の複合材料製ファンブレードの断面図(図4AにおけるA-A断面)において、シースの後端部とガードの前端部との間の隙間の部分を拡大して示す図であり、当該隙間により生じるファンブレード翼部プロファイルの凹部を解消するための方法を示している。 従来の複合材料製ファンブレードの断面図(図4AにおけるA-A断面)において、シースの後端部とガードの前端部との間の隙間の部分を拡大して示す図であり、当該隙間により生じるファンブレード翼部プロファイルの凹部を解消するための他の方法を示している。
 以下、本開示の実施形態について、図面を参照して詳細に説明する。
 図1は、ファンブレードを備える一般的なターボファンエンジンの概略側断面図である。
 ターボファンエンジン1は、推力の大部分を発生させるファン2と、ファン2の後方にファン2と同軸に配置され、ファン2を駆動するためのタービンを備えたコアエンジン3とから構成されている。
 コアエンジン3は、上流側から下流側に向かって順に、低圧コンプレッサ31、高圧コンプレッサ32、燃焼器33、高圧タービン34、低圧タービン35が配置されたターボジェットエンジンとして構成されている。高圧タービン34は高圧シャフト37を介して高圧コンプレッサ32に連結され、低圧タービン35は低圧シャフト38を介して低圧コンプレッサ31及びファン2に連結されている。
 ファン2は、略円筒状に形成されたファンケース26と、ファンケース26の内部において回転するように構成されたファンディスク25と、ファンディスク25の外周に周方向に間隔を隔てて取り付けられた複数のファンブレード20とを備えている。ファンケース26は、コアエンジン3のケーシング30に、周方向に間隔を隔てて複数配設されたストラット(支柱)4を介して取り付けられている。ファンディスク25は、低圧シャフト38を介して連結された低圧タービン35によって回転駆動される。
 図2Aは、本開示のファンブレード20の全体斜視図であり、図2Bは、図2AにおけるA-A断面図である。
 本開示のファンブレード20は、複合材料製の翼部本体21と、翼部本体21の前縁部LEを覆う金属製のシース22と、翼部本体21の後縁部TEを覆う金属製のガード23とから構成されている。
 一方、ファンブレード20は、機能の観点では、翼部20Aと翼根部20Rとに区分することができる。翼根部20Rは、翼部本体21の基端部分であり、この部分をファンディスク25の外周に周方向に間隔を隔てて設けられた溝(図示せず)に嵌め込むことにより、ファンブレード20はファンディスク25に取り付けられる。翼部20Aは、ファンブレード20のうち翼根部20Rを除く部分であり、上述したように翼部本体21とシース22とガード23とから構成され、空力的機能を発揮する。
 翼部本体21を構成する複合材料としては、熱可塑性樹脂または熱硬化性樹脂と強化繊維とから成るFRP(Fiber Reinforced Plastics;繊維強化プラスチック)が用いられる。
 熱可塑性樹脂は、加熱によって軟化して可塑性を発揮し、冷却によって固化する性質を有する樹脂である。本開示のファンブレード20に用いられる熱可塑性樹脂は、例えばポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ABS樹脂、塩化ビニル樹脂、メタクリル酸メチル樹脂、ナイロン樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリエステル樹脂等である。
 熱硬化性樹脂は、加熱によって硬化する性質を有する樹脂である。本開示のファンブレード20に用いられる熱硬化性樹脂は、例えばエポキシ樹脂,フェノール樹脂,ポリイミド樹脂等である。
 本開示のファンブレード20に用いられる強化繊維は、例えば炭素繊維、アラミド繊維、ガラス繊維等である。
 翼部本体21は、例えば、強化繊維に熱可塑性樹脂を含浸させたシート状のプリプレグを複数枚積層し、加熱状態下において最終形状が得られるようにプレス成形することにより製造される。あるいは、強化繊維に熱硬化性樹脂を含浸させたシート状のプリプレグを、最終形状が得られるように複数枚積層した後、加熱状態下において樹脂を硬化させることによって製造しても良い。
 シース22は、チタン合金等の金属から成り、図2Bに示すように、基部22Bと、基部22Bから突出する正圧面保護壁22P及び負圧面保護壁22Sとを一体にした構造を有している。
 正圧面保護壁22Pと負圧面保護壁22Sは、凹部22Rを挟んで互いに対向しており、凹部22Rは、前縁部LEを含む翼部本体21の前方部分を受容するように構成されている。翼部本体21の正圧面21Pと正圧面保護壁22P、翼部本体21の負圧面21Sと負圧面保護壁22Sは、それぞれ、エポキシ系接着剤等の接着剤層24により接合される。
 シース22は、翼部本体21の高さ方向において翼根元部Hから翼先端部Tまでのほぼ全域で、翼部本体21の前縁部LEを覆っている。これにより、ファン2に吸い込まれる空気に砂粒、小石等の異物が混入している場合であっても、異物との衝突によって翼部本体21の前縁部LEが損傷を受けることを防止することができる。
 なお、シース22により覆われる翼部本体21の範囲は、適宜に選定することができる。例えば、正圧面保護壁22P及び負圧面保護壁22Sを後方に延長することにより、翼先端部Tをも覆うようにしてもよい。これにより、ファンケース26の内周面との接触が生じた場合であっても、翼先端部Tに過剰な摩耗が発生することを防止することができる。
 ガード23は、チタン合金等の金属から成り、図2A及び図2Bに示すように、正圧面保護壁23Pと負圧面保護壁23Sから構成される。正圧面保護壁23Pと負圧面保護壁23Sは後端において高さ方向の一部または全体にわたって一体に接続されていてもよい。接続方法は、正圧面保護壁23Pと負圧面保護壁23Sを個別に成形したうえで溶接、ろう付け等により接合してもよいし、単一の素材から塑性加工等により一体成形してもよい。
 正圧面保護壁23Pと負圧面保護壁23Sは、凹部23Rを挟んで互いに対向しており、凹部23Rは、後縁部TEを含む翼部本体21の後方部分を受容するように構成されている。翼部本体21の正圧面21Pと正圧面保護壁23P、翼部本体21の負圧面21Sと負圧面保護壁23Sは、それぞれ、エポキシ系接着剤等の接着剤から成る接着剤層24により接合される。
 ガード23は、翼部本体21の高さ方向において翼根元部Hから翼先端部Tまでのほぼ全域で、翼部本体21の後縁部TEを覆っている。これにより、ファンブレード20の翼部20Aに鳥等の大きな異物Bが衝突した場合であっても、これにより生じる変形に伴って翼部本体21の後縁部TEの表面に発生する歪を抑制し、亀裂や剥離が発生することを防止することができる。
 なお、ガード23により覆われる翼部本体21の範囲は、適宜に選定することができる。例えば、大きな異物Bが衝突した時のファンブレード20の翼部20Aの変形挙動を解析によって求め、許容値を超える大きな歪が発生すると予測される部位を含む範囲を、ガード23により覆うようにすると良い。
 次に、シース22の後端部(後端及びその近傍の部分)とガード23の前端部(前端及びその近傍の部分)とのインターフェース部の構成について、図2BにおけるIF部の拡大図である図3を参照して説明する。なお、当該構成は、翼部本体21の正圧面側及び負圧面側のいずれにおいても同様であるので、以下においては、負圧面側に関する説明を括弧内に併記することにより、重複する説明を省略する。
 図3に示すように、シース22の正圧面保護壁22P(負圧面保護壁22S)の後端部と、ガード23の正圧面保護壁23P(負圧面保護壁23S)の前端部とは、前者と翼部本体21の正圧面21P(負圧面21S)の間に後者が介在するような態様で、翼部本体21の厚さ方向にオーバーラップしており、これによりオーバーラップ区間OL1(OL2)が形成されている。
 また、オーバーラップ区間OL1(OL2)の前後には、それぞれ前方遷移区間TF1(TF2)、後方遷移区間TR1(TR2)が形成されている。
 後方遷移区間TR1(TR2)においては、空力設計によって決定された翼部20Aのプロファイル(断面形状)におけるキャンバーライン(翼型の中心線)CLを基準として正圧面21P(負圧面21S)の側において、翼部本体21の厚さが前方に向かって連続的に減少し、これに伴って、ガード23の正圧面保護壁23P(負圧面保護壁23S)の外表面は、前方に向かって次第に翼部20AのキャンバーラインCLに向かって偏位している。これにより、翼部20Aのプロファイルにおける正圧面SP(負圧面SS)と、ガード23の正圧面保護壁23P(負圧面保護壁23S)の外表面との間に空間が確保され、オーバーラップ区間OL1(OL2)内において、シース22の正圧面保護壁22P(負圧面保護壁22S)の後端部を収容することができる。
 また、上述したガード23の正圧面保護壁23P(負圧面保護壁23S)の偏位に伴って、シース22の正圧面保護壁22P(負圧面保護壁22S)の後端の後方、かつ、ガード23の正圧面保護壁23P(負圧面保護壁23S)の外方に形成される凹部は、追加の接着剤層24Aによって充填される。これにより、後方遷移区間TR1(TR2)の前方及び後方における翼部20Aの正圧面SP(負圧面SS)が、充填された追加の接着剤層24Aの外表面によって滑らかに接続されることになる。
 なお、後方遷移区間TR1(TR2)の前方、即ちオーバーラップ区間OL1(OL2)及び前方遷移区間TF1(TF2)において、翼部20Aの正圧面SP(負圧面SS)は、シース22の正圧面保護壁22P(負圧面保護壁22S)の外表面によって形成されている。また、後方遷移区間TR1(TR2)の後方において、翼部20Aの正圧面SP(負圧面SS)は、ガード23の正圧面保護壁23P(負圧面保護壁23S)の外表面によって形成されている。また、オーバーラップ区間OL1(OL2)において、シース22の正圧面保護壁22P(負圧面保護壁22S)の内表面と、ガード23の正圧面保護壁23P(負圧面保護壁23S)の外表面とは、接着剤層24を介して互いに接合されている。
 ガード23の正圧面保護壁23P(負圧面保護壁23S)の厚さは、後方遷移区間TR1(TR2)及びその後方においては一定に保たれているが、オーバーラップ区間OL1(OL2)においては前方に向かって連続的に減少している。
 一方、シース22の正圧面保護壁22P(負圧面保護壁22S)の厚さは、前方遷移区間TF1(TF2)及びオーバーラップ区間OL1(OL2)において、後方に向かって連続的に減少、換言すれば前方に向かって連続的に増加している。
 このように、オーバーラップ区間OL1(OL2)において、ガード23の正圧面保護壁23P(負圧面保護壁23S)の厚さは前方に向かって連続的に減少し、シース22の正圧面保護壁22P(負圧面保護壁22S)の厚さは前方に向かって連続的に増加している。このように、オーバーラップ区間OL1(OL2)において、翼部本体21の正圧面21P(負圧面21S)を保護する壁の厚さ、即ちシース22の正圧面保護壁22P(負圧面保護壁22S)及びガード23の正圧面保護壁23P(負圧面保護壁23S)の全体の厚さが略一定に保たれていると、翼部本体21の厚さは前方に向かって連続的に減少することになるため、当該翼部本体21を構成する複合材料の強化繊維に部分的な屈曲が生じることが回避され、ひいては翼部本体21の強度の低下を防止することができる。ただし、翼部本体21の正圧面21P(負圧面21S)を保護する壁の厚さは、必ずしも略一定である必要はなく、シース22の正圧面保護壁22P(負圧面保護壁22S)及びガード23の正圧面保護壁23P(負圧面保護壁23S)のそれぞれの厚さは、翼部本体21を構成する複合材料の強化繊維に部分的な屈曲が生じない範囲内で、適宜に選定することができる。
 なお、ガード23の正圧面保護壁23P(負圧面保護壁23S)の厚さを、オーバーラップ区間OL1(OL2)においても、後方遷移区間TR1(TR2)及びその後方における厚さと同一に保ってもよい。この場合、上述したようにシース22の正圧面保護壁22P(負圧面保護壁22S)の厚さは前方に向かって連続的に増加しているため、翼部本体21の正圧面21P(負圧面21S)を保護する壁の厚さ、即ちシース22の正圧面保護壁22P(負圧面保護壁22S)及びガード23の正圧面保護壁23P(負圧面保護壁23S)の全体の厚さも、前方に向かって連続的に増加することになる。これにより、異物が衝突する可能性の高い翼部本体21の前縁部LEを、より効果的に損傷から保護することができる。
 一方、前方遷移区間TF1(TF2)においては、複合材料の強化繊維に部分的な屈曲が生じないように決定された翼部本体21の形状に対し、接着剤層24の厚さを前後方向に変化させることによって、シース22の正圧面保護壁22P(負圧面保護壁22S)の厚さの前後方向の変化を補償している。
 なお、ファンブレード20の耐衝撃性を確保するためには、以下に示す(式1)または(式2)が満たされることが好ましい。
(1)オーバーラップ区間OL1の前後方向の長さをLOL1、オーバーラップ区間OL1の後端におけるファンブレード20の厚さ(図3参照)をtOL1とするとき、
OL1≧tOL1   (式1)
(2)オーバーラップ区間OL2の前後方向の長さをLOL2、オーバーラップ区間OL2の後端におけるファンブレード20の厚さ(図3参照)をtOL2とするとき、
OL2≧tOL2   (式2)
 なお、一実施例において、シース22の正圧面保護壁22P(負圧面保護壁22S)の厚さは、前方遷移区間TF1(TF2)の前端において1.2mm、オーバーラップ区間OL1(OL2)の後端において0.2mmであり、この間で連続的に変化している。また、ガード23の正圧面保護壁23P(負圧面保護壁23S)の厚さは、オーバーラップ区間OL1(OL2)の後端よりも後方において0.5mm(一定)、オーバーラップ区間OL1(OL2)の前端において0.2mmである。ただし、これらの厚さは、いずれも適宜に選定することができる。
 以上のように、本開示のファンブレード20においては、翼部本体21の前方を覆うシース22の後端部と、翼部本体21の後方を覆うガード23の前端部とが、翼部本体21の厚さ方向にオーバーラップしている。換言すれば、複合材料製の翼部本体21は、前後方向の全域に亘って、金属製のシース22及び金属製のガード23により覆われている。
 このため、鳥等の大きな異物Bが衝突した場合であっても、翼部本体21は、屈曲することなく滑らかに湾曲した態様で変形するので、翼部本体21に応力集中が発生することがなく、翼部本体21を構成する複合材料の表面に亀裂が生じることがない。特に、翼部本体21を構成する複合材料が、翼部本体21の厚さ方向に積層された複数の層から成る場合、従来の複合材料製ファンブレードでは層間剥離が発生する可能性があったが、本開示のファンブレード20ではその可能性を排除することができる。また、異物の衝突により発生した曲げ変形により、翼部本体21の正圧面21Pが一時的に凸面となった場合であっても、ガード23の前端部はシース22の後端部によって覆われているので、ガード23の前端部が翼部本体21の正圧面21Pから剥がれて浮き上がった状態となることがない。
 このように、本開示のファンブレード20においては、鳥等の大きな異物Bが衝突した場合であっても、翼部本体21において亀裂若しくは層間剥離が生じたり、シース22またはガード23が剥がれたりする等の損傷が発生することがない。換言すれば、本開示のファンブレード20は、損傷に至るまでに、従来の複合材料製ファンブレードと比べてより大きな荷重に耐え得ることになる。
 このことは、本開示のファンブレード20における、シース22の後端部とガード23の前端部とのインターフェース部の構成を模擬した試験片を用いた静的荷重負荷試験を通じて確認された。
 さらに、本開示のファンブレード20においては、シース22の後端部とガード23の前端部とを翼部本体21の厚さ方向にオーバーラップさせることに伴って生じる凹部が、追加の接着剤層24Aにより充填されているので、空力性能の損失を最小限に抑えることもできる。
 以上のように、本開示によれば、複合材料製ファンブレードの耐摩耗性及び耐衝撃性を、空力性能の損失を最小限に抑えつつ向上させることができると共に、大きな異物が衝突した場合であっても、損傷の発生を防止することができる。
(本開示の態様)
 本開示の第1の態様のファンブレードは、熱可塑性樹脂または熱硬化性樹脂と強化繊維との複合材料から成る翼部本体と、前記翼部本体の前縁部の少なくとも一部を覆う金属製のシースと、前記翼部本体の後縁部の少なくとも一部を覆う金属製のガードと、を備え、前記シースの後端部と前記ガードの前端部とは、前記翼部本体の正圧面及び負圧面のそれぞれの面上で前記翼部本体の厚さ方向にオーバーラップしており、該オーバーラップした区間において、前記ガードの前端部は、前記シースの後端部と前記翼部本体との間に介在している。
 本開示の第2の態様のファンブレードは、前記オーバーラップした区間において、前記シースの厚さは後方に向かって連続的に減少し、前記ガードの厚さは前方に向かって連続的に減少している。
 本開示の第3及び第4の態様のファンブレードは、前記オーバーラップした区間の後方の遷移区間において、前記翼部本体の厚さは、前記ファンブレードの翼部のキャンバーラインを基準として前記正圧面及び前記負圧面のそれぞれの側で前方に向かって連続的に減少しており、前記シースと前記翼部本体、前記ガードと前記翼部本体、前記オーバーラップした区間における前記シースと前記ガードは、それぞれ接着剤層によって接合され、さらに、前記遷移区間における前記ガードの外方には追加の接着剤層が配設される。
 本開示の第5の態様のファンブレードは、以下の(1)または(2)を満足する。
(1)前記正圧面上で前記シースの後端部と前記ガードの前端部とがオーバーラップした区間の前後方向の長さが、当該区間の後端における前記ファンブレードの厚さ以上である。
(2)前記負圧面上で前記シースの後端部と前記ガードの前端部とがオーバーラップした区間の前後方向の長さが、当該区間の後端における前記ファンブレードの厚さ以上である。
20      ファンブレード
21      翼部本体
22      シース
23      ガード
24      接着剤層
24A     追加の接着剤層
CL      キャンバーライン
LE      (翼部本体の)前縁部
TE      (翼部本体の)後縁部
SP      (翼部本体の)正圧面
SS      (翼部本体の)負圧面
OL1、OL2 オーバーラップ区間
TR1、TR2 後方遷移区間(遷移区間)
 

Claims (5)

  1.  熱可塑性樹脂または熱硬化性樹脂と強化繊維との複合材料から成る翼部本体と、
     前記翼部本体の前縁部の少なくとも一部を覆う金属製のシースと、
     前記翼部本体の後縁部の少なくとも一部を覆う金属製のガードと、
    を備えるファンブレードであって、
     前記シースの後端部と前記ガードの前端部とは、前記翼部本体の正圧面及び負圧面のそれぞれの面上で前記翼部本体の厚さ方向にオーバーラップしており、
     該オーバーラップした区間において、前記ガードの前端部は、前記シースの後端部と前記翼部本体との間に介在しているファンブレード。
  2.  前記オーバーラップした区間において、前記シースの厚さは後方に向かって連続的に減少し、前記ガードの厚さは前方に向かって連続的に減少している請求項1に記載のファンブレード。
  3.  前記オーバーラップした区間の後方の遷移区間において、前記翼部本体の厚さは、前記ファンブレードの翼部のキャンバーラインを基準として前記正圧面及び前記負圧面のそれぞれの側で前方に向かって連続的に減少しており、
     前記シースと前記翼部本体、前記ガードと前記翼部本体、前記オーバーラップした区間における前記シースと前記ガードは、それぞれ接着剤層によって接合され、さらに、前記遷移区間における前記ガードの外方には追加の接着剤層が配設される請求項1に記載のファンブレード。
  4.  前記オーバーラップした区間の後方の遷移区間において、前記翼部本体の厚さは、前記ファンブレードの翼部のキャンバーラインを基準として前記正圧面及び前記負圧面のそれぞれの側で前方に向かって連続的に減少しており、
     前記シースと前記翼部本体、前記ガードと前記翼部本体、前記オーバーラップした区間における前記シースと前記ガードは、それぞれ接着剤層によって接合され、さらに、前記遷移区間における前記ガードの外方には追加の接着剤層が配設される請求項2に記載のファンブレード。
  5.  以下の(1)または(2)を満足する請求項1~4のいずれか1項に記載のファンブレード。
    (1)前記正圧面上で前記シースの後端部と前記ガードの前端部とがオーバーラップした区間の前後方向の長さが、当該区間の後端における前記ファンブレードの厚さ以上である。
    (2)前記負圧面上で前記シースの後端部と前記ガードの前端部とがオーバーラップした区間の前後方向の長さが、当該区間の後端における前記ファンブレードの厚さ以上である。
PCT/JP2017/036669 2017-02-08 2017-10-10 ファンブレード WO2018146862A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3049314A CA3049314C (en) 2017-02-08 2017-10-10 Fan blade
RU2019127200A RU2718381C1 (ru) 2017-02-08 2017-10-10 Лопасть вентилятора
JP2018566748A JP6631822B2 (ja) 2017-02-08 2017-10-10 ファンブレード
CN201780083122.3A CN110168197B (zh) 2017-02-08 2017-10-10 风扇叶片
EP17895575.3A EP3581764B1 (en) 2017-02-08 2017-10-10 Fan blade
US16/533,342 US20190360344A1 (en) 2017-02-08 2019-08-06 Fan blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-021325 2017-02-08
JP2017021325 2017-02-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/533,342 Continuation US20190360344A1 (en) 2017-02-08 2019-08-06 Fan blade

Publications (1)

Publication Number Publication Date
WO2018146862A1 true WO2018146862A1 (ja) 2018-08-16

Family

ID=63107313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036669 WO2018146862A1 (ja) 2017-02-08 2017-10-10 ファンブレード

Country Status (7)

Country Link
US (1) US20190360344A1 (ja)
EP (1) EP3581764B1 (ja)
JP (1) JP6631822B2 (ja)
CN (1) CN110168197B (ja)
CA (1) CA3049314C (ja)
RU (1) RU2718381C1 (ja)
WO (1) WO2018146862A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220136394A1 (en) * 2020-10-30 2022-05-05 Raytheon Technologies Corporation Composite fan blade leading edge sheath with encapsulating extension
FR3117157B1 (fr) * 2020-12-03 2022-10-21 Safran Aircraft Engines Hybridation des fibres du renfort fibreux d’une aube de soufflante
CN115111191B (zh) * 2021-03-23 2024-05-14 中国航发商用航空发动机有限责任公司 风扇叶片和航空发动机
US11988103B2 (en) * 2021-10-27 2024-05-21 General Electric Company Airfoils for a fan section of a turbine engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791398A (en) * 1980-11-28 1982-06-07 Mitsubishi Heavy Ind Ltd Corrosion-resisting and errosion-resisting blade
JP2003278502A (ja) * 2001-10-12 2003-10-02 General Electric Co <Ge> 翼形部基体から金属クラッドを除去するための方法
JP2010038156A (ja) * 2008-07-31 2010-02-18 General Electric Co <Ge> 圧縮機ブレード前縁シム及び関連する方法
US7780410B2 (en) 2006-12-27 2010-08-24 General Electric Company Method and apparatus for gas turbine engines
US20160201482A1 (en) * 2013-09-17 2016-07-14 United Technologies Corporation Aluminum airfoil with titanium coating

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10001109B4 (de) * 2000-01-13 2012-01-19 Alstom Technology Ltd. Gekühlte Schaufel für eine Gasturbine
RU2382911C1 (ru) * 2008-10-24 2010-02-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Полая лопатка вентилятора
RU2485355C1 (ru) * 2011-12-14 2013-06-20 Открытое акционерное общество "Авиадвигатель" Рабочая лопатка вентилятора
US9322283B2 (en) * 2012-09-28 2016-04-26 United Technologies Corporation Airfoil with galvanic corrosion preventive shim
WO2014143265A1 (en) * 2013-03-15 2014-09-18 United Technologies Corporation Hybrid fan blade biscuit construction
RU136092U1 (ru) * 2013-08-05 2013-12-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Охлаждаемая лопатка турбины

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791398A (en) * 1980-11-28 1982-06-07 Mitsubishi Heavy Ind Ltd Corrosion-resisting and errosion-resisting blade
JP2003278502A (ja) * 2001-10-12 2003-10-02 General Electric Co <Ge> 翼形部基体から金属クラッドを除去するための方法
US7780410B2 (en) 2006-12-27 2010-08-24 General Electric Company Method and apparatus for gas turbine engines
JP2010038156A (ja) * 2008-07-31 2010-02-18 General Electric Co <Ge> 圧縮機ブレード前縁シム及び関連する方法
US20160201482A1 (en) * 2013-09-17 2016-07-14 United Technologies Corporation Aluminum airfoil with titanium coating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3581764A4

Also Published As

Publication number Publication date
EP3581764B1 (en) 2023-02-22
JP6631822B2 (ja) 2020-01-15
CN110168197B (zh) 2021-08-31
CA3049314C (en) 2021-03-30
RU2718381C1 (ru) 2020-04-02
EP3581764A4 (en) 2020-12-02
CA3049314A1 (en) 2018-08-16
US20190360344A1 (en) 2019-11-28
EP3581764A1 (en) 2019-12-18
JPWO2018146862A1 (ja) 2019-06-27
CN110168197A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2018146862A1 (ja) ファンブレード
EP2348192B1 (en) Fan airfoil sheath
JP5166672B2 (ja) 補強ファンブレード及び製造方法
JP3924333B2 (ja) 複合ブレード
US7780420B1 (en) Turbine blade with a foam metal leading or trailing edge
US9157327B2 (en) Hybrid metal fan blade
US9650897B2 (en) Hybrid metal fan blade
EP2378079A2 (en) Composite leading edge sheath and dovetail root undercut
CN107201919B (zh) 具有多材料增强的翼型件
JP6083112B2 (ja) 航空機用ジェットエンジンのファン動翼
EP3037675B1 (en) Composite vane
CN108474259B (zh) 叶片、相关联风扇和涡轮喷气发动机
CN111287802B (zh) 多材料前缘保护器
EP2811143B1 (en) Fan rotor blade of aircraft jet engine
EP2905424A1 (en) Gas turbine component with leading edge protector
CN108026778B (zh) 包括前缘防护件的叶片及生产该叶片的方法
US11131196B2 (en) Leading edge shield
US11396820B2 (en) Hybridization of fibers of the fibrous reinforcement of a fan blade
US20160003061A1 (en) Hollow Fan Blade with Extended Wing Sheath
US11931981B2 (en) Reinforced composite blade and method of making a blade
US10823190B2 (en) Fan blade with variable thickness composite cover
JP6978726B2 (ja) ファンブレード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566748

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3049314

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017895575

Country of ref document: EP

Effective date: 20190909