WO2018146524A1 - Composición promotora de crecimiento de plántulas, un kit, un método de aplicación, uso de los compuestos orgánicos volátiles que comprenden la composición - Google Patents

Composición promotora de crecimiento de plántulas, un kit, un método de aplicación, uso de los compuestos orgánicos volátiles que comprenden la composición Download PDF

Info

Publication number
WO2018146524A1
WO2018146524A1 PCT/IB2017/050793 IB2017050793W WO2018146524A1 WO 2018146524 A1 WO2018146524 A1 WO 2018146524A1 IB 2017050793 W IB2017050793 W IB 2017050793W WO 2018146524 A1 WO2018146524 A1 WO 2018146524A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
volatile organic
organic compounds
seedling growth
growth
Prior art date
Application number
PCT/IB2017/050793
Other languages
English (en)
French (fr)
Inventor
Andrés Eduardo QUIROZ CORTEZ
Paola Alejandra FINCHEIRA ROBLES
Maribel Eugenia PARADA IBAÑEZ
Original Assignee
Universidad De La Frontera
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De La Frontera filed Critical Universidad De La Frontera
Priority to PCT/IB2017/050793 priority Critical patent/WO2018146524A1/es
Publication of WO2018146524A1 publication Critical patent/WO2018146524A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/10Animals; Substances produced thereby or obtained therefrom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N35/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical
    • A01N35/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical containing aliphatically bound aldehyde or keto groups, or thio analogues thereof; Derivatives thereof, e.g. acetals

Definitions

  • the present invention falls within the area of plant growth promoting compounds and in particular refers to the use of volatile organic compounds, such as: 2-nonanone, 2-undecanone, 2-tridecanone and 2-pentadecanone, hereinafter called 2K-4, which have growth inducing activity.
  • volatile organic compounds such as: 2-nonanone, 2-undecanone, 2-tridecanone and 2-pentadecanone, hereinafter called 2K-4, which have growth inducing activity.
  • Synthetic products applied as growth inducers in seedlings are used to achieve maximum efficiency and yield in production, however, they have caused environmental problems such as erosion, losses of biological activity and contamination through runoff and leaching of its components or active principles.
  • this type of product accumulates in leafy vegetables, due to its hyperaccumulative property, which constitutes a carcinogenic and harmful agent after its human consumption, for example. nitrates and nitrosamines. Therefore, alternative solutions have been proposed, such as the application of microbial inoculants and organic fertilizers, however, their application has not been effective in promoting growth quickly and efficiently in vegetables.
  • An inoculant Microbial is defined as a conglomeration of microorganisms in a substrate of inorganic or organic nature that has a beneficial effect on the plant through the production of metabolites (phytohormones, organic acids, antibiotics, among others), however, its efficiency is highly dependent on climatic and soil conditions, it also alters the natural microbiota of the soil.
  • organic fertilizers are carbon substrates that increase the benefits in the biological activity of the soil (microbial population and soil enzymes), chemical properties (increase in nutrients) and physical (increases water and gas permeability), however, its Slow mineralization process allows growth induction after a long period after application (weeks to months).
  • VOCs Volatile Organic Compounds
  • the sporophyte development stage is called a seedling that begins when the seed breaks its dormancy and germinates, and ends when the sporophyte develops its first mature non-cotyledonary leaves, that is to say functional.
  • the seedling transplant stage represents 30% of the total production time, so it plays a critical role in the yield, production and quality of the seedlings. Due to the above, the crops require minimizing the stress derived from the transplant stage and maximizing the continuous growth of the seedling through the strengthening of the radical system and vigor.
  • 2k-4 are biodegradable compounds of lipophilic nature that prevent their leaching to underground layers avoiding their accumulation in the soil. Additionally, the growth-inducing action at the level radical and foliar through the activation of mechanisms of action physiologically associated with the increase of radical hairs allows the increase of the absorption of water and nutrients, as well as the increase of stomatic opening that suggests an increase in the gaseous exchange of the seedling with atmospheric air.
  • the ability of VOCs to induce growth is due to their ability to modulate the expression of genes associated with nutrition, hormonal balance and sugar concentrations, which allows the activation of physiological mechanisms associated with the growth of plant species. Therefore, natural VOCs can function in a useful way to induce growth in low concentrations through the activation of physiological mechanisms.
  • the 2K-4 are characterized by chemically belonging to the group of ketones and having carbon atoms with a linear arrangement and experimental tests have shown that it has important growth-inducing characteristics at a radical and foliar level in seedlings.
  • 2K-4 VOCs prevent problems of accumulation in the environment (biodegradability). Therefore, 2K-4 VOCs have a comparative advantage in the way of activating growth, through the induction of physiological mechanisms, which allows to increase growth at a radical and foliar level.
  • the chemical nature of VOCs 2K-4 prevents their leaching through underground layers, which is currently one of the main problems of chemical fertilizers and synthetic hormones applied today in crops.
  • the present invention comprises a composition of 2K-4, a kit and a use and / or application of 2K-4 as a new strategy or tool applicable to vegetable seedlings, to reduce the effect of stress during transplant stage and thereby increase survival through radical development and Foliar vigor characteristic of a seedling of commercially required quality and in crops.
  • 2K-4 allows to reduce the costs associated with the application of chemical products and the economic losses related to the adaptation of seedlings by transplantation, in addition to its possibility of application in highly innovative systems such as hydroponics. Therefore, the 2K-4 satisfy the market for seedling production and plant production systems.
  • Compounds 2K-4 are chemically characterized by their (a) low molecular weight (142.24 g / mol), (b) high vapor pressure under normal ambient conditions (0.6 ⁇ 0.4 mm Hg at 25 ° C ) and (c) lipophilic (apolar) nature. These chemical characteristics increase its sustainable properties related to the environment because its lipophilic nature prevents its rapid leaching and increases its biodegradability, being a comparative advantage with the hydrophilic products found in the market that lose their efficiency.
  • 2K-4 allows to reduce the costs associated with the application of chemical products and the economic losses related to the adaptation of seedlings by transplantation, in addition to its possibility of application in highly innovative systems such as hydroponics. Therefore, the 2K-4 satisfy the market for seedling production and production systems.
  • the present invention comprises a growth promoting composition of seedlings, the use of said composition for the application of 2K-4 in seedlings, an application kit of the seedling growth promoting composition and a method of applying seedling growth promoting composition.
  • the seedling growth promoting composition comprises between 0.0005% w / v and 0.5% w / v of 2K-4 and a solvent.
  • the solvent is selected from hexane or ethanol or water.
  • the seedling growth promoting composition comprising 2K-4 may also comprise commercial lanolin or wool fat, which is a complex mixture of fatty acids, sterols and long chain alcohols, in a concentration of between 0.01% p / p 1, 00% p / p of 2K-4 in lanolin.
  • the use of 2K-4 and its seedling growth promoting composition serves to induce root and foliar growth of seedlings, induce the increase in the number of open stomata in seedlings and induce the stomata length increase in seedlings.
  • the application kit of the seedling growth promoting composition comprises a support matrix in which the seedling growth promoting composition comprising between 0.0005% w / v and 0.5% w / v of 2K-4 is deposited, wherein said support matrix is selected from various controlled release systems such as cellulosic polymers (filter paper, absorbent cards), silicones, polyethylene, polyvinyl acetate, polymethyl methacrylate.
  • the method of application of the seedling growth promoting composition comprises:
  • this compound can be used in different ways:
  • Example 1 Selection of bacterial strains
  • Ten strains of bacteria were selected, belonging to the genus Bacillus, Staphylococcus and Serratia that are capable of producing 3-hydroxy-2-butanone (acetoin), a compound with proven growth promotion activity.
  • Two-day-old Lactuca sativa seedlings were used, which were exposed to VOCs emitted by previous bacteria grown in different culture media, such as: Methyl Red medium & Voka Proskauer, nutrient medium and Murashige & Skoog medium, during 7 days.
  • the growth-inducing effect of VOCs emitted by bacteria on seedlings was tested in bi-compartmentalized Petri dishes (100 x 15 mm) (Greiner Bio-One, Chile) according to a methodology described by Schalchli et al. (2007). This system allows only air contact between the treatment and the stimulus.
  • the different bacterial isolates selected were transferred to Falcon tubes with 3 mL of nutrient broth (N-B) (Difco® Laboratories, Detroit, MI) and grown overnight.
  • N-B nutrient broth
  • strain BCT9 was selected because it was the bacterial strain that caused the greatest increases in dry weight, leaf length and primary root length of seedlings.
  • Example 2 Identification of VOCs The identification of the VOCs emitted by BCT9, a strain of bacteria responsible for the growth-inducing effect in seedlings, was carried out. For this, the bacteria were grown in the selected culture medium, Methyl Red Voges Proskauer 24 hours before conducting the experiment to formulate the inoculum. Then, 25 mL of inoculum was added to a 500 mL flask containing 250 mL of culture medium.
  • the culture of BCT9 was carried out under stirring through an orbital shaker for 19 h at 34 ° C, during this period the volatiles were collected by the solid phase microextraction technique (MEFS) using a PDMS fiber / DVB (Supelco, Inc., Bellafonte, PA, USA).
  • the fiber was preconditioned at 250 ° C under helium flow for 10 min in the gas chromatograph injector.
  • the collected volatiles were desorbed at 250 ° C for 2 min in the gas chromatograph injector (Focus Model, Thermo Electron Corporation, Waltham, USA), coupled to a mass spectrometer (Model DSQ, Thermo Electron Corporation).
  • Chromatographic separation was performed using a DB-1 type column (30 mx 0.2 mm x 0.33 ⁇ ).
  • the compounds in column DB-1 were transported by helium flow (1.0 mL min 1 ).
  • the gas chromatograph oven temperature was programmed for a temperature ramp that increased from 40 to 250 ° C to 5 e C min 1 .
  • Mass spectra were performed between 35 and 500 amu
  • the electronic impact of 70 eV was used for fragmentation of the molecule with an ion source temperature set at 200 e C.
  • the compounds were identified by comparing mass spectra (MS ) with those of the NIST library.
  • Bacteria encoded as BCT9 cultured in Methyl Network and Voges Proskauer emitted the following compounds: 2-nonanone, 2-undecanone, 2-tridecanone and 2-pentadecanone, to which their potential growth promoting activity was determined.
  • Example 3 Determination of potential for growth promoting activity of the VOCs identified.
  • the growth promoting activity induced by each of the VOCs identified in example 2 was investigated using split Petri dishes (90 x 15 mm) using two 2-day-old L. sativa seedlings placed in one of the compartments containing Murashige & Agar culture medium from Skoog (MS-A).
  • a sterile filter paper disc (0.6 cm in diameter; Whatman No. 1) was impregnated with 20 ⁇ containing 50,000 ppm, 50 ppm or 0.05 ppm of each compound.
  • the 2-nonanone, 2-undecanone, 2-tridecanone or 2-pentadecanone ketones were diluted in hexane. Each compound was placed on the opposite side with respect to seedlings containing the same medium.
  • Table 1 shows the increase in percentage of agronomic parameters of L. sativa seedlings induced by different concentrations of VOCs emitted by Bacillus sp. BCT9 after 10 days of induction Table 1
  • Example 4 Verification test of physiological changes induced by 2-nonanone on seedlings. The previously described methodology (example 3) was applied to carry out the trial assembly, using Lactuca sativa as seedlings.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Pest Control & Pesticides (AREA)
  • Virology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Fertilizers (AREA)

Abstract

La presente invención se enmarca en el área de compuestos promotores de crecimiento de plantas y en particular se refiere al uso de compuestos orgánicos volátiles, tales como: 2- nonanona, 2-undecanona, 2-tridecanona y 2-pentadecanona, en adelante llamados 2K-4, los cuales presentan actividad inductora del crecimiento. Estos compuestos se aplican a hortalizas previo a su trasplante al campo de cultivo, ya que fortalecen las raíces produciendo una inducción del crecimiento a nivel radical (longitud de raíz primaria, longitud raíces secundarias, longitud y densidad de pelos radicales) y foliar (peso foliar), disminuyendo de esta manera el estrés de las hortalizas debido al cambio del ambiente, es decir, disminuye las probabilidades de dependencia en el crecimiento por el tipo de suelo y el cambio del ambiente.

Description

COMPOSICIÓN PROMOTORA DE CRECIMIENTO DE PLÁNTULAS, UN KIT, UN MÉTODO DE APLICACIÓN, USO DE LOS COMPUESTOS ORGÁNICOS VOLÁTILES
QUE COMPRENDEN LA COMPOSICIÓN
CAMPO DE LA INVENCION La presente invención se enmarca en el área de compuestos promotores de crecimiento de plantas y en particular se refiere al uso de compuestos orgánicos volátiles, tales como: 2-nonanona, 2-undecanona, 2-tridecanona y 2-pentadecanona, en adelante llamados 2K-4, los cuales presentan actividad inductora del crecimiento. Estos compuestos se aplican a hortalizas previo a su trasplante al campo de cultivo, ya que fortalecen las raíces produciendo una inducción del crecimiento a nivel radical (longitud de raíz primaria, longitud raíces secundarias, longitud y densidad de pelos radicales) y foliar (peso foliar), disminuyendo de esta manera el estrés de las hortalizas debido al cambio del ambiente, es decir, disminuye las probabilidades de dependencia en el crecimiento por el tipo de suelo y el cambio del ambiente. ESTADO DEL ARTE
Los productos sintéticos aplicados como inductores del crecimiento en plántulas son utilizados para alcanzar máxima eficiencia y rendimiento en la producción, sin embargo, ellos han provocado problemas ambientales como erosión, pérdidas de actividad biológica y contaminación a través de la escorrentía y lixiviación de sus componentes o principios activos. Además, este tipo de productos se acumula en hortalizas de hojas, debido a su propiedad hiperacumuladora, lo cual constituye un agente cancerígeno y dañino tras su consumo humano, por ej. nitratos y nitrosaminas. Por ello, se han planteado soluciones alternativas, como la aplicación de inoculantes microbianos y fertilizantes orgánicos, sin embargo, su aplicación no ha sido efectiva para promover el crecimiento de forma rápida y eficiente en hortalizas. Un inoculante microbiano está definido como una conglomeración de microorganismos en un sustrato de naturaleza inorgánica u orgánica que tiene un efecto benéfico en la planta a través de la producción de metabolitos (fitohormonas, ácidos orgánicos, antibióticos, entre otros), sin embargo, su eficiencia es altamente dependiente de las condiciones climáticas y del suelo, además altera la microbiota natural del suelo. Por otra parte, los fertilizantes orgánicos son sustratos carbonados que aumentan los beneficios en la actividad biológica del suelo (población microbiana y enzimas del suelo), propiedades químicas (incremento de nutrientes) y físicas (aumenta permeabilidad hídrica y gaseosa), sin embargo, su lento proceso de mineralización permite la inducción del crecimiento después de un largo periodo tras su aplicación (semanas a meses).
Actualmente, se necesitan herramientas estratégicas que permitan inducir el crecimiento a nivel radical y foliar de forma eficiente en un corto periodo de tiempo para incrementar la producción y calidad de plántulas. Por lo cual, se requiere el desarrollo de nuevas tecnologías y estrategias que cumplan con los requerimientos ambientales para compensar o reemplazar los productos químicos actualmente aplicados. Restricciones y limitaciones de futuras legislaciones para el consumo y exportación de hortalizas de hoja, enfocan las nuevas tecnologías hacia productos naturales como una nueva alternativa.
Por lo anterior, la investigación de Compuestos Orgánicos Volátiles (COV) emitidos por microorganismos ha surgido como una nueva estrategia, debido a sus significativas propiedades para inducir el crecimiento en especies vegetales, lo cual se puede detectar en un periodo de 7 a 30 días. Los COV son compuestos lipofílicos caracterizados por su bajo peso molecular (< 300 Da), bajo punto de ebullición y alta presión de vapor (0,01 kPa a 20°C), lo cual permite su movilidad a través del aire, suelo y líquido. Los COV pueden pertenecer a grupos de compuestos de diferentes naturalezas químicas como aléanos, alquenos, alcoholes, cetonas, aldehidos, terpenos y sulfuros, entre otros. El primer compuesto de este tipo identificado fue informado por Ryu et al. (2003), quien demostró que 2,3-butanodiol incrementa el área de superficie foliar de Arabidopsis thaliana. Después, Zou et al. (2010) mostró que 2- pentilfurano provoca el aumento del peso fresco en la misma especie vegetal. Adicionalmente, Velázquez-Becerra et al. (201 1 ) informaron que dimetil- hexadecilamina induce el aumento del peso fresco, la longitud del tallo, la longitud de la raíz y la densidad de la raíz en Medicago sativa. El mismo año, Minerdi et al. (201 1 ) informó que β-cariofileno induce la mejora de la longitud de las raíces, la longitud de los brotes, el peso fresco y la clorofila en las plántulas de Lactuca sativa. Posteriormente, Meldau et al. (2013) reportó que dimetil disulfuro puede actuar como fuente de azufre en la nutrición de plántulas de tabaco en un periodo de tiempo específico. Otro estudio realizado por Ann et al. (2013) indicó que 3-hidroxi-2-butanona estimula el aumento del peso fresco en plantas de tabaco. Posteriormente, Bhattacharyya et al. (2015) informaron que indol a dosis bajas induce el crecimiento en A. thaliana. Paralelamente, Park et al. (2015) indicó que 13-tetradecadien-1 -ol, 2-metil- 1 -trideceno y 2-butanona incrementan el peso fresco también en tabaco.
Tal como se puede observar en el estado del arte existen documentos relacionados con los compuestos orgánicos volátiles, como por ejemplo la publicación internacional US 2010 0255124, que divulga composiciones y métodos que comprenden el uso de dichos compuestos. Sin embargo, el objetivo de dicha invención es tratar, inhibir o prevenir el desarrollo de enfermedades patogénicas de plantas. El documento US 5 334 619 A divulga que el compuesto 2-nonanona es utilizado como un agente antifúngico contra el organismo de descomposición de bayas y otros frutos pequeños, particularmente aquellos que son susceptibles al ataque microbiano bajo condiciones de almacenamiento por Alternaría alternata, Botrytis cinérea y Colletotrichum spp.
Sin embargo, a la fecha de la presentación de la presente solicitud de patente, no existen en la literatura o estado del arte documentos que señalen el uso o aplicación de los 2K-4 como inductores del crecimiento radical de hortalizas.
SOLUCIÓN AL PROBLEMA TECNICO
Pérdidas económicas asociadas al estrés en plántulas durante la etapa de trasplante actualmente se asocia directamente a la calidad de las plántulas. En Botánica, más específicamente en espermatofitas, se denomina plántula al estadio del desarrollo del esporófito que comienza cuando la semilla rompe su dormancia y germina, y termina cuando el esporofito desarrolla sus primeras hojas no cotiledonares maduras, es decir funcionales. La etapa de trasplante de las plántulas representa el 30% del tiempo total de producción, por lo cual juega un rol crítico en el rendimiento, la producción y calidad de las plántulas. Debido a lo anterior, los cultivos requieren minimizar el estrés derivado de la etapa de trasplante y maximizar el crecimiento continuo de la plántula a través del fortalecimiento del sistema radical y la vigorosidad. Diversos productos comerciales basados en la aplicación de hormonas sintéticas (análogos a auxinas naturales) son utilizados para inducir la formación de raíces laterales y mejorar el desarrollo radical. Adicionalmente, bioestimulantes basados en la aplicación de fósforo, nitrógeno, potasio y otros micronutrientes son aplicados a los cultivos para incrementar la sobrevivencia y vigorosidad. A pesar del efecto de los productos comercializados, su acumulación y la baja tasa de degradación, produce efectos tóxicos y nocivos en la salud humana, animal y en el medio ambiente, siendo esto una grave problemática que requiere rápida solución ya que dichos productos requieren más de una aplicación para una acción específica a nivel radical o foliar.
A diferencia de lo descrito anteriormente, los 2k-4 son compuestos biodegradables de naturaleza lipofílica que impiden su lixiviación a napas subterráneas evitando su acumulación en el suelo. Adicionalmente, la acción inductora del crecimiento a nivel radical y foliar a través de la activación de mecanismos de acción asociados fisiológicamente al incremento de pelos radicales permite el incremento de la absorción de agua y nutrientes, como también el incremento de la apertura estomática que sugiere un aumento en el intercambio gaseoso de la plántula con aire atmosférico. La habilidad de los COVs de inducir el crecimiento se debe a su capacidad de modular la expresión de genes asociados a la nutrición, balance hormonal y concentraciones de azúcar, lo cual permite activar mecanismos fisiológicos asociados al crecimiento de especies vegetales. Por lo cual COV naturales pueden funcionar de manera útil para inducir el crecimiento en bajas concentraciones a través de la activación de mecanismos fisiológicos. En este sentido, los 2K-4, se caracterizan por pertenecer químicamente al grupo de las cetonas y tener átomos de carbonos con disposición lineal y los ensayos experimentales han demostrado que posee importantes características inductoras del crecimiento a nivel radical y foliar en plántulas.
La naturaleza química (apolar - lipofílica) de los COVs 2K-4 evitan los problemas de acumulación en el medio ambiente (biodegradabilidad). Por lo cual, los COVs 2K-4 presentan la ventaja comparativa en el modo de activar el crecimiento, a través de la inducción de mecanismos fisiológicos, lo cual permite aumentar el crecimiento a nivel radical y foliar. Además, la naturaleza química de los COVs 2K-4 impide su lixiviación a través de las napas subterráneas, lo cual actualmente constituye una de las principales problemáticas de los fertilizantes químicos y hormonas sintéticas aplicadas hoy en día en los cultivos.
De acuerdo a lo anterior, la presente invención comprende una composición de 2K-4, un kit y un uso y/o aplicación de 2K-4 como una nueva estrategia o herramienta aplicable a plántulas de hortalizas, para disminuir el efecto del estrés durante la etapa de trasplante y con ello incrementar la sobrevivencia a través del desarrollo radical y vigorosidad foliar característicos de una plántula de calidad requerida comercialmente y en cultivos.
Finalmente, el uso comercial de los 2K-4 permite disminuir los costos asociados a la aplicación de productos químicos y las pérdidas económicas relacionadas a la adaptación de plántulas por trasplante, además de su posibilidad de aplicación en sistemas de alta innovación como el hidropónico. Por lo tanto, los 2K-4 satisfacen el mercado de producción de plántulas y de sistemas productivos de plantas.
DESCRIPCIÓN DE TABLAS Y FIGURAS
FIGURA 1 . Efecto de 2-nonanona (50 ppm) sobre el crecimiento radical después de 10 días de exposición. Fotografías muestran raíces no tratadas (a), tratadas con el COV (b) y tratadas con el COV más una cera (lanolina) (c). Se observa un efecto significativo del COV sobre el número (d) y la longitud de los pelos radicales (e). Barras de error indica error estándar de la media (N=3). Letras indican diferencias estadísticamente significativas de acuerdo a la prueba post hoc LSD (P= 0,05). Escala de barra: 400 μηι.
FIGURA 2. Efecto de 2-nonanona (50 ppm) sobre la apertura de estomas después de 10 días de exposición. Fotografías muestran la superficie foliar de plantas no tratadas (a), tratadas con el COV (b) y tratadas con el COV más una cera (lanolina) (c). Se observa un efecto significativo del COV sobre el número de estomas abiertos (d) y de la longitud de la apertura de los estomas (e). Barras de error indica error estándar de la media (N=3). Letras indican diferencias estadísticamente significativas de acuerdo a la prueba post hoc LSD (P= 0,05). (*ns= no existe diferencia estadísticamente significativa). DESCRIPCIÓN DE LA INVENCIÓN
Se ha determinado que los 2K-4 a baja concentración inducen el crecimiento de plántulas en cualquier época del año, tras la aplicación de un producto que en su composición contenga 2K-4, a través del incremento de la longitud radical (longitud raíz primaria, longitud de raíces laterales y pelos radicales) y foliar (peso foliar) en forma simultánea.
Los compuestos 2K-4 se caracterizan químicamente por su (a) bajo peso molecular (142,24 g/mol), (b) alta presión de vapor bajo condiciones ambientales normales (0,6 ± 0,4 mm Hg a 25° C) y (c) naturaleza lipofílica (apolar). Estas características químicas aumentan sus propiedades sustentables relacionadas con el medio ambiente debido a que su naturaleza lipofílica impide su rápida lixiviación y aumenta su biodegradabilidad, siendo una ventaja comparativa con los productos hidrofílicos encontrados en el mercado que pierden su eficiencia.
Comercialmente, además el uso de los 2K-4 permite disminuir los costos asociados a la aplicación de productos químicos y las pérdidas económicas relacionadas a la adaptación de plántulas por trasplante, además de su posibilidad de aplicación en sistemas de alta innovación como el hidropónico. Por lo tanto, los 2K-4 satisfacen el mercado de producción de plántulas y de sistemas productivos.
Además, los 2K-4 aumentan el crecimiento de plántulas a nivel radical y foliar a través de la inducción de mecanismos fisiológicos tras la activación de vías metabolicas relacionadas con promoción del crecimiento. Por lo cual, este producto no induce el crecimiento a través del suministro de compuestos elaborados sintéticamente, como son: los fertilizantes químicos y hormonas sintéticas (análogas a las auxinas naturales). La presente invención comprende una composición promotora de crecimiento de plántulas, el uso de dicha composición para la aplicación de 2K-4 en plántulas, un kit de aplicación de la composición promotora de crecimiento de plántulas y un método de aplicación de composición promotora de crecimiento de plántulas.
La composición promotora de crecimiento de plántulas comprende entre 0,0005 % p/v y 0,5 % p/v de 2K-4 y un solvente. En donde el solvente se selecciona entre hexano o etanol o agua. Como alternativa, la composición promotora de crecimiento de plántulas que comprende 2K-4 también puede comprender lanolina comercial o grasa de lana, que es una mezcla compleja de ácidos grasos, esteróles y alcoholes de cadena larga, en una concentración de entre 0,01 % p/p y 1 ,00 % p/p de 2K-4 en lanolina. El uso de 2K-4 y su composición promotora de crecimiento de plántulas sirve para inducir el crecimiento radical y foliar de plántulas, inducir el aumento de número de estomas abiertos en plántulas e inducir el aumento de la longitud de las estomas en plántulas.
El Kit de aplicación de la composición promotora de crecimiento de plántulas comprende un matriz soporte en la que se deposita la composición promotora de crecimiento de plántulas que comprende entre 0,0005 % p/v y 0,5 % p/v de 2K-4, en donde dicha matriz soporte se selecciona de entre diversos sistemas de liberación controlada tales como polímeros celulósicos (papel filtro, cartones absorbentes), siliconas, polietileno, poli(acetato de vinilo), poli(metacrilato de metilo). El método de aplicación de la composición promotora de crecimiento de plántulas comprende:
(a) colocar un kit de aplicación de la composición promotora de crecimiento de plántulas dentro de un invernadero; y
(b) dejar el kit de aplicación por entre 5 y 15 días dentro del invernadero, o en donde el kit de aplicación entrega entre 1 y 80 microgramos de composición promotora de crecimiento de plántulas cada centímetro cubico de espacio aéreo.
Debido a que la forma de acción del compuesto es través de las estomas, este compuesto puede ser utilizado en diferentes formas:
1 . aplicado directamente al sustrato (suelo) en forma de pellet o encapsulado. 2. encapsulado y dispuesto en "sachets" para ser distribuido y colgados en invernaderos de todo tipo.
3. asperjado directamente en la atmósfera de todo tipo de invernadero.
4. incorporado en la solución nutritiva que contenga el cultivo de L. sativa y distribuido por "bombeo" a través del impulso generado por una bomba que permite el movimiento de la solución, y que permitir que el compuesto sea percibido por las plántulas en un sistema de producción hidropónico.
EJEMPLOS DE APLICACIÓN
Ejemplo 1 : Selección de cepas bacterianas
Se seleccionaron 10 cepas de bacterias, pertenecientes al género Bacillus, Staphylococcus y Serratia que son capaces de producir 3-hidroxi-2-butanona (acetoin), un compuesto con demostrada actividad de promoción del crecimiento.
Se utilizaron plántulas de Lactuca sativa de dos días de edad, las que fueron expuestas a los COV emitidos por las bacterias anteriores cultivadas en diferentes medios de cultivos, tales como: medio Rojo Metilo & Voges Proskauer, medio nutritivo y medio Murashige & Skoog, durante 7 días. El efecto inductor de crecimiento de los COVs emitidos por las bacterias sobre las plántulas fue probado en placas Petri bi- compartimentadas (100 x 15 mm) (Greiner Bio-One, Chile) según una metodología descrita por Schalchli et al. (2007). Este sistema permite sólo el contacto aéreo entre el tratamiento y el estímulo.
Para ello, un día antes del inicio de los experimentos de promoción del crecimiento, los diferentes aislados bacterianos seleccionados se transfirieron a tubos Falcon con 3 mL de caldo nutriente (N-B) (Difco® Laboratories, Detroit, MI) y cultivados durante la noche.
Posteriormente, se inocularon alícuotas de las suspensiones bacterianas en tubos Falcon nuevos con 4 mL de N-B para obtener una absorbancia (AB) de 0,1 medida a 600 nm mediante espectrofotometría (107 CFU/ml) para los bioensayos de actividad promotora de crecimiento por VOCs. En uno de los compartimentos de una placa Petri dividida se colocaron 2 plántulas de 2 días conteniendo el medio de crecimiento Murashige & Agar de Skoog (MS - A). En el otro compartimento se inocularon las diferentes suspensiones bacterianas sobre tres medios de cultivo: Me- tyl Red & Voges Proskauer agar (MRVP-A), agar nutritivo (N-A) o MS-A. Finalmente, las placas fueron selladas con Parafilm® y distribuidas en un diseño completamente al azar bajo las condiciones previamente descritas (20 y 25 °C con un ciclo de 16: 8 horas luz: oscuridad y 36-W luces fluorescentes). El crecimiento de las plántulas se midió el día 7 y 10.
Los resultados permitieron seleccionar tres cepas de Bacillus, BCT53, BCT9 y BCT4, según su capacidad inductora de crecimiento. De estas, se seleccionó la cepa BCT9 debido a que fue la cepa bacteriana que provocó los mayores incrementos en el peso seco, longitud foliar y la longitud de raíz primaria de las plántulas.
Ejemplo 2: Identificación de los COVs Se llevó a cabo la identificación de los COVs emitidos por BCT9, cepa de bacteria responsable del efecto inductor del crecimiento en plántulas. Para ello, la bacteria se cultivó en el medio de cultivo seleccionado, Rojo Metilo Voges Proskauer 24 horas antes de realizar el experimento para formular el inoculo. Luego, se añadieron 25 mL de inoculo a un matraz de 500 mL que contenía 250 mL de medio de cultivo. A partir de la suspensión descrita, se realizó el cultivo de BCT9 en agitación a través de un agitador orbital durante 19 h a 34°C, durante este periodo se recogieron los volátiles mediante la técnica de microextracción en fase sólida (MEFS) utilizando una fibra PDMS/DVB (Supelco, Inc., Bellafonte, PA, EE.UU.). La fibra se acondicionó previamente a 250 °C bajo flujo de helio durante 10 min en el inyector del cromatógrafo de gases. Los volátiles recolectados se desorbieron a 250° C durante 2 min en el inyector del cromatógrafo de gases (Modelo Focus, Thermo Electron Corporation, Waltham, EE.UU.), acoplado a un espectrómetro de masas (Modelo DSQ, Thermo Electron Corporation). La separación cromatográfica se realizó mediante columna de tipo DB-1 (30 m x 0,2 mm x 0,33 μηι). Los compuestos en la columna DB- 1 se transportaron mediante flujo de helio (1 ,0 mi min 1). La temperatura del horno del cromatógrafo de gases fue programada para una rampa de temperatura que se incrementó de 40 a 250° C a 5e C min 1. Los espectros de masas se realizaron entre 35 y 500 a.m.u. Se utilizó el impacto electrónico de 70 eV para la fragmentación de la molécula con una temperatura de la fuente de iones establecida a 200e C. Los compuestos se identificaron comparando los espectros de masas (MS) con los de la biblioteca NIST. Además, los compuestos orgánicos volátiles se identificaron comparando los índices de Kovats (KIs) con los estándares comerciales correspondientes inyectando una serie de alcanos (C9-C26) . Los KIs experimentales se compararon con los KIs teóricos de los compuestos estándar sintéticos informados en las bases de datos de Pherobase y NIST (NIST ver. 2.0, Thermo). Los análisis se realizaron por triplicado (Fincheira et al., 2016b).
La bacteria codificada como BCT9 cultivada en Red de Metilo y Voges Proskauer emitió los siguientes compuestos: 2-nonanona, 2-undecanona, 2-tridecanona y 2- pentadecanona., a los cuales se determinó su potencial actividad promotora de crecimiento.
Ejemplo 3: Determinación de potencial de actividad promotora de crecimiento de los COVs identificados.
La actividad promotora del crecimiento inducida por cada uno de los COVs identificados en el ejemplo 2, fue investigada utilizando placas Petri divididas (90 x 15 mm) utlizando dos plántulas de L. sativa de 2 días de edad colocadas en uno de los compartimentos que contenían el medio de cultivo Murashige & Agar de Skoog (MS- A). En la primera etapa, se impregnó un disco de papel filtro estéril (0,6 cm de diámetro; Whatman N°1) con 20 μΙ que contenía 50.000 ppm, 50 ppm o 0,05 ppm de cada compuesto. Las cetonas 2-nonanona, 2-undecanona, 2-tridecanona o 2- pentadecanona se diluyeron en hexano. Cada compuesto se colocó en el lado opuesto con respecto a plántulas que contenían el mismo medio. Finalmente, las placas se sellaron y se distribuyeron en un diseño aleatorio. La evaluación del crecimiento de las plántulas de L. sativa se midió el día 10. Todos los compuestos mostraron su capacidad para aumentar la longitud de tallo o foliar, la longitud de la raíz y el peso seco a bajas concentraciones (50 y 0,05 ppm) (Ver tabla 1 ). Sin embargo, el compuesto que mostró mayor actividad fue 2-nonanona, por ello se verificaron los cambios fisiológicos inducidos por este compuesto en Lsativa.
En la siguiente Tabla 1 se puede observar el Incremento en porcentaje de parámetros agronómicos de plántulas de L. sativa inducidos por diferentes concentraciones de COVs emitidos por Bacillus sp. BCT9 después de 10 días de inducción Tabla 1
Figure imgf000014_0001
Ejemplo 4: Ensayo de verificación de cambios fisiológicos inducidos por 2-nonanona sobre plántulas. Se aplicó la metodología previamente descrita (ejemplo 3) para realizar el montaje del ensayo, utilizando como plántulas a Lactuca sativa.
Para ello se determinó a través de análisis de tejidos vegetales en microscopía electrónica de barrido y microscopía confocal, así como microscopía electrónica de barrido acoplada a microanálisis elemental de rayos X, los cambios observados en plántulas de Lactuca sativa después de ser expuestas a 2-nonanona. Los resultados indicaron que la 2-nonanona aumenta la longitud de la raíz, el tallo y de la raíz lateral, tal como se observa en la Figura 1 . Además, el número y longitud de las estomas se incrementa cuando este compuesto es mezclado con lanolina (cera), el cual actúa como controlador de la emisión del compuesto, tal como se observa en la Figura 2.
Se concluye que 2-nonanona aumenta el crecimiento de plántulas a nivel radical y foliar a través de la inducción de mecanismos fisiológicos tras la activación de vías metabólicas relacionadas con la promoción del crecimiento. Por lo cual, este producto no induce el crecimiento a través del suministro de compuestos elaborados sintéticamente, como son los fertilizantes químicos y hormonas sintéticas (análogas a las auxinas naturales).

Claims

REIVINDICACIONES
1 . Una composición promotora de crecimiento de plántulas, CARACTERIZADA porque comprende entre 0,0005% y 0,5% p/v de al menos un compuesto seleccionado del grupo 2K-4 y un solvente. 2. La composición promotora de crecimiento de plántulas de acuerdo a la reivindicación 1 , CARACTERIZADA porque el grupo 2K-4 comprende: 2-nonanona, 2- undecanona,
2-tridecanona y 2-pentadecanona.
3. La composición de las reivindicaciones 1 -2, CARACTERIZADA porque el solvente se selecciona de entre hexano y etanol.
4. La composición de las reivindicaciones 1 a 3, CARACTERIZADA porque además la composición puede comprender lanolina comercial o grasa de lana, en una concentración de entre 0,01 % p/p y 1 ,00 % p/p de 2K-4 en lanolina.
5. Un Kit para promotor del crecimiento de plántulas, CARACTERIZADO porque comprende: (a) una matriz soporte, que se selecciona de entre sistemas de liberación controlada tales como: polímeros celulósicos seleccionados desde papel filtro y cartones absorbentes; siliconas; polietileno; poli(acetato de vinilo) y poli(metacrilato de metilo); y
(b) composición promotora de crecimiento de plántulas descrita en las reivindicaciones 1 a 3.
6. Un Kit para promotor del crecimiento de plántulas de acuerdo a la reivindicación 5, CARACTERIZADO porque además comprende lanolina comercial o grasa de lana, concentración de entre 0,01 % p/p y 1 ,00 % p/p de 2K-4 en lanolina.
7. Un método de aplicación de composición promotora de crecimiento de plántulas CARACTERIZADO porque comprende: (a) colocar un kit de aplicación de la composición promotora de crecimiento de plántulas dentro de un invernadero; y
(b) dejar el kit de aplicación por entre 5 y 15 días dentro del invernadero, o donde el kit de aplicación entrega entre 1 y 80 microgramos de composición promotora de crecimiento de plántulas cada centímetro cúbico de espacio aéreo.
8. Uso de los compuestos orgánicos volátiles 2K-4, CARACTERIZADO porque sirve para inducir el crecimiento radical y foliar de plántulas donde los compuestos orgánicos volátiles 2K-4 se utilizan solos o incorporado en una composición.
9. El uso de los compuestos orgánicos volátiles 2K-4 de acuerdo a la reivindicación 8, CARACTERIZADO porque comprende utilizar los compuestos orgánicos volátiles 2K-4 en una composición que además comprende lanolina.
10. El uso de los compuestos orgánicos volátiles 2K-4 de acuerdo a cualquiera de las reivindicaciones 8 y 9, CARACTERIZADO porque además sirve para inducir el aumento de número de estomas abiertos en plántulas
1 1 . El uso de los compuestos orgánicos volátiles 2K-4 de acuerdo a cualquiera de las reivindicaciones 8-10, CARACTERIZADO porque los compuestos orgánicos volátiles 2K-4 pueden ser aplicados directamente al sustrato (suelo) en forma de pellet o encapsulado, asperjado directamente en la atmósfera de todo tipo de invernadero, y/o incorporado en una solución nutritiva que contenga el cultivo de plántulas.
PCT/IB2017/050793 2017-02-13 2017-02-13 Composición promotora de crecimiento de plántulas, un kit, un método de aplicación, uso de los compuestos orgánicos volátiles que comprenden la composición WO2018146524A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2017/050793 WO2018146524A1 (es) 2017-02-13 2017-02-13 Composición promotora de crecimiento de plántulas, un kit, un método de aplicación, uso de los compuestos orgánicos volátiles que comprenden la composición

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2017/050793 WO2018146524A1 (es) 2017-02-13 2017-02-13 Composición promotora de crecimiento de plántulas, un kit, un método de aplicación, uso de los compuestos orgánicos volátiles que comprenden la composición

Publications (1)

Publication Number Publication Date
WO2018146524A1 true WO2018146524A1 (es) 2018-08-16

Family

ID=63107992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/050793 WO2018146524A1 (es) 2017-02-13 2017-02-13 Composición promotora de crecimiento de plántulas, un kit, un método de aplicación, uso de los compuestos orgánicos volátiles que comprenden la composición

Country Status (1)

Country Link
WO (1) WO2018146524A1 (es)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2561760A2 (en) * 2010-04-19 2013-02-27 Idén Biotechnology, S.L. Method for changing the development pattern, increasing the growth and accumulation of starch, changing the structure of starch and increasing the resistance to hydric stress in plants
US9175273B2 (en) * 2010-02-12 2015-11-03 Monsanto Technology Llc Compositions and methods for pathogen control in plants

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9175273B2 (en) * 2010-02-12 2015-11-03 Monsanto Technology Llc Compositions and methods for pathogen control in plants
EP2561760A2 (en) * 2010-04-19 2013-02-27 Idén Biotechnology, S.L. Method for changing the development pattern, increasing the growth and accumulation of starch, changing the structure of starch and increasing the resistance to hydric stress in plants

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BHATTACHARYYA, P. N. ET AL.: "Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture", WORLD JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, vol. 28, no. 4, 24 December 2012 (2012-12-24), pages 1327 - 1350, XP035037894 *
CHOUDHARY, D. K. ET AL.: "Biotechnological perspectives of microbes in agro-ecosystems", BIOTECHNOLOGY LETTERS, vol. 33, no. 10, 10 June 2011 (2011-06-10), pages 1905 - 1910, XP019952700 *
GUTIRREZ-LUNA, F. ET AL.: "Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission", SYMBIOSIS, vol. 51, no. 1, 1 July 2010 (2010-07-01), pages 75 - 83, XP055537711 *
KANCHISWAMY, C. ET AL.: "Chemical diversity of microbial volatiles and their potential for plant growth and productivity", FRONTIERS IN PLANT SCIENCE, vol. 6, 13 March 2015 (2015-03-13), XP055503663 *
LI, X. Y. ET AL.: "Comprehensive volatile organic compounds profiling of Bacillus species with biocontrol properties by head space solid phase microextraction with gas chromatography-mass spectrometry", BIOCONTROL SCIENCE AND TECHNOLOGY, vol. 25, no. 2, 2015, pages 132 - 143, XP055537715 *
RYU, C. ET AL.: "Bacterial volatiles promote growth in Arabidopsis", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 100, no. 8, 2003, pages 4927 - 4932, XP002454837 *

Similar Documents

Publication Publication Date Title
Talukder et al. Light-emitting diodes and exogenous amino acids application improve growth and yield of strawberry plants cultivated in recycled hydroponics
Ali et al. The effects of treatment with polyamines on dry matter, oil and flavonoid contents in salinity stressed chamomile and sweet marjoram
WO2010142055A2 (es) Composición para obtener fungicida y bactericida biológico
Kasem Micropropagation and in vitro secondary metabolites production of Ocimum species. review article
Al-Mahmood et al. Clonal propagation and medium-term conservation of Capparis spinosa: A medicinal plant
Baskaran et al. Rapid micropropagation of Psoralea corylifolia L. using nodal explants cultured in organic additive-supplemented medium
ES2898638T3 (es) Uso de ácido (l)-piroglutámico para aumentar la tolerancia de plantas a condiciones de estrés osmótico
Göçer et al. Plant growth, ion accumulation and essential oil content of Salvia officinalis Mill. and S. tomentosa L. grown under different salt stress
WO2018146524A1 (es) Composición promotora de crecimiento de plántulas, un kit, un método de aplicación, uso de los compuestos orgánicos volátiles que comprenden la composición
WO2007057486A2 (es) Método para promoción de crecimiento de plantas de tomate
ES2930040T3 (es) Composición fijadora del suelo que contiene óxido de hierro (III)
Obsuwan et al. The response of growth and development from in vitro seed propagation of Dendrobium orchid to chitosan
Nahar et al. Effect of light quality and plant growth regulator on organogenesis of orchid Cymbidium dayanum.
Tsukagoshi et al. Beneficial effects of various environmental stresses on vegetables and medicinal plants for the production of high value-added plants
ES2891354T3 (es) Método para mejorar el desarrollo de las plantas
Al-Maameri et al. Effect of putrescine and type of light in callus of Gardenia Jasminoides L. content from some effective medical compounds
Lyngdoh et al. Effect of substrates on the propagation of hybrid lilies through scaling
Kirillov et al. Micropropagation of Cotoneaster melanocarpus Fisch. ex A. Blytt: an economically important ornamental plant
Hermayani et al. Optimising Sterilisation Techniques and Callus Induction of Nodes Durio Zibethinus Murr in Vitro Method with Various Media
Hosseini et al. Effect of different media substrate and humic acid on growth and nutrient absorption of soilless cultured cut rose flowers.
Batukaev et al. In vitro microclonal propagation of strawberries and ex vitro adaptation
Asao et al. Autotoxicity in vegetables and ornamentals and its control
Al-Jubori et al. Optimizing media sterilization via chlorine dioxide and autoclaving of Paulowni micropropagation
ES2965284T3 (es) Método y uso de un enantiómero de 3,4-dihidroxifenilalanina (DOPA) para potenciar el atractivo de las plantas para los insectos beneficiosos
WO2018119526A1 (es) Composición bioestimulante natural para el mejoramiento de la producción agrícola, método de aplicación y de su uso para incrementar el número de raíces en las plantas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895969

Country of ref document: EP

Kind code of ref document: A1