WO2018146415A1 - Procédé de préparation de polythiols - Google Patents

Procédé de préparation de polythiols Download PDF

Info

Publication number
WO2018146415A1
WO2018146415A1 PCT/FR2018/050295 FR2018050295W WO2018146415A1 WO 2018146415 A1 WO2018146415 A1 WO 2018146415A1 FR 2018050295 W FR2018050295 W FR 2018050295W WO 2018146415 A1 WO2018146415 A1 WO 2018146415A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyene
polythiols
process according
double bonds
reaction
Prior art date
Application number
PCT/FR2018/050295
Other languages
English (en)
Inventor
Pascal Saint-Louis-Augustin
Georges Fremy
Bernard Monguillon
Louis CORBEL
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to KR1020197022582A priority Critical patent/KR102499208B1/ko
Priority to EP18707088.3A priority patent/EP3580202A1/fr
Priority to US16/483,298 priority patent/US20200010412A1/en
Priority to SG11201906990WA priority patent/SG11201906990WA/en
Priority to JP2019541450A priority patent/JP6930064B2/ja
Priority to CN201880011436.7A priority patent/CN110461816A/zh
Priority to MYPI2019004586A priority patent/MY189781A/en
Publication of WO2018146415A1 publication Critical patent/WO2018146415A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/02Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols
    • C07C319/04Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols by addition of hydrogen sulfide or its salts to unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/02Thiols having mercapto groups bound to acyclic carbon atoms
    • C07C321/04Thiols having mercapto groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton

Definitions

  • the invention relates to the preparation of polythiols, and more particularly to a process for preparing polythiols whose primary, secondary and tertiary thiol content is controlled.
  • the present invention relates to a process for preparing polythiols comprising at least the steps of:
  • the process according to the invention makes it possible to obtain a mixture comprising at least two polythiols, the at least two polythiols obtained being generally polythiols of the same molecular weight, but whose thiol functions are borne by carbon atoms. different.
  • the process thus makes it possible to obtain a mixture of positional isomers of polythiols.
  • the process of the invention leads to the formation of polythiols no longer containing double bonds, that is to say that all the double bonds of the starting polyene are sulfhydrated with the process according to the invention.
  • polythiol is meant a compound having at least two thiol functions (-SH).
  • controlled is meant the production of polythiols whose regioselectivity in thiols function is different from that which would have been obtained by conducting a radical sulfhydration reaction alone or an acidic catalytic sulfhydration reaction alone.
  • the predominantly polythiol is less substituted, that is to say that the majority of thiol functions are attached to the least substituted carbon atoms and / or from the formation of the most stable radicals.
  • the reaction of su If catalytic acid hydration, when the latter is carried out alone, we obtain mostly the most substituted polythiol, that is to say that the majority of the thiol functions are fixed on the most substituted carbon atoms and / or from the formation of the most stable carbocations.
  • the method according to the invention allowing the simultaneous operation of the two aforementioned reactions to control, that is to say, to change, or even to reverse this regioselectivity.
  • the polythiols obtained in the minor group after a radical hydrogenation reaction alone or after an acidic catalytic sulfhydration reaction alone become the polythiols predominantly obtained by the process according to the invention.
  • polyene is meant a compound whose hydrocarbon chain comprises at least two unsaturations in the form of double bond ("olefinic” unsaturation). This hydrocarbon chain may be linear or cyclic, saturated or unsaturated, may or may not comprise one or more heteroatoms, and may be interrupted or substituted by one or more aromatic groups. Polyene within the meaning of the present invention most often has a molar mass of between 40 g. mol "1 and 1500 g. mol" 1, preferably between 40 g. mol “1 and 1000 g mol " 1 , more preferably between 40 g. mol "1 and 500 g mol " 1 , inclusive.
  • the polyene is a hydrocarbon compound comprising from 2 to 20 double bonds, preferably from 2 to 16 double bonds, more preferably from 2 to 10 double bonds, in particular from 2 to 10 double bonds. with 8 double bonds, and typically from 2 to 4 double bonds, inclusive.
  • the polyene is a hydrocarbon compound comprising 2 double bonds, preferably 3 double bonds, and more particularly 4 double bonds.
  • the double bonds of the polyene are not included in a cycle. More preferably, at least 2 double bonds of the polyene are not delocalized to form an aromatic ring.
  • the polyene comprises one or more heteroatoms chosen from columns 15, 16 and 17 of the periodic table of the elements, and more particularly those chosen from sulfur, nitrogen, nitrogen, and the like. oxygen and phosphorus.
  • the polyene is chosen from terpenes and their derivatives, comprising at least two double bonds, such as for example isoprene, limonene, myrcene, phellandrene, terpinene, ocimene, terpinolene, geraniol, citral, retinol, ⁇ -carotene, farnesene, selinene, cardinene, farnesol, humulene, linalool and nerolidol.
  • the polyene is a compound having one or more heteroatoms, such as for example triallyisocyanurate and its derivatives.
  • the radical initiator according to the invention may be any radical initiator known to those skilled in the art.
  • the radical initiator may be chosen from a thermal initiator, such as, for example, photochemical heating such as, for example, radiation, and more particularly ultraviolet radiation, and a radical-producing organic or mineral compound, or the like, as well as combinations of two or more of them.
  • said radical initiator is an organic or inorganic compound
  • it may be a peroxide such as, for example, hydrogen peroxide, sodium peroxide, potassium peroxide, tert-alkyl hydroperoxides, peroxides of tert-alkyl, tert-alkyl peresters, cumene hydroperoxide
  • the radical initiator may also be azo-bis-iso-butyronitrile, 2,2-dimethoxy-1,2-diphenylethan- 1 -one, said radical initiators can be taken alone or in combination of two or more of them.
  • alkyl phosphites or xanthene derivatives such as those described in the patent application FR2501679.
  • the initiation of radicals is obtained by heating and / or by light radiation, for example ultraviolet light.
  • the radical initiator comprises 2,2-dimethoxy-1,2-diphenylethan-1-one, for example sold under the name Irgacure® 651, optionally mixture with other radical initiators as described for example in US 4,443,310 A and US 4,233,128 A.
  • the reaction medium may be heated at temperatures between 25 ° C and 150 ° C, preferably between 25 ° C and 100 ° C, in particular between 25 ° C and 70 ° C.
  • the initiation comprises an irradiation of the reaction medium
  • it may be carried out for example by direct or indirect photolysis, preferably direct, in a wavelength range extending from about 180 nm to at 600 nm, preferably by ultraviolet radiation and for example wavelengths between 180 nm and 400 nm.
  • the acidic catalyst is chosen from all the acid catalysts known to those skilled in the art for conducting homogeneous or heterogeneous acidic catalysts, and may for example be chosen from Lewis acids, acidic resins such as sulphonated resins (for example a styrene-divinylbenzene copolymer as described in Application FR 2531426), and catalytic compositions comprising at least one metal salt, in which the metal is chosen from metals belonging to groups 8, 9 and 10 of the periodic table of elements (as described for example in the application FR 2844794), taken alone or in combination of two or more of them.
  • Lewis acids acidic resins such as sulphonated resins (for example a styrene-divinylbenzene copolymer as described in Application FR 2531426)
  • catalytic compositions comprising at least one metal salt, in which the metal is chosen from metals belonging to groups 8, 9 and 10 of the periodic table of elements (as described for example in the application FR
  • the acid catalyst is a sulfonated resin of styrene-divinylbenzene copolymer, for example Amberlyst ® 15.
  • the sulfhydryl group donor compound can be of any type known to those skilled in the art capable of generating a sulfhydryl group (-SH) under the reaction conditions, that is to say the addition of a grouping. -SH and a hydrogen atom on the sp 2 carbons of the polyene.
  • Said sulfhydryl group donor compound may be chosen from hydrogen sulphide, thiocarboxylic acids such as, for example, thioacetic acid, as well as the precursors of these compounds, taken alone or in combination with two or more of them.
  • dialkyl di- and poly-sulfides such as, for example, dimethyl disulphide (DMDS), diethyl disulphide (DEDS), dipropyl disulfide (DPDS), dibutyl disulfide (DBDS), as well as higher homologs, and also their mixtures in all proportions, as can be found in DSOs (or "DiSulfide Oils" in English).
  • DMDS dimethyl disulphide
  • DEDS diethyl disulphide
  • DPDS dipropyl disulfide
  • DBDS dibutyl disulfide
  • the process according to the invention is conducted in the absence of solvent.
  • the process according to the invention is carried out in the presence of a solvent.
  • a solvent used can vary widely and will be readily appreciated and adjusted by those skilled in the art depending on the reagents used, the reaction temperature and other reaction parameters.
  • a solvent when used, it may be of any type well known to those skilled in the art and in particular a solvent selected from water and organic compounds and mixtures thereof in all proportions.
  • the organic compounds that can be used as solvents are typically chosen from aliphatic hydrocarbon compounds, the aromatic hydrocarbon compounds optionally comprising one or more heteroatoms chosen from oxygen, sulfur, nitrogen and halogens.
  • the solvent may thus be chosen from hydrocarbons, ketones, alcohols, ethers, esters, sulphoxides (for example dimethylsulfoxide), sulpholanes and nitriles (for example acetonitrile), taken alone or in combination with two or more d 'between them.
  • the solvent is an aliphatic hydrocarbon compound in which the hydrocarbon chain is linear or cyclic, branched or unbranched, and comprises between 3 and 20 carbon atoms, preferably between 4 and 15 carbon atoms. carbon atoms, in particular between 5 and 10 carbon atoms.
  • the solvent is an aromatic hydrocarbon compound comprising from 6 to 30 carbon atoms, preferably from 6 to 20 carbon atoms, in particular from 6 to 10 carbon atoms.
  • the aromatic hydrocarbon compound may for example be selected from benzene, toluene, xylene (ortho-xylene, para-xylene, meta-xylene) and ethylbenzene, alone or in combination of two or more of them.
  • the solvent is a ketone comprising from 2 to 20 carbon atoms, preferably from 2 to 10 carbon atoms, in particular from 2 to 6 carbon atoms.
  • the ketone may thus be chosen from acetone, ethyl methyl ketone and methyl isobutyl ketone, taken alone or in combination with two or more of them.
  • the solvent is an alcohol comprising from 2 to 20 carbon atoms, preferably from 2 to 10 carbon atoms.
  • the alcohol is selected from methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, benzyl alcohol, phenol, cyclohexanol, taken alone or in combination of two or more thereof.
  • the solvent is an ether comprising from 2 to 20 carbon atoms, preferably from 2 to 10 carbon atoms.
  • the ether may be cyclic or non-cyclic and may be selected from dimethyl ether, diethyl ether, methyl ethyl ether, monoethers, glycol diethers, furan, dihydrofuran, tetrahydrofuran, pyran, dihydropyran, tetrahydropyran, 1,2-dioxane, 1,3-dioxane, 1, 4-dioxane.
  • the contacting of the various elements of the reaction medium may be carried out by any technique known to those skilled in the art, for example by simple mixing of the reagents and starting reactants, optionally in the presence of solvent (s), the reaction medium can be homogeneous or heterogeneous.
  • the at least one polyene can be solubilized in said at least one solvent, then said at least one sulfhydryl donor-donor compound is added, and said at least one radical initiator is used and said at least one acid catalyst.
  • the reaction is generally carried out at atmospheric pressure, but can also be conducted under vacuum, under vacuum or under pressure, said pressure being able to range from atmospheric pressure to 10 MPa (100 bar), preferably from atmospheric pressure to atmospheric pressure. MPa (50 bar), in particular atmospheric pressure at 2 MPa (20 bar).
  • the process according to the invention may be carried out at any temperature, preferably at a temperature of between 25 ° C. and 150 ° C., more preferably between 25 ° C. and 100 ° C., in particular between 25 ° C. and 70 ° C, the temperature can be easily adapted depending on the nature of the reagents, the solvents and types of catalysts used, as well as the pressure applied to the reaction medium.
  • the reaction can take place between a few minutes and a few hours, the duration being a function of the operating conditions described above.
  • the process of the invention is characterized in that the bl step of conducting the reaction comprises both an acidic catalytic sulfhydration reaction. at least one polyene and a radical hydrogenation reaction of said at least one polyene, said acidic catalytic sulfhydration and radical hydrogenation reactions being carried out simultaneously.
  • the polyene comprises at least two unsaturations as a double bond so that these two reactions can take place simultaneously on the same polyene compound. Indeed, in the example in which the polyene has two double bonds carrying different substituents with respect to each other, one of them undergoes the reaction of radicalhydridation while the other undergoes the reaction of sulfhydration catalytic acid.
  • said at least one polyene has two double bonds carrying identical substituents (for example in the case of symmetrical polyenes)
  • step b / comprises, advantageously but most often, a step of recirculation of the reaction medium in a reaction loop.
  • the starting polyene has 3 double bonds and in the case of a total conversion of said polyene, said polyene will be converted to a mixture of polythiols, each polythiol having 3 sulfhydryl functions (-SH).
  • the process according to the invention makes it possible to increase the kinetics of reaction thus leading to minimizing the formation of side reactions such as intramolecular reactions, and limiting the content of impurities such as sulphides.
  • the polythiols mixture obtained is isolated from the reaction medium according to any method known to those skilled in the art, for example by evaporation or distillation of the solvent at atmospheric pressure or under reduced pressure.
  • the polythiols mixture can be purified by conventional methods also well known to those skilled in the art and for example selected from ion exchange resin purification, activated carbon filtration, diatomaceous earth or zeolites, and others.
  • the mixture of polythiols obtained according to the process according to the invention can be used as is or else, the polythiols of said mixture can be isolated according to any separation method well known to those skilled in the art such as for example distillation, crystallization, preparative chromatography, and others.
  • the present invention also relates to the mixture of at least two polythiols that can be obtained according to the process as described above.
  • the mixtures of polythiols obtainable according to the process of the present invention can find many applications quite interesting in many fields, for example and without limitation, as:
  • the present application also relates to the use of polythiols obtained by the process according to the invention, for example as crosslinking agents in the preparation of adhesives, adhesives, mastics, epoxy resins, acrylates, isocyanates and coatings. and others.
  • the polythiols obtained by the process according to the invention can also be used as reagents in thiol-enic reactions. Indeed, the presence of sulfhydryl groups with variable reactivity makes it possible to adjust the kinetics of the addition reaction of the thiol function on a diene group.
  • polythiols obtained by the process according to the invention can also be used for the preparation of thiourethanes. Indeed, by reacting polythiols whose thiol content is controlled, we obtain thiourethane compounds of different chemical structure and performance from those obtained from polythiols synthesized either by radical or catalytic acid route classics.
  • the polythiols obtained by the process according to the invention may also serve as precursors for the synthesis of polysulfides. Indeed, by sulfur oxidation it is possible to obtain polysulfide compounds which can be used as additives for lubricants or for rubber. With the polythiols obtained by the process according to the invention, because of the difference in steric bulk at the level of the sulfur bonds, the polysulfides formed offer variable reactivities.
  • the polythiols obtained by the process according to the invention can act as chain transfer agents during the synthesis of polymers from monomers such as, for example, vinyl monomers, conjugated diene monomers, acrylic monomers, methacrylic monomers, and mixtures of two or more of them in all proportions.
  • monomers such as, for example, vinyl monomers, conjugated diene monomers, acrylic monomers, methacrylic monomers, and mixtures of two or more of them in all proportions.
  • the difference in reactivity according to the type and content of sulfhydryl group allows improved control of the polymerization reaction.
  • the polythiols obtained by the process of the present invention can also be used as crosslinking agents for natural, artificial or synthetic rubbers, metal complexing agents, mineral flotation agents, in particular. as oxygen sensors, as corrosion inhibitors and others.
  • a photo-initiator and a radiation source are used in a photochemical reactor, said photochemical reactor comprising a recirculation loop on which is installed a tubular reactor. Filters arranged upstream and downstream of the tubular reactor prevent entrainment of the heterogeneous catalyst.
  • the reactor also has a heating system for heating to the desired temperature.
  • a cooling system located after the tubular reactor on the recirculation loop is used to cool or heat the liquid feed of the photochemical reactor.
  • a pump placed on this recirculation loop makes it possible to vary the flow of liquid.
  • [0066] are introduced 100 g (0.73 mol) of ⁇ -myrcene (from DRT) dissolved in 1000 g of tetrahydrofuran (Aldrich) and 0.25 g of Irgacure ® 651 (Ciba Specialty Chemicals). Are introduced 5 g exchange resin Amberlyst ® 15 cations (Aldrich) tumble into the tubular reactor.
  • reaction medium Under recirculation (20 Lh “1 ), the reaction medium is then subjected to nitrogen bubbling in order to eliminate traces of residual oxygen, and 30 molar equivalents of hydrogen sulphide are added to the reaction medium ( h S)
  • the tubular reactor is then brought to the desired temperature (100 ° C.) Once this temperature is reached, the lamp is then lit.
  • the reaction medium is subjected to UV radiation (wavelength: 355-365 nm, power: 8 Watts), for 6 hours at a temperature of 100 ° C., and a constant pressure of 1.5 MPa, adjusted by the addition of hydrogen sulphide.
  • the control of the conversion is done by analyzing the samples by high performance liquid chromatography (or pressure).
  • the conversion of the starting polyene reached 100%.
  • the lamp is extinguished and the heating of the tubular reactor is stopped.
  • the excess hydrogen sulfide is then purged to a thermal oxidizer by decompression of the medium and then by stripping with nitrogen.
  • the mixture is then evaporated under vacuum in order to remove the solvent and then distilled in order to remove any impurities, for example of the sulphide type.
  • the distilled mixture thus obtained has a purity greater than 98% expressed by weight of trithiols formed.
  • This distilled mixture is characterized by NMR and is found to be composed of polythiols of the following chemical structures:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

La présente invention concerne le procédé de préparation de polythiols comprenant la préparation d'un milieu réactionnel de sulfhydratation, la conduite simultanée de la réaction de sulfhydratation radicalaire dudit au moins un polyène et de la réaction de sulfhydratation catalytique acide dudit au moins un polyèneet la récupération d'un mélange comprenant au moins deux polythiols. La présente invention concerne également le mélange de polythiols obtenu selon ledit procédé ainsi que l'utilisation dudit mélange de polythiols.

Description

PROCÉDÉ DE PRÉPARATION DE POLYTHIOLS
[0001 ] L'invention concerne la préparation de polythiols, et plus particulièrement un procédé de préparation de polythiols dont la teneur en thiols primaires, secondaires et tertiaires est contrôlée.
[0002] Il existe divers procédés d'obtention de polythiols selon que l'on souhaite préparer des polythiols primaires, secondaires ou tertiaires.
[0003] Parmi les procédés de préparation de polythiols, on connaît notamment la préparation de polythiols par voie radicalaire. Ce procédé conduit majoritairement à l'obtention de polythiols primaires, et plus généralement à l'addition de groupement -SH sur les atomes de carbone sp2 les moins substitués et/ou conduisant à la formation du radical le plus stable. Il est par exemple divulgué dans la demande US 2012/0035291 , un procédé de préparation d'une composition de polythiols comprenant des thiols primaires, à partir d'un composé hydrocarboné possédant au moins deux doubles liaisons, d'un composé phosphite et de sulfure d'hydrogène.
[0004] Il est également connu la préparation de polythiols par catalyse acide ; ladite catalyse permettant la formation de polythiols comprenant majoritairement des thiols secondaires et/ou tertiaires, et plus généralement l'addition de groupement -SH sur les atomes de carbone sp2 les plus substitués et/ou conduisant à la formation du carbocation le plus stable. Ainsi, les demandes FR2844794 et FR2531426 décrivent un procédé de fabrication par catalyse acide d'un thiol, à partir d'une oléfine et de sulfure d'hydrogène.
[0005] Cependant, l'ensemble de ces techniques ne permet pas l'obtention de polythiols avec une forte teneur en thiols et dont la régiosélectivité des groupements thiols est contrôlée.
[0006] Il reste donc un besoin pour un procédé permettant l'obtention de polythiols dont la teneur en thiols primaires, secondaires et tertiaires soit contrôlée.
[0007] La Demanderesse a découvert qu'il était possible d'atteindre cet objectif grâce au procédé qui est décrit dans l'exposé qui suit. [0008] Selon un premier aspect, la présente invention est relative à un procédé de préparation de polythiols comprenant au moins les étapes de :
a/ préparation d'un milieu réactionnel de sulfhydratation comprenant la mise en contact de :
au moins un polyène ;
au moins un initiateur de radicaux ;
au moins un catalyseur acide ;
au moins un composé donneur de groupement sulfhydryle ;
éventuellement, au moins un solvant ;
b/ conduite simultanée de la réaction de sulfhydratation radicalaire dudit au moins un polyène et de la réaction de sulfhydratation catalytique acide dudit au moins un polyène ;
c/ récupération d'un mélange comprenant au moins deux polythiols.
[0009] Le procédé selon l'invention permet l'obtention d'un mélange comprenant au moins deux polythiols, les au moins deux polythiols obtenus étant généralement des polythiols de même poids moléculaire, mais dont les fonctions thiols sont portées par des atomes de carbone différents. Au sens de la présente invention, le procédé permet ainsi l'obtention d'un mélange d'isomères de position de polythiols. De manière avantageuse, et de manière tout particulièrement préférée, le procédé de l'invention conduit à la formation de polythiols ne contenant plus de doubles liaisons, c'est-à-dire que toutes les doubles liaisons du polyène de départ sont sulfhydratées avec le procédé selon l'invention.
[0010] Par « polythiol », on entend un composé comportant au moins deux fonctions thiols (-SH).
[001 1 ] Par « contrôlée », on entend l'obtention de polythiols dont la régiosélectivité en fonction thiols est différente de celle qui aurait été obtenue en conduisant une réaction de sulfhydratation radicalaire seule ou bien une réaction de sulfhydratation catalytique acide seule.
[0012] En effet, lorsque la réaction de sulfhydratation radicalaire s'effectue seule, on obtient majoritairement le polythiol le moins substitué, c'est-à-dire que la majorité des fonctions thiols se fixent sur les atomes de carbone les moins substitués et/ou issus de la formation des radicaux les plus stables. [0013] En ce qui concerne la réaction de su If hydratation catalytique acide, lorsque cette dernière s'effectue seule, on obtient majoritairement le polythiol le plus substitué, c'est-à-dire que la majorité des fonctions thiols se fixent sur les atomes de carbone les plus substitués et/ou issus de la formation des carbocations les plus stables.
[0014] Le procédé selon l'invention, en permettant le déroulement simultané des deux réactions susmentionnées permet de contrôler, c'est-à-dire de modifier, voire d'inverser cette régiosélectivité. En effet, les polythiols obtenus en minorité après une réaction de sulfhydratation radicalaire seule ou après une réaction de sulfhydratation catalytique acide seule, deviennent les polythiols majoritairement obtenus par le procédé selon l'invention.
[0015] Par « polyène », on entend un composé dont la chaîne hydrocarbonée comprend au moins deux insaturations sous forme de double liaison (insaturation « oléfinique »). Cette chaîne hydrocarbonée peut être linéaire ou cyclique, saturée ou insaturée, peut comporter ou non un ou plusieurs hétéroatomes, et peut être interrompue ou substituée par un ou plusieurs groupements aromatiques. Le polyène au sens de la présente invention présente le plus souvent une masse molaire comprise entre 40 g. mol"1 et 1500 g. mol"1, de préférence entre 40 g. mol"1 et 1000 g. mol"1, de préférence encore entre 40 g. mol"1 et 500 g. mol"1, bornes incluses.
[0016] Selon un mode de réalisation de l'invention, le polyène est un composé hydrocarboné comprenant de 2 à 20 doubles liaisons, de préférence de 2 à 16 doubles liaisons, de préférence encore de 2 à 10 doubles liaisons, en particulier de 2 à 8 doubles liaisons, et typiquement de 2 à 4 doubles liaisons, bornes incluses.
[0017] Selon un mode de réalisation de l'invention tout particulièrement préféré, le polyène est un composé hydrocarboné comprenant 2 doubles liaisons, de préférence 3 doubles liaisons, et plus particulièrement 4 doubles liaisons.
[0018] De préférence, les doubles liaisons du polyène ne sont pas comprises dans un cycle. De préférence encore, au moins 2 doubles liaisons du polyène ne sont pas délocalisées pour constituer un cycle aromatique.
[0019] Selon un mode de réalisation de l'invention, le polyène comporte un ou plusieurs hétéroatomes choisis dans les colonnes 15, 16 et 17 de la classification périodique des éléments, et plus particulièrement ceux choisis parmi le soufre, l'azote, l'oxygène et le phosphore. [0020] Selon un mode de réalisation préféré, le polyène est choisi parmi les terpènes et leurs dérivés, comprenant au moins deux doubles liaisons, tel que par exemple l'isoprène, le limonène, le myrcène, le phellandrène, le terpinène, l'ocimène, le terpinolène, le géraniol, le citral, le rétinol, le β-carotène, le farnésène, le sélinène, le cardinène, le farnésol, l'humulène, le linalol et le nérolidol.
[0021 ] Selon un autre mode de réalisation préféré, le polyène est un composé comportant un ou plusieurs hétéroatomes, tel que par exemple le triallyisocyanurate et ses dérivés.
[0022] L'initiateur de radicaux selon l'invention peut-être tout initiateur de radicaux connu de l'homme du métier. L'initiateur de radicaux peut être choisi parmi un initiateur thermique, tel que par exemple le chauffage, photochimique tel que par exemple les radiations, et plus particulièrement les radiations ultraviolettes, et un composé organique ou minéral générateur de radicaux, ou autres, ainsi que les combinaisons de deux ou plusieurs d'entre eux. Dans le cas où ledit initiateur de radicaux est un composé organique ou minéral, il peut être un peroxyde tel que par exemple le peroxyde d'hydrogène, le peroxyde de sodium, le peroxyde de potassium, les hydroperoxydes de tert-alkyle, les peroxydes de tert-alkyle, les peresters de tert-alkyle, l'hydroperoxyde de cumène, ou bien l'initiateur de radicaux peut également être l'azo-bis-iso-butyronitrile, le 2,2-diméthoxy-1 ,2-diphényléthan- 1 -one, lesdits initiateurs de radicaux pouvant être pris seuls ou en combinaison de deux ou plusieurs d'entre eux. On peut également utiliser des alkyl phosphites ou encore des dérivés xanthéniques tels que ceux décrits dans la demande de brevet FR2501679.
[0023] Selon un mode de réalisation préféré de l'invention, l'initiation de radicaux est obtenue par le chauffage et/ou par radiations de lumière, par exemple de lumière ultraviolette.
[0024] Selon un autre mode de réalisation préféré de l'invention, l'initiateur de radicaux comprend le 2,2-diméthoxy-1 ,2-diphénylethan-1 -one, par exemple commercialisé sous la dénomination Irgacure® 651 , éventuellement en mélange avec d'autres initiateurs de radicaux comme décrits par exemple dans les demandes US 4,443,310 A et US 4,233,128 A. [0025] Lorsque nécessaire ou souhaité, le milieu réactionnel peut être chauffé à des températures comprises entre 25°C et 150°C, de préférence entre 25°C et 100°C, en particulier entre 25°C et 70°C.
[0026] Lorsque l'initiation comprend une irradiation du milieu réactionnel, celle-ci peut s'effectuer par exemple par photolyse directe ou indirecte, de préférence directe, dans un domaine de longueurs d'onde s'étendant depuis environ 180 nm jusqu'à 600 nm, de préférence par radiations ultraviolettes et par exemple de longueurs d'ondes comprises entre 180 nm et 400 nm.
[0027] Le catalyseur acide est choisi parmi tous les catalyseurs acides connus de l'homme du métier pour conduire des catalyses acides homogènes ou hétérogènes, et peut par exemple être choisi parmi les acides de Lewis, les résines acides telles que les résines sulfonées (par exemple un copolymère de styrène-divinylbenzène comme décrit dans la demande FR 2531426), et les compositions catalytiques comprenant au moins un sel métallique, dans lequel le métal est choisi parmi les métaux appartenant aux groupes 8, 9 et 10 de la classification périodique des éléments (comme décrit par exemple dans la demande FR 2844794), pris seuls ou en combinaison de deux ou plusieurs d'entre eux.
[0028] Selon un mode de réalisation de l'invention, le catalyseur acide est une résine sulfonée de type copolymère styrène-divinylbenzène, par exemple la résine Amberlyst® 15.
[0029] Le composé donneur de groupement sulfhydryle peut être de tout type connu de l'homme du métier susceptible de générer un groupement sulfhydryle (-SH) dans les conditions réactionnelles, c'est-à-dire l'addition d'un groupement -SH et d'un atome d'hydrogène sur les carbones sp2 du polyène. Ledit composé donneur de groupement sulfhydryle peut être choisi parmi l'hydrogène sulfuré, les acides thiocarboxyliques tels que par exemple l'acide thioacétique, ainsi que les précurseurs de ces composés, pris seuls ou en combinaison de deux ou plusieurs d'entre eux. Parmi les précurseurs des composés donneurs de groupement sulfhydryle, on peut citer par exemple les di- et poly-sulfures de dialkyle, tels que par exemple le disulfure de diméthyle (DMDS), le disulfure de diéthyle (DEDS), le disulfure de dipropyle (DPDS), le disulfure de dibutyle (DBDS), ainsi que les homologues supérieurs, et également leurs mélanges en toutes proportions, comme on peut les trouver dans les DSO (ou « DiSulfide Oils » en langue anglaise). [0030] Selon un mode de réalisation préféré, le procédé selon l'invention est conduit en l'absence de solvant.
[0031 ] Selon un autre mode de réalisation préféré, le procédé selon l'invention est conduit en présence de solvant. La quantité de solvant utilisée peut varier dans de grandes proportions et sera facilement appréciée et ajustée par l'homme du métier en fonction des réactifs utilisés, de la température réactionnelle et autres paramètres réactionnels.
[0032] Lorsqu'un solvant est utilisé, celui-ci peut être de tout type bien connu de l'homme du métier et notamment un solvant choisi parmi l'eau et les composés organiques et leurs mélanges en toutes proportions. Les composés organiques pouvant être utilisés comme solvant sont typiquement choisis parmi les composés hydrocarbonés aliphatiques, les composés hydrocarbonés aromatiques comprenant éventuellement un ou plusieurs hétéroatomes choisis parmi l'oxygène, le soufre, l'azote, et les halogènes.
[0033] Le solvant peut ainsi être choisi parmi les hydrocarbures, les cétones, alcools, éthers, esters, sulfoxydes (par ex. diméthylsulfoxyde), sulfolanes, nitriles (par ex. acétonitrile), pris seuls ou en combinaison de deux ou plusieurs d'entre eux.
[0034] Selon un mode de réalisation de l'invention, le solvant est un composé hydrocarboné aliphatique dans lequel la chaîne hydrocarbonée est linéaire ou cyclique, ramifiée ou non, et comprend entre 3 et 20 atomes de carbone, de préférence entre 4 et 15 atomes de carbone, en particulier entre 5 et 10 atomes de carbone.
[0035] Selon un autre mode de réalisation de l'invention, le solvant est un composé hydrocarboné aromatique comprenant de 6 à 30 atomes de carbone, de préférence de 6 à 20 atomes de carbone, en particulier de 6 à 10 atomes de carbone. Le composé hydrocarboné aromatique peut par exemple être choisi parmi le benzène, le toluène, le xylène (ortho-xylène, para-xylène, méta-xylène) et l'éthylbenzène, pris seuls ou en combinaison de deux ou plusieurs d'entre eux.
[0036] Selon un mode de réalisation de l'invention, le solvant est une cétone comprenant de 2 à 20 atomes de carbone, de préférence de 2 à 10 atomes de carbone, en particulier de 2 à 6 atomes de carbone. La cétone peut ainsi être choisie parmi l'acétone, l'éthylméthylcétone, la méthylisobutylcétone, pris seuls ou en combinaison de deux ou plusieurs d'entre eux. [0037] Selon un mode de réalisation de l'invention, le solvant est un alcool comprenant de 2 à 20 atomes de carbone, de préférence de 2 à 10 atomes de carbone. L'alcool est choisi parmi méthanol, éthanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, alcool benzylique, phénol, cyclohexanol, pris seuls ou en combinaison de deux ou plusieurs d'entre eux.
[0038] Selon un mode de réalisation de l'invention, le solvant est un éther comprenant de 2 à 20 atomes de carbone, de préférence de 2 à 10 atomes de carbone. L'éther peut être cyclique ou non et être choisi parmi diméthyléther, diéthyléther, méthyléthyléther, monoéthers, diéthers de glycol, furane, dihydrofurane, tétrahydrofurane, pyrane, dihydropyrane, tétrahydropyrane, 1 ,2- dioxane, 1 ,3-dioxane, 1 ,4-dioxane.
[0039] La mise en contact des différents éléments du milieu réactionnel peut être effectuée par toute technique connue de l'homme du métier par exemple par simple mélange des réactifs et réactants de départ, éventuellement en présence de solvant(s), le milieu réactionnel pouvant être homogène ou hétérogène. En variante, on peut tout d'abord solubiliser ledit au moins un polyène dans ledit au moins un solvant, puis ajouter ledit au moins un composé donneur de groupement sulfhydryle, et mettre en œuvre ledit au moins un initiateur de radicaux et ledit au moins un catalyseur acide.
[0040] La réaction est généralement conduite à pression atmosphérique, mais peut également être conduite sous dépression, sous vide ou sous pression, ladite pression pouvant aller de la pression atmosphérique à 10 MPa (100 bars), de préférence de la pression atmosphérique à 5 MPa (50 bars), en particulier de la pression atmosphérique à 2 MPa (20 bars).
[0041 ] Le procédé selon l'invention peut être réalisé à toute température, de préférence à une température comprise entre 25°C et 150°C, de préférence encore entre 25°C et 100°C, en particulier entre 25°C et 70°C, la température pouvant être facilement adaptée en fonction de la nature des réactifs, des solvants et des types de catalyseurs utilisés, ainsi que de la pression appliquée au milieu réactionnel.
[0042] La réaction peut se dérouler entre quelques minutes et quelques heures, la durée étant fonction des conditions opératoires décrites précédemment.
[0043] Le procédé de l'invention se caractérise par le fait que l'étape bl de conduite de la réaction comprend à la fois une réaction de sulfhydratation catalytique acide du au moins un polyène et une réaction de sulfhydratation radicalaire dudit au moins un polyène, lesdites réactions de sulfhydratation catalytique acide et de sulfhydratation radicalaire étant réalisées de manière simultanée.
[0044] Par « simultané », on entend que les réactions de sulfhydratation catalytique acide et de sulfhydratation radicalaire sont conduites de manière simultanée et/ou alternée et/ou séquencée sans isolation des intermédiaires réactionnels, jusqu'à la conversion, de préférence jusqu'à la conversion totale, dudit au moins un polyène en polythiols.
[0045] Comme indiqué précédemment, le polyène comprend au moins deux insaturations sous forme de double liaison afin que ces deux réactions puissent avoir lieu simultanément sur le même composé polyène. En effet, dans l'exemple où le polyène comporte deux doubles liaisons porteuses de substituants différents l'une par rapport à l'autre, l'une d'elles subit la réaction de sulfhydratation radicalaire tandis que l'autre subit la réaction de sulfhydratation catalytique acide.
[0046] Lorsque ledit au moins un polyène comporte deux doubles liaisons porteuses de substituants identiques (par exemple dans le cas de polyènes symétriques), il est également possible d'opérer, en agissant sur les conditions opératoires, à la fois une réaction de sulfhydratation radicalaire et une réaction de sulfhydratation catalytique acide, l'une sur au moins une insaturation oléfinique et l'autre sur au moins une autre insaturation oléfinique.
[0047] Le procédé selon l'invention peut être réalisé en continu ou en batch. Lorsque la réaction a lieu en continu, l'étape b/ comprend, avantageusement mais le plus souvent, une étape de recirculation du milieu réactionnel dans une boucle réactionnelle.
[0048] Il a été découvert par la Demanderesse que la conduite simultanée de la réaction de sulfhydratation radicalaire et de la réaction de sulfhydratation catalytique acide selon le procédé selon l'invention peut conduire de manière surprenante à une conversion totale dudit au moins un polyène de départ, conversion qui n'est généralement pas totale lors de la mise en œuvre de ces réactions de manière séparée. Par conversion totale, on entend un taux de conversion supérieur à 90%, plus généralement supérieur à 95%, typiquement supérieur à 99%, et plus spécifiquement égal à 100% du nombre de doubles liaisons présentes dans ledit au moins un polyène de départ. [0049] Le procédé de l'invention permet également de préparer des polythiols à teneurs élevées en fonctions thiols et une teneur limitée, voire nulle, en doubles liaisons. Par exemple, dans le cas où le polyène de départ possède 3 doubles liaisons et dans le cas d'une conversion totale dudit polyène, ledit polyène sera converti en un mélange de polythiols, chaque polythiol comportant 3 fonctions sulfhydryle (-SH).
[0050] Le fait de combiner la voie radicalaire et la voie catalytique acide permet, non seulement l'obtention de polythiols comprenant des thiols primaires et des thiols secondaires et/ou tertiaires, mais les polythiols obtenus sont différents de ceux qui auraient été obtenus si les deux réactions avaient été réalisées séparément. Ce contrôle de la teneur en thiols permet d'ajuster la réactivité du composé polythiol formé, notamment lors de son utilisation.
[0051 ] De plus, le procédé selon l'invention permet d'augmenter la cinétique de réaction conduisant ainsi à minimiser la formation de réactions secondaires telles que les réactions intramoléculaires, et limiter la teneur en impuretés telles que les sulfures.
[0052] En outre, il a été observé que la régiosélectivité des réactions de sulfhydratation peut être contrôlée grâce aux conditions opératoires dans le procédé de la présente invention. Par ailleurs, l'ajustement des conditions opératoires permet également de contrôler le ratio des isomères polythiols formés.
[0053] Le mélange de polythiols obtenu est isolé du milieu réactionnel selon toute méthode connue de l'homme du métier, par exemple par évaporation ou distillation du solvant à pression atmosphérique ou sous pression réduite. Le mélange de polythiols peut être purifié selon des méthodes classiques également bien connues de l'homme du métier et par exemple choisies parmi purification sur résines échangeuses d'ions, filtration sur charbon actif , terres de diatomées ou zéolithes, et autres.
[0054] Le mélange de polythiols obtenus selon le procédé selon l'invention peut être utilisé tel quel ou bien encore, les polythiols dudit mélange peuvent être isolés selon toute méthode de séparation bien connue de l'homme du métier telle que par exemple distillation, cristallisation, chromatographie préparative, et autres.
[0055] La présente invention concerne également le mélange d'au moins deux polythiols susceptible d'être obtenu selon le procédé tel que décrit précédemment. [0056] Ainsi, les mélanges de polythiols susceptibles d'être obtenus selon le procédé de la présente invention peuvent trouver de nombreuses applications tout à fait intéressantes dans de nombreux domaines, par exemple et de manière non limitative, en tant que :
• agent de réticulation ou de vulcanisation ;
• réactif pour la préparation de composés soufrés tels que thio-uréthanes, polysulfures et autres ;
• agent de transfert de chaîne ;
• agent de complexation de métaux ;
• agent de flottation de minerais ;
• antioxydant ;
• stabilisant thermique ;
• et autres.
[0057] La présente demande concerne également l'utilisation des polythiols obtenus par le procédé selon l'invention, exemple comme agents de réticulation dans la préparation d'adhésifs, de colles, de mastics, de revêtements de type résines époxy, acrylates, isocyanates et autres.
[0058] Les polythiols obtenus par le procédé selon l'invention peuvent aussi être utilisés comme réactifs dans des réactions thiol-éniques. En effet, la présence de groupements sulfhydryle à réactivité variable permet d'ajuster la cinétique de la réaction d'addition de la fonction thiol sur un groupement diénique.
[0059] Les polythiols obtenus par le procédé selon l'invention peuvent également être utilisés pour la préparation de thio-uréthanes. En effet, en faisant réagir des polythiols dont la teneur en fonctions thiols est contrôlée, on obtient des composés thiouréthane de structure chimique et de performances différentes de celles qu'on aurait obtenu à partir de polythiols synthétisés soit par voie radicalaire soit par voie catalytique acide classiques.
[0060] Les polythiols obtenus par le procédé selon l'invention peuvent aussi servir de précurseurs pour la synthèse de polysulfures. En effet, par oxydation au soufre, il est possible d'obtenir des composés polysulfures qui peuvent être utilisés en tant qu'additifs pour les lubrifiants ou pour le caoutchouc. Avec les polythiols obtenus par le procédé selon l'invention, du fait de la différence d'encombrement stérique au niveau des liaisons soufrées, les polysulfures formés offrent des réactivités variables.
[0061 ] Les polythiols obtenus par le procédé selon l'invention peuvent agir en tant qu'agents de transfert de chaîne lors de la synthèse de polymères à partir de monomères tels que, par exemple, les monomères vinyliques, les monomères diéniques conjugués, les monomères acryliques, les monomères méthacryliques, et les mélanges de deux ou plusieurs d'entre eux en toutes proportions. La différence de réactivité selon le type et la teneur en groupement sulfhydryle permet un contrôle amélioré de la réaction de polymérisation.
[0062] Comme autre utilisation, les polythiols obtenus par le procédé de la présente invention peuvent aussi être utilisés en tant qu'agents de réticulation pour les caoutchoucs naturels, artificiels ou synthétiques, agents de complexation des métaux, agents de flottation des minerais, en tant que capteurs d'oxygène, en tant qu'inhibiteurs de corrosion et autres.
[0063] La présente invention est maintenant illustrée par l'exemple qui suit, sans pour autant apporter un caractère limitatif à l'invention dont la portée est déterminée par les revendications qui suivent.
Exemple :
[0064] Un mode réalisation du procédé de l'invention est illustré par cet exemple dans lequel on met en œuvre un photo-initiateur et une source de radiations dans un réacteur photochimique, ledit réacteur photochimique comprenant une boucle de recirculation sur laquelle est installé un réacteur tubulaire. Des filtres disposés en amont et en aval du réacteur tubulaire évitent l'entraînement du catalyseur hétérogène.
[0065] Le réacteur dispose en outre d'un système de chauffage permettant de chauffer à la température désirée. Un système de refroidissement situé après le réacteur tubulaire sur la boucle de recirculation permet de refroidir ou de chauffer l'alimentation liquide du réacteur photochimique. Une pompe placée sur cette boucle de recirculation permet de faire varier le débit de liquide.
[0066] On introduit 100 g (0,73 mole) de β-myrcène (de la société DRT) solubilisés dans 1000 g de tétrahydrofurane (Aldrich) et 0,25 g d'Irgacure® 651 (Ciba Specialty Chemicals). On introduit 5 g de résine échangeuse de cations Amberlyst® 15 (Aldrich) sèche dans le réacteur tubulaire.
[0067] Sous recirculation (20 L.h"1), le milieu réactionnel est alors soumis à un bullage d'azote afin d'éliminer les traces d'oxygène résiduel. Au milieu réactionnel sont alors ajoutés 30 équivalents molaires de sulfure d'hydrogène (h S). Le réacteur tubulaire est alors mis à la température désirée (100°C). Une fois cette température atteinte, la lampe est alors allumée. Le milieu réactionnel est soumis à des radiations U.V. (longueur d'onde : 355-365 nm, puissance : 8 Watt), pendant 6 heures à une température de 100°C, et une pression constante de 1 ,5 MPa, ajustée par addition de sulfure d'hydrogène.
[0068] Le contrôle de la conversion se fait en analysant les prélèvements par chromatographie liquide à haute performance (ou pression).
[0069] Au bout de 6 heures, la conversion du polyène de départ a atteint 100%. La lampe est éteinte et la chauffe du réacteur tubulaire est arrêtée. L'excès de sulfure d'hydrogène est ensuite purgé vers un oxydateur thermique par décompression du milieu, puis par un stripage à l'azote. Le mélange est ensuite évaporé sous vide afin d'éliminer le solvant puis distillé afin d'éliminer les impuretés éventuelles, par exemple de type sulfures.
[0070] Le mélange distillé ainsi obtenu présente une pureté supérieure à 98% exprimée en poids de trithiols formés. Ce mélange distillé est caractérisé par RMN et se révèle être composé des polythiols de structures chimiques suivantes :
Figure imgf000013_0001
Figure imgf000014_0001

Claims

REVENDICATIONS
1 . Procédé de préparation de polythiols comprenant au moins les étapes de : a/ préparation d'un milieu réactionnel de sulfhydratation comprenant la mise en contact de :
au moins un polyène ;
au moins un initiateur de radicaux ;
au moins un catalyseur acide ;
au moins un composé donneur de groupement sulfhydryle ;
éventuellement, au moins un solvant ;
b/ conduite simultanée de la réaction de sulfhydratation radicalaire dudit au moins un polyène et de la réaction de sulfhydratation catalytique acide dudit au moins un polyène ;
c/ récupération d'un mélange comprenant au moins deux polythiols.
2. Procédé selon la revendication 1 , dans lequel ledit au moins un polyène est un composé dont la chaîne hydrocarbonée comprend au moins deux insaturations sous forme de double liaison, ladite chaîne pouvant être linéaire ou cyclique, saturée ou insaturée, et comporter ou non un ou plusieurs hétéroatomes choisis dans les colonnes 15, 16 et 17 de la classification périodique des éléments, et plus particulièrement ceux choisis parmi le soufre, l'azote, l'oxygène et le phosphore, et pouvant être interrompue ou substituée par un ou plusieurs groupements aromatiques.
3. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit au moins un polyène est un composé hydrocarboné comprenant de 2 à 20 doubles liaisons, de préférence de 2 à 16 doubles liaisons, en particulier de 2 à 10 doubles liaisons, tout particulièrement de 2 à 8 doubles liaisons, et plus particulièrement de 2 à 4 doubles liaisons, bornes incluses.
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit au moins un polyène est choisi parmi le triallyisocyanurate et ses dérivés, les terpènes et leurs dérivés, comprenant au moins deux doubles liaisons.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit au moins un initiateur de radicaux est choisi parmi un initiateur thermique, photochimique et un composé organique ou minéral générateur de radicaux, pris seuls ou en combinaison de deux ou plusieurs d'entre eux.
6. Procédé selon la revendication 5, dans lequel ledit au moins un initiateur de radicaux est choisi parmi les peroxydes, les hydroperoxydes, l'azo-bis-iso- butyronitrile, le 2,2-diméthoxy-1 ,2-diphényléthan-1 -one, les alkyl phosphites et les dérivés xanthéniques, pris seuls ou en combinaison de deux ou plusieurs d'entre eux.
7. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit au moins un catalyseur acide est choisi parmi les acides de Lewis, les résines acides sulfonées et les compositions catalytiques comprenant au moins un sel métallique, pris seul ou en combinaison de deux ou plusieurs d'entre eux.
8. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit au moins un composé donneur de groupement sulfhydryle est choisi parmi l'hydrogène sulfuré, les acides thiocarboxyliques et leurs précurseurs, pris seuls ou en combinaison de deux ou plusieurs d'entre eux.
9. Procédé selon l'une quelconque des revendications précédentes, conduit en absence de solvant.
10. Mélange d'au moins deux polythiols obtenu selon le procédé selon l'une quelconque des revendications 1 à 9.
1 1 . Utilisation du mélange selon la revendication 10 ou obtenu selon le procédé de l'une quelconque des revendications 1 à 9, en tant que agent de réticulation ou de vulcanisation, réactif pour la préparation de composés soufrés tels que les thio- uréthanes, les polysulfures et autres, agent de transfert de chaîne, agent de complexation de métaux, agent de flottation de minerais, antioxydant, stabilisant thermique.
PCT/FR2018/050295 2017-02-13 2018-02-06 Procédé de préparation de polythiols WO2018146415A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020197022582A KR102499208B1 (ko) 2017-02-13 2018-02-06 폴리티올의 제조 방법
EP18707088.3A EP3580202A1 (fr) 2017-02-13 2018-02-06 Procédé de préparation de polythiols
US16/483,298 US20200010412A1 (en) 2017-02-13 2018-02-06 Method for preparing polythiols
SG11201906990WA SG11201906990WA (en) 2017-02-13 2018-02-06 Method for preparing polythiols
JP2019541450A JP6930064B2 (ja) 2017-02-13 2018-02-06 ポリチオールの製造方法
CN201880011436.7A CN110461816A (zh) 2017-02-13 2018-02-06 制备多硫醇的方法
MYPI2019004586A MY189781A (en) 2017-02-13 2018-02-06 Method for preparing polythiols

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1751160 2017-02-13
FR1751160A FR3062852B1 (fr) 2017-02-13 2017-02-13 Procede de preparation de polythiols

Publications (1)

Publication Number Publication Date
WO2018146415A1 true WO2018146415A1 (fr) 2018-08-16

Family

ID=59070775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/050295 WO2018146415A1 (fr) 2017-02-13 2018-02-06 Procédé de préparation de polythiols

Country Status (9)

Country Link
US (1) US20200010412A1 (fr)
EP (1) EP3580202A1 (fr)
JP (1) JP6930064B2 (fr)
KR (1) KR102499208B1 (fr)
CN (1) CN110461816A (fr)
FR (1) FR3062852B1 (fr)
MY (1) MY189781A (fr)
SG (1) SG11201906990WA (fr)
WO (1) WO2018146415A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020115560A1 (fr) 2018-12-04 2020-06-11 Arkema France Systèmes à composants multiples pour préparer des produits alvéolaires

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894312B (zh) * 2022-11-03 2024-05-03 万华化学集团股份有限公司 一种采用多碳烯烃合成多碳硫醇的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2865965A (en) * 1957-02-26 1958-12-23 American Oil Co Chemical process
US4233128A (en) 1978-05-05 1980-11-11 Societe Nationale Elf-Aquitaine (Production) Photosynthesis of mercaptans
FR2501679A1 (fr) 1981-03-12 1982-09-17 Elf Aquitaine Perfectionnement a la synthese photoinitiee de mercaptans
FR2531426A1 (fr) 1982-08-05 1984-02-10 Elf Aquitaine Procede de synthese de mercaptans a partir d'olefines et d'hydrogene sulfure, par catalyse heterogene
US4443310A (en) 1981-03-12 1984-04-17 Societe Nationale Elf Aquitaine (Production) Photoinitiated synthesis of mercaptans
FR2844794A1 (fr) 2002-09-25 2004-03-26 Atofina Procede catalytique de fabrication d'alkylmercaptans par addition d'hydrogene
US20120035291A1 (en) 2010-08-03 2012-02-09 Chevron Phillips Chemical Company Lp Methods of mercaptanizing olefinic hydrocarbons and compositions produced therefrom

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2531602A (en) * 1946-12-28 1950-11-28 Pure Oil Co Production of thioethers and/or mercaptans
US3069472A (en) * 1960-08-23 1962-12-18 Pennsalt Chemical Corp Novel process for preparation of mercaptans by catalytic cleavage of sulfides
US3397243A (en) * 1965-08-09 1968-08-13 Gulf Research Development Co Process for the production of mercaptans and sulfides from alpha olefins
IL34486A (en) * 1969-06-04 1973-10-25 Stauffer Chemical Co The preparation of mercaptans
FR2627184B1 (fr) * 1988-02-17 1990-07-13 Elf Aquitaine Procede de preparation de dithiols
US5608115A (en) * 1994-01-26 1997-03-04 Mitsui Toatsu Chemicals, Inc. Polythiol useful for preparing sulfur-containing urethane-based resin and process for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2865965A (en) * 1957-02-26 1958-12-23 American Oil Co Chemical process
US4233128A (en) 1978-05-05 1980-11-11 Societe Nationale Elf-Aquitaine (Production) Photosynthesis of mercaptans
FR2501679A1 (fr) 1981-03-12 1982-09-17 Elf Aquitaine Perfectionnement a la synthese photoinitiee de mercaptans
US4443310A (en) 1981-03-12 1984-04-17 Societe Nationale Elf Aquitaine (Production) Photoinitiated synthesis of mercaptans
FR2531426A1 (fr) 1982-08-05 1984-02-10 Elf Aquitaine Procede de synthese de mercaptans a partir d'olefines et d'hydrogene sulfure, par catalyse heterogene
FR2844794A1 (fr) 2002-09-25 2004-03-26 Atofina Procede catalytique de fabrication d'alkylmercaptans par addition d'hydrogene
US20120035291A1 (en) 2010-08-03 2012-02-09 Chevron Phillips Chemical Company Lp Methods of mercaptanizing olefinic hydrocarbons and compositions produced therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020115560A1 (fr) 2018-12-04 2020-06-11 Arkema France Systèmes à composants multiples pour préparer des produits alvéolaires

Also Published As

Publication number Publication date
CN110461816A (zh) 2019-11-15
EP3580202A1 (fr) 2019-12-18
JP2020506191A (ja) 2020-02-27
JP6930064B2 (ja) 2021-09-01
MY189781A (en) 2022-03-07
KR102499208B1 (ko) 2023-02-10
FR3062852A1 (fr) 2018-08-17
SG11201906990WA (en) 2019-08-27
US20200010412A1 (en) 2020-01-09
KR20190119037A (ko) 2019-10-21
FR3062852B1 (fr) 2021-05-07

Similar Documents

Publication Publication Date Title
EP3060545B1 (fr) Procédé de synthèse d'un mercaptan par addition d'hydrogène sulfuré sur une oléfine
EP3580202A1 (fr) Procédé de préparation de polythiols
BE1010101A5 (fr) Procede de production de composes polysulfures organiques.
EP2621896B1 (fr) Procédé de préparation de disulfure de diméthyle
FR2808272A1 (fr) Procede de fabrication d'olefines sulfurees
EP2315871A1 (fr) Dimethyldisulfure issu au moins partiellement de matieres renouvelables
FR3012448B1 (fr) Procede de production d'esters (meth)acryliques legers
EP3250629B1 (fr) Compositions de vinylnorbornène mercaptanisé et leurs procédés de production
FR3101631A1 (fr) Procede de preparation de mercaptans par sulfhydrolyse de sulfures
WO2019154645A1 (fr) Procede de separation d'olefines non lineaires d'une charge olefinique par distillation reactive
FR2804955A1 (fr) Procede de fonctionnalisation d'une double liaison
EP0272181B1 (fr) Synthèse de dithiols
CA1307009C (fr) Procede de preparation de dithiols
WO1996026185A1 (fr) Reactif, compose et procede pour la perfluoroalcylation de nucleophile, ainsi que les derives obtenus
EP0382617B1 (fr) Synthèse d'alcanedithiols vicinaux
FR3061493A1 (fr) Procede de synthese de polysulfures fonctionnalises
EP1149829A1 (fr) Procédé de fabrication d'oléfines sulfurées
WO2003085014A1 (fr) Melanges hydrocarbones comprenant des hydrocarbures aromatiques polycycliques modifies
CA3121907A1 (fr) Procede de traitement d'une charge alcool pour la production d'olefines
EP3107895B1 (fr) Dérivés phénoliques soufrés
EP1445299A1 (fr) Procédé d'obtention d'une charge utilisable dans une unité d'etherification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18707088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197022582

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2019541450

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018707088

Country of ref document: EP