WO2018145603A1 - 高电压大电流等零相位开关及控制方法 - Google Patents

高电压大电流等零相位开关及控制方法 Download PDF

Info

Publication number
WO2018145603A1
WO2018145603A1 PCT/CN2018/075076 CN2018075076W WO2018145603A1 WO 2018145603 A1 WO2018145603 A1 WO 2018145603A1 CN 2018075076 W CN2018075076 W CN 2018075076W WO 2018145603 A1 WO2018145603 A1 WO 2018145603A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
current
voltage
circuit unit
circuit
Prior art date
Application number
PCT/CN2018/075076
Other languages
English (en)
French (fr)
Inventor
王海
Original Assignee
王海
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王海 filed Critical 王海
Priority to BR112019016457A priority Critical patent/BR112019016457A2/pt
Priority to EP18751038.3A priority patent/EP3582241A4/en
Priority to US16/484,639 priority patent/US11211215B2/en
Publication of WO2018145603A1 publication Critical patent/WO2018145603A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/548Electromechanical and static switch connected in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/42Driving mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H2009/566Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle with self learning, e.g. measured delay is used in later actuations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/42Driving mechanisms
    • H01H33/423Driving mechanisms making use of an electromagnetic wave communication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/123Automatic release mechanisms with or without manual release using a solid-state trip unit
    • H01H71/125Automatic release mechanisms with or without manual release using a solid-state trip unit characterised by sensing elements, e.g. current transformers

Definitions

  • the invention relates to the field of electrical load switches for electrical engineering, in particular to a high voltage and large current phase switch.
  • Load switches and circuit breakers are an integral part of the power distribution system and are used to turn the power on or off.
  • the traditional load switch and circuit breaker are all closed or disconnected by mechanical contacts.
  • the high voltage switch is difficult to solve due to the long contact stroke and the arcing and arc reignition when the switch contacts are disconnected.
  • the switch uses various physical arc extinguishing methods to reduce and avoid sparking when the switch contacts are closed and when the switch contacts are open.
  • the existing switch contacts are subjected to large surge currents or high voltage pulses at the moment of closing and opening, which on the one hand exert a great pressure on the switch contacts and on the other hand cause pollution to the power grid. Pulses or surge currents can cause damage to electrical appliances in the grid. If the switch contact operates at zero current or voltage, without the energy of gas ionization, there will be no ignition or arcing. Obviously, the traditional mechanical contact switch cannot solve this problem.
  • the existing various power switches are all in the way of arc extinguishing. Putting the contacts of the switch in a vacuum or SF6 gas environment is to reduce the possibility of gas ionization at both ends of the contact, and another important factor in generating an arc. The factor "current" is rarely used to think of a solution.
  • the switch contact can be operated at the zero point of the alternating current, it can also ensure that no arc is generated when the contact is actuated. But letting the switch contacts act instantaneously at the zero point of the alternating current, the difficulty is no different from the high-speed rotating fan blade shooting, which seems almost impossible.
  • Chinese patent ZL201110034379.4 discloses a high-voltage electronic arc extinguishing switch, which uses a series of auxiliary relay contacts and a series circuit of diodes to protect the main switch, and proposes a solution that the switch contacts act instantaneously at the zero point of the alternating current.
  • the shortcoming of this patent is that all switch contacts are controlled by a switch control module, and each relay switch has a high voltage between the contacts and the coil, so this high-voltage load switch scheme is for tens of thousands of volts or more. There is not much practical value in the field of high pressure.
  • the traditional switches are single contacts, because multiple switches in parallel cannot solve the current sharing problem of each switch branch. As a result, the switch branch with a large current is easily burned first, and then the other switch branches are distributed. The current increases and accelerates the damage of all switching branches. For a single-contact switch, the larger the current, the more complicated the operating mechanism of the contact, which results in increased cost and reduced reliability of the contact operating mechanism. On the other hand, even if the current is large, even the skin effect of the power frequency AC can not be ignored, and the increase of the wiring and contact resistance caused by the skin effect of the single-contact switch at a large current is difficult to solve.
  • the object of the present invention is to provide an air contact high voltage and large current phase switch, that is, a high voltage switch that does not require vacuum, insulating oil or SF6 gas protection, and the contacts of such switches are closed and disconnected in an alternating current
  • the phase zero is instantaneously operated, and no inrush current or overvoltage occurs during the switching operation.
  • the invention provides a zero-phase switching and control method for high voltage and large current, comprising: connecting two or more switch unit modules in series,
  • the switch unit module is composed of a main switch circuit, an auxiliary switch circuit, a power supply and a voltage equalization circuit unit, and a current transformer connected to the main switch circuit, and the auxiliary switch circuit and the power supply and the equalization circuit unit are all connected in parallel at both ends of the main switch circuit.
  • the current transformer output is connected to a power supply and a voltage equalization circuit unit, the power supply and the voltage equalization circuit unit provide power for the switch control and the communication circuit unit, and the switch control and communication circuit unit controls the closing or opening of the main relay and the auxiliary relay.
  • the auxiliary switching circuit is a series circuit of diode and relay contacts.
  • the power supply and the grading circuit unit use a capacitor step-down circuit as a power supply circuit when the main switch is turned off, and use the transformer output rectification as a power input when the main switch is closed.
  • the switch control and communication circuit unit is connected to a communication module such as an optocoupler, an optical fiber, an infrared or a Bluetooth.
  • the main switch of the switch unit module may be a vacuum bubble, and the auxiliary switch circuit may be composed of two or more common relay switch contacts and a high voltage diode series circuit.
  • the switch unit module comprises two or more main switch circuits and two or more auxiliary contact circuits to form a large current switch unit module, and all the main switch circuits and the auxiliary contact circuits are connected in parallel, and each main switch circuit is connected Current Transformer.
  • the control method of the high current switch unit module includes the following steps:
  • the current transformer of each switch contact branch detects the current of each branch, and sends the current signals of each branch to the switch control and communication circuit unit through the power supply and the equalizing circuit unit.
  • the switch control and communication circuit unit controls the contact of the branch to be instantaneously disconnected, so that the average current passed by the branch is substantially equal to the other branch currents, thereby achieving the current sharing of each branch. the goal of.
  • the high-voltage and high-current zero-phase switch of the invention can realize the connection or disconnection of the high-voltage alternating current by using the air contact, solves the problem that the mechanical contact switch cannot be connected in series, and has no inrush current and sparking when the switch contact is closed. When the switch contact is open, there is no overvoltage and arcing.
  • the switch has a simple structure and high reliability.
  • the zero-phase switch such as the high voltage and large current of the present invention can realize an AC power load switch of any level of high voltage and any level of high current.
  • FIG. 1 Circuit diagram of the switch unit module.
  • FIG. 2 is a schematic diagram of a zero-phase switching circuit of a high voltage and a large current according to the present invention.
  • Fig. 3 shows one embodiment of a zero-phase switching device such as a high voltage and a large current according to the present invention.
  • FIG. 4 is a schematic circuit diagram of a high current switching unit module of the present invention.
  • Fig. 5 is a perspective view showing an embodiment of a zero-phase switching device such as a high voltage and a large current according to the present invention.
  • FIG. 1 is a circuit diagram of a switch unit module, which is composed of a main relay J (main switch contact K) and an auxiliary relay JD (auxiliary Switch contact KD), diode D, current transformer CT, power supply and voltage equalization circuit unit and switch and communication circuit unit.
  • the auxiliary relay contact KD and the diode D are connected in series to form an auxiliary switching circuit.
  • the auxiliary switching circuit is connected in parallel with the auxiliary switching circuit and the power supply and the equalizing circuit unit, and the current transformer CT is connected with the power supply and the voltage equalizing circuit unit.
  • the power supply and voltage equalization circuit unit provides power and AC power reference for the control and communication circuit unit: when the main switch is in the off state, the power supply and voltage equalization circuit unit 1 obtains power from the voltage across the main switch, and is stepped down, rectified, filtered, and After the voltage regulation, the control and communication circuit unit is powered; 2, the voltage signal is obtained from the voltage across the main switch to provide the AC voltage time reference for the control and communication circuit unit; 3 the simultaneous power supply circuit unit also acts to equalize when the switch unit module is connected in series. Function, this power circuit unit can use a capacitor step-down rectifier circuit. The step-down capacitor not only acts as a step-down in the power circuit unit. If all the switching unit modules use the same capacity of the step-down capacitor, they can be equalized.
  • the capacitor step-down rectifier power supply has no power input.
  • the current transformer is required to supply power to the control and communication circuit unit, and the current transformer CT is also controlled.
  • the communication circuit unit provides an AC time reference. The principle of the capacitor step-down rectifier circuit unit and the current transformer power supply circuit unit can be implemented by a general technician, and will not be described here.
  • the high voltage, high current, etc. zero phase switch of the present invention is composed of a plurality of switching unit modules of FIG. 1 connected in series.
  • the main switch on all the switch unit modules is in the off state, and the capacitor step-down circuit of all the switch unit modules works.
  • the step-down capacitor has two functions. One is to ensure that all switches bear the same voltage, It will break down due to the high voltage of a switch; the second is to provide low-voltage DC power for each switch control and communication circuit unit after the capacitor is stepped down, rectified and filtered.
  • the switch When the switch is closed, the main switches on all the switch unit modules are in the closed state, all the switch unit modules are at the same potential, and the current transformers on all the switch unit modules provide low-voltage DC power for each switch control and communication circuit unit. It is the most economical and reliable way to take power from the power bus. However, when the switch is closed and the bus current is small, the energy transmitted by the current transformer is not enough to maintain the power of the switch control and communication circuit unit. Other power supply methods can be considered. Such as strong light to illuminate solar cells, microwave power transmission and other methods.
  • control circuit in FIG. 2 is the power supply and voltage equalization circuit unit and the switch control and communication circuit unit in FIG. General
  • the control circuit controls the auxiliary relay contacts KD01-KD0N to close during the negative half cycle of the same voltage (Uab), and then all auxiliary switching circuits when the positive half cycle is reached.
  • the series diodes D01-D0N will be turned on at the same time. Then all the control circuits control the corresponding main relays J01-J0N to be closed in the positive half cycle of Uab.
  • each main switch contact K01-K0N It is impossible for each main switch contact K01-K0N to be closed at the same time, but as long as it is guaranteed in the positive half cycle Finish closing.
  • the bounce of the contact occurs.
  • the current flows through the corresponding auxiliary switch branch.
  • the voltage across the contact is the forward voltage of the diode is about 0.7V.
  • the control circuit controls all the auxiliary relay contacts KD01-KD0N to close first, and then the control circuit of all the switch unit modules controls the main switch K01-K0N to be disconnected during the positive half cycle of the Iab current.
  • the contacts K01-K0N of all main switches cannot be disconnected at the same instant.
  • the main switch K current that is disconnected first flows through the auxiliary relay contact KD and the diode series branch, ensuring that the entire series switching circuit current is continuous and broken.
  • the open main switch K only receives the conduction voltage of the diode at about 0.7V, and the main switch does not cause arcing.
  • Coordination action is required between each switch unit module, communication connection is required, and various communication modes, such as optocoupler communication, optical fiber communication, infrared communication, and the like, can be used between each switch unit module and an external controller and between each switch unit module.
  • Bluetooth communication and other methods The wireless Bluetooth communication method has high security, high communication speed, low power consumption and low cost.
  • a plurality of AC high voltage load switches of any high voltage can be composed of a plurality of switching unit modules of the present invention in series.
  • the high-voltage, high-current, etc. zero-phase switch of the present invention is a series of embodiments of the present invention shown in FIG. 3 using a plurality of switching unit modules in series.
  • the main switch K01-K0N in the switching unit module can be vacuumed.
  • Bubble, auxiliary switch can use ordinary relay, the general vacuum bubble break point voltage can be 35kV.
  • the contact between the contacts of the common relay can easily achieve 5000Vac withstand voltage, and the five relays can withstand more than 20kV in series.
  • the capacitors connected in parallel at the contact of the auxiliary relay are auxiliary switch contacts when the main switch is disconnected.
  • the voltage equalization function, a plurality of common relays and high-voltage diodes are connected in series to realize the function of the auxiliary switching circuit.
  • the withstand voltage of a vacuum circuit breaker is 20kV, and five such switching unit modules can realize a high-voltage switch of 100kV in series.
  • the present invention proposes a high current switching unit module.
  • the high current switching unit module shown in FIG. 4 is composed of three main switching circuits and three.
  • the auxiliary contact circuit is composed of three main switch circuits and auxiliary contact circuits connected in parallel to form a large current switch unit module, and a current transformer is connected to each main switch circuit.
  • the closing and opening process of the switch is similar to the switch closing and disconnecting process described in FIG. 2, and details are not described herein again.
  • the current sharing control method of the high current switch unit module is as follows: after the multi-channel main switch is closed, the current transformer of each switch contact branch detects the current of each branch, and passes the current signals of each branch through the power supply and both The voltage circuit unit is sent to the switch control and communication circuit unit. When a branch current is too large, the switch control and communication circuit unit controls the contact of the branch to open for a short time, so that the average current through the branch is reduced. And the average current of the other branches is basically equal, so as to achieve the purpose of equalizing the current of each branch.
  • the temperature of the switch can also be detected by the method of detecting the temperature of the switch by the thermal sensor.
  • the contact resistance of the switch branch is too large, which will cause the branch to generate heat, which is attached to the switch contact.
  • the thermistor next to the contact detects the change of the contact temperature and sends it to the switch control and communication circuit unit.
  • the branch switch contact can be temporarily disconnected. After the temperature is lowered. Then close the contacts of the switch. Because the switch heat is caused by poor contact contact, the general switch contact re-action will reduce the contact resistance and make the contact contact better. If the contact resistance of the contact is not improved, the switch contacts can be intermittently operated to share the work of the other switches, thus preventing the accelerated aging damage of the problematic switch.
  • a plurality of high-current switches can be connected in series to form a high-voltage and high-current switch.
  • a plurality of high-current switching unit modules can be connected in parallel and in series to realize an AC high-voltage switch of any high voltage and any high current.
  • FIG. 5 is a schematic diagram showing the outer structure of a zero-phase switch such as a high voltage and a large current according to the present invention.
  • the switch unit module of the present invention can be installed in a high voltage insulated terminal, that is, a high voltage switch unit is formed, and one end of the high voltage switch single terminal is a screw. The other end is a nut, which can conveniently connect the high voltage switch unit in series to form a high voltage switch.
  • a high-voltage switch unit has a withstand voltage of 10KVac, and 100 such high-voltage switch units can be used to form a 1KKV switch, which can only be realized by conventional technology using SF6 gas protection, and the size of the switch is very large, and A large supporting equipment is needed, and the zero-phase switch such as the high voltage and high current of the present invention does not require an external power supply and an auxiliary device, and can be installed and used very conveniently.
  • the zero-phase switch of the high voltage and large current of the invention has low power consumption, and the operation department adopts a wireless remote control mode, on the one hand, the operation of the switch is more safe, and on the other hand, the cost of the switch is greatly reduced.

Abstract

本发明提供一种高电压大电流等零相位开关及控制方法,包括:两个以上开关单元模块串联,开关单元模块由主开关回路、辅助开关回路、电源及均压电路单元和接在主开关回路的电流互感器组成,辅助开关回路和电源及均压电路单元并联在主开关两端,电流互感器输出接到电源及均压电路单元,电源及均压电路单元为开关控制及通讯电路单元提供电源,开关控制及通讯电路单元控制主开关和辅助继电器的闭合或断开。本发明的高电压大电流等零相位开关使用空气触点开关实现了以前只有真空开关或SF6开关才能实现的高压开关,由于触点无需真空或SF6保护,开关的造价和维护成本更低,且开关动作时没有涌流,不会产生拉弧,对电网不会造成污染。

Description

高电压大电流等零相位开关及控制方法 技术领域
本发明涉及电气工程的电气负荷开关领域,尤其涉及一种高电压大电流相位开关。
背景技术
负荷开关和断路器是供配电系统必不可少的部件,用于接通或切断电源。传统的负荷开关和断路器都是由机械触点完成闭合或断开过程,高压开关由于触点行程长所以开关触点断开时的拉弧和电弧重燃是很难解决的难题,传统的开关是通过各种物理灭弧的方法来减少和避免开关触点闭合时的打火和开关触点断开时的拉弧。从灭弧原理、使用电压的等级来分有产气式灭弧、真空灭弧、油灭弧、SF6灭弧等,负荷开关或断路器在使用了上述的灭弧方式才可以保证开关在闭合和断开的瞬间减少或避免打火或拉弧的产生,从而保证开关触点的完好和开关有效的断开。随着开关分断电压的增加,灭弧装置的复杂程度和成本也相应的增加。SF6的绝缘性能和灭弧特性都大大高于真空或绝缘油,由于SF6气体应用和运行成本很高,故只在110kV以上的电压等级使用。但由于SF6对环境的破坏,超高压负荷开关领域一直想找一种替代SF6的材料,但一直没有理想的解决方案。
现有的开关触点在闭合和断开的瞬间承受巨大浪涌电流或高电压脉冲,一方面给开关触点造成的很大的压力,另一方面给电网也造成了污染,这种高电压脉冲或浪涌电流有可能对电网中的电器造成损坏。如果开关触点在电流或电压为零点动作,没有了气体电离的能量,也就不会产生打火或拉弧了,显然传统的机械触点开关是无法解决这个问题的。现有的各种电力开关都是在灭弧上想办法,把开关的触点置于真空或SF6气体的环境下就是为了降低触点两端气体电离的可能性,而产生电弧的另外一个重要因素“电流”却很少有人去想解决方案,如果能让开关触点在交流电的零点瞬间动作,同样也可以保证在触点动作时不产生电弧。但让开关触点在交流电的零点瞬间动作,其难度无异于穿过高速旋转的扇叶打靶,似乎是几乎不可能的事情。
技术问题
中国专利ZL201110034379.4公开了一种高压电子灭弧开关,是用一组辅助继电器触点和二极管的串联回路保护主开关,提出了一种开关触点在交流电的零点瞬间动作的解决方案。但这个专利的不足在于,所有的开关触点使用一个开关控制模块进行控制,每个继电器开关的触点与线圈之间要承受很高的电压,所以这个高压负荷开关方案对于几万伏以上的高压领域没有太大实际实用价值。
传统的开关都是单一触点的,因为多个开关并联无法解决各个开关支路的均流问题,结果是通过电流较大的开关支路很容易最先被烧毁,之后导致其它开关支路分配电流增加而加速所有开关支路的损坏。而对于单触点开关,电流越大触头的操作机构就越复杂,这也就造成了触头操作机构的成本上升、可靠性降低。另一方面,电流很大时即使工频交流电的趋肤效应也不可忽视,单触头开关在大电流时趋肤效应造成的接线和接触电阻的增加也是很难解决的。
技术解决方案
本发明的目的是提供一种空气触点高电压大电流相位开关,即不需要真空、绝缘油或SF6气体保护方式的高压开关,而且这种开关的触点的闭合和断开是在交流电的相位零点瞬间动作,开关动作时不产生涌流或过电压。
本发明的目的是通过以下技术方案来实现:
本发明提供了一种高电压大电流等零相位开关及控制方法,包括:两个以上开关单元模块串联,
所述开关单元模块由主开关回路、辅助开关回路、电源及均压电路单元和接在主开关回路的电流互感器组成,辅助开关回路和电源及均压电路单元都并联在主开关回路两端,
所述电流互感器输出接到电源及均压电路单元,电源及均压电路单元为开关控制及通讯电路单元提供电源,开关控制及通讯电路单元控制主继电器和辅助继电器的闭合或断开,
所述辅助开关回路是一个二极管与继电器触点的串联电路。
所述电源及均压电路单元在主开关断开时使用电容降压电路作为电源电路,在主开关闭合时使用互感器输出整流后作为电源输入。
所述开关控制及通讯电路单元连接光耦、光纤、红外或蓝牙等通讯模块。
所述开关单元模块的主开关可以是真空泡,辅助开关回路可以是两个以上普通继电器开关触点和高压二极管串联回路组成。
所述开关单元模块由两个以上的主开关回路和两个以上的辅助触点回路组成大电流开关单元模块,所有主开关回路和辅助触点回路并联在一起,在每个主开关回路连接有电流互感器。
所述大电流开关单元模块的控制方法,包括以下步骤:
多路主开关闭合后,各路开关触点支路的电流互感器检测每个支路的电流,并把各支路的电流信号通过电源及均压电路单元送到开关控制及通讯电路单元,当某一支路电流过大时,开关控制及通讯电路单元控制该支路的触点瞬间断开,使该支路通过的平均电流与其它支路电流基本相等,从而达到各支路均流的目的。
有益效果
本发明的高电压大电流等零相位开关采用空气触点即可实现高压交流电流的接通或断开,解决了机械触点开关不能串联的难题,而且开关触点闭合时无涌流和打火,开关触点断开时无过电压和拉弧。开关结构简单、可靠性高,理论上本发明的高电压大电流等零相位开关可以实现任意等级高电压和任意等级高电流的交流电负荷开关。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1、开关单元模块电路示意图。
图2、本发明的高电压大电流等零相位开关电路示意图。
图3、本发明的高电压大电流等零相位开关实施例之一。
图4、本发明的大电流开关单元模块电路示意图。
图5、本发明的高电压大电流等零相位开关实施例外形图。
本发明的最佳实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的高电压大电流等零相位开关是由多个相同的开关单元模块串联组成,图1是一个开关单元模块电路示意图,由主继电器J(主开关触点K)、辅助继电器JD(辅助开关触点KD)、二极管D、电流互感器CT、电源及均压电路单元和开关及通讯电路单元组成。辅助继电器触点KD和二极管D串联组成辅助开关回路,主开关回路两端并联辅助开关回路和电源及均压电路单元,电流互感器CT与电源及均压电路单元连接。电源及均压电路单元为控制及通讯电路单元提供电源和交流电基准:当主开关处于断开状态时,电源及均压电路单元①从主开关两端电压取得电源,经过降压、整流、滤波和稳压后为控制及通讯电路单元供电;②从主开关两端电压取得电压信号为控制及通讯电路单元提供交流电压时间基准;③同时电源电路单元也起到当开关单元模块串联时均压的作用,这个电源电路单元可以采用电容降压整流电路,降压电容不仅在电源电路单元里起到降压的作用,如果所有开关单元模块使用的降压电容器容量一致,即可起到均压的作用。当开关闭合后,电源及均压模块电路单元两端没有电压,电容降压整流电源没有电源输入,这时需要通过电流互感器为控制及通讯电路单元提供电源,同时电流互感器CT还为控制及通讯电路单元提供交流电时间基准。电容器降压整流电路单元和电流互感器供电电路单元原理一般技术人员都可以实现,在此不做叙述。
本发明的高电压大电流等零相位开关由多个图1的开关单元模块串联组成的。开关处于断开状态时,所有开关单元模块上的主开关处于断开状态,所有开关单元模块的电容降压电路工作,降压电容器有两个作用,一是保证所有开关承受相同的电压,不会由于某个开关承受电压过高而发生击穿;二是经过电容器降压、整流滤波稳压后,为各个开关控制及通讯电路单元提供低压直流电源。当开关闭合时,所有开关单元模块上的主开关处于闭合状态,所有开关单元模块处于同一电位,所有开关单元模块的上的电流互感器为各个开关控制及通讯电路单元提供低压直流电源。从电源母线上取电是最经济可靠的办法,但当开关闭合后且母线电流很小时,电流互感器传输的能量不足以维持开关控制及通讯电路单元的用电,可以考虑采用其它的供电方式,如强光照射太阳能电池、微波电能传输等办法。
本发明的实施方式
下面结合图2说明本发明的高电压大电流等零相位开关的动作过程及控制方法(图2 中的“控制电路”是图1中的电源及均压电路单元和开关控制及通讯电路单元的总称):当所有控制电路接收到开关闭合指令后,所有控制电路控制辅助继电器触点KD01-KD0N在同一个电压(Uab)负半周期间闭合,之后当到电压正半周时,所有的辅助开关回路串联的二极管D01-D0N将会同时导通,接着所有的控制电路控制相应的主继电器J01-J0N在Uab正半周闭合,各个主开关触点K01-K0N不可能同时闭合,但只要保证在正半周完成闭合即可。各个主开关闭合过程中会发生触点的弹跳,当触点跳开瞬间,电流会通过相应的辅助开关支路流过,触点两端承受的电压为二极管的正向导通电压约0.7V,只要保证各个主开关在电流正半周期间完成闭合及触点的弹跳过程,就不会产生开关触点的打火和涌流。所有主开关K01-K0N闭合后,断开辅助继电器触点KD01-KD0N,即完成了高压开关的闭合过程。关于如何缩短继电器的动作时间和减少触点的弹跳次数,可以参考中国专利201310265141.1,在此不做赘述。当主开关K01-K0N闭合后,将各个开关单元模块的电源及均压电路单元的输入短路,对应的电容降压整流电源停止工作,这时各个开关单元模块上的电流互感器CT01-CT0N开始为各开关控制及通讯电路单元供电,并为开关控制及通讯电路单元提供交流电时间基准,同时还可测量通过开关的电流并从通讯电路单元将电流数据传出。当所有控制电路收到开关断开指令时,控制电路控制所有的辅助继电器触点KD01-KD0N先闭合,然后在Iab电流正半周期间所有开关单元模块的控制电路控制主开关K01-K0N断开,所有主开关的触点K01-K0N不可能在同一瞬间断开,先断开的主开关K电流从辅助继电器触点KD和二极管串联支路流过,保证了整个串联开关回路电流连续,并且断开的主开关K两端只承受二极管的导通电压约0.7V,主开关不会发生拉弧现象。所有开关单元模块的主开关K01到K0N在电流正半周期间完全断开后,电流通过KD01和D01到KD0N和D0N辅助开关回路流过。当电流正半周结束后,所有开关单元模块的辅助开关回路串联的二极管立刻截止,在接下来的二极管截止期间内控制电路控制所有的辅助开关触点KD01-KD0N断开,即完成的高压开关的断开过程。
在开关的闭合和断开过程种,所有的二极管是等到交流电变换相位瞬间自动的导通或断开,无需精确的对导通和断开时间进行控制,这就是所谓的等零技术。而且在开关的闭合和断开过程中,所有的主开关和辅助继电器触点都不承受电压,开关触点动作过程中不打火、不拉弧,这大大提高的开关触点的电气寿命,这是传统的机械触点开关无法实现的。
每个开关单元模块之间需要协调动作,需要通讯连接,各个开关单元模块与外部控制器之间及各个开关单元模块之间可以采用各种通讯方式,如光耦通讯、光纤通讯、红外通讯及蓝牙通讯等方式。采用无线蓝牙通讯方式安全性高、通讯速率高、功耗小、成本低。
如上所述,所有的开关单元模块使用独立的电源,开关在闭合和断开期间主开关和辅助开关触点都不承受电应力,不会打火和拉弧。理论上由多个本发明的开关单元模块串联可以组成任意高电压的交流高压负荷开关。
本发明的高电压大电流等零相位开关是使用多个开关单元模块串联,图3所示的一个本发明的一个实施例,图中所述开关单元模块内的主开关K01-K0N可以采用真空泡,辅助开关可以采用普通继电器,一般的真空泡的断点电压可以做到35kV。一般普通继电器的触点间耐压可以容易的做到5000Vac耐压,5个继电器串联耐压即可超过20kV,并联在辅助继电器触点两端的电容器在主开关断开时为辅助开关触点起均压作用,多个普通继电器与高压二极管串联实现辅助开关回路的功能,一个真空断路器的耐压是20kV,5个这样的开关单元模块串联即可实现100kV的高压开关。
由于交流电趋肤效应的限制,单体开关无法做成电流很大的,本发明提出一种大电流开关单元模块,图4所示的大电流开关单元模块是由三个主开关回路和三个辅助触点回路组成,三个主开关回路和辅助触点回路并联在一起组成大电流开关单元模块,在每个主开关回路连接有电流互感器。开关的闭合断开过程和图2所述的开关闭合断开过程类似,在此不再赘述。
大电流开关单元模块的均流控制方法如下:多路主开关闭合后,各路开关触点支路的电流互感器检测每个支路的电流,并把各支路的电流信号通过电源及均压电路单元送到开关控制及通讯电路单元,当某一支路电流过大时,开关控制及通讯电路单元控制该支路的触点短时间断开,使该支路通过的平均电流减小并与其它支路平均电流基本相等,从而达到各支路电流均衡的目的。也可用热敏传感器检测开关温度的办法实现个支路的均流,开关闭合后,由于某开关支路的触点接触电阻过大时,会造成该支路发热厉害,通过附在开关触点旁的热敏电阻检测到触点温度的变化送到开关控制及通讯电路单元,当某路开关触点发热比其它开关热量大很多时,可以暂时断开该支路开关触点,温度降低后再闭合该路开关的触点。因为开关发热是触点接触不好造成的,一般开关触点重新动作会减小接触电阻,让触点接触更好。如果还不能改善触点的接触电阻,可以让该路开关触点间歇工作,让其它路的开关分担工作,这样可以防止有问题开关的加速老化损坏。
同样多个大电流开关串联便可组成高压大电流开关,理论上将多个大电流开关单元模块并联、串联,即可实现任意高电压和任意高电流的交流高压开关。
图5是本发明高电压大电流等零相位开关的外形结构示意图之一,本发明的开关单元模块可以装在高压绝缘端子内,即组成高压开关单体,高压开关单体端子一端为螺丝,另一端为螺母,可以方便的将高压开关单体串联组成高压开关。如一个高压开关单体的耐压是10KVac,用100个这样的高压开关单体即可组成1KKV的开关,而用传统技术只有用SF6气体保护才能实现,而且开关的体积非常的庞大,而且还需要庞大的配套设备,而本发明的高电压大电流等零相位开关无需外接电源和辅助设备,可以非常方便的安装和使用。
工业实用性
使用空气触点开关实现了以前只有真空开关或SF6开关才能实现的高压开关,由于触点无需真空或SF6保护,开关的寿命会更长。另外开关动作时没有涌流,不会产生拉弧,对电网不会造成污染并大大降低开关维护成本。
本发明高电压大电流等零相位开关的功耗很低,操作科采用无线遥控的方式,一方面开关的操作更加安全,另一方面大大降低的开关的造价。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (6)

  1. 一种高电压大电流等零相位开关,其特征在于,包括:两个以上开关单元模块串联,所述开关单元模块由主开关回路、辅助开关回路、电源及均压电路单元、开关控制和通讯电路单元和接在主开关回路的电流互感器组成,辅助开关回路和电源及均压电路单元都并联在主开关回路两端,所述电流互感器输出接到电源及均压电路单元,电源及均压电路单元给开关控制及通讯电路单元提供电源,开关控制及通讯电路单元控制主继电器和辅助继电器的闭合或断开,所述辅助开关回路是一个二极管与继电器触点的串联电路。
  2. 根据权利要求1所述的高电压大电流等零相位开关,其特征在于,所述电源及均压电路单元在主开关断开时使用电容降压电路作为电源电路,在主开关闭合时使用互感器输出整流后作为电源输入。
  3. 根据权利要求1所述的高电压大电流等零相位开关,其特征在于,所述开关控制及通讯电路单元连接光耦、光纤、红外或蓝牙等通讯模块。
  4. 根据权利要求1至3中任一权利要求所述的高电压大电流等零相位开关,其特征在于,所述开关单元模块的主开关可以是真空泡,辅助开关回路可以是两个以上普通继电器开关触点和高压二极管串联回路组成。
  5. 根据权利要求1至3中任一权利要求所述的高电压大电流等零相位开关,其特征在于,所述开关单元模块由两个以上的主开关回路和两个以上的辅助开关回路组成大电流开关单元模块,所有主开关回路和辅助开关回路并联在一起,在每个主开关回路连接有电流互感器和温度传感器。
  6. 根据权利要求4所述的高电压大电流等零相位开关,其特征在于,所述大电流开关单元模块的控制方法,包括以下步骤:
    多路主开关闭合后,各路开关触点支路的电流互感器检测每个支路的电流,并把各支路的电流信号送到开关控制及通讯电路单元,当某一支路电流过大时,开关控制及通讯电路单元控制该支路的开关触点瞬间断开,使该支路通过的平均电流与其它支路电流基本相等,从而达到各支路电流均衡的目的。
PCT/CN2018/075076 2017-02-08 2018-02-02 高电压大电流等零相位开关及控制方法 WO2018145603A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112019016457A BR112019016457A2 (pt) 2017-02-08 2018-02-02 comutador de fase equivalente a zero de corrente grande e alta tensão e método de controle do mesmo
EP18751038.3A EP3582241A4 (en) 2017-02-08 2018-02-02 HIGH-VOLTAGE HIGH-CURRENT ZERO EQUIVALENT PHASE SWITCH, AND ITS CONTROL PROCEDURE
US16/484,639 US11211215B2 (en) 2017-02-08 2018-02-02 Switch, and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710068618.5A CN106653433B (zh) 2017-02-08 2017-02-08 高电压大电流等零相位开关及控制方法
CN201710068618.5 2017-02-08

Publications (1)

Publication Number Publication Date
WO2018145603A1 true WO2018145603A1 (zh) 2018-08-16

Family

ID=58844524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075076 WO2018145603A1 (zh) 2017-02-08 2018-02-02 高电压大电流等零相位开关及控制方法

Country Status (5)

Country Link
US (1) US11211215B2 (zh)
EP (1) EP3582241A4 (zh)
CN (1) CN106653433B (zh)
BR (1) BR112019016457A2 (zh)
WO (1) WO2018145603A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110690078A (zh) * 2019-09-30 2020-01-14 国源容开国际科技(北京)股份有限公司 一种带有故障保护的二极管等零相位开关
US11211215B2 (en) 2017-02-08 2021-12-28 Gyrk International Technology Co., Ltd. Switch, and control method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200044438A1 (en) * 2018-08-05 2020-02-06 Shuguang He Dc soft turn-off module
CN110033987B (zh) * 2019-05-15 2021-05-07 广州视琨电子科技有限公司 一种供电控制方法、系统、设备和存储介质
CN117519407A (zh) * 2021-05-27 2024-02-06 佛山市顺德区美的电子科技有限公司 一种功率控制方法、功率控制电路、装置及家用电器
CN113745038B (zh) * 2021-08-31 2023-07-25 国网河北省电力有限公司检修分公司 一种隔离开关

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167211A (ja) * 1984-02-10 1985-08-30 松下電工株式会社 交流スイツチ回路
CN102623220A (zh) * 2011-02-01 2012-08-01 王海 高压电子灭弧开关
CN103928913A (zh) * 2014-03-31 2014-07-16 华中科技大学 一种基于快速斥力机构和绝缘变压器的高压直流断路器
CN104252995A (zh) * 2013-06-28 2014-12-31 王海 二极管触点保护复合开关的控制电路及继电器的控制方法
CN106653433A (zh) * 2017-02-08 2017-05-10 王海 高电压大电流等零相位开关及控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH390347A (de) * 1962-02-14 1965-04-15 Bbc Brown Boveri & Cie Schalteinrichtung zum Unterbrechen von Wechselströmen
JPS59105226A (ja) 1982-12-09 1984-06-18 株式会社日立製作所 しゃ断器
CN2503587Y (zh) * 2001-08-03 2002-07-31 王振民 多级消弧无电弧断电直流电力开关
JP4258500B2 (ja) * 2005-07-28 2009-04-30 サンケン電気株式会社 放電灯点灯装置
CN101295591A (zh) * 2007-04-29 2008-10-29 上海云骅电子科技有限公司 机械电子式复合继电器
DE102008018261A1 (de) * 2008-04-01 2009-10-15 Siemens Aktiengesellschaft Stromwandlerbaugruppe und elektromechanische Schaltvorrichtung
CN101587785A (zh) * 2008-05-23 2009-11-25 沈阳市睿宝电子有限公司 二极管消弧交流开关
US10025328B2 (en) * 2013-04-22 2018-07-17 Emerson Electric Co. Power stealing for a wireless-enabled thermostat
CN104836238A (zh) * 2014-02-08 2015-08-12 王海 高压智能开关交流电容器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167211A (ja) * 1984-02-10 1985-08-30 松下電工株式会社 交流スイツチ回路
CN102623220A (zh) * 2011-02-01 2012-08-01 王海 高压电子灭弧开关
CN104252995A (zh) * 2013-06-28 2014-12-31 王海 二极管触点保护复合开关的控制电路及继电器的控制方法
CN103928913A (zh) * 2014-03-31 2014-07-16 华中科技大学 一种基于快速斥力机构和绝缘变压器的高压直流断路器
CN106653433A (zh) * 2017-02-08 2017-05-10 王海 高电压大电流等零相位开关及控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3582241A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211215B2 (en) 2017-02-08 2021-12-28 Gyrk International Technology Co., Ltd. Switch, and control method thereof
CN110690078A (zh) * 2019-09-30 2020-01-14 国源容开国际科技(北京)股份有限公司 一种带有故障保护的二极管等零相位开关

Also Published As

Publication number Publication date
CN106653433A (zh) 2017-05-10
US11211215B2 (en) 2021-12-28
CN106653433B (zh) 2021-09-17
US20190378669A1 (en) 2019-12-12
BR112019016457A2 (pt) 2020-04-07
EP3582241A4 (en) 2020-11-18
EP3582241A1 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
WO2018145603A1 (zh) 高电压大电流等零相位开关及控制方法
CN106329496B (zh) 快速熔断装置及控制方法、直流断路器及控制方法
WO2014107854A1 (zh) 电网限流装置及电网限流器和电网限流系统
CN103337852B (zh) 一种直流电网开断装置
CN102222893A (zh) 一种基于载流隔离器的快速故障电流限制器
CN103746553B (zh) 高压dc-dc变换器及控制方法
CN102623220B (zh) 高压电子灭弧开关
CN101888045A (zh) 防止直流拉弧的电路及其方法
CN101256907B (zh) 基于可变电容的无弧分断电路及其方法
CN205489519U (zh) 高电压大功率直流断路器
CN210297244U (zh) 一种快速直流开关
CN201766190U (zh) 防止直流拉弧的电路
CN111463747B (zh) 一种直流断路器及直流断路器的控制方法
CN107769195B (zh) 基于lc振荡强迫换流型机械式开关、装置、及控制方法
CN210724305U (zh) 故障导向安全装置、用电安全系统、多路用电安全系统及备自投互锁控制系统
CN208782486U (zh) 一种可用于电网交、直流断路器的消弧装置
CN112670112A (zh) 一种混合式无损交流快速开关及其控制方法
WO2022246976A1 (zh) 多端直流输电系统的直流断路器
CN220895443U (zh) 一种直流断路器
WO2020082856A1 (zh) 一种快速开关模块、高压短路电流限制装置及其控制方法
CN105610148B (zh) 高电压大功率直流断路器
CN216356489U (zh) 一种用于发电厂电除尘设备电源的变频迭加脉冲电源柜
CN214958882U (zh) 一种同步信号切换回路
CN219833764U (zh) 一种电网故障金属性接地转移装置
CN215452824U (zh) 直流母线供电系统中的卸能式独立上电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019016457

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018751038

Country of ref document: EP

Effective date: 20190909

ENP Entry into the national phase

Ref document number: 112019016457

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190808