WO2014107854A1 - 电网限流装置及电网限流器和电网限流系统 - Google Patents

电网限流装置及电网限流器和电网限流系统 Download PDF

Info

Publication number
WO2014107854A1
WO2014107854A1 PCT/CN2013/070279 CN2013070279W WO2014107854A1 WO 2014107854 A1 WO2014107854 A1 WO 2014107854A1 CN 2013070279 W CN2013070279 W CN 2013070279W WO 2014107854 A1 WO2014107854 A1 WO 2014107854A1
Authority
WO
WIPO (PCT)
Prior art keywords
current limiting
speed switch
current
high speed
power grid
Prior art date
Application number
PCT/CN2013/070279
Other languages
English (en)
French (fr)
Inventor
艾绍贵
王川
黄永宁
樊益平
张国勇
李艳军
潘宁
张爽
Original Assignee
宁夏电力公司电力科学研究院
安徽徽电科技股份有限公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁夏电力公司电力科学研究院, 安徽徽电科技股份有限公司, 国家电网公司 filed Critical 宁夏电力公司电力科学研究院
Priority to PCT/CN2013/070279 priority Critical patent/WO2014107854A1/zh
Priority to US14/441,918 priority patent/US9640984B2/en
Publication of WO2014107854A1 publication Critical patent/WO2014107854A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/021Current limitation using saturable reactors

Definitions

  • the present invention relates to the field of electrical power, and in particular to a power grid current limiting device and a power grid current limiting device and a power grid current limiting system.
  • BACKGROUND OF THE INVENTION Due to the development of power grids, the maximum short circuit current of many regional power grids exceeds the circuit breaker's interrupting capacity (currently up to 63 kA). Limited to this, a more efficient short circuit current breaking technique is required.
  • Early domestic development developed a large-capacity high-speed switch that uses an explosive fast-breaking current-carrying bridge body combined with a high-voltage current-limiting fuse and a high-energy-absorbing zinc oxide resistor.
  • the large-capacity high-speed switch can be turned off at the beginning of the short-circuit current rise. And limiting its growth, the short-circuit current can be cut off when the short-circuit current reaches about 15% of the peak value, and the operation time is less than 1 ms, thereby avoiding the impact of large short-circuit current on the electrical equipment.
  • the high-capacity high-speed switch features high rated current (6kA), short breaking time (less than 3ms), high breaking capacity (160kA), and high fracture withstand voltage (36kV).
  • 6kA high rated current
  • short breaking time less than 3ms
  • high breaking capacity 160kA
  • 36kV high fracture withstand voltage
  • the use of large-capacity high-speed switches has some disadvantages.
  • the large-capacity high-speed switch After the large-capacity high-speed switch is turned off, the faulty line is cut off, which poses a safety hazard to the stable operation of some unstoppable loads, and the large-capacity high-speed switch can only be installed indoors.
  • all of them are connected to a large-capacity high-speed switch through the switchgear at both ends of the current limiting reactor.
  • the control of the large-capacity high-speed switch is realized on the secondary side and will be controlled.
  • the signal is triggered by the insulation transformer, and the control loop power is provided by the substation 380V power system.
  • Ningxia Electric Power Research Institute proposed the idea of integrating high-capacity high-speed switch and current-limiting reactor in the high-voltage primary side of the power grid to form an integrated "energy-saving grid current limiting device", and proposed the technical principle and product of the device.
  • 1 is the control unit
  • 2 is the battery
  • 3 is the nonlinear resistor
  • 4 is the fuse
  • 5 is the bridge body In which the components of the large-capacity high-speed switch bridge 5, the fuse 4 and the varistor 3 are mounted in the composite insulating sleeve, and the inverted capacitor type voltage divider which also serves as the insulating pillar is directly controlled by the primary side of the power grid.
  • the system operates the power supply, realizes the automatic operation of the device measurement, control and multi-parameter intelligent judgment on the high-voltage side, so that the large-capacity high-speed switch should be With a qualitative leap, the successful "energy-saving grid current limiting device" was used in a 35kV medium voltage system of a 220kV substation in Ningxia, and operated correctly in the 35kV near-field short-circuit fault, avoiding the main transformer and other equipment being over-short-circuited. The occurrence of current shock damage ensures safe and stable operation of the system.
  • a primary object of the present invention is to provide a power grid current limiting device, a power grid current limiting device, and a power grid current limiting system to solve the problem of low reliability of power grid operation in the prior art.
  • a power grid current limiting apparatus including: a first current limiting reactor; a first intelligent high speed switch, in parallel with the first current limiting reactor; a current transformer, a set on a busbar on a side of the first current limiting reactor connected in parallel with the first intelligent high speed switch for monitoring current in the busbar; and a controller connected to the current transformer for use in When the current is greater than the first preset value, controlling the first smart high speed switch to be turned off, and when the current is less than the second preset value, controlling the first smart high speed switch to be closed, the first preset value is greater than the The second preset value.
  • the device further includes: a first contactor connected in parallel with the first smart high speed switch; the controller is further configured to detect a state of the first smart high speed switch, and when the first smart high speed switch is rejected, The first contactor is controlled to close.
  • the apparatus further includes: an alarm circuit coupled to the controller for issuing an alarm when the first smart high speed switch is rejected.
  • the device further includes: a capacitive voltage transformer, the first end of the capacitive voltage transformer connected to the first contactor, the first current limiting reactor and the first smart high speed switch Connected, the output of the capacitive voltage transformer is connected to the power supply circuit of the controller for supplying power to the controller. Further, the output of the capacitive voltage transformer is connected to the power supply circuit of the controller through isolation.
  • the device further includes: a second current limiting reactor; a second intelligent high speed switch connected in parallel with the second current limiting reactor; a second contactor connected in parallel with the second intelligent high speed switch; wherein the second current limiting reactor and the second smart One end of the high-speed switch and the second contactor connected in parallel is connected to the first end of the capacitive voltage transformer; the second intelligent high-speed switch is in the same state as the first intelligent high-speed switch, the second contactor and the first The contactor status is the same.
  • the apparatus further includes: a battery connected to the power supply circuit of the controller for providing backup power to the controller.
  • a power grid current limiter which is composed of a plurality of the above devices in series.
  • a power grid current limiting system including the above-described power grid current limiting device, and a control substation for using an optical fiber in a fiber optic insulator to the power grid The current limiting device controls. Further, the grid current limiting device is plural, and the plurality of grid current limiting devices are connected in series. The invention causes the first current limiting reactor to be serially connected into the circuit to perform current limiting by disconnecting the first intelligent high speed switch.
  • FIG. 1 is a structural view of an energy-saving grid current limiting device according to the prior art
  • FIG. 2 is a structural view of a power grid current limiting device according to a first embodiment of the present invention
  • FIG. 4 is a structural diagram of a power grid current limiting device according to Embodiment 3 of the present invention
  • FIG. 5 is a structural diagram of a power grid current limiting device according to Embodiment 4 of the present invention
  • 7 is a top plan view of the power grid current limiting device of FIG. 6
  • FIG. 8 is a structural diagram of a power grid current limiter according to an embodiment of the present invention
  • FIG. 9 is a power grid current limiting system according to an embodiment of the present invention
  • FIG. 10 is a structural diagram of another power grid current limiting system according to an embodiment of the present invention.
  • the power grid current limiting device of the embodiment includes: a first current limiting reactor 101.
  • the first current limiting reactor is a hollow current limiting reactor.
  • the first intelligent high speed switch 102 is connected in parallel with the first current limiting reactor 101.
  • the current transformer 103 is disposed on the busbar of the side after the first current limiting reactor 101 is connected in parallel with the first smart high speed switch 102, and is used for real-time monitoring of the current in the bus bar.
  • the current transformer can be a line special CT (Current Transformer), which is a hardware condition for realizing a fast judgment of the short circuit current.
  • the controller 104 is connected to the current transformer 103, and is configured to control the first smart high speed switch 102 to be turned off when the current is greater than the first preset value, and when the current is less than the second preset value, The first intelligent high speed switch 102 is controlled to be closed, and the first preset value is greater than the second preset value.
  • the first preset value may be 7 times the busbar rated current
  • the second preset value may be 1.2 times the busbar rated current.
  • the current limiting effect of the present invention is achieved by using a short-circuit running current limit.
  • the first intelligent high-speed switch In the normal working condition, the first intelligent high-speed switch is in a closed state, and the first current limiting reactor is in a short-circuit state, and the current only flows through the The first intelligent high-speed switch has zero impedance and no loss.
  • the current instantaneously becomes large, and is monitored by the current transformer and uploaded to the controller.
  • the controller determines that the current is greater than the first pre- After setting the value, the controller sends a disconnect command to the first intelligent high-speed switch, and the first intelligent high-speed switch is immediately disconnected within 15ms,
  • the first current limiting electronic controller is put into the current limiting operation, and the short circuit current is limited to less than 80% of the short circuit current; when the short circuit fault is eliminated, the controller monitors the current transformer through the current transformer The current is less than the second preset value, and the controller issues a turn-on command to the first smart high-speed switch, and after the first smart high-speed switch is turned on, the power grid current limiting device enters a normal non-destructive operation state.
  • FIG. 3 is a structural diagram of a power grid current limiting device according to an embodiment of the present invention. As shown in FIG. 3, the power grid current limiting device of the embodiment includes: a first current limiting reactor 101.
  • the first intelligent high speed switch 102 is connected in parallel with the first current limiting reactor 101.
  • the current transformer 103 is disposed on the busbar of the side after the first current limiting reactor 101 is connected in parallel with the first smart high speed switch 102, and is used for real-time monitoring of the current in the bus bar.
  • the first contactor 105 is connected in parallel with the first smart high speed switch 102.
  • the first contactor can be a high pressure vacuum contactor.
  • the controller 104 is connected to the current transformer 103, and is configured to control the first smart high speed switch 102 to be turned off when the current is greater than the first preset value, and when the current is less than the second preset value, Controlling the first intelligent high speed switch 102 to be closed, the first preset value is greater than the second preset value; the controller is further configured to detect a state of the first smart high speed switch 102, and when the first smart high speed switch 102 When the operation is rejected, the first contactor 105 is controlled to be closed.
  • the first contactor may be connected in parallel at both ends of the first intelligent high-speed switch to ensure that the requirements of the power grid operation mode are met.
  • the controller detects that the first intelligent high speed switch is rejected, the controller sends a signal to the first contactor to close it, and the grid current limiting device is taken out of the running state.
  • the alarm circuit 106 is connected to the controller 104 for issuing an alarm when the first intelligent high speed switch 102 is rejected.
  • FIG. 4 is a structural diagram of a power grid current limiting device according to an embodiment of the present invention.
  • the power grid current limiting device of the embodiment includes: a first current limiting reactor 101.
  • the first intelligent high speed switch 102 is connected in parallel with the first current limiting reactor 101.
  • the current transformer 103 is disposed on the busbar of the side after the first current limiting reactor 101 is connected in parallel with the first smart high speed switch 102, and is used for real-time monitoring of the current in the bus bar.
  • the first contactor 105 is connected in parallel with the first smart high speed switch 102.
  • the controller 104 is connected to the current transformer 103, and is configured to control the first smart high speed switch 102 to be turned off when the current is greater than the first preset value, and when the current is less than the second preset value, Controlling the first intelligent high speed switch 102 to be closed, the first preset value is greater than the second preset value; the controller is further configured to detect a state of the first smart high speed switch 102, and when the first smart high speed switch 102 When the operation is rejected, the first contactor 105 is controlled to be closed.
  • a capacitive voltage transformer 107 the first end of the capacitive voltage transformer 107 is connected to the first end of the first contactor 105, the first current limiting reactor 101 and the first intelligent high speed switch 102,
  • An output of the capacitive voltage transformer 107 is coupled to a power supply circuit of the controller 104 for supplying power to the controller 104.
  • the output of the capacitive voltage transformer 107 is connected to the power supply circuit of the controller 104 by isolation.
  • the capacitive voltage transformer comprises a voltage dividing capacitor and a high voltage coupling capacitor, wherein the isolation transformer takes power from both ends of the voltage dividing capacitor and sends it to the controller, and the controller determines that the control program is started after normal charging.
  • the power grid current limiting device of the embodiment includes: a first current limiting reactor 101.
  • the first intelligent high speed switch 102 is connected in parallel with the first current limiting reactor 101.
  • the current transformer 103 is disposed on the busbar of the side after the first current limiting reactor 101 is connected in parallel with the first smart high speed switch 102, and is used for real-time monitoring of the current in the bus bar.
  • the first contactor 105 is connected in parallel with the first smart high speed switch 102.
  • the controller 104 is connected to the current transformer 103, and is configured to control the first smart high speed switch 102 to be turned off when the current is greater than the first preset value, and when the current is less than the second preset value, Controlling the first intelligent high speed switch 102 to be closed, the first preset value is greater than the second preset value; the controller is further configured to detect a state of the first smart high speed switch 102, and when the first smart high speed switch 102 When the operation is rejected, the first contactor 105 is controlled to be closed.
  • a capacitive voltage transformer 107 the first end of the capacitive voltage transformer 107 is connected to the first end of the first contactor 105, the first current limiting reactor 101 and the first intelligent high speed switch 102, An output of the capacitive voltage transformer 107 is coupled to a power supply circuit of the controller 104 for supplying power to the controller 104.
  • the second intelligent high speed switch 202 is connected in parallel with the second current limiting reactor 201.
  • the second contactor 205 is connected in parallel with the second smart high speed switch 202.
  • the second current limiting reactor 201, the second smart high speed switch 202, and the second contactor 205 are connected in parallel with one end of the capacitive voltage transformer 107; the second smart high speed switch 202 and The first smart high speed switch 102 has the same state, and the second contactor 205 is in the same state as the first contactor 105.
  • the apparatus further comprises: a battery connected to the power supply circuit of the controller for providing backup power to the controller.
  • FIG. 6 is a schematic structural diagram of a power grid current limiting device according to the present invention.
  • the first current limiting reactor 101 and the second current limiting reactor 201 are supported by a post insulator 112.
  • the first The current limiting reactor 101 and the second current limiting reactor 201 may be hollow limit current reactors, and the first smart high speed switch 102, the second smart high speed switch 202, and the current transformer 103 are disposed in the current limiting control box 115.
  • the current limiting control box is further provided with a device 116.
  • the device 116 is provided with a first contactor 105, a second contactor 205 and a controller 104.
  • the current limiting control box 115 is composed of a capacitive voltage transformer 107 and an optical fiber insulator.
  • the high-voltage side of the power grid current limiting device is fixed by a hard connection, and the low-voltage side thereof can fix the pillar insulation 112, the capacitive voltage transformer 107 and the optical fiber insulator 113 on a plane through a steel frame, on the high-voltage platform of the device , the first A current limiting reactor 101 and a second current limiting reactor 201 are connected by an insulated magnetic strut 111 to ensure a mutual inductance coefficient ⁇ 3%.
  • the first current limiting reactor 101 and the first intelligent high speed switch 102 and the first contactor 105 in parallel
  • the second current limiting reactor 201 is connected in parallel with the second intelligent high speed switch 202 and the second contactor 205.
  • FIG. 7 is a top structural view of the power grid current limiting device shown in FIG. 6, wherein 101 is a first current limiting reactor, and the first current limiting reactor 101 can be a cylindrical hollow current limiting reactor; 115 is a current limiting control box, and the first current limiting reactor is connected to the current limiting control box.
  • the power grid current limiting device provided by the embodiment of the invention uses two current limiting reactors to limit current when a short circuit fault occurs in the power grid, thereby improving the current limiting performance of the power grid current limiting device, thereby further improving the reliability of the power grid operation.
  • FIG. 8 is a structural diagram of a grid current limiter composed of a plurality of the above-described grid current limiting devices connected in series according to an embodiment of the present invention.
  • the grid current limiter provided by the embodiment of the invention can be composed of a plurality of grid current limiting devices in series according to the requirement of the current limiting effect. As long as one grid current limiting device operates correctly, the subsequent grid current limiting device can be ensured to operate safely.
  • each grid current limiting device is correspondingly mitigated by the short circuit current amplitude of the subsequent grid current limiting device.
  • four grid current limiting devices can be used in series to form a grid current limiter.
  • the grid current limiter provided by the invention is composed of a plurality of the above-mentioned grid current limiting devices connected in series, and after the short circuit fault is eliminated, the normal operation of the power grid can be restored without power failure to replace the components, and the reliability of the grid operation is improved, and By connecting a plurality of grid current limiting devices in series, the current limiting performance of the grid current limiter can be further improved, thereby further improving the reliability of the grid operation.
  • FIG. 9 is a grid current limiting system according to an embodiment of the invention, characterized in that it comprises a grid current limiting device 901, further comprising a control substation 902, which is connected to the grid current limiting device 901.
  • the control substation 902 can receive the current value sent by the grid current limiting device 901, the intelligent high speed switch state, and the power supply voltage of the controller, and display in real time in the panel of the control substation, and in addition, the smart high speed switch is rejected. In this case, the control substation can also issue an alarm to prompt. Referring to FIG. 10, FIG.
  • 10 is a grid current limiting system according to an embodiment of the present invention, wherein 101 is a first current limiting reactor, 201 is a second current limiting reactor, 102 is a first intelligent high speed switch, and 202 is a first intelligent high speed switch.
  • the second intelligent high speed switch 105 is the first contactor, 205 is the second contactor, 104 is the controller, 103 is the current transformer, 107
  • the capacitive voltage transformer 107 includes a voltage dividing capacitor C1 and a high voltage coupling capacitor C2, 108 is an isolation transformer, and 902 is a control substation; the grid current limiting system is first intelligent high speed switch before being put into operation. 102.
  • the second intelligent high speed switch 202, the first contactor 105, and the second contactor 205 are all in an on state, and the first current limiting reactor 101 and the second current limiting reactor 201 are in a shorted state.
  • the isolation transformer 108 takes power from both ends of the voltage dividing capacitor C1 of the capacitive voltage transformer 107, and supplies it to the controller 104.
  • the controller 104 determines that the control program is started after normal charging.
  • the controller 104 sends a signal to disconnect the first contactor 105 and the second contactor 205, and simultaneously the first intelligent high-speed switch 102 and the second smart
  • the states of the high speed switch 202, the first contactor 105, and the second contactor 205 are sent to the remote control substation 902, at which time the first smart high speed switch 102, the second smart high speed switch 202, and the first current limiting reactor are 101.
  • the normal operation state of the second current limiting reactor 201 in parallel operation because the impedance of the first intelligent high speed switch 102 and the second intelligent high speed switch 202 is zero, the line current circulation does not generate loss, and the first current limiting reactor 101,
  • the second current limiting reactor 201 is short-circuited by the first intelligent high-speed switch 102 and the second intelligent high-speed switch 202, respectively, and no loss occurs, and the device is in a non-destructive operation state.
  • the controller 104 monitors the line current in the bus line in real time. When a short circuit fault occurs, the controller 104 determines that the short circuit current reaches the first preset value, and controls the first smart high speed switch 102 and the second smart high speed switch 202.
  • the first current limiting reactor 101 and the second current limiting reactor 201 are serially connected into the 330kV transmission line to limit the short-circuit current of the grid, and the controller 104 compares the short-circuit current value (the waveform of the whole process) and The state of the first intelligent high speed switch 102 and the second intelligent high speed switch 202 is transmitted to the remote control substation 902 through the optical fiber.
  • the controller 104 sends a signal to turn on the first intelligent high speed switch 102 and the second smart high speed switch 202, and the grid current limiting device enters a normal non-destructive operation state, and the first intelligent high speed switch 102, the second The state of the intelligent high speed switch 202 is transmitted through the optical fiber to the remote control substation 902.
  • the controller 104 issues The first contactor 105 and the second contactor 205 are turned on to turn off the grid current limiting device, and the normal operation of the line is not affected at this time, but the current limiting action of the device disappears at the same time, and the contactor is ensured.
  • the first smart high speed switch 102 and the second smart high speed switch 202 can be reset and adjusted by the control substation 902. If the reset cannot be performed, the circuit needs to be repaired while waiting for the line to be repaired.
  • the plurality of grid current limiting devices are connected in series, and the plurality of grid current limiting devices are connected in series.
  • the limitation of the short-circuit current of the grid of 500 kV and below is adopted by the design of the current limiting unit, and multiple series connection can be performed like a building block to realize various depth requirements of the current limiting.
  • embodiments of the present invention cost-effectively limit the short circuit current levels of the grid at 330 (500) kV and below.
  • the intelligent high-speed switch (or smart high-speed large-capacity vacuum circuit breaker) in the embodiment of the present invention is a large-capacity vacuum circuit breaker that can automatically determine the short-circuit current zero-crossing point and break at the current zero-crossing point.
  • the breaking time is less than 15ms.
  • the short-circuit current rapid identification and the phase-control method are used to quickly determine whether the short-circuit current exceeds the limit and control the intelligent high-speed switch to break at the zero-crossing point of each phase current.
  • the grid current limiting system provided by the invention causes the current limiting reactor to be connected into the circuit for current limiting by the disconnection of the intelligent high-speed switch. After the fault is removed, the current limiting reactor is short-circuited by the switching of the intelligent high-speed switch. In the state, the grid current limiting device is in a normal non-destructive operation state, and the normal operation of the power grid can be restored without power failure to replace components, thereby improving the reliability of the grid operation.
  • the reliability of the power grid operation is improved, and the power grid current limiting device of the embodiment of the present invention can also be used in series to economically and effectively limit the short circuit current level of the grid of 330 (500) KV and below.
  • the power grid current limiting device of the embodiment of the present invention can also be used in series to economically and effectively limit the short circuit current level of the grid of 330 (500) KV and below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

一种电网限流装置、电网限流器和电网限流系统。该电网限流装置包括:第一限流电抗器(101);第一智能高速开关(102),与该第一限流电抗器并联;电流互感器(103),套装在该第一限流电抗器与该第一智能高速开关并联后的一侧的母线上,用于实时监测该母线中的电流;以及控制器(104),与该电流互感器相连接,用于当该电流大于第一预设值时,控制该第一智能高速开关断开,以及当该电流小于该第二预设值时,控制该第一智能高速开关闭合,该第一预设值大于该第二预设值。该电网限流装置提高了电网运行的可靠性。

Description

电网限流装置及电网限流器和电网限流系统 技术领域 本发明涉及电气领域, 具体而言, 涉及一种电网限流装置及电网限流器和电网限 流系统。 背景技术 由于电网的发展, 许多地区电网的最大短路电流超过了断路器的遮断容量 (目前 最大为 63 kA)。 受限于此, 需要更有效的短路电流开断技术。 早期国内开发研制出了采用爆炸式快速开断载流桥体与高压限流熔断器、 高吸能 氧化锌电阻相组合的大容量高速开关, 大容量高速开关能够在短路电流上升初期即开 断并限制其增长, 可以在短路电流达到峰值的 15%左右时, 切断短路电流, 动作时间 小于 lms, 从而避免大的短路电流对电器设备造成冲击。 大容量高速开关具有额定电 流大 (6kA)、 开断时间短 (小于 3ms)、 开断能力强 (160kA)、 断口耐压高 (36kV) 的特点。 但大容量高速开关使用有一些缺点, 在大容量高速开关开断后, 将故障线路 切除, 对一些不能停电负荷的稳定运行带来安全隐患, 而且大容量高速开关只能安装 在室内。 国内现有限流电抗器运行中损耗和电压降低问题解决的案例, 全部是在限流 电抗器两端通过开关柜并联一台大容量高速开关, 大容量高速开关的控制在二次侧实 现, 将控制信号通过绝缘变压器发出触发信号动作, 控制回路电源由变电站 380V动 力系统提供。受绝缘水平的限制, 大容量高速开关大多在 6-35kV高压室内使用, 运行 环节多, 受限制条件多, 安装使用不便, 并且由于增加了连接母线排的长度, 使得故 障概率和风险增加。 目前国内外对 500kV及以下电网短路电流的限制大多采用电力电子技术, 实现起 来造价是我们装置的 10倍, 且占地面积大, 运行可靠性不高。
2008年, 宁夏电科院提出了将大容量高速开关与限流电抗器在电网高压一次侧并 联形成一体化的"节能型电网限流装置 "的设想, 并提出了实现装置的技术原理、 产品 结构和技术参数, 与凯立集团 ·安徽众鑫电力技术有限公司合作研制, 如图 1 所示, 1 为控制单元, 2为蓄电池, 3为非线性电阻, 4为熔断器, 5为桥体, 其中, 将大容量 高速开关的桥体 5、 熔断器 4和非线性电阻 3等元件安装在复合绝缘套筒中, 通过兼 作绝缘支柱的倒置电容式分压器直接由电网高压一次侧取得控制系统工作电源, 在高 压侧实现装置测量、 控制、 多参数智能判断的全自动运行, 使得大容量高速开关的应 用有了质的飞跃, 研制成功的"节能型电网限流装置 "在宁夏某 220kV变电站 35kV中 压系统使用, 在 35kV近区短路故障时正确动作, 避免了主变及其他设备受过大的短 路电流冲击损坏情况的发生, 确保了系统安全稳定运行。 但节能型电网限流装置中的 大容量高速开关爆炸桥开断后需停电更换元件, 造成了电网运行可靠性不高的问题。 针对现有技术中电网运行可靠性不高的问题, 目前尚未提出有效的解决方案。 发明内容 本发明的主要目的在于提供一种电网限流装置、 电网限流器及电网限流系统, 以 解决现有技术中电网运行可靠性不高的问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种电网限流装置, 包括: 第一限流电抗器; 第一智能高速开关, 与该第一限流电抗器并联; 电流互感器, 套装在该第一限流电抗器与该第一智能高速开关并联后的一侧的母线上, 用于实时监 测该母线中的电流; 以及控制器, 与该电流互感器相连接, 用于当该电流大于第一预 设值时, 控制该第一智能高速开关断开, 以及当该电流小于该第二预设值时, 控制该 第一智能高速开关闭合, 该第一预设值大于该第二预设值。 进一步地, 该装置还包括: 第一接触器, 与该第一智能高速开关并联; 该控制器还用于检测该第一智能高速 开关的状态, 并且当该第一智能高速开关拒动时, 控制该第一接触器闭合。 进一步地, 该装置还包括: 报警电路, 与该控制器连接, 用于当该第一智能高速开关拒动时发出报警。 进一步地, 该装置还包括: 电容式电压互感器, 该电容式电压互感器的第一端与该第一接触器、 该第一限流 电抗器以及第一智能高速开关并联后的第一端相连接, 该电容式电压互感器的输出端 与该控制器的供电电路相连接, 用于向该控制器供电。 进一步地, 该电容式电压互感器的输出端通过隔离变与该控制器的供电电路相连 接。 进一步地, 该装置还包括: 第二限流电抗器; 第二智能高速开关, 与该第二限流电抗器并联; 第二接触器, 与该第二智能高速开关并联; 其中, 该第二限流电抗器、 第二智能高速开关以及第二 接触器并联后的一端与该电容式电压互感器的第一端相连接; 该第二智能高速开关与 该第一智能高速开关状态相同, 该第二接触器与该第一接触器状态相同。 进一步地, 该装置还包括: 蓄电池, 与该控制器的供电电路相连接, 用于对该控制器提供备用电源。 为了实现上述目的, 根据本发明的另一方面, 提供了一种电网限流器, 该电网限 流器由多个上述装置串联组成。 为了实现上述目的, 根据本发明的又一方面, 提供了一种电网限流系统, 包括上 述的电网限流装置, 还包括控制子站, 该控制子站用于通过光纤绝缘子中的光纤对电 网限流装置进行控制。 进一步地, 该电网限流装置为多个, 该多个电网限流装置串联。 本发明通过第一智能高速开关的断开使第一限流电抗器串入电路中进行限流, 当 故障排除后, 通过第一智能高速开关的接通将该第一限流电抗器处于短接的状态下, 使该电网限流装置处于正常的无损运行状态下, 不需停电更换元件, 即可恢复电网的 正常运行, 因此提高电网运行的可靠性。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是根据现有技术提供的一种节能型电网限流装置的结构图; 图 2是根据本发明实施例一的电网限流装置的结构图; 图 3是根据本发明实施例二的电网限流装置的结构图; 图 4是根据本发明实施例三的电网限流装置的结构图; 图 5是根据本发明实施例四的电网限流装置的结构图; 图 6为本发明实施例提供的一种电网限流装置的结构示意图; 图 7为图 6所示电网限流装置的俯视结构图; 图 8是根据本发明实施例的一种电网限流器的结构图; 图 9为本发明实施例的一种电网限流系统的结构图; 以及 图 10为本发明实施例的另一种电网限流系统的结构图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 图 2是根据本发明实施例的一种电网限流装置的结构图, 如图 2所示, 该实施例 的电网限流装置包括: 第一限流电抗器 101。 优选地, 该第一限流电抗器为空心限流电抗器。 第一智能高速开关 102, 与该第一限流电抗器 101并联。 电流互感器 103, 套装在该第一限流电抗器 101与该第一智能高速开关 102并联 后的一侧的母线上, 用于实时监测该母线中的电流。 例如, 该电流互感器可以为线路特种 CT (Current transformer,电流互感器), 是实 现对短路电流的快速判断的硬件条件。 控制器 104, 与该电流互感器 103相连接, 用于当该电流大于第一预设值时, 控 制该第一智能高速开关 102断开, 以及当该电流小于该第二预设值时, 控制该第一智 能高速开关 102闭合, 该第一预设值大于该第二预设值。 例如, 该第一预设值可以为 7倍的该母线额定电流, 该第二预设值可以为 1.2倍 的该母线额定电流。 本发明的限流效果是采用短路运行限流达到的, 在正常工作的情况下, 该第一智 能高速开关处于关合状态, 该第一限流电抗器处于短接状态, 电流只流过该第一智能 高速开关, 阻抗为零, 没有损耗, 当发生短路故障时, 该电流瞬间变大, 并被该电流 互感器监测到并上传至控制器, 当该控制器判断该电流大于第一预设值后, 该控制器 向该第一智能高速开关发出断开命令, 该第一智能高速开关在 15ms 内即刻断开, 将 该第一限流电控器投入限流运行中, 可将该短路电流限制到该短路电流的百分之八十 以下; 当该短路故障排除后, 该控制器通过该电流互感器监测到该电流小于第二预设 值, 该控制器向该第一智能高速开关发出接通命令, 在该第一智能高速开关接通后, 该电网限流装置进入正常的无损运行状态。 本发明提供的电网限流装置, 通过第一智能高速开关的断开使第一限流电抗器串 入电路中进行限流, 当故障排除后, 通过第一智能高速开关的接通将该第一限流电抗 器处于短接的状态下, 使该电网限流装置处于正常的无损运行状态下, 不需停电更换 元件, 即可恢复电网的正常运行, 因此提高电网运行的可靠性。 优选地, 图 3是根据本发明实施例的一种电网限流装置的结构图, 如图 3所示, 该实施例的电网限流装置包括: 第一限流电抗器 101。 第一智能高速开关 102, 与该第一限流电抗器 101并联。 电流互感器 103, 套装在该第一限流电抗器 101与该第一智能高速开关 102并联 后的一侧的母线上, 用于实时监测该母线中的电流。 第一接触器 105, 与该第一智能高速开关 102并联。 该第一接触器可以为高压真空接触器。 控制器 104, 与该电流互感器 103相连接, 用于当该电流大于第一预设值时, 控 制该第一智能高速开关 102断开, 以及当该电流小于该第二预设值时, 控制该第一智 能高速开关 102闭合, 该第一预设值大于该第二预设值; 该控制器还用于检测该第一 智能高速开关 102的状态, 并且当该第一智能高速开关 102拒动时, 控制该第一接触 器 105闭合。 为排除该第一智能高速开关拒动引发的线路带限流电抗器运行和装置停电检修问 题, 可以在该第一智能高速开关的两端并联第一接触器, 确保适应电网运行方式的要 求, 当该控制器检测到该第一智能高速开关拒动时, 控制器发送信号至该第一接触器 使其合闸, 将该电网限流装置退出运行状态。 报警电路 106, 与该控制器 104连接, 用于当该第一智能高速开关 102拒动时发 出报警。 本发明实施例提供的电网限流装置, 通过第一接触器在该第一智能高速开关发生 故障时合闸, 使该电网限流装置退出运行状态, 由于排除了该电网限流装置自身故障 对该电网的影响, 因此进一步提高了电网运行的可靠性。 优选地, 图 4是根据本发明实施例的一种电网限流装置的结构图, 如图 4所示, 该实施例的电网限流装置包括: 第一限流电抗器 101。 第一智能高速开关 102, 与该第一限流电抗器 101并联。 电流互感器 103, 套装在该第一限流电抗器 101与该第一智能高速开关 102并联 后的一侧的母线上, 用于实时监测该母线中的电流。 第一接触器 105, 与该第一智能高速开关 102并联。 控制器 104, 与该电流互感器 103相连接, 用于当该电流大于第一预设值时, 控 制该第一智能高速开关 102断开, 以及当该电流小于该第二预设值时, 控制该第一智 能高速开关 102闭合, 该第一预设值大于该第二预设值; 该控制器还用于检测该第一 智能高速开关 102的状态, 并且当该第一智能高速开关 102拒动时, 控制该第一接触 器 105闭合。 电容式电压互感器 107, 该电容式电压互感器 107的第一端与该第一接触器 105、 该第一限流电抗器 101以及第一智能高速开关 102并联后的第一端相连接, 该电容式 电压互感器 107的输出端与该控制器 104的供电电路相连接, 用于向该控制器 104供 电。 优选地, 该电容式电压互感器 107的输出端通过隔离变与该控制器 104的供电电 路相连接。 该电容式电压互感器包括分压电容和高压耦合电容, 其中, 该隔离变从该分压电 容两端取电, 输送至控制器, 控制器判断正常带电后启动控制程序。 优选地, 图 5是根据本发明实施例的一种电网限流装置的结构图, 如图 5所示, 该实施例的电网限流装置包括: 第一限流电抗器 101。 第一智能高速开关 102, 与该第一限流电抗器 101并联。 电流互感器 103, 套装在该第一限流电抗器 101与该第一智能高速开关 102并联 后的一侧的母线上, 用于实时监测该母线中的电流。 第一接触器 105, 与该第一智能高速开关 102并联。 控制器 104, 与该电流互感器 103相连接, 用于当该电流大于第一预设值时, 控 制该第一智能高速开关 102断开, 以及当该电流小于该第二预设值时, 控制该第一智 能高速开关 102闭合, 该第一预设值大于该第二预设值; 该控制器还用于检测该第一 智能高速开关 102的状态, 并且当该第一智能高速开关 102拒动时, 控制该第一接触 器 105闭合。 电容式电压互感器 107, 该电容式电压互感器 107的第一端与该第一接触器 105、 该第一限流电抗器 101以及第一智能高速开关 102并联后的第一端相连接, 该电容式 电压互感器 107的输出端与该控制器 104的供电电路相连接, 用于向该控制器 104供 电。 第二限流电抗器 201。 第二智能高速开关 202, 与该第二限流电抗器 201并联。 第二接触器 205, 与该第二智能高速开关 202并联。 其中, 该第二限流电抗器 201、 第二智能高速开关 202以及第二接触器 205并联 后的一端与该电容式电压互感器 107的第一端相连接; 该第二智能高速开关 202与该 第一智能高速开关 102状态相同, 该第二接触器 205与该第一接触器 105状态相同。 优选地, 该装置还包括: 蓄电池, 与该控制器的供电电路相连接, 用于对该控制器提供备用电源。 参见图 6, 图 6为本发明提供的一种电网限流装置的结构示意图, 其中, 第一限 流电抗器 101以及第二限流电抗器 201由支柱绝缘子 112支撑, 优选地, 该第一限流 电抗器 101以及第二限流电抗器 201可以为空心限流电抗器, 第一智能高速开关 102、 第二智能高速开关 202以及电流互感器 103设置在限流控制箱体 115内, 该限流控制 箱体内还设置有装置 116, 该装置 116内设置有第一接触器 105、第二接触器 205以及 控制器 104, 该限流控制箱体 115由电容式电压互感器 107以及光纤绝缘子 113支撑, 该电网限流装置的高压侧以硬连接固定, 其低压侧可以通过钢架将支柱绝缘 112、 电 容式电压互感器 107和光纤绝缘子 113固定在一个平面上, 在装置的高压平台上, 第 一限流电抗器 101和第二限流电抗器 201之间由绝缘磁支柱 111连接, 确保互感系数 <3%, 该第一限流电抗器 101与第一智能高速开关 102以及第一接触器 105并联, 该 该第二限流电抗器 201与第二智能高速开关 202以及第二接触器 205并联, 此外, 该 控制器 104的电源由倒置的电容式电压互感器 107提供, 控制器 104与控制子站的通 讯由光纤绝缘子 113中的光纤实现。 参见图 7, 图 7为图 6所示电网限流装置的俯视结构图, 其中, 101为第一限流电 抗器, 该第一限流电抗器 101可以为圆柱形的空心限流电抗器; 115为限流控制箱体, 该第一限流电抗器与该限流控制箱体相连接。 本发明实施例提供的电网限流装置, 通过采用两个限流电抗器在电网发生短路故 障时进行限流, 提高了电网限流装置的限流性能, 因此进一步提高了电网运行的可靠 性。 图 8是根据本发明实施例的一种电网限流器的结构图, 该电网限流器由多个上述 电网限流装置串联组成。 本发明实施例提供的电网限流器可根据限流效果的需要, 可由多个电网限流装置 串联组成, 只要一个电网限流装置正确动作,就能保证后续的电网限流装置安全动作, 随着每一个电网限流装置的动作,相应的减轻后续电网限流装置开断的短路电流幅值。 例如, 可以采用 4个电网限流装置串联形成一个电网限流器。 本发明提供的电网限流器, 由多个上述电网限流装置串联构成, 在短路故障排除 后, 不需停电更换元件, 即可恢复电网的正常运行, 提高了电网运行的可靠性, 此外, 将多个电网限流装置串联, 能够进一步地提高电网限流器的限流性能, 因此进一步的 提高了电网运行的可靠性。 图 9是根据本发明实施例的一种电网限流系统, 其特征在于, 包括上述电网限流 装置 901, 还包括控制子站 902, 该控制子站 902与该电网限流装置 901相连接。 该控制子站 902可以接收该电网限流装置 901发送的电流值、 智能高速开关状态 以及控制器的供电电压, 并在该控制子站的面板中实时显示, 此外, 在智能高速开关 拒动的情况下, 该控制子站还可以发出报警进行提示。 参见图 10, 图 10是根据本发明实施例的一种电网限流系统, 其中, 101为第一限 流电抗器, 201为第二限流电抗器, 102为第一智能高速开关, 202为第二智能高速开 关, 105为第一接触器, 205为第二接触器, 104为控制器, 103 为电流互感器, 107 为电容式电压互感器, 该电容式电压互感器 107包括分压电容 C1 以及高压耦合电容 C2, 108为隔离变, 902为控制子站;该电网限流系统在投运前第一智能高速开关 102、 第二智能高速开关 202、 第一接触器 105以及第二接触器 205都处于接通状态, 第一 限流电抗器 101以及第二限流电抗器 201处于短接状态。 将该电网限流装置挂网运行 后,隔离变 108从电容式电压互感器 107的分压电容 C1两端取电,输送给控制器 104, 控制器 104判断正常带电后启动控制程序, 当第一接触器 105以及第二接触器 205的 储能电源充满电之后, 控制器 104发送信号使第一接触器 105以及第二接触器 205断 开, 同时将第一智能高速开关 102、第二智能高速开关 202、第一接触器 105以及第二 接触器 205的状态发送至远端的控制子站 902,此时处于第一智能高速开关 102、第二 智能高速开关 202与第一限流电抗器 101、 第二限流电抗器 201并联运行的正常运行 状态, 由于第一智能高速开关 102、 第二智能高速开关 202的阻抗为零, 线路电流流 通不产生损耗, 第一限流电抗器 101、 第二限流电抗器 201分别被第一智能高速开关 102、第二智能高速开关 202短接也不产生损耗, 装置处于无损运行状态。通过电流互 感器 103, 控制器 104实时监测母线中的线路电流, 当发生短路故障时, 控制器 104 判断短路电流达到第一预设值, 控制第一智能高速开关 102、 第二智能高速开关 202 在 15ms内分闸, 使第一限流电抗器 101、 第二限流电抗器 201 串入 330kV输电线路 中, 限制电网短路电流, 同时控制器 104将该短路电流数值 (全过程的波形) 以及第 一智能高速开关 102、 第二智能高速开关 202的状态通过光纤传送到远端的控制子站 902, 当监测到线路短路电流故障排除后, 判断电流是否小于第二预设值, 若电流小于 第二预设值, 控制器 104发送信号使第一智能高速开关 102、 第二智能高速开关 202 接通, 该电网限流装置进入正常的无损运行状态, 同时第一智能高速开关 102、 第二 智能高速开关 202的状态通过光纤传送到远端的控制子站 902, 如果开关合闸拒动, 控制器 104发出信号给第一接触器 105以及第二接触器 205使其接通, 将该电网限流 装置退出运行状态, 此时不影响线路的正常运行, 但装置的限流作用同时消失, 在确 保接触器合闸良好的情况下, 可通过控制子站 902对第一智能高速开关 102、 第二智 能高速开关 202进行复位调整等操作, 如不能复位则需等待线路检修时进行修复。 优选地, 该电网限流装置为多个, 该多个电网限流装置串联。 在本发明实施例中对 500kV及以下电网短路电流的限制采用了限流单元的设 计, 可像搭积木一样进行多个串联, 实现限流的各种深度要求。 因而, 本发明实施 例经济有效地限制了 330 ( 500) kV及以下电网短路电流水平。 本发明实施例中的智能高速开关 (或者, 称作智能高速大容量真空断路器) 为 一种可自动判断短路电流过零点并在电流过零点开断的大容量真空断路器。 开断时 间小于 15ms。 本发明实施例通过短路电流快速识别及相控方法快速判断短路电流是否超限并控 制智能高速开关在每相电流过零点开断。 本发明提供的电网限流系统, 通过智能高速开关的断开使限流电抗器串入电路中 进行限流, 当故障排除后,通过智能高速开关的接通将限流电抗器处于短接的状态下, 使该电网限流装置处于正常的无损运行状态下, 不需停电更换元件, 即可恢复电网的 正常运行, 因此提高电网运行的可靠性。 通过本发明实施例, 提高了电网运行的可靠性, 本发明实施例的电网限流装置还 可串联使用, 经济有效地限制 330 ( 500) KV及以下电网短路电流水平。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种电网限流装置, 其特征在于, 包括:
第一限流电抗器;
第一智能高速开关, 与所述第一限流电抗器并联;
电流互感器, 套装在所述第一限流电抗器与所述第一智能高速开关并联后 的一侧的母线上, 用于实时监测所述母线中的电流; 以及
控制器, 与所述电流互感器相连接, 用于当所述电流大于第一预设值时, 控制所述第一智能高速开关断开, 以及当所述电流小于所述第二预设值时, 控 制所述第一智能高速开关闭合, 所述第一预设值大于所述第二预设值。
2. 根据权利要求 1所述的装置, 其特征在于, 所述装置还包括:
第一接触器, 与所述第一智能高速开关并联;
所述控制器还用于检测所述第一智能高速开关的状态, 并且当所述第一智 能高速开关拒动时, 控制所述第一接触器闭合。
3. 根据权利要求 2所述的装置, 其特征在于, 所述装置还包括:
报警电路, 与所述控制器连接, 用于当所述第一智能高速开关拒动时发出 报警。
4. 根据权利要求 2所述的装置, 其特征在于, 所述装置还包括:
电容式电压互感器, 所述电容式电压互感器的第一端与所述第一接触器、 所述第一限流电抗器以及第一智能高速开关并联后的第一端相连接, 所述电容 式电压互感器的输出端与所述控制器的供电电路相连接, 用于向所述控制器供 电。
5. 根据权利要求 4所述的装置, 其特征在于, 所述电容式电压互感器的输出端通 过隔离变与所述控制器的供电电路相连接。
6. 根据权利要求 4所述的装置, 其特征在于, 所述装置还包括:
第二限流电抗器;
第二智能高速开关, 与所述第二限流电抗器并联; 第二接触器, 与所述第二智能高速开关并联;
其中, 所述第二限流电抗器、 第二智能高速开关以及第二接触器并联后的 一端与所述电容式电压互感器的第一端相连接; 所述第二智能高速开关与所述 第一智能高速开关状态相同, 所述第二接触器与所述第一接触器状态相同。 根据权利要求 1所述的装置, 其特征在于, 所述装置还包括:
蓄电池, 与所述控制器的供电电路相连接, 用于对所述控制器提供备用电 源。 一种电网限流器, 其特征在于, 所述电网限流器由多个权利要求 1至 7中任意 一项所述的装置串联组成。 一种电网限流系统, 其特征在于, 包括权利要求 1至 7中任一项所述的电网限 流装置, 还包括控制子站, 所述控制子站与所述电网限流装置相连接。 根据权利要求 9所述的系统, 其特征在于, 所述电网限流装置为多个, 所述多 个电网限流装置串联。
PCT/CN2013/070279 2013-01-09 2013-01-09 电网限流装置及电网限流器和电网限流系统 WO2014107854A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/070279 WO2014107854A1 (zh) 2013-01-09 2013-01-09 电网限流装置及电网限流器和电网限流系统
US14/441,918 US9640984B2 (en) 2013-01-09 2013-01-09 Current limiting device, current limiter and current limiting system for power grid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/070279 WO2014107854A1 (zh) 2013-01-09 2013-01-09 电网限流装置及电网限流器和电网限流系统

Publications (1)

Publication Number Publication Date
WO2014107854A1 true WO2014107854A1 (zh) 2014-07-17

Family

ID=51166484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070279 WO2014107854A1 (zh) 2013-01-09 2013-01-09 电网限流装置及电网限流器和电网限流系统

Country Status (2)

Country Link
US (1) US9640984B2 (zh)
WO (1) WO2014107854A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952948A (zh) * 2020-08-18 2020-11-17 广东电网有限责任公司 一种零损耗深度限流装置及输电线路短路故障限流方法
CN112366667A (zh) * 2020-11-02 2021-02-12 西安交通大学 一体化集成快速开关型限流器及其与线路断路器配合方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI530981B (zh) * 2014-11-21 2016-04-21 AC / DC power supply output switch control system
CN106207952A (zh) * 2016-08-28 2016-12-07 安徽普天电力科技有限公司 一种瞬时断电可维持电压的限流系统
CN106208008A (zh) * 2016-08-28 2016-12-07 安徽普天电力科技有限公司 一种重要负载母线残压保持系统
CN106208007A (zh) * 2016-08-28 2016-12-07 安徽普天电力科技有限公司 一种变压器和发电机共用的深度限流方法
CN106300306A (zh) * 2016-08-28 2017-01-04 安徽普天电力科技有限公司 一种变压器零耗损深度限流系统
CN106207951A (zh) * 2016-08-28 2016-12-07 安徽普天电力科技有限公司 一种变压器和发电机共用的深度限流系统
CN106300261A (zh) * 2016-08-28 2017-01-04 安徽普天电力科技有限公司 一种新的变压器深度限流方法
CN106300233A (zh) * 2016-08-28 2017-01-04 安徽普天电力科技有限公司 一种新的变压器深度限流系统
CN106253227A (zh) * 2016-08-28 2016-12-21 安徽普天电力科技有限公司 一种发电机出口高压侧限流系统
CN106329490A (zh) * 2016-08-28 2017-01-11 安徽普天电力科技有限公司 一种母线残压保持方法
CN107689625A (zh) * 2017-10-20 2018-02-13 广东电网有限责任公司中山供电局 一种新型的深度限流装置
RU2703287C1 (ru) * 2018-10-08 2019-10-16 Акционерное общество "Корпорация "Стратегические пункты управления" АО "Корпорация "СПУ - ЦКБ ТМ" Токоограничивающее устройство с разделенным фидерным групповым реактором по числу потребителей
CN109962448B (zh) * 2019-02-02 2023-06-09 中国电力科学研究院有限公司 基于电压特征的短路电流消纳支路投入控制方法及装置
US11695297B2 (en) * 2020-05-20 2023-07-04 Sunpower Corporation Photovoltaic disconnect device for storage integration
CN116345388A (zh) * 2023-04-13 2023-06-27 南京国电南自电网自动化有限公司 一种防止并联电抗器空投时ct饱和差动保护误动的方法
CN117081019B (zh) * 2023-10-10 2024-03-12 西安合容开关有限公司 一种快速限流装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702517A (zh) * 2009-12-01 2010-05-05 宁夏电力公司电力科学研究院 节能型户外电网限流装置
CN201562957U (zh) * 2009-12-04 2010-08-25 宁夏电力公司电力科学研究院 节能型户外电网限流装置
CN103023000A (zh) * 2013-01-09 2013-04-03 宁夏电力公司电力科学研究院 电网限流装置及电网限流器和电网限流系统
CN203056563U (zh) * 2013-01-09 2013-07-10 宁夏电力公司电力科学研究院 电网限流装置及电网限流器和电网限流系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2677190B1 (fr) * 1991-06-03 1993-09-03 Merlin Gerin Dispositif de teletransmission a courants porteurs en ligne destine au controle commande d'un reseau electrique, notamment a moyenne tension.
JPH08315666A (ja) * 1995-05-12 1996-11-29 Mitsubishi Electric Corp 遮断器および遮断装置
JP3239754B2 (ja) * 1995-06-20 2001-12-17 株式会社日立製作所 限流装置
US20080191561A1 (en) * 2007-02-09 2008-08-14 Folts Douglas C Parallel connected hts utility device and method of using same
US8739396B2 (en) * 2010-06-17 2014-06-03 Varian Semiconductor Equipment Associates, Inc. Technique for limiting transmission of fault current
US8564921B2 (en) * 2011-02-03 2013-10-22 Zenergy Power Pty Ltd Fault current limiter with shield and adjacent cores
EP2495745A1 (en) * 2011-03-04 2012-09-05 ABB Technology AG Current-rise limitation in high-voltage DC systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702517A (zh) * 2009-12-01 2010-05-05 宁夏电力公司电力科学研究院 节能型户外电网限流装置
CN201562957U (zh) * 2009-12-04 2010-08-25 宁夏电力公司电力科学研究院 节能型户外电网限流装置
CN103023000A (zh) * 2013-01-09 2013-04-03 宁夏电力公司电力科学研究院 电网限流装置及电网限流器和电网限流系统
CN203056563U (zh) * 2013-01-09 2013-07-10 宁夏电力公司电力科学研究院 电网限流装置及电网限流器和电网限流系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952948A (zh) * 2020-08-18 2020-11-17 广东电网有限责任公司 一种零损耗深度限流装置及输电线路短路故障限流方法
CN112366667A (zh) * 2020-11-02 2021-02-12 西安交通大学 一体化集成快速开关型限流器及其与线路断路器配合方法
CN112366667B (zh) * 2020-11-02 2021-08-10 西安交通大学 一体化集成快速开关型限流器及其与线路断路器配合方法

Also Published As

Publication number Publication date
US9640984B2 (en) 2017-05-02
US20150318688A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
WO2014107854A1 (zh) 电网限流装置及电网限流器和电网限流系统
CN103023000B (zh) 电网限流装置及电网限流器和电网限流系统
CN102222893B (zh) 一种基于载流隔离器的快速故障电流限制器
US11211215B2 (en) Switch, and control method thereof
CN105826063A (zh) 一种用于三相配电变压器的无触点有载自动正反调压分接开关装置
CN204333938U (zh) 一种短路电流限制及保护装置
CN106451749B (zh) 牵引变电所控制保护系统不正常工作情况下的应急保护装置及保护方法
CN103560512A (zh) 一种中压配电网高可靠性闭环接线方法
CN201008096Y (zh) 用于中性点非有效接地的电力电网的消弧补偿装置
CN202042872U (zh) 隔离型交流故障电流限制器
CN203056563U (zh) 电网限流装置及电网限流器和电网限流系统
CN105743069A (zh) 一种串联谐振零损耗限流装置
CN203192723U (zh) 断路器用欠压脱扣装置
CN205595772U (zh) 一种串联谐振零损耗限流装置
CN214124816U (zh) 封闭母线的冲击波反锁保护装置
CN205646810U (zh) 一种中高压电网消弧保护装置
CN204314645U (zh) 一种低压配电系统的逐屏通断自动控制装置
CN111092416B (zh) 一种高压短路电流限制装置及控制方法
CN108512484B (zh) 一种带抗晃电功能的电动机保护测控方法
CN206542181U (zh) 智能型无压释放线圈控制器
CN203674700U (zh) 光电式电弧光保护系统
CN112564055B (zh) 封闭母线的冲击波反锁保护装置
CN112186720B (zh) 一种高速短路限流装置
CN201966596U (zh) 截止型交流故障电流限制器
CN103050917A (zh) 十二分裂导线输电线路电流循环智能融冰装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871180

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14441918

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871180

Country of ref document: EP

Kind code of ref document: A1