WO2018143758A1 - 무선 통신 시스템에서 제1 ue와 연결을 가진 제2 ue의 페이징 관련 동작을 수행하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 제1 ue와 연결을 가진 제2 ue의 페이징 관련 동작을 수행하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018143758A1
WO2018143758A1 PCT/KR2018/001536 KR2018001536W WO2018143758A1 WO 2018143758 A1 WO2018143758 A1 WO 2018143758A1 KR 2018001536 W KR2018001536 W KR 2018001536W WO 2018143758 A1 WO2018143758 A1 WO 2018143758A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
relay
mme
rrc
state
Prior art date
Application number
PCT/KR2018/001536
Other languages
English (en)
French (fr)
Inventor
김래영
김재현
김태훈
이재욱
천성덕
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201880010185.0A priority Critical patent/CN110249670B/zh
Priority to EP18747133.9A priority patent/EP3579627B1/en
Priority to US16/484,097 priority patent/US10757681B2/en
Publication of WO2018143758A1 publication Critical patent/WO2018143758A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/08User notification, e.g. alerting and paging, for incoming communication, change of service or the like using multi-step notification by increasing the notification area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the following description relates to a wireless communication system, and more specifically, to a method and apparatus for how to handle paging of a relay UE having a connection with a remote UE (User Equipment).
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • the mobile communication system such as 3GPP GSM / UMTS / EPS (Evolved Packet System) / 5GS (5G System) so that downlink traffic can be well transmitted to the relay UE is RRC connected due to the network connection request of the Remote UE
  • the technical problem is how to manage the connection of a relay UE.
  • a method of performing a paging related operation by a base station of a second UE having a connection with a first user equipment (UE) in a wireless communication system the base station for the second UE from the second MME Receiving a paging message; And when the second UE is in a Core Network (CN) IDLE state and a Radio Resource Control (RRC) connected state, the base station transmits a message to the second MME, the message including information related to a connection state of the second UE. Transmitting in response to the message.
  • CN Core Network
  • RRC Radio Resource Control
  • An embodiment of the present invention provides a base station apparatus for performing a paging related operation of a second UE having a connection with a first user equipment (UE) in a wireless communication system, comprising: a transmitting and receiving apparatus; And a processor, wherein the processor is configured to receive a paging message for a second UE from a second MME, and when the second UE is in a Core Network (CN) IDLE state and a Radio Resource Control (RRC) connected state, A base station apparatus for transmitting a message including information related to a connection state of the second UE to a second MME in response to the paging message.
  • CN Core Network
  • RRC Radio Resource Control
  • the information related to the connection state of the second UE may include information indicating that the base station is serving the second UE or information indicating that the second UE is in an RRC connected state.
  • the message including information related to the connection state of the second UE may perform a paging related operation, which is a paging response message.
  • the second MME which has received a message including information related to the connection state of the second UE, may set a user plane for the second UE.
  • the base station may transmit a paging message for the second UE.
  • the first UE may be a remote UE, and the second UE may be a relay UE.
  • the present invention it is possible to solve the problem that the traffic to the relay UE that is in the RRC connected state for the remote UE in the prior art is not delivered.
  • FIG. 4 is an exemplary view showing the structure of a radio interface protocol in a user plane.
  • 5 is a flowchart illustrating a random access procedure.
  • RRC radio resource control
  • FIG. 7 is a diagram for describing a 5G system.
  • FIG. 8 is a diagram illustrating various scenarios of a relay.
  • 9 to 10 are diagrams for explaining a user plane protocol stack and a control plane protocol stack.
  • FIG. 11 illustrates a relationship with each network node of a remote UE and a relay UE.
  • 16 is a diagram illustrating a configuration of a node device according to an embodiment of the present invention.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • Embodiments of the present invention may be supported by standard documents disclosed in relation to at least one of the Institute of Electrical and Electronics Engineers (IEEE) 802 series system, 3GPP system, 3GPP LTE and LTE-A system, and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • IEEE Institute of Electrical and Electronics Engineers
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system composed of an Evolved Packet Core (EPC), which is a packet switched (PS) core network based on Internet Protocol (IP), and an access network such as LTE / UTRAN.
  • EPC Evolved Packet Core
  • PS packet switched
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of E-UTRAN. It is installed outdoors and its coverage is macro cell size.
  • UE User Equipment
  • the UE may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term UE or UE may refer to an MTC device.
  • HNB Home NodeB
  • HeNB Home eNodeB: A base station of an EPS network, which is installed indoors and its coverage is micro cell size.
  • Packet Data Network-Gateway (PDN-GW) / PGW A network node of an EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection, and the like.
  • SGW Serving Gateway
  • Non-Access Stratum Upper stratum of the control plane between the UE and the MME.
  • Packet Data Network A network in which a server supporting a specific service (eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
  • a server supporting a specific service eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.
  • MMS Multimedia Messaging Service
  • WAP Wireless Application Protocol
  • PDN connection A logical connection between the UE and the PDN, represented by one IP address (one IPv4 address and / or one IPv6 prefix).
  • RAN Radio Access Network: a unit including a NodeB, an eNodeB and a Radio Network Controller (RNC) controlling them in a 3GPP network. It exists between UEs and provides a connection to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • PLMN Public Land Mobile Network
  • Proximity Service (or ProSe Service or Proximity based Service): A service that enables discovery and direct communication between physically close devices or communication through a base station or through a third party device. In this case, user plane data is exchanged through a direct data path without passing through a 3GPP core network (eg, EPC).
  • EPC 3GPP core network
  • EPC Evolved Packet Core
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing enhanced data transfer capabilities.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • EPC IP Multimedia Subsystem
  • the EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
  • SGW serving gateway
  • PDN GW packet data network gateway
  • MME mobility management entity
  • SGRS serving general packet
  • Radio Service Upporting Node
  • ePDG Enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • RANs defined before 3GPP Release-8 such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like.
  • the MME controls control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability is an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access. (Eg, IMS).
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • This reference point can be used in PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handovers) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and / or active state This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
  • S4 Reference point between SGW and SGSN that provides related control and mobility support between the GPRS core and SGW's 3GPP anchor functionality.It also provides user plane tunneling if no direct tunnel is established.
  • the 3GPP Anchor function of Serving GW In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.
  • S5 Reference point providing user plane tunneling and tunnel management between the SGW and the PDN GW.
  • the PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services.
  • Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDN GW.
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station
  • FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station. .
  • the air interface protocol is based on the 3GPP radio access network standard.
  • the air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
  • the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis.
  • one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channel multiplexing to map several logical channels to one transport channel. (Multiplexing).
  • the MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • each TA is identified by a tracking area identity (TAI).
  • TAI tracking area identity
  • the terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • ESM evolved Session Management
  • the NAS layer performs functions such as default bearer management and dedicated bearer management, and is responsible for controlling the terminal to use the PS service from the network.
  • the default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
  • PDN Packet Data Network
  • the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer.
  • LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR bearer is assigned.
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • the UE sends the randomly selected random access preamble to the eNodeB.
  • the UE selects one of the 64 candidate random access preambles.
  • the corresponding subframe is selected by the PRACH configuration index.
  • the UE transmits the selected random access preamble in the selected subframe.
  • the eNodeB Upon receiving the random access preamble, the eNodeB sends a random access response (RAR) to the UE.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE detects a PDCCH masked with random access-RNTI (RA-RNTI). The UE receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • the RRC state is shown depending on whether the RRC is connected.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE is in a logical connection with an entity of the RRC layer of the eNodeB.
  • the RRC state is referred to as an RRC connected state.
  • the non-state is called the RRC idle state.
  • the UE When a user first powers up a UE, the UE first searches for an appropriate cell and then stays in an idle state in that cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through an RRC connection procedure and transitions to an RRC connected state. .
  • the RRC connection process is largely a process in which a UE sends an RRC connection request message to an eNodeB, an eNodeB sends an RRC connection setup message to the UE, and a UE completes RRC connection setup to the eNodeB. (RRC connection setup complete) message is sent. This process will be described in more detail with reference to FIG. 6 as follows.
  • the eNB When the RRC connection request message is received from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message, which is a response message, to the UE. .
  • the UE When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection establishment message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connected mode.
  • the MME is divided into a core access and mobility management function (AMF) and a session management function (SMF) in a next generation system (or 5G CN).
  • AMF access and mobility management function
  • SMF session management function
  • the NAS interaction and mobility management (MM) with the UE are performed by the AMF
  • the session management (SM) is performed by the SMF.
  • the SMF manages a user plane function (UPF), which has a user-plane function, that is, a gateway for routing user traffic.
  • the SMF is responsible for the control-plane portion of the S-GW and the P-GW in the conventional EPC.
  • the user-plane part can be considered to be in charge of the UPF.
  • the conventional EPC may be configured as illustrated in FIG. 7 at 5G.
  • a PDU (Protocol Data Unit) session is defined in 5G system.
  • the PDU session refers to an association between the UE and the DN providing the PDU connectivity service of the Ethernet type or the unstructured type as well as the IP type.
  • UDM Unified Data Management
  • PCF Policy Control Function
  • the functions can be provided in an expanded form to satisfy the requirements of the 5G system. For details on the 5G system architecture, each function and each interface, TS 23.501 is applicable.
  • Section 7B Indirect 3GPP Communication
  • Section 7C Requirements for relay UE selection for Evolved ProSe remote UE access via an Evolved ProSe UE-to-Network Relay
  • TR 36.746 is also developing a solution to meet the above REAR service requirements.
  • Section 4.3 describes various scenarios such as those illustrated in FIG.
  • the control plane (CP) stack and the user plane (UP) stack of the relay UE and the remote UE are defined as follows.
  • relaying is performed at the RLC lower layer.
  • User plane and control plane data of the evolved ProSe remote UE is relayed on the RLC sublayer via an evolved ProSe UE-to-network network relay UE from the evolved ProSe remote UE to the network.
  • Traffic of one or multiple evolved ProSe remote UEs may be mapped to a single DRB of the Uu interface of the evolved ProSe UE-to-Network Relay UE. Multiple Uu DRBs may be used to carry traffic of different QoS classes for one or multiple evolved ProSe remote UEs. It is also possible to multiplex the traffic of the evolved ProSe UE-to-Network Relay UE itself to the Uu DRB used to relay traffic to / from the evolved ProSe remote UE. Traffic mapping between the side link bearer and the Uu bearer depends on the eNB implementation, and the mapping is configured by the eNB at the network relay UE between the evolved ProSe UEs. An adaptation layer on Uu is supported to identify the evolved ProSe remote UE / evolved ProSe UE-to-Network Relay UE and their correspondences.
  • FIG. 11 shows the relationship and the respective network nodes of the remote UE and the relay UE.
  • serving MME ie, MME # 1 which is a remote UE
  • serving MME ie, MME # 2 which is a relay UE.
  • S-GW i.e., S-GW # 1 exists for user traffic routing to UE # 1, which is a remote UE
  • S-GW i.e., S-
  • S-GW for user traffic routing to UE # 2, which is a relay UE GW # 2 exists.
  • the relay UE When the relay UE is in idle mode and receives a network connection request (such as RRC message, NAS message, PC5-S message, user traffic, etc.) sent from the remote UE, the relay UE is connected to send the request to the network. must be in mode. This may be interpreted as the connection request triggering the Remote UE to trigger a Relay UE to transmit a Remote UE related control plane message or user plane message / data to the network. This applies throughout the present invention.
  • a network connection request such as RRC message, NAS message, PC5-S message, user traffic, etc.
  • the connection request is transmitted from the Relay UE to the eNB.
  • the connection request is transmitted from the eNB to S-GW # 1.
  • S1-MME for UE # 1 which is a remote UE, between the eNB and MME # 1 is set, and / or a process of setting S1-U for UE # 1 between the eNB and S-GW # 1.
  • the UE no longer checks / monitors paging once it is RRC connected. Therefore, the remote UE, which is CN Idle but RRC connected, does not respond to paging, and the MME considers that paging has failed because there is no paging response from the UE, and DL traffic cannot be delivered to the relay UE. .
  • various embodiments of the present disclosure will describe methods for solving such a problem.
  • the base station receiving the paging message for the second UE (relay UE) from the second MME, when the second UE is in the CN (Core Network) IDLE state and the radio resource control (RRC) connected state, the base station to the second MME
  • a message (which may be a paging response message) including information related to the connection state of the second UE may be transmitted as a response to the paging message.
  • the RRC connected state (of the second UE) may be a state in which the second UE has a network connection request from the first UE (remote UE), and the information related to the connection state of the second UE may include: Information indicating that the second UE is serving or information indicating that the second UE is in the RRC connected state may be included.
  • the second MME that receives the message including the information related to the connection state of the second UE may set a user plane for the second UE.
  • the base station when a base station receives a paging message for a particular UE, the base station sends a paging message for that UE.
  • the relay UE ie, CN IDLE
  • the relay UE since the relay UE (ie, CN IDLE) that does not set up the user plane for the remote UE is in an RRC connected state, the relay UE does not respond to the paging message transmitted by the base station. In this case, paging is considered failed and traffic to the relay UE is not delivered.
  • the relay UE configured for RRC connection for the remote UE in this manner, when the base station receives a paging request for the relay UE, the relay UE does not simply perform paging for the relay UE, but the network node is not responsible for the connection state of the relay UE. Informing the information so that the network node can set the user plane for the relay UE. Through this, traffic to the relay UE can be smoothly delivered.
  • step S1200 UE # 2 (second UE) that is a relay UE is in Idle mode.
  • the first UE UE # 1 which is a remote UE, transmits a network connection request to the relay UE UE # 2.
  • a message for requesting relay to a network for uplink traffic for example, a Relay Request message, is transmitted.
  • the message may include an RRC Connection Request message generated by an AS layer of a remote UE (UE # 1). In this case, the message may explicitly or implicitly indicate that the RRC message is included.
  • the relay UE performs a random access procedure according to a network connection request of the remote UE. Specifically, in step S1202, the relay UE UE # 2 transmits a random access preamble to the eNB. In step S1203, the eNB responds with a random access response to the relay UE UE # 2. In step S1204, the relay UE UE # 2 transmits an RRC Connection Request message to the eNB.
  • the RRC Connection Request message may be generated by an AS layer of a remote UE UE # 1, or may be generated by a relay UE UE # 2 (in this case, for a remote UE UE # 1).
  • step S1205 the eNB responds with a RRC Connection Setup message to the relay UE (UE # 2).
  • the relay UE UE # 2 is switched to connected mode.
  • the connected mode means an RRC connected mode or a connected mode in the LTE-Uu period.
  • the relay UE UE # 2 responds to the remote UE UE # 1 with a Relay Request Ack message.
  • a Relay Request Ack message may include the RRC Connection Setup message received from the eNB as it is or in a modified / processed form.
  • the remote UE UE # 1 transmits a message for requesting relay to the network for uplink traffic, for example, a Relay Request message, to the relay UE UE # 2.
  • This message may include a Service Request message generated by the NAS layer of the remote UE UE # 1.
  • the message may explicitly or implicitly indicate that the NAS message is included.
  • the message may include an RRC Connection Setup Complete message, which is a message of an AS layer including a Service Request message generated by a NAS layer of a remote UE (UE # 1).
  • the message may explicitly or implicitly indicate that the NAS message is included, or may explicitly or implicitly indicate that an AS message including the NAS message is included.
  • the NAS message generated by the NAS layer of the remote UE UE # 1 does not necessarily need to be a Service Request message, but may be various conventional or newly defined NAS messages. This can be applied throughout the present invention. Steps S1206 and S1207 may be omitted. In this case, the NAS message generated by the remote UE (UE # 1) may be provided to the relay UE (UE # 2) through step S1201.
  • the relay UE UE # 2 transmits an RRC Connection Setup Complete message to the eNB.
  • the RRC Connection Setup Complete message may be generated by an AS layer of a remote UE (UE # 1) or may be generated by a relay UE (UE # 2) (in this case, for a remote UE (UE # 1)).
  • Information indicating that the relay UE UE # 2 has modified / processed what the remote UE UE # 1 has generated in this case, information indicating that the relay UE UE # 2 is relaying). May include).
  • the RRC Connection Setup Complete message includes a Service Request message, which may be generated by a NAS layer of a remote UE UE # 1, generated by a relay UE UE # 2, or may be generated by a relay UE UE # 2. At this time, this may include information indicating that it is for the remote UE (UE # 1), the relay UE (UE # 2) transformed / processed what the remote UE (UE # 1) generated (the relay UE at this time) (UE # 2) may include information indicating that relaying).
  • the Service Request message is referred to as a NAS message transmitted by the relay UE UE # 2 to the eNB, the relay UE UE # 2 is not necessarily required and may include various conventional or newly defined NAS messages.
  • step S1209 the eNB transmits a Service Request message to the serving MME of the remote UE (UE # 1), that is, MME # 1.
  • MME # 1 receiving this transmits an Initial Context Setup Request message to the eNB (step S1210).
  • step S1211 the eNB and the relay UE (UE # 2) set up a user plane radio bearer (ie, DRB). This may be a main purpose of providing a network connection service to the remote UE UE # 1.
  • step S1212 the relay UE UE # 2 responds to the remote UE UE # 1 with a Relay Request Ack message.
  • the relay UE UE # 2 has a user plane radio bearer (i.e., DRB) configured for the remote UE UE # 1, or the relay UE UE # 2 relays user traffic of the remote UE UE # 1. It may be an indication that you are ready to do so.
  • the message may include QoS information related to DRB and / or corresponding PC5 user plane.
  • the remote UE UE # 1 may transmit an UP message / data or CP message to the relay UE UE # 2.
  • the relay UE UE # 2 transmits this to the network.
  • step S1216 since downlink traffic is turned on to the relay UE UE # 2, the S-GW # 2 receives it.
  • step S1217 since there is no user plane (i.e., S1-U) to the relay UE UE # 2, the S-GW # 2 transmits a Downlink Data Notification message requesting paging to the MME. This applies to the operation of the conventional TS 23.401.
  • step S1218 the MME # 2 transmits a paging message to the eNB (s) in order to paging the relay UE UE # 2. This applies to the operation of the conventional TS 23.401.
  • the base station may transmit a message (which may be a paging response message) including information related to the connection state of the second UE to the second MME as a response to the paging message. That is, an eNB serving a relay UE (UE # 2) having a (CN IDLE) RRC connected state transmits a paging message to the relay UE (UE # 2) because the relay UE (UE # 2) is in an RRC connected state. Instead, the MME # 2 transmits a message indicating that it is serving a relay UE (UE # 2) and / or that the relay UE (UE # 2) is in an RRC connected mode. For example, a Paging Response message is transmitted, which may be a conventional S1-AP message or a newly defined message. When the MME # 2 receives the response from the eNB, it stops paging transmission.
  • a message which may be a paging response message
  • MME # 2 sets the user plane for the relay UE.
  • S-GW # 2 transmits downlink traffic to the relay UE UE # 2 through the eNB.
  • the relay UE UE # 2 instead of the eNB responding to MME # 2 as in step S1219, the relay UE UE # 2 indicates that a paging request is received through a dedicated RRC signal and / or there is downlink traffic and / or NW It can inform that service request procedure is needed. Upon receiving this, the relay UE UE # 2 may perform a procedure (steps S1202 to S1224) of generating a user plane by performing a service request procedure with MME # 2.
  • step S1301 The description of S1315 in step S1301 is replaced with the description of steps S1201 to S1215 in the first embodiment.
  • the relay UE UE # 2 transmits a message indicating that it is connected mode (which may mean RRC connected mode) to the serving MME, that is, MME # 2, for example, a Service Request message.
  • a message indicating that it is connected mode which may mean RRC connected mode
  • MME # 2 for example, a Service Request message.
  • the Service Request message above does not request information indicating that the relay UE (UE # 2) is in connected mode to service the remote UE and / or indicating that it does not request S1-U generation and / or user plane generation.
  • Information indicating no, and / or information indicating that only S1-MME generation is requested.
  • the NAS message transmitted by the relay UE UE # 2 to the MME is not necessarily a service request message. This may be various conventional (eg, Extended Service Request, etc.) or newly defined NAS messages.
  • Step S1316 may be performed at any time after the relay UE UE # 2 becomes an RRC connected mode.
  • the relay UE UE # 2 may include the NAS message together with its serving MME and transmit the same.
  • step S1317 the eNB transmits the NAS message received to the MME # 2 serving MME of the relay UE (UE # 2).
  • the MME # 2 puts the connection management (CM) state of the relay UE UE # 2 into the connected mode.
  • the CM state may mean an ECM state.
  • Steps S1318 to 22 are steps for the MME # 2 to set a user plane for the relay UE (UE # 2). That is, the S1-U section for the relay UE (UE # 2) is set, and if there is a DRB to be set in addition to the DRB set in S1311, it is set.
  • UE # 2 the S1-U section for the relay UE (UE # 2) is set, and if there is a DRB to be set in addition to the DRB set in S1311, it is set.
  • use 5.3.4.1 (UE triggered service request) of TS 23.401 as a quasi-key. The difference is that the eNB determines whether DRB configuration is required in addition to the preset DRB and configures it.
  • the step of setting a user plane for the relay UE UE # 2 may be optional.
  • the MME # 2 indicates that it is not necessary to generate the S1-U or the user plane as described above in the various information included in the NAS message received in S1317, or that the MME # 2 is in the connected mode to service the remote UE. Information, etc.) may not be performed.
  • downlink traffic directed to the relay UE may be transmitted to the relay UE (UE # 2) via the eNB in S-GW # 2 as in the prior art.
  • the serving MME of the remote UE informs the serving MME of the relay UE that the remote UE is RRC connected. That is, paging to the relay UE is prevented from failing through message exchange between MMEs.
  • the message indicates that the remote UE served by the relay UE UE # 2 has entered the connected mode and / or the relay UE UE # 2 has entered the RRC connected mode and / or the CM state of the relay UE UE # 2 has It may include information such as to be connected. Such a message may be transmitted since the message transmitted in S1418 or S1419 includes an information / indicator for MME # 1 to transmit the relay connection notify message to MME # 2.
  • the UE # 1 that the MME # 1 serves as the remote UE and the relay UE for this is the UE # 2 and the serving MME of the UE # 2 are the MME # 2 mean that the remote UE and the relay UE are Relay-Remote to each other. It may be recognized at / after the relationship is established, at the time of setting up a one-to-one direct link with each other, or at the time of establishing a relationship, and a message transmitted in S1418 or S1419 may include this information.
  • Step S1416 may be performed at any time after S1419.
  • step S1417 MME # 2 sends a Relay Connection Ack message, which is a response message, to MME # 1. This step may be optional.
  • Steps S1418 to 22 assume that the contents of S1318 to 22 described in Example 1 are applied as they are or are expanded.
  • MME # 1 may generate and include various information included in the relay UE UE # 2.
  • the base station informs the MME that the relay is connected to configure the S1-U interface. This will be described with reference to FIG. 15. In FIG. 15, descriptions of steps S1501 to S1515 are replaced with descriptions of steps S1201 to S1215 in the first embodiment.
  • the eNB knows that the remote UE (UE # 1) that it serves is a remote UE and the relay UE for this is UE # 2 and the serving MME of UE # 2 is MME # 2. It may be recognized when / after establishing a remote relationship, or when establishing a one-to-one direct link with each other, and a message sent in S1512, and / or S1514, and / or S1518 may contain this information. You may be doing it.
  • FIG. 15 illustrates a case where the MMEs are different from each other, two UEs may be served by the same MME, and in this case, the MME may process this internally.
  • Step S1516 may be performed at any time after S1519.
  • Steps S1517 to 21 are regarded as if the contents of S1218 to 1222 described in the first embodiment are applied as they are or are expanded.
  • MME # 1 may generate and include various information included in the relay UE UE # 2.
  • the network node device 200 may include a transceiver 210, a processor 220, and a memory 230.
  • the transceiver 210 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the network node device 200 may be connected to an external device by wire and / or wirelessly.
  • the processor 220 may control the overall operation of the network node device 200, and may be configured to perform a function of calculating and processing information to be transmitted / received with an external device.
  • the memory 230 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the processor 220 may be configured to perform the network node operation proposed in the present invention.
  • the processor 220 receives a paging message for a second UE from a second MME, and when the second UE is in a Core Network (CN) IDLE state and a Radio Resource Control (RRC) connected state, the second UE
  • the MME may transmit a message including information related to the connection state of the second UE as a response to the paging message.
  • CN Core Network
  • RRC Radio Resource Control
  • the specific configuration of the terminal device 100 and the network device 200 as described above may be implemented so that the above-described matters described in various embodiments of the present invention can be applied independently or two or more embodiments are applied at the same time, overlapping The description is omitted for clarity.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of an apparatus, procedure, or function for performing the above-described functions or operations.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 일 실시예는, 무선통신시스템에서 제1 UE(User Equipment)와 연결을 가진 제2 UE의 기지국이 페이징 관련 동작을 수행하는 방법에 있어서, 기지국이 제2 MME로부터 제2 UE에 대한 페이징 메시지를 수신하는 단계; 및 상기 제2 UE가 CN(Core Network) IDLE 상태이면서도 RRC(Radio resource control) connected 상태인 경우, 상기 기지국은 상기 제2 MME에게 상기 제2 UE의 연결 상태에 관련된 정보를 포함하는 메시지를 상기 페이징 메시지에 대한 응답으로써 전송하는 단계를 포함하는, 페이징 관련 동작을 수행하는 방법.

Description

무선 통신 시스템에서 제1 UE와 연결을 가진 제2 UE의 페이징 관련 동작을 수행하는 방법 및 이를 위한 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 리모트 UE(User Equipment)와 연결을 가진 릴레이 UE의 페이징을 어떻게 처리해야 하는지에 대한 방법 및 장치에 대한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
본 발명에서는 3GPP GSM/UMTS/EPS(Evolved Packet System)/5GS(5G System)와 같은 이동통신 시스템에서 Remote UE의 네트워크 연결 요청으로 인해 RRC connected가 된 Relay UE에 대해 downlink traffic이 잘 전달될 수 있도록 Relay UE의 connection을 manage하는 방법을 기술적 과제로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예는, 무선통신시스템에서 제1 UE(User Equipment)와 연결을 가진 제2 UE의 기지국이 페이징 관련 동작을 수행하는 방법에 있어서, 기지국이 제2 MME로부터 제2 UE에 대한 페이징 메시지를 수신하는 단계; 및 상기 제2 UE가 CN(Core Network) IDLE 상태이면서도 RRC(Radio resource control) connected 상태인 경우, 상기 기지국은 상기 제2 MME에게 상기 제2 UE의 연결 상태에 관련된 정보를 포함하는 메시지를 상기 페이징 메시지에 대한 응답으로써 전송하는 단계를 포함하는, 페이징 관련 동작을 수행하는 방법.
본 발명의 일 실시예는, 무선통신시스템에서 제1 UE(User Equipment)와 연결을 가진 제2 UE의 페이징 관련 동작을 수행하는 기지국 장치에 있어서, 송수신 장치; 및 프로세서를 포함하고, 상기 프로세서는, 제2 MME로부터 제2 UE에 대한 페이징 메시지를 수신하고, 상기 제2 UE가 CN(Core Network) IDLE 상태이면서도 RRC(Radio resource control) connected 상태인 경우, 상기 제2 MME에게 상기 제2 UE의 연결 상태에 관련된 정보를 포함하는 메시지를 상기 페이징 메시지에 대한 응답으로써 전송하는, 기지국 장치이다.
상기 RRC connected 상태는, 상기 제2 UE가 제1 UE로부터 네트워크 연결 요청을 받음으로써 가지게 된 상태일 수 있다.
상기 제2 UE의 연결 상태에 관련된 정보는, 상기 기지국이 상기 제2 UE를 서빙하고 있음을 알리는 정보 또는 상기 제2 UE가 RRC connected 상태임을 알리는 정보를 포함할 수 있다.
상기 제2 UE의 연결 상태에 관련된 정보를 포함하는 메시지는, 페이징 응답 메시지인, 페이징 관련 동작을 수행할 수 있다.
상기 제2 UE의 연결 상태에 관련된 정보를 포함하는 메시지를 수신한 상기 상기 제2 MME는 상기 제2 UE에 대한 user plane을 설정할 수 있다.
상기 제2 UE가 CN IDLE 상태이고 RRC IDLE 상태인 경우, 상기 기지국은 상기 제2 UE를 위해 페이징 메시지를 전송할 수 있다.
상기 제1 UE는 리모트 UE이고, 상기 제2 UE는 릴레이 UE일 수 있다.
본 발명에 따르면, 종래기술에서 리모트 UE를 위해 RRC 연결 상태가 된 릴레이 UE로의 트래픽이 전달되지 않는 문제를 해결할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도 3은 제어 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 4는 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 5는 랜덤 액세스 과정을 설명하기 위한 흐름도이다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타내는 도면이다.
도 7은 5G 시스템을 설명하기 위한 도면이다.
도 8은 릴레이의 다양한 시나리오를 보여주는 도면이다.
도 9 내지 도 10은 사용자 평면 프로토콜 스택 및 제어 평면 프로토콜 스택을 설명하기 위한 도면이다.
도 11은 리모트 UE 및 릴레이 UE의 각 네트워크 노드들과 관계가 예시되어 있다.
도 12 내지 도 15는 본 발명의 실시예들을 설명하기 위한 도면이다.
도 16은 본 발명의 실시예에 따른 노드 장치에 대한 구성을 예시한 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 IEEE(Institute of Electrical and Electronics Engineers) 802 계열 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A 시스템 및 3GPP2 시스템 중 적어도 하나에 관련하여 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 다양한 무선 통신 시스템에서 사용될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
본 문서에서 사용되는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술.
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 PS(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE/UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: GERAN/UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: E-UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- UE(User Equipment): 사용자 기기. UE는 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 UE 또는 단말이라는 용어는 MTC 디바이스를 지칭할 수 있다.
- HNB(Home NodeB): UMTS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다.
- HeNB(Home eNodeB): EPS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀 규모이다.
- MME(Mobility Management Entity): 이동성 관리(Mobility Management; MM), 세션 관리(Session Management; SM) 기능을 수행하는 EPS 네트워크의 네트워크 노드.
- PDN-GW(Packet Data Network-Gateway)/PGW: UE IP 주소 할당, 패킷 스크리닝(screening) 및 필터링, 과금 데이터 취합(charging data collection) 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- SGW(Serving Gateway): 이동성 앵커(mobility anchor), 패킷 라우팅(routing), 유휴(idle) 모드 패킷 버퍼링, MME가 UE를 페이징하도록 트리거링하는 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- NAS(Non-Access Stratum): UE와 MME간의 제어 플레인(control plane)의 상위 단(stratum). LTE/UMTS 프로토콜 스택에서 UE와 코어 네트워크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층으로서, UE의 이동성을 지원하고, UE와 PDN GW 간의 IP 연결을 수립(establish) 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결.
- RAN(Radio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이들을 제어하는 RNC(Radio Network Controller)를 포함하는 단위. UE 간에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 아이덴티티 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- PLMN(Public Land Mobile Network): 개인들에게 이동통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- Proximity Service (또는 ProSe Service 또는 Proximity based Service): 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스. 이때 사용자 평면 데이터(user plane data)는 3GPP 코어 네트워크(예를 들어, EPC)를 거치지 않고 직접 데이터 경로(direct data path)를 통해 교환된다.
EPC(Evolved Packet Core)
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 캐퍼빌리티를 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다.
레퍼런스 포인트 설명
S1-MME E-UTRAN와 MME 간의 제어 플레인 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME)
S1-U 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 플레인 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트(Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover)
S3 유휴(idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).)
S4 (GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 플레인 터널링을 제공함(It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)
S5 SGW와 PDN GW 간의 사용자 플레인 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. 단말 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨(It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11 MME와 SGW 간의 레퍼런스 포인트
SGi PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함(It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.)
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도시된 바와 같이, eNodeB는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNodeB의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, SAE 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
도 3은 단말과 기지국 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 단말과 기지국 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
상기 무선 인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과, 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
제2계층에는 여러 가지 계층이 존재한다.
먼저 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.
제2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.
제2 계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC유휴 모드(Idle Mode)에 있게 된다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on)한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층에 속하는 eSM (evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.
도 5는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
랜덤 액세스 과정은 UE가 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
UE는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
UE는 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB로 전송한다. UE는 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE는 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB는 랜덤 액세스 응답(random access response, RAR)을 UE로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE는 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE는 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 6에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE의 RRC 계층의 엔티티(entity)가 eNodeB의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 모드(idle state)라고 부른다.
상기 연결 상태(Connected state)의 UE는 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 유휴 모드(idle state)의 UE는 eNodeB가 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 모드(idle state) UE는 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.
사용자가 UE의 전원을 맨 처음 켰을 때, 상기 UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 모드(idle state)에 머무른다. 상기 유휴 모드(idle state)에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 eNodeB의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.
상기 유휴 모드(Idle state)에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
유휴 모드(idle state)의 UE가 상기 eNodeB와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE가 eNodeB로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB가 UE로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE가 eNodeB로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 6을 참조하여 보다 상세하게 설명하면 다음과 같다.
1) 유휴 모드(Idle state)의 UE는 통화 시도, 데이터 전송 시도, 또는 eNodeB의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE는 RRC 연결 요청(RRC connection request) 메시지를 eNodeB로 전송한다.
2) 상기 UE로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB는 무선 자원이 충분한 경우에는 상기 UE의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE로 전송한다.
3) 상기 UE가 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE가 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE는 eNodeB과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.
종래 EPC에서의 MME는 Next Generation system(또는 5G CN(Core Network))에서는 AMF(Core Access and Mobility Management Function)와 SMF(Session Management Function)로 분리되었다. 이에 UE와의 NAS interaction 및 MM(Mobility Management)은 AMF가, 그리고 SM(Session Management)은 SMF가 수행하게 된다. 또한 SMF는 user-plane 기능을 갖는, 즉 user traffic을 라우팅하는 gateway인 UPF(User Plane Function)를 관리하는데, 이는 종래 EPC에서 S-GW와 P-GW의 control-plane 부분은 SMF가 담당하고, user-plane 부분은 UPF가 담당하는 것으로 간주할 수 있다. User traffic의 라우팅을 위해 RAN과 DN(Data Network) 사이에 UPF는 하나 이상이 존재할 수 있다. 즉, 종래 EPC는 5G에서 도 7에 예시된 바와 같이 구성될 수 있다. 또한, 종래 EPS에서의 PDN connection에 대응하는 개념으로 5G system에서는 PDU(Protocol Data Unit) session이 정의되었다. PDU session은 IP type 뿐만 아니라 Ethernet type 또는 unstructured type의 PDU connectivity service를 제공하는 UE와 DN 간의 association을 일컫는다. 그 외에 UDM(Unified Data Management)은 EPC의 HSS에 대응되는 기능을 수행하며, PCF(Policy Control Function)은 EPC의 PCRF에 대응되는 기능을 수행한다. 물론 5G system의 요구사항을 만족하기 위해 그 기능들이 확장된 형태로 제공될 수 있다. 5G system architecture, 각 function, 각 interface에 대한 자세한 사항은 TS 23.501을 준용한다.
3GPP Release 14에서는 non-Public Safety 단말에 대해서도 relay UE를 통해 네트워크 연결 서비스를 받도록 하고자 SA1에서 service requirements 작업하였다. 이와 같이 relay UE를 통해 네트워크 연결 서비스를 받는 단말로는 대표적으로 wearable 기기가 거론되고 있다. 아래는 service requirements 작업을 위한 WID (REAR: Remote UE access via relay UE)의 objective이다 (SP-160511 참고) 이 작업 항목의 목적은 UICC가 있는 UE가 Evolved ProSe UE-to-Network Relay를 통해 네트워크에 연결하기 위한 서비스 요구 사항을 지정하는 것이다. Evolved ProSe UE-to-Network Relay는 E-UTRAN을 사용하여 EPC에 연결하는 것으로 가정한다. 이와 관련해 다음 표 2의 내용들이 고려된다.
Figure PCTKR2018001536-appb-I000001
TS 22.278의 7B절 (Indirect 3GPP Communication) 및 7C절 (Requirements for 릴레이 UE selection for Evolved ProSe 리모트 UE access via an Evolved ProSe UE-to-Network Relay)은 REAR를 위한 service requirement들을 기술하고 있다. 또한, TR 36.746에서는 상기의 REAR service requirement를 만족시키기 위해 솔루션을 개발 중에 있다. 특히, 4.3절에는 도 8에 예시된 것과 같은 다양한 시나리오를 기술하고 있다.
한편, 3GPP R2-169155에 따르면, Relay UE와 Remote UE의 Control Plane(CP) stack 및 User Plane(UP) stack을 아래와 같이 정의하고 있다. 사용자 평면 및 제어 평면에 대한 프로토콜 아키텍처의 경우, RLC 하위 계층에서 릴레이가 수행된다. evolved ProSe 리모트 UE의 사용자 평면 및 제어 평면 데이터는 evolved ProSe 리모트 UE로부터 네트워크로 evolved ProSe UE 간 네트워크 릴레이 UE를 통해 RLC 서브레이어 상으로 릴레이된다. Uu PDCP 및 RRC는 evolved ProSe 리모트 UE와 eNB 사이에서 종료되며, RLC, MAC 및 PHY 및 non-3GPP 전송 계층은 각 링크에서 종결된다 (즉, evolved ProSe 리모트 UE와 evolved ProSe UE-to-Network Relay UE 및 evolved ProSe UE 간 네트워크 릴레이 UE와 eNB 사이의 링크)를 포함한다. PC5가 evolved ProSe 리모트 UE와 evolved ProSe UE-to-Network Relay UE 사이에서 사용될 때, 사용자 평면 프로토콜 스택과 제어 평면 프로토콜 스택은 도 9(a) 및 (b)에 각각 도시되어 있다. evolved ProSe 리모트 UE와 evolved ProSe UE-to-Network Relay UE 사이에서 non-3GPP 액세스가 사용될 때의 사용자 평면 프로토콜 스택 및 제어 평면 프로토콜 스택은 도 10(a) 및 (b)에 각각 도시되어 있다.
하나 또는 다수의 evolved ProSe 리모트 UE들의 트래픽은 evolved ProSe UE-to-Network Relay UE의 Uu 인터페이스의 단일 DRB에 매핑될 수있다. 다수의 Uu DRB는 하나 또는 다수의 evolved ProSe 리모트 UE에 대해 상이한 QoS 클래스의 트래픽을 운반하는데 사용될 수 있다. evolved ProSe UE-to-Network Relay UE 자체의 트래픽을 evolved ProSe 리모트 UE로/UE로부터의 트래픽을 릴레이하는데 사용되는 Uu DRB로 다중화하는 것 또한 가능하다. 사이드 링크 베어러와 Uu 베어러 사이의 트래픽 매핑이 eNB 구현에 달려 있으며, 매핑은 evolved ProSe UE간 네트워크 릴레이 UE에서 eNB에 의해 구성된다. Uu상의 적응(adaptation) 레이어는 evolved ProSe 리모트 UE / evolved ProSe UE-to-Network Relay UE 및 그들의 대응을 식별하기 위해 지원된다.
Uu DRB 내에서, 다른 evolved ProSe 리모트 UE들 및 다른 베어러들은 PDCP PDU에 부가된 적응 계층 헤더에 포함된 부가 정보에 의해 표시된다. 이 추가 정보의 세부 사항은 추후 논의될 수 있다. 적응 계층은 evolved ProSe 리모트 UE와 evolved ProSe UE 간 네트워크 릴레이 장치 간의 단거리 링크를 위한 non-3GPP 액세스를 통해 지원된다. PDCP PDU에는 Adaptation Layer Header가 추가된다.
TR 23.733v0.2.0에 따르면, 상기 CP stack 및 UP stack에 기반하여 다음 표 3과 같이 architecture assumption을 정의하고 있다.
Figure PCTKR2018001536-appb-I000002
도 11에는 리모트 UE 및 릴레이 UE의 각 네트워크 노드들과 관계가 도시되어 있다. 도 11을 참조하면, Layer-2 Relay의 경우 Remote UE인 UE#1에 대해서 serving MME(즉, MME#1)이 존재하고, Relay UE인 UE#2에 대해서 serving MME (즉, MME#2)가 존재한다. 즉, 각 UE에 대해 S1-MME가 존재하며, 이들은 같은 MME일 수도 있다. 이는 user plane 측면에서도 마찬가지이다. Remote UE인 UE#1에 대한 user traffic 라우팅을 위한 S-GW (즉, S-GW#1)이 존재하고, Relay UE인 UE#2에 대한 user traffic 라우팅을 위한 S-GW (즉, S-GW#2)가 존재한다. 즉, 각 UE에 대해 S1-U가 요구되는 것이며, 이들은 같은 S-GW일 수도 있다. 도 11에서는 P-GW는 편의상 하나를 도시하였으나, 각 S-GW가 다른 P-GW로 연결되어 PDN connection이 생성될 수 있다. 또한, 도 11에서는 Relay UE와 Remote UE가 동일 eNB에 serving되는 것을 도시하였으나, 서로 다른 eNB에 의해 serving될 수도 있다.
Relay UE가 idle mode인 상태에서 Remote UE로부터 네트워크 연결 요청(Remote UE가 전송하는 RRC 메시지, NAS 메시지, PC5-S 메시지, user traffic 등)을 받으면, Relay UE는 이 요청을 네트워크로 전송하기 위해 connected mode가 되어야 한다. 이는, 상기 연결 요청은 Remote UE가 Relay UE로 하여금 네트워크로 Remote UE 관련 control plane 메시지 또는 user plane 메시지/데이터를 전송하도록 trigger하는 것으로 해석될 수 있다. 이는 본 발명 전반에 걸쳐 적용된다.
다시 도 11을 참조하면, 상기와 같이 Relay UE가 Remote UE의 네트워크 연결 요청을 네트워크로 전송하고자 eNB와 RRC connection을 맺은 후, 상기 연결 요청은 Relay UE로부터 eNB로 전송되고, CP 메시지인 경우 eNB에서 MME#1으로 전송되고 UP 메시지/데이터인 경우 eNB에서 S-GW#1으로 전송된다. 이를 위해 eNB와 MME#1 구간에 리모트 UE인 UE#1을 위한 S1-MME가 설정되는 과정 및/또는 eNB와 S-GW#1 구간에 UE#1을 위한 S1-U가 설정되는 과정이 수행됨을 가정한다.
그러나, 릴레이 UE인 UE#2는 RRC connected 상태가 되었음에도 불구하고 자신의 S1-MME (즉, eNB와 MME#2 구간)와 S1-U (즉, eNB와 S-GW#2 구간)이 설정되지 않게 된다. 즉, 릴레이 UE의 경우 RRC mode와 CN(Core Network) mode 간에 mismatch가 발생한다 (즉, RRC connected인데 CN Idle 상태). 이에 릴레이 UE로 downlink traffic이 온 경우 S-GW는 MME에게 페이징을 요청하기 위한 DDN(Downlink Data Notification) 메시지를 전송하게 되고 MME는 페이징 메시지를 eNB를 통해 UE로 전송한다. 그러나, UE는 RRC connected가 되면 페이징을 더 이상 체크/모니터하지 않는다. 따라서, CN Idle 상태이지만 RRC connected 상태인 리모트 UE는 페이징 응답을 하지 않게 되고, MME는 해당 UE로부터의 페이징 응답이 없어 페이징이 실패한 것으로 간주하고 DL traffic은 릴레이 UE에게 전달될 수 없는 문제가 발생한다. 이하 본 발명의 다양한 실시예에서는 이러한 문제를 해결하기 위한 방법들에 대해 설명한다.
실시예 1
제2 MME로부터 제2 UE(릴레이 UE)에 대한 페이징 메시지를 수신한 기지국은, 제2 UE가 CN(Core Network) IDLE 상태이면서도 RRC(Radio resource control) connected 상태인 경우, 기지국은 제2 MME에게 제2 UE의 연결 상태에 관련된 정보를 포함하는 메시지(페이징 응답 메시지일 수 있음)를 페이징 메시지에 대한 응답으로써 전송할 수 있다. 여기서, (제2 UE의) RRC connected 상태는, 제2 UE가 제1 UE(리모트 UE)로부터 네트워크 연결 요청을 받음으로써 가지게 된 상태일 수 있으며, 제2 UE의 연결 상태에 관련된 정보는, 기지국이 제2 UE를 서빙하고 있음을 알리는 정보 또는 제2 UE가 RRC connected 상태임을 알리는 정보를 포함할 수 있다. 이러한 제2 UE의 연결 상태에 관련된 정보를 포함하는 메시지를 수신한 제2 MME는 제2 UE에 대한 user plane을 설정할 수 있다.
종래에는 기지국이 특정 UE에 대한 페이징 메시지를 수신하면, 기지국은 그 UE를 위해 페이징 메시지를 전송하게 된다. 그런데 앞서 설명한 바와 같이, 리모트 UE를 위해 사용자 평면의 연결 설정을 하지 않은 릴레이 UE(즉, CN IDLE)는 RRC connected 상태이므로, 기지국이 전송하는 페이징 메시지에 대해 응답을 하지 않는다. 이 경우, 페이징이 실패한 것으로 간주되어 상기 릴레이 UE에 대한 트래픽이 전달되지 않게 된다. 따라서, 이와 같이 리모트 UE를 위해 RRC 연결 설정한 릴레이 UE의 경우, 기지국이 릴레이 UE에 대한 페이징 요청을 수신하면 단순히 릴레이 UE에 대해 페이징을 수행하는 것이 아니라, 네트워크 노드에게 릴레이 UE의 연결 상태에 대한 정보를 알려 줌으로써 네트워크 노드가 릴레이 UE에 대한 사용자 평면을 설정할 수 있도록 하는 것이다. 이를 통해, 릴레이 UE로의 트래픽이 원활하게 전달될 수 있다.
상술한 실시예를 도 12를 참조하여 각 네트워크 노드의 시그널링 관점에서 살펴본다. 도 12를 참조하면, 단계 S1200에서, 릴레이 UE인 UE#2(제2 UE)가 Idle mode이다. 단계 S1201에서, 리모트 UE인 제1 UE(UE#1)은 릴레이 UE(UE#2)에게 네트워크 연결 요청을 전송한다. 도 12에서는 일례로 uplink traffic에 대한 네트워크로의 relay를 요청하는 메시지, 예컨대 Relay Request 메시지를 전송하는 것을 가정한다. 상기 메시지는 리모트 UE(UE#1)의 AS layer에서 생성한 RRC Connection Request 메시지를 포함할 수도 있다. 이 때 상기 메시지는 RRC 메시지가 포함되었음을 명시적으로 또는 암시적으로 나타낼 수도 있다.
리모트 UE의 네트워크 연결 요청(relay request)에 따라 릴레이 UE는 랜덤 액세스 절차를 수행한다. 구체적으로 단계 S1202에서, 릴레이 UE(UE#2)는 eNB로 Random Access Preamble을 전송한다. 단계 S1203에서, eNB는 릴레이 UE(UE#2)로 Random Access Response로 응답한다. 단계 S1204에서, 릴레이 UE(UE#2)는 eNB로 RRC Connection Request 메시지를 전송한다. 상기 RRC Connection Request 메시지는 리모트 UE(UE#1)의 AS layer가 생성한 것일 수도 있고, 릴레이 UE(UE#2)에서 생성한 것일 수도 있고 (이 때 이는 리모트 UE(UE#1)을 위한 것임을 나타내는 정보를 포함할 수 있음), 리모트 UE(UE#1)이 생성한 것을 릴레이 UE(UE#2)가 변형/가공한 것 (이때 릴레이 UE(UE#2)가 relay하는 것임을 나타내는 정보를 포함할 수 있음)일 수도 있다. 단계 S1205에서, eNB는 릴레이 UE(UE#2)로 RRC Connection Setup 메시지로 응답한다. 릴레이 UE(UE#2)는 connected mode로 전환된다. 여기서 connected mode는 RRC connected mode, 또는 LTE-Uu 구간의 connected mode를 의미한다.
단계 S1206에서, 릴레이 UE(UE#2)는 리모트 UE(UE#1)에게 Relay Request Ack 메시지로 응답한다. 이는 리모트 UE(UE#1)에게 릴레이 UE(UE#2)가 RRC 연결이 생겼음을 또는 릴레이 UE(UE#2)가 connected mode가 되었음을 또는 릴레이 UE(UE#2)가 네트워크와 signaling radio bearer가 설정되었음을 알리는 것일 수 있다. 상기 Relay Request Ack 메시지는 eNB로부터 받은 RRC Connection Setup 메시지를 그대로 또는 변형/가공한 형태로 포함할 수도 있다.
단계 S1207에서, 리모트 UE(UE#1)은 릴레이 UE(UE#2)에게 uplink traffic에 대한 네트워크로의 relay를 요청하는 메시지, 예컨대 Relay Request 메시지를 전송한다. 이 메시지는 리모트 UE(UE#1)의 NAS layer에서 생성한 Service Request 메시지를 포함할 수도 있다. 이 때 상기 메시지는 NAS 메시지가 포함되었음을 명시적으로 또는 암시적으로 나타낼 수도 있다. 또는 상기 메시지는 리모트 UE(UE#1)의 NAS layer에서 생성한 Service Request 메시지를 포함하는 AS layer의 메시지인 RRC Connection Setup Complete 메시지를 포함할 수도 있다. 이 때 상기 메시지는 NAS 메시지가 포함되었음을 명시적으로 또는 암시적으로 나타낼 수도 있고, NAS 메시지를 포함하는 AS 메시지가 포함되었음을 명시적으로 또는 암시적으로 나타낼 수도 있다. 리모트 UE(UE#1)의 NAS layer에서 생성하는 NAS 메시지가 반드시 Service Request 메시지일 필요는 없고, 다양한 종래의 또는 새롭게 정의된 NAS 메시지일 수 있다. 이는 본 발명 전반에 걸쳐 적용될 수 있다. 단계 S1206, 단계 S1207은 생략될 수도 있다. 이런 경우, 상기 리모트 UE(UE#1)에서 생성한 NAS 메시지는 단계 S1201을 통해 릴레이 UE(UE#2)로 제공될 수도 있다.
계속해서 단계 S1208에서, 릴레이 UE(UE#2)는 eNB로 RRC Connection Setup Complete 메시지를 전송한다. 상기 RRC Connection Setup Complete 메시지는 리모트 UE(UE#1)의 AS layer가 생성한 것일 수도 있고, 릴레이 UE(UE#2)에서 생성한 것일 수도 있고 (이 때 이는 리모트 UE(UE#1)을 위한 것임을 나타내는 정보를 포함할 수 있음), 리모트 UE(UE#1)이 생성한 것을 릴레이 UE(UE#2)가 변형/가공한 것 (이때 릴레이 UE(UE#2)가 relay하는 것임을 나타내는 정보를 포함할 수 있음)일 수도 있다.
상기 RRC Connection Setup Complete 메시지는 Service Request 메시지를 포함하는데, 이러한 Service Request 메시지는 리모트 UE(UE#1)의 NAS layer가 생성한 것일 수도 있고, 릴레이 UE(UE#2)에서 생성한 것일 수도 있고 (이 때 이는 리모트 UE(UE#1)을 위한 것임을 나타내는 정보를 포함할 수 있음), 리모트 UE(UE#1)이 생성한 것을 릴레이 UE(UE#2)가 변형/가공한 것 (이때 릴레이 UE(UE#2)가 relay하는 것임을 나타내는 정보를 포함할 수 있음)일 수도 있다.
릴레이 UE(UE#2)가 eNB로 전송하는 NAS 메시지로 Service Request 메시지를 언급하였으나, 반드시 그럴 필요는 없고 다양한 종래의 또는 새롭게 정의된 NAS 메시지를 포함하여 전송할 수 있다.
단계 S1209에서, eNB는 Service Request 메시지를 리모트 UE(UE#1)의 serving MME, 즉 MME#1에게 전송한다. 이를 수신한 MME#1은 eNB에게 Initial Context Setup Request 메시지를 전송한다(단계 S1210). 단계 S1211에서, eNB와 릴레이 UE(UE#2)는 user plane radio bearer (즉, DRB)를 setup한다. 이는 리모트 UE(UE#1)에게 네트워크 연결 서비스를 제공함이 주요 목적일 수 있다. 단계 S1212에서, 릴레이 UE(UE#2)는 리모트 UE(UE#1)에게 Relay Request Ack 메시지로 응답한다. 이는 리모트 UE(UE#1)에게 릴레이 UE(UE#2)가 user plane radio bearer (즉, DRB)가 설정되었음을 또는 릴레이 UE(UE#2)가 리모트 UE(UE#1)의 user traffic을 relay할 준비가 되었음을 알리는 것일 수 있다. 상기 메시지는 DRB 관련 및/또는 그에 대응하는 PC5 user plane 관련 QoS 정보를 포함할 수도 있다. 리모트 UE(UE#1)은 UP 메시지/데이터 내지는 CP 메시지를 릴레이 UE(UE#2)에게 전송할 수 있다. 이를 릴레이 UE(UE#2)는 네트워크로 전송한다.
리모트 UE(UE#1)이 전송한 UP 메시지/데이터는 릴레이 UE(UE#2)를 거쳐 eNB, S-GW#1을 통해 전송된다. 리모트 UE(UE#1)이 전송한 CP 메시지는 릴레이 UE(UE#2)거쳐 eNB, MME#1을 통해 전송된다.
한편, 기지국과 MME#1은 단계 S1213~1215를 통해 Service Request 절차에 따른 동작을 수행한다. 이에 대한 상세한 설명은 TS 23.401의 5.3.4.1절 (UE triggered Service Request)을 준용키로 한다. 상기에서 자세히 설명하지 않은 종래의 동작들 역시 TS 23.401 및 TS 36.331을 참조할 수 있다.
단계 S1216에서, 릴레이 UE(UE#2)로 downlink traffic이 온 바, S-GW#2가 이를 수신한다. 단계 S1217에서, S-GW#2는 릴레이 UE(UE#2)로의 user plane (즉, S1-U)가 없는 바, MME에게 paging을 요청하는 Downlink Data Notification 메시지를 전송한다. 이는 종래의 TS 23.401의 동작을 준용한다.
단계 S1218에서, MME#2는 릴레이 UE(UE#2)를 paging하기 위해 eNB(s)에게 Paging 메시지를 전송한다. 이는 종래의 TS 23.401의 동작을 준용한다.
단계 S1219에서, 기지국은 제2 MME에게 제2 UE의 연결 상태에 관련된 정보를 포함하는 메시지(페이징 응답 메시지일 수 있음)를 페이징 메시지에 대한 응답으로써 전송할 수 있다. 즉, (CN IDLE이며) RRC connected 상태인 릴레이 UE(UE#2)를 serving하는 eNB는 릴레이 UE(UE#2)가 RRC connected 상태인 바, 릴레이 UE(UE#2)에게 Paging 메시지를 전송하는 대신, MME#2에게 자신이 릴레이 UE(UE#2)를 serving하고 있음 및/또는 릴레이 UE(UE#2)가 RRC connected mode 임을 알리는 메시지를 전송한다. 예컨대, Paging Response 메시지를 전송하며, 이러한 메시지는 종래의 S1-AP 메시지일 수도 있고 새롭게 정의한 메시지일 수도 있다. MME#2가 상기 eNB로부터 상기한 응답을 받으면 paging 전송을 멈춘다.
이후, 단계 S1220~24를 통해, MME#2가 릴레이 UE에 대한 사용자 평면을 설정하게 된다. 단계 S1225에서, S-GW#2는 eNB를 통해 릴레이 UE(UE#2)에게 downlink traffic을 전송한다.
또 다른 방법으로써, 단계 S1219와 같이 eNB가 MME#2에게 응답을 하는 대신, 릴레이 UE(UE#2)에게 dedicated RRC signal을 통해 Paging 요청이 왔음을 및/또는 downlink traffic이 있음을 및/또는 NW으로 service request 절차가 필요함을 알릴 수 있다. 이를 수신한 릴레이 UE(UE#2)는 MME#2로 service request 절차를 수행함으로써 user plane을 생성하는 절차 (단계 S1202~S1224)가 수행될 수 있다.
실시예 2
두 번째 실시예는, 릴레이 UE가 서빙 MME에게 자신의 연결 상태(예를 들어, 릴레이 UE 자신이 RRC connected)를 알리는 정보를 전송하는 방식이다. 이에 대해 도 13을 참조하여 상세히 설명한다.
단계 S1301에서 S1315에 대한 설명은 실시예 1에서 단계 S1201~S1215에 대한 설명으로 대체한다.
단계 S1316에서, 릴레이 UE(UE#2)는 자신의 serving MME, 즉 MME#2에게 자신이 connected mode (이는 RRC connected mode를 의미할 수 있음)임을 알리는 메시지, 예컨대 Service Request 메시지를 전송한다. 이는 종래의 RRC 메시지 또는 새롭게 정의된 RRC 메시지를 통해 전송될 수 있다. 상기의 Service Request 메시지는 릴레이 UE(UE#2)가 자신이 리모트 UE를 서비스하기 위해 connected mode 되었음을 나타내는 정보 및/또는 S1-U 생성은 요청하지 않음을 나타내는 정보 및/또는 user plane 생성은 요청하지 않음을 나타내는 정보 및/또는 S1-MME 생성만을 요청함을 나타내는 정보를 포함할 수도 있다. 릴레이 UE(UE#2)가 MME로 전송하는 NAS 메시지가 반드시 Service Request 메시지일 필요는 없다. 이는 다양한 종래의 (예, Extended Service Request 등) 또는 새롭게 정의된 NAS 메시지일 수 있다.
단계 S1316은 릴레이 UE(UE#2)가 RRC connected mode가 된 후 언제든지 수행될 수 있다. 또는 릴레이 UE(UE#2)가 S1308을 수행 시, 자신의 serving MME로 상기한 NAS 메시지를 함께 포함시켜 전송할 수도 있다.
단계 S1317에서, eNB가 릴레이 UE(UE#2)의 serving MME인 MME#2로 수신한 NAS 메시지를 전송한다. MME#2는 릴레이 UE(UE#2)의 CM(Connection Management) state를 connected mode로 만든다. 상기 CM state는 ECM state를 의미할 수 있다.
단계 S1318~22는 MME#2가 릴레이 UE(UE#2)에 대해 user plane을 설정하기 위한 단계이다. 즉, 릴레이 UE(UE#2)를 위한 S1-U 구간이 설정되고, S1311에서 설정한 DRB 외에 설정해야 하는 DRB가 있는 경우 이를 설정한다. 자세한 사항은 TS 23.401의 5.3.4.1절 (UE triggered Service Request)을 준용키로 하되, 차이점은 eNB가 기설정된 DRB 외에 추가로 DRB 설정이 필요한지 판단하여 이를 설정하는 것이다.
이처럼 릴레이 UE(UE#2)를 위해 user plane을 설정하는 단계는 optional일 수 있다. MME#2는 상기 S1317에서 수신한 NAS 메시지에 포함된 다양한 정보 (예를 들어, 상술한 바와 같이 S1-U 내지는 user plane을 생성하지 않아도 됨을 나타낸 경우, 또는 리모트 UE를 서비스하기 위해 connected mode가 되었음을 나타내는 정보 등)에 기반하여, 이 단계들을 수행하지 않을 수 있다.
만약, 이와 같이 user plane을 설정하는 이 단계들을 수행하지 않은 경우, 릴레이 UE(UE#2)로 downlink traffic이 와서 MME#2가 S-GW#2로부터 Downlink Data Notification 메시지를 수신하면, 릴레이 UE(UE#2)를 paging 하지 않고 바로 릴레이 UE(UE#2)를 위한 user plane을 설정하는 단계 (즉, S1318~22에 준용하는 단계)를 수행한다.
만약, user plane을 설정했다면 릴레이 UE(UE#2)로 향하는 downlink traffic은 종래와 같이 S-GW#2에서 eNB를 거쳐 릴레이 UE(UE#2)로 전송될 수 있다.
실시예 3
이 실시예는, 리모트 UE의 서빙 MME가 릴레이 UE의 서빙 MME에게, 리모트 UE가 RRC connected 되었음을 알려주는 방식이다. 즉 MME 사이의 메시지 교환을 통해 릴레이 UE에 대한 페이징이 실패하는 것을 방지하는 것이다.
도 14에는 실시예 3에 대한 상세한 절차가 도시되어 있다. 단계 S1401에서 S1415에 대한 설명은 실시예 1에서 단계 S1201~S1215에 대한 설명으로 대체한다.
단계 S1416에서 MME#1은 리모트 UE로 동작하는 UE#1이 connected mode가 됨에 따라 이를 serving하는 릴레이 UE인 UE#2의 serving MME에게 이를 알리는 메시지를 전송한다. 도 14에서는 Relay Connection Notify라는 메시지를 전송하는 것으로 도시하였다. 이러한 메시지는 종래의 GTP-C 메시지일 수도 있고 새롭게 정의한 메시지일 수도 있다.
상기 메시지는 릴레이 UE(UE#2)가 serving하는 리모트 UE가 connected mode가 되었음 및/또는 릴레이 UE(UE#2)가 RRC connected mode가 되었음 및/또는 릴레이 UE(UE#2)의 CM state가 connected 되어야 함 등의 정보를 포함할 수 있다. 이러한 메시지는 S1418 내지는 S1419에서 전송된 메시지가 MME#1이 MME#2에게 상기 Relay Connection Notify라는 메시지를 전송하도록 하는 정보/지시자를 포함한 바, 전송될 수도 있다.
MME#1이 자신이 serving하는 UE#1이 리모트 UE로 동작하며 이를 위한 릴레이 UE가 UE#2이고 UE#2의 serving MME가 MME#2임을 아는 것은, 리모트 UE와 릴레이 UE가 서로 Relay-Remote 관계를 형성 시/후에 인지할 수도 있고, 서로 one-to-one direct link 설정 시/후에 인지할 수도 있고, S1418 내지는 S1419에서 전송된 메시지가 이러한 정보를 포함하고 있을 수도 있다.
도 14에서는 MME가 서로 다른 경우를 도시하였으나, 동일한 MME에 의해 두 UE가 serving될 수 있으며 이 경우 MME는 내부적으로 이를 처리할 수 있다. 단계 S1416은 S1419 이후에 언제든지 수행될 수 있다.
단계 S1417에서, MME#2는 MME#1으로 응답 메시지인, Relay Connection Ack 메시지를 전송한다. 이 단계는 optional일 수도 있다.
단계 S1418~22은 실시예 1에서 기술한 S1318~22의 내용이 그대로, 또는 확장되어 적용되는 것으로 간주한다. 예를 들어, 릴레이 UE(UE#2)가 포함시키는 다양한 정보를 MME#1이 생성하여 포함시킬 수 있다.
실시예 4
네 번째 실시예는 기지국이 MME에게 릴레이 연결임을 알려주어 S1-U 인터페이스를 설정하도록 하는 것이다. 이에 대해 도 15를 참조하여 설명한다. 도 15에서 단계 S1501에서 S1515에 대한 설명은 실시예 1에서 단계 S1201~S1215에 대한 설명으로 대체한다.
단계 S1516에서, eNB는 리모트 UE로 동작하는 UE#1이 connected mode가 됨에 따라 이를 serving하는 릴레이 UE인 UE#2의 serving MME에게 이를 알리는 메시지를 전송한다. 도 15에서는 Relay Connection Notify라는 메시지를 전송하는 것으로 도시하였다. 이러한 메시지는 종래의 S1-AP 메시지일 수도 있고 새롭게 정의한 메시지일 수도 있다. 상기 메시지는 릴레이 UE(UE#2)가 serving하는 리모트 UE가 connected mode가 되었음 및/또는 릴레이 UE(UE#2)가 RRC connected mode가 되었음 및/또는 릴레이 UE(UE#2)의 CM state가 connected 되어야 함 등의 정보를 포함할 수 있다. 이러한 메시지는 S1518에서 전송된 메시지가 eNB로 하여금 MME#2에게 상기 Relay Connection Notify라는 메시지를 전송하도록 하는 정보/지시자를 포함한 바, 전송될 수도 있다.
eNB가 자신이 serving하는 리모트 UE(UE#1)이 리모트 UE로 동작하며 이를 위한 릴레이 UE가 UE#2이고 UE#2의 serving MME가 MME#2임을 아는 것은, 리모트 UE와 릴레이 UE가 서로 Relay-Remote 관계를 형성 시/후에 인지할 수도 있고, 서로 one-to-one direct link 설정 시/후에 인지할 수도 있고, S1512, 및/또는 S1514, 및/또는 S1518에서 전송된 메시지가 이러한 정보를 포함하고 있을 수도 있다.
도 15에서는 MME가 서로 다른 경우를 도시하였으나, 동일한 MME에 의해 두 UE가 serving될 수 있으며 이 경우 MME는 내부적으로 이를 처리할 수 있다. 단계 S1516은 S1519 이후에 아무때나 수행될 수 있다.
단계 S1517~21은 실시예 1에서 기술한 S1218~1222의 내용이 그대로, 또는 확장되어 적용되는 것으로 간주한다. 예를 들어, 릴레이 UE(UE#2)가 포함시키는 다양한 정보를 MME#1이 생성하여 포함시킬 수 있다.
도 16은 본 발명의 일례에 따른 단말 장치 및 네트워크 노드 장치에 대한 바람직한 실시예의 구성을 도시한 도면이다.
도 16을 참조하여 본 발명에 따른 단말 장치(100)는, 송수신장치(110), 프로세서(120) 및 메모리(130)를 포함할 수 있다. 송수신장치(110)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 단말 장치(100)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(120)는 단말 장치(100) 전반의 동작을 제어할 수 있으며, 단말 장치(100)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리(130)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 또한, 프로세서(120)는 본 발명에서 제안하는 단말 동작을 수행하도록 구성될 수 있다.
도 16을 참조하면 본 발명에 따른 네트워크 노드 장치(200)는, 송수신장치(210), 프로세서(220) 및 메모리(230)를 포함할 수 있다. 송수신장치(210)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 네트워크 노드 장치(200)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(220)는 네트워크 노드 장치(200) 전반의 동작을 제어할 수 있으며, 네트워크 노드 장치(200)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리(230)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 또한, 프로세서(220)는 본 발명에서 제안하는 네트워크 노드 동작을 수행하도록 구성될 수 있다. 구체적으로, 프로세서(220)는 제2 MME로부터 제2 UE에 대한 페이징 메시지를 수신하고, 상기 제2 UE가 CN(Core Network) IDLE 상태이면서도 RRC(Radio resource control) connected 상태인 경우, 상기 제2 MME에게 상기 제2 UE의 연결 상태에 관련된 정보를 포함하는 메시지를 상기 페이징 메시지에 대한 응답으로써 전송할 수 있다.
또한, 위와 같은 단말 장치(100) 및 네트워크 장치(200)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
상술한 바와 같은 본 발명의 다양한 실시형태들은 3GPP 시스템을 중심으로 설명하였으나, 다양한 이동통신 시스템에 동일한 방식으로 적용될 수 있다.

Claims (14)

  1. 무선통신시스템에서 제1 UE(User Equipment)와 연결을 가진 제2 UE의 기지국이 페이징 관련 동작을 수행하는 방법에 있어서,
    기지국이 제2 MME로부터 제2 UE에 대한 페이징 메시지를 수신하는 단계; 및
    상기 제2 UE가 CN(Core Network) IDLE 상태이면서도 RRC(Radio resource control) connected 상태인 경우, 상기 기지국은 상기 제2 MME에게 상기 제2 UE의 연결 상태에 관련된 정보를 포함하는 메시지를 상기 페이징 메시지에 대한 응답으로써 전송하는 단계;
    를 포함하는, 페이징 관련 동작을 수행하는 방법.
  2. 제1항에 있어서,
    상기 RRC connected 상태는, 상기 제2 UE가 제1 UE로부터 네트워크 연결 요청을 받음으로써 가지게 된 상태인, 페이징 관련 동작을 수행하는 방법.
  3. 제1항에 있어서,
    상기 제2 UE의 연결 상태에 관련된 정보는, 상기 기지국이 상기 제2 UE를 서빙하고 있음을 알리는 정보 또는 상기 제2 UE가 RRC connected 상태임을 알리는 정보를 포함하는, 페이징 관련 동작을 수행하는 방법.
  4. 제1항에 있어서,
    상기 제2 UE의 연결 상태에 관련된 정보를 포함하는 메시지는, 페이징 응답 메시지인, 페이징 관련 동작을 수행하는 방법.
  5. 제1항에 있어서,
    상기 제2 UE의 연결 상태에 관련된 정보를 포함하는 메시지를 수신한 상기 상기 제2 MME는 상기 제2 UE에 대한 user plane을 설정하는, 페이징 관련 동작을 수행하는 방법.
  6. 제1항에 있어서,
    상기 제2 UE가 CN IDLE 상태이고 RRC IDLE 상태인 경우, 상기 기지국은 상기 제2 UE를 위해 페이징 메시지를 전송하는, 페이징 관련 동작을 수행하는 방법.
  7. 제1항에 있어서,
    상기 제1 UE는 리모트 UE이고, 상기 제2 UE는 릴레이 UE인, 페이징 관련 동작을 수행하는 방법.
  8. 무선통신시스템에서 제1 UE(User Equipment)와 연결을 가진 제2 UE의 페이징 관련 동작을 수행하는 기지국 장치에 있어서,
    송수신 장치; 및
    프로세서를 포함하고,
    상기 프로세서는, 제2 MME로부터 제2 UE에 대한 페이징 메시지를 수신하고, 상기 제2 UE가 CN(Core Network) IDLE 상태이면서도 RRC(Radio resource control) connected 상태인 경우, 상기 제2 MME에게 상기 제2 UE의 연결 상태에 관련된 정보를 포함하는 메시지를 상기 페이징 메시지에 대한 응답으로써 전송하는, 기지국 장치.
  9. 제8항에 있어서,
    상기 RRC connected 상태는, 상기 제2 UE가 제1 UE로부터 네트워크 연결 요청을 받음으로써 가지게 된 상태인, 기지국 장치.
  10. 제8항에 있어서,
    상기 제2 UE의 연결 상태에 관련된 정보는, 상기 기지국이 상기 제2 UE를 서빙하고 있음을 알리는 정보 또는 상기 제2 UE가 RRC connected 상태임을 알리는 정보를 포함하는, 기지국 장치.
  11. 제8항에 있어서,
    상기 제2 UE의 연결 상태에 관련된 정보를 포함하는 메시지는, 페이징 응답 메시지인, 기지국 장치.
  12. 제8항에 있어서,
    상기 제2 UE의 연결 상태에 관련된 정보를 포함하는 메시지를 수신한 상기 상기 제2 MME는 상기 제2 UE에 대한 user plane을 설정하는, 기지국 장치.
  13. 제8항에 있어서,
    상기 제2 UE가 CN IDLE 상태이고 RRC IDLE 상태인 경우, 상기 기지국은 상기 제2 UE를 위해 페이징 메시지를 전송하는, 기지국 장치.
  14. 제8항에 있어서,
    상기 제1 UE는 리모트 UE이고, 상기 제2 UE는 릴레이 UE인, 기지국 장치.
PCT/KR2018/001536 2017-02-06 2018-02-06 무선 통신 시스템에서 제1 ue와 연결을 가진 제2 ue의 페이징 관련 동작을 수행하는 방법 및 이를 위한 장치 WO2018143758A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880010185.0A CN110249670B (zh) 2017-02-06 2018-02-06 在无线通信系统中执行具有与第一ue的连接的第二ue的寻呼有关的操作的方法及其装置
EP18747133.9A EP3579627B1 (en) 2017-02-06 2018-02-06 Method for performing paging-related operation of second ue having connection with first ue in wireless communication system, and apparatus therefor
US16/484,097 US10757681B2 (en) 2017-02-06 2018-02-06 Method for performing paging-related operation of second UE having connection with first UE in wireless communication system, and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762454920P 2017-02-06 2017-02-06
US62/454,920 2017-02-06

Publications (1)

Publication Number Publication Date
WO2018143758A1 true WO2018143758A1 (ko) 2018-08-09

Family

ID=63039925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001536 WO2018143758A1 (ko) 2017-02-06 2018-02-06 무선 통신 시스템에서 제1 ue와 연결을 가진 제2 ue의 페이징 관련 동작을 수행하는 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US10757681B2 (ko)
EP (1) EP3579627B1 (ko)
CN (1) CN110249670B (ko)
WO (1) WO2018143758A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018195917A1 (zh) * 2017-04-28 2018-11-01 Oppo广东移动通信有限公司 消息传输方法、装置及系统
US12048055B1 (en) * 2019-04-25 2024-07-23 T-Mobile Innovations Llc Wireless bearer enhancement between a wireless relay and a wireless access point
US12089088B2 (en) * 2019-10-04 2024-09-10 Telefonaktiebolaget Lm Ericsson (Publ) Method of and equipment for performing transfer of data packets in end-to-end multihop sidelink radio communication
CN113573422B (zh) * 2020-04-28 2023-10-20 维沃移动通信有限公司 远端终端的连接管理方法、终端及网络侧设备
CN113950146B (zh) * 2020-07-16 2023-02-07 华为技术有限公司 一种寻呼方法和通信装置
KR20230087440A (ko) * 2020-10-15 2023-06-16 엘지전자 주식회사 무선 통신 시스템에서 연결 설립을 위한 방법 및 장치
WO2022083716A1 (en) * 2020-10-22 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Terminal device, core network node, network device and method therein for facilitating paging procedure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120099665A (ko) * 2009-11-04 2012-09-11 삼성전자주식회사 무선 통신 네트워크 시스템에서 데이터 전송 방법 및 장치
WO2014171786A1 (ko) * 2013-04-19 2014-10-23 엘지전자 주식회사 복수의 통신 시스템이 연동하는 네트워크에서 상기 복수의 통신 시스템과의 연결 동작을 수행하는 방법 및 이를 위한 장치
US20150358954A1 (en) * 2013-01-24 2015-12-10 Ntt Docomo, Inc. User device, gateway device, radio base station, mobile communication system, and mobile communication method
US20160212780A1 (en) * 2015-01-15 2016-07-21 Intel IP Corporation Public safety discovery and communication using a ue-to-ue relay
US20160337954A1 (en) * 2015-05-14 2016-11-17 Qualcomm Incorporated Systems, methods, and devices for link quality based relay selection

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9198210B2 (en) * 2010-04-20 2015-11-24 Nokia Solutions And Networks Oy D2D communications considering different network operators
BR112012032824A2 (pt) * 2010-06-21 2016-11-08 Ericsson Telefon Ab L M método e arranjo para paginação em um sistema de comunicações sem fio
WO2012122670A1 (en) * 2011-03-14 2012-09-20 Telefonaktiebolaget L M Ericsson (Publ) Method and device relating to relay technique
EP2875666B1 (en) * 2012-07-20 2019-01-30 LG Electronics Inc. Method and apparatus for information on interference for device-to-device connection in wireless communication system
CN103906266A (zh) * 2012-12-31 2014-07-02 中兴通讯股份有限公司 无线通信方法、用户设备、网络设备及系统
WO2014137170A1 (ko) * 2013-03-07 2014-09-12 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 통신에 관련된 신호 송수신방법 및 장치
WO2016032201A2 (ko) * 2014-08-28 2016-03-03 엘지전자 주식회사 무선 통신 시스템에서 통신을 중계하는 방법 및 이를 수행하는 장치
CN107113538B (zh) * 2014-12-04 2020-06-16 Lg 电子株式会社 中继d2d链路的方法和执行该方法的设备
US10530461B2 (en) * 2015-03-25 2020-01-07 Qualcomm Incorporated Relay discovery and association messages
US10694579B2 (en) * 2015-05-22 2020-06-23 Sony Corporation Communications terminals, infrastructure equipment and methods, for UE:s acting as relays
CN104812069B (zh) * 2015-05-25 2019-01-15 宇龙计算机通信科技(深圳)有限公司 终端的位置管理方法、寻呼方法、装置和终端
EP3410752B1 (en) * 2016-02-29 2020-10-21 Huawei Technologies Co., Ltd. Mobility management method, apparatus and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120099665A (ko) * 2009-11-04 2012-09-11 삼성전자주식회사 무선 통신 네트워크 시스템에서 데이터 전송 방법 및 장치
US20150358954A1 (en) * 2013-01-24 2015-12-10 Ntt Docomo, Inc. User device, gateway device, radio base station, mobile communication system, and mobile communication method
WO2014171786A1 (ko) * 2013-04-19 2014-10-23 엘지전자 주식회사 복수의 통신 시스템이 연동하는 네트워크에서 상기 복수의 통신 시스템과의 연결 동작을 수행하는 방법 및 이를 위한 장치
US20160212780A1 (en) * 2015-01-15 2016-07-21 Intel IP Corporation Public safety discovery and communication using a ue-to-ue relay
US20160337954A1 (en) * 2015-05-14 2016-11-17 Qualcomm Incorporated Systems, methods, and devices for link quality based relay selection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3579627A4 *

Also Published As

Publication number Publication date
EP3579627B1 (en) 2022-03-30
EP3579627A1 (en) 2019-12-11
US20200008173A1 (en) 2020-01-02
CN110249670A (zh) 2019-09-17
EP3579627A4 (en) 2020-12-16
CN110249670B (zh) 2022-04-26
US10757681B2 (en) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2018155934A1 (ko) 무선 통신 시스템에서 3GPP access를 통해 non-3GPP에 관련된 데이터를 수신하는 방법 및 이를 위한 장치
WO2018084635A1 (ko) 무선 통신 시스템에서 ngs에서 eps로 이동 방법 및 이를 위한 장치
WO2019160376A1 (ko) 무선 통신 시스템에서 smf의 신호 송수신 방법 및 이를 위한 장치
WO2017142362A1 (ko) 무선 통신 시스템에서 위치 등록 관련 메시지 송수신 방법 및 이를 위한 장치
WO2017171427A1 (ko) 시스템 정보 전송 방법 및 기지국과 시스템 정보 수신 방법 및 사용자기기
WO2017126948A1 (ko) 무선 통신 시스템에서 로컬 네트워크에서 v2x 메시지 송수신 방법 및 이를 위한 장치
WO2018143758A1 (ko) 무선 통신 시스템에서 제1 ue와 연결을 가진 제2 ue의 페이징 관련 동작을 수행하는 방법 및 이를 위한 장치
WO2018008922A2 (ko) 무선 통신 시스템에서 기지국의 nas 시그널링 지원 방법 및 이를 위한 장치
WO2017188787A2 (ko) 무선 통신 시스템에서 기지국에 의해 수행되는 데이터 전달 방법 및 상기 방법을 이용하는 장치
WO2015174702A1 (ko) 무선 통신 시스템에서 hss/mme의 신호 송수신 방법 및 장치
WO2017191973A1 (ko) 무선 통신 시스템에서 리모트 ue의 위치 등록 수행 방법 및 이를 위한 장치
WO2017026872A1 (ko) 무선 통신 시스템에서 리모트 ue의 신호 송수신 방법 및 이를 위한 장치
WO2017086618A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 방법 및 이를 위한 장치
WO2019022442A9 (ko) 무선 통신 시스템에서 3GPP 5G System과 EPS로부터 서비스를 받을 수 있는 단말을 위해 SMS 전송을 지원하는 방법 및 이를 위한 장치
WO2018169281A1 (ko) 보고 수신 방법 및 네트워크 장치, 그리고 보고 수행 방법 및 기지국
WO2016186414A1 (ko) 무선 통신 시스템에서 브로드캐스트 서비스를 제공하는 방법 및 이를 위한 장치
WO2018221943A1 (ko) 무선 통신 시스템에서 multi-homing 기반 psa 추가와 관련하여 신호를 송수신하는 방법 및 이를 위한 장치
WO2017126942A1 (ko) 데이터 수신 방법 및 사용자기기와, 데이터 전송 방법 및 기지국
WO2017043854A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 지원하는 방법 및 이를 위한 장치
WO2019059740A1 (ko) 무선 통신 시스템에서 ng-ran이 ims voice 지원에 관련된 신호를 송수신하는 방법 및 이를 위한 장치
WO2016111603A1 (ko) 무선 통신 시스템에서 pdn 연결 복구에 관련된 신호 송수신 방법 및 이를 위한 장치
WO2018009025A1 (ko) 무선 통신 시스템에서 pdn 연결 관련 신호 송수신 방법 및 이를 위한 장치
WO2019194537A1 (ko) 무선 통신 시스템에서 숏 메시지 관련 신호 송수신 방법 및 이를 위한 장치
WO2016163635A1 (ko) 무선 통신 시스템에서 단말의 plmn 선택 방법 및 이를 위한 장치
WO2019172716A1 (ko) 무선 통신 시스템에서 sms 관련 신호 송수신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018747133

Country of ref document: EP