WO2018009025A1 - 무선 통신 시스템에서 pdn 연결 관련 신호 송수신 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 pdn 연결 관련 신호 송수신 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018009025A1
WO2018009025A1 PCT/KR2017/007305 KR2017007305W WO2018009025A1 WO 2018009025 A1 WO2018009025 A1 WO 2018009025A1 KR 2017007305 W KR2017007305 W KR 2017007305W WO 2018009025 A1 WO2018009025 A1 WO 2018009025A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdn connection
data
create
3gpp
mme
Prior art date
Application number
PCT/KR2017/007305
Other languages
English (en)
French (fr)
Inventor
김래영
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/315,842 priority Critical patent/US10932303B2/en
Priority to EP17824581.7A priority patent/EP3481137B1/en
Publication of WO2018009025A1 publication Critical patent/WO2018009025A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1069Session establishment or de-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving a signal related to a PDN connection in a data off related situation.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • a method for transmitting / receiving a packet data network (PDN) connection associated with a user equipment (UE) in a wireless communication system comprising: checking 3GPP PS Data Off Exempt Services; Determining whether to create a PDN connection based on a type of the PDN connection to be created by the UE and a result of confirming the 3GPP PS Data Off Exempt Services; And transmitting a PDN connection request when the UE determines to create a PDN connection.
  • PDN packet data network
  • an apparatus for a user equipment (UE) for transmitting and receiving a packet data network (PDN) connection related signal in a wireless communication system comprising: a transceiver; And a processor, wherein the processor checks 3GPP PS Data Off Exempt Services and determines whether to create a PDN connection based on the type of PDN connection that the UE intends to create and a result of checking 3GPP PS Data Off Exempt Services.
  • the UE device transmits a PDN connection request when the UE determines to create a PDN connection.
  • the UE may decide not to create the PDN connection.
  • IMS Internet Protocol Multimedia Subsystem
  • the UE may maintain an attach state even if the UE does not have a PDN connection.
  • the PDN connection to be created by the UE may be preset to be created in an attach procedure.
  • the APN is not provided to the MME to create an IMS PDN connection when the attach procedure is performed, and an APN for creating an IMS PDN connection to the MME when the attach procedure is performed.
  • Providing an APN for creating a PDN connection other than this information on requesting that the APN information is not provided to the MME when performing the attach procedure, and requesting that the MME not generate a PDN connection corresponding to the default APN when performing the attach procedure.
  • the UE may decide not to create the PDN connection.
  • the PDN connection to be created by the UE may be preset to be created in an attach procedure.
  • the APN is not provided to the MME to create a non-IMS PDN connection when the attach procedure is performed.
  • a non-IMS PDN connection is provided to the MME when the attach procedure is performed.
  • Provide APN for creating PDN connection other than APN to create do not provide APN information to MME when performing attach procedure, do not create PDN connection corresponding to default APN to MME when performing attach procedure Providing information requesting information, providing information requesting MME to create a PDN connection other than the default APN when the attach procedure is performed.
  • the UE may start the PDN connection creation procedure.
  • the 3GPP PS Data Off Exempt Services may be for a Public Land Mobile Network (PLMN) to which the UE attaches.
  • PLMN Public Land Mobile Network
  • the 3GPP PS Data Off Exempt Services may be configured in PLMN units.
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • 3 is an exemplary view showing the structure of a radio interface protocol in a control plane.
  • FIG. 4 is an exemplary view showing the structure of a radio interface protocol in a user plane.
  • 5 is a flowchart illustrating a random access procedure.
  • RRC radio resource control
  • FIG. 7 is a diagram for describing a 5G system.
  • FIG. 8 is a view for explaining an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a configuration of a node device according to an embodiment of the present invention.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • Embodiments of the present invention may be supported by standard documents disclosed in relation to at least one of the Institute of Electrical and Electronics Engineers (IEEE) 802 series system, 3GPP system, 3GPP LTE and LTE-A system, and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • IEEE Institute of Electrical and Electronics Engineers
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system composed of an Evolved Packet Core (EPC), which is a packet switched (PS) core network based on Internet Protocol (IP), and an access network such as LTE / UTRAN.
  • EPC Evolved Packet Core
  • PS packet switched
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of E-UTRAN. It is installed outdoors and its coverage is macro cell size.
  • UE User Equipment
  • the UE may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term UE or UE may refer to an MTC device.
  • HNB Home NodeB
  • HeNB Home eNodeB: A base station of an EPS network, which is installed indoors and its coverage is micro cell size.
  • Mobility Management Entity A network node of an EPS network that performs mobility management (MM) and session management (SM) functions.
  • Packet Data Network-Gateway (PDN-GW) / PGW A network node of an EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection, and the like.
  • SGW Serving Gateway
  • Non-Access Stratum Upper stratum of the control plane between the UE and the MME.
  • Packet Data Network A network in which a server supporting a specific service (eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
  • a server supporting a specific service eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.
  • MMS Multimedia Messaging Service
  • WAP Wireless Application Protocol
  • PDN connection A logical connection between the UE and the PDN, represented by one IP address (one IPv4 address and / or one IPv6 prefix).
  • RAN Radio Access Network: a unit including a NodeB, an eNodeB and a Radio Network Controller (RNC) controlling them in a 3GPP network. It exists between UEs and provides a connection to the core network.
  • RNC Radio Network Controller
  • PLMN Public Land Mobile Network
  • Proximity Service (or ProSe Service or Proximity based Service): A service that enables discovery and direct communication between physically close devices or communication through a base station or through a third party device. In this case, user plane data is exchanged through a direct data path without passing through a 3GPP core network (eg, EPC).
  • EPC 3GPP core network
  • EPC Evolved Packet Core
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing enhanced data transfer capabilities.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • EPC IP Multimedia Subsystem
  • the EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
  • SGW serving gateway
  • PDN GW packet data network gateway
  • MME mobility management entity
  • SGRS serving general packet
  • Radio Service Upporting Node
  • ePDG Enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • RANs defined before 3GPP Release-8 such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like.
  • the MME controls control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability is an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access. (Eg, IMS).
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • This reference point can be used in PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handovers) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and / or active state This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
  • S4 Reference point between SGW and SGSN that provides related control and mobility support between the GPRS core and SGW's 3GPP anchor functionality.It also provides user plane tunneling if no direct tunnel is established.
  • the 3GPP Anchor function of Serving GW In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.
  • S5 Reference point providing user plane tunneling and tunnel management between the SGW and the PDN GW.
  • the PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services.
  • Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDN GW.
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • an eNodeB can route to a gateway, schedule and send paging messages, schedule and send broadcaster channels (BCHs), and resources in uplink and downlink while an RRC (Radio Resource Control) connection is active.
  • BCHs broadcaster channels
  • RRC Radio Resource Control
  • paging can occur, LTE_IDLE state management, user plane can perform encryption, SAE bearer control, NAS signaling encryption and integrity protection.
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station
  • FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station. .
  • the air interface protocol is based on the 3GPP radio access network standard.
  • the air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
  • the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis.
  • one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channel multiplexing to map several logical channels to one transport channel. (Multiplexing).
  • the MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • the radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and resetting of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release.
  • RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell.
  • TA tracking area
  • each TA is identified by a tracking area identity (TAI).
  • TAI tracking area identity
  • the terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell.
  • the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state.
  • RRC_CONNECTED state There are several cases in which a UE in RRC_IDLE state needs to establish an RRC connection. For example, a user's call attempt, a data transmission attempt, etc. are required or a paging message is received from E-UTRAN. Reply message transmission, and the like.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • ESM evolved Session Management
  • the NAS layer performs functions such as default bearer management and dedicated bearer management, and is responsible for controlling the terminal to use the PS service from the network.
  • the default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
  • PDN Packet Data Network
  • the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer.
  • LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR bearer is assigned.
  • the bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID.
  • EPS bearer ID One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or / and a guaranteed bit rate (GBR).
  • 5 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is used for the UE to get UL synchronization with the base station or to be allocated UL radio resources.
  • the UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • the UE sends the randomly selected random access preamble to the eNodeB.
  • the UE selects one of the 64 candidate random access preambles.
  • the corresponding subframe is selected by the PRACH configuration index.
  • the UE transmits the selected random access preamble in the selected subframe.
  • the eNodeB Upon receiving the random access preamble, the eNodeB sends a random access response (RAR) to the UE.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE detects a PDCCH masked with random access-RNTI (RA-RNTI). The UE receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • RRC 6 shows a connection process in a radio resource control (RRC) layer.
  • RRC radio resource control
  • the RRC state is shown depending on whether the RRC is connected.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE is in a logical connection with an entity of the RRC layer of the eNodeB.
  • the RRC state is referred to as an RRC connected state.
  • the non-state is called the RRC idle state.
  • the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE.
  • the UE in the idle state can not be identified by the eNodeB, the core network (core network) is managed by the tracking area (Tracking Area) unit that is larger than the cell unit.
  • the tracking area is a collection unit of cells. That is, the idle state (UE) is determined only in the presence of the UE in a large area, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the connected state (connected state).
  • the UE When a user first powers up a UE, the UE first searches for an appropriate cell and then stays in an idle state in that cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through an RRC connection procedure and transitions to an RRC connected state. .
  • the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or uplink data transmission is required, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
  • the RRC connection process is largely a process in which a UE sends an RRC connection request message to an eNodeB, an eNodeB sends an RRC connection setup message to the UE, and a UE completes RRC connection setup to the eNodeB. (RRC connection setup complete) message is sent. This process will be described in more detail with reference to FIG. 6 as follows.
  • the eNB When the RRC connection request message is received from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message, which is a response message, to the UE. .
  • the UE When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection establishment message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connected mode.
  • the MME is divided into a core access and mobility management function (AMF) and a session management function (SMF) in a next generation system (or 5G CN).
  • AMF access and mobility management function
  • SMF session management function
  • the NAS interaction and mobility management (MM) with the UE are performed by the AMF
  • the session management (SM) is performed by the SMF.
  • the SMF manages a user plane function (UPF), which has a user-plane function, that is, a gateway for routing user traffic.
  • the SMF is responsible for the control-plane portion of the S-GW and the P-GW in the conventional EPC.
  • the user-plane part can be considered to be in charge of the UPF.
  • the conventional EPC may be configured as illustrated in FIG. 7 at 5G.
  • a PDU (Protocol Data Unit) session is defined in 5G system.
  • the PDU session refers to an association between the UE and the DN providing the PDU connectivity service of the Ethernet type or the unstructured type as well as the IP type.
  • UDM Unified Data Management
  • PCF Policy Control Function
  • the functions can be provided in an expanded form to satisfy the requirements of the 5G system. For details on the 5G system architecture, each function and each interface, TS 23.501 is applicable.
  • voice calls are one of the most important functions provided by the UE.
  • a fixed allocation of wired and wireless resources based on a voice-optimized pattern has been used continuously during the voice call.
  • the voice call proceeds in consideration of dissatisfaction with the quality of service. Resources are continuously allocated during the process, so that the user's voice information is transmitted immediately. This method is called the circuit-switch (CS) method and is used in traditional wired telephone systems and cellular networks.
  • CS circuit-switch
  • the UE is providing a switch called “mobile data.”
  • this switch is software-configured and is provided by a user interface (UI) related to the configuration of the UE.
  • UI user interface
  • This 'mobile data' switch allows the user of the UE to configure whether or not to disable the internet connection.
  • Such Internet traffic is a representative service using a packet switched network.
  • users can use the wireless LAN to receive Internet services. Users can block mobile data as much as they are in the home PLMN as well as roaming situations.
  • blocking the Internet connection function by blocking the switch of mobile data is the same as that of the user blocking the packet switch network, and thus, voice calls provided using the packet switch network are also blocked.
  • PS network supporting only a packet switch
  • CS circuit switch
  • the Internet packet transmission for the UE or the minimum Internet data service is preferably supported for the UE.
  • the network should effectively block downlink data to the UE. That is, there is a need for a device that passes data related to a minimum service (eg, voice call service) and blocks data related to other services.
  • a minimum service eg, voice call service
  • Section 10 of TS 22.011 (3GPP PS Data Off) states that 3GPP PS Data Off is 3GPP of all IP packets except IP packets required by 3GPP PS Data Off Exempt Services when configured by HPLMN and activated by the user. Defined as a function that prevents transmission over a PDN connection on an access network. It also defines the following requirements: The 3GPP system should provide a mechanism for the service provider to configure service providers defined as 3GPP PS Data Off Exempt Services for their subscribers.
  • 3GPP PS Data Off When 3GPP PS Data Off is enabled at the UE, the UE informs the network that 3GPP PS Data Off is enabled in order to maintain charging consistency, and the UE stops transmitting uplink IP packets for all services other than 3GPP PS Data Off Exempt Services. The network must stop sending downlink IP packets to the UE for all services other than 3GPP PS Data Off Exempt Services.
  • 3GPP PS Data Off may be activated depending on the roaming state.
  • Each of the following service providers can be configured by the HPLMN service provider on a PLMN basis as part of 3GPP PS Data Off Exempt Services.
  • the user must be aware of services that are 3GPP PS Data Off Exempt Services.
  • the majority of services that can be Exempt services are likely to be SIP based services (ie, IMS services).
  • IMS services SIP based services
  • the UE may deregister the IMS network and release the IMS PDN connection.
  • the 3GPP PS Data Off Exempt Services can be configured by the HPLMN service provider on a PLMN basis. If the serving PLMN of the UE is changed, a SIP based service among exempt services in the corresponding PLMN is provided.
  • the UE may roaming without re-attach from PLMN # 1, which is HPLMN, to PLMN # 2, which is VPLMN, or both may change roaming network without re-attach from PLMN # 3, which is VPLMN, to PLMN # 4.
  • PLMN # 1 which is HPLMN
  • PLMN # 2 which is VPLMN
  • PLMN # 4 the S10 interface between the old MME serving the UE and the new MME does not exist between the different PLMNs.
  • the UE attaches.
  • the UE roams the continent, it is powered off and then attached by power-on.
  • the UE may decide not to create the IMS PDN connection. Or, if the PDN connection to be created by the UE is a non-IMS PDN connection and there is no non-IMS service in 3GPP PS Data Off Exempt Services, the UE may decide not to create the non-IMS PDN connection. If the UE determines not to generate the PDN connection as described above, as PS Data Off is activated, the UE may store the information that the PDN connection for the APN is not generated and / or perform a related operation (S804).
  • the PDN connection to be created by the UE may be preset to be created in an attach procedure, or may be generated in addition to the PDN connection to be created after the attach procedure (for example, in addition to the PDN connection generated by the UE after attaching). May be a PDN connection).
  • the UE decides not to create the above-mentioned IMS PDN connection, i) do not provide the MME with the APN for creating the IMS PDN connection when performing the attach procedure, ii) the IMS PDN to the MME when performing the attach procedure.
  • the MME may perform at least one of providing information indicating that there is no 3GPP PS Data Off Exempt Services in the service corresponding to the default APN.
  • the UE decides not to create the aforementioned non-IMS PDN connection, i) does not provide the MME with the APN for creating the non-IMS PDN connection when performing the attach procedure, ii) the MME when performing the attach procedure
  • the APN for creating a PDN connection other than the APN for creating a non-IMS PDN connection may be an APN for creating an IMS PDN connection
  • the MME when performing an attach procedure Does not provide APN information, iv) provides the MME with information requesting that the attach procedure not create a PDN connection corresponding to the default APN; v) provides the MME with a PDN connection other than the default APN when performing the attach procedure. Vi) may provide at least one operation of providing information indicating that there is no 3GPP PS Data Off Exempt Services in the service corresponding to the default APN to the MME when the attach procedure is performed.
  • the confirmation of 3GPP PS Data Off Exempt Services may be performed in a state where PS Data Off is activated.
  • the MME includes information indicating that PS Data Off is activated.
  • the time point at which PS Data Off is activated in the UE may be at the attach of the UE, or may be after attaching (eg, when there is a PDN connection to be additionally generated after attaching). If the UE has already checked whether the PS Data Off is activated at the time of attachment, the UE may not check the activation afterwards.
  • the UE may start a PDN connection creation procedure.
  • the MME may send a NAS message instructing the UE to create a PDN connection for the APN, and thus the UE may create a PDN connection through the UE requested PDN connectivity procedure of Section 5.10.2 of TS 23.401.
  • various methods may be used without being limited thereto.
  • the procedure in Section 5.10.2 of TS 23.401 may be used as is or at least partially modified.
  • 3GPP PS Data Off Exempt Services may be for a Public Land Mobile Network (PLMN) to which the UE attaches.
  • PLMN Public Land Mobile Network
  • 3GPP PS Data Off Exempt Services may be configured in a PLMN unit by the HPLMN operator.
  • the UE determines not to create the above-described IMS PDN connection, look at the operation of the MME, i) MME determines that the IMS PDN connection is not created in the attach process for the UE, ii) MME to the UE Determine that the PDN connection corresponding to the default APN has not been created in the attach process, iii) the MME determines and / or perform the creation of the PDN connection corresponding to the APN provided by the UE in the attach process to the UE, iv The MME determines and / or performs the creation of a PDN connection corresponding to an APN other than the default APN in the attach process to the UE (information on another APN may be based on subscriber information, for example, an Internet PDN). V) when the MME determines not to create a PDN connection as described above, storing information indicating that a PDN connection for the APN is not generated as the PS Data Off of the UE is activated. At least one of
  • MME determines that the non-IMS PDN connection is not generated during the attach process for the UE
  • MME Determines that the PDN connection corresponding to the default APN has not been created in the attach process for the UE
  • the MME determines that the PDN connection corresponding to the APN provided by the UE in the attach process is attached to the UE and / or Or perform
  • the MME determines and / or performs the creation of a PDN connection corresponding to an APN other than the default APN in the attaching process to the UE (information on another APN may be based on subscriber information. For example, it may be an IMS PDN connection).
  • the IMS PDN connection may be interpreted as a PDN connection for receiving an IMS service or a PDN connection for a SIP based service.
  • the non-IMS PDN connection may be interpreted as a PDN connection for a service other than the IMS service or a PDN connection for receiving non-SIP based services.
  • An example of such non-SIP based services is the Internet service.
  • the 5G system can be replaced with a network node / function, procedure corresponding to / corresponding to the network node / function in the conventional EPS.
  • the attach procedure may be applied by replacing an initial registration procedure, detaching with deregistration, MME with AMF (Access and Mobility Management Function), APN with DNN (Data Network Name), and PDN connection with PDU session.
  • the 5G system may not create a PDU session at the time of attaching (ie, initial registration). That is, the attach is performed only for the attach, and after this procedure is completed, may start to create a PDU session. In this case, it should be understood that the above description applies to all PDU sessions that the UE should create.
  • FIG. 9 is a diagram illustrating a configuration of a preferred embodiment of a terminal device and a network node device according to an example of the present invention.
  • the terminal device 100 may include a transceiver 110, a processor 120, and a memory 130.
  • the transceiver 110 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the terminal device 100 may be connected to an external device by wire and / or wirelessly.
  • the processor 120 may control the overall operation of the terminal device 100, and may be configured to perform a function of the terminal device 100 to process and process information to be transmitted and received with an external device.
  • the memory 130 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the processor 120 may be configured to perform a terminal operation proposed in the present invention.
  • the network node device 200 may include a transceiver 210, a processor 220, and a memory 230.
  • the transceiver 210 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the network node device 200 may be connected to an external device by wire and / or wirelessly.
  • the processor 220 may control the overall operation of the network node device 200, and may be configured to perform a function of calculating and processing information to be transmitted / received with an external device.
  • the memory 230 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the processor 220 may be configured to perform the network node operation proposed in the present invention. Specifically, the processor 220 confirms 3GPP PS Data Off Exempt Services, and determines whether to create a PDN connection based on the type of PDN connection that the UE wants to create and the result of checking 3GPP PS Data Off Exempt Services. When the UE determines to create a PDN connection, the UE may transmit a PDN connection request.
  • the specific configuration of the terminal device 100 and the network device 200 as described above may be implemented so that the above-described matters described in various embodiments of the present invention can be applied independently or two or more embodiments are applied at the same time, overlapping The description is omitted for clarity.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of an apparatus, procedure, or function for performing the above-described functions or operations.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Abstract

본 발명의 일 실시예는, 무선통신시스템에서 UE(User Equipment)의 PDN(Packet Data Network) 연결 관련 신호 송수신 방법에 있어서, 3GPP PS Data Off Exempt Services를 확인하는 단계; 상기 UE가 생성하려는 PDN 연결의 종류 및 상기 3GPP PS Data Off Exempt Services의 확인 결과에 기초하여, PDN 연결의 생성 여부를 결정하는 단계; 및 상기 UE가 PDN 연결을 생성하기로 결정한 경우 PDN 연결 요청을 전송하는 단계를 포함하는, PDN 연결 관련 신호 송수신 방법이다.

Description

무선 통신 시스템에서 PDN 연결 관련 신호 송수신 방법 및 이를 위한 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 Data off 관련 상황에서 PDN 연결 관련 신호 송수신 방법 및 장치에 대한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
본 발명에서는 Data off 및 Data Off Exempt Services에서 PDN 연결을 어떻게 처리할 것인지 등을 기술적 과제로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예는, 무선통신시스템에서 UE(User Equipment)의 PDN(Packet Data Network) 연결 관련 신호 송수신 방법에 있어서, 3GPP PS Data Off Exempt Services를 확인하는 단계; 상기 UE가 생성하려는 PDN 연결의 종류 및 상기 3GPP PS Data Off Exempt Services의 확인 결과에 기초하여, PDN 연결의 생성 여부를 결정하는 단계; 및 상기 UE가 PDN 연결을 생성하기로 결정한 경우 PDN 연결 요청을 전송하는 단계를 포함하는, PDN 연결 관련 신호 송수신 방법이다.
본 발명의 일 실시예는, 무선통신시스템에서 PDN(Packet Data Network) 연결 관련 신호 송수신하는 UE(User Equipment)의 장치에 있어서, 송수신 장치; 및 프로세서를 포함하고, 상기 프로세서는 3GPP PS Data Off Exempt Services를 확인하고, 상기 UE가 생성하려는 PDN 연결의 종류 및 상기 3GPP PS Data Off Exempt Services의 확인 결과에 기초하여, PDN 연결의 생성 여부를 결정하고, 상기 UE가 PDN 연결을 생성하기로 결정한 경우 PDN 연결 요청을 전송하는, UE 장치이다.
상기 UE가 생성하려는 PDN 연결이 IMS(Internet protocol Multimedia Subsystem) PDN 연결이고 상기 3GPP PS Data Off Exempt Services에 IMS 서비스가 없는 경우, 상기 UE는 상기 PDN 연결을 생성하지 않기로 결정할 수 있다.
상기 PDN 연결을 생성하지 않음으로써 상기 UE가 PDN 연결을 가지고 있지 않더라도, 상기 UE는 어태치 상태를 유지할 수 있다.
상기 UE가 생성하려는 PDN 연결은 어태치 절차에서 생성하도록 미리 설정된 것일 수 있다.
상기 UE가 상기 PDN 연결을 생성하지 않기로 결정한 경우, 상기 어태치 절차 수행시 MME에게 IMS PDN 연결을 생성하기 위한 APN을 제공하지 않음, 상기 어태치 절차 수행시 MME에게 IMS PDN 연결을 생성하기 위한 APN 이외의 PDN 연결을 생성하기 위한 APN을 제공, 상기 어태치 절차 수행시 MME에게 APN 정보를 제공하지 않음, 상기 어태치 절차 수행시 MME에게 default APN에 해당하는 PDN 연결을 생성하지 않음을 요청하는 정보를 제공, 상기 어태치 절차 수행시 MME에게 default APN이 아닌 PDN 연결을 생성함을 요청하는 정보를 제공, 상기 어태치 절차 수행시 MME에게 default APN에 해당하는 서비스에는 3GPP PS Data Off Exempt Services가 없음을 나타내는 정보를 제공 중 적어도 하나의 동작을 수행할 수 있다.
상기 UE가 생성하려는 PDN 연결이 non-IMS PDN 연결이고 상기 3GPP PS Data Off Exempt Services에 non-IMS 서비스가 없는 경우, 상기 UE는 상기 PDN 연결을 생성하지 않기로 결정할 수 있다.
상기 UE가 생성하려는 PDN 연결은 어태치 절차에서 생성하도록 미리 설정된 것일 수 있다.
상기 UE가 상기 PDN 연결을 생성하지 않기로 결정한 경우, 상기 어태치 절차 수행시 MME에게 non-IMS PDN 연결을 생성하기 위한 APN을 제공하지 않음, 상기 어태치 절차 수행시 MME에게 non-IMS PDN 연결을 생성하기 위한 APN 이외의 PDN 연결을 생성하기 위한 APN을 제공, 상기 어태치 절차 수행시 MME에게 APN 정보를 제공하지 않음, 상기 어태치 절차 수행시 MME에게 default APN에 해당하는 PDN 연결을 생성하지 않음을 요청하는 정보를 제공, 상기 어태치 절차 수행시 MME에게 default APN이 아닌 PDN 연결을 생성함을 요청하는 정보를 제공, 상기 어태치 절차 수행시 MME에게 default APN에 해당하는 서비스에는 3GPP PS Data Off Exempt Services가 없음을 나타내는 정보를 제공 중 적어도 하나의 동작을 수행할 수 있다.
상기 3GPP PS Data Off Exempt Services의 확인은 PS Data Off 가 활성화된 상태에서 수행되는 것일 수 있다.
상기 UE의 PS Data Off 가 활성화된 상태에서 비활성화된 상태로 변경된 경우, 상기 UE는 상기 PDN 연결 생성 절차를 시작할 수 있다.
상기 3GPP PS Data Off Exempt Services는 상기 UE가 어태치하는 PLMN(Public Land Mobile Network)에 대한 것일 수 있다.
상기 3GPP PS Data Off Exempt Services는 PLMN 단위로 구성(configure)된 것일 수 있다.
본 발명에 따르면, Data off 관련 상황에서 효율적으로 PDN 연결을 지원할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도 3은 제어 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 4는 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 5는 랜덤 액세스 과정을 설명하기 위한 흐름도이다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타내는 도면이다.
도 7은 5G 시스템을 설명하기 위한 도면이다.
도 8은 본 발명의 실시예를 설명하기 위한 도면이다.
도 9는 본 발명의 실시예에 따른 노드 장치에 대한 구성을 예시한 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 IEEE(Institute of Electrical and Electronics Engineers) 802 계열 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A 시스템 및 3GPP2 시스템 중 적어도 하나에 관련하여 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 다양한 무선 통신 시스템에서 사용될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
본 문서에서 사용되는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술.
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 PS(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE/UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: GERAN/UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: E-UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- UE(User Equipment): 사용자 기기. UE는 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 UE 또는 단말이라는 용어는 MTC 디바이스를 지칭할 수 있다.
- HNB(Home NodeB): UMTS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다.
- HeNB(Home eNodeB): EPS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀 규모이다.
- MME(Mobility Management Entity): 이동성 관리(Mobility Management; MM), 세션 관리(Session Management; SM) 기능을 수행하는 EPS 네트워크의 네트워크 노드.
- PDN-GW(Packet Data Network-Gateway)/PGW: UE IP 주소 할당, 패킷 스크리닝(screening) 및 필터링, 과금 데이터 취합(charging data collection) 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- SGW(Serving Gateway): 이동성 앵커(mobility anchor), 패킷 라우팅(routing), 유휴(idle) 모드 패킷 버퍼링, MME가 UE를 페이징하도록 트리거링하는 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- NAS(Non-Access Stratum): UE와 MME간의 제어 플레인(control plane)의 상위 단(stratum). LTE/UMTS 프로토콜 스택에서 UE와 코어 네트워크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층으로서, UE의 이동성을 지원하고, UE와 PDN GW 간의 IP 연결을 수립(establish) 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결.
- RAN(Radio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이들을 제어하는 RNC(Radio Network Controller)를 포함하는 단위. UE 간에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 아이덴티티 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- PLMN(Public Land Mobile Network): 개인들에게 이동통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- Proximity Service (또는 ProSe Service 또는 Proximity based Service): 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스. 이때 사용자 평면 데이터(user plane data)는 3GPP 코어 네트워크(예를 들어, EPC)를 거치지 않고 직접 데이터 경로(direct data path)를 통해 교환된다.
EPC(Evolved Packet Core)
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 캐퍼빌리티를 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다.
레퍼런스 포인트 설명
S1-MME E-UTRAN와 MME 간의 제어 플레인 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME)
S1-U 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 플레인 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트(Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover)
S3 유휴(idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).)
S4 (GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 플레인 터널링을 제공함(It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)
S5 SGW와 PDN GW 간의 사용자 플레인 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. 단말 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨(It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11 MME와 SGW 간의 레퍼런스 포인트
SGi PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함(It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.)
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도시된 바와 같이, eNodeB는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNodeB의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, SAE 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
도 3은 단말과 기지국 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 단말과 기지국 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
상기 무선 인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과, 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
제2계층에는 여러 가지 계층이 존재한다.
먼저 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.
제2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.
제2 계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC유휴 모드(Idle Mode)에 있게 된다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on)한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층에 속하는 eSM (evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.
도 5는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
랜덤 액세스 과정은 UE가 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
UE는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
UE는 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB로 전송한다. UE는 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE는 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB는 랜덤 액세스 응답(random access response, RAR)을 UE로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE는 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE는 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 6에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE의 RRC 계층의 엔티티(entity)가 eNodeB의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 모드(idle state)라고 부른다.
상기 연결 상태(Connected state)의 UE는 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 유휴 모드(idle state)의 UE는 eNodeB가 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 모드(idle state) UE는 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.
사용자가 UE의 전원을 맨 처음 켰을 때, 상기 UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 모드(idle state)에 머무른다. 상기 유휴 모드(idle state)에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 eNodeB의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.
상기 유휴 모드(Idle state)에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
유휴 모드(idle state)의 UE가 상기 eNodeB와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE가 eNodeB로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB가 UE로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE가 eNodeB로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 6을 참조하여 보다 상세하게 설명하면 다음과 같다.
1) 유휴 모드(Idle state)의 UE는 통화 시도, 데이터 전송 시도, 또는 eNodeB의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE는 RRC 연결 요청(RRC connection request) 메시지를 eNodeB로 전송한다.
2) 상기 UE로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB는 무선 자원이 충분한 경우에는 상기 UE의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE로 전송한다.
3) 상기 UE가 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE가 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE는 eNodeB과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.
종래 EPC에서의 MME는 Next Generation system(또는 5G CN(Core Network))에서는 AMF(Core Access and Mobility Management Function)와 SMF(Session Management Function)로 분리되었다. 이에 UE와의 NAS interaction 및 MM(Mobility Management)은 AMF가, 그리고 SM(Session Management)은 SMF가 수행하게 된다. 또한 SMF는 user-plane 기능을 갖는, 즉 user traffic을 라우팅하는 gateway인 UPF(User Plane Function)를 관리하는데, 이는 종래 EPC에서 S-GW와 P-GW의 control-plane 부분은 SMF가 담당하고, user-plane 부분은 UPF가 담당하는 것으로 간주할 수 있다. User traffic의 라우팅을 위해 RAN과 DN(Data Network) 사이에 UPF는 하나 이상이 존재할 수 있다. 즉, 종래 EPC는 5G에서 도 7에 예시된 바와 같이 구성될 수 있다. 또한, 종래 EPS에서의 PDN connection에 대응하는 개념으로 5G system에서는 PDU(Protocol Data Unit) session이 정의되었다. PDU session은 IP type 뿐만 아니라 Ethernet type 또는 unstructured type의 PDU connectivity service를 제공하는 UE와 DN 간의 association을 일컫는다. 그 외에 UDM(Unified Data Management)은 EPC의 HSS에 대응되는 기능을 수행하며, PCF(Policy Control Function)은 EPC의 PCRF에 대응되는 기능을 수행한다. 물론 5G system의 요구사항을 만족하기 위해 그 기능들이 확장된 형태로 제공될 수 있다. 5G system architecture, 각 function, 각 interface에 대한 자세한 사항은 TS 23.501을 준용한다.
전통적으로 음성통화는 UE에서 제공하는 가장 중요한 기능 중의 하나이다. 셀룰러 네트워크에서는 이런 음성통화를 가장 효과적으로 제공하기 위해서, 음성에 최적화된 패턴을 바탕으로 고정적으로 유무선자원을 음성통화가 진행되는 동안 지속적으로 할당하는 방식을 사용하여 왔다. 즉, 사람이 음성 통화 중에, 짧은 시간 동안에 음성 정보를 수신하지 못하여도 대부분의 내용을 파악할 수 있으나, 음성 정보가 예상보다 늦게 전달되는 경우에는 서비스 품질에 불만을 가지는 것을 감안하여, 음성 통화가 진행되는 동안 지속적으로 자원을 할당하여, 사용자의 음성 정보를 즉시 전송되도록 한 것이다. 이런 방식을 회로-스위치(circuit-switch, CS) 방식이라고 부르며, 전통적인 유선 통화 시스템과 셀룰러 네트워크에서 사용된다.
그런데 음성 통화에서, 통화자는 지속적으로 말을 하는 것이 아니라, 상대방이 말하는 순간에는 듣는 동작만 한다. 이 경우 지속적으로 무선자원을 상기 통화자에게 할당한다면, 이는 무선 자원의 낭비로 이어지고 또한 시스템이 동시에 지원할 수 있는 통화량에도 제한을 가하게 된다. 이를 해결하기 위한 방식으로 패킷-스위치(packet-switch, PS) 방식이 고안되었으며, 인터넷 데이터는 모두 이런 패킷 스위치 방식을 통해서 전달된다. 특히, 인터넷의 폭발적인 성장과 보급에 따라서, 음성통화도 패킷 스위치 방식의 네트워크를 통해서 제공되기 시작했으며, 이런 예들 중의 하나가 VoLTE이다. 최근에는 패킷 스위치 방식의 음성통화, 즉 VoLTE위주로 서비스를 제공하는 사업자도 등장했으며, 이에 어느 시점에 이르러서는 패킷 스위치 방식만 지원하는 UE도 등장할 것으로 예상된다.
현재 UE에서는 ‘모바일 데이터’라는 스위치가 제공되고 있다. 대부분의 경우 이 스위치는 소프트웨어적으로 구성되어 있고, UE의 설정과 관련된 UI (User Interface)에서 제공되고 있다. 이 ‘모바일 데이터’ 스위치는, UE의 사용자로 하여금, 인터넷 연결 기능을 차단할 것인지 말 것인지에 대한 설정을 하도록 한다. 특히, 사용자들의 요금제에 따라서, 매달 사용할 수 있는 데이터 양에 제한이 있으므로, 각 사용자는 이런 스위치를 통해서 필요한 경우에만 인터넷 연결 기능을 사용하여 자신이 사용할 수 있는 데이터 양을 넘어서는 인터넷 트래픽을 소비하지 않도록 조절할 수 있다. 이런 인터넷 트래픽은 패킷 스위치 방식의 망을 이용한 대표적인 서비스이다. 사용자는 '모바일 데이터' 스위치를 통해 모바일 데이터를 차단하는 대신 무선랜을 사용하여 인터넷 서비스를 받을 수 있는 바, 로밍 상황뿐만 아니라 Home PLMN에 있는 경우에도 사용자는 얼마든지 모바일 데이터를 차단할 수 있다.
이렇게 사용자가 모바일 데이터의 스위치를 차단하여 인터넷 연결 기능을 차단한다는 것은, 사용자가 패킷 스위치 망을 차단한 것과 동일하고, 따라서, 패킷 스위치 망을 이용하여 제공되는 음성통화도 차단된다. 특히, 패킷 스위치(이하, PS)만 지원하는 네트워크 또는 PS만 지원하는 UE를 상정해 보면, 상기 사용자는 회로 스위치(이하, CS) 네트워크를 통한 음성통화 서비스를 사용할 수 없으므로, 상기 사용자가 모바일 데이터 스위치를 내리는 순간부터, 어떤 음성통화도 사용할 수 없게 된다. UE가 음성통화는 최소한으로 제공할 수 있어야 하는 바, 현재의 모바일 데이터 스위치가 모든 인터넷 트래픽을 차단하는 것은 문제가 된다.
따라서, 모바일 데이터 스위치를 내리더라도, UE에게 최소한의 인터넷 데이터 서비스, 또는 특정 데이터 서비스를 위한 인터넷 패킷 전송은 지원되는 것이 좋다. 또한, 만약 모바일 데이터 스위치를 내리는 경우, 네트워크는 효과적으로 상기 UE로의 하향링크 데이터를 차단하여야 한다. 즉, 최소한의 서비스(예를 들어, 음성 통화 서비스)에 관련된 데이터는 통과시키고, 그 외의 서비스에 관련된 데이터는 차단하는 장치가 필요하다.
Data Off와 관련해 TS 22.011의 10절 (3GPP PS Data Off)은, 3GPP PS Data Off는 HPLMN에 의해 구성되고 사용자에 의해 활성화될 때 3GPP PS Data Off Exempt Services에 필요한 IP 패킷을 제외한 모든 IP 패킷의 3GPP 액세스 네트워크 상에서 PDN 연결을 통한 전송을 방지하는 기능으로 정의한다. 또한, 다음과 같은 요구 사항을 정의하고 있다. 3GPP 시스템은 사업자가 자신의 가입자에 대해 3GPP PS Data Off Exempt Services로 정의되는 사업자 서비스를 구성할 수 있는 메커니즘을 제공해야 한다. 3GPP PS Data Off 가 UE에서 활성화되면, 과금 일관성을 유지하기 위해 UE는 3GPP PS Data Off가 활성화되었음을 네트워크에 알리고, UE는 3GPP PS Data Off Exempt Services가 아닌 모든 서비스의 업 링크 IP 패킷의 전송을 중단해야 하고, 네트워크는 3GPP PS Data Off Exempt Services 가 아닌 모든 서비스에 대해 UE로 다운 링크 IP 패킷의 전송을 중단해야 한다. 3GPP PS Data Off는 로밍 상태에 따라 활성화 될 수 있다.
다음의 각 사업자 서비스는 3GPP PS Data Off Exempt Services의 일부로 PLMN 단위로 HPLMN 사업자가 구성할 수 있다.
- MMTel Voice;
- SMS over IMS;
- USSD over IMS (USSI);
- MMTel Video;
- 각각의 IMS 서비스가 IMS 통신 서비스 식별자(IMS communication service identifier)에 의해 식별되되, 3GPP에 의해 정의되지 않은 특정한 IMS 서비스;
- PS를 통한 장치 관리(Device Management);
- XCAP을 사용하는 Ut 인터페이스를 통한 IMS 부가 서비스 설정.
사용자는 3GPP PS Data Off Exempt Services 인 서비스를 인식 해야 한다.
상술한 Data off와 관련하여, Exempt service가 될 수 있는 대다수의 서비스는 SIP based service (즉, IMS 서비스)일 가능성이 높다. 이러한 경우, 만약 exempt service 중 SIP based service가 하나도 없다면 UE는 IMS 망에 deregister를 수행하고 IMS PDN 연결을 release할 수 있다. (3GPP S2-163291에서 제안된 내용) 상기한 바와 같이 3GPP PS Data Off Exempt Services는 PLMN 단위로 HPLMN 사업자가 구성할 수 있는데, UE의 serving PLMN이 변경되는 경우, 해당 PLMN에서 exempt service 중 SIP based service의 유무에 따라, 또한 UE의 3GPP PS Data Off 활성화 여부에 따라 IMS PDN이 있는데 필요없는 경우 이를 해제하는 동작 내지는 IMS PDN이 없는데 필요한 경우 이를 생성하는 동작을 수행하는 번거로움이 따른다. 물론 UE가 HPLMN인 PLMN#1에서 VPLMN인 PLMN#2로 re-attach 없이 roaming이 되거나 아니면, 둘다 VPLMN인 PLMN#3에서 PLMN#4로 re-attach 없이 roaming 망이 바뀔 수도 있으나, 대개의 경우, PLMN이 바뀌면서 UE를 serving하던 old MME와 새로운 MME 간의 S10 interface가 서로 다른 PLMN 간에 없는 바, UE는 attach를 하게 된다. 또한, 많은 경우 UE가 대륙을 옮겨 roaming하는 경우, power-off를 하였다가 power-on을 함에 따라 attach를 하게 된다.
따라서, 이하에서는 위와 같은 문제를 해결할 수 있는 효율적인 PS Data Off 관련 동작에 대해 설명한다.
실시예
본 발명의 일 실시예에 의한 UE는 3GPP PS Data Off Exempt Services를 확인(도 8의 S801)하고, UE가 생성하려는 PDN 연결의 종류 및 3GPP PS Data Off Exempt Services의 확인 결과에 기초하여, PDN 연결의 생성 여부를 결정(S802)할 수 있다. 만약 UE가 PDN 연결을 생성하기로 결정한 경우 PDN 연결 요청을 전송(S803)할 수 있다.
만약, UE가 생성하려는 PDN 연결이 IMS PDN 연결이고 3GPP PS Data Off Exempt Services에 IMS 서비스가 없는 경우, UE는 상기 IMS PDN 연결을 생성하지 않기로 결정할 수 있다. 또는, UE가 생성하려는 PDN 연결이 non-IMS PDN 연결이고 3GPP PS Data Off Exempt Services에 non-IMS 서비스가 없는 경우, UE는 상기 non-IMS PDN 연결을 생성하지 않기로 결정할 수 있다. UE가 상기와 같이 PDN 연결을 생성하지 않는 것을 결정하면 PS Data Off가 activate됨에 따라 해당 APN에 대한 PDN 연결이 생성되지 않았다는 정보를 저장 및/또는 후술하는 관련 동작을 수행(S804)할 수 있다.
만약 PDN 연결을 생성하지 않음으로써 UE가 PDN 연결을 가지고 있지 않더라도, UE는 어태치 상태를 유지할 수 있다. 보다 상세히, UE가 PS Data Off를 activate함에 따라 PDN 연결을 하나도 생성하지 않았다면, MME는 UE로부터 획득한 다양한 정보에 기반하여 UE가 PDN 연결을 생성하지 않은 이유를 알 수 있다. 이에 MME는 UE가 비록 PDN 연결은 없지만 UE를 detach 시키지 않는 것을 결정할 수 있다. 즉, MME는 UE를 attach 상태로 유지시키는 것을 결정할 수 있다. UE 역시 PDN 연결을 하나도 생성하지 않았으나 attach 상태를 유지하는 것을 결정할 수 있다. 이러한 경우, PS Data Off가 deactivate 되었을 때 UE가 attach 부터 수행하는 것이 방지됨으로써, 신속하게 PDN 연결을 생성하여 서비스를 받도록 하는 효과가 있다.
상기 UE가 생성하려는 PDN 연결은 어태치 절차에서 생성하도록 미리 설정된 것일 수도 있고, 어태치 절차 후에 생성하려는 PDN 연결(예를 들어, UE가 어태치 후에 어태치 과정에서 생성한 PDN 연결 외에 추가로 생성해야 하는 PDN 연결)일 수도 있다.
계속해서, UE가 상술한 IMS PDN 연결을 생성하지 않기로 결정한 경우, i) 어태치 절차 수행시 MME에게 IMS PDN 연결을 생성하기 위한 APN을 제공하지 않음, ii) 어태치 절차 수행시 MME에게 IMS PDN 연결을 생성하기 위한 APN 이외의 PDN 연결을 생성하기 위한 APN을 제공. 예를 들면, non-IMS PDN 연결을 생성하기 위한 APN(Internet PDN 연결을 생성하기 위한 APN)을 제공하는 것일 수 있다., iii) 어태치 절차 수행시 MME에게 APN 정보를 제공하지 않음, iv) 어태치 절차 수행시 MME에게 default APN에 해당하는 PDN 연결을 생성하지 않음을 요청하는 정보를 제공, v) 어태치 절차 수행시 MME에게 default APN이 아닌 PDN 연결을 생성함을 요청하는 정보를 제공, vi) 어태치 절차 수행시 MME에게 default APN에 해당하는 서비스에는 3GPP PS Data Off Exempt Services가 없음을 나타내는 정보를 제공 중 적어도 하나의 동작을 수행할 수 있다.
또는, UE가 상술한 non-IMS PDN 연결을 생성하지 않기로 결정한 경우, i) 어태치 절차 수행시 MME에게 non-IMS PDN 연결을 생성하기 위한 APN을 제공하지 않음, ii) 어태치 절차 수행시 MME에게 non-IMS PDN 연결을 생성하기 위한 APN 이외의 PDN 연결을 생성하기 위한 APN을 제공(예를 들면, IMS PDN 연결을 생성하기 위한 APN일 수 있다.), iii) 어태치 절차 수행시 MME에게 APN 정보를 제공하지 않음, iv) 어태치 절차 수행시 MME에게 default APN에 해당하는 PDN 연결을 생성하지 않음을 요청하는 정보를 제공, v) 어태치 절차 수행시 MME에게 default APN이 아닌 PDN 연결을 생성함을 요청하는 정보를 제공, vi) 어태치 절차 수행시 MME에게 default APN에 해당하는 서비스에는 3GPP PS Data Off Exempt Services가 없음을 나타내는 정보를 제공 중 적어도 하나의 동작을 수행할 수 있다.
상술한 설명에서, 3GPP PS Data Off Exempt Services의 확인은 PS Data Off 가 활성화된 상태에서 수행되는 것일 수 있다. 이는 어태치 (절차 수행) 시 MME에게 PS Data Off가 활성화됨을 알리는 정보를 포함하는 것을 의미한다. 상기 UE에 PS Data Off가 활성화되는 시점은 UE의 어태치 시 일 수도 있고, 어태치 이후 (예, 어태치 후에 추가로 생성해야 하는 PDN 연결이 있는 경우) 일 수도 있다. UE가 어태치 시 이미 PS Data Off의 활성화 여부를 확인한 경우, UE는 이후에 상기 활성화 여부를 확인하지 않을 수도 있다.
만약, UE의 PS Data Off 가 활성화된 상태에서 비활성화된 상태로 변경된 경우, UE는 PDN 연결 생성 절차를 시작할 수 있다. 예를 들어, MME가 UE에게 해당 APN에 대해 PDN 연결을 생성하도록 지시하는 NAS 메시지를 전송하고, 이에 따라 UE는 TS 23.401의 5.10.2절의 UE requested PDN connectivity 절차를 통해 PDN 연결을 생성할 수 있다. 그러나 여기에 국한하지 않고 다양한 방법이 사용될 수 있다. 예를 들어, TS 23.401의 5.10.2절의 절차가 그대로 사용되거나 또는 적어도 일부가 변형된 형태로 사용할 수 있다.
한편, 3GPP PS Data Off Exempt Services는 UE가 어태치하는 PLMN(Public Land Mobile Network)에 대한 것일 수 있다. 또한, 3GPP PS Data Off Exempt Services는 HPLMN operator에 의해 PLMN 단위로 구성(configure)된 것일 수 있다.
한편, UE가 상술한 IMS PDN 연결을 생성하지 않기로 결정한 경우, MME의 동작을 살펴보면, i) MME는 상기 UE에 대해 attach 과정에서 IMS PDN 연결을 생성하지 않는 것을 결정, ii) MME는 상기 UE에 대해 attach 과정에서 default APN에 해당하는 PDN 연결을 생성하지 않은 것을 결정, iii) MME는 상기 UE에 대해 attach 과정에서 UE가 제공한 APN에 해당하는 PDN 연결을 생성하는 것을 결정 및/또는 수행, iv) MME는 상기 UE에 대해 attach 과정에서 default APN이 아닌 다른 APN에 해당하는 PDN 연결을 생성하는 것을 결정 및/또는 수행(다른 APN에 대한 정보는 가입자 정보에 기반할 수 있으며, 예를 들어 Internet PDN 연결일 수 있음), v) MME가 상기와 같이 PDN 연결을 생성하지 않는 것을 결정하면 상기 UE의 PS Data Off가 activate됨에 따라 해당 APN에 대한 PDN 연결이 생성되지 않았다는 정보를 저장하는 동작 중 적어도 하나를 수행할 수 있다.
또한, UE가 상술한 non-IMS PDN 연결을 생성하지 않기로 결정한 경우, MME의 동작을 살펴보면, i) MME는 상기 UE에 대해 attach 과정에서 non-IMS PDN 연결을 생성하지 않는 것을 결정, ii) MME는 상기 UE에 대해 attach 과정에서 default APN에 해당하는 PDN 연결을 생성하지 않은 것을 결정, iii) MME는 상기 UE에 대해 attach 과정에서 UE가 제공한 APN에 해당하는 PDN 연결을 생성하는 것을 결정 및/또는 수행, iv) MME는 상기 UE에 대해 attach 과정에서 default APN이 아닌 다른 APN에 해당하는 PDN 연결을 생성하는 것을 결정 및/또는 수행(다른 APN에 대한 정보는 가입자 정보에 기반할 수 있으며, 예를 들어 IMS PDN 연결일 수 있음) 중 적어도 하나를 수행할 수 있다.
상기에서 IMS PDN 연결은 IMS 서비스를 받기 위한 PDN 연결 또는 SIP based service를 위한 PDN 연결로 해석될 수 있다. 또한, non-IMS PDN 연결은 IMS 서비스가 아닌 다른 서비스에 대한 PDN 연결 또는 non-SIP based services를 받기 위한 PDN 연결로 해석될 수 있다. 이러한 non-SIP based services의 예로는 Internet 서비스를 들 수 있다.
한편, 상술한 내용은 각 네트워크 노드/펑션, 절차 등이 EPS를 기준으로 설명되었으나, 5G 시스템에서 종래 EPS에서의 네트워크 노드/펑션에 상응/대응하는 네트워크 노드/펑션, 절차로 치환될 수 있다. 예를 들어, 어태치 절차는 (initial) registration 절차, detach는 deregistration, MME는 AMF(Access and Mobility Management Function), APN은 DNN(Data Network Name), PDN 연결은 PDU session으로 치환하여 적용될 수 있다. 그리고, 5G System에서는 EPS와 달리 어태치 (절차 수행) 시 (즉, initial registration 시) PDU session을 생성하지 않을 수도 있다. 즉, 어태치는 오직 어태치만을 위해 수행되고, 이 절차가 완료된 후에 PDU session을 생성하기 시작할 수 있다. 이런 경우 UE가 생성해야 하는 모든 PDU session에 대해 상술한 내용이 적용되는 것으로 이해되어야 할 것이다.
도 9는 본 발명의 일례에 따른 단말 장치 및 네트워크 노드 장치에 대한 바람직한 실시예의 구성을 도시한 도면이다.
도 9를 참조하여 본 발명에 따른 단말 장치(100)는, 송수신장치(110), 프로세서(120) 및 메모리(130)를 포함할 수 있다. 송수신장치(110)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 단말 장치(100)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(120)는 단말 장치(100) 전반의 동작을 제어할 수 있으며, 단말 장치(100)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리(130)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 또한, 프로세서(120)는 본 발명에서 제안하는 단말 동작을 수행하도록 구성될 수 있다.
도 9를 참조하면 본 발명에 따른 네트워크 노드 장치(200)는, 송수신장치(210), 프로세서(220) 및 메모리(230)를 포함할 수 있다. 송수신장치(210)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 네트워크 노드 장치(200)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(220)는 네트워크 노드 장치(200) 전반의 동작을 제어할 수 있으며, 네트워크 노드 장치(200)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리(230)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 또한, 프로세서(220)는 본 발명에서 제안하는 네트워크 노드 동작을 수행하도록 구성될 수 있다. 구체적으로, 프로세서(220)는 3GPP PS Data Off Exempt Services를 확인하고, 상기 UE가 생성하려는 PDN 연결의 종류 및 상기 3GPP PS Data Off Exempt Services의 확인 결과에 기초하여, PDN 연결의 생성 여부를 결정하고, 상기 UE가 PDN 연결을 생성하기로 결정한 경우 PDN 연결 요청을 전송할 수 있다.
또한, 위와 같은 단말 장치(100) 및 네트워크 장치(200)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
상술한 바와 같은 본 발명의 다양한 실시형태들은 3GPP 시스템을 중심으로 설명하였으나, 다양한 이동통신 시스템에 동일한 방식으로 적용될 수 있다.

Claims (15)

  1. 무선통신시스템에서 UE(User Equipment)의 PDN(Packet Data Network) 연결 관련 신호 송수신 방법에 있어서,
    3GPP PS Data Off Exempt Services를 확인하는 단계;
    상기 UE가 생성하려는 PDN 연결의 종류 및 상기 3GPP PS Data Off Exempt Services의 확인 결과에 기초하여, PDN 연결의 생성 여부를 결정하는 단계; 및
    상기 UE가 PDN 연결을 생성하기로 결정한 경우 PDN 연결 요청을 전송하는 단계;
    를 포함하는, PDN 연결 관련 신호 송수신 방법.
  2. 제1항에 있어서,
    상기 UE가 생성하려는 PDN 연결이 IMS(Internet protocol Multimedia Subsystem) PDN 연결이고 상기 3GPP PS Data Off Exempt Services에 IMS 서비스가 없는 경우, 상기 UE는 상기 PDN 연결을 생성하지 않기로 결정하는, PDN 연결 관련 신호 송수신 방법.
  3. 제2항에 있어서,
    상기 PDN 연결을 생성하지 않음으로써 상기 UE가 PDN 연결을 가지고 있지 않더라도, 상기 UE는 어태치 상태를 유지하는, PDN 연결 관련 신호 송수신 방법.
  4. 제2항에 있어서,
    상기 UE가 생성하려는 PDN 연결은 어태치 절차에서 생성하도록 미리 설정된 것인, PDN 연결 관련 신호 송수신 방법.
  5. 제4항에 있어서,
    상기 UE가 상기 PDN 연결을 생성하지 않기로 결정한 경우, 상기 어태치 절차 수행시 MME에게 IMS PDN 연결을 생성하기 위한 APN을 제공하지 않음, 상기 어태치 절차 수행시 MME에게 IMS PDN 연결을 생성하기 위한 APN 이외의 PDN 연결을 생성하기 위한 APN을 제공, 상기 어태치 절차 수행시 MME에게 APN 정보를 제공하지 않음, 상기 어태치 절차 수행시 MME에게 default APN에 해당하는 PDN 연결을 생성하지 않음을 요청하는 정보를 제공, 상기 어태치 절차 수행시 MME에게 default APN이 아닌 PDN 연결을 생성함을 요청하는 정보를 제공, 상기 어태치 절차 수행시 MME에게 default APN에 해당하는 서비스에는 3GPP PS Data Off Exempt Services가 없음을 나타내는 정보를 제공 중 적어도 하나의 동작을 수행하는, PDN 연결 관련 신호 송수신 방법.
  6. 제1항에 있어서,
    상기 UE가 생성하려는 PDN 연결이 non-IMS PDN 연결이고 상기 3GPP PS Data Off Exempt Services에 non-IMS 서비스가 없는 경우, 상기 UE는 상기 PDN 연결을 생성하지 않기로 결정하는, PDN 연결 관련 신호 송수신 방법.
  7. 제6항에 있어서,
    상기 UE가 생성하려는 PDN 연결은 어태치 절차에서 생성하도록 미리 설정된 것인, PDN 연결 관련 신호 송수신 방법.
  8. 제7항에 있어서,
    상기 UE가 상기 PDN 연결을 생성하지 않기로 결정한 경우, 상기 어태치 절차 수행시 MME에게 non-IMS PDN 연결을 생성하기 위한 APN을 제공하지 않음, 상기 어태치 절차 수행시 MME에게 non-IMS PDN 연결을 생성하기 위한 APN 이외의 PDN 연결을 생성하기 위한 APN을 제공, 상기 어태치 절차 수행시 MME에게 APN 정보를 제공하지 않음, 상기 어태치 절차 수행시 MME에게 default APN에 해당하는 PDN 연결을 생성하지 않음을 요청하는 정보를 제공, 상기 어태치 절차 수행시 MME에게 default APN이 아닌 PDN 연결을 생성함을 요청하는 정보를 제공, 상기 어태치 절차 수행시 MME에게 default APN에 해당하는 서비스에는 3GPP PS Data Off Exempt Services가 없음을 나타내는 정보를 제공 중 적어도 하나의 동작을 수행하는, PDN 연결 관련 신호 송수신 방법.
  9. 제1항에 있어서,
    상기 3GPP PS Data Off Exempt Services의 확인은 PS Data Off 가 활성화된 상태에서 수행되는 것인, PDN 연결 관련 신호 송수신 방법.
  10. 제9항에 있어서,
    상기 UE의 PS Data Off 가 활성화된 상태에서 비활성화된 상태로 변경된 경우, 상기 UE는 상기 PDN 연결 생성 절차를 시작하는, PDN 연결 관련 신호 송수신 방법.
  11. 제1항에 있어서,
    상기 3GPP PS Data Off Exempt Services는 상기 UE가 어태치하는 PLMN(Public Land Mobile Network)에 대한 것인, PDN 연결 관련 신호 송수신 방법.
  12. 제11항에 있어서,
    상기 3GPP PS Data Off Exempt Services는 PLMN 단위로 구성(configure)된 것인, PDN 연결 관련 신호 송수신 방법.
  13. 무선통신시스템에서 PDN(Packet Data Network) 연결 관련 신호 송수신하는 UE(User Equipment)의 장치에 있어서,
    송수신 장치; 및
    프로세서를 포함하고, 상기 프로세서는 3GPP PS Data Off Exempt Services를 확인하고, 상기 UE가 생성하려는 PDN 연결의 종류 및 상기 3GPP PS Data Off Exempt Services의 확인 결과에 기초하여, PDN 연결의 생성 여부를 결정하고, 상기 UE가 PDN 연결을 생성하기로 결정한 경우 PDN 연결 요청을 전송하는, UE 장치.
  14. 제13항에 있어서,
    상기 UE가 생성하려는 PDN 연결이 IMS(Internet protocol Multimedia Subsystem) PDN 연결이고 상기 3GPP PS Data Off Exempt Services에 IMS 서비스가 없는 경우, 상기 프로세서는 상기 PDN 연결을 생성하지 않기로 결정하는, UE 장치.
  15. 제13항에 있어서,
    상기 PDN 연결을 생성하지 않음으로써 상기 UE가 PDN 연결을 가지고 있지 않더라도, 상기 UE는 어태치 상태를 유지하는, UE 장치.
PCT/KR2017/007305 2016-07-07 2017-07-07 무선 통신 시스템에서 pdn 연결 관련 신호 송수신 방법 및 이를 위한 장치 WO2018009025A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/315,842 US10932303B2 (en) 2016-07-07 2017-07-07 Method for transceiving signaling related to PDN connection in wireless communication system, and device therefor
EP17824581.7A EP3481137B1 (en) 2016-07-07 2017-07-07 Method performed by a user equipment in a wireless communication system and user equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662359685P 2016-07-07 2016-07-07
US62/359,685 2016-07-07
US201662379761P 2016-08-26 2016-08-26
US62/379,761 2016-08-26

Publications (1)

Publication Number Publication Date
WO2018009025A1 true WO2018009025A1 (ko) 2018-01-11

Family

ID=60912257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007305 WO2018009025A1 (ko) 2016-07-07 2017-07-07 무선 통신 시스템에서 pdn 연결 관련 신호 송수신 방법 및 이를 위한 장치

Country Status (3)

Country Link
US (1) US10932303B2 (ko)
EP (1) EP3481137B1 (ko)
WO (1) WO2018009025A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190246436A1 (en) * 2016-07-07 2019-08-08 Lg Electronics Inc. Method for transceiving signaling related to pdn connection in wireless communication system, and device therefor
WO2019164188A1 (ko) * 2018-02-20 2019-08-29 엘지전자 주식회사 복수의 네트워크 시스템에 접속할 수 있는 단말이 핸드오버를 수행하는 방법
CN111165067A (zh) * 2018-05-11 2020-05-15 联发科技股份有限公司 增强ps数据中断的性能
WO2021167304A1 (ko) * 2020-02-17 2021-08-26 엘지전자 주식회사 Ps 데이터 오프와 관련된 통신
TWI757714B (zh) 2019-04-02 2022-03-11 聯發科技股份有限公司 協作後之特性支援增強技術

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3049650C (en) * 2017-01-10 2022-05-03 Nokia Technologies Oy Short message service over non-access stratum with home-routed model
US11337139B2 (en) * 2018-02-15 2022-05-17 Telefonaktiebolaget Lm Ericsson (Publ) Enforcement of service exemption on a per access network technology type
WO2021040463A1 (ko) * 2019-08-29 2021-03-04 엘지전자 주식회사 3gpp ps data off에 관련된 통신

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042482A2 (ko) * 2012-09-14 2014-03-20 삼성전자 주식회사 무선 통신 시스템에서 망 혼잡상황에서 특정 서비스를 제어하는 방법 및 장치
WO2015062643A1 (en) * 2013-10-30 2015-05-07 Nokia Solutions And Networks Oy Keeping user equipment in a state attached to a cellular communication network during offloading of cellular data to another communication network
US20150256961A1 (en) * 2012-10-05 2015-09-10 Lg Electronics Inc. Method and device for controlling multipriority in wireless communication system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6150791B2 (ja) * 2011-09-22 2017-06-21 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America ローカル・アクセスの移動端末接続制御及び管理のための方法及び装置
US9084176B2 (en) * 2012-06-29 2015-07-14 At&T Intellectual Property I, L.P. Long term evolution network admission management
EP3132575B1 (en) * 2014-04-14 2020-10-21 Telefonaktiebolaget LM Ericsson (publ) Packet data connectivity control with volume charged service limitation
EP3035722A1 (en) 2014-12-19 2016-06-22 Alcatel Lucent Packet data flow control
US9948519B2 (en) * 2015-08-14 2018-04-17 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for establishing a packet data network connection for a wireless communication device
WO2017095204A1 (ko) * 2015-12-03 2017-06-08 엘지전자 주식회사 통신 서비스 제공 방법 및 패킷 데이터 네트워크 게이트웨이
EP3414956B1 (en) * 2016-02-10 2020-12-09 Intel IP Corporation Attach without pdn connectivity
WO2017171451A1 (ko) * 2016-03-30 2017-10-05 엘지전자(주) 무선 통신 시스템에서의 버퍼링된 데이터 전송 방법 및 이를 위한 장치
EP3437361A1 (en) * 2016-04-01 2019-02-06 Nec Corporation LOAD CONTROL FROM CONTROL PLANE CIoT EPS OPTIMISATION
BR112018069143A2 (pt) * 2016-05-25 2019-01-22 Huawei Tech Co Ltd método de controle de serviço de dados e dispositivo relacionado
EP3267650A1 (en) * 2016-07-04 2018-01-10 Nokia Solutions and Networks Oy Support of ps data off in a mobile system
WO2018006252A1 (zh) * 2016-07-04 2018-01-11 华为技术有限公司 一种关闭分组业务数据的方法、网络设备以及用户设备
EP3735097B1 (en) * 2016-07-05 2021-09-29 Samsung Electronics Co., Ltd. A method for handling control plane data in a wireless network
US10932303B2 (en) * 2016-07-07 2021-02-23 Lg Electronics Inc. Method for transceiving signaling related to PDN connection in wireless communication system, and device therefor
US10862746B2 (en) * 2016-08-25 2020-12-08 Blackberry Limited Policing of packet switched services
KR102526868B1 (ko) * 2016-10-04 2023-05-02 삼성전자주식회사 관리 자원 절약 방법 및 그 장치
WO2018070172A1 (en) * 2016-10-10 2018-04-19 Nec Corporation User equipment, system and communication method for managing overload in the context of control plane cellular internet of things evolved packet system optimisation
US10595348B2 (en) * 2016-11-29 2020-03-17 Lg Electronics Inc. Method for using PS data off function and user equipment
US10219214B2 (en) * 2017-01-06 2019-02-26 Mediatek Inc. Enhanced PS domain data-off mechanism
US20190313311A1 (en) * 2018-04-09 2019-10-10 Mediatek Inc. Apparatuses, service networks, and methods for handling plmn-specific parameters for an inter-plmn handover
US10785822B2 (en) * 2018-05-11 2020-09-22 Mediatek Inc. Abort UE-requested PDU session release procedure on collision
US11463880B2 (en) * 2018-12-28 2022-10-04 Korea Advanced Institute Of Science And Technology Dynamic security analysis method for control plane and system therefore

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042482A2 (ko) * 2012-09-14 2014-03-20 삼성전자 주식회사 무선 통신 시스템에서 망 혼잡상황에서 특정 서비스를 제어하는 방법 및 장치
US20150256961A1 (en) * 2012-10-05 2015-09-10 Lg Electronics Inc. Method and device for controlling multipriority in wireless communication system
WO2015062643A1 (en) * 2013-10-30 2015-05-07 Nokia Solutions And Networks Oy Keeping user equipment in a state attached to a cellular communication network during offloading of cellular data to another communication network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSGSA: Service Accessibility (Release 14)", 3GPP TS 22.011 V14.3.0, 24 June 2016 (2016-06-24), XP051123706 *
"General Packet Radio Service (GPRS) Enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Access (Release 14)", 3GPP TS 23.401 V14.0.0, 22 June 2016 (2016-06-22), XP051123221 *
See also references of EP3481137A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190246436A1 (en) * 2016-07-07 2019-08-08 Lg Electronics Inc. Method for transceiving signaling related to pdn connection in wireless communication system, and device therefor
US10932303B2 (en) * 2016-07-07 2021-02-23 Lg Electronics Inc. Method for transceiving signaling related to PDN connection in wireless communication system, and device therefor
WO2019164188A1 (ko) * 2018-02-20 2019-08-29 엘지전자 주식회사 복수의 네트워크 시스템에 접속할 수 있는 단말이 핸드오버를 수행하는 방법
CN111165067A (zh) * 2018-05-11 2020-05-15 联发科技股份有限公司 增强ps数据中断的性能
TWI757714B (zh) 2019-04-02 2022-03-11 聯發科技股份有限公司 協作後之特性支援增強技術
US11622415B2 (en) 2019-04-02 2023-04-04 Mediatek Inc. Enhancement of feature support after interworking
WO2021167304A1 (ko) * 2020-02-17 2021-08-26 엘지전자 주식회사 Ps 데이터 오프와 관련된 통신

Also Published As

Publication number Publication date
US10932303B2 (en) 2021-02-23
US20190246436A1 (en) 2019-08-08
EP3481137A1 (en) 2019-05-08
EP3481137A4 (en) 2020-03-25
EP3481137B1 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
WO2019160376A1 (ko) 무선 통신 시스템에서 smf의 신호 송수신 방법 및 이를 위한 장치
WO2018084635A1 (ko) 무선 통신 시스템에서 ngs에서 eps로 이동 방법 및 이를 위한 장치
WO2018155934A1 (ko) 무선 통신 시스템에서 3GPP access를 통해 non-3GPP에 관련된 데이터를 수신하는 방법 및 이를 위한 장치
WO2018199668A1 (ko) 무선 통신 시스템에서 udm이 amf의 등록에 관련된 절차를 수행하는 방법 및 이를 위한 장치
WO2018009025A1 (ko) 무선 통신 시스템에서 pdn 연결 관련 신호 송수신 방법 및 이를 위한 장치
WO2018008922A2 (ko) 무선 통신 시스템에서 기지국의 nas 시그널링 지원 방법 및 이를 위한 장치
WO2017171427A1 (ko) 시스템 정보 전송 방법 및 기지국과 시스템 정보 수신 방법 및 사용자기기
WO2017026872A1 (ko) 무선 통신 시스템에서 리모트 ue의 신호 송수신 방법 및 이를 위한 장치
WO2015174702A1 (ko) 무선 통신 시스템에서 hss/mme의 신호 송수신 방법 및 장치
WO2017126948A1 (ko) 무선 통신 시스템에서 로컬 네트워크에서 v2x 메시지 송수신 방법 및 이를 위한 장치
WO2016186414A1 (ko) 무선 통신 시스템에서 브로드캐스트 서비스를 제공하는 방법 및 이를 위한 장치
WO2016126092A1 (ko) 무선 통신 시스템에서 단말의 plmn 선택 방법 및 이를 위한 장치
WO2018221943A1 (ko) 무선 통신 시스템에서 multi-homing 기반 psa 추가와 관련하여 신호를 송수신하는 방법 및 이를 위한 장치
WO2018169281A1 (ko) 보고 수신 방법 및 네트워크 장치, 그리고 보고 수행 방법 및 기지국
WO2017086618A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 방법 및 이를 위한 장치
WO2019059740A1 (ko) 무선 통신 시스템에서 ng-ran이 ims voice 지원에 관련된 신호를 송수신하는 방법 및 이를 위한 장치
WO2016111603A1 (ko) 무선 통신 시스템에서 pdn 연결 복구에 관련된 신호 송수신 방법 및 이를 위한 장치
WO2016163635A1 (ko) 무선 통신 시스템에서 단말의 plmn 선택 방법 및 이를 위한 장치
WO2017026772A1 (ko) 무선 통신 시스템에서 p-cscf 선택 및 sip 메시지 전송 방법 및 이를 위한 장치
WO2016003199A1 (ko) 무선 통신 시스템에서 d2d 통신 수행 방법 및 이를 위한 장치
WO2019194537A1 (ko) 무선 통신 시스템에서 숏 메시지 관련 신호 송수신 방법 및 이를 위한 장치
EP2761904A1 (en) Method for processing data associated with location area update in a wireless communication system
WO2017131481A1 (ko) 데이터 전송 방법 및 기지국과, 데이터 전달 방법 및 코어 노드
WO2018143758A1 (ko) 무선 통신 시스템에서 제1 ue와 연결을 가진 제2 ue의 페이징 관련 동작을 수행하는 방법 및 이를 위한 장치
WO2017086617A1 (ko) 무선 통신 시스템에서 혼잡한 네트워크 상황에서 동작하는 단말의 동작 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017824581

Country of ref document: EP

Effective date: 20190204