WO2019194537A1 - 무선 통신 시스템에서 숏 메시지 관련 신호 송수신 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 숏 메시지 관련 신호 송수신 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2019194537A1
WO2019194537A1 PCT/KR2019/003875 KR2019003875W WO2019194537A1 WO 2019194537 A1 WO2019194537 A1 WO 2019194537A1 KR 2019003875 W KR2019003875 W KR 2019003875W WO 2019194537 A1 WO2019194537 A1 WO 2019194537A1
Authority
WO
WIPO (PCT)
Prior art keywords
smsf
sms
domain
udm
transmitting
Prior art date
Application number
PCT/KR2019/003875
Other languages
English (en)
French (fr)
Inventor
김래영
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2019194537A1 publication Critical patent/WO2019194537A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • H04W4/14Short messaging services, e.g. short message services [SMS] or unstructured supplementary service data [USSD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/17Selecting a data network PoA [Point of Attachment]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/12Mobility data transfer between location registers or mobility servers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving signals related to SMS for a roaming UE.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • An object of the present invention is to provide a method for delivering an MT SM message to a roaming UE attached to a plurality of V-PLMNs.
  • the UDM roams a UE from a short message service-gateway mobile switching center (SMS-GMSC). Receiving routing information related to the SM of the user equipment; And transmitting, by the UDM, the SM routing information to the H-SMSF to select a domain of the H-SMSF for delivery of the SM.
  • SMS-GMSC short message service-gateway mobile switching center
  • a UDM device for transmitting and receiving SMS-related signals in a wireless communication system, the memory; And at least one processor coupled to the memory, wherein the at least one processor is configured to receive routing information related to the SM of roaming user equipment (UE) from the short message service-gateway mobile switching center (SMS-GMSC). Receiving and transmitting, to the H-SMSF, the SM routing information for domain selection of the H-SMSF for delivery of the SM.
  • UE roaming user equipment
  • SMS-GMSC short message service-gateway mobile switching center
  • the roaming UE may be attached to more than one Visited PLMN.
  • the two or more visited PLMNs may each include an SMS serving entity.
  • the SMS serving entity may be one of a short message service function (SMSF), a mobile switching center (SGS), a mobility management entity (MME), or an IP-short message-gateway (IP-SM-GW).
  • SMSSF short message service function
  • SGS mobile switching center
  • MME mobility management entity
  • IP-SM-GW IP-short message-gateway
  • the SM may attempt delivery to a target entity of a domain selected by the H-SMSF.
  • the domain selection by the H-SMSF may be performed according to order information determined by a combination of one or more of a plurality of domain order information.
  • the plurality of domain order information includes a) an order between a CS domain and a PS domain, b) an order between a user plane and a control plane, c) an order between an Evolved Packet Core (EPC) and a 5G core (d). It may include an order between 3GPP access and non-3GPP access.
  • EPC Evolved Packet Core
  • the domain selection by the H-SMSF may be performed according to priority information for an SMS serving entity.
  • the target entity may be one of V-SMSF (s), SGs MSC, MME or IP-SM-GW.
  • V-SMSF s
  • SGs MSC SGs MSC
  • MME Mobility Management Entity
  • IP-SM-GW IP-SM-GW
  • the SM may be a MT (Mobile Terminated) SM.
  • the H-SMSF may be assigned by the UDM because there is no SMSF registered in the H-PLMN for the roaming UE.
  • the UDM may be UDM + HSS.
  • the SM routing information may be related to SM routing to a roaming UE via AMF.
  • the SM-related nodes do not have interfaces with each other in each of the plurality of V-PLMNs, it is possible to solve the problem of domain selection and the resulting message transfer problem.
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • 3 is an exemplary view showing the structure of a radio interface protocol in a control plane.
  • FIG. 4 is an exemplary view showing the structure of a radio interface protocol in a user plane.
  • 5 is a flowchart illustrating a random access process.
  • RRC radio resource control
  • FIG. 7 is a diagram for describing a 5G system.
  • FIG. 8 illustrates a non-roaming architecture that supports non-3GPP access.
  • FIG. 9 illustrates an interworking architecture between a 5G system and an EPS when the UE does not roam.
  • 11 is an SMS transmission architecture associated with MME.
  • FIG. 14 is a diagram illustrating signal transmission and reception of network nodes according to an embodiment of the present invention.
  • 20 is a diagram illustrating a configuration of a node device according to an embodiment of the present invention.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • Embodiments of the present invention may be supported by standard documents disclosed in relation to at least one of the Institute of Electrical and Electronics Engineers (IEEE) 802 series system, 3GPP system, 3GPP LTE and LTE-A system, and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • IEEE Institute of Electrical and Electronics Engineers
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system composed of an Evolved Packet Core (EPC), which is a packet switched (PS) core network based on Internet Protocol (IP), and an access network such as LTE / UTRAN.
  • EPC Evolved Packet Core
  • PS packet switched
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of E-UTRAN. It is installed outdoors and its coverage is macro cell size.
  • UE User Equipment
  • the UE may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term UE or UE may refer to an MTC device.
  • HNB Home NodeB
  • HeNB Home eNodeB: A base station of an EPS network, which is installed indoors and its coverage is micro cell size.
  • Mobility Management Entity A network node of an EPS network that performs mobility management (MM) and session management (SM) functions.
  • Packet Data Network-Gateway (PDN-GW) / PGW A network node of an EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection, and the like.
  • SGW Serving Gateway
  • Non-Access Stratum Upper stratum of the control plane between the UE and the MME.
  • Packet Data Network A network in which a server supporting a specific service (eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
  • a server supporting a specific service eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.
  • MMS Multimedia Messaging Service
  • WAP Wireless Application Protocol
  • PDN connection A logical connection between the UE and the PDN, represented by one IP address (one IPv4 address and / or one IPv6 prefix).
  • RAN Radio Access Network: a unit including a NodeB, an eNodeB and a Radio Network Controller (RNC) controlling them in a 3GPP network. It exists between UEs and provides a connection to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • PLMN Public Land Mobile Network
  • Proximity Service (or ProSe Service or Proximity based Service): A service that enables discovery and direct communication between physically close devices or communication through a base station or through a third party device. In this case, user plane data is exchanged through a direct data path without passing through a 3GPP core network (eg, EPC).
  • EPC 3GPP core network
  • EPC Evolved Packet Core
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing enhanced data transfer capabilities.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • EPC IP Multimedia Subsystem
  • the EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
  • SGW serving gateway
  • PDN GW packet data network gateway
  • MME mobility management entity
  • SGRS serving general packet
  • Radio Service Upporting Node
  • ePDG Enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data Rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • RANs defined before 3GPP Release-8 such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data Rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data Rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like.
  • the MME controls control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability is an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access. (Eg, IMS).
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • This reference point can be used in PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handovers) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and / or active state This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
  • S4 Reference point between SGW and SGSN that provides related control and mobility support between the GPRS core and SGW's 3GPP anchor functionality.It also provides user plane tunneling if no direct tunnel is established.
  • the 3GPP Anchor function of Serving GW In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.
  • S5 Reference point providing user plane tunneling and tunnel management between the SGW and the PDN GW.
  • the PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services.
  • Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDN GW.
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • an eNodeB can route to a gateway, schedule and send paging messages, schedule and send broadcaster channels (BCHs), and resources in uplink and downlink while an RRC (Radio Resource Control) connection is active.
  • BCHs broadcaster channels
  • RRC Radio Resource Control
  • paging can occur, LTE_IDLE state management, user plane can perform encryption, SAE bearer control, NAS signaling encryption and integrity protection.
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station
  • FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station. .
  • the air interface protocol is based on the 3GPP radio access network standard.
  • the air interface protocol consists of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
  • the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis.
  • one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channel multiplexing to map several logical channels to one transport channel. (Multiplexing).
  • the MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • the radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and resetting of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release.
  • RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell.
  • TA tracking area
  • each TA is identified by a tracking area identity (TAI).
  • TAI tracking area identity
  • the terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell.
  • the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state.
  • RRC_CONNECTED state There are several cases in which a UE in RRC_IDLE state needs to establish an RRC connection. For example, a user's call attempt, a data transmission attempt, etc. are required or a paging message is received from E-UTRAN. Reply message transmission, and the like.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • ESM evolved Session Management
  • the NAS layer performs functions such as default bearer management and dedicated bearer management, and is responsible for controlling the terminal to use the PS service from the network.
  • the default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
  • PDN Packet Data Network
  • the network allocates an IP address available to the terminal so that the terminal can use the data service, and also allocates a QoS of the default bearer.
  • LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR bearer is assigned.
  • a bearer having a QoS characteristic of GBR or non-GBR may be allocated.
  • the bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID.
  • EPS bearer ID One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or / and a guaranteed bit rate (GBR).
  • 5 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is used for the UE to get UL synchronization with the base station or to be allocated UL radio resources.
  • the UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • the UE sends the randomly selected random access preamble to the eNodeB.
  • the UE selects one of the 64 candidate random access preambles.
  • the corresponding subframe is selected by the PRACH configuration index.
  • the UE transmits the selected random access preamble in the selected subframe.
  • the eNodeB Upon receiving the random access preamble, the eNodeB sends a random access response (RAR) to the UE.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE detects a PDCCH masked with random access-RNTI (RA-RNTI). The UE receives a random access response in a Medium Access Control (MAC) Protocol Data Unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC Medium Access Control
  • PDU Protocol Data Unit
  • RRC 6 shows a connection process in a radio resource control (RRC) layer.
  • RRC radio resource control
  • the RRC state is shown depending on whether the RRC is connected.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE is in a logical connection with an entity of the RRC layer of the eNodeB.
  • the RRC state is referred to as an RRC connected state.
  • the non-state is called the RRC idle state.
  • the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE.
  • the UE in the idle state can not be identified by the eNodeB, the core network (core network) is managed by the tracking area (Tracking Area) unit that is larger than the cell unit.
  • the tracking area is a collection unit of cells. That is, the idle state (UE) is determined only in the presence of the UE in a large area, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the connected state (connected state).
  • the UE When a user first powers up a UE, the UE first searches for an appropriate cell and then stays in an idle state in that cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through an RRC connection procedure and transitions to an RRC connected state. .
  • the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or uplink data transmission is required, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
  • the RRC connection process is largely a process in which a UE sends an RRC connection request message to an eNodeB, an eNodeB sends an RRC connection setup message to the UE, and a UE completes RRC connection setup to the eNodeB. (RRC connection setup complete) message is sent. This process will be described in more detail with reference to FIG. 6 as follows.
  • the eNB When the RRC connection request message is received from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message, which is a response message, to the UE. .
  • the UE When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection establishment message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connected mode.
  • the MME is divided into a core access and mobility management function (AMF) and a session management function (SMF) in a next generation system (or 5G CN).
  • AMF access and mobility management function
  • SMF session management function
  • MM NAS interaction and mobility management
  • SM session management
  • the SMF manages a user plane function (UPF), which has a user-plane function, that is, a gateway through which user traffic is routed.
  • the user-plane part can be considered to be in charge of the UPF.
  • a protocol data unit (PDU) session is defined in a 5G system.
  • the PDU session refers to an association between the UE and the DN providing the PDU connectivity service of the Ethernet type or the unstructured type as well as the IP type.
  • UDM Unified Data Management
  • PCF Policy Control Function
  • the functions may be provided in an expanded form to satisfy the requirements of the 5G system. For details on the 5G system architecture, each function and each interface, TS 23.501 is applicable.
  • 5G systems are working on TS 23.501, TS 23.502 and TS 23.503. Therefore, in the present invention, the above standard is applied mutatis mutandis for 5G systems.
  • more detailed architecture and contents related to NG-RAN shall apply mutatis mutandis to TS 38.300.
  • 5G systems also support non-3GPP access, which is described in Section 4.2.8 of TS 23.501, including the architecture, network elements, etc. for supporting non-3GPP access, and section 4.12 of TS 23.502 for non-3GPP access. Procedures to support this are described.
  • An example of non-3GPP access is WLAN access, which may include both trusted and untrusted WLANs.
  • the Access and Mobility Management Function (AMF) of the 5G system performs registration management (RM) and connection management (CM) for non-3GPP access as well as 3GPP access.
  • RM registration management
  • CM connection management
  • FIG. 8 illustrates a non-roaming architecture that supports non-3GPP access.
  • the same AMF serves the UE for 3GPP access and non-3GPP access belonging to the same PLMN so that one network function integrates authentication, mobility management, session management, and the like for a UE registered through two different accesses. It can support them efficiently and efficiently.
  • Section 9 illustrates an interworking architecture between the 5G system and the EPS when the UE does not roam.
  • the MME and the AMF that is, the interface between the core network, N26, which may or may not be supported by the operator's choice.
  • Section 4.3 of TS 23.501v15.0.0 provides a more detailed architecture of 5G system interworking with EPS.
  • SMS over NAS transmits the SMS to the control plane, and in contrast, there is a method of transmitting the SMS to the user plane using IMS.
  • SMS over NAS refers to section 4.4.2 (SMS over NAS) of TS 23.501v15.0.0 and section 4.13.3 (SMS over NAS procedure) of TS 23.502v15.0.0.
  • SMS over NAS procedure SMS over NAS procedure
  • SMS over NAS in EPC can be divided into the case where the MME supports the SMS function and the case where it does not.
  • the MME supports the SMS protocol stack, and the SMS is transmitted according to the architecture as shown in FIG. See Annex C (normative): SMS in MME of TS 23.272 for details.
  • the MCS Server shortened MSC supports SMS function, which is also called SMS over SGs. Refer to TS 23.272 for details.
  • the UDM may receive routing information related to the SM of the UE from the SMS-GMSC and transmit the SM routing information to the H-SMSF.
  • the H-SMSF may perform domain selection for delivery of the SM.
  • the H-SMSF may attempt SM delivery to the target entity based on the domain selection, as described below. That is, the SM may attempt to deliver to the target entity of the domain selected by the H-SMSF.
  • the SM may be a Mobile Terminated (MT) SM
  • the target entity may be one of V-SMSF (s)
  • SGs MSC MME or IP-SM-GW
  • the H-SMSF is an H-PLMN for the UE.
  • There is no registered SMSF at may be assigned by the UDM.
  • the UE may be a roaming UE.
  • the UE may be attached to two or more Visited PLMNs, and each of the two or more Visited PLMNs may include an SMS serving entity (ie, an SMS serving node or an SMS related node).
  • This SMS serving entity can be an SMSF, SGs MSC, MME or IP-SM-GW.
  • the SMS serving entities belong to different V-PLMNs.
  • the SMS-related nodes of each of the two or more Visited PLMNs do not have interfaces with each other, so that MT SMS domain selection by V-SMSF for roaming UEs according to the prior art is not feasible, and delivery of MT SMs becomes difficult.
  • FIGS. 12 to 13 (b). 12 shows an example in which the SGs MSC operates for SMS while the UE is attached to the EPC via 3GPP access in VPLMN1 and the UE is registered in 5GC in VPLMN2 via non-3PP access. Therefore, if SMSF is required instead of SMS-GMSC to perform MT SMS domain selection (ie, SMSF performs domain selection), an interface between the SMSF of VPLMN2 and the SG MSC of VPLMN1 is required. However, no interface between VPLMNs for this type of SMS forwarding is possible.
  • FIG. 13 (a) shows that a UE is attached to an EPC of VPLMN1 via 3GPP access (ie, LTE) and is also registered through 3GPP access (eg, NR) to 5GC of VPLMN1. Since the MSC and SMSF # 1 in charge of SMS belong to the same PLMN, they can be regarded as having interfaces with each other. Thereafter, the UE goes out of the LM coverage of the VPLMN1, enters the NR coverage of the VPLMN2, and registers with the 5GC of the VPLMN2. This example is shown in Figure 13 (b). In this case, since the MSC and SMSF # 2 in charge of SMS belong to different PLMNs, there is a high possibility that there is no interface with each other.
  • 3GPP access ie, LTE
  • 3GPP access eg, NR
  • the V-SMSF passes the AMF to deliver the MT SM to the UE. If you attempt to forward but fail to forward, you must try forwarding to another SMS-related node. At this time, there is no interface between the MSC and V-SMSF belonging to different PLMN, so that V-SMSF can perform domain selection completely. And as a result, MT SM delivery is not performed properly. In contrast, in the present invention in which the UDM allocates the H-SMSF and the H-SMSF performs domain selection for MT SM transmission, this problem does not occur.
  • the domain selection may be performed according to order information determined by a combination of one or more of a plurality of domain order information.
  • the plurality of domain order information includes a) an order between a CS domain and a PS domain, b) an order between a user plane and a control plane, c) an order between an Evolved Packet Core (EPC) and a 5G core (d). It may include an order between 3GPP access and non-3GPP access.
  • the domain selection may be performed according to priority information on the SMS serving entity.
  • step S1401 the SMS-SC forwards the short message (SMS DELIVER or MT SMS) to the SMS-GMSC.
  • SMS DELIVER short message
  • MT SMS short message
  • step S1402 the SMS-GMSC transmits Routing Info for the SM request to the UDM.
  • the UDM checks if there is any registered SMSF belonging to the HPLMN for the UE. If the registered SMSF does not exist, the UDM allocates / assigns one H-SMSF for the purpose of selecting the MT SMS domain based on the user subscription or configuration. UDM forwards the request from the SMS-GMSC to the corresponding H-SMSF.
  • the MT SMS domain selection by H-SMSF is described as performing the operation proposed by the UDM. However, regardless of this, the operation may be performed in consideration of operator policy, configuration, and subscriber information.
  • the UDM forwards the request from the SMS-GMSC to the H-SMSF.
  • the H-SMSF is this SMSF if there is an SMSF belonging to the HPLMN registered for the UE. If the H-SMSF is not present, it is allocated for the MT SMS domain selection purpose in the previous step.
  • the UDM is currently serving a node (V-SMSF (s), one of SGs MSC and MME, and / or IP-SM-GW) to deliver a Short Message in the CS / PS domain.
  • V-SMSF node
  • the UDM may include SMS-related subscriber information in the message that returns the address or separately provide the allocated H-SMSF to the allocated H-SMSF.
  • the SMS related subscriber information may typically include SMS parameters subscribed for SMS service such as SMS teleservice and SMS barring list.
  • the H-SMSF When the H-SMSF receives such SMS-related subscriber information, it performs an operation corresponding to the SMS-related subscriber information before performing MT SMS domain selection, that is, before forwarding MT SMS. (E.g., SMS barring check, whether the subscriber is authorized to use SMS (eg, in Operator Determined Barring settings, check, etc.).
  • the UDM is used to determine what type of access V-SMSF has (eg 3GPP access, non-3GPP). It may be able to provide H-SMSF whether it is serving for (access, or both).
  • step S1404 the H-SMSF returns only one address as the routing information to the SMS-GMSC.
  • the UDM may provide the H-SMSF's address information to the SMS-GMSC.
  • Step S1403 and step S1404 may be performed simultaneously or step S1405 may be performed first.
  • step S1405 the SMS-GMSC delivers a short message (SMS DELIVER) to the H-SMSF.
  • SMS DELIVER short message
  • step S1406 the H-SMSF performs a domain selection function to perform a domain selection function to determine a preferred domain for delivering a message according to operator policy and user preferences. After performing domain selection in H-SMSF, all available domains are listed according to the priority of H-SMSF.
  • step S1407 the H-SMSF attempts MT SM delivery to the target entity according to the priority list until delivery succeeds or until delivery to all available domains is attempted. If the first delivery attempt fails and the error is due to exceeding the UE's memory capacity, the H-SMSF sends a SMS DELIVER REPORT back to the SMS-GMSC.
  • the H-SMSF is activated by the AMF due to its registration with the UE's 5GC (see section 4.13.3.1 Registration procedures for SMS over NAS in TS 23.502)
  • the H-SMSF is sent from the UDM, including sending the MT SMS via the AMF.
  • MT SMS can be transmitted to the provided SMS serving node (s). This transmission means trying until the MT SMS transmission is successful.
  • the H-SMSF itself is not activated by AMF due to the UE's registration to 5GC, it is activated / involved for MT SMS domain selection, which allows MT SMS transmission to the SMS serving node (s) provided by UDM. You can try This transmission means trying until the MT SMS transmission is successful.
  • the SMSF is a serving node registered for SMS for the UE, as described in step 7a of section 4.13.3.1 of TS 23.502
  • the AMF in the HPLMN serving for the UE is one of the target entities.
  • MT SM delivery to the AMF is performed as described in Sections 4.13.3.6, 4.13.3.7 and 4.13.3.8 of TS 23.502.
  • the V-SMSF (s), one of SGs MSC and MME, and / or IP-SM-GW may be target entities.
  • the H-SMSF forwards the short message to these target entities in the same way that the IP-SM-GW forwards the short message to the MSC, SGSN, MME or SMSF as described in section 6.5a of TS 23.204.
  • the order in which the H-SMSF selects the MT SMS domain may be set in the H-SMSF, may be provided from the UDM, or may be provided in the form of subscriber information from the UDM.
  • the information on the selection priority may also reflect operator policy and user preferences. This may be provided in step S1403) above, and if the H-SMSF is activated by the AMF due to the registration to the 5GC of the UE, the SMSF specified in section 4.13.3.1 Registration procedures for SMS over NAS of TS 23.502 may interact with the UDM. Can also be obtained.
  • the domain selection may be performed according to order information determined by a combination of one or more of a plurality of domain order information.
  • the plurality of domain order information includes a) an order between a CS domain and a PS domain, b) an order between a user plane and a control plane, c) an order between an Evolved Packet Core (EPC) and a 5G core (d). It may include an order between 3GPP access and non-3GPP access.
  • EPC Evolved Packet Core
  • d 5G core
  • CS domain means transmission to SGs MSC
  • PS domain means transmission to nodes other than SGs MSC.
  • User plane means transmission to IP-SM-GW
  • transmission to control plane means transmission to other nodes other than IP-SM-GW.
  • Transmission to EPC means transmission to MME or SGs MSC, and transmission to 5GC (or 5GS) means transmission to AMF or V-SMSF.
  • the transmission to the Non-3GPP access means to transmit through the AMF.
  • the transmission to the other SMS serving node transmits to the 3GPP access.
  • the H-SMSF itself is not activated as an SMS serving node for the UE's non-3GPP access, it is transmitted through the V-SMSF serving the non-3GPP access based on the V-SMSF's serving access type information provided from the UDM. To do this means transmission to non-3GPP access, and transmission to another SMS serving node means transmission to 3GPP access.
  • the H-SMSF selects / determines the SMS serving entity in order of highest priority and attempts to transmit the MT SMS.
  • H-SMSF is introduced when roaming so that H-SMSF performs MT SMS domain selection for roaming UEs as well as non-roaming UEs.
  • H-SMSF For MT SMS domain selection, H-SMSF needs the following interface and existing protocols such as SGd are proposed to use for MT SMS delivery.
  • SGs MSC can be located in HPLM or in VPLMN.
  • MME can be located in HPLM or in VPLMN.
  • the interface between the H-SMSF and the V-SMSF may be defined as a new one, and a service based interface may be defined.
  • H-SMSF is required for roaming cases only if MT SMS domain selection by SMSF is supported. That is, the current principle of 'SMSF is selected in VPLMN for roaming UE' is maintained.
  • H-SMSF proposes not to be involved in MO SMS delivery. (Proposal # 2)
  • H-SMSF When V-SMSF is activated, H-SMSF is also activated.
  • the method of selecting H-SMSF can be considered similar to selecting H-SMF in home routed roaming.
  • the same H-SMF selection for home routing of PDU Sessions should be considered for UEs registered with different PLMNs for 3GPP access and non-3GPP access.
  • the H-SMSF does not need to be involved in the MO SMS, even though the H-SMSF is activated when the V-SMSF is activated.
  • Option2 When UDM receives Send Routing Info for SM message for forwarding MT SMS from SMS-GMSC, UDM will support one H- for MT SMS domain selection if MT SMS domain selection by H-SMSF is supported. Allocate SMSF. For this option, the UDM can perform a similar operation for the case where the IP-SM-GW performs the MT SMS domain selection specified in TS 23.204, as shown in section 6.4 of TS 23.204.
  • Tables 2 to 4 are modifications of the contents of TS 23.501v15.1.0 in accordance with the present invention in connection with the above-described embodiments of the present invention, which are created by the inventors of the present invention and submitted to 3GPP. to be.
  • Figures 4.4.2.1-1, Figure 4.4.2.1-2, Figure 4.4.2.1-3, Figure 4.4.2.1-4, and Figure 4.13.3.x-1 are shown in Figures 15, 16, and 17, respectively. , 18 and 19.
  • 20 is a diagram illustrating a configuration of a preferred embodiment of a terminal device and a network node device according to an example of the present invention.
  • the network node apparatus 200 may include a transceiver 210 and an apparatus 220 for a wireless communication system.
  • An apparatus 220 for a wireless communication system may include a memory and at least one processor coupled to the memory.
  • the transceiver 210 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the network node device 200 may be connected to an external device by wire and / or wirelessly.
  • the at least one processor may control the overall operation of the network node device 200, and the network node device 200 may be configured to perform a function of calculating and processing information to be transmitted and received with an external device.
  • the memory may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the processor may be configured to perform the network node operation proposed in the present invention.
  • the at least one processor receives routing information related to the SM of the UE (User Equipment) from the SMS-GMSC, transmits the SM routing information to the H-SMSF, and the H-SMSF forwards the delivery of the SM. You can perform domain selection for the SM of the UE (User Equipment) from the SMS-GMSC, transmits the SM routing information to the H-SMSF, and the H-SMSF forwards the delivery of the SM. You can perform domain selection for the SM of the UE (User Equipment) from the SMS-GMSC, transmits the SM routing information to the H-SMSF, and the H-SMSF forwards the delivery of the SM. You can perform domain selection for the SM of the UE (User Equipment) from the SMS-GMSC, transmits the SM routing information to the H-SMSF, and the H-SMSF forwards the delivery of the SM. You can perform domain selection for the SM of the UE (User Equipment) from the SMS-GMSC, transmits the
  • a terminal device 100 may include a transceiver 110 and an apparatus 120 for a wireless communication system.
  • Apparatus 120 for a wireless communication system may include a memory and at least one processor coupled to the memory.
  • the transceiver 110 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the terminal device 100 may be connected to an external device by wire and / or wirelessly.
  • the at least one processor may control the overall operation of the terminal device 100, and may be configured to perform the function of the terminal device 100 to process and process information to be transmitted and received with an external device.
  • the memory may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the processor may be configured to perform a terminal operation proposed in the present invention.
  • the specific configuration of the terminal device 100 and the network device 200 as described above may be implemented so that the above-described matters described in various embodiments of the present invention can be applied independently or two or more embodiments are applied at the same time, overlapping The description is omitted for clarity.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of an apparatus, procedure, or function for performing the above-described functions or operations.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 일 실시예는, 무선통신시스템에서 UDM(Unified Data Management)의 SM(Short Message) 관련 신호 송수신 방법에 있어서, 상기 UDM이 SMS-GMSC(short message service-gateway mobile switching center)로부터 로밍 UE(User Equipment)의 SM에 관련된 라우팅 정보를 수신하는 단계; 및 상기 UDM이 상기 H-SMSF로, 상기 SM의 전달을 위한 H-SMSF의 도메인 선택을 위해, 상기 SM 라우팅 정보를 전송하는 단계를 포함하는, SM 관련 신호 송수신 방법이다.

Description

무선 통신 시스템에서 숏 메시지 관련 신호 송수신 방법 및 이를 위한 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 로밍 UE를 위한, SMS에 관련된 신호 송수신 방법 및 장치에 대한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
본 발명은 복수의 V-PLMN에 어태치한 로밍 UE에 대해 MT SM 메시지를 전달하기 위한 방법을 기술적 과제로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예는, 무선통신시스템에서 UDM(Unified Data Management)의 SM(Short Message) 관련 신호 송수신 방법에 있어서, 상기 UDM이 SMS-GMSC(short message service-gateway mobile switching center)로부터 로밍 UE(User Equipment)의 SM에 관련된 라우팅 정보를 수신하는 단계; 및 상기 UDM이 상기 H-SMSF로, 상기 SM의 전달을 위한 H-SMSF의 도메인 선택을 위해, 상기 SM 라우팅 정보를 전송하는 단계를 포함하는, SM 관련 신호 송수신 방법이다.
본 발명의 일 실시예는, 무선통신시스템에서 SMS 관련 신호를 송수신 하는 UDM 장치에 있어서, 메모리; 및 상기 메모리에 커플링된 적어도 하나의 프로세서를 포함하고, 상기 적어도 하나의 프로세서는, 상기 SMS-GMSC(short message service-gateway mobile switching center)로부터 로밍 UE(User Equipment)의 SM에 관련된 라우팅 정보를 수신하고, 상기 H-SMSF로, 상기 SM의 전달을 위한 H-SMSF의 도메인 선택을 위해, 상기 SM 라우팅 정보를 전송하는, UDM 장치이다.
상기 로밍 UE는 둘 이상의 Visited PLMN에 어태치되어 있을 수 있다.
상기 둘 이상의 Visited PLMN은 각각 SMS 서빙 엔티티를 포함할 수 있다.
상기 SMS 서빙 엔티티는 SMSF(short message service function), SGs MSC(mobile switching center), MME(mobility management entity) 또는 IP-SM-GW(IP-short message-gateway) 중 하나일 수 있다.
상기 SM은 상기 H-SMSF에 의해 선택된 도메인의 타겟 엔티티로 전달이 시도될 수 있다.
상기 H-SMSF에 의한 상기 도메인 선택은, 복수의 도메인 순서 정보 중 하나 이상의 조합에 의해 결정되는 순서 정보에 따라 수행될 수 있다.
상기 복수의 도메인 순서 정보는, a) CS domain, PS domain 사이의 순서, b) User plane, Control plane 사이의 순서, c) EPC (Evolved Packet Core), 5GC (5G core) 사이의 순서, d) 3GPP access, non-3GPP access 사이의 순서를 포함할 수 있다.
상기 H-SMSF에 의한 상기 도메인 선택은, SMS 서빙 엔티티에 대한 우선순위 정보에 따라 수행될 수 있다.
상기 타겟 엔티티는 V-SMSF(s), SGs MSC, MME 또는 IP-SM-GW 중 하나일 수 있다.
상기 SM은 MT(Mobile Terminated) SM일 수 있다.
상기 H-SMSF는, 상기 로밍 UE를 위해 H-PLMN에서 등록된 SMSF가 존재하지 않아 상기 UDM에 의해 할당된 것일 수 있다.
상기 UDM은 UDM+HSS일 수 있다.
상기 SM 라우팅 정보는 AMF를 통한 로밍 UE로의 SM 라우팅에 관련된 것일 수 있다.
본 발명에 따르면, 복수의 V-PLMN 각각에서 SM 관련 노드가 서로 인터페이스가 없는 경우, 도메인 선택의 문제와 이로 인한 메시지 전달 문제를 해결할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도 3은 제어 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 4는 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 5는 랜덤 액세스 과정을 설명하기 위한 flow도이다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타내는 도면이다.
도 7은 5G 시스템을 설명하기 위한 도면이다.
도 8에는 non-3GPP 액세스를 지원하는 Non-roaming Architecture가 도시되어 있다.
도 9는 UE가 로밍하지 않은 경우의 5G System과 EPS 간의 연동 아키텍처를 도시한다.
도 10은 로밍하지 않는 경우 SMS over NAS의 시스템 구조이다.
도 11은 MME와 관련된 SMS 전송 아키텍처이다.
도 12 내지 도 13은 본 발명의 실시예가 적용될 수 있는 네트워크 상황을 나타낸다.
도 14는 본 발명의 실시예에 의한 네트워크 노드들의 신호 송수신을 설명하기 위한 도면이다.
도 15 내지 도 19는 본 발명의 실시예에 관련된 기고 문서에 포함되는 도면이다.
도 20은 본 발명의 실시예에 따른 노드 장치에 대한 구성을 예시한 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 IEEE(Institute of Electrical and Electronics Engineers) 802 계열 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A 시스템 및 3GPP2 시스템 중 적어도 하나에 관련하여 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 다양한 무선 통신 시스템에서 사용될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
본 문서에서 사용되는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술.
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 PS(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE/UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: GERAN/UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: E-UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- UE(User Equipment): 사용자 기기. UE는 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 UE 또는 단말이라는 용어는 MTC 디바이스를 지칭할 수 있다.
- HNB(Home NodeB): UMTS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다.
- HeNB(Home eNodeB): EPS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀 규모이다.
- MME(Mobility Management Entity): 이동성 관리(Mobility Management; MM), 세션 관리(Session Management; SM) 기능을 수행하는 EPS 네트워크의 네트워크 노드.
- PDN-GW(Packet Data Network-Gateway)/PGW: UE IP 주소 할당, 패킷 스크리닝(screening) 및 필터링, 과금 데이터 취합(charging data collection) 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- SGW(Serving Gateway): 이동성 앵커(mobility anchor), 패킷 라우팅(routing), 유휴(idle) 모드 패킷 버퍼링, MME가 UE를 페이징하도록 트리거링하는 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- NAS(Non-Access Stratum): UE와 MME간의 제어 플레인(control plane)의 상위 단(stratum). LTE/UMTS 프로토콜 스택에서 UE와 코어 네트워크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층으로서, UE의 이동성을 지원하고, UE와 PDN GW 간의 IP 연결을 수립(establish) 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결.
- RAN(Radio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이들을 제어하는 RNC(Radio Network Controller)를 포함하는 단위. UE 간에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 아이덴티티 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- PLMN(Public Land Mobile Network): 개인들에게 이동통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- Proximity Service (또는 ProSe Service 또는 Proximity based Service): 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스. 이때 사용자 평면 데이터(user plane data)는 3GPP 코어 네트워크(예를 들어, EPC)를 거치지 않고 직접 데이터 경로(direct data path)를 통해 교환된다.
EPC(Evolved Packet Core)
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 캐퍼빌리티를 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다.
레퍼런스 포인트 설명
S1-MME E-UTRAN와 MME 간의 제어 플레인 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME)
S1-U 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 플레인 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트(Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover)
S3 유휴(idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).)
S4 (GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 플레인 터널링을 제공함(It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)
S5 SGW와 PDN GW 간의 사용자 플레인 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. 단말 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨(It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11 MME와 SGW 간의 레퍼런스 포인트
SGi PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함(It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.)
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도시된 바와 같이, eNodeB는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNodeB의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, SAE 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
도 3은 단말과 기지국 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 단말과 기지국 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
상기 무선 인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과, 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
제2계층에는 여러 가지 계층이 존재한다.
먼저 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.
제2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.
제2 계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC유휴 모드(Idle Mode)에 있게 된다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on)한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층에 속하는 eSM (evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.
도 5는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
랜덤 액세스 과정은 UE가 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
UE는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
UE는 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB로 전송한다. UE는 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE는 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB는 랜덤 액세스 응답(random access response, RAR)을 UE로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE는 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE는 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 6에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE의 RRC 계층의 엔티티(entity)가 eNodeB의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 모드(idle state)라고 부른다.
상기 연결 상태(Connected state)의 UE는 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 유휴 모드(idle state)의 UE는 eNodeB가 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 모드(idle state) UE는 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.
사용자가 UE의 전원을 맨 처음 켰을 때, 상기 UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 모드(idle state)에 머무른다. 상기 유휴 모드(idle state)에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 eNodeB의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.
상기 유휴 모드(Idle state)에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
유휴 모드(idle state)의 UE가 상기 eNodeB와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE가 eNodeB로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB가 UE로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE가 eNodeB로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 6을 참조하여 보다 상세하게 설명하면 다음과 같다.
1) 유휴 모드(Idle state)의 UE는 통화 시도, 데이터 전송 시도, 또는 eNodeB의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE는 RRC 연결 요청(RRC connection request) 메시지를 eNodeB로 전송한다.
2) 상기 UE로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB는 무선 자원이 충분한 경우에는 상기 UE의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE로 전송한다.
3) 상기 UE가 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE가 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE는 eNodeB과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.
종래 EPC에서의 MME는 Next Generation system(또는 5G CN(Core Network))에서는 AMF(Core Access and Mobility Management Function)와 SMF(Session Management Function)로 분리되었다. 이에 UE와의 NAS interaction 및 MM(Mobility Management)은 AMF가, 그리고 SM(Session Management)은 SMF가 수행하게 된다. 또한 SMF는 user-plane 기능을 갖는, 즉 user traffic을 라우팅하는 gateway인 UPF(User Plane Function)를 관리하는데, 이는 종래 EPC에서 S-GW와 P-GW의 control-plane 부분은 SMF가 담당하고, user-plane 부분은 UPF가 담당하는 것으로 간주할 수 있다. User traffic의 라우팅을 위해 RAN과 DN(Data Network) 사이에 UPF는 하나 이상이 존재할 수 있다. 즉, 종래 EPC는 5G에서 도 7에 예시된 바와 같이 구성될 수 있다. 또한, 종래 EPS에서의 PDN connection에 대응하는 개념으로 5G system에서는 PDU(Protocol Data Unit) session이 정의되었다. PDU session은 IP type 뿐만 아니라 Ethernet type 또는 unstructured type의 PDU connectivity service를 제공하는 UE와 DN 간의 association을 일컫는다. 그 외에 UDM(Unified Data Management)은 EPC의 HSS에 대응되는 기능을 수행하며, PCF(Policy Control Function)은 EPC의 PCRF에 대응되는 기능을 수행한다. 물론 5G system의 요구사항을 만족하기 위해 그 기능들이 확장된 형태로 제공될 수 있다. 5G system architecture, 각 function, 각 interface에 대한 자세한 사항은 TS 23.501을 준용한다.
5G 시스템은 TS 23.501, TS 23.502 및 TS 23.503에 작업되고 있다. 따라서 본 발명에서는 5G 시스템에 대해서 상기 규격을 준용키로 한다. 또한, NG-RAN 관련 더 자세한 아키텍처 및 내용은 TS 38.300 등을 준용한다. 5G 시스템은 non-3GPP 액세스도 지원하며, 이에 TS 23.501의 4.2.8절에는 non-3GPP 액세스를 지원하기 위한 아키텍처, network element 등의 내용들이 기술되어 있고, TS 23.502의 4.12절에는 non-3GPP 액세스를 지원하기 위한 procedure들이 기술되어 있다. Non-3GPP 액세스의 예로는 대표적으로 WLAN 액세스를 들 수 있으며 이는 trusted WLAN과 untrusted WLAN을 모두 포함할 수 있다. 5G 시스템의 AMF(Access and Mobility Management Function)는 3GPP 액세스뿐만 아니라 non-3GPP 액세스에 대한 Registration Management(RM) 및 Connection Management(CM)를 수행한다.
도 8에는 non-3GPP 액세스를 지원하는 Non-roaming Architecture가 도시되어 있다. 도 8과 같이 동일한 PLMN에 속하는 3GPP 액세스와 non-3GPP 액세스에 대해 동일한 AMF가 UE를 serve함으로써 두 개의 서로 다른 액세스를 통해 등록한 UE에 대해 인증, 이동성 관리, 세션 관리 등을 하나의 네트워크 펑션이 통합적이고 효율적으로 지원할 수 있다.
도 9에는 UE가 로밍하지 않은 경우의 5G System과 EPS 간의 연동 아키텍처가 도시되어 있다. 여기서 MME와 AMF 간에 인터페이스, 즉 Core Network 간의 인터페이스인 N26이 있는데, 이는 사업자의 선택에 따라 지원할 수도 있고, 지원하지 않을 수도 있다. TS 23.501v15.0.0의 4.3절에서는 5G System이 EPS와 연동하는 아키텍처가 더욱 구체적으로 제시되어 있다.
한편, SMS(Short Message Service)와 관련해, SMS over NAS는 control plane으로 SMS를 전송하는 방식으로 이와 대비되는 방식으로는 IMS를 이용하여 user plane으로 SMS를 전송하는 방식이 있다. 5GC에서 SMS over NAS에 대한 내용은 TS 23.501v15.0.0의 4.4.2절 (SMS over NAS) 및 TS 23.502v15.0.0의 4.13.3절 (SMS over NAS procedure)을 참고하기로 한다. 특히, TS 23.502v15.0.0의 4.13.3.1절의 Registration procedures for SMS over NAS 에 기술된 내용 및 4.13.3.6 MT SMS over NAS in CM-IDLE state via 3GPP access에 기술된 내용은 이하 본 발명의 종래 기술로써 산입된다.
도 10은 로밍하지 않는 경우 SMS over NAS의 시스템 구조를 도시하고 있다. EPC에서의 SMS over NAS는 MME가 SMS 기능을 지원하는 경우와 그렇지 않은 경우로 나눌 수 있다. MME가 SMS 기능을 지원하는 경우는 MME가 SMS protocol stack을 지원하는 것으로 도 11(a)와 같은 아키텍처에 따라 SMS가 전송된다. 이에 대한 자세한 사항은 TS 23.272의 Annex C (normative): SMS in MME를 참고한다. 또한, MME가 SMS 기능을 지원하지 않는 경우는 MME에 SMS protocol stack이 없는 경우로, 도 11(b) 같은 아키텍처에 따라 SMS가 전송된다. 이 경우 MCS Server가 (줄여서 MSC) SMS 기능을 지원하는데 이를 SMS over SGs라고도 하며, 자세한 사항은 TS 23.272를 참고한다.
TS 23.502의 4.13.3.9절 (Unsuccessful Mobile terminating SMS delivery attempt)에 따르면 SMSF에서 UE로 MT SMS 전송을 시도 후 실패시 SMSF가 MT SMS domain selection 기능을 지원하는 경우 다른 entity (이는 SMS에 대해 UE의 서빙 노드/entity를 의미)로 SMS 전송을 시도할 수 있다.
이하에서는, 상술한 설명에 기초하여 Visited PLMN에 어태치한 UE에게 SM을 전달하기 위한 네트워크 노드들의 동작에 대해 살펴본다.
실시예 1
본 발명의 일 실시예에 의한 UDM(또는 UDM+HSS)은 SMS-GMSC로부터 UE의 SM에 관련된 라우팅 정보를 수신하고, H-SMSF로 상기 SM 라우팅 정보를 전송할 수 있다. 상기 H-SMSF는 상기 SM의 전달을 위한 도메인 선택을 수행할 수 있다. 또한, H-SMSF는 이하에서 설명되는 바와 같이, 상기 도메인 선택에 기초하여, 타겟 엔티티로 SM 전달을 시도할 수 있다. 즉, 상기 SM은 상기 H-SMSF에 의해 선택된 도메인의 타겟 엔티티로 전달이 시도되는 것일 수 있다. 상기 SM은 MT(Mobile Terminated) SM, 상기 타겟 엔티티는 V-SMSF(s), SGs MSC, MME 또는 IP-SM-GW 중 하나일 수 있으며, 상기 H-SMSF는, 상기 UE를 위해 H-PLMN에서 등록된 SMSF가 존재하지 않아 상기 UDM에 의해 할당된 것일 수 있다. 상기 UE는 로밍 UE일 수 있다.
상술한 설명에서, 상기 UE는 둘 이상의 Visited PLMN에 어태치되어 있으며, 둘 이상의 Visited PLMN은 각각 SMS 서빙 엔티티 (즉, SMS serving node 또는 SMS 관련 노드)를 포함할 수 있다. 이러한 SMS 서빙 엔티티는 SMSF, SGs MSC, MME 또는 IP-SM-GW일 수 있다. 즉, SMS 서빙 엔티티가 서로 상이한 V-PLMN에 속하는 경우이다. 이 경우 상기 둘 이상의 Visited PLMN 각각의 SMS 관련 노드는 서로 인터페이스가 없어서, 종래 기술에 의한 로밍 UE을 위한 V-SMSF에 의한 MT SMS 도메인 선택은 실행 가능하지 않으며, MT SM의 전달도 어렵게 된다.
보다 상세히, 도 12 내지 도 13(b)를 참조하여 설명한다. 도 12에서는 UE가 VPLMN1에서 3GPP 액세스를 통해 EPC에 어태치되고, UE가 non-3PP 액세스를 통해 VPLMN2에서 5GC에 등록되어 있는 동안, SGs MSC가 SMS를 위해 동작하는 예시를 보여준다. 따라서 만약 MT SMS 도메인 선택을 수행하기 위해 SMS-GMSC 대신 SMSF가 필요한 경우(즉, SMSF가 도메인 선택을 수행하는 경우), VPLMN2의 SMSF와 VPLMN1의 SG MSC 간의 인터페이스가 필요하다. 그러나, 이런 유형의 SMS 포워딩을 위한 VPLMN 간 인터페이스가 가능하지 않다. 도 13(a)는 UE가 VPLMN1의 EPC에 3GPP access (즉, LTE)를 통해 attach되어 있고, 역시 VPLMN1의 5GC에 3GPP access (예, NR)를 통해 등록되어 있는 것을 보여준다. SMS를 담당하는 MSC와 SMSF#1은 이에 동일한 PLMN에 속하므로 서로 interface가 있는 것으로 간주할 수 있다. 이후 UE가 VPLMN1의 NR 커버리지를 벗어나서 VPLMN2의 NR 커버리지로 들어가서 VPLMN2의 5GC에 등록하지만, VPLMN1의 LTE 커버리지는 벗어나지 않아서 EPC는 계속 VPLMN1에 attach 된 상태이다. 이러한 예는 도 13(b)에서 보여주고 있다. 이 경우, SMS를 담당하는 MSC와 SMSF#2는 서로 다른 PLMN에 속하므로 서로 interface가 없을 가능성이 크다.
도 12 내지 도 13(b)와 같이 MSC, SMSF가 서로 상이한 V-PLMN에 속하며, V-SMSF가 도메인 선택을 수행하는 종래기술에 따르면, V-SMSF가 MT SM를 UE에게 전달하고자 AMF를 거치는 전달을 시도했으나 전달하지 못한 경우 SMS 관련 다른 노드로의 전달을 시도하여야 하는데, 이 때 서로 다른 PLMN에 속하는 MSC와 V-SMSF 사이에 인터페이스가 존재하지 않아 V-SMSF가 도메인 선택을 온전히 수행할 수 없고, 결과적으로 MT SM 전달이 제대로 이루어지지 않게 된다. 이에 비해, UDM이 H-SMSF를 할당하여 H-SMSF가 MT SM 전송을 위한 도메인 선택을 수행하는 본 발명에서는, 이러한 문제가 발생하지 않는다.
한편, 상기 도메인 선택은, 복수의 도메인 순서 정보 중 하나 이상의 조합에 의해 결정되는 순서 정보에 따라 수행될 수 있다. 상기 복수의 도메인 순서 정보는, a) CS domain, PS domain 사이의 순서, b) User plane, Control plane 사이의 순서, c) EPC (Evolved Packet Core), 5GC (5G core) 사이의 순서, d) 3GPP access, non-3GPP access 사이의 순서를 포함할 수 있다. 또는, 상기 도메인 선택은, SMS 서빙 엔티티에 대한 우선순위 정보에 따라 수행될 수 있다.
이하에서는, 도 14를 참조하여, 상술할 설명들을 각 네트워크 노드들의 관계에서 상세히 살펴본다.
단계 S1401에서, SMS-SC는 short message(SMS DELIVER 또는 MT SMS)를 SMS-GMSC에게 포워딩한다.
단계 S1402에서, SMS-GMSC는 SM 요청을 위한 Routing Info를 UDM으로 전송한다. 만약, H-SMSF에 의한 MT SMS 도메인 선택이 지원되면, UDM은 UE를 위한 HPLMN에 속하는 임의의 등록된 SMSF가 있는지를 확인한다. 만약, 등록된 SMSF가 존재하지 않으면, user subscription 또는 configuration에 기초하여 MT SMS 도메인 선택 목적을 위해 UDM은 하나의 H-SMSF를 할당/지정(assign)한다. UDM은 해당하는 H-SMSF로 SMS-GMSC로부터의 요청을 포워딩한다. 여기서는 MT SMS domain selection by H-SMSF가 지원되는 경우 UDM이 제안하는 동작을 수행하는 것으로 기술하였으나, 이와 상관없이 항상, 또는 operator policy, configuration, 가입자 정보 등을 고려하여 동작이 수행될 수도 있다.
UDM은 SMS-GMSC로부터의 요청을 해당 H-SMSF에 전달한다. 상기 H-SMSF는 UE를 위해 register된 HPLMN에 속하는 SMSF가 존재하는 경우 이 SMSF이고, 존재하지 않는 경우 앞 단계에서 MT SMS domain selection purpose를 위해 할당된 것이다.
단계 S1403에서, UDM은 CS/PS 도메인에서 Short Message를 전달하기 위해, SMS 전달을 위해 현재 서빙 중인 노드(V-SMSF(s), one of SGs MSC and MME, and/or IP-SM-GW)의 주소를 H-SMSF로 반환한다. 이때 UDM은 UE를 위해 registered H-SMSF가 존재하지 않는 경우, 할당된 H-SMSF에게 SMS 관련 가입자 정보를 상기 주소를 반환하는 메시지에 포함하거나, 또는 별도로 제공할 수도 있다. 상기 SMS 관련 가입자 정보는 대표적으로는 SMS parameters subscribed for SMS service such as SMS teleservice, SMS barring list를 포함할 수 있다. H-SMSF가 이러한 SMS 관련 가입자 정보를 받으면 MT SMS domain selection을 수행하기 전에, 즉 MT SMS를 포워딩하기 전에 상기 SMS 관련 가입자 정보에 해당하는 동작을 수행한다. (예를 들어, SMS barring check, 가입자가 SMS를 사용하는 것이 authorize 되었는지 여부 (e.g. Operator Determined Barring settings에서, check 등) 상기에서 UDM은 V-SMSF가 어떤 access type (즉, 3GPP access, non-3GPP access, or both)에 대해 serving하고 있는지를 H-SMSF에게 제공할 수도 있다.
단계 S1404에서, H-SMSF는 SMS-GMSC로, 라우팅 정보로써, 자기 주소 하나만 반환한다. H-SMSF가 SMS-GMSC에게 자신의 주소 정보를 제공하는 대신 UDM이 SMS-GMSC에게 H-SMSF의 주소 정보를 제공할 수도 있다.
상기 단계 S1403과 단계 S1404는 동시에 수행되거나 단계 S1405가 먼저 수행될 수도 있다.
단계 S1405에서, SMS-GMSC는 H-SMSF에 short message(SMS DELIVER)를 전달한다.
단계 S1406에서, H-SMSF는 도메인 선택 기능을 수행하여 운영자 정책과 사용자 선호도에 따라 메시지를 전달하기 위한 선호 도메인을 결정하기 위해 도메인 선택 펑션을 수행한다. H-SMSF에서 도메인 선택을 수행한 후, 사용 가능한 모든 도메인이 H-SMSF의 우선순위에 따라 나열된다.
단계 S1407에서, H-SMSF는 전달이 성공할 때까지 또는 사용 가능한 모든 도메인으로의 전달이 시도될때까지 우선 순위 목록에 따라 타겟 엔티티로 MT SM 전달을 시도한다. 첫 전달 시도가 실패하고 그 에러가 UE의 메모리 용량 초과에 의한 것일 경우, H-SMSF는 전달 보고(SMS DELIVER REPORT)를 SMS-GMSC로 다시 전송한다.
H-SMSF는 만약 자신이 UE의 5GC로의 register로 인해 AMF에 의해 activate 되었다면 (이는 TS 23.502의 4.13.3.1 Registration procedures for SMS over NAS 절 참고), AMF를 통해 MT SMS를 전송하는 것을 포함하여 UDM으로부터 제공받은 SMS serving node(s)로 MT SMS 전송을 시도할 수 있다. 이러한 전송은 MT SMS 전송이 성공할때까지 시도하는 것을 의미한다.
만약 H-SMSF 자신이 UE의 5GC로의 register로 인해 AMF에 의해 activate 되지 않았다면, 이는 MT SMS domain selection을 위해 activate/involve 된 것인 바, UDM으로부터 제공받은 SMS serving node(s)로 MT SMS 전송을 시도할 수 있다. 이러한 전송은 MT SMS 전송이 성공할때까지 시도하는 것을 의미한다.
SMSF가 TS 23.502의 4.13.3.1 절의 단계 7a에서 기술된 바와 같이, UE를 위해 SMS 용으로 등록된 서빙 노드 인 경우, UE를 위해 서빙하는 HPLMN 내의 AMF는 타겟 엔티티 중 하나이다. AMF 로의 MT SM 전달은 TS 23.502의 4.13.3.6 절, 4.13.3.7 절 및 4.13.3.8 절에서 설명된대로 수행된다.
상기 V-SMSF(s), one of SGs MSC and MME, and/or IP-SM-GW는 타겟 엔티티일 수 있다. H-SMSF는 TS 23.204의 6.5a 절에 설명 된대로, IP-SM-GW가 MSC, SGSN, MME 또는 SMSF에 short message를 전달하는 것과 동일한 방식으로 short message를 이러한 타겟 엔터티에 전달한다.
MT SM의 성공적인 전달 또는 전달 실패 이후의 나머지 단계는 TS 23.040에서 정의된 것과 같은 기존 단계를 따른다.
상기 H-SMSF가 MT SMS domain을 어떤 순서로 선택하느냐는 H-SMSF에 설정되어 있을 수도 있고, UDM으로부터 제공받을 수도 있고, UDM으로부터 가입자 정보의 형태로 제공받을 수도 있다. 또한 상기 선택 우선순위에 대한 정보는 operator policy, user preferences를 반영한 것일 수도 있다. 이는 상기한 단계 S1403)에서 제공받을 수도 있고, H-SMSF가 UE의 5GC로의 register로 인해 AMF에 의해 activate 되었다면 TS 23.502의 4.13.3.1 Registration procedures for SMS over NAS 절에서 명시한 SMSF가 UDM과의 interaction 시 획득할 수도 있다.
상기 도메인 선택은, 복수의 도메인 순서 정보 중 하나 이상의 조합에 의해 결정되는 순서 정보에 따라 수행될 수 있다. 상기 복수의 도메인 순서 정보는, a) CS domain, PS domain 사이의 순서, b) User plane, Control plane 사이의 순서, c) EPC (Evolved Packet Core), 5GC (5G core) 사이의 순서, d) 3GPP access, non-3GPP access 사이의 순서를 포함할 수 있다. 구체적으로 a) 내지 d)는 다음과 같을 수 있다.
a) CS domain, PS domain에 대한 순서
CS domain은 SGs MSC로의 전송을 의미하며, PS domain으로의 전송은 SGs MSC 외의 다른 node들로의 전송을 의미.
b) User plane, Control plane에 대한 순서
User plane은 IP-SM-GW로의 전송을 의미하며, Control plane으로의 전송은 IP-SM-GW 외의 다른 node들로의 전송을 의미.
c) EPC (또는 EPS), 5GC (또는 5GS)에 대한 순서
EPC(또는 EPS)로의 전송은 MME 또는 SGs MSC로의 전송을 의미하며, 5GC (또는 5GS)로의 전송은 AMF 또는 V-SMSF로의 전송을 의미.
d) 3GPP access, non-3GPP access에 대한 순서
H-SMSF 자신이 UE의 non-3GPP access에 대한 SMS serving node로 activate되어 있는 경우 Non-3GPP access로의 전송은 AMF를 통해 전송하는 것을 의미하고, 이 경우 다른 SMS serving node로의 전송이 3GPP access로의 전송을 의미. H-SMSF 자신이 UE의 non-3GPP access에 대한 SMS serving node로 activate되어 있지 않은 경우 UDM으로부터 제공받은 V-SMSF의 serving access type 정보에 기반하여 non-3GPP access를 serving하는 V-SMSF를 통해 전송하는 것은 non-3GPP access로의 전송을 의미하고, 다른 SMS serving node로의 전송이 3GPP access로의 전송을 의미.
e) 각 SMS serving entity 별로 순서가 제공됨.
H-SMSF는 우선순위가 높은 순으로 SMS serving entity를 선택/결정하여 MT SMS 전송을 시도한다.
f) 가장 우선순위가 높은 SMS serving entity
가장 우선순위가 높은 SMS serving entity 정보만 있어서 이를 먼저 전송 시도한다. 실패하면 나머지 다른 entity에 대해서는 구현적으로 순서를 결정하여 시도한다.
한편, H-SMSF는 로밍 경우에 도입되어 H-SMSF가 비-로밍 UE 뿐만 아니라 로밍 UE에 대해서도 MT SMS 도메인 선택을 수행한다. (Proposal#1)
MT SMS 도메인 선택을 위해, H-SMSF는 다음 인터페이스가 필요하며 SGd와 같은 기존 프로토콜은 MT SMS 전달에 사용하도록 제안된다.
- Interface to/from SGs MSC: SGs MSC can be located in HPLM or in VPLMN.
- Interface to/from MME: MME can be located in HPLM or in VPLMN.
- Interface to/from IP-SM-GW: Regardless of MT SMS domain selection by SMSF, this interface is needed for MT SMS domain selection by IP-SM-GW.
- Interface to/from V-SMSF
이와 달리 H-SMSF와 V-SMSF 간의 interface는 새로운 것으로 정의될 수 있으며, service based interface가 정의될 수도 있다.
SMSF에 의한 MT SMS 도메인 선택은 선택적 기능이므로, SMSF에 의한 MT SMS 도메인 선택이 지원되는 경우에만, 로밍 케이스를 위한 H-SMSF가 필요하다. 즉, ‘로밍 UE를 위해 VPLMN에서 SMSF가 선택된다’라는 현재의 원칙이 유지된다.
위의 Proposal # 1을 통해 다음 두 가지가 논의될 수 있다.
첫 번째는, 로밍의 경우, MO SMS 전달에 H-SMSF가 관여하는지 여부이다. V-SMSF가 SMS-IWMSC / SMS-SC에 대한 MO SMS 전달을 관리할 수 있기 때문에 MO SMS 전달에 H-SMSF가 관여할 필요가 없다.
로밍의 경우, H-SMSF는 MO SMS 전달에 관여하지 않을 것을 제안한다. (Proposal # 2)
두 번째는, 로밍의 경우, 언제 H-SMSF가 활성화되거나 관여되어야 하는가 이다.
Option1: V-SMSF가 활성화될 때, H-SMSF도 역시 활성화된다.
이 옵션에 대해서는 H-SMSF를 선택하는 방법이 홈 라우티드 로밍에서 H-SMF를 선택하는 것과 유사하게 고려될 수 있다. 특히, 3GPP access와 non-3GPP access에 대해 서로 다른 PLMN에 등록한 UE에 대해 PDU Session의 홈 라우팅을 위한 동일한 H-SMF 선택이 고려되어야 한다. 위의 로밍의 경우, 언제 H-SMSF가 활성화되거나 관여되어야 하는가에 대해, H-SMSF는 V-SMSF가 활성화되었을 때 활성화되더라고, H-SMSF는 MO SMS에 관여할 필요가 없다. 더욱이, MME나 SGs MSC가 UE를 위해 SMS를 서비스할 때, H-SMSF가 활성화되어야 하는지는 의문이다.
Option2: UDM이 SMS-GMSC로부터 MT SMS를 전달하기 위한 SM 메시지에 대한 Send Routing Info를 수신할 때, UDM은 H-SMSF에 의한 MT SMS 도메인 선택이 지원되면 MT SMS 도메인 선택에 대해 하나의 H-SMSF를 할당한다. 이 옵션을 위해, UDM은 TS 23.204의 6.4절에서 도시된 대로, IP-SM-GW가 TS 23.204에 명시된 MT SMS 도메인 선택을 수행하는 경우에 대해서도 유사한 동작을 할 수 있다.
표 2 내지 표 4는 상술한 본 발명의 실시예와 관련하여 TS 23.501v15.1.0의 내용을 본 발명에 따라 수정한 것으로써, 본 발명의 발명자에 의해 작성되고, 3GPP에 제출된 기고 문서의 내용이다. 표 2 내지 표 4에서 Figure 4.4.2.1-1, Figure 4.4.2.1-2, Figure 4.4.2.1-3, Figure 4.4.2.1-4, Figure 4.13.3.x-1는 각각 도 15, 16, 17, 18, 19에 해당한다.
Figure PCTKR2019003875-appb-img-000001
Figure PCTKR2019003875-appb-img-000002
Figure PCTKR2019003875-appb-img-000003
본 발명이 적용될 수 있는 장치 일반
도 20은 본 발명의 일례에 따른 단말 장치 및 네트워크 노드 장치에 대한 바람직한 실시예의 구성을 도시한 도면이다.
도 20을 참조하면 본 발명에 따른 네트워크 노드 장치(200)는, 송수신장치(210), 무선통신시스템을 위한 장치(220)을 포함할 수 있다. 무선통신시스템을 위한 장치(220)는 메모리와 상기 메모리에 커플링된 적어도 하나 이상의 프로세서를 포함할 수 있다. 송수신장치(210)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 네트워크 노드 장치(200)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 상기 적어도 하나 이상의 프로세서는 네트워크 노드 장치(200) 전반의 동작을 제어할 수 있으며, 네트워크 노드 장치(200)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 또한, 프로세서는 본 발명에서 제안하는 네트워크 노드 동작을 수행하도록 구성될 수 있다.
구체적으로 상기 적어도 하나 이상의 프로세서는, SMS-GMSC로부터 UE(User Equipment)의 SM에 관련된 라우팅 정보를 수신하고, H-SMSF로 상기 SM 라우팅 정보를 전송하며, 상기 H-SMSF는 상기 SM의 전달을 위한 도메인 선택을 수행할 수 있다.
도 20을 참조하여 본 발명에 따른 단말 장치(100)는, 송수신장치(110), 무선통신시스템을 위한 장치(120)를 포함할 수 있다. 무선통신시스템을 위한 장치(120)는 메모리와 상기 메모리에 커플링된 적어도 하나 이상의 프로세서를 포함할 수 있다. 송수신장치(110)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 단말 장치(100)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 적어도 하나의 프로세서는 단말 장치(100) 전반의 동작을 제어할 수 있으며, 단말 장치(100)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 또한, 프로세서는 본 발명에서 제안하는 단말 동작을 수행하도록 구성될 수 있다.
또한, 위와 같은 단말 장치(100) 및 네트워크 장치(200)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
상술한 바와 같은 본 발명의 다양한 실시형태들은 3GPP 시스템을 중심으로 설명하였으나, 다양한 이동통신 시스템에 동일한 방식으로 적용될 수 있다.

Claims (20)

  1. 무선통신시스템에서 UDM(Unified Data Management)의 SM(Short Message) 관련 신호 송수신 방법에 있어서,
    상기 UDM이 SMS-GMSC(short message service-gateway mobile switching center)로부터 로밍 UE(User Equipment)의 SM에 관련된 라우팅 정보를 수신하는 단계; 및
    상기 UDM이 상기 H-SMSF로, 상기 SM의 전달을 위한 H-SMSF의 도메인 선택을 위해, 상기 SM 라우팅 정보를 전송하는 단계;
    를 포함하는, SM 관련 신호 송수신 방법.
  2. 제1항에 있어서,
    상기 로밍 UE는 둘 이상의 Visited PLMN에 어태치되어 있는, SM 관련 신호 송수신 방법.
  3. 제2에 있어서,
    상기 둘 이상의 Visited PLMN은 각각 SMS 서빙 엔티티를 포함하는, SM 관련 신호 송수신 방법.
  4. 제3에 있어서,
    상기 SMS 서빙 엔티티는 SMSF(short message service function), SGs MSC(mobile switching center), MME(mobility management entity) 또는 IP-SM-GW(IP-short message-gateway) 중 하나인, SM 관련 신호 송수신 방법.
  5. 제1항에 있어서,
    상기 SM은 상기 H-SMSF에 의해 선택된 도메인의 타겟 엔티티로 전달이 시도되는, SM 관련 신호 송수신 방법.
  6. 제1항에 있어서,
    상기 H-SMSF에 의한 상기 도메인 선택은, 복수의 도메인 순서 정보 중 하나 이상의 조합에 의해 결정되는 순서 정보에 따라 수행되는, SM 관련 신호 송수신 방법.
  7. 제6항에 있어서,
    상기 복수의 도메인 순서 정보는, a) CS domain, PS domain 사이의 순서, b) User plane, Control plane 사이의 순서, c) EPC (Evolved Packet Core), 5GC (5G core) 사이의 순서, d) 3GPP access, non-3GPP access 사이의 순서를 포함하는, SM 관련 신호 송수신 방법.
  8. 제7항에 있어서,
    상기 H-SMSF에 의한 상기 도메인 선택은, SMS 서빙 엔티티에 대한 우선순위 정보에 따라 수행되는, SM 관련 신호 송수신 방법.
  9. 제5항에 있어서,
    상기 타겟 엔티티는 V-SMSF(s), SGs MSC, MME 또는 IP-SM-GW 중 하나인, SM 관련 신호 송수신 방법.
  10. 제1항에 있어서,
    상기 SM은 MT(Mobile Terminated) SM인, SM 관련 신호 송수신 방법.
  11. 제1항에 있어서,
    상기 H-SMSF는, 상기 로밍 UE를 위해 H-PLMN에서 등록된 SMSF가 존재하지 않아 상기 UDM에 의해 할당된 것인, SM 관련 신호 송수신 방법.
  12. 제1항에 있어서,
    상기 UDM은 UDM+HSS인, SM 관련 신호 송수신 방법.
  13. 제1항에 있어서,
    상기 SM 라우팅 정보는 AMF를 통한 로밍 UE로의 SM 라우팅에 관련된 것인, SM 관련 신호 송수신 방법.
  14. 무선통신시스템에서 SMS 관련 신호를 송수신 하는 UDM 장치에 있어서,
    메모리; 및
    상기 메모리에 커플링된 적어도 하나의 프로세서를 포함하고,
    상기 적어도 하나의 프로세서는, 상기 SMS-GMSC(short message service-gateway mobile switching center)로부터 로밍 UE(User Equipment)의 SM에 관련된 라우팅 정보를 수신하고, 상기 H-SMSF로, 상기 SM의 전달을 위한 H-SMSF의 도메인 선택을 위해, 상기 SM 라우팅 정보를 전송하는, UDM 장치.
  15. 제14항에 있어서,
    상기 로밍 UE는 둘 이상의 Visited PLMN에 어태치되어 있는, SM 관련 신호 송수신 방법.
  16. 제15에 있어서,
    상기 둘 이상의 Visited PLMN은 각각 SMS 서빙 엔티티를 포함하는, SM 관련 신호 송수신 방법.
  17. 제16에 있어서,
    상기 SMS 서빙 엔티티는 SMSF(short message service function), SGs MSC(mobile switching center), MME(mobility management entity) 또는 IP-SM-GW(IP-short message-gateway) 중 하나인, SM 관련 신호 송수신 방법.
  18. 제14항에 있어서,
    상기 SM은 상기 H-SMSF에 의해 선택된 도메인의 타겟 엔티티로 전달이 시도되는, SM 관련 신호 송수신 방법.
  19. 제14항에 있어서,
    상기 H-SMSF에 의한 상기 도메인 선택은, 복수의 도메인 순서 정보 중 하나 이상의 조합에 의해 결정되는 순서 정보에 따라 수행되는, SM 관련 신호 송수신 방법.
  20. 제19항에 있어서,
    상기 복수의 도메인 순서 정보는, a) CS domain, PS domain 사이의 순서, b) User plane, Control plane 사이의 순서, c) EPC (Evolved Packet Core), 5GC (5G core) 사이의 순서, d) 3GPP access, non-3GPP access 사이의 순서를 포함하는, SM 관련 신호 송수신 방법.
PCT/KR2019/003875 2018-04-02 2019-04-02 무선 통신 시스템에서 숏 메시지 관련 신호 송수신 방법 및 이를 위한 장치 WO2019194537A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180038009 2018-04-02
KR10-2018-0038009 2018-04-02

Publications (1)

Publication Number Publication Date
WO2019194537A1 true WO2019194537A1 (ko) 2019-10-10

Family

ID=68055815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003875 WO2019194537A1 (ko) 2018-04-02 2019-04-02 무선 통신 시스템에서 숏 메시지 관련 신호 송수신 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US10880723B2 (ko)
WO (1) WO2019194537A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112866932B (zh) * 2019-11-28 2022-05-17 中兴通讯股份有限公司 一种通信连接方法、设备和存储介质
US20230156454A1 (en) * 2020-02-12 2023-05-18 Telefonaktiebolaget Lm Ericsson (Publ) SUPPORT OF SHORT MESSAGE SERVICE OVER INTERNET PROTOCOL (SMSoIP) IN 5G-ONLY DEPLOYMENTS
US11722858B2 (en) * 2020-05-22 2023-08-08 At&T Intellectual Property I, L.P. Domain selection for short message delivery including in 5G or other next generation networks
CN114430534B (zh) * 2020-10-29 2023-03-28 中国电信股份有限公司 中心主叫的短信服务化实现方法和系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060205404A1 (en) * 2005-02-16 2006-09-14 Shmuel Gonen Local number solution for roaming mobile telephony users
US20150237487A1 (en) * 2011-04-01 2015-08-20 Vodafone Ip Licensing Limited Network architecture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103369480B (zh) * 2012-03-30 2019-01-18 中兴通讯股份有限公司 分组域短信的实现方法、系统和用户设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060205404A1 (en) * 2005-02-16 2006-09-14 Shmuel Gonen Local number solution for roaming mobile telephony users
US20150237487A1 (en) * 2011-04-01 2015-08-20 Vodafone Ip Licensing Limited Network architecture

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSGSA; Procedures for the 5G System; Stage 2 (Release 15)", 3GPP TS 23.502, vol. SA WG2, no. V15.1.0, 27 March 2018 (2018-03-27), pages 1 - 285, XP051450527 *
3GPP: "3GPP; TSGSA; System Architecture for the 5G System; Stage 2 (Release 15)", 3GPP TS 23.501, vol. SA WG2, no. V15.1.0, 28 March 2018 (2018-03-28), pages 1 - 201, XP051450586 *
HUAWEI: "Addition of description on SMSF address", S 2-182338 , SA WG2 MEETING #126, vol. SA WG2, 1 March 2018 (2018-03-01) - 5 March 2018 (2018-03-05), Montreal, Canada, XP051394015 *

Also Published As

Publication number Publication date
US10880723B2 (en) 2020-12-29
US20190306695A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
WO2018155934A1 (ko) 무선 통신 시스템에서 3GPP access를 통해 non-3GPP에 관련된 데이터를 수신하는 방법 및 이를 위한 장치
WO2019160376A1 (ko) 무선 통신 시스템에서 smf의 신호 송수신 방법 및 이를 위한 장치
WO2018084635A1 (ko) 무선 통신 시스템에서 ngs에서 eps로 이동 방법 및 이를 위한 장치
WO2018199668A1 (ko) 무선 통신 시스템에서 udm이 amf의 등록에 관련된 절차를 수행하는 방법 및 이를 위한 장치
WO2015174702A1 (ko) 무선 통신 시스템에서 hss/mme의 신호 송수신 방법 및 장치
WO2016190672A1 (ko) 무선 통신 시스템에서 후원 연결을 위한 접속 절차를 수행하는 방법 및 단말
WO2017171427A1 (ko) 시스템 정보 전송 방법 및 기지국과 시스템 정보 수신 방법 및 사용자기기
WO2017188787A2 (ko) 무선 통신 시스템에서 기지국에 의해 수행되는 데이터 전달 방법 및 상기 방법을 이용하는 장치
WO2019066544A1 (ko) 무선 통신 시스템에서 5gs에서 eps로의 핸드오버에 관련된 신호 송수신 방법 및 이를 위한 장치
WO2017126948A1 (ko) 무선 통신 시스템에서 로컬 네트워크에서 v2x 메시지 송수신 방법 및 이를 위한 장치
WO2017026872A1 (ko) 무선 통신 시스템에서 리모트 ue의 신호 송수신 방법 및 이를 위한 장치
WO2019022442A9 (ko) 무선 통신 시스템에서 3GPP 5G System과 EPS로부터 서비스를 받을 수 있는 단말을 위해 SMS 전송을 지원하는 방법 및 이를 위한 장치
WO2018008922A2 (ko) 무선 통신 시스템에서 기지국의 nas 시그널링 지원 방법 및 이를 위한 장치
WO2018169281A1 (ko) 보고 수신 방법 및 네트워크 장치, 그리고 보고 수행 방법 및 기지국
WO2017043854A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 지원하는 방법 및 이를 위한 장치
WO2017086618A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 방법 및 이를 위한 장치
WO2018221943A1 (ko) 무선 통신 시스템에서 multi-homing 기반 psa 추가와 관련하여 신호를 송수신하는 방법 및 이를 위한 장치
WO2016144009A1 (ko) 무선 통신 시스템에서 네트워크 트래픽을 제어하는 방법 및 단말
WO2016126092A1 (ko) 무선 통신 시스템에서 단말의 plmn 선택 방법 및 이를 위한 장치
WO2018009025A1 (ko) 무선 통신 시스템에서 pdn 연결 관련 신호 송수신 방법 및 이를 위한 장치
WO2019194537A1 (ko) 무선 통신 시스템에서 숏 메시지 관련 신호 송수신 방법 및 이를 위한 장치
WO2017026772A1 (ko) 무선 통신 시스템에서 p-cscf 선택 및 sip 메시지 전송 방법 및 이를 위한 장치
WO2016163635A1 (ko) 무선 통신 시스템에서 단말의 plmn 선택 방법 및 이를 위한 장치
WO2016056815A1 (ko) 무선 통신 시스템에서 nbifom에 관련된 신호 송수신 방법 및 이를 위한 장치
WO2019059740A1 (ko) 무선 통신 시스템에서 ng-ran이 ims voice 지원에 관련된 신호를 송수신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19780920

Country of ref document: EP

Kind code of ref document: A1