WO2018143591A2 - 화합물, 이의 제조방법 및 이를 포함하는 유기발광소자 - Google Patents

화합물, 이의 제조방법 및 이를 포함하는 유기발광소자 Download PDF

Info

Publication number
WO2018143591A2
WO2018143591A2 PCT/KR2018/000939 KR2018000939W WO2018143591A2 WO 2018143591 A2 WO2018143591 A2 WO 2018143591A2 KR 2018000939 W KR2018000939 W KR 2018000939W WO 2018143591 A2 WO2018143591 A2 WO 2018143591A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
light emitting
organic light
aryl
Prior art date
Application number
PCT/KR2018/000939
Other languages
English (en)
French (fr)
Other versions
WO2018143591A3 (ko
Inventor
이윤구
김홍기
장석훈
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Priority to US16/482,596 priority Critical patent/US11345688B2/en
Priority to CN201880009412.8A priority patent/CN110234644B/zh
Publication of WO2018143591A2 publication Critical patent/WO2018143591A2/ko
Publication of WO2018143591A3 publication Critical patent/WO2018143591A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers

Definitions

  • Various embodiments of the present invention relate to a compound, a method for preparing the same, and an organic light emitting device including the same.
  • LCD liquid crystal display
  • PDP plasma display panel
  • FED field emission display
  • OLED organic light emitting diode
  • organic light emitting diodes can be formed on flexible substrates such as plastics, and can be driven at lower voltages of 10 V or lower than plasma display panels or inorganic electroluminescent displays, and have relatively low power consumption and color sense. It has the advantage of being excellent.
  • the organic light emitting device can display three colors of red, green, and blue, and thus has been spotlighted as a next-generation display device for expressing rich colors.
  • an electron transport layer that serves to improve the characteristics of the organic light emitting device by effectively transferring the electrons injected from the cathode as well as phosphorescent or fluorescent and light emitting materials that determine the light emission characteristics. Development of materials is essential.
  • the electron transport layer materials developed to date are not only triplet energy is still smaller than triplet energy of deep blue phosphorescent dopant material, but also have very low electron mobility, which greatly reduces the efficiency of the organic light emitting device. Known.
  • the existing electron transport layer material has a low glass transition temperature (Tg) characteristics due to the limitation of the molecular structure to improve the triplet energy is very poor thermal stability.
  • Tg glass transition temperature
  • insufficient thermal stability of the electron transport layer material significantly reduces the lifespan of the organic light emitting device, which has a fundamental problem that cannot be applied to commercialization.
  • a compound capable of securing high triplet energy and electron mobility, facilitating hole blocking and electron injection, and optimizing thermal stability, a method for preparing the same, and a mixture thereof An organic light emitting device can be provided.
  • X is O or S
  • R 1 and R 2 are each independently selected from the group consisting of aryl, heteroaryl and -P (O) -R 3 R 4
  • Aryl, heteroaryl, and -P (O) -R 3 R 4 are one to four substituents selected from the group consisting of (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, aryl and heteroaryl Substituted or unsubstituted, where “aryl” means a group consisting of 6 to 10 members, and “heteroaryl” means 5 having 1 to 4 hetero atoms selected from oxygen, sulfur and nitrogen (including quaternary nitrogen) Meaning a group consisting of from 1 to 14 members, R 3 and R 4 are independently selected from aryl or heteroaryl.
  • a compound capable of securing high triplet energy and electron mobility, facilitating hole blocking and electron injection, and optimizing thermal stability, a method for preparing the same, and a mixture thereof An organic light emitting device can be provided.
  • FIG. 1 is a cross-sectional view of an organic light emitting diode according to various embodiments.
  • FIG. 2 is a graph illustrating current density and luminance according to voltage of a green phosphorescent organic light emitting diode to which a compound according to various embodiments of the present disclosure is applied.
  • FIG. 3 is a graph of EL (ElectroLuminescence) spectrum of a green phosphorescent organic light emitting diode to which a compound according to various embodiments of the present disclosure is applied.
  • EL ElectroLuminescence
  • FIG. 4 is a graph showing a luminance change over time of a green phosphorescent organic light emitting diode to which a compound according to various embodiments of the present disclosure is applied.
  • FIG. 5 is a graph illustrating current density and luminance according to voltage of a blue phosphorescent organic light emitting diode to which a compound according to various embodiments of the present disclosure is applied.
  • FIG. 5 is a graph illustrating current density and luminance according to voltage of a blue phosphorescent organic light emitting diode to which a compound according to various embodiments of the present disclosure is applied.
  • FIG. 6 is a graph of EL (ElectroLuminescence) spectrum of a blue phosphorescent organic light emitting diode to which a compound according to various embodiments of the present disclosure is applied.
  • EL ElectroLuminescence
  • FIG. 7 is a graph showing a luminance change with time of a blue phosphorescent organic light emitting diode to which a compound according to various embodiments of the present disclosure is applied.
  • Various embodiments of the present invention relate to a compound represented by the following Chemical Formula 1.
  • X is O or S
  • R 1 and R 2 may be independently selected from the group consisting of aryl, heteroaryl and -P (O) -R 3 R 4 .
  • aryl, heteroaryl, and -P (O) -R 3 R 4 is (C 1 -C 4) alkyl, (C 1 -C 4) alkoxy, aryl and 1 to 4 substituents selected from the group consisting of heteroaryl, It may be substituted or unsubstituted with.
  • aryl means a group consisting of 6 to 10 members
  • Heteroaryl means a group consisting of 5 to 14 members having 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen (including quaternary nitrogen),
  • R 3 and R 4 may be independently selected from aryl or heteroaryl.
  • R 1 and R 2 are each independently (1) pyridine, (2) pyrimidine, (3) phenylpyridine, (4) diphenyltriazole, (5) dipyridylbenzene, (6) phenyl Tetrazine, (7) triphenyldiazole, (8) diphenylphosphine oxide, (9) diphenyltriazole, (10) diphenyloxazole, (11) diphenylthiazole, (12) phenyloxadia It may be selected from the group consisting of sol and (13) phenyl thiadiazole.
  • the chemical formula of such a substituent is as follows.
  • the compound represented by Formula 1 may include a compound represented by Formula 2 below.
  • the compound according to various embodiments may have a structure in which X is O, R 1 and R 2 are aryl, and the aryl is substituted with heteroaryl.
  • the compound according to various embodiments may have a structure in which positions 2 and 6 of dibenzofuran are substituted with dipyridylbenzene.
  • the compound represented by Chemical Formula 1 may include a compound represented by the following Chemical Formula 3.
  • the compound according to various embodiments may be a structure in which X is O, R 1 and R 2 are heteroaryl, and a structure in which the heteroaryl is unsubstituted or substituted with aryl.
  • the compound according to various embodiments may have a structure in which position 2 of dibenzofuran is substituted with pyridine and position 6 is substituted with diphenyltriazole.
  • the embodiment is not limited thereto, and the compound according to various embodiments may have a structure substituted with various substituents at positions 2 and 6 of dibenzothiophene.
  • the compound of Formula 2 was synthesized through the following steps.
  • TmPyPB a compound having the formula:
  • Table 1 below is a table comparing the physical properties of the compound synthesized according to Example 1, Comparative Example 1 and Comparative Example 2.
  • the glass transition temperature (Tg) of the compound synthesized according to Example 1 was found to be very high compared to the glass transition temperatures of Comparative Examples 1 and 2 at 134 ° C.
  • the triplet energy (E T ) of the compound synthesized according to Example 1 was higher than that of Comparative Example 2, and showed a value similar to that of Comparative Example 1.
  • the compound synthesized according to Example 1 may have thermal stability through high glass transition temperature.
  • the compound synthesized according to Example 1 when the compound synthesized according to Example 1 is applied to the organic thin film layer of the organic light emitting device, it is possible to ensure high efficiency and long life of the organic light emitting device through a high triplet energy.
  • Step 4 Synthesis of Final Product (Compound of Formula 3)
  • FIG. 1 is a cross-sectional view of an organic light emitting diode according to various embodiments.
  • the organic light emitting diode includes a substrate 100, an anode 200 disposed on the substrate 100, an organic thin film layer 400, and a cathode 300. ) May be included.
  • the organic light emitting diode may be a phosphorescent organic light emitting diode or a fluorescent organic light emitting diode.
  • the organic thin film layer 400 includes a hole injection layer (HIL) 410, a hole transport layer (HTL) 420, an emission layer (EML) 430, and a hole blocking layer (Hole Blocking). Layer, HBL) 440 and the Electron Transport Layer (ETL) 450 and the like. Although not shown in the drawing, the organic thin film layer 400 may further include an electron injection layer (EIL) and an electron blocking layer (EBL). In addition, according to various embodiments, the hole blocking layer 440 may simultaneously serve as a hole blocking role and an electron transport role.
  • the anode electrode 200 and the cathode electrode 300 may be formed of a metal, a metal oxide or a conductive polymer.
  • At least one layer of the organic thin film layer 400 may include the compound of Formula 1 described above.
  • the electron transport layer 450 or the hole blocking layer 440 may include a compound of Formula 1.
  • the compound of Formula 1 is applied to the electron transport layer 450 or the hole blocking layer 440 of the organic light emitting device, high triplet energy and electron mobility can be secured, and hole blocking and electron injection can be easily performed. And thermal stability can be optimized.
  • FIG. 2 is a graph illustrating current density and luminance according to voltage of a green phosphorescent organic light emitting diode to which a compound according to various embodiments of the present disclosure is applied to the hole blocking layer 440.
  • the hole blocking layer 440 may simultaneously serve as a hole blocking role and an electron transport role.
  • the electron transport layer 450 uses a TPBi material.
  • Table 2 below shows various characteristic values of the green phosphorescent organic light emitting diode to which the compound according to various embodiments of the present invention is applied to the hole blocking layer 440.
  • FIG. 3 is a graph of EL (ElectroLuminescence) spectrum of a green phosphorescent organic light emitting device to which a compound according to various embodiments of the present invention is applied to a hole blocking layer 440.
  • the EL spectrum is a luminance meter of light emitted from the organic light emitting device. It is the spectrum measured and shown.
  • the peak wavelength of the green EL spectrum is 500 nm to 520 nm, and the color purity is shown. It can be seen that is improved.
  • FIG. 4 is a graph illustrating a change in luminance over time of the green phosphorescent organic light emitting diode to which the compound according to various embodiments of the present disclosure is applied to the hole blocking layer 440.
  • the amount of change in luminance with time is not large. That is, a long life organic light emitting device could be secured.
  • the hole blocking layer 440 may simultaneously serve as a hole blocking role and an electron transport role.
  • the electron transport layer 450 uses an LG 201 material.
  • Table 3 shows various characteristic values of the blue phosphorescent organic light emitting diode to which the compound according to various embodiments of the present invention is applied to the hole blocking layer 440. In this case, various characteristic values were measured by adjusting the amount of dopant entering the light emitting layer 430 to 10%, 20% and 30%.
  • the compound according to various embodiments of the present invention when the compound according to various embodiments of the present invention is applied to the hole blocking layer 440 of the blue phosphorescent organic light emitting diode, the amount of dopant entering the light emitting layer 430 is 30%, and the driving voltage is At 9.7 V, the current density is very high at 7.7 mA / cm 2 , confirming that it can be driven at low voltages. Further, when the driving voltage is 9.7 V, it showed a high luminance value of 1002.2 cd / m 2. The color coordinate was (0.15, 0.25) at a luminance of 1000 cd / m 2 .
  • FIG. 6 is a graph of EL (ElectroLuminescence) spectrum of a blue phosphorescent organic light emitting diode to which a compound according to various embodiments of the present disclosure is applied to the hole blocking layer 440.
  • EL ElectroLuminescence
  • the peak wavelength of the blue EL spectrum is 450 nm to 470 nm, and the color purity is shown. It can be seen that is improved.
  • FIG. 7 is a graph illustrating a change in luminance over time of a blue phosphorescent organic light emitting diode to which a compound according to various embodiments of the present disclosure is applied to the hole blocking layer 440.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

본 발명의 다양한 실시예에 따른 화합물은, 하기 화학식 1로 표시된다. 상기 화학식 1에서, X는 O 또는 S이고, R1 및 R2는 각각 독립적으로 아릴(aryl), 헤테로아릴(heteroaryl) 및 -P(O)-R3R4 로 이루어진 군에서 선택되고, 상기 아릴, 헤테로아릴 및 -P(O)-R3R4 는 (C1-C4)알킬, (C1-C4)알콕시, 아릴 및 헤테로아릴 로 이루어진 군에서 선택된 1개 내지 4개의 치환기로 치환 또는 비치환되고, 여기서, "아릴"은 6원 내지 10원으로 구성된 기를 의미하고, "헤테로아릴"은 산소, 황 및 질소(4차 질소 포함)로부터 선택된 1 내지 4개의 헤테로 원자를 갖는 5원 내지 14원으로 구성된 기를 의미하고, R3 및 R4는 독립적으로 아릴 또는 헤테로아릴로부터 선택된다.

Description

화합물, 이의 제조방법 및 이를 포함하는 유기발광소자
본 발명의 다양한 실시예는 화합물, 이의 제조방법 및 이를 포함하는 유기발광소자에 관한 것이다.
최근, 표시장치(FPD: Flat Panel Display)는 멀티미디어의 발달과 함께 그 중요성이 증대되고 있다. 이에 부응하여 액정표시장치(Liquid Crystal Display : LCD), 플라즈마 디스플레이 패널(Plasma Display Panel: PDP), 전계방출표시장치(Field Emission Display: FED), 유기발광소자(Organic Light Emitting Diode: OLED) 등과 같은 여러 가지의 디스플레이가 실용화되고 있다.
이 중 유기발광소자는 플라스틱 같은 유연한 기판 위에도 소자를 형성할 수 있을 뿐 아니라, 플라즈마 디스플레이 패널이나 무기전계발광 디스플레이에 비해 10 V 이하의 낮은 전압에서 구동이 가능하고, 전력소모가 비교적 적으며 색감이 뛰어나다는 장점이 있다. 또한, 유기발광소자는 적색, 녹색 및 청색의 3가지 색을 나타낼 수 있어 풍부한 색을 표현하는 차세대 디스플레이 소자로 각광받고 있다.
한편, 고효율, 장수명 유기발광소자를 개발하기 위해서는 발광 특성을 결정하는 인광 또는 형광 및 발광 재료뿐만 아니라 음극에서 주입되는 전자를 효과적으로 발광층에 전달하여 유기발광소자의 특성을 향상시키는 역할을 수행하는 전자수송층 재료의 개발이 필수적이다.
특히, 고성능 유기발광소자를 상용화하기 위해서는 높은 삼중항에너지 및 전자이동도를 확보할 수 있고, 정공저지 및 전자주입을 용이하게 할 수 있으며, 열적 안정성을 최적할 수 있는 신규 유기발광소자용 전자수송층 재료의 개발이 필수적이다.
그러나, 현재까지 개발된 전자수송층 재료들은 아직 삼중항 에너지가 심청색 인광 도판트 물질의 삼중항 에너지보다 작은 경우가 많을 뿐만 아니라 전자이동도 특성이 매우 미흡해서 유기발광소자의 효율을 크게 저하시키는 것으로 알려져 있다.
또한, 기존의 전자수송층 재료는 삼중항 에너지를 향상시키기 위한 분자구조의 제약으로 인하여 낮은 유리전이온도(Tg) 특성을 갖고 있어 열적 안정성이 매우 미흡하다. 결과적으로 전자수송층 재료의 미흡한 열적 안정성은 유기발광소자의 수명을 상당히 저하시켜 상용화에 적용할 수 없는 근본적인 문제점을 지니고 있다.
본 발명의 다양한 실시예에서는, 높은 삼중항에너지 및 전자이동도를 확보할 수 있고, 정공저지 및 전자주입을 용이하게 할 수 있으며, 열적 안정성을 최적화할 수 있는 화합물, 이의 제조방법 및 이를 포함하는 유기발광소자를 제공할 수 있다.
본 발명의 다양한 실시예에 따른 화합물은, 하기 화학식 1로 표시된다.
[화학식 1]
Figure PCTKR2018000939-appb-I000001
상기 화학식 1에서, X는 O 또는 S이고, R1 및 R2는 각각 독립적으로 아릴(aryl), 헤테로아릴(heteroaryl) 및 -P(O)-R3R4 로 이루어진 군에서 선택되고, 상기 아릴, 헤테로아릴 및 -P(O)-R3R4 는 (C1-C4)알킬, (C1-C4)알콕시, 아릴 및 헤테로아릴 로 이루어진 군에서 선택된 1개 내지 4개의 치환기로 치환 또는 비치환되고, 여기서, “아릴”은 6원 내지 10원으로 구성된 기를 의미하고, “헤테로아릴”은 산소, 황 및 질소(4차 질소 포함)로부터 선택된 1 내지 4개의 헤테로 원자를 갖는 5원 내지 14원으로 구성된 기를 의미하고, R3 및 R4는 독립적으로 아릴 또는 헤테로아릴로부터 선택된다.
본 발명의 다양한 실시예에서는, 높은 삼중항에너지 및 전자이동도를 확보할 수 있고, 정공저지 및 전자주입을 용이하게 할 수 있으며, 열적 안정성을 최적화할 수 있는 화합물, 이의 제조방법 및 이를 포함하는 유기발광소자를 제공할 수 있다.
도 1은 다양한 실시예에 따른 유기발광소자의 단면을 도시한다.
도 2는 본 발명의 다양한 실시예에 따른 화합물을 적용한 녹색 인광 유기발광소자의 전압에 따른 전류 밀도(Current density) 및 휘도(Luminance)에 관한 그래프이다.
도 3은 본 발명의 다양한 실시예에 따른 화합물을 적용한 녹색 인광 유기발광소자의 EL((ElectroLuminescence) 스펙트럼에 관한 그래프이다.
도 4는 본 발명의 다양한 실시예에 따른 화합물을 적용한 녹색 인광 유기발광소자의 시간에 따른 휘도 변화량을 나타낸 그래프이다.
도 5는 본 발명의 다양한 실시예에 따른 화합물을 적용한 청색 인광 유기발광소자의 전압에 따른 전류 밀도(Current density) 및 휘도(Luminance)에 관한 그래프이다.
도 6은 본 발명의 다양한 실시예에 따른 화합물을 적용한 청색 인광 유기발광소자의 EL((ElectroLuminescence) 스펙트럼에 관한 그래프이다.
도 7은 본 발명의 다양한 실시예에 따른 화합물을 적용한 청색 인광 유기발광소자의 시간에 따른 휘도 변화량을 나타낸 그래프이다.
이하, 본 문서의 다양한 실시예들이 첨부된 도면을 참조하여 기재된다. 실시예 및 이에 사용된 용어들은 본 문서에 기재된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 해당 실시예의 다양한 변경, 균등물, 및/또는 대체물을 포함하는 것으로 이해되어야 한다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다.
본 발명의 다양한 실시예는 하기 화학식 1로 표시되는 화합물에 관한 것이다.
[화학식 1]
Figure PCTKR2018000939-appb-I000002
이때, X는 O 또는 S이고, R1 및 R2는 각각 독립적으로 아릴(aryl), 헤테로아릴(heteroaryl) 및 -P(O)-R3R4 로 이루어진 군에서 선택될 수 있다.
상기 아릴, 헤테로아릴 및 -P(O)-R3R4 는 (C1-C4)알킬, (C1-C4)알콕시, 아릴 및 헤테로아릴 로 이루어진 군에서 선택된 1개 내지 4개의 치환기로 치환 또는 비치환될 수 있다.
여기서, “아릴”은 6원 내지 10원으로 구성된 기를 의미하고,
“헤테로아릴”은 산소, 황 및 질소(4차 질소 포함)로부터 선택된 1 내지 4개의 헤테로 원자를 갖는 5원 내지 14원으로 구성된 기를 의미하고,
R3 및 R4는 독립적으로 아릴 또는 헤테로아릴로부터 선택될 수 있다.
구체적으로, 상기 R1 및 R2는 각각 독립적으로 (1)피리딘, (2)피리미딘, (3)페닐피리딘, (4)다이페닐트리아졸, (5)다이피리딜벤젠, (6)페닐테트라진, (7)트리페닐다이아졸, (8)다이페닐포스핀 옥사이드, (9)다이페닐트리아졸, (10)다이페닐옥사졸, (11)다이페닐싸이아졸, (12)페닐옥사다이아졸 및 (13)페닐싸이아다이아졸 로 이루어진 군에서 선택될 수 있다. 이러한 치환기의 화학식은 다음과 같다.
(1) 피리딘
Figure PCTKR2018000939-appb-I000003
Figure PCTKR2018000939-appb-I000004
Figure PCTKR2018000939-appb-I000005
(2) 피리미딘
Figure PCTKR2018000939-appb-I000006
(3) 페닐피리딘
Figure PCTKR2018000939-appb-I000007
(4) 다이페닐트리아졸
Figure PCTKR2018000939-appb-I000008
(5) 다이피리딜벤젠
Figure PCTKR2018000939-appb-I000009
(6) 페닐테트라진
Figure PCTKR2018000939-appb-I000010
(7) 트리페닐다이아졸
Figure PCTKR2018000939-appb-I000011
Figure PCTKR2018000939-appb-I000012
Figure PCTKR2018000939-appb-I000013
(8) 다이페닐포스핀 옥사이드
Figure PCTKR2018000939-appb-I000014
(9) 다이페닐트리아졸
Figure PCTKR2018000939-appb-I000015
Figure PCTKR2018000939-appb-I000016
(10) 다이페닐옥사졸
Figure PCTKR2018000939-appb-I000017
Figure PCTKR2018000939-appb-I000018
Figure PCTKR2018000939-appb-I000019
Figure PCTKR2018000939-appb-I000020
Figure PCTKR2018000939-appb-I000021
Figure PCTKR2018000939-appb-I000022
(11) 다이페닐싸이아졸
Figure PCTKR2018000939-appb-I000023
Figure PCTKR2018000939-appb-I000024
Figure PCTKR2018000939-appb-I000025
Figure PCTKR2018000939-appb-I000026
Figure PCTKR2018000939-appb-I000027
Figure PCTKR2018000939-appb-I000028
(12) 페닐옥사다이아졸
Figure PCTKR2018000939-appb-I000029
Figure PCTKR2018000939-appb-I000030
Figure PCTKR2018000939-appb-I000031
Figure PCTKR2018000939-appb-I000032
Figure PCTKR2018000939-appb-I000033
(13) 페닐싸이아다이아졸
Figure PCTKR2018000939-appb-I000034
Figure PCTKR2018000939-appb-I000035
Figure PCTKR2018000939-appb-I000036
Figure PCTKR2018000939-appb-I000037
Figure PCTKR2018000939-appb-I000038
다양한 실시예에 따르면, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2로 표시되는 화합물을 포함할 수 있다.
[화학식 2]
Figure PCTKR2018000939-appb-I000039
즉, 다양한 실시예에 따른 화합물은, X가 O이고, R1 및 R2는 아릴이며, 상기 아릴이 헤테로아릴로 치환된 구조일 수 있다. 또는, 다양한 실시예에 따른 화합물은, 디벤조퓨란(dibenzofuran)의 2번, 6번 위치가 다이피리딜벤젠으로 치환되는 구조를 가질 수 있다.
다양한 실시예에 따르면, 상기 화학식 1로 표시되는 화합물은 하기 화학식 3으로 표시되는 화합물을 포함할 수 있다.
[화학식 3]
Figure PCTKR2018000939-appb-I000040
즉, 다양한 실시예에 따른 화합물은, X가 O이고, R1 및 R2는 헤테로아릴이며, 상기 헤테로아릴이 비치환된 구조 또는 아릴로 치환된 구조일 수 있다. 또는, 다양한 실시예에 따른 화합물은, 디벤조퓨란의 2번 위치가 피리딘으로 치환되고, 6번 위치가 다이페닐트리아졸로 치환되는 구조를 가질 수 있다.
한편, 실시예가 이에 한정되는 것은 아니고, 다양한 실시예에 따른 화합물은 디벤조티오펜(dibenzothiophene)의 2, 6번 위치에 다양한 치환기로 치환되는 구조를 가질 수 있다.
다양한 실시예에 따른 화합물을 하기 제조방법을 통해 합성될 수 있다.
이하, 구체적인 실시예는 다음과 같다.
실시예 1: 화학식 2의 화합물의 합성
상기 화학식 2의 화합물을 하기 단계를 통해 합성하였다.
단계 1: 중간체 생성물(화합물 3-A)의 합성
Figure PCTKR2018000939-appb-I000041
4-브로모디벤조퓨란 (2g, 8.1mmol) 및 아이오소벤젠-디아세테이트 (1.3g, 4.0mmol), 아이오딘 (1.03g, 4.0mmol) 을 아세트산무수물 10ml, 아세트산 10ml에 현탁 시킨후 소량의 황산을 첨가하고 질소기류 하에서 36시간 상온 교반하였다. 반응 종료 후 디클로로메탄으로 유기층을 추출하고 위 용액을 무수 황산나트륨으로 건조하였다. 감압 증류 후 핵산으로 컬럼하고 재결정하여 상기 화합물 3-A (1.8g, 수율: 60%) 를 제조하였다.
1H NMR (400MHz, CDCl3) δ (ppm) = 8.27-8.26 (d, 1H), 7.85-7.83 (dd, 1H), 7.79-7.76 (dd, 1H), 7.66-7.63 (dd, 1H), 7.45-4.42 (d, 1H), 7.27-7.23 (t, 1H)
단계 2: 중간체 생성물(화합물 3-B)의 합성
Figure PCTKR2018000939-appb-I000042
피리딘-3-보로닉에시드 (4.1g, 33.4mmol), 1,3,5-트리브로모벤젠 (5g, 15.9mmol) 및 탄산나트륨 (3.4g, 31.8mmol), 테트라키스(트리페닐포스핀)팔라듐 (0.92g, 0.79mmol) 을 디옥산 50ml, 증류수 25ml에 현탁 시킨 후 질소기류 하에서 12시간 환류 교반하였다. 반응 종료 후 디크롤로메탄으로 유기층을 추출하고 위 용액을 무수 황산나트륨으로 건조하였다. 감압 증류 후 에틸아세테이트로 컬럼하여 상기 화합물 3-B (2g, 수율: 40%) 를 제조하였다.
1H NMR (400MHz, CDCl3) δ (ppm) = 8.88-8.87 (d, 2H), 8.67-8.65 (dd, 2H), 7.92-7.89 (dt, 2H), 7.76 (d, 2H), 7.69-7.68 (t, 1H), 7.43-7.40 (dd, 2H)
단계 3: 중간체 생성물(화합물 3-C)의 합성
Figure PCTKR2018000939-appb-I000043
화합물 3-B (5g, 16.1mmol), 비스(피나콜라토)디보론 (5.3g, 20.9mmol) 및 아세트산칼륨 (4.7g, 48.2mmol), [1,1'-비스(디페닐포스피노)페로센]디클로로팔라듐디클로로메탄 (0.66g, 0.80mmol) 을 디옥산 100ml에 현탁 시킨 후 질소기류 하에서 12시간 환류 교반하였다. 반응 종료 후 상기 반응액에서 디클로로메탄으로 유기층을 추출하고 위 용액을 무수 황산나트륨으로 건조하였다. 감압 증류 후 에틸아세테이트로 컬럼하여 상기 화합물 3-C (4.7g, 수율: 82%) 를 제조하였다.
1H NMR (400MHz, CDCl3) δ (ppm) = 8.94-8.93 (dd, 2H), 8.64-8.62 (dd, 2H), 8.07 (d, 2H), 7.99-7.96 (dt, 2H), 7.87-7.86 (t, 1H), 7.41-7.38 (dd, 2H), 1.39 (s, 12H)
단계 4: 최종 생성물(화학식 2의 화합물)의 합성
Figure PCTKR2018000939-appb-I000044
화합물 3-A (2g, 5.4mmol), 화합물 3-C (4.4g, 12.3mmol) 및 인산칼륨 (3.4g, 16.1mmol), 트리스(디벤질리딘아세톤)디팔라듐 (0.25g, 0.27mmol), SPhos (0.22g, 0.54mmol) 을 디옥산 100ml, 증류수 50ml에 현탁 시킨 후 질소기류 하에서 24시간 환류 교반하였다. 반응 종료 후 상기 반응액에서 디클로로메탄으로 유기층을 추출하고 위 용액을 무수 황산나트륨으로 건조하였다. 감압 증류 후 메탄올:디클로로메탄=1:19로 컬럼하여 상기 화합물 3 (1g, 30%) 을 제조하였다.
1H NMR (400MHz, CDCl3) δ (ppm) = 9.04-9.03 (dd, 2H), 9.01-9.00 (dd, 2H), 8.69-8.67 (m, 4H), 8.31-8.30 (d, 1H), 8.17-8.16 (d, 2H), 8.10-8.08 (dd, 1H), 8.07-8.02 (m, 4H), 7.93-7.92 (d, 2H), 7.85-7.84 (t, 1H), 7.84-7.81 (dd, 1H), 7.78-7.77 (t, 1H), 7.76-7.72 (m, 2H), 7.56-7.52 (t, 1H), 7.48-7.43 (m, 4H)
비교예 1
TmPyPB로, 하기와 같은 화학식을 갖는 화합물.
Figure PCTKR2018000939-appb-I000045
비교예 2
TPBI로, 하기와 같은 화학식을 갖는 화합물
Figure PCTKR2018000939-appb-I000046
하기 표 1은 실시예 1에 따라 합성된 화합물, 비교예 1 및 비교예 2의 물리적 특성을 비교한 표이다.
화합물 Tg(℃) ET(eV)
실시예 1에 따라 합성된 화합물(화학식 2의 화합물) 134 2.75
비교예 1 79 2.75
비교예 2 129 2.69
표 1에 따르면, 실시예 1에 따라 합성된 화합물의 유리전이온도(Tg)는 134 ℃로 비교예 1 및 비교예2의 유리전이온도에 비해 매우 높은 것으로 나타났다. 또한, 실시예 1에 따라 합성된 화합물의 삼중항에너지(ET)는 비교예 2보다 높고, 비교예 1과 유사한 값을 보였다.
따라서, 실시예 1에 따라 합성된 화합물은 높은 유리전이온도를 통해 열적 안정성을 가질 수 있다. 또한, 실시예 1에 따라 합성된 화합물을 유기발광소자의 유기박막층에 적용했을 때, 높은 삼중항에너지를 통해 고효율 및 장수명의 유기발광소자를 확보할 수 있다.
실시예 2: 화학식 3의 화합물의 합성
상기 화학식 3의 화합물을 하기 단계를 통해 합성하였다.
단계 1: 중간체 생성물(화합물 4-A)의 합성
Figure PCTKR2018000939-appb-I000047
화합물 3-A (5g, 13.4mmol), 비스(피나콜라토)디보론 (4.1g, 16.1mmol) 및 아세트산칼륨 (3.95g, 40.2mmol), [1,1'-비스(디페닐포스피노)페로센]디클로로팔라듐디클로로메탄 (0.55g, 0.67mmol) 을 디옥산 150ml에 현탁 시킨 후 질소기류 하에서 12시간 환류 교반하였다. 반응 종료 후 상기 반응액에서 디클로로메탄으로 유기층을 추출하고 위 용액을 무수 황산나트륨으로 건조하였다. 감압 증류 후 핵산:디클로로메탄=4:1로 컬럼하여 상기 화합물 4-A (3g, 수율: 60%) 를 제조하였다.
1H NMR (400MHz, CDCl3) δ (ppm) = 8.43 (s, 1H), 7.98-7.95 (dd, 1H), 7.91-7.89 (dd, 1H), 7.66-7.64 (dd, 1H), 7.62-7.60 (dd, 1H), 7.25-7.21 (t, 1H), 1.40 (s, 12H)
단계 2: 중간체 생성물(화합물 4-B)의 합성
Figure PCTKR2018000939-appb-I000048
마그네슘 (2.57g, 105.7mmol) 과 아이오딘 (0.54g, 2.1mmol)을 테트라하이드로퓨란 30ml에 넣고 교반하였다. 위 용액에 브로모벤젠 (11.1g, 70.5mmol) 이 테트라하이드로퓨란 30ml에 용해된 용액을 천천히 적하하고 2시간 환류 교반하였다.
위 용액을 1,3,5-트리클로로트리아진 (5g, 27.1mmol) 이 테트라하이드로퓨란 30ml에 용해된 용액을 천천히 0℃ 에서 적하하고 12시간 환류 교반하였다. 반응 종료 후 상기 반응액에서 디클로로메탄으로 유기층을 추출하고 위 용액을 무수 황산나트륨으로 건조하였다. 감압 증류 후 핵산:디클로로메탄=4:1로 컬럼하여 상기 화합물 4-B (4g, 수율: 55%) 를 제조하였다.
1H NMR (400MHz, CDCl3) δ (ppm) = 8.65-8.62 (m, 4H), 7.66-7.62 (m, 2H), 7.58-7.54 (m, 4H)
단계 3: 중간체 생성물(화합물 4-C)의 합성
Figure PCTKR2018000939-appb-I000049
화합물 4-A (4g, 10.7mmol), 화합물 4-B (3.4g, 12.9mmol) 및 탄산나트륨 (2.3g, 21.4mmol), 테트라키스(트리페닐포스핀)팔라듐 (0.62g, 0.54mmol) 을 디옥산 100ml, 증류수 50ml에 현탁 시킨 후 질소기류 하에서 12시간 환류 교반하였다. 반응 종료 후 상기반응액에서 클로로포름으로 유기층을 추출하고 위 용액을 무수 황산나트륨으로 건조하였다. 감압 증류 후 핵산으로 재결정하여 상기 화합물 4-C (3g, 수율: 58%) 를 제조하였다.
1H NMR (400MHz, CDCl3) δ (ppm) = 9.35 (dd, 1H), 9.00-8.98 (dd, 1H), 8.82-8.79 (m, 4H), 8.11-8.09 (dd, 1H), 7.83-7.80 (dd, 1H), 7.69-7.67 (dd, 1H), 7.64-7.58 (m, 6H), 7.33-7.30 (t, 1H)
단계 4: 최종 생성물(화학식 3의 화합물)의 합성
Figure PCTKR2018000939-appb-I000050
화합물 4-C (3g, 6.3mmol), 피리딘-3-보로닉에시드 (0.93g, 7.5mmol) 및 인산칼륨 (4.0g, 18.8mmol), 트리스(디벤질리딘아세톤)디팔라듐 (0.29g, 0.31mmol), SPhos (0.26g, 0.63mmol) 을 디옥산 100ml, 증류수 50ml에 현탁 시킨 후 질소기류 하에서 36시간 환류 교반하였다. 반응 종료 후 상기반응액에서 클로로포름으로 유기층을 추출하고 위 용액을 무수 황산나트륨으로 건조하였다. 감압 증류 후 핵산:에틸아세테이트=1:1로 컬럼하여 상기 화합물 4 (1.5g, 수율: 50%) 를 제조하였다.
1H NMR (400MHz, CDCl3) δ (ppm) = 9.41 (d, 1H), 9.18 (d 1H), 9.00-8.97 (dd, 1H), 8.83-8.81 (m, 4H), 8.71- 8.69 (1H), 8.28-8.25 (dt, 1H), 8.21-8.19 (dd, 1H), 7.77-7.75 (d, 1H), 7.68-7.66 (dd, 1H), 7.65-7.59 (m, 6H), 7.57-7.53 (t, 1H), 7.51-7.48 (dd, 1H)
다양한 실시예에 따른 화합물은 유기발광소자의 유기박막층 재료로 사용될 수 있다. 이하, 도 1을 참조하여, 유기발광소자를 설명한다.
도 1은 다양한 실시예에 따른 유기발광소자의 단면을 도시한다.
도 1에 도시된 바와 같이, 유기발광소자는 기판(Substrate)(100), 기판(100) 상에 배치되는 애노드 전극(Anode)(200), 유기박막층(400) 및 캐소드 전극(Cathode)(300)을 포함할 수 있다. 유기발광소자는 인광 유기발광소자 또는 형광 유기발광소자일 수 있다.
유기박막층(400)은 정공주입층(Hole Injection layer, HIL)(410), 정공수송층(Hole Transport Layer, HTL)(420), 발광층(Emission Layer, EML)(430), 정공저지층(Hole Blocking Layer, HBL)(440) 및 전자수송층(Electron Transport Layer, ETL)(450) 등을 포함할 수 있다. 한편, 도면에 도시하지 않았으나, 유기박막층(400)은 전자주입층(Electron Injection Layer, EIL) 및 전자억제층(Electron Blocking Layer, EBL)을 더 포함할 수 있다. 또한, 다양한 실시예에 따르면, 정공저지층(440)은 정공저지 역할 및 전자수송 역할을 동시에 수행할 수 있다.
애노드 전극(200) 및 캐소드 전극(300)은 금속, 금속산화물 또는 도전성 폴리머로 형성될 수 있다.
유기박막층(400) 중 적어도 어느 한 층은 앞서 설명한 화학식 1의 화합물을 포함할 수 있다. 바람직하게는, 전자수송층(450) 또는 정공저지층(440)은 화학식 1의 화합물을 포함할 수 있다. 유기발광소자의 전자수송층(450) 또는 정공저지층(440)에 화학식 1의 화합물을 적용할 경우, 높은 삼중항에너지 및 전자이동도를 확보할 수 있고, 정공저지 및 전자주입의 용이성을 가질 수 있으며 열적안정성을 최적화할 수 있다.
도 2는 본 발명의 다양한 실시예에 따른 화합물을 정공저지층(440)에 적용한 녹색 인광 유기발광소자의 전압에 따른 전류 밀도(Current density) 및 휘도(Luminance)에 관한 그래프이다. 다양한 실시예에 따르면, 정공저지층(440)은 정공저지 역할 및 전자수송 역할을 동시에 수행할 수 있다. 다양한 실시예에 따른 화합물을 정공저지층(440)에 적용한 녹색 인광 유기발광소자에서, 전자수송층(450)은 TPBi 물질을 사용하였다.
하기 표 2는 본 발명의 다양한 실시예에 따른 화합물을 정공저지층(440)에 적용한 녹색 인광 유기발광소자의 다양한 특성값에 대한 것이다.
Driving Voltage(V) Current Density(mA/cm2) Luminance(cd/m2) Color Coordinates Quantum efficiency(%) Power efficiency(lm/W) Current efficiency(Cd/A)
x y [1000cd] [Max] [1000cd] [Max] [1000cd] [Max]
7.7 3.6 1002.9 0.28 0.60 8.3 8.3 11.4 11.8 27.6 27.7
도 2 및 표 2에 따르면, 녹색 인광 유기발광소자의 정공저지층(440)에 본 발명의 다양한 실시예에 따른 화합물을 적용한 경우, 구동 전압이 7.7 V일 때, 전류 밀도가 3.6 mA/cm2로 매우 높은 값을 보여 저전압에서 구동 가능함을 확인할 수 있다. 또한, 구동 전압이 7.7 V일 때, 1002.9 cd/m2의 높은 휘도 값을 보였다. 휘도 1000 cd/m2 기준에서 색좌표는 (0.27, 0.60)이었다. 또한, 휘도 1000 cd/m2 기준에서 양자 효율(Quantum efficiency), 전력 효율(Power efficiency) 및 전류 효율(Current efficiency)이 각각 8.3 %, 11.4 lm/W 및 27.6 Cd/A를 보여 고효율을 가지는 것으로 확인할 수 있었다.
도 3은 본 발명의 다양한 실시예에 따른 화합물을 정공저지층(440)에 적용한 녹색 인광 유기발광소자의 EL((ElectroLuminescence) 스펙트럼에 관한 그래프이다. EL 스펙트럼은 유기발광소자로 나오는 빛을 휘도계로 측정하여 나타낸 스펙트럼이다.
도 3에 도시된 바와 같이, 녹색 인광 유기발광소자의 정공저지층(440)에 본 발명의 다양한 실시예에 따른 화합물을 적용한 경우, 녹색의 EL 스펙트럼의 피크파장이 500 nm 내지 520 nm이고, 색순도가 향상됨을 알 수 있다.
도 4는 본 발명의 다양한 실시예에 따른 화합물을 정공저지층(440)에 적용한 녹색 인광 유기발광소자의 시간에 따른 휘도 변화량을 나타낸 그래프이다.
도 4에 도시된 바와 같이, 본 발명의 다양한 실시예에 따른 화합물을 적용한 녹색 인광 유기발광소자의 경우 시간에 따른 휘도 변화량이 크지 않은 것으로 나타났다. 즉, 장수명의 유기발광소자를 확보할 수 있었다.
도 5는 본 발명의 다양한 실시예에 따른 화합물을 정공저지층(440)에 적용한 청색 인광 유기발광소자의 전압에 따른 전류 밀도(Current density) 및 휘도(Luminance)에 관한 그래프이다. 다양한 실시예에 따르면, 정공저지층(440)은 정공저지 역할 및 전자수송 역할을 동시에 수행할 수 있다. 다양한 실시예에 따른 화합물을 정공저지층(440)에 적용한 녹색 인광 유기발광소자에서, 전자수송층(450)은 LG 201 물질을 사용하였다.
하기 표 3은 정공저지층(440)에 본 발명의 다양한 실시예에 따른 화합물을 적용한 청색 인광 유기발광소자의 다양한 특성값에 대한 것이다. 이때, 다양한 특성값은 발광층(430)에 들어가는 도펀트 양을 10 %, 20 % 및 30 %로 조절하여 측정하였다.
도펀트 양(%) Driving Voltage(V) Current Density(mA/cm2) Luminance(cd/m2) Color Coordinates Quantum efficiency(%) Power efficiency(lm/W) Current efficiency(Cd/A)
x y [1000cd] [Max] [1000cd] [Max] [1000cd] [Max]
10 9.9 7.4 999.8 0.15 0.27 7.5 9.2 4.3 8.2 13.6 16.8
20 9.7 7.4 996.9 0.15 0.26 7.6 8.4 4.4 6.7 13.6 15.0
30 9.7 7.7 1000.2 0.15 0.25 7.7 11.8 4.2 10.5 13.1 20.0
도 5 및 표 3에 따르면, 청색 인광 유기발광소자의 정공저지층(440)에 본 발명의 다양한 실시예에 따른 화합물을 적용한 경우, 발광층(430)에 들어가는 도펀트 양이 30 %이고, 구동 전압이 9.7 V일 때, 전류 밀도가 7. 7 mA/cm2로 매우 높은 값을 보여 저전압에서 구동 가능함을 확인할 수 있다. 또한, 구동 전압이 9.7 V일 때, 1002.2 cd/m2의 높은 휘도 값을 보였다. 휘도 1000 cd/m2 기준에서 색좌표는 (0.15, 0.25)이었다. 또한, 휘도 1000 cd/m2 기준에서 양자 효율(Quantum efficiency), 전력 효율(Power efficiency) 및 전류 효율(Current efficiency)이 각각 7.7 %, 4.2 lm/W 및 13.1 Cd/A를 보여 고효율을 가지는 것으로 확인할 수 있었다.
도 6은 본 발명의 다양한 실시예에 따른 화합물을 정공저지층(440)에 적용한 청색 인광 유기발광소자의 EL((ElectroLuminescence) 스펙트럼에 관한 그래프이다.
도 6에 도시된 바와 같이, 청색 인광 유기발광소자의 정공저지층(440)에 본 발명의 다양한 실시예에 따른 화합물을 적용한 경우, 청색의 EL 스펙트럼의 피크파장이 450 nm 내지 470 nm이고, 색순도가 향상됨을 알 수 있다.
도 7은 본 발명의 다양한 실시예에 따른 화합물을 정공저지층(440)에 적용한 청색 인광 유기발광소자의 시간에 따른 휘도 변화량을 나타낸 그래프이다.
도 7에 도시된 바와 같이, 본 발명의 다양한 실시예에 따른 화합물을 적용한 청색 인광 유기발광소자의 경우 시간에 따른 휘도 변화량이 크지 않은 것으로 나타났다. 즉, 장수명의 유기발광소자를 확보할 수 있었다.
상술한 실시예에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시예들을 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예들에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부한 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (8)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2018000939-appb-I000051
    상기 화학식 1에서,
    X는 O 또는 S이고,
    R1 및 R2는 각각 독립적으로 아릴(aryl), 헤테로아릴(heteroaryl) 및 -P(O)-R3R4 로 이루어진 군에서 선택되고,
    상기 아릴, 헤테로아릴 및 -P(O)-R3R4 는 (C1-C4)알킬, (C1-C4)알콕시, 아릴 및 헤테로아릴 로 이루어진 군에서 선택된 1개 내지 4개의 치환기로 치환 또는 비치환되고,
    여기서,
    “아릴”은 6원 내지 10원으로 구성된 기를 의미하고,
    “헤테로아릴”은 산소, 황 및 질소(4차 질소 포함)로부터 선택된 1 내지 4개의 헤테로 원자를 갖는 5원 내지 14원으로 구성된 기를 의미하고,
    R3 및 R4는 독립적으로 아릴 또는 헤테로아릴로부터 선택된다.
  2. 제1항에 있어서,
    상기 R1 및 R2는 각각 독립적으로 피리딘, 피리미딘, 페닐피리딘, 다이페닐트리아졸, 다이피리딜벤젠, 페닐테트라진, 트리페닐다이아졸, 다이페닐포스핀 옥사이드, 다이페닐트리아졸, 다이페닐옥사졸, 다이페닐싸이아졸, 페닐옥사다이아졸 및 페닐싸이아다이아졸 로 이루어진 군에서 선택되는 화합물.
  3. 제1항에 있어서,
    상기 화합물은 하기 화학식 2로 표시되는 화합물을 포함한다:
    [화학식 2]
    Figure PCTKR2018000939-appb-I000052
  4. 제1항에 있어서,
    상기 화합물은 하기 화학식 3으로 표시되는 화합물을 포함한다:
    [화학식 3]
    Figure PCTKR2018000939-appb-I000053
  5. 4-브로모디벤조퓨란, 아이오소벤젠-디아세테이트 및 아이오딘을 반응시켜 하기 화학식 4의 화합물을 합성하는 과정;
    [화학식 4]
    Figure PCTKR2018000939-appb-I000054
    피리딘-3-보로닉에시드, 1,3,5-트리브로모벤젠, 탄산나트륨 및 테트라키스(트리페닐포스핀)팔라듐을 반응시켜 하기 화학식 5의 화합물을 합성하는 과정;
    [화학식 5]
    Figure PCTKR2018000939-appb-I000055
    상기 화학식 5의 화합물, 비스(피나콜라토)디보론, 아세트산칼륨 및 [1,1'-비스(디페닐포스피노)페로센]디클로로팔라듐디클로로메탄을 반응시켜 하기 화학식 6의 화합물을 합성하는 과정; 및
    [화학식 6]
    Figure PCTKR2018000939-appb-I000056
    상기 화학식 4의 화합물, 상기 화학식 6의 화합물, 인산칼륨, 트리스(디벤질리딘아세톤)디팔라듐 및 SPhos을 반응시켜 하기 화학식 2의 화합물을 합성하는 과정을 포함하는 화합물의 제조방법.
    [화학식 2]
    Figure PCTKR2018000939-appb-I000057
  6. 4-브로모디벤조퓨란, 아이오소벤젠-디아세테이트 및 아이오딘을 반응시켜 하기 화학식 4의 화합물을 합성하는 과정;
    [화학식 4]
    Figure PCTKR2018000939-appb-I000058
    상기 화학식 4의 화합물, 비스(피나콜라토)디보론, 아세트산칼륨 및 [1,1'-비스(디페닐포스피노)페로센]디클로로팔라듐디클로로메탄을 반응시켜 하기 화학식 7의 화합물을 합성하는 과정;
    [화학식 7]
    Figure PCTKR2018000939-appb-I000059
    마그네슘, 아이오딘, 테트라하이드로퓨란 및 브로모벤젠을 반응시켜 하기 화학식 8의 화합물을 합성하는 과정;
    [화학식 8]
    Figure PCTKR2018000939-appb-I000060
    상기 화학식 7의 화합물, 상기 화학식 8의 화합물, 탄산나트륨 및 테트라키스(트리페닐포스핀)팔라듐을 반응시켜 하기 화학식 9의 화합물을 합성하는 과정; 및
    [화학식 9]
    Figure PCTKR2018000939-appb-I000061
    상기 화학식 9의 화합물, 피리딘-3-보로닉에시드, 인산칼륨, 트리스(디벤질리딘아세톤)디팔라듐 및 SPhos을 반응시켜 하기 화학식 3의 화합물을 합성하는 과정을 포함하는 화합물의 제조방법.
    [화학식 3]
    Figure PCTKR2018000939-appb-I000062
  7. 애노드 전극;
    캐소드 전극 및
    상기 애노드 전극과 캐소드 전극 사이에 개재되는 한 층 이상의 유기박막층을 포함하고,
    상기 유기박막층 중 적어도 어느 한 층은 제1항 내지 제4항 중 적어도 어느 한 항에 따른 화합물을 포함하는 유기발광소자.
  8. 제7항에 있어서,
    상기 유기박막층은 정공주입층(HIL), 정공수송층(HTL), 정공저지층(HBL), 전자수송층(ETL), 및 전자주입층(EIL)으로 이루어진 군에서 선택된 하나 이상의 것을 더욱 포함하는 것을 특징으로 하는 유기발광소자.
PCT/KR2018/000939 2017-01-31 2018-01-22 화합물, 이의 제조방법 및 이를 포함하는 유기발광소자 WO2018143591A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/482,596 US11345688B2 (en) 2017-01-31 2018-01-22 Compound, preparing method therefor, and organic light emitting element comprising same
CN201880009412.8A CN110234644B (zh) 2017-01-31 2018-01-22 化合物、化合物的制备方法及包含化合物的有机发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170014073A KR101935778B1 (ko) 2017-01-31 2017-01-31 화합물, 이의 제조방법 및 이를 포함하는 유기발광소자
KR10-2017-0014073 2017-01-31

Publications (2)

Publication Number Publication Date
WO2018143591A2 true WO2018143591A2 (ko) 2018-08-09
WO2018143591A3 WO2018143591A3 (ko) 2018-12-06

Family

ID=63039916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000939 WO2018143591A2 (ko) 2017-01-31 2018-01-22 화합물, 이의 제조방법 및 이를 포함하는 유기발광소자

Country Status (4)

Country Link
US (1) US11345688B2 (ko)
KR (1) KR101935778B1 (ko)
CN (1) CN110234644B (ko)
WO (1) WO2018143591A2 (ko)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2582769B1 (en) * 2010-06-18 2014-11-19 Basf Se Organic electronic devices comprising a layer of a dibenzofurane compound and a 8-hydroxyquinolinolato earth alkaline metal, or alkali metal complex
US10297762B2 (en) * 2014-07-09 2019-05-21 Universal Display Corporation Organic electroluminescent materials and devices
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
KR101694496B1 (ko) * 2015-06-03 2017-01-11 (주)위델소재 다이벤조사이오펜 유도체 화합물 및 이를 이용한 유기전계 발광소자
KR102523099B1 (ko) * 2015-06-18 2023-04-18 엘지디스플레이 주식회사 유기전계발광소자
KR101722404B1 (ko) * 2015-08-31 2017-04-03 주식회사 포스코 중량 측정 오차를 방지할 수 있는 대차 및 이의 제어 방법

Also Published As

Publication number Publication date
KR101935778B1 (ko) 2019-01-07
US20190359602A1 (en) 2019-11-28
US11345688B2 (en) 2022-05-31
KR20180089222A (ko) 2018-08-08
WO2018143591A3 (ko) 2018-12-06
CN110234644A (zh) 2019-09-13
CN110234644B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2014142472A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020027389A1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2014003336A1 (ko) 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2013055132A2 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2014017844A1 (ko) 아크리딘 유도체를 포함하는 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2017126818A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2012011756A1 (en) Novel organic electroluminescent compounds and organic electroluminescent devices including the same
WO2018056649A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2011149240A2 (ko) 바이폴라 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014003405A1 (ko) 신규한 화합물 및 이를 포함하는 발광소자
WO2011139125A2 (ko) 페난스로카바졸 화합물 및 이를 이용한 유기 전계 발광 소자
WO2011081431A2 (ko) 유기발광 화합물 및 이를 포함한 유기 전계 발광 소자
WO2018056658A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2011010842A2 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2022103018A1 (ko) 다환 고리 화합물 및 이를 이용한 유기발광소자
WO2021172965A1 (ko) 다환 방향족 유도체 화합물 및 이를 이용한 유기발광소자
WO2022164086A1 (ko) 유기 금속 착물 및 이를 포함한 유기전계발광소자
WO2021071345A2 (ko) 다환 고리 화합물 및 이를 이용한 유기발광소자
WO2021187924A1 (ko) 다환 방향족 유도체 화합물을 이용한 유기발광소자
WO2019124903A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2013100724A1 (ko) 이종 코어 구조를 포함하는 유기발광 소자용 화합물 및 그를 채용한 유기발광 소자
WO2014137104A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2019143031A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017022983A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021150026A1 (ko) 다환 방향족 유도체 화합물 및 이를 이용한 유기발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747864

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747864

Country of ref document: EP

Kind code of ref document: A2