WO2018143404A1 - State analyzing device, display method, and program - Google Patents

State analyzing device, display method, and program Download PDF

Info

Publication number
WO2018143404A1
WO2018143404A1 PCT/JP2018/003585 JP2018003585W WO2018143404A1 WO 2018143404 A1 WO2018143404 A1 WO 2018143404A1 JP 2018003585 W JP2018003585 W JP 2018003585W WO 2018143404 A1 WO2018143404 A1 WO 2018143404A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
parameter
target device
parameters
current
Prior art date
Application number
PCT/JP2018/003585
Other languages
French (fr)
Japanese (ja)
Inventor
園田 隆
森下 靖
熊野 信太郎
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to CN201880009002.3A priority Critical patent/CN110235010B/en
Priority to SG11201907246RA priority patent/SG11201907246RA/en
Priority to KR1020197022705A priority patent/KR102238869B1/en
Publication of WO2018143404A1 publication Critical patent/WO2018143404A1/en
Priority to PH12019501815A priority patent/PH12019501815A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/252Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques using analogue/digital converters of the type with conversion of voltage or current into frequency and measuring of this frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a state analysis device, a display method, and a program.
  • a current clamp is sandwiched at a predetermined portion of the apparatus and a current signal is measured.
  • the monitoring device generates a frequency domain graph of the current by performing a fast Fourier transform on the measured current signal and displays it on the screen (see, for example, Patent Document 1). Then, the inspector observes the displayed frequency domain graph, and performs abnormality detection and identification of the apparatus. Specifically, the inspector specifies a parameter representing a predetermined operation of the apparatus from the observation result of the frequency domain graph, and specifies an operation state related to the parameter.
  • An object of the present invention is to provide a state analysis device, a display method, and a program that can easily identify a state of a target device and a change in the state.
  • the state analysis device includes a current acquisition unit that acquires a current signal flowing through the target device, and a state of the target device based on the current signal at a timing related to a certain period.
  • a parameter calculation unit that calculates values of a plurality of parameters that vary depending on each other and have a correlation with each other, and a predetermined threshold value that serves as a determination criterion for the state of the target device in a coordinate space with each of the plurality of parameters as an axis Display information in which a dividing line representing the first figure, the first figure representing the values of the plurality of parameters at one timing, and the second figure representing the amount of change in the values of the plurality of parameters calculated at different timings are arranged
  • the display information generation unit when at least one value of the plurality of parameters related to different timings crosses the threshold value, The display information including a predetermined message may be generated.
  • the display information generation unit includes the case where at least one value of the plurality of parameters related to different timings crosses the threshold value, and The display form of the first graphic may be different depending on whether the threshold is not crossed.
  • the state of the target device is a normal state in which the target device is normal, and the target device is abnormal.
  • the caution state in which the state of the target device can transition to the abnormal state
  • the display information generation unit is configured to distinguish the normal state and the caution state as the dividing line.
  • the display information including a first dividing line and a second dividing line that separates the attention state and the abnormal state may be generated.
  • the target device includes a motor that rotates around the rotor and an auxiliary device that rotates together with the rotor.
  • a plurality of parameters, a parameter representing a general state of the target device, a parameter representing a state of the rotor, a parameter representing a misalignment state of the rotor and the auxiliary device, and a flow to the motor It may be a plurality of parameters selected from the group consisting of a parameter indicating an effective value of a current, a parameter indicating a quality of a power supply related to the current, and a parameter indicating a state of the auxiliary machine.
  • the display method varies according to the state of the target device based on the current signal at a timing related to acquiring a current signal flowing through the target device and a certain period. Calculating a value of a plurality of parameters having a correlation with each other; calculating a change amount of the value of the plurality of parameters calculated at different timing; and creating a coordinate space about each of the plurality of parameters as an axis Display information in which a dividing line representing a threshold value as a criterion for determining the state of the target device, a first graphic representing the values of the plurality of parameters according to one timing, and a second graphic representing the amount of change are arranged Display.
  • the program acquires a current signal flowing through the target device from a computer, and at a timing related to a certain period, based on the current signal, depending on the state of the target device.
  • a dividing line representing a threshold value as a criterion for determining the state of the target device, a first graphic representing the values of the plurality of parameters related to one timing, and a second graphic representing the amount of change are arranged. Generating display information.
  • the state analysis device calculates a parameter from the current signal, and generates display information for displaying the parameter together with a division line representing a threshold value. Thereby, based on the displayed information, the state of the target device can be specified without requiring skill. Further, the state analysis device generates display information for displaying a graphic representing the amount of change in the parameter. Thereby, the state transition of the target device can be recognized based on the displayed information. In addition, the state analysis apparatus arranges a graphic representing a parameter in a coordinate space around each of a plurality of parameters having a correlation with each other. Thereby, the state which is not linked
  • FIG. 1 is a schematic diagram illustrating a configuration of a state analysis system according to the first embodiment.
  • the state analysis system 1 according to the first embodiment includes a state analysis device 10, a display device 20, a target device 30, a three-phase AC power supply 40, a power line 50, and a clamp ammeter 60.
  • the state analysis device 10 according to the first embodiment causes the display device 20 to display information indicating the state of the target device 30 to be inspected.
  • the target device 30 according to the first embodiment is a rotating machine system including an auxiliary machine such as a motor driven by a three-phase AC power source, a pump or a fan that rotates together with a rotor included in the motor.
  • the target device 30 is connected to the three-phase AC power supply 40 via the power line 50.
  • the power line 50 is sandwiched between the clamp ammeters 60.
  • the state analysis system 1 includes three clamp ammeters 60, and each clamp ammeter 60 sandwiches different power lines. In other embodiments, the state analysis system 1 may include one or two clamp ammeters 60 and may not measure a part of the current among the three power lines 50.
  • the clamp ammeter 60 measures the magnitude of the current flowing through the power line 50 and outputs it as a digital signal (current signal) to the state analysis apparatus 10.
  • the state analysis device 10 causes the display device 20 to display information representing the state of the target device 30 based on the current signal received from the clamp ammeter 60.
  • FIG. 2 is a schematic block diagram showing the configuration of the state analysis apparatus according to the first embodiment.
  • the state analysis device 10 includes a current acquisition unit 11, a parameter calculation unit 12, a parameter storage unit 13, a threshold storage unit 14, a graph generation unit 15, a transition detection unit 16, and a display control unit 17.
  • the current acquisition unit 11 acquires a current signal that flows from the clamp ammeter 60 to the target device 30 via the power line 50.
  • the parameter calculation unit 12 calculates the values of a plurality of parameters that vary depending on the state of the target device 30 based on the current signal acquired by the current acquisition unit 11 at a timing related to a certain period.
  • the parameter calculated by the parameter calculation unit 12 is referred to as a current parameter. Specific examples of current parameters will be described later.
  • At least two of the plurality of current parameters calculated by the parameter calculation unit 12 are parameters having a correlation with each other.
  • the parameter storage unit 13 stores the value of the current parameter calculated by the parameter calculation unit 12 in association with the calculation time.
  • the threshold value storage unit 14 stores a threshold value that is a criterion for determining the state of the target device 30 for each current parameter.
  • the type of the state of the target device 30 according to the first embodiment includes a normal state in which the target device 30 is normal, an abnormal state in which the target device 30 is abnormal, and a state in which the state of the target device 30 can transition to an abnormal state. This is a state of caution. That is, the threshold value storage unit 14 stores, for each current parameter, a first threshold value that distinguishes between a normal state and a caution state, and a second threshold value that distinguishes between a caution state and an abnormal state.
  • the graph generation unit 15 generates a graph image representing the amount of change from the current parameter value calculated by the parameter calculation unit 12 and the previous current parameter value to the current current parameter value.
  • the graph image is a graph in which two current parameters having a correlation are taken on the vertical axis and the horizontal axis.
  • a dividing line representing a threshold value related to each current parameter, a plot (first graphic) representing values of two current parameters, and an arrow (second graphic) representing a change amount are arranged.
  • the transition detection unit 16 detects that the value of each current parameter has changed across the threshold stored in the threshold storage unit 14.
  • the display control unit 17 generates display information to be output to the display device 20 based on the graph screen generated by the graph generation unit and the detection result by the transition detection unit 16.
  • the display control unit 17 is an example of a display information generation unit.
  • the parameter calculation unit 12 calculates a KI parameter, an Lpole parameter, an Lshaft parameter, an Irms parameter, a THD parameter, an IHD parameter, an Lx parameter, and an Iub parameter.
  • the KI parameter is a parameter that represents the general state of the target device 30.
  • the KI parameter is a Cullback library information amount for the inspection amplitude probability density function ft (x) obtained from the current signal and the reference amplitude probability density variable fr (x) of the reference sine wave signal waveform indicating the rated current of the motor. is there.
  • the KI parameter is obtained by the following equation (1).
  • the Lpole parameter is a parameter that represents the state of the rotor of the target device 30.
  • the Lpole parameter is the size of the sideband wave peak of the current spectrum at a frequency position separated by a predetermined frequency from the current spectrum peak in the frequency spectrum obtained by frequency domain conversion of the current signal.
  • the sideband wave according to the Lpole parameter is a sideband wave that varies due to the pole passing frequency of the motor.
  • the Lshaft parameter is a parameter that represents the misalignment state of the rotor and auxiliary equipment of the target device 30.
  • the Lshaft parameter is obtained by the size of the sideband wave peak of the current spectrum at a frequency position separated from the current spectrum peak by a predetermined frequency in the frequency spectrum obtained by frequency domain conversion of the current signal.
  • the sideband wave related to the Lshaft parameter is a sideband wave that varies due to the actual rotational frequency of the motor.
  • the Irms parameter is a parameter for monitoring the rotating machine load and state fluctuation of the target device 30.
  • the Irms parameter is an effective current value that can be obtained by dividing the square sum of the current values at each sampling timing by the number of sampling timings and obtaining the square root thereof.
  • the IHD parameter is a ratio between the maximum harmonic component of the current signal and the power supply frequency component.
  • the IHD parameter can be obtained by extracting the harmonic component from the current signal and dividing the maximum value within a preset order of the harmonic component by the power supply frequency effective value.
  • the THD parameter is the ratio of the total harmonic component of the current signal to the power supply frequency component.
  • the THD parameter can be obtained by extracting a harmonic component from the current signal and dividing the square root of the square sum of each harmonic component within a preset order by the effective value of the power supply frequency of the current signal.
  • Both the IHD parameter and the THD parameter are parameters representing the quality of the three-phase AC power supply 40.
  • the Lx parameter is a parameter that represents the state of the auxiliary device of the target device 30.
  • the Lx parameter is the size of the sideband wave peak of the current spectrum at a frequency position separated from the current spectrum peak by a predetermined frequency in the frequency spectrum obtained by frequency domain conversion of the current signal.
  • the sideband wave related to the Lx parameter fluctuates due to the sideband wave that fluctuates due to the blade passing frequency of the pump or blower, the sideband wave that fluctuates due to the meshing frequency of the gear unit, and the rotational frequency of the pulley belt. Sideband waves or sideband waves that vary due to sideband waves that vary due to the sliding frequency of the rotor bar.
  • the Lx parameter indicated by the magnitude of the sideband peak that fluctuates due to the blade passing frequency of the pump or blower is referred to as the Lbp parameter.
  • the Lx parameter indicated by the magnitude of the sideband peak that fluctuates due to the meshing frequency of the gear device is referred to as the Lgz parameter.
  • the Lx parameter indicated by the peak of the sideband wave that fluctuates due to the rotational frequency of the pulley belt is referred to as the Lbr parameter.
  • the Lx parameter indicated by the magnitude of the peak of the sideband that varies due to any one of the sidebands that varies due to the sliding frequency of the rotor bar is referred to as an Lrs parameter.
  • a pump, a blower, a gear device, a pulley belt, and a rotor bar are examples of auxiliary machines of the target device 30.
  • the Iub parameter is a parameter that represents the power supply quality or the deterioration status of the stator and inverter of the motor.
  • the Iub parameter can be obtained by dividing the difference between the maximum value and the minimum value among the current effective values of the three-phase current signals by the sum of the maximum value and the minimum value. That is, the Iub parameter is a parameter indicating the three-phase current balance of the current signal.
  • the KI parameter increases as the rotor condition deteriorates, and the Lpole parameter decreases as the rotor condition deteriorates. That is, the KI parameter and the Lpole parameter have a correlation with respect to the state of the rotor of the target device 30.
  • the KI parameter increases when the unbalanced state of the motor shaft system deteriorates, and the Lshaft parameter and various Lx parameters decrease when the unbalanced state of the motor shaft system deteriorates. That is, the KI parameter, the Lshaft parameter, and the various Lx parameters have a correlation with respect to the unbalanced state of the shaft system of the motor of the target device 30.
  • the KI parameter increases when the motor shaft misalignment state deteriorates
  • the Lshaft parameter decreases when the motor shaft misalignment state deteriorates. That is, the KI parameter and the Lshaft parameter have a correlation with respect to the misalignment state of the motor shaft system of the target device 30.
  • Both the KI parameter and the Irms parameter increase when the state of load fluctuation deteriorates. That is, the KI parameter and the Irms parameter have a correlation with respect to the load fluctuation state of the target device 30.
  • the KI parameter, the THD parameter, the IHD parameter, and the Iub parameter all increase when the motor stator state or power quality deteriorates.
  • the KI parameter, the THD parameter, the IHD parameter, and the Iub parameter have a correlation with respect to the stator state or power supply quality of the target device 30.
  • Both the Lpole parameter and the Lshaft parameter decrease as the motor condition deteriorates. That is, the Lpole parameter and the Lshaft parameter have a correlation with respect to the state of the rotor of the target device 30.
  • FIG. 3 is a diagram illustrating an example of information stored in the parameter storage unit according to the first embodiment.
  • the parameter storage unit 13 includes a measurement time, a KI parameter, an Lpole parameter, an Lshaft parameter, an Irms parameter, for each measurement time that is a timing related to a certain period (for example, half day or every day).
  • the THD parameter, IHD parameter, Lx parameter, and Iub parameter are stored in association with each other.
  • FIG. 4 is a diagram illustrating an example of information stored in the threshold storage unit according to the first embodiment.
  • the threshold storage unit 14 includes a range of values that are in a normal state and a caution for each of the KI parameter, Lpole parameter, Lshaft parameter, Irms parameter, THD parameter, IHD parameter, Lx parameter, and Iub parameter.
  • a range of values to be in a state and a range of values to be in an abnormal state are stored.
  • the threshold that delimits the range of values that become normal and the range of values that become cautionary state is the first threshold
  • the threshold that delimits the range of values that become cautionary and the range of values that become abnormal is the second threshold value.
  • storing the range of values for the normal state, the range of values for the caution state, and the range of values for the abnormal state is equivalent to storing the first threshold and the second threshold.
  • the range of values for the normal state, the range of values for the caution state, and the range of values for the abnormal state for each current parameter are as follows.
  • the range shown below is an example to the last, and it is not restricted to this about other embodiment.
  • the value range of the KI parameter that is in a normal state is less than 1.0.
  • the range of the value of the KI parameter that becomes the attention state is 1.0 or more and less than 1.5.
  • the range of the value of the KI parameter that becomes an abnormal state is 1.5 or more. That is, the first threshold value related to the KI parameter is 1.0, and the second threshold value related to the KI parameter is 1.5.
  • the range of the value of the Lpole parameter that is in a normal state is over 50 dB.
  • the range of the value of the Lpole parameter that becomes the attention state is more than 40 dB and less than 50 dB.
  • the range of the value of the Lpole parameter that becomes an abnormal state is 40 dB or less. That is, the first threshold value related to the Lpole parameter is 50 dB, and the second threshold value related to the Lpole parameter is 40 dB.
  • the value range of the Lshaft parameter that is in a normal state is more than 50 dB.
  • the range of the value of the Lshaft parameter that is a caution state is more than 40 dB and less than 50 dB.
  • the range of the value of the Lshaft parameter that becomes an abnormal state is 40 dB or less. That is, the first threshold value related to the Lshaft parameter is 50 dB, and the second threshold value related to the Lshaft parameter is 40 dB.
  • the range of the value of the Irms parameter that is in a normal state is a variation of less than ⁇ 10%.
  • the range of the value of the Irms parameter that is a caution state is a variation of ⁇ 10% or more and a variation of less than ⁇ 20%.
  • the range of the value of the Irms parameter that becomes an abnormal state is a variation of ⁇ 20% or more. That is, the first threshold value related to the Irms parameter has a variation of ⁇ 10%, and the second threshold value related to the Irms parameter has a variation of ⁇ 20%.
  • the value range of the THD parameter that is in a normal state is less than 5%.
  • the range of the value of the THD parameter that is the attention state is 5% or more and less than 10%.
  • the range of the value of the THD parameter that becomes an abnormal state is 10% or more. That is, the first threshold value related to the THD parameter is 5%, and the second threshold value related to the THD parameter is 10%.
  • the range of IHD parameter values that will be in a normal state is less than 3%.
  • the range of the value of the IHD parameter that becomes the attention state is 3% or more and less than 5%.
  • the range of the value of the IHD parameter that becomes an abnormal state is 5% or more. That is, the first threshold value related to the IHD parameter is 3%, and the second threshold value related to the IHD parameter is 5%.
  • the value range of the Lx parameter that is in a normal state is over 50 dB.
  • the range of the value of the Lx parameter that is a caution state is more than 40 dB and less than 50 dB.
  • the range of the value of the Lx parameter that becomes an abnormal state is 40 dB or less. That is, the first threshold value related to the Lx parameter is 50 dB, and the second threshold value related to the Lx parameter is 40 dB.
  • the value range of the Iub parameter that is normal is less than 3%.
  • the range of the value of the Iub parameter that is in the attention state is 3% or more and less than 5%.
  • the range of the value of the Iub parameter that is in an abnormal state is 5% or more. That is, the first threshold value related to the Iub parameter is 3%, and the second threshold value related to the Iub parameter is 5%.
  • FIG. 5 is a flowchart showing current parameter calculation processing by the state analysis apparatus according to the first embodiment.
  • the state analysis device 10 executes a current parameter calculation process at each timing related to a certain period.
  • the current acquisition unit 11 of the state analysis device 10 acquires a current signal from the clamp ammeter 60 (step S1). Since the current acquisition unit 11 acquires a current signal at each sampling timing, the current signal acquired by the current acquisition unit 11 indicates a change in the magnitude of the current during a certain period.
  • the parameter calculation unit 12 performs frequency domain conversion on the current signal to generate a frequency domain waveform (step S2).
  • An example of the frequency domain conversion technique is FFT.
  • the parameter calculation unit 12 calculates a current parameter based on the current signal acquired in step S1 and the frequency domain waveform generated in step S2 (step S3).
  • the parameter calculation unit 12 records the calculated current parameter in the parameter storage unit 13 in association with the current time (step S4).
  • the state analysis apparatus 10 can record the time series of the current parameters in the parameter storage unit 13 by executing the above-described current parameter calculation processing at each timing according to a certain period.
  • FIG. 6 is a flowchart showing current parameter display processing by the state analysis apparatus according to the first embodiment.
  • the state analysis apparatus 10 receives an input of a set of current parameters to be displayed (step S11).
  • the input of the set of current parameters is a parameter pair (for example, a pair of Lshaft parameter and Lpole parameter, a pair of THD parameter and IHD parameter, a pair of KI parameter and Lx parameter) which is preset in the state analysis apparatus 10 and has a correlation with each other. Etc.) is received by accepting selection by the user from the list.
  • the input of the current parameter set may be made by the input of any two parameters by the user.
  • the graph generation unit 15 of the state analysis apparatus 10 draws a coordinate space having the axis G1 as each current parameter related to the selected pair (step S12). That is, the graph generation unit 15 draws an orthogonal axis G1 that represents a pair of current parameters.
  • “drawing” means placing a figure in a virtual space (virtual plane).
  • the graph generation unit 15 reads out the first threshold value and the second threshold value associated with each current parameter associated with the selected pair from the threshold storage unit 14, and the division line G2 (the first division line) representing the first threshold value. ) And a dividing line G2 (second dividing line) representing the second threshold value are drawn (step S13).
  • the dividing line G2 representing the threshold value related to one current parameter is a line parallel to the axis G1 representing the one current parameter.
  • the graph generation unit 15 draws on the coordinate space a plot G3 representing the value of each current parameter related to the pair selected from the parameter storage unit 13 and the last recorded value (value after change). (Step S14).
  • the graph generation unit 15 calculates the value of each current parameter associated with the pair selected from the parameter storage unit 13 from the coordinates indicating the second recorded value from the end (the value before the change).
  • An arrow G4 extending to the coordinates representing the value of is drawn on the coordinate space (step S15).
  • the difference between the measurement time associated with the value before the change and the measurement time associated with the value after the change is equal to the time according to a certain period.
  • the arrow G4 becomes longer as the difference between the value before the change and the value after the change is larger. That is, the arrow G4 is longer as the change amount of the current parameter is larger.
  • the transition detection unit 16 determines that at least one value of the current parameter associated with the selected pair is the first threshold value or the first threshold value. It is determined whether or not it has changed across the threshold value 2 (step S16).
  • the graph generation unit 15 uses a predetermined message (for example, “the state of the target device 30 changes to the attention state”). "Done” etc.) is drawn (step S17). The message continues to be displayed until a predetermined time elapses from the timing when the current parameter value crosses the threshold value.
  • the predetermined message may be drawn only when the value of the current parameter changes in a direction in which the state deteriorates across the first threshold value or the second threshold value.
  • the display form of the plot G3 may be different. Examples of the display form of the plot G3 include the color of the plot G3, the size of the plot G3, and the presence or absence of blinking of the plot G3. Note that if the value of the current parameter does not cross the first threshold value and the second threshold value (step S16: NO), the graph generation unit 15 does not draw a predetermined message.
  • the display control unit 17 generates display information based on the graphic drawn by the graph generation unit 15 and outputs the display information to the display device 20 (step S18).
  • the display device 20 includes a dividing line G2 representing the threshold value of the current parameter, a plot G3 representing the value of the pair of current parameters, and an arrow G4 representing the amount of change in the value of the current parameter calculated at different timings. Display the placed graph.
  • FIG. 7 is a diagram illustrating an example of a graph showing the relationship between the KI parameter and the Lpole parameter.
  • the display device 20 displays a graph as shown in FIG.
  • the state of the target device 30 can be determined based on the KI parameter and the Lpole parameter.
  • the KI parameter and the Lpole parameter have a correlation with respect to the state of the rotor of the target device 30. Therefore, the user can easily confirm the state of the rotor of the target device 30 using the graph shown in FIG. Specifically, the KI parameter increases as the rotor condition deteriorates, and the Lpole parameter decreases as the rotor condition deteriorates.
  • the position of the plot G3 usually moves in the lower right direction.
  • the moving direction of the plot G3 is not the lower right direction, it can be determined that an event different from the normal deterioration of the rotor has occurred.
  • FIG. 8 is a diagram illustrating an example of a graph showing the relationship between the IHD parameter and the THD parameter.
  • a graph as shown in FIG. 8 the state of the target device 30 can be determined based on the IHD parameter and the THD parameter.
  • the IHD parameter and the THD parameter have a correlation with respect to the state of the stator of the motor of the target device 30 or the power quality. Therefore, the user can easily confirm the state of the stator of the motor of the target device 30 or the power quality by using the graph shown in FIG. Specifically, the IHD parameter and the THD parameter increase as the motor stator state or power supply quality deteriorates.
  • the position of the plot G3 usually moves in the upper right direction.
  • the moving direction of the plot G3 is not the upper right direction, it can be determined that an event different from the normal state of the stator of the motor or the deterioration of the power supply quality has occurred.
  • FIG. 9 is a diagram illustrating an example of a graph showing the relationship between the Lpole parameter and the Lshaft parameter.
  • the display device 20 displays a graph as shown in FIG.
  • the state of the target device 30 can be determined based on the Lpole parameter and Lshaft.
  • the Lpole parameter and the Lshaft parameter have a correlation with respect to the state of the rotor of the target device 30. Therefore, the user can easily confirm the state of the rotor of the target device 30 using the graph shown in FIG.
  • the Lpole parameter and the Lshaft parameter decrease as the motor condition deteriorates.
  • the Lpole parameter and the Lshaft parameter are parameters that change according to deterioration of different parts of the motor. Therefore, the user can guess the location where the abnormality has occurred in the motor by observing the inclination of the moving direction of the plot G3.
  • the user can use a graph relating to the KI parameter and Lpole parameter pair, a graph relating to the KI parameter and Lshaft parameter pair, and a KI parameter and Lx parameter pair. And a graph related to a pair of an IHD parameter and a THD parameter may be confirmed.
  • the user may check a graph relating to a pair of Lpole parameter and Lshaft parameter, a graph relating to a pair of KI parameter and Lx parameter, and a graph relating to a pair of IHD parameter and THD parameter.
  • the state analysis apparatus 10 includes the dividing line G2 representing the threshold value and the value of the current parameter in the coordinate space about each of the plurality of current parameters having a correlation with each other. Display information is generated in which a plot G3 representing the amount of change and an arrow G4 representing the amount of change in the value of the current parameter are arranged. Thereby, even if the user is not skilled in reading the frequency domain graph, the user can recognize how the state of the target device 30 is changed. As described above, according to the first embodiment, the user can also recognize a state other than the state associated with the individual current parameter. In another embodiment, the current parameter value may be represented by a graphic other than the plot G3.
  • the arrow G4 in the first embodiment is a graphic representing the amount of change in the current parameter, but since the arrow head indicates the value of the current parameter according to one timing, the arrow G4 also indicates the value of the current parameter. It can be said that it represents a figure.
  • the amount of change in the current parameter may be represented by a graphic other than the arrow G4.
  • the magnitude of the change amount of the current parameter may be displayed in a chart or may be represented by the color of the plot G3.
  • the state analysis device 10 generates display information including a predetermined message when at least one value of a plurality of parameters related to different timings crosses a threshold value. Thereby, the user can recognize immediately that the state of the object apparatus 30 changed.
  • the state analysis apparatus 10 changes the display form of the plot G3 depending on whether at least one value of a plurality of parameters related to different timings crosses the threshold value or does not cross the threshold value. May be. This also allows the user to quickly recognize that the state of the target device 30 has changed, as in the first embodiment.
  • the state analysis device 10 causes the display device 20 to display a graph related to a pair of current parameters, but is not limited thereto.
  • the state analysis device 10 may cause the display device 20 to display a high-dimensional graph relating to a set of three or more current parameters.
  • the state analysis apparatus 10 includes a dividing line G2 representing a threshold value and a plot G3 representing a current parameter value in a coordinate space with each of a plurality of current parameters having correlations as axes.
  • the display information in which is arranged is generated, but is not limited thereto.
  • the state analysis apparatus 10 may generate display information that represents a value of one current parameter related to one time and a change amount thereof. Even in such an embodiment, the user can recognize how the state of the target device 30 has changed.
  • the state analysis device 10 performs display control by outputting display information to the display device 20 directly connected to itself, but is not limited thereto.
  • the state analysis device 10 according to another embodiment transmits display information to a device that records display information in a storage medium without performing display control, or to another display device 20 connected via a network. May be.
  • the target device 30 is a rotating machine system in which a motor and an auxiliary machine rotate coaxially, but is not limited thereto.
  • a motor and an auxiliary machine may be connected via a mechanical system such as a gear device.
  • the state analysis device 10 classifies the state of the target device 30 into three categories of a normal state, an abnormal state, and a caution state, but is not limited thereto.
  • the state analysis apparatus 10 may be classified into two categories of a normal state and an abnormal state, or may be classified into four or more categories.
  • FIG. 10 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment.
  • the computer 90 includes a CPU 91, a main storage device 92, an auxiliary storage device 93, and an interface 94.
  • the state analysis apparatus 10 described above is mounted on the computer 90.
  • the operation of each processing unit described above is stored in the auxiliary storage device 93 in the form of a program.
  • the CPU 91 stores the program in the auxiliary storage device 9 3 is loaded into the main storage device 92, and the above processing is executed according to the program. Further, the CPU 91 secures a storage area corresponding to each of the storage units described above in the main storage device 92 according to the program.
  • auxiliary storage device 93 examples include an HDD (Hard Disk Drive), an SSD (Solid State Drive), a magnetic disk, a magneto-optical disk, a CD-ROM (Compact Disc Read Only Memory), and a DVD-ROM (Digital Versatile Disc Read Only. Memory), semiconductor memory, and the like.
  • the auxiliary storage device 93 may be an internal medium directly connected to the bus of the computer 90 or an external medium connected to the computer 90 via the interface 94 or a communication line. When this program is distributed to the computer 90 via a communication line, the computer 90 that has received the distribution may develop the program in the main storage device 92 and execute the above processing.
  • the auxiliary storage device 93 is a tangible storage medium that is not temporary.
  • the program may be for realizing a part of the functions described above. Further, the program may be a so-called difference file (difference program) that realizes the above-described function in combination with another program already stored in the auxiliary storage device 93.
  • difference file difference program
  • the state analysis device the display method, and the program according to the present application, the state of the target device and the change in the state can be easily identified.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing Relating To Insulation (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

A state analyzing device (10) is provided with: an electric current acquiring unit (11) which acquires an electric current signal flowing to a target device (30); a parameter calculating unit (12) which, on the basis of the electric current signal and with a timing related to a fixed cycle, calculates the values of a plurality of parameters which are mutually correlated and vary in accordance with a state of the target device; and a display information generating unit (17) which generates display information in which a dividing line representing a pre-determined threshold serving as a reference for determining the state of the target device, a first shape representing the values of the plurality of parameters relating to one timing, and a second shape representing an amount of change in the values of the plurality of parameters calculated at a different timing are arranged in a coordinate space in which each of the plurality of parameters serves as an axis.

Description

状態分析装置、表示方法、およびプログラムState analysis apparatus, display method, and program
 本発明は、状態分析装置、表示方法、およびプログラムに関する。
 本願は、2017年02月06日に日本に出願された特願2017-019899号について優先権を主張し、その内容をここに援用する。
The present invention relates to a state analysis device, a display method, and a program.
This application claims priority on Japanese Patent Application No. 2017-019899 filed in Japan on Feb. 06, 2017, the contents of which are incorporated herein by reference.
 発電プラント等の設備において、装置の動作の状態を監視するために、装置の所定の箇所に電流クランプを挟み、電流信号を測定することがなされている。この場合、監視装置は、測定された電流信号を高速フーリエ変換することで電流の周波数領域グラフを生成し、画面に表示する(例えば、特許文献1を参照)。そして、検査者は、表示された周波数領域グラフを観察し、装置の異常検出及び識別を行う。具体的には、検査者は、周波数領域グラフの観察結果から装置の所定の動作を表すパラメータを特定し、そのパラメータに関連する動作の状態を特定する。 In facilities such as a power plant, in order to monitor the state of operation of the apparatus, a current clamp is sandwiched at a predetermined portion of the apparatus and a current signal is measured. In this case, the monitoring device generates a frequency domain graph of the current by performing a fast Fourier transform on the measured current signal and displays it on the screen (see, for example, Patent Document 1). Then, the inspector observes the displayed frequency domain graph, and performs abnormality detection and identification of the apparatus. Specifically, the inspector specifies a parameter representing a predetermined operation of the apparatus from the observation result of the frequency domain graph, and specifies an operation state related to the parameter.
特許第5828948号公報Japanese Patent No. 5828948
 しかしながら、周波数領域グラフの読み取りには熟練を要し、熟練者でない者にとっては周波数領域グラフから装置の状態を識別することは困難である。また、周波数領域グラフは装置の瞬時的な状態を表すものの、過去の状態からどのように変化しているかは周波数領域グラフに表れない。そのため、周波数領域グラフの観察のみからは、装置の状態変化を予測することが困難である。さらに、周波数領域グラフから特定したパラメータによれば、当該パラメータに関連する動作の状態を特定することができるが、個別のパラメータに関連付けられていない状態を特定することが困難である。
 本発明の目的は、対象装置の状態および状態の変化を容易に識別することができる状態分析装置、表示方法、およびプログラムを提供することにある。
However, reading the frequency domain graph requires skill, and it is difficult for a non-expert to identify the state of the apparatus from the frequency domain graph. Further, although the frequency domain graph represents the instantaneous state of the apparatus, how the frequency domain graph has changed from the past state cannot be represented on the frequency domain graph. Therefore, it is difficult to predict the state change of the apparatus only from observation of the frequency domain graph. Further, according to the parameter specified from the frequency domain graph, it is possible to specify the state of the operation related to the parameter, but it is difficult to specify the state that is not associated with the individual parameter.
An object of the present invention is to provide a state analysis device, a display method, and a program that can easily identify a state of a target device and a change in the state.
 本発明の第1の態様によれば、状態分析装置は、対象装置に流れる電流信号を取得する電流取得部と、一定の周期に係るタイミングで、前記電流信号に基づいて、前記対象装置の状態によって変動し互いに相関関係を有する複数のパラメータの値を算出するパラメータ算出部と、前記複数のパラメータのそれぞれを軸とした座標空間に、前記対象装置の状態の判断基準となる予め定められた閾値を表す区分線と、一のタイミングに係る前記複数のパラメータの値を表す第1図形と、異なるタイミングにおいて算出された前記複数のパラメータの値の変化量を表す第2図形とを配置した表示情報を生成する表示情報生成部とを備える。 According to the first aspect of the present invention, the state analysis device includes a current acquisition unit that acquires a current signal flowing through the target device, and a state of the target device based on the current signal at a timing related to a certain period. A parameter calculation unit that calculates values of a plurality of parameters that vary depending on each other and have a correlation with each other, and a predetermined threshold value that serves as a determination criterion for the state of the target device in a coordinate space with each of the plurality of parameters as an axis Display information in which a dividing line representing the first figure, the first figure representing the values of the plurality of parameters at one timing, and the second figure representing the amount of change in the values of the plurality of parameters calculated at different timings are arranged A display information generating unit for generating
 本発明の第2の態様によれば、第1の態様に係る状態分析装置は、前記表示情報生成部は、異なるタイミングに係る前記複数のパラメータの少なくとも1つの値が前記閾値を跨ぐ場合に、所定のメッセージを含む前記表示情報を生成するものであってよい。 According to the second aspect of the present invention, in the state analysis device according to the first aspect, the display information generation unit, when at least one value of the plurality of parameters related to different timings crosses the threshold value, The display information including a predetermined message may be generated.
 本発明の第3の態様によれば、第1の態様に係る状態分析装置は、前記表示情報生成部は、異なるタイミングに係る前記複数のパラメータの少なくとも1つの値が前記閾値を跨ぐ場合と前記閾値を跨がない場合とで、前記第1図形の表示形態を異ならせるものであってよい。 According to a third aspect of the present invention, in the state analysis device according to the first aspect, the display information generation unit includes the case where at least one value of the plurality of parameters related to different timings crosses the threshold value, and The display form of the first graphic may be different depending on whether the threshold is not crossed.
 本発明の第4の態様によれば、第1から第3の何れかの態様に係る状態分析装置は、前記対象装置の状態は、前記対象装置が正常である正常状態、前記対象装置が異常である異常状態、および前記対象装置の状態が異常状態に遷移しうる状態である注意状態を含み、前記表示情報生成部は、前記区分線として、前記正常状態と前記注意状態とを区分する第1区分線と、前記注意状態と前記異常状態とを区分する第2区分線とを含む前記表示情報を生成するものであってよい。 According to the fourth aspect of the present invention, in the state analysis device according to any one of the first to third aspects, the state of the target device is a normal state in which the target device is normal, and the target device is abnormal. And the caution state in which the state of the target device can transition to the abnormal state, and the display information generation unit is configured to distinguish the normal state and the caution state as the dividing line. The display information including a first dividing line and a second dividing line that separates the attention state and the abnormal state may be generated.
 本発明の第5の態様によれば、第1から第4の何れかの態様に係る状態分析装置は、前記対象装置は、ロータ回りに回転するモータ、および前記ロータと共に回転する補機を有する装置であって、前記複数のパラメータは、前記対象装置の全般的な状態を表すパラメータ、前記ロータの状態を表すパラメータ、前記ロータおよび前記補機のミスアラインメントの状態を表すパラメータ、前記モータに流れる電流の実効値を示すパラメータ、前記電流に係る電源の品質を表すパラメータ、および前記補機の状態を表すパラメータからなる群から選択された複数のパラメータであるものであってよい。 According to a fifth aspect of the present invention, in the state analysis device according to any one of the first to fourth aspects, the target device includes a motor that rotates around the rotor and an auxiliary device that rotates together with the rotor. A plurality of parameters, a parameter representing a general state of the target device, a parameter representing a state of the rotor, a parameter representing a misalignment state of the rotor and the auxiliary device, and a flow to the motor It may be a plurality of parameters selected from the group consisting of a parameter indicating an effective value of a current, a parameter indicating a quality of a power supply related to the current, and a parameter indicating a state of the auxiliary machine.
 本発明の第6の態様によれば、表示方法は、対象装置に流れる電流信号を取得することと、一定の周期に係るタイミングで、前記電流信号に基づいて、前記対象装置の状態によって変動し互いに相関関係を有する複数のパラメータの値を算出することと、異なるタイミングにおいて算出された前記複数のパラメータの値の変化量を算出することと、前記複数のパラメータのそれぞれを軸とした座標空間に、前記対象装置の状態の判断基準となる閾値を表す区分線と、一のタイミングに係る前記複数のパラメータの値を表す第1図形と、前記変化量を表す第2図形とを配置した表示情報を表示することとを含む。 According to the sixth aspect of the present invention, the display method varies according to the state of the target device based on the current signal at a timing related to acquiring a current signal flowing through the target device and a certain period. Calculating a value of a plurality of parameters having a correlation with each other; calculating a change amount of the value of the plurality of parameters calculated at different timing; and creating a coordinate space about each of the plurality of parameters as an axis Display information in which a dividing line representing a threshold value as a criterion for determining the state of the target device, a first graphic representing the values of the plurality of parameters according to one timing, and a second graphic representing the amount of change are arranged Display.
 本発明の第7の態様によれば、プログラムは、コンピュータに、対象装置に流れる電流信号を取得することと、一定の周期に係るタイミングで、前記電流信号に基づいて、前記対象装置の状態によって変動し互いに相関関係を有する複数のパラメータの値を算出することと、異なるタイミングにおいて算出された前記複数のパラメータの値の変化量を算出することと、前記複数のパラメータのそれぞれを軸とした座標空間に、前記対象装置の状態の判断基準となる閾値を表す区分線と、一のタイミングに係る前記複数のパラメータの値を表す第1図形と、前記変化量を表す第2図形とを配置した表示情報を生成することとを実行させる。 According to the seventh aspect of the present invention, the program acquires a current signal flowing through the target device from a computer, and at a timing related to a certain period, based on the current signal, depending on the state of the target device. Calculating the values of a plurality of parameters that are varied and correlated with each other, calculating the amount of change in the values of the plurality of parameters calculated at different timings, and coordinates about each of the plurality of parameters In the space, a dividing line representing a threshold value as a criterion for determining the state of the target device, a first graphic representing the values of the plurality of parameters related to one timing, and a second graphic representing the amount of change are arranged. Generating display information.
 上記態様のうち少なくとも1つの態様によれば、状態分析装置は、電流信号からパラメータを算出し、当該パラメータを閾値を表す区分線とともに表示させる表示情報を生成する。これにより、表示された情報に基づいて、熟練を要さずとも対象装置の状態を特定することができる。また、状態分析装置は、パラメータの変化量を表す図形を表示させる表示情報を生成する。これにより、表示された情報に基づいて対象装置の状態の遷移を認識することができる。また、状態分析装置は、互いに相関関係を有する複数のパラメータのそれぞれを軸とした座標空間に、パラメータを表す図形を配置する。これにより、パラメータまたはパラメータの変化量の偏りを視認することで、個別のパラメータに関連付けられていない状態を特定することができる。 According to at least one of the above aspects, the state analysis device calculates a parameter from the current signal, and generates display information for displaying the parameter together with a division line representing a threshold value. Thereby, based on the displayed information, the state of the target device can be specified without requiring skill. Further, the state analysis device generates display information for displaying a graphic representing the amount of change in the parameter. Thereby, the state transition of the target device can be recognized based on the displayed information. In addition, the state analysis apparatus arranges a graphic representing a parameter in a coordinate space around each of a plurality of parameters having a correlation with each other. Thereby, the state which is not linked | related with an individual parameter can be pinpointed by visually recognizing the deviation of the parameter or the variation | change_quantity of a parameter.
第1の実施形態に係る状態分析システムの構成を示す概略図である。It is the schematic which shows the structure of the state analysis system which concerns on 1st Embodiment. 第1の実施形態に係る状態分析装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the state analyzer which concerns on 1st Embodiment. 第1の実施形態に係るパラメータ記憶部が記憶する情報の例を示す図である。It is a figure which shows the example of the information which the parameter memory | storage part which concerns on 1st Embodiment memorize | stores. 第1の実施形態に係る閾値記憶部が記憶する情報の例を示す図である。It is a figure which shows the example of the information which the threshold value memory | storage part which concerns on 1st Embodiment memorize | stores. 第1の実施形態に係る状態分析装置による電流パラメータ算出処理を示すフローチャートである。It is a flowchart which shows the current parameter calculation process by the state analyzer which concerns on 1st Embodiment. 第1の実施形態に係る状態分析装置による電流パラメータ表示処理を示すフローチャートである。It is a flowchart which shows the current parameter display process by the state analyzer which concerns on 1st Embodiment. KIパラメータとLpoleパラメータとの関係を示すグラフの例を示す図である。It is a figure which shows the example of the graph which shows the relationship between a KI parameter and a Lpole parameter. IHDパラメータとTHDパラメータとの関係を示すグラフの例を示す図である。It is a figure which shows the example of the graph which shows the relationship between an IHD parameter and a THD parameter. LpoleパラメータとLshaftパラメータとの関係を示すグラフの例を示す図である。It is a figure which shows the example of the graph which shows the relationship between a Lpole parameter and a Lshaft parameter. 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the computer which concerns on at least 1 embodiment.
 以下、図面を参照しながら第1の実施形態について詳しく説明する。
 図1は、第1の実施形態に係る状態分析システムの構成を示す概略図である。
 第1の実施形態に係る状態分析システム1は、状態分析装置10、表示装置20、対象装置30、三相交流電源40、電力線50、クランプ電流計60を備える。
 第1の実施形態に係る状態分析装置10は、検査対象となる対象装置30の状態を表す情報を表示装置20に表示させる。第1の実施形態に係る対象装置30は、三相交流電源で駆動するモータ、モータが備えるロータと共に回転するポンプまたはファンなどの補機を備える回転機械システムである。対象装置30は、電力線50を介して三相交流電源40に接続される。電力線50はクランプ電流計60に挟み込まれる。状態分析システム1は、クランプ電流計60を3つ備え、各クランプ電流計60はそれぞれ異なる電力線を挟み込む。なお、他の実施形態においては、状態分析システム1がクランプ電流計60を1つまたは2つ備え、3本の電力線50のうち一部の電流を計測しないものであってもよい。クランプ電流計60は、電力線50を流れる電流の大きさを計測し、デジタル信号(電流信号)として状態分析装置10に出力する。状態分析装置10は、クランプ電流計60から受信した電流信号に基づいて、対象装置30の状態を表す情報を表示装置20に表示させる。
Hereinafter, the first embodiment will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram illustrating a configuration of a state analysis system according to the first embodiment.
The state analysis system 1 according to the first embodiment includes a state analysis device 10, a display device 20, a target device 30, a three-phase AC power supply 40, a power line 50, and a clamp ammeter 60.
The state analysis device 10 according to the first embodiment causes the display device 20 to display information indicating the state of the target device 30 to be inspected. The target device 30 according to the first embodiment is a rotating machine system including an auxiliary machine such as a motor driven by a three-phase AC power source, a pump or a fan that rotates together with a rotor included in the motor. The target device 30 is connected to the three-phase AC power supply 40 via the power line 50. The power line 50 is sandwiched between the clamp ammeters 60. The state analysis system 1 includes three clamp ammeters 60, and each clamp ammeter 60 sandwiches different power lines. In other embodiments, the state analysis system 1 may include one or two clamp ammeters 60 and may not measure a part of the current among the three power lines 50. The clamp ammeter 60 measures the magnitude of the current flowing through the power line 50 and outputs it as a digital signal (current signal) to the state analysis apparatus 10. The state analysis device 10 causes the display device 20 to display information representing the state of the target device 30 based on the current signal received from the clamp ammeter 60.
 図2は、第1の実施形態に係る状態分析装置の構成を示す概略ブロック図である。
 状態分析装置10は、電流取得部11、パラメータ算出部12、パラメータ記憶部13、閾値記憶部14、グラフ生成部15、遷移検知部16、表示制御部17を備える。
FIG. 2 is a schematic block diagram showing the configuration of the state analysis apparatus according to the first embodiment.
The state analysis device 10 includes a current acquisition unit 11, a parameter calculation unit 12, a parameter storage unit 13, a threshold storage unit 14, a graph generation unit 15, a transition detection unit 16, and a display control unit 17.
 電流取得部11は、クランプ電流計60から電力線50を介して対象装置30に流れる電流信号を取得する。 The current acquisition unit 11 acquires a current signal that flows from the clamp ammeter 60 to the target device 30 via the power line 50.
 パラメータ算出部12は、一定の周期に係るタイミングで、電流取得部11が取得した電流信号に基づいて、対象装置30の状態によって変動する複数のパラメータの値を算出する。以下、パラメータ算出部12によって算出されるパラメータを、電流パラメータとよぶ。具体的な電流パラメータの例については、後述する。パラメータ算出部12が算出する複数の電流パラメータのうち少なくとも2つは、互いに相関関係を有するパラメータである。 The parameter calculation unit 12 calculates the values of a plurality of parameters that vary depending on the state of the target device 30 based on the current signal acquired by the current acquisition unit 11 at a timing related to a certain period. Hereinafter, the parameter calculated by the parameter calculation unit 12 is referred to as a current parameter. Specific examples of current parameters will be described later. At least two of the plurality of current parameters calculated by the parameter calculation unit 12 are parameters having a correlation with each other.
 パラメータ記憶部13は、パラメータ算出部12が算出した電流パラメータの値を算出時刻に関連付けて記憶する。 The parameter storage unit 13 stores the value of the current parameter calculated by the parameter calculation unit 12 in association with the calculation time.
 閾値記憶部14は、各電流パラメータについて、対象装置30の状態の判断基準となる閾値を記憶する。第1の実施形態に係る対象装置30の状態の種別は、対象装置30が正常である正常状態、対象装置30が異常である異常状態、および対象装置30の状態が異常状態に遷移しうる状態である注意状態である。つまり、閾値記憶部14は、各電流パラメータについて、正常状態と注意状態とを区分する第1閾値と、注意状態と異常状態とを区分する第2閾値をと記憶する。 The threshold value storage unit 14 stores a threshold value that is a criterion for determining the state of the target device 30 for each current parameter. The type of the state of the target device 30 according to the first embodiment includes a normal state in which the target device 30 is normal, an abnormal state in which the target device 30 is abnormal, and a state in which the state of the target device 30 can transition to an abnormal state. This is a state of caution. That is, the threshold value storage unit 14 stores, for each current parameter, a first threshold value that distinguishes between a normal state and a caution state, and a second threshold value that distinguishes between a caution state and an abnormal state.
 グラフ生成部15は、パラメータ算出部12が算出した電流パラメータの値および前回の電流パラメータの値から今回の電流パラメータの値への変化量を表すグラフ画像を生成する。グラフ画像は、互いに相関関係を有する2つの電流パラメータを縦軸と横軸とに取ったグラフである。グラフ画像には、各電流パラメータに係る閾値を表す区分線と、2つの電流パラメータの値を表すプロット(第1図形)と、変化量を表す矢印(第2図形)とが配置される。 The graph generation unit 15 generates a graph image representing the amount of change from the current parameter value calculated by the parameter calculation unit 12 and the previous current parameter value to the current current parameter value. The graph image is a graph in which two current parameters having a correlation are taken on the vertical axis and the horizontal axis. In the graph image, a dividing line representing a threshold value related to each current parameter, a plot (first graphic) representing values of two current parameters, and an arrow (second graphic) representing a change amount are arranged.
 遷移検知部16は、各電流パラメータの値が、閾値記憶部14が記憶する閾値を跨いで変化したことを検知する。 The transition detection unit 16 detects that the value of each current parameter has changed across the threshold stored in the threshold storage unit 14.
 表示制御部17は、グラフ生成部が生成したグラフ画面と、遷移検知部16による検知結果とに基づいて、表示装置20に出力する表示情報を生成する。表示制御部17は、表示情報生成部の一例である。 The display control unit 17 generates display information to be output to the display device 20 based on the graph screen generated by the graph generation unit and the detection result by the transition detection unit 16. The display control unit 17 is an example of a display information generation unit.
 ここで、第1の実施形態に係るパラメータ算出部12が算出する電流パラメータについて説明する。
 第1の実施形態に係るパラメータ算出部12は、KIパラメータ、Lpoleパラメータ、Lshaftパラメータ、Irmsパラメータ、THDパラメータ、IHDパラメータ、Lxパラメータ、Iubパラメータを算出する。
Here, the current parameter calculated by the parameter calculation unit 12 according to the first embodiment will be described.
The parameter calculation unit 12 according to the first embodiment calculates a KI parameter, an Lpole parameter, an Lshaft parameter, an Irms parameter, a THD parameter, an IHD parameter, an Lx parameter, and an Iub parameter.
 KIパラメータは、対象装置30の全般的な状態を表すパラメータである。KIパラメータは、電流信号から求められた点検時振幅確率密度関数ft(x)とモータの定格電流を示す基準正弦波信号波形の参照振幅確率密度変数fr(x)とに対するカルバックライブラー情報量である。具体的には、KIパラメータは、以下の式(1)により求められる。 The KI parameter is a parameter that represents the general state of the target device 30. The KI parameter is a Cullback library information amount for the inspection amplitude probability density function ft (x) obtained from the current signal and the reference amplitude probability density variable fr (x) of the reference sine wave signal waveform indicating the rated current of the motor. is there. Specifically, the KI parameter is obtained by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 Lpoleパラメータは、対象装置30のロータの状態を表すパラメータである。Lpoleパラメータは、電流信号を周波数領域変換して得られる周波数スペクトルのうち、電流スペクトルピークを中心として、所定周波数分だけ離れた周波数位置における電流スペクトルの側帯波のピークの大きさである。Lpoleパラメータに係る側帯波は、モータのポール通過周波数に起因して変動する側帯波である。 The Lpole parameter is a parameter that represents the state of the rotor of the target device 30. The Lpole parameter is the size of the sideband wave peak of the current spectrum at a frequency position separated by a predetermined frequency from the current spectrum peak in the frequency spectrum obtained by frequency domain conversion of the current signal. The sideband wave according to the Lpole parameter is a sideband wave that varies due to the pole passing frequency of the motor.
 Lshaftパラメータは、対象装置30のロータおよび補機のミスアラインメントの状態を表すパラメータである。Lshaftパラメータは、電流信号を周波数領域変換して得られる周波数スペクトルのうち、電流スペクトルピークを中心として、所定周波数分だけ離れた周波数位置における電流スペクトルの側帯波のピークの大きさによって求められる。Lshaftパラメータに係る側帯波は、モータの実回転周波数に起因して変動する側帯波である。 The Lshaft parameter is a parameter that represents the misalignment state of the rotor and auxiliary equipment of the target device 30. The Lshaft parameter is obtained by the size of the sideband wave peak of the current spectrum at a frequency position separated from the current spectrum peak by a predetermined frequency in the frequency spectrum obtained by frequency domain conversion of the current signal. The sideband wave related to the Lshaft parameter is a sideband wave that varies due to the actual rotational frequency of the motor.
 Irmsパラメータは、対象装置30の回転機械負荷および状態変動を監視するためのパラメータである。Irmsパラメータは、各サンプリングタイミングにおける電流値の二乗和をサンプリングタイミング数で除算し、その平方根を求めることで得ることができる、電流実効値である。 The Irms parameter is a parameter for monitoring the rotating machine load and state fluctuation of the target device 30. The Irms parameter is an effective current value that can be obtained by dividing the square sum of the current values at each sampling timing by the number of sampling timings and obtaining the square root thereof.
 IHDパラメータは、電流信号の最大高調波成分と電源周波数成分の比率である。IHDパラメータは、電流信号から高調波成分を抽出し、高調波成分の予め設定した次数内にある最大値を、電源周波数実効値で除算することで得ることができる。
 THDパラメータは、電流信号の全高調波成分と電源周波数成分の比率である。THDパラメータは、電流信号から高調波成分を抽出し、予め設定した次数内における各高調波成分の二乗和の平方根を、電流信号の電源周波数実効値で除算することで得ることができる。IHDパラメータおよびTHDパラメータは、いずれも三相交流電源40の品質を表すパラメータである。
The IHD parameter is a ratio between the maximum harmonic component of the current signal and the power supply frequency component. The IHD parameter can be obtained by extracting the harmonic component from the current signal and dividing the maximum value within a preset order of the harmonic component by the power supply frequency effective value.
The THD parameter is the ratio of the total harmonic component of the current signal to the power supply frequency component. The THD parameter can be obtained by extracting a harmonic component from the current signal and dividing the square root of the square sum of each harmonic component within a preset order by the effective value of the power supply frequency of the current signal. Both the IHD parameter and the THD parameter are parameters representing the quality of the three-phase AC power supply 40.
 Lxパラメータは、対象装置30の補機の状態を表すパラメータである。Lxパラメータは、電流信号を周波数領域変換して得られる周波数スペクトルのうち、電流スペクトルピークを中心として、所定周波数分だけ離れた周波数位置における電流スペクトルの側帯波のピークの大きさである。Lxパラメータに係る側帯波は、ポンプまたはブロワのブレード通過周波数に起因して変動する側帯波、歯車装置の噛合い周波数に起因して変動する側帯波、プーリベルトの回転周波数に起因して変動する側帯波、または回転子バーのすべり周波数に起因して変動する側帯波に起因して変動する側帯波である。
 ポンプまたはブロワのブレード通過周波数に起因して変動する側帯波のピークの大きさが示すLxパラメータを、Lbpパラメータという。歯車装置の噛合い周波数に起因して変動する側帯波のピークの大きさが示すLxパラメータを、Lgzパラメータという。プーリベルトの回転周波数に起因して変動する側帯波のピークの大きさが示すLxパラメータを、Lbrパラメータという。および回転子バーのすべり周波数に起因して変動する側帯波のいずれか1つに起因して変動する側帯波のピークの大きさが示すLxパラメータを、Lrsパラメータという。ポンプ、ブロワ、歯車装置、プーリベルト、回転子バーは、対象装置30の補機の一例である。
The Lx parameter is a parameter that represents the state of the auxiliary device of the target device 30. The Lx parameter is the size of the sideband wave peak of the current spectrum at a frequency position separated from the current spectrum peak by a predetermined frequency in the frequency spectrum obtained by frequency domain conversion of the current signal. The sideband wave related to the Lx parameter fluctuates due to the sideband wave that fluctuates due to the blade passing frequency of the pump or blower, the sideband wave that fluctuates due to the meshing frequency of the gear unit, and the rotational frequency of the pulley belt. Sideband waves or sideband waves that vary due to sideband waves that vary due to the sliding frequency of the rotor bar.
The Lx parameter indicated by the magnitude of the sideband peak that fluctuates due to the blade passing frequency of the pump or blower is referred to as the Lbp parameter. The Lx parameter indicated by the magnitude of the sideband peak that fluctuates due to the meshing frequency of the gear device is referred to as the Lgz parameter. The Lx parameter indicated by the peak of the sideband wave that fluctuates due to the rotational frequency of the pulley belt is referred to as the Lbr parameter. The Lx parameter indicated by the magnitude of the peak of the sideband that varies due to any one of the sidebands that varies due to the sliding frequency of the rotor bar is referred to as an Lrs parameter. A pump, a blower, a gear device, a pulley belt, and a rotor bar are examples of auxiliary machines of the target device 30.
 Iubパラメータは、電源品質またはモータの固定子およびインバータの劣化状況を表すパラメータである。Iubパラメータは、3相の電流信号の電流実効値の中の最大値と最小値の差を、その最大値と最小値の和で除算することで求めることができる。つまり、Iubパラメータは、電流信号の三相電流バランスを示すパラメータである。 The Iub parameter is a parameter that represents the power supply quality or the deterioration status of the stator and inverter of the motor. The Iub parameter can be obtained by dividing the difference between the maximum value and the minimum value among the current effective values of the three-phase current signals by the sum of the maximum value and the minimum value. That is, the Iub parameter is a parameter indicating the three-phase current balance of the current signal.
 KIパラメータは、ロータの状態が悪化すると増加し、Lpoleパラメータは、ロータの状態が悪化すると減少する。つまり、KIパラメータとLpoleパラメータとは、対象装置30のロータの状態について相関関係を有する。
 KIパラメータは、モータの軸系のアンバランスの状態が悪化すると増加し、Lshaftパラメータおよび各種Lxパラメータは、モータの軸系のアンバランスの状態が悪化すると減少する。つまり、KIパラメータとLshaftパラメータと各種Lxパラメータとは、対象装置30のモータの軸系のアンバランス状態について相関関係を有する。また、KIパラメータは、モータの軸系のミスアラインメントの状態が悪化すると増加し、Lshaftパラメータは、モータの軸系のミスアラインメントの状態が悪化すると減少する。つまり、KIパラメータとLshaftパラメータとは、対象装置30のモータの軸系のミスアラインメントの状態について相関関係を有する。
 KIパラメータとIrmsパラメータとは、いずれも負荷変動の状態が悪化すると増加する。つまり、KIパラメータとIrmsパラメータとは、対象装置30の負荷変動の状態について相関関係を有する。
 KIパラメータとTHDパラメータとIHDパラメータとIubパラメータとは、いずれもモータの固定子の状態、または電源品質が悪化すると増加する。つまり、KIパラメータとTHDパラメータとIHDパラメータとIubパラメータとは、対象装置30の固定子の状態または電源品質について相関関係を有する。
 LpoleパラメータおよびLshaftパラメータは、いずれもモータの状態が悪化すると減少する。つまり、LpoleパラメータとLshaftパラメータとは、対象装置30のロータの状態について相関関係を有する。
The KI parameter increases as the rotor condition deteriorates, and the Lpole parameter decreases as the rotor condition deteriorates. That is, the KI parameter and the Lpole parameter have a correlation with respect to the state of the rotor of the target device 30.
The KI parameter increases when the unbalanced state of the motor shaft system deteriorates, and the Lshaft parameter and various Lx parameters decrease when the unbalanced state of the motor shaft system deteriorates. That is, the KI parameter, the Lshaft parameter, and the various Lx parameters have a correlation with respect to the unbalanced state of the shaft system of the motor of the target device 30. Further, the KI parameter increases when the motor shaft misalignment state deteriorates, and the Lshaft parameter decreases when the motor shaft misalignment state deteriorates. That is, the KI parameter and the Lshaft parameter have a correlation with respect to the misalignment state of the motor shaft system of the target device 30.
Both the KI parameter and the Irms parameter increase when the state of load fluctuation deteriorates. That is, the KI parameter and the Irms parameter have a correlation with respect to the load fluctuation state of the target device 30.
The KI parameter, the THD parameter, the IHD parameter, and the Iub parameter all increase when the motor stator state or power quality deteriorates. That is, the KI parameter, the THD parameter, the IHD parameter, and the Iub parameter have a correlation with respect to the stator state or power supply quality of the target device 30.
Both the Lpole parameter and the Lshaft parameter decrease as the motor condition deteriorates. That is, the Lpole parameter and the Lshaft parameter have a correlation with respect to the state of the rotor of the target device 30.
 図3は、第1の実施形態に係るパラメータ記憶部が記憶する情報の例を示す図である。 パラメータ記憶部13は、図3に示すように、一定の周期(例えば、半日又は1日毎)に係るタイミングである測定時刻ごとに、当該測定時刻、KIパラメータ、Lpoleパラメータ、Lshaftパラメータ、Irmsパラメータ、THDパラメータ、IHDパラメータ、Lxパラメータ、およびIubパラメータを関連付けて記憶する。 FIG. 3 is a diagram illustrating an example of information stored in the parameter storage unit according to the first embodiment. As shown in FIG. 3, the parameter storage unit 13 includes a measurement time, a KI parameter, an Lpole parameter, an Lshaft parameter, an Irms parameter, for each measurement time that is a timing related to a certain period (for example, half day or every day). The THD parameter, IHD parameter, Lx parameter, and Iub parameter are stored in association with each other.
 図4は、第1の実施形態に係る閾値記憶部が記憶する情報の例を示す図である。
 閾値記憶部14は、図4に示すように、KIパラメータ、Lpoleパラメータ、Lshaftパラメータ、Irmsパラメータ、THDパラメータ、IHDパラメータ、Lxパラメータ、およびIubパラメータのそれぞれについて、正常状態となる値の範囲、注意状態となる値の範囲、および異常状態となる値の範囲を記憶する。ここで、正常状態となる値の範囲と注意状態となる値の範囲を区切る閾値は、第1の閾値であり、注意状態となる値の範囲と異常状態となる値の範囲を区切る閾値は、第2の閾値である。つまり、正常状態となる値の範囲、注意状態となる値の範囲、および異常状態となる値の範囲を記憶することは、第1の閾値および第2の閾値を記憶することと等価である。
FIG. 4 is a diagram illustrating an example of information stored in the threshold storage unit according to the first embodiment.
As shown in FIG. 4, the threshold storage unit 14 includes a range of values that are in a normal state and a caution for each of the KI parameter, Lpole parameter, Lshaft parameter, Irms parameter, THD parameter, IHD parameter, Lx parameter, and Iub parameter. A range of values to be in a state and a range of values to be in an abnormal state are stored. Here, the threshold that delimits the range of values that become normal and the range of values that become cautionary state is the first threshold, and the threshold that delimits the range of values that become cautionary and the range of values that become abnormal. The second threshold value. In other words, storing the range of values for the normal state, the range of values for the caution state, and the range of values for the abnormal state is equivalent to storing the first threshold and the second threshold.
 第1の実施形態においては、各電流パラメータについての正常状態となる値の範囲、注意状態となる値の範囲、および異常状態となる値の範囲は、以下の通りである。なお、以下に示す範囲はあくまで一例であり、他の実施形態についてはこれに限られない。 In the first embodiment, the range of values for the normal state, the range of values for the caution state, and the range of values for the abnormal state for each current parameter are as follows. In addition, the range shown below is an example to the last, and it is not restricted to this about other embodiment.
 正常状態となるKIパラメータの値の範囲は、1.0未満である。注意状態となるKIパラメータの値の範囲は、1.0以上かつ1.5未満である。異常状態となるKIパラメータの値の範囲は、1.5以上である。つまり、KIパラメータに係る第1の閾値は1.0であり、KIパラメータに係る第2の閾値は1.5である。 The value range of the KI parameter that is in a normal state is less than 1.0. The range of the value of the KI parameter that becomes the attention state is 1.0 or more and less than 1.5. The range of the value of the KI parameter that becomes an abnormal state is 1.5 or more. That is, the first threshold value related to the KI parameter is 1.0, and the second threshold value related to the KI parameter is 1.5.
 正常状態となるLpoleパラメータの値の範囲は、50dB超である。注意状態となるLpoleパラメータの値の範囲は、40dB超かつ50dB以下である。異常状態となるLpoleパラメータの値の範囲は、40dB以下である。つまり、Lpoleパラメータに係る第1の閾値は50dBであり、Lpoleパラメータに係る第2の閾値は40dBである。 The range of the value of the Lpole parameter that is in a normal state is over 50 dB. The range of the value of the Lpole parameter that becomes the attention state is more than 40 dB and less than 50 dB. The range of the value of the Lpole parameter that becomes an abnormal state is 40 dB or less. That is, the first threshold value related to the Lpole parameter is 50 dB, and the second threshold value related to the Lpole parameter is 40 dB.
 正常状態となるLshaftパラメータの値の範囲は、50dB超である。注意状態となるLshaftパラメータの値の範囲は、40dB超かつ50dB以下である。異常状態となるLshaftパラメータの値の範囲は、40dB以下である。つまり、Lshaftパラメータに係る第1の閾値は50dBであり、Lshaftパラメータに係る第2の閾値は40dBである。 The value range of the Lshaft parameter that is in a normal state is more than 50 dB. The range of the value of the Lshaft parameter that is a caution state is more than 40 dB and less than 50 dB. The range of the value of the Lshaft parameter that becomes an abnormal state is 40 dB or less. That is, the first threshold value related to the Lshaft parameter is 50 dB, and the second threshold value related to the Lshaft parameter is 40 dB.
 正常状態となるIrmsパラメータの値の範囲は、変動±10%未満である。注意状態となるIrmsパラメータの値の範囲は、変動±10%以上かつ変動±20%未満である。異常状態となるIrmsパラメータの値の範囲は、変動±20%以上である。つまり、Irmsパラメータに係る第1の閾値は変動±10%であり、Irmsパラメータに係る第2の閾値は変動±20%である。 The range of the value of the Irms parameter that is in a normal state is a variation of less than ± 10%. The range of the value of the Irms parameter that is a caution state is a variation of ± 10% or more and a variation of less than ± 20%. The range of the value of the Irms parameter that becomes an abnormal state is a variation of ± 20% or more. That is, the first threshold value related to the Irms parameter has a variation of ± 10%, and the second threshold value related to the Irms parameter has a variation of ± 20%.
 正常状態となるTHDパラメータの値の範囲は、5%未満である。注意状態となるTHDパラメータの値の範囲は、5%以上かつ10%未満である。異常状態となるTHDパラメータの値の範囲は、10%以上である。つまり、THDパラメータに係る第1の閾値は5%であり、THDパラメータに係る第2の閾値は10%である。 The value range of the THD parameter that is in a normal state is less than 5%. The range of the value of the THD parameter that is the attention state is 5% or more and less than 10%. The range of the value of the THD parameter that becomes an abnormal state is 10% or more. That is, the first threshold value related to the THD parameter is 5%, and the second threshold value related to the THD parameter is 10%.
 正常状態となるIHDパラメータの値の範囲は、3%未満である。注意状態となるIHDパラメータの値の範囲は、3%以上かつ5%未満である。異常状態となるIHDパラメータの値の範囲は、5%以上である。つまり、IHDパラメータに係る第1の閾値は3%であり、IHDパラメータに係る第2の閾値は5%である。 The range of IHD parameter values that will be in a normal state is less than 3%. The range of the value of the IHD parameter that becomes the attention state is 3% or more and less than 5%. The range of the value of the IHD parameter that becomes an abnormal state is 5% or more. That is, the first threshold value related to the IHD parameter is 3%, and the second threshold value related to the IHD parameter is 5%.
 正常状態となるLxパラメータの値の範囲は、50dB超である。注意状態となるLxパラメータの値の範囲は、40dB超かつ50dB以下である。異常状態となるLxパラメータの値の範囲は、40dB以下である。つまり、Lxパラメータに係る第1の閾値は50dBであり、Lxパラメータに係る第2の閾値は40dBである。 The value range of the Lx parameter that is in a normal state is over 50 dB. The range of the value of the Lx parameter that is a caution state is more than 40 dB and less than 50 dB. The range of the value of the Lx parameter that becomes an abnormal state is 40 dB or less. That is, the first threshold value related to the Lx parameter is 50 dB, and the second threshold value related to the Lx parameter is 40 dB.
 正常状態となるIubパラメータの値の範囲は、3%未満である。注意状態となるIubパラメータの値の範囲は、3%以上かつ5%未満である。異常状態となるIubパラメータの値の範囲は、5%以上である。つまり、Iubパラメータに係る第1の閾値は3%であり、Iubパラメータに係る第2の閾値は5%である。 The value range of the Iub parameter that is normal is less than 3%. The range of the value of the Iub parameter that is in the attention state is 3% or more and less than 5%. The range of the value of the Iub parameter that is in an abnormal state is 5% or more. That is, the first threshold value related to the Iub parameter is 3%, and the second threshold value related to the Iub parameter is 5%.
 ここで、第1の実施形態に係る状態分析装置10の動作について説明する。
 図5は、第1の実施形態に係る状態分析装置による電流パラメータ算出処理を示すフローチャートである。
 状態分析装置10は、一定の周期に係るタイミングごとに、電流パラメータ算出処理を実行する。状態分析装置10の電流取得部11は、クランプ電流計60から電流信号を取得する(ステップS1)。なお電流取得部11は、サンプリングタイミングごとに電流信号を取得しているため、電流取得部11が取得する電流信号は、一定期間における電流の大きさの変化を示す。次に、パラメータ算出部12は、電流信号を周波数領域変換し、周波数領域波形を生成する(ステップS2)。周波数領域変換の手法としては、FFTが挙げられる。
 パラメータ算出部12は、ステップS1で取得した電流信号とステップS2で生成した周波数領域波形とに基づいて電流パラメータを算出する(ステップS3)。パラメータ算出部12は、算出した電流パラメータを、現在時刻に関連付けてパラメータ記憶部13に記録する(ステップS4)。
 状態分析装置10は、上述した電流パラメータ算出処理を一定の周期に係るタイミングごとに実行することで、パラメータ記憶部13に電流パラメータの時系列を記録することができる。
Here, the operation of the state analysis apparatus 10 according to the first embodiment will be described.
FIG. 5 is a flowchart showing current parameter calculation processing by the state analysis apparatus according to the first embodiment.
The state analysis device 10 executes a current parameter calculation process at each timing related to a certain period. The current acquisition unit 11 of the state analysis device 10 acquires a current signal from the clamp ammeter 60 (step S1). Since the current acquisition unit 11 acquires a current signal at each sampling timing, the current signal acquired by the current acquisition unit 11 indicates a change in the magnitude of the current during a certain period. Next, the parameter calculation unit 12 performs frequency domain conversion on the current signal to generate a frequency domain waveform (step S2). An example of the frequency domain conversion technique is FFT.
The parameter calculation unit 12 calculates a current parameter based on the current signal acquired in step S1 and the frequency domain waveform generated in step S2 (step S3). The parameter calculation unit 12 records the calculated current parameter in the parameter storage unit 13 in association with the current time (step S4).
The state analysis apparatus 10 can record the time series of the current parameters in the parameter storage unit 13 by executing the above-described current parameter calculation processing at each timing according to a certain period.
 図6は、第1の実施形態に係る状態分析装置による電流パラメータ表示処理を示すフローチャートである。
 状態分析装置10は、利用者の操作により電流パラメータの表示指示がなされると、表示対象の電流パラメータの組の入力を受け付ける(ステップS11)。電流パラメータの組の入力は、状態分析装置10に予め設定された互いに相関関係を有するパラメータ対(例えば、LshaftパラメータとLpoleパラメータの対、THDパラメータとIHDパラメータの対、KIパラメータとLxパラメータの対など)のリストの中から利用者による選択を受け付けることでなされる。他の実施形態においては、電流パラメータの組の入力は、利用者による任意の2つのパラメータの入力によってなされてもよい。
FIG. 6 is a flowchart showing current parameter display processing by the state analysis apparatus according to the first embodiment.
When the current parameter display instruction is given by the user's operation, the state analysis apparatus 10 receives an input of a set of current parameters to be displayed (step S11). The input of the set of current parameters is a parameter pair (for example, a pair of Lshaft parameter and Lpole parameter, a pair of THD parameter and IHD parameter, a pair of KI parameter and Lx parameter) which is preset in the state analysis apparatus 10 and has a correlation with each other. Etc.) is received by accepting selection by the user from the list. In other embodiments, the input of the current parameter set may be made by the input of any two parameters by the user.
 次に、状態分析装置10のグラフ生成部15は、選択された対に係る各電流パラメータを軸G1とする座標空間を描画する(ステップS12)。つまり、グラフ生成部15は、対をなす電流パラメータを表す直交する軸G1を描画する。本実施形態において「描画する」とは、仮想空間(仮想平面)上に図形を配置することをいう。次に、グラフ生成部15は、閾値記憶部14から選択された対に係る各電流パラメータに関連付けられた第1閾値および第2閾値を読み出し、第1閾値を表す区分線G2(第1区分線)および第2閾値を表す区分線G2(第2区分線)を描画する(ステップS13)。一の電流パラメータに係る閾値を表す区分線G2は、当該一の電流パラメータを表す軸G1に平行な線である。次に、グラフ生成部15は、パラメータ記憶部13から選択された対に係る各電流パラメータの値であって最後に記録されたもの(変化後の値)を表すプロットG3を座標空間上に描画する(ステップS14)。 Next, the graph generation unit 15 of the state analysis apparatus 10 draws a coordinate space having the axis G1 as each current parameter related to the selected pair (step S12). That is, the graph generation unit 15 draws an orthogonal axis G1 that represents a pair of current parameters. In the present embodiment, “drawing” means placing a figure in a virtual space (virtual plane). Next, the graph generation unit 15 reads out the first threshold value and the second threshold value associated with each current parameter associated with the selected pair from the threshold storage unit 14, and the division line G2 (the first division line) representing the first threshold value. ) And a dividing line G2 (second dividing line) representing the second threshold value are drawn (step S13). The dividing line G2 representing the threshold value related to one current parameter is a line parallel to the axis G1 representing the one current parameter. Next, the graph generation unit 15 draws on the coordinate space a plot G3 representing the value of each current parameter related to the pair selected from the parameter storage unit 13 and the last recorded value (value after change). (Step S14).
 次に、グラフ生成部15は、パラメータ記憶部13から選択された対に係る各電流パラメータの値であって最後から2番目に記録されたもの(変化前の値)を表す座標から、変化後の値を表す座標へ伸びる矢印G4を座標空間上に描画する(ステップS15)。このとき、変化前の値に関連付けられた測定時刻と変化後の値に関連付けられた測定時刻との差は、一定の周期に係る時間に等しい。また矢印G4は、変化前の値と変化後の値の差が大きいほど長くなる。つまり、矢印G4は、電流パラメータの変化量が大きいほど長い。 Next, the graph generation unit 15 calculates the value of each current parameter associated with the pair selected from the parameter storage unit 13 from the coordinates indicating the second recorded value from the end (the value before the change). An arrow G4 extending to the coordinates representing the value of is drawn on the coordinate space (step S15). At this time, the difference between the measurement time associated with the value before the change and the measurement time associated with the value after the change is equal to the time according to a certain period. The arrow G4 becomes longer as the difference between the value before the change and the value after the change is larger. That is, the arrow G4 is longer as the change amount of the current parameter is larger.
 次に、遷移検知部16は、閾値記憶部14が記憶する第1の閾値および第2の閾値に基づいて、選択された対に係る電流パラメータの少なくとも1つの値が、第1の閾値または第2の閾値を跨いで変化したか否かを判定する(ステップS16)。電流パラメータの値が第1の閾値または第2の閾値を跨いで変化した場合(ステップS16:YES)、グラフ生成部15は、所定のメッセージ(例えば、「対象装置30の状態が注意状態に変化しました」など)を描画する(ステップS17)。なお当該メッセージは、電流パラメータの値が閾値を跨いだタイミングから所定時間を経過するまで表示され続ける。なお、他の実施形態においては、電流パラメータの値が第1の閾値または第2の閾値を跨いで状態が悪化する方向に変化した場合にのみ、所定のメッセージを描画してもよい。また、他の実施形態においては、所定のメッセージの描画に代えて、プロットG3の表示形態を異ならせてもよい。プロットG3の表示形態の例としては、プロットG3の色、プロットG3の大きさ、プロットG3の点滅の有無などが挙げられる。
 なお、電流パラメータの値が第1の閾値および第2の閾値を跨がない場合(ステップS16:NO)、グラフ生成部15は、所定のメッセージの描画を行わない。
Next, based on the first threshold value and the second threshold value stored in the threshold value storage unit 14, the transition detection unit 16 determines that at least one value of the current parameter associated with the selected pair is the first threshold value or the first threshold value. It is determined whether or not it has changed across the threshold value 2 (step S16). When the value of the current parameter changes across the first threshold value or the second threshold value (step S16: YES), the graph generation unit 15 uses a predetermined message (for example, “the state of the target device 30 changes to the attention state”). "Done" etc.) is drawn (step S17). The message continues to be displayed until a predetermined time elapses from the timing when the current parameter value crosses the threshold value. In another embodiment, the predetermined message may be drawn only when the value of the current parameter changes in a direction in which the state deteriorates across the first threshold value or the second threshold value. In another embodiment, instead of drawing a predetermined message, the display form of the plot G3 may be different. Examples of the display form of the plot G3 include the color of the plot G3, the size of the plot G3, and the presence or absence of blinking of the plot G3.
Note that if the value of the current parameter does not cross the first threshold value and the second threshold value (step S16: NO), the graph generation unit 15 does not draw a predetermined message.
 そして、表示制御部17は、グラフ生成部15が描画した図形に基づいて表示情報を生成し、当該表示情報を表示装置20に出力する(ステップS18)。これにより、表示装置20は、電流パラメータの閾値を表す区分線G2と、一対の電流パラメータの値を表すプロットG3と、異なるタイミングにおいて算出された電流パラメータの値の変化量を表す矢印G4とが配置されたグラフを表示する。 The display control unit 17 generates display information based on the graphic drawn by the graph generation unit 15 and outputs the display information to the display device 20 (step S18). As a result, the display device 20 includes a dividing line G2 representing the threshold value of the current parameter, a plot G3 representing the value of the pair of current parameters, and an arrow G4 representing the amount of change in the value of the current parameter calculated at different timings. Display the placed graph.
 図7は、KIパラメータとLpoleパラメータとの関係を示すグラフの例を示す図である。
 ステップS11で利用者がKIパラメータとLpoleパラメータの対を選択した場合、表示装置20には、図7に示すようなグラフが表示される。図7に示すグラフによれば、KIパラメータとLpoleパラメータとに基づいて対象装置30の状態を判断することができる。KIパラメータとLpoleパラメータとは、対象装置30のロータの状態について相関関係を有する。そのため、利用者は、図7に示すグラフにより対象装置30のロータの状態を容易に確認することができる。具体的には、KIパラメータは、ロータの状態が悪化すると増加し、Lpoleパラメータは、ロータの状態が悪化すると減少する。つまり、ロータの状態が悪化すると、通常、プロットG3の位置が右下方向へ移動する。一方、プロットG3の移動方向が右下方向でない場合、通常のロータの劣化とは異なる事象が生じていると判断することができる。利用者がKIパラメータとLshaftパラメータの対を選択した場合、利用者がKIパラメータとLxパラメータの対を選択した場合にも、表示装置20に図7と類似のグラフが表示される。
FIG. 7 is a diagram illustrating an example of a graph showing the relationship between the KI parameter and the Lpole parameter.
When the user selects a pair of the KI parameter and the Lpole parameter in step S11, the display device 20 displays a graph as shown in FIG. According to the graph shown in FIG. 7, the state of the target device 30 can be determined based on the KI parameter and the Lpole parameter. The KI parameter and the Lpole parameter have a correlation with respect to the state of the rotor of the target device 30. Therefore, the user can easily confirm the state of the rotor of the target device 30 using the graph shown in FIG. Specifically, the KI parameter increases as the rotor condition deteriorates, and the Lpole parameter decreases as the rotor condition deteriorates. That is, when the state of the rotor deteriorates, the position of the plot G3 usually moves in the lower right direction. On the other hand, when the moving direction of the plot G3 is not the lower right direction, it can be determined that an event different from the normal deterioration of the rotor has occurred. When the user selects a KI parameter / Lshaft parameter pair, and the user selects a KI parameter / Lx parameter pair, a graph similar to FIG. 7 is displayed on the display device 20.
 図8は、IHDパラメータとTHDパラメータとの関係を示すグラフの例を示す図である。
 ステップS11で利用者がIHDパラメータとTHDパラメータの対を選択した場合、表示装置20には、図8に示すようなグラフが表示される。図8に示すグラフによれば、IHDパラメータとTHDパラメータとに基づいて対象装置30の状態を判断することができる。IHDパラメータとTHDパラメータとは、対象装置30のモータの固定子の状態または電源品質について相関関係を有する。そのため、利用者は、図8に示すグラフにより対象装置30のモータの固定子の状態または電源品質を容易に確認することができる。具体的には、IHDパラメータおよびTHDパラメータは、モータの固定子の状態または電源品質が悪化すると増加する。つまり、モータの固定子の状態または電源品質が悪化すると、通常、プロットG3の位置が右上方向へ移動する。一方、プロットG3の移動方向が右上方向でない場合、通常のモータの固定子の状態または電源品質の劣化とは異なる事象が生じていると判断することができる。
FIG. 8 is a diagram illustrating an example of a graph showing the relationship between the IHD parameter and the THD parameter.
When the user selects a pair of IHD parameter and THD parameter in step S11, a graph as shown in FIG. According to the graph shown in FIG. 8, the state of the target device 30 can be determined based on the IHD parameter and the THD parameter. The IHD parameter and the THD parameter have a correlation with respect to the state of the stator of the motor of the target device 30 or the power quality. Therefore, the user can easily confirm the state of the stator of the motor of the target device 30 or the power quality by using the graph shown in FIG. Specifically, the IHD parameter and the THD parameter increase as the motor stator state or power supply quality deteriorates. That is, when the state of the stator of the motor or the power quality deteriorates, the position of the plot G3 usually moves in the upper right direction. On the other hand, when the moving direction of the plot G3 is not the upper right direction, it can be determined that an event different from the normal state of the stator of the motor or the deterioration of the power supply quality has occurred.
 図9は、LpoleパラメータとLshaftパラメータとの関係を示すグラフの例を示す図である。
 ステップS11で利用者がLpoleパラメータとLshaftパラメータの対を選択した場合、表示装置20には、図9に示すようなグラフが表示される。図9に示すグラフによれば、LpoleパラメータとLshaftとに基づいて対象装置30の状態を判断することができる。LpoleパラメータとLshaftパラメータとは、対象装置30のロータの状態について相関関係を有する。そのため、利用者は、図9に示すグラフにより対象装置30のロータの状態を容易に確認することができる。具体的には、LpoleパラメータおよびLshaftパラメータは、モータの状態が悪化すると減少する。ここで、LpoleパラメータおよびLshaftパラメータは、それぞれモータの異なる部位の劣化に応じて変化するパラメータである。したがって、利用者は、プロットG3の移動方向の傾きを観察することで、モータにおいて異常が発生している箇所を推測することができる。
FIG. 9 is a diagram illustrating an example of a graph showing the relationship between the Lpole parameter and the Lshaft parameter.
When the user selects a pair of the Lpole parameter and the Lshaft parameter in step S11, the display device 20 displays a graph as shown in FIG. According to the graph shown in FIG. 9, the state of the target device 30 can be determined based on the Lpole parameter and Lshaft. The Lpole parameter and the Lshaft parameter have a correlation with respect to the state of the rotor of the target device 30. Therefore, the user can easily confirm the state of the rotor of the target device 30 using the graph shown in FIG. Specifically, the Lpole parameter and the Lshaft parameter decrease as the motor condition deteriorates. Here, the Lpole parameter and the Lshaft parameter are parameters that change according to deterioration of different parts of the motor. Therefore, the user can guess the location where the abnormality has occurred in the motor by observing the inclination of the moving direction of the plot G3.
 なお、各電流パラメータが示す対象装置30の状態を確認したい場合、利用者は、KIパラメータとLpoleパラメータの対に係るグラフ、KIパラメータとLshaftパラメータの対に係るグラフ、KIパラメータとLxパラメータの対に係るグラフ、およびIHDパラメータとTHDパラメータの対に係るグラフを確認すればよい。または、利用者は、LpoleパラメータとLshaftパラメータの対に係るグラフ、KIパラメータとLxパラメータの対に係るグラフ、およびIHDパラメータとTHDパラメータの対に係るグラフを確認すればよい。 When the user wants to confirm the state of the target device 30 indicated by each current parameter, the user can use a graph relating to the KI parameter and Lpole parameter pair, a graph relating to the KI parameter and Lshaft parameter pair, and a KI parameter and Lx parameter pair. And a graph related to a pair of an IHD parameter and a THD parameter may be confirmed. Alternatively, the user may check a graph relating to a pair of Lpole parameter and Lshaft parameter, a graph relating to a pair of KI parameter and Lx parameter, and a graph relating to a pair of IHD parameter and THD parameter.
 このように、第1の実施形態によれば、状態分析装置10は、互いに相関関係を有する複数の電流パラメータのそれぞれを軸とした座標空間に、閾値を表す区分線G2と、電流パラメータの値を表すプロットG3と、電流パラメータの値の変化量を表す矢印G4とを配置した表示情報を生成する。これにより、利用者は、周波数領域グラフの読み取りには熟練していなくても、対象装置30の状態がどのように変化しているかを認識することができる。また、上述したように、第1の実施形態によれば、利用者は、個別の電流パラメータに関連付けられた状態以外の状態についても認識することが可能である。なお、他の実施形態としては、電流パラメータの値をプロットG3以外の図形で表してもよい。例えば、第1の実施形態の矢印G4は、電流パラメータの変化量を表す図形であるが、そのアローヘッドは一のタイミングに係る電流パラメータの値を示すため、当該矢印G4も電流パラメータの値を表す図形といえる。また、他の実施形態としては、電流パラメータの変化量を矢印G4以外の図形で表してもよい。例えば、電流パラメータの変化量の大きさをチャート表示してもよいし、プロットG3の色によって表してもよい。 As described above, according to the first embodiment, the state analysis apparatus 10 includes the dividing line G2 representing the threshold value and the value of the current parameter in the coordinate space about each of the plurality of current parameters having a correlation with each other. Display information is generated in which a plot G3 representing the amount of change and an arrow G4 representing the amount of change in the value of the current parameter are arranged. Thereby, even if the user is not skilled in reading the frequency domain graph, the user can recognize how the state of the target device 30 is changed. As described above, according to the first embodiment, the user can also recognize a state other than the state associated with the individual current parameter. In another embodiment, the current parameter value may be represented by a graphic other than the plot G3. For example, the arrow G4 in the first embodiment is a graphic representing the amount of change in the current parameter, but since the arrow head indicates the value of the current parameter according to one timing, the arrow G4 also indicates the value of the current parameter. It can be said that it represents a figure. In another embodiment, the amount of change in the current parameter may be represented by a graphic other than the arrow G4. For example, the magnitude of the change amount of the current parameter may be displayed in a chart or may be represented by the color of the plot G3.
 また、第1の実施形態によれば、状態分析装置10は、異なるタイミングに係る複数のパラメータの少なくとも1つの値が閾値を跨ぐ場合に、所定のメッセージを含む表示情報を生成する。これにより、利用者は、対象装置30の状態が変化したことを早急に認識することができる。なお、他の実施形態においては、状態分析装置10は、異なるタイミングに係る複数のパラメータの少なくとも1つの値が閾値を跨ぐ場合と閾値を跨がない場合とで、プロットG3の表示形態を異ならせてもよい。これによっても、第1の実施形態と同様に、利用者は、対象装置30の状態が変化したことを早急に認識することができる。 Further, according to the first embodiment, the state analysis device 10 generates display information including a predetermined message when at least one value of a plurality of parameters related to different timings crosses a threshold value. Thereby, the user can recognize immediately that the state of the object apparatus 30 changed. In other embodiments, the state analysis apparatus 10 changes the display form of the plot G3 depending on whether at least one value of a plurality of parameters related to different timings crosses the threshold value or does not cross the threshold value. May be. This also allows the user to quickly recognize that the state of the target device 30 has changed, as in the first embodiment.
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
 例えば、上述した実施形態に係る状態分析装置10は、電流パラメータの対に係るグラフを表示装置20に表示させるが、これに限られない。例えば、他の実施形態に係る状態分析装置10は、3つ以上の電流パラメータの組に係る高次元グラフを表示装置20に表示させてもよい。
 また、上述した実施形態に係る状態分析装置10は、互いに相関関係を有する複数の電流パラメータのそれぞれを軸とした座標空間に、閾値を表す区分線G2と、電流パラメータの値を表すプロットG3とを配置した表示情報を生成するが、これに限られない。例えば、他の実施形態に係る状態分析装置10は、一の時刻に係る一の電流パラメータの値と、その変化量とを表す表示情報を生成してもよい。このような実施形態であっても、利用者は、対象装置30の状態がどのように変化しているかを認識することはできる。
As described above, the embodiment has been described in detail with reference to the drawings. However, the specific configuration is not limited to that described above, and various design changes and the like can be made.
For example, the state analysis device 10 according to the above-described embodiment causes the display device 20 to display a graph related to a pair of current parameters, but is not limited thereto. For example, the state analysis device 10 according to another embodiment may cause the display device 20 to display a high-dimensional graph relating to a set of three or more current parameters.
In addition, the state analysis apparatus 10 according to the above-described embodiment includes a dividing line G2 representing a threshold value and a plot G3 representing a current parameter value in a coordinate space with each of a plurality of current parameters having correlations as axes. The display information in which is arranged is generated, but is not limited thereto. For example, the state analysis apparatus 10 according to another embodiment may generate display information that represents a value of one current parameter related to one time and a change amount thereof. Even in such an embodiment, the user can recognize how the state of the target device 30 has changed.
 また、上述した実施形態に係る状態分析装置10は、自身に直接接続された表示装置20に表示情報を出力することで表示制御を行うが、これに限られない。例えば、他の実施形態に係る状態分析装置10は、表示制御を行わずに、表示情報を記憶媒体に記録するものや、ネットワークを介して接続された他の表示装置20に表示情報を送信してもよい。 Further, the state analysis device 10 according to the above-described embodiment performs display control by outputting display information to the display device 20 directly connected to itself, but is not limited thereto. For example, the state analysis device 10 according to another embodiment transmits display information to a device that records display information in a storage medium without performing display control, or to another display device 20 connected via a network. May be.
 また、上述した実施形態に係る対象装置30は、モータと補機とが同軸で回転する回転機械システムであるが、これに限られない。例えば、他の実施形態に係る対象装置30は、モータと補機とが歯車装置などの機械系を介して接続されるものであってもよい。 Further, the target device 30 according to the above-described embodiment is a rotating machine system in which a motor and an auxiliary machine rotate coaxially, but is not limited thereto. For example, in the target device 30 according to another embodiment, a motor and an auxiliary machine may be connected via a mechanical system such as a gear device.
 また、上述した実施形態に係る状態分析装置10は、対象装置30の状態を正常状態、異常状態、注意状態の3つの区分に分類するが、これに限られない。例えば、他の実施形態に係る状態分析装置10は、正常状態と異常状態の2つの区分に分類してもよいし、4つ以上の区分に分類してもよい。 Further, the state analysis device 10 according to the above-described embodiment classifies the state of the target device 30 into three categories of a normal state, an abnormal state, and a caution state, but is not limited thereto. For example, the state analysis apparatus 10 according to another embodiment may be classified into two categories of a normal state and an abnormal state, or may be classified into four or more categories.
 図10は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 コンピュータ90は、CPU91、主記憶装置92、補助記憶装置93、インタフェース94を備える。
 上述の状態分析装置10は、コンピュータ90に実装される。そして、上述した各処理部の動作は、プログラムの形式で補助記憶装置93に記憶されている。CPU91は、プログラムを補助記憶装置9
3から読み出して主記憶装置92に展開し、当該プログラムに従って上記処理を実行する。また、CPU91は、プログラムに従って、上述した各記憶部に対応する記憶領域を主記憶装置92に確保する。
FIG. 10 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment.
The computer 90 includes a CPU 91, a main storage device 92, an auxiliary storage device 93, and an interface 94.
The state analysis apparatus 10 described above is mounted on the computer 90. The operation of each processing unit described above is stored in the auxiliary storage device 93 in the form of a program. The CPU 91 stores the program in the auxiliary storage device 9
3 is loaded into the main storage device 92, and the above processing is executed according to the program. Further, the CPU 91 secures a storage area corresponding to each of the storage units described above in the main storage device 92 according to the program.
 補助記憶装置93の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。補助記憶装置93は、コンピュータ90のバスに直接接続された内部メディアであってもよいし、インタフェース94または通信回線を介してコンピュータ90に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ90に配信される場合、配信を受けたコンピュータ90が当該プログラムを主記憶装置92に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、補助記憶装置93は、一時的でない有形の記憶媒体である。 Examples of the auxiliary storage device 93 include an HDD (Hard Disk Drive), an SSD (Solid State Drive), a magnetic disk, a magneto-optical disk, a CD-ROM (Compact Disc Read Only Memory), and a DVD-ROM (Digital Versatile Disc Read Only. Memory), semiconductor memory, and the like. The auxiliary storage device 93 may be an internal medium directly connected to the bus of the computer 90 or an external medium connected to the computer 90 via the interface 94 or a communication line. When this program is distributed to the computer 90 via a communication line, the computer 90 that has received the distribution may develop the program in the main storage device 92 and execute the above processing. In at least one embodiment, the auxiliary storage device 93 is a tangible storage medium that is not temporary.
 また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能を補助記憶装置93に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。 Further, the program may be for realizing a part of the functions described above. Further, the program may be a so-called difference file (difference program) that realizes the above-described function in combination with another program already stored in the auxiliary storage device 93.
 本願に係る状態分析装置、表示方法、およびプログラムによれば、対象装置の状態および状態の変化を容易に識別することができる。 According to the state analysis device, the display method, and the program according to the present application, the state of the target device and the change in the state can be easily identified.
1 状態分析システム
10 状態分析装置
11 電流取得部
12 パラメータ算出部
13 パラメータ記憶部
14 閾値記憶部
15 グラフ生成部
16 遷移検知部
17 表示制御部
20 表示装置
30 対象装置
40 三相交流電源
50 電力線
60 クランプ電流計
G1 軸
G2 区分線
G3 プロット
G4 矢印
DESCRIPTION OF SYMBOLS 1 State analysis system 10 State analysis apparatus 11 Current acquisition part 12 Parameter calculation part 13 Parameter storage part 14 Threshold storage part 15 Graph generation part 16 Transition detection part 17 Display control part 20 Display apparatus 30 Target apparatus 40 Three-phase alternating current power supply 50 Power line 60 Clamp ammeter G1 Axis G2 Dividing line G3 Plot G4 Arrow

Claims (7)

  1.  対象装置に流れる電流信号を取得する電流取得部と、
     一定の周期に係るタイミングで、前記電流信号に基づいて、前記対象装置の状態によって変動し互いに相関関係を有する複数のパラメータの値を算出するパラメータ算出部と、
     前記複数のパラメータのそれぞれを軸とした座標空間に、前記対象装置の状態の判断基準となる予め定められた閾値を表す区分線と、一のタイミングに係る前記複数のパラメータの値を表す第1図形と、異なるタイミングにおいて算出された前記複数のパラメータの値の変化量を表す第2図形とを配置した表示情報を生成する表示情報生成部と
     を備える状態分析装置。
    A current acquisition unit for acquiring a current signal flowing through the target device;
    A parameter calculation unit that calculates values of a plurality of parameters that vary depending on the state of the target device and have a correlation with each other based on the current signal at a timing related to a certain period;
    In the coordinate space with each of the plurality of parameters as axes, a division line representing a predetermined threshold value serving as a determination criterion for the state of the target device, and a first value representing the values of the plurality of parameters related to one timing A state analysis apparatus comprising: a display information generation unit configured to generate display information in which a graphic and a second graphic representing the amount of change in the values of the plurality of parameters calculated at different timings are arranged.
  2.  前記表示情報生成部は、異なるタイミングに係る前記複数のパラメータの少なくとも1つの値が前記閾値を跨ぐ場合に、所定のメッセージを含む前記表示情報を生成する
     請求項1に記載の状態分析装置。
    The state analysis device according to claim 1, wherein the display information generation unit generates the display information including a predetermined message when at least one value of the plurality of parameters relating to different timings crosses the threshold value.
  3.  前記表示情報生成部は、異なるタイミングに係る前記複数のパラメータの少なくとも1つの値が前記閾値を跨ぐ場合と前記閾値を跨がない場合とで、前記第1図形の表示形態を異ならせる
     請求項1または請求項2に記載の状態分析装置。
    The display information generation unit changes the display form of the first graphic depending on whether at least one value of the plurality of parameters relating to different timings crosses the threshold and when the value does not cross the threshold. Or the state analysis apparatus of Claim 2.
  4.  前記対象装置の状態は、前記対象装置が正常である正常状態、前記対象装置が異常である異常状態、および前記対象装置の状態が異常状態に遷移しうる状態である注意状態を含み、
     前記表示情報生成部は、前記区分線として、前記正常状態と前記注意状態とを区分する第1区分線と、前記注意状態と前記異常状態とを区分する第2区分線とを含む前記表示情報を生成する
     請求項1から請求項3の何れか1項に記載の状態分析装置。
    The state of the target device includes a normal state where the target device is normal, an abnormal state where the target device is abnormal, and a caution state where the state of the target device can transition to an abnormal state,
    The display information generation unit includes the display information including, as the dividing line, a first dividing line for dividing the normal state and the attention state, and a second dividing line for dividing the attention state and the abnormal state. The state analysis apparatus according to any one of claims 1 to 3.
  5.  前記対象装置は、ロータ回りに回転するモータ、および前記ロータと共に回転する補機を有する装置であって、
     前記複数のパラメータは、前記対象装置の全般的な状態を表すパラメータ、前記ロータの状態を表すパラメータ、前記ロータおよび前記補機のミスアラインメントの状態を表すパラメータ、前記モータに流れる電流の実効値を示すパラメータ、前記電流に係る電源の品質を表すパラメータ、および前記補機の状態を表すパラメータからなる群から選択された複数のパラメータである
     請求項1から請求項4の何れか1項に記載の状態分析装置。
    The target device is a device having a motor that rotates around a rotor and an auxiliary device that rotates together with the rotor,
    The plurality of parameters include a parameter that represents a general state of the target device, a parameter that represents the state of the rotor, a parameter that represents a misalignment state of the rotor and the auxiliary machine, and an effective value of a current flowing through the motor. 5. The plurality of parameters selected from the group consisting of a parameter indicating a parameter indicating a quality of a power supply related to the current, and a parameter indicating a state of the auxiliary machine. Condition analysis device.
  6.  対象装置に流れる電流信号を取得することと、
     一定の周期に係るタイミングで、前記電流信号に基づいて、前記対象装置の状態によって変動し互いに相関関係を有する複数のパラメータの値を算出することと、
     異なるタイミングにおいて算出された前記複数のパラメータの値の変化量を算出することと、
     前記複数のパラメータのそれぞれを軸とした座標空間に、前記対象装置の状態の判断基準となる閾値を表す区分線と、一のタイミングに係る前記複数のパラメータの値を表す第1図形と、前記変化量を表す第2図形とを配置した表示情報を表示することと
     を含む表示方法。
    Obtaining a current signal flowing through the target device;
    Calculating values of a plurality of parameters that vary depending on the state of the target device and have a correlation with each other based on the current signal at a timing related to a certain period;
    Calculating the amount of change in the values of the plurality of parameters calculated at different timings;
    In a coordinate space with each of the plurality of parameters as axes, a dividing line representing a threshold value serving as a determination criterion for the state of the target device, a first graphic representing values of the plurality of parameters related to one timing, Displaying the display information in which the second graphic representing the amount of change is arranged.
  7.  コンピュータに、
     対象装置に流れる電流信号を取得することと、
     一定の周期に係るタイミングで、前記電流信号に基づいて、前記対象装置の状態によって変動し互いに相関関係を有する複数のパラメータの値を算出することと、
     異なるタイミングにおいて算出された前記複数のパラメータの値の変化量を算出することと、
     前記複数のパラメータのそれぞれを軸とした座標空間に、前記対象装置の状態の判断基準となる閾値を表す区分線と、一のタイミングに係る前記複数のパラメータの値を表す第1図形と、前記変化量を表す第2図形とを配置した表示情報を生成することと
     を実行させるためのプログラム。
    On the computer,
    Obtaining a current signal flowing through the target device;
    Calculating values of a plurality of parameters that vary depending on the state of the target device and have a correlation with each other based on the current signal at a timing related to a certain period;
    Calculating the amount of change in the values of the plurality of parameters calculated at different timings;
    In a coordinate space with each of the plurality of parameters as axes, a dividing line representing a threshold value serving as a determination criterion for the state of the target device, a first graphic representing values of the plurality of parameters related to one timing, Generating display information in which a second graphic representing the amount of change is arranged.
PCT/JP2018/003585 2017-02-06 2018-02-02 State analyzing device, display method, and program WO2018143404A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880009002.3A CN110235010B (en) 2017-02-06 2018-02-02 State analysis device, display method, and storage medium
SG11201907246RA SG11201907246RA (en) 2017-02-06 2018-02-02 Condition analyzing device, display method, and program
KR1020197022705A KR102238869B1 (en) 2017-02-06 2018-02-02 State analysis device, display method, and program
PH12019501815A PH12019501815A1 (en) 2017-02-06 2019-08-06 Condition analying device, display method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017019899A JP6793565B2 (en) 2017-02-06 2017-02-06 State analyzer, display method, and program
JP2017-019899 2017-02-06

Publications (1)

Publication Number Publication Date
WO2018143404A1 true WO2018143404A1 (en) 2018-08-09

Family

ID=63039856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003585 WO2018143404A1 (en) 2017-02-06 2018-02-02 State analyzing device, display method, and program

Country Status (7)

Country Link
JP (1) JP6793565B2 (en)
KR (1) KR102238869B1 (en)
CN (1) CN110235010B (en)
PH (1) PH12019501815A1 (en)
SG (1) SG11201907246RA (en)
TW (1) TWI683112B (en)
WO (1) WO2018143404A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4043853A4 (en) * 2019-11-08 2022-12-07 DMG Mori Co., Ltd. Machine tool and display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021196267A (en) * 2020-06-15 2021-12-27 三菱パワー株式会社 Sign determination device, sign determination method, and program
KR102451079B1 (en) * 2020-12-24 2022-10-06 주식회사 크로커스 Visual Abstraction Analysis Method of Power System

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3392526B2 (en) * 1994-07-29 2003-03-31 株式会社東芝 Equipment maintenance management support equipment
JP2013055777A (en) * 2011-09-02 2013-03-21 Mitsubishi Electric Corp Control data collection estimation device and control data collection estimation method
JP2013062950A (en) * 2011-09-13 2013-04-04 Denso Corp Control apparatus for rotary machine
JP2016095751A (en) * 2014-11-17 2016-05-26 富士通株式会社 Abnormality unit identification program, abnormality unit identification method and abnormality unit identification system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129232A (en) * 1993-11-08 1995-05-19 Toshiba Corp Plant monitor device
JP4258412B2 (en) * 2004-03-25 2009-04-30 トヨタ自動車株式会社 Inspection apparatus and inspection method for rotating electrical machine
CN102870057B (en) * 2010-04-08 2015-01-28 株式会社日立制作所 Plant diagnosis device, diagnosis method, and diagnosis program
JP5813317B2 (en) * 2010-12-28 2015-11-17 株式会社東芝 Process status monitoring device
KR101456589B1 (en) * 2012-12-05 2014-11-03 (주)나다에스앤브이 State Management System For Machine Equipment
CN103995245B (en) * 2014-06-10 2017-02-01 哈尔滨工业大学 Fault judgment method of stator and rotor current signal detection system of doubly-fed wind generator
JP6371236B2 (en) * 2015-02-23 2018-08-08 株式会社日立製作所 Predictive diagnostic system, predictive diagnostic method, and predictive diagnostic apparatus
JP5985099B1 (en) * 2016-03-31 2016-09-06 株式会社高田工業所 Rotating machine system abnormality detection method, rotating machine system abnormality monitoring method using the abnormality detection method, and rotating machine system abnormality monitoring apparatus using the abnormality monitoring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3392526B2 (en) * 1994-07-29 2003-03-31 株式会社東芝 Equipment maintenance management support equipment
JP2013055777A (en) * 2011-09-02 2013-03-21 Mitsubishi Electric Corp Control data collection estimation device and control data collection estimation method
JP2013062950A (en) * 2011-09-13 2013-04-04 Denso Corp Control apparatus for rotary machine
JP2016095751A (en) * 2014-11-17 2016-05-26 富士通株式会社 Abnormality unit identification program, abnormality unit identification method and abnormality unit identification system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4043853A4 (en) * 2019-11-08 2022-12-07 DMG Mori Co., Ltd. Machine tool and display device

Also Published As

Publication number Publication date
KR20190100379A (en) 2019-08-28
CN110235010B (en) 2021-10-15
CN110235010A (en) 2019-09-13
TW201840990A (en) 2018-11-16
JP2018128284A (en) 2018-08-16
PH12019501815A1 (en) 2020-09-14
JP6793565B2 (en) 2020-12-02
SG11201907246RA (en) 2019-09-27
TWI683112B (en) 2020-01-21
KR102238869B1 (en) 2021-04-09

Similar Documents

Publication Publication Date Title
US10267860B2 (en) Fault detection in induction machines
US10310016B2 (en) Method for the diagnostics of electromechanical system based on impedance analysis
TWI687699B (en) State analysis apparatus, state analysis method, and storage medium recorded with program
US10088506B2 (en) Method for detecting a fault condition in an electrical machine
US8326556B2 (en) Stray flux processing method and system
WO2018143404A1 (en) State analyzing device, display method, and program
DK2761315T3 (en) METHOD FOR DETERMINING STATIONARY SIGNALS FOR DIAGNOSTICATION OF AN ELECTROMECHANICAL SYSTEM
EP3029478B1 (en) Assessment method for a multi-phase power system
Khelfi et al. Induction motor rotor fault diagnosis using three-phase current intersection signal
Al-Deen et al. Signature analysis as a medium for faults detection in induction motors
JP7213211B2 (en) Inverter deterioration monitoring diagnosis method
TW202219479A (en) Sign determination device, sign determination method, and program
Asfani et al. Design on-line monitoring and sensitive fault detection for three phase induction motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197022705

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747723

Country of ref document: EP

Kind code of ref document: A1