WO2018143400A1 - パーフルオロアルカジエン化合物の製造方法 - Google Patents

パーフルオロアルカジエン化合物の製造方法 Download PDF

Info

Publication number
WO2018143400A1
WO2018143400A1 PCT/JP2018/003556 JP2018003556W WO2018143400A1 WO 2018143400 A1 WO2018143400 A1 WO 2018143400A1 JP 2018003556 W JP2018003556 W JP 2018003556W WO 2018143400 A1 WO2018143400 A1 WO 2018143400A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
perfluoroalkadiene
mol
general formula
butene
Prior art date
Application number
PCT/JP2018/003556
Other languages
English (en)
French (fr)
Inventor
友亮 江藤
敦 丸尾
勝也 中井
一博 高橋
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020197023269A priority Critical patent/KR102281001B1/ko
Priority to US16/482,856 priority patent/US11001545B2/en
Priority to EP18747524.9A priority patent/EP3590912A4/en
Priority to CN201880009934.8A priority patent/CN110267933A/zh
Priority to SG11201907182QA priority patent/SG11201907182QA/en
Publication of WO2018143400A1 publication Critical patent/WO2018143400A1/ja
Priority to US17/225,598 priority patent/US11225446B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/19Halogenated dienes
    • C07C21/20Halogenated butadienes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/19Halogenated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/14Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
    • C08F36/16Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen containing halogen

Definitions

  • the present invention relates to a method for producing a perfluoroalkadiene compound.
  • Perfluoroalkadiene compounds are compounds useful as various refrigerants, foaming agents, heat transfer media, etc. in addition to dry etching gases for semiconductors, and have two double bonds between carbon and carbon.
  • hexafluorobutadiene having 4 carbon atoms and having double bonds at both ends is used in various applications.
  • This perfluoroalkadiene compound can be produced by reacting an organometallic compound of Mg, Zn, Cd or Li at a desired temperature in the presence of an aprotic polar solvent belonging to the class of ethers and cyclic ethers.
  • a method by which ⁇ -diiodopentafluoroalkane is subjected to deiodine fluorine is known (for example, see Patent Document 1).
  • a method for producing a perfluoroalkadiene compound it is also known that de-IF of a compound such as ICF 2 CF 2 CF 2 CF 2 I is performed in the presence of metallic zinc and a nitrogen-containing compound.
  • the organometallic reagent used (n-butyllithium, ethylmagnesium bromide, etc.) is an expensive reagent, and it is difficult to handle due to its high reactivity, and the yield is also high. It was not enough. Moreover, the yield is still not sufficient even when a method such as de-IF of a compound such as ICF 2 CF 2 CF 2 CF 2 I is performed in the presence of metallic zinc and a nitrogen-containing compound.
  • the present invention solves the above-described problems, and an object thereof is to provide a method for obtaining a perfluoroalkadiene compound in a high yield.
  • Item 3 The production method according to Item 1 or 2, wherein the nitrogen-containing compound is N, N-dimethylformamide.
  • Item 4. The production method according to any one of Items 1 to 3, wherein the solution is an organic solvent solution.
  • Item 5. The production method according to Item 4, wherein the boiling point of the organic solvent is not more than the boiling point of the nitrogen-containing compound.
  • Item 6. Item 6. The production method according to any one of Items 1 to 5, wherein, in the reaction step, zinc or a zinc alloy is further contained in the solution of the compound represented by the general formula (2).
  • Item 7. Item 7. The production method according to any one of Items 1 to 6, wherein the addition of the nitrogen-containing compound is performed after heating the solution of the compound represented by the general formula (2).
  • Item 8 The production method according to Item 7, wherein the heating is performed at a reflux temperature.
  • Item 10. Item 10. The perfluoroalkadiene composition according to Item 9, wherein the total amount of the perfluoroalkadiene composition is 100 mol%, and the content of the additional compound is 0.1 to 45 mol%.
  • Item 11. Item 11.
  • the perfluoroalkadiene according to Item 9 or 10 wherein the additional compound comprises at least one selected from the group consisting of a fluorine-containing alkene compound having 4 or more carbon atoms and a fluorine-containing alkane compound having 4 or more carbon atoms.
  • Composition Item 12.
  • Item 12. The perfluoroalkadiene composition according to any one of Items 9 to 11, wherein the perfluoroalkadiene compound is hexafluorobutadiene.
  • the additional compound is at least one member selected from the group consisting of octafluoro-1-butene, octafluoro-2-butene, heptafluoro-1-butene, and heptafluoro-2-butene.
  • the perfluoroalkadiene composition according to any one of the above.
  • Item 14. An etching gas, refrigerant, heat transfer medium, foaming agent, or resin monomer comprising the perfluoroalkadiene composition according to any one of Items 9 to 13.
  • a perfluoroalkadiene compound can be produced in a high yield.
  • containing is a concept including any of “comprise”, “consistently of”, and “consist of”.
  • X 1 is the same or different and represents a halogen atom other than a fluorine atom.
  • X 2 represents a halogen atom.
  • the reaction process of adding a nitrogen-containing compound with respect to the solution of the compound represented by these is provided.
  • n is an integer of 4 or more, preferably an integer of 4 to 20, more preferably an integer of 4 to 10. By setting it as this range, a perfluoroalkadiene compound can be obtained in a higher yield.
  • X 1 is a halogen atom other than a fluorine atom, and examples thereof include a chlorine atom, a bromine atom, and an iodine atom. Among these, a chlorine atom or an iodine atom is preferable from the viewpoint of obtaining a perfluoroalkadiene compound in a higher yield.
  • X 1 may be the same or different.
  • X 2 is a halogen atom, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a fluorine atom or a chlorine atom is preferable, and a chlorine atom is more preferable.
  • Examples of the compound represented by the general formula (2) satisfying such conditions include ClCF 2 -CFCl-CF 2 -CF 2 I, ClCF 2 -CFCl-CF 2 -CF 2 -CF 2 I, ClCF 2 -CFCl-CF 2 -CF 2 -CF 2 I, ICF 2 -CF 2 -CF 2 -CF 2 I, ICF 2 -CF 2 -CF 2 -CF 2 -CF 2 I, ICF 2 -CF 2 -CF 2 -CF 2 -CF 2 I, ICF 2 -CF 2 -CF 2 -CF 2 -CF 2 -CF 2 I and the like.
  • ClCF 2 -CFCl-CF 2 -CF 2 I ClCF 2 -CFCl-CF 2 -CF 2 I, ClCF 2 -CFCl-CF 2 -CF 2 -CF 2 I, ClCF 2 -CFCl-CF 2 -CF 2 -CF 2 I are preferred, and ClCF 2 -CFCl-CF 2 -CF 2 I is more preferred.
  • a solution of the compound represented by the general formula (2) is prepared.
  • the organic solvent used in the solution is preferably a nonpolar organic solvent.
  • the boiling point is preferably not more than the boiling point of the nitrogen-containing compound. Examples of such an organic solvent include heptane, hexane, benzene, toluene, xylene and the like.
  • the amount of the organic solvent used is not particularly limited as long as it is a solvent amount, and is preferably 3 to 55 mol, more preferably 4 to 8.5 mol, per 1 mol of the compound represented by the general formula (2).
  • the nitrogen-containing compound is not particularly limited as long as it contains a nitrogen atom.
  • amide compounds N, N-dimethylformamide, N, N-diisopropylformamide, etc.
  • amine compounds triethylamine, etc.
  • pyridine compounds Pyridine, methylpyridine, N-methyl-2-pyrrolidone, etc.
  • quinoline compounds quinoline, methylquinoline, etc.
  • nitrogen-containing compounds can be used alone or in combination of two or more.
  • an amide compound is preferable, and N, N-dimethylformamide is more preferable.
  • This nitrogen-containing compound includes a compound that is liquid at room temperature, but from the viewpoint of obtaining a perfluoroalkadiene compound in a higher yield, it is preferable to use it as an additive rather than a solvent (use a small amount).
  • the amount of the nitrogen-containing compound used is preferably 0.25 to 2 mol, more preferably 0.5 to 1 mol, relative to 1 mol of the compound represented by the general formula (2).
  • the nitrogen-containing compound is preferably added after heating the solution of the compound represented by the general formula (2) (hereinafter sometimes referred to as “post-addition”).
  • the heating conditions are not particularly limited, and are preferably 50 to 200 ° C, more preferably 100 to 150 ° C. In particular, heating at the reflux temperature is most preferable.
  • the addition rate (dropping rate) in the case of adding a nitrogen-containing compound after heating (especially at the reflux temperature) is a viewpoint that allows the perfluoroalkadiene compound represented by the general formula (1) to be obtained in a higher yield. Therefore, 0.001 to 60 mol / hour is preferable, and 0.01 to 10 mol / hour is more preferable.
  • Examples of elements that can be contained when using a zinc alloy include lead, cadmium, and iron.
  • Commercially available zinc may contain impurities such as lead, cadmium, and iron. In the present invention, those containing these impurities are also included.
  • the amount of zinc or zinc alloy used is 1 mol of the compound represented by the general formula (2). 1 to 10 mol is preferable, and 2 to 5 mol is more preferable.
  • the reaction conditions other than the heating temperature are not particularly limited.
  • the reaction atmosphere is preferably an inert gas atmosphere (nitrogen gas atmosphere, argon gas atmosphere, etc.), and the reaction time is set so that the reaction proceeds sufficiently. it can.
  • purification can be performed according to a conventional method to obtain a perfluoroalkadiene compound represented by the general formula (1).
  • the perfluoroalkadiene compound represented by the general formula (1) can be obtained, and includes the perfluoroalkadiene compound represented by the general formula (1) and one or more double bonds. It may be obtained in the form of a perfluoroalkadiene composition containing at least one additional compound consisting of a fluorocarbon compound (excluding the perfluoroalkadiene compound represented by the general formula (1)).
  • a fluorocarbon compound include a fluorocarbon compound having one or more double bonds and 4 or more carbon atoms, and among them, a fluorine-containing alkene compound having 4 or more carbon atoms and a fluorine-containing alkane compound having 4 or more carbon atoms.
  • species or 2 or more types is mentioned.
  • the perfluoroalkadiene composition of the present invention formed when obtaining the perfluoroalkadiene compound represented by the general formula (1) contains a fluorinated alkane compound having 4 or more carbon atoms
  • the fluorine-containing alkane compound include HCF 2 CF 2 CF 2 CF 2 H, HCF 2 CFHCF 2 CF 3 , CF 3 CFHCFHCF 3 and the like.
  • These additional compounds, like hexafluorobutadiene, are effective in various applications such as refrigerants, heat transfer media, foaming agents, resin monomers, etc., as well as etching gases for forming the most advanced microstructures of semiconductors, liquid crystals, etc. Available.
  • the total amount of the perfluoroalkadiene composition of the present invention is 100 mol%, and the content of the perfluoroalkadiene compound represented by the general formula (1) is 55-99.9.
  • the mol% (particularly 73 to 99.9 mol%) is preferred, and the content of the additional compound is preferably 0.1 to 45 mol% (particularly 0.1 to 27 mol%).
  • Such a perfluoroalkadiene composition of the present invention includes, as in the case of the above-mentioned perfluoroalkadiene compound alone, a coolant including an etching gas for forming a state-of-the-art microstructure such as a semiconductor and a liquid crystal. It can be effectively used for various applications such as heat transfer media, foaming agents and resin monomers.
  • Example 1 40g (0.16mol) xylene, 7.25g (0.12mol) zinc, 20g (0.05mol) raw material (ClCF 2 CFClCF 2 CF 2 I) in a condenser eggplant flask connected to a trap cooled to -78 ° C In addition, the mixture was heated with stirring until the internal temperature reached 140 ° C. After the internal temperature becomes constant, N, N-dimethylformamide (DMF) is added at a dropping rate of 0.04 mol / hour (0.8 mol / hour for 1 mol of raw material (ClCF 2 CFClCF 2 CF 2 I)) while refluxing. The solution was added dropwise for 1 hour, and the reflux was continued with stirring.
  • DMF N-dimethylformamide
  • HCF 2 CF 2 CF 2 H is 0 mol%
  • Example 2 The treatment was performed in the same manner as in Example 1 except that ICF 2 CF 2 CF 2 CF 2 I was used instead of ClCF 2 CFClCF 2 CF 2 I as a raw material (substrate). After completion of the reaction, the liquid collected in the trap was analyzed by gas chromatography.
  • CF 2 CFCF 2 CF 2 H was 20 mol%
  • Reference example 1 Add 20 g (0.27 mol) N, N-dimethylformamide (DMF) and 9 g (0.14 mol) zinc to an eggplant flask with a condenser connected to a trap cooled to -78 ° C, and stir. Heated until. After the internal temperature became constant, 20 g (0.04 mol) of the raw material (ICF 2 CF 2 CF 2 CF 2 I) was added and heating and refluxing were continued while stirring. After completion of the reaction, the liquid collected in the trap was analyzed by gas chromatography.
  • Reference example 3 The treatment was performed in the same manner as in Comparative Example 1 except that the solvent was not a DMF20 g (0.27 mol), but a mixed solvent of xylene 20 g (0.19 mol) and DMF 2.36 g (0.03 mol). After completion of the reaction, the liquid collected in the trap was analyzed by gas chromatography.
  • CF 2 CFCF 2 CF 2 H was 22 mol%
  • the raw material (substrate) is not ICF 2 CF 2 CF 2 CF 2 I, but ClCF 2 CFClCF 2 CF 2 I, and the solvent is not DMF 20 g (0.27 mol) but xylene 20 g (0.19 mol) and DMF 2.36 g (0.03 mol)
  • the same treatment as in Comparative Example 1 was performed except that the mixed solvent was used. After completion of the reaction, the liquid collected in the trap was analyzed by gas chromatography.
  • ICP Inductive Coupled Plasma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一般式(1): CF2=CF-(CF2)n-4-CF=CF2 (1) [式中、nは4以上の整数を示す。] で表されるパーフルオロアルカジエン化合物の製造方法であって、 一般式(2): X1CF2-CFX2-(CF2)n-4-CF2-CF2X1 (2) [式中、nは前記に同じである。X1は同一又は異なって、フッ素原子以外のハロゲン原子を示す。X2はハロゲン原子を示す。] で表される化合物の溶液に対して、含窒素化合物を添加する反応工程 を備える、製造方法によれば、パーフルオロアルカジエン化合物を高効率に得ることができる。

Description

パーフルオロアルカジエン化合物の製造方法
 本発明は、パーフルオロアルカジエン化合物の製造方法に関する。
 パーフルオロアルカジエン化合物は、半導体用ドライエッチングガスの他、各種冷媒、発泡剤、熱移動媒体等として有用な化合物であり、炭素-炭素間に2つの二重結合を有している。特に、炭素数が4個であり両末端に二重結合を有するヘキサフルオロブタジエンは、様々な用途に活用されている。
 このパーフルオロアルカジエン化合物の製造方法としては、エーテル及び環状エーテルの類に属する非プロトン系極性溶媒の存在下、所望の温度でMg、Zn、Cd又はLiの有機金属化合物の反応によって、α,ω-ジヨードペンタフルオルアルカンを脱沃素弗素させることによる方法が知られている(例えば、特許文献1参照)。一方、パーフルオロアルカジエン化合物の製造方法としては、ICF2CF2CF2CF2I等の化合物の脱IFを金属亜鉛及び含窒素化合物の存在下で行うことも知られている。
特開昭62-26240号公報
 しかしながら、特許文献1の方法では、使用する有機金属試薬(n-ブチルリチウム、エチルマグネシウムブロマイド等)は高価な試薬であり、また、反応性が高いために取扱いが困難である上に収率も十分ではなかった。また、ICF2CF2CF2CF2I等の化合物の脱IFを金属亜鉛及び含窒素化合物の存在下で行う方法でも、いまだ収率は十分ではなかった。
 本発明は、上記のような課題を解決するものであり、パーフルオロアルカジエン化合物を高収率に得る方法を提供することを目的とする。
 本発明者らは、上記の課題を解決するため鋭意研究を行った結果、特定の化合物の溶液に対して、含窒素化合物及び必要に応じて亜鉛を添加することにより、収率よくパーフルオロアルカジエン化合物が得られることを見出した。このような知見に基づき更に研究を重ねた結果、本発明を完成するに至った。即ち、本発明は以下の構成を包含する。
項1.一般式(1):
CF2=CF-(CF2)n-4-CF=CF2   (1)
[式中、nは4以上の整数を示す。]
で表されるパーフルオロアルカジエン化合物の製造方法であって、
一般式(2):
X1CF2-CFX2-(CF2)n-4-CF2-CF2X1   (2)
[式中、nは前記に同じである。X1は同一又は異なって、フッ素原子以外のハロゲン原子を示す。X2はハロゲン原子を示す。]
で表される化合物の溶液に対して、含窒素化合物を添加する反応工程
を備える、製造方法。
項2.前記含窒素化合物の添加速度が、一般式(2)で表される化合物1モルに対して0.001~60mol/時間である、項1に記載の製造方法。
項3.前記含窒素化合物がN,N-ジメチルホルムアミドである、項1又は2に記載の製造方法。
項4.前記溶液は、有機溶媒の溶液である、項1~3のいずれかに記載の製造方法。
項5.前記有機溶媒の沸点が、前記含窒素化合物の沸点以下である、項4に記載の製造方法。
項6.前記反応工程において、前記一般式(2)で表される化合物の溶液中に、さらに、亜鉛又は亜鉛合金が含まれる、項1~5のいずれかに記載の製造方法。
項7.前記含窒素化合物の添加は、前記一般式(2)で表される化合物の溶液を加熱した後に行う、項1~6のいずれかに記載の製造方法。
項8.前記加熱を、還流温度下に行う、項7に記載の製造方法。
項9.一般式(1):
CF2=CF-(CF2)n-4-CF=CF2   (1)
[式中、nは4以上の整数を示す。]
で表されるパーフルオロアルカジエン化合物と、二重結合を1つ以上含むフルオロカーボン化合物(一般式(1)で表されるパーフルオロアルカジエン化合物を除く)からなる少なくとも1種の追加的化合物とを含有する、パーフルオロアルカジエン組成物。
項10.前記パーフルオロアルカジエン組成物の総量を100モル%として、前記追加的化合物の含有量が0.1~45モル%である、項9に記載のパーフルオロアルカジエン組成物。
項11.前記追加的化合物が、炭素数が4以上の含フッ素アルケン化合物及び炭素数が4以上の含フッ素アルカン化合物よりなる群から選ばれる少なくとも1種からなる、項9又は10に記載のパーフルオロアルカジエン組成物。
項12.前記パーフルオロアルカジエン化合物が、ヘキサフルオロブタジエンである、項9~11のいずれかに記載のパーフルオロアルカジエン組成物。
項13.追加的化合物が、オクタフルオロ-1-ブテン、オクタフルオロ-2-ブテン、ヘプタフルオロ-1-ブテン、及びヘプタフルオロ-2-ブテンよりなる群から選ばれる少なくとも1種である、項9~12のいずれかに記載のパーフルオロアルカジエン組成物。
項14.項9~13のいずれかに記載のパーフルオロアルカジエン組成物からなる、エッチングガス、冷媒、熱移動媒体、発泡剤又は樹脂モノマー。
 本発明によれば、高収率にパーフルオロアルカジエン化合物を製造することができる。
 本発明において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。
 本発明のパーフルオロアルカジエン化合物の製造方法は、一般式(1):
CF2=CF-(CF2)n-4-CF=CF2   (1)
[式中、nは4以上の整数を示す。]
で表されるパーフルオロアルカジエン化合物の製造方法であって、
一般式(2):
X1CF2-CFX2-(CF2)n-4-CF2-CF2X1   (2)
[式中、nは前記に同じである。X1は同一又は異なって、フッ素原子以外のハロゲン原子を示す。X2はハロゲン原子を示す。]
で表される化合物の溶液に対して、含窒素化合物を添加する反応工程
を備える。
 一般式(1)及び(2)において、nは4以上の整数、好ましくは4~20の整数、より好ましくは4~10の整数である。この範囲とすることにより、パーフルオロアルカジエン化合物をより高収率に得ることができる。
 つまり、製造しようとする一般式(1)で表されるパーフルオロアルカジエン化合物は、CF2=CF-CF=CF2、CF2=CF-CF2-CF=CF2、CF2=CF-CF2-CF2-CF=CF2等が挙げられる。
 一般式(2)において、X1はフッ素原子以外のハロゲン原子であり、塩素原子、臭素原子、ヨウ素原子等が挙げられる。なかでも、パーフルオロアルカジエン化合物をより高収率に得ることができる観点から、塩素原子又はヨウ素原子が好ましい。なお、X1は同一でも異なっていてもよい。
 一般式(2)において、X2はハロゲン原子であり、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。なかでも、パーフルオロアルカジエン化合物をより高収率に得ることができる観点から、フッ素原子又は塩素原子が好ましく、塩素原子がより好ましい。
 このような条件を満たす一般式(2)で表される化合物としては、例えば、ClCF2-CFCl-CF2-CF2I、ClCF2-CFCl-CF2-CF2-CF2I、ClCF2-CFCl-CF2-CF2-CF2-CF2I、ICF2-CF2-CF2-CF2I、ICF2-CF2-CF2-CF2-CF2I、ICF2-CF2-CF2-CF2-CF2-CF2I等が挙げられ、パーフルオロアルカジエン化合物をより高収率に得ることができる観点から、ClCF2-CFCl-CF2-CF2I、ClCF2-CFCl-CF2-CF2-CF2I、ClCF2-CFCl-CF2-CF2-CF2-CF2Iが好ましく、ClCF2-CFCl-CF2-CF2Iがより好ましい。
 本発明の製造方法では、まず、前記一般式(2)で表される化合物の溶液を準備する。溶液に使用される有機溶媒としては、非極性有機溶媒が好ましい。この有機溶媒としては、後に、一般式(2)で表される化合物の溶液を加熱した後に含窒素化合物を添加することから、沸点が、含窒素化合物の沸点以下であることが好ましい。このような有機溶媒としては、例えば、ヘプタン、ヘキサン、ベンゼン、トルエン、キシレン等が挙げられる。
 有機溶媒の使用量は、溶媒量であれば特に制限はなく、一般式(2)で表される化合物1モルに対して、3~55モルが好ましく、4~8.5モルがより好ましい。
 含窒素化合物としては、窒素原子を含有する化合物であれば特に制限はなく、例えば、アミド化合物(N,N-ジメチルホルムアミド、N,N-ジイソプロピルホルムアミド等)、アミン化合物(トリエチルアミン等)、ピリジン化合物(ピリジン、メチルピリジン、N-メチル-2-ピロリドン等)、キノリン化合物(キノリン、メチルキノリン等)等が挙げられる。これら含窒素化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。なかでも、パーフルオロアルカジエン化合物をより高収率に得られる観点から、アミド化合物が好ましく、N,N-ジメチルホルムアミドがより好ましい。
 この含窒素化合物は、常温で液体である化合物も含まれるが、パーフルオロアルカジエン化合物をより高収率に得られる観点から、溶媒ではなく添加剤として使用する(少量使用する)ことが好ましい。含窒素化合物の使用量は、一般式(2)で表される化合物1モルに対して、0.25~2モルが好ましく、0.5~1モルがより好ましい。
 この含窒素化合物は、一般式(2)で表される化合物の溶液を加熱した後に添加する(以下、「後添加する」と言うこともある)ことが好ましい。加熱条件は特に制限はなく、50~200℃が好ましく、100~150℃がより好ましい。特に、還流温度下に加熱することが最も好ましい。
 加熱(特に還流温度下に加熱)後、含窒素化合物を添加する場合の添加速度(滴下速度)は、一般式(1)で表されるパーフルオロアルカジエン化合物をより高収率に得られる観点から、0.001~60mol/時間が好ましく、0.01~10mol/時間がより好ましい。
 本発明においては、反応の際には、亜鉛又は亜鉛合金を添加することが好ましい。これにより、反応をより確実に進行させ、一般式(1)で表されるパーフルオロアルカジエン化合物をより高収率に得ることができる。なお、亜鉛又は亜鉛合金を添加するタイミングは、上記加熱をする前が好ましい。
 亜鉛合金を使用する場合に含まれ得る元素としては、例えば、鉛、カドミウム、鉄等が挙げられる。なお、市販の亜鉛には、鉛、カドミウム、鉄等の不純物が含まれていることもある。本発明ではこれらの不純物を含むものも包含される。
 この亜鉛又は亜鉛合金の使用量は、一般式(1)で表されるパーフルオロアルカジエン化合物をより高収率に得られる観点から、一般式(2)で表される化合物1モルに対して、1~10モルが好ましく、2~5モルがより好ましい。
 なお、加熱温度以外の反応条件は特に制限はなく、例えば、反応雰囲気は不活性ガス雰囲気(窒素ガス雰囲気、アルゴンガス雰囲気等)が好ましく、反応時間は反応が十分に進行する程度とすることができる。反応終了後は、常法にしたがって精製処理を行い、一般式(1)で表されるパーフルオロアルカジエン化合物を得ることができる。
 このようにして、一般式(1)で表されるパーフルオロアルカジエン化合物を得ることができるが、一般式(1)で表されるパーフルオロアルカジエン化合物と、二重結合を1つ以上含むフルオロカーボン化合物(一般式(1)で表されるパーフルオロアルカジエン化合物を除く)からなる少なくとも1種の追加的化合物とを含有する、パーフルオロアルカジエン組成物の形で得られることもある。このようなフルオロカーボン化合物は、二重結合を1つ以上炭素数4以上のフルオロカーボン化合物が挙げられ、なかでも炭素数が4以上の含フッ素アルケン化合物及び炭素数が4以上の含フッ素アルカン化合物の1種又は2種以上が挙げられる。含フッ素アルケン化合物としては、一般式(1)で表されるパーフルオロアルカジエン化合物としてnが4である化合物(ヘキサフルオロブタジエン)を得ようとする場合には、ヘキサフルオロブタジエンと、オクタフルオロ-1-ブテン(CF2=CFCF2CF3)、オクタフルオロ-2-ブテン(CF3CF=CFCF3)、ヘプタフルオロ-1-ブテン(CF2=CFCF2CF2H、CF2=CFCFHCF3等)、ヘプタフルオロ-2-ブテン(CF3CF=CHCF3等)等の少なくとも1種の含フッ素アルケン化合物とを含有する組成物(パーフルオロアルカジエン組成物)の形で得られることもある。
 また、一般式(1)で表されるパーフルオロアルカジエン化合物を得る際に形成される本発明のパーフルオロアルカジエン組成物に炭素数4以上の含フッ素アルカン化合物が含まれている場合、当該含フッ素アルカン化合物としては、HCF2CF2CF2CF2H、HCF2CFHCF2CF3、CF3CFHCFHCF3等が挙げられる。これらの追加的化合物は、ヘキサフルオロブタジエン同様、半導体、液晶等の最先端の微細構造を形成するためのエッチングガスをはじめとして、冷媒、熱移動媒体、発泡剤、樹脂モノマー等の各種用途に有効利用できる。
 この本発明のパーフルオロアルカジエン組成物において、本発明のパーフルオロアルカジエン組成物の総量を100モル%として、一般式(1)で表されるパーフルオロアルカジエン化合物の含有量は55~99.9モル%(特に73~99.9モル%)が好ましく、追加的化合物の含有量は0.1~45モル%(特に0.1~27モル%)が好ましい。
 このような本発明のパーフルオロアルカジエン組成物は、上記したパーフルオロアルカジエン化合物単独の場合と同様に、半導体、液晶等の最先端の微細構造を形成するためのエッチングガスをはじめとして、冷媒、熱移動媒体、発泡剤、樹脂モノマー等の各種用途に有効利用できる。
 以下に実施例を示し、本発明の特徴を明確にする。本発明はこれら実施例に限定されるものではない。
 実施例1
 -78℃に冷却したトラップが連結されたコンデンサー付きナスフラスコに40g(0.16mol)のキシレン、7.25g(0.12mol)の亜鉛、20g(0.05mol)の原料(ClCF2CFClCF2CF2I)を加え、撹拌下、内温が140℃になるまで加熱した。内温が一定になった後、還流しながらN,N-ジメチルホルムアミド(DMF)を滴下速度0.04mol/時間(原料(ClCF2CFClCF2CF2I)1モルに対して0.8mol/時間)で1時間滴下し、撹拌しながら加熱還流を続けた。反応終了後、トラップに捕集された液をガスクロトマトグラフィーで分析したところ、CF2=CFCF=CF2が89モル%、CF2=CFCF2CF2Hが3モル%、HCF2CF2CF2CF2Hが0モル%、その他副生成物(オクタフルオロ-1-ブテン、オクタフルオロ-2-ブテン、CF2=CFCF2CF2H以外のヘプタフルオロ-1-ブテン、ヘプタフルオロ-2-ブテン、HCF2CF2CF2CF2H以外のオクタフルオロブタン等)が合計8モル%であった。つまり、追加的化合物の含有量は11モル%であった。
 実施例2
 原料(基質)をClCF2CFClCF2CF2IではなくICF2CF2CF2CF2Iとすること以外は実施例1と同様に処理を行った。反応終了後、トラップに捕集された液をガスクロトマトグラフィーで分析したところ、CF2=CFCF=CF2が73モル%、CF2=CFCF2CF2Hが20モル%、HCF2CF2CF2CF2Hが5モル%、その他副生成物(オクタフルオロ-1-ブテン、オクタフルオロ-2-ブテン、CF2=CFCF2CF2H以外のヘプタフルオロ-1-ブテン、ヘプタフルオロ-2-ブテン、HCF2CF2CF2CF2H以外のオクタフルオロブタン等)が2モル%であった。つまり、追加的化合物の含有量は27モル%であった。
 参考例1
 -78℃に冷却したトラップが連結されたコンデンサー付きナスフラスコに20g(0.27mol)のN,N-ジメチルホルムアミド(DMF)、9g(0.14mol)の亜鉛を加え、撹拌し、内温が140℃になるまで加熱した。内温が一定になった後、20g(0.04mol)の原料(ICF2CF2CF2CF2I)を加えて撹拌しながら加熱還流を続けた。反応終了後、トラップに捕集された液をガスクロトマトグラフィーで分析したところ、CF2=CFCF=CF2が4モル%、CF2=CFCF2CF2Hが11モル%、HCF2CF2CF2CF2Hが71モル%、その他副生成物(オクタフルオロ-1-ブテン、オクタフルオロ-2-ブテン、CF2=CFCF2CF2H以外のヘプタフルオロ-1-ブテン、ヘプタフルオロ-2-ブテン、HCF2CF2CF2CF2H以外のオクタフルオロブタン等)が14モル%であった。つまり、追加的化合物の含有量は96モル%であった。
 参考例2
 原料(基質)をICF2CF2CF2CF2IではなくClCF2CFClCF2CF2Iとすること以外は比較例1と同様に処理を行った。反応終了後、トラップに捕集された液をガスクロトマトグラフィーで分析したところ、CF2=CFCF=CF2が42モル%、CF2=CFCF2CF2Hが47モル%、HCF2CF2CF2CF2Hが0モル%、その他副生成物(オクタフルオロ-1-ブテン、オクタフルオロ-2-ブテン、CF2=CFCF2CF2H以外のヘプタフルオロ-1-ブテン、ヘプタフルオロ-2-ブテン、HCF2CF2CF2CF2H以外のオクタフルオロブタン等)が11モル%であった。つまり、追加的化合物の含有量は58モル%であった。
 参考例3
 溶媒をDMF20g(0.27mol)ではなく、キシレン20g(0.19mol)とDMF2.36g(0.03mol)との混合溶媒とすること以外は比較例1と同様に処理を行った。反応終了後、トラップに捕集された液をガスクロトマトグラフィーで分析したところ、CF2=CFCF=CF2が55モル%、CF2=CFCF2CF2Hが22モル%、HCF2CF2CF2CF2Hが13モル%、その他副生成物(オクタフルオロ-1-ブテン、オクタフルオロ-2-ブテン、CF2=CFCF2CF2H以外のヘプタフルオロ-1-ブテン、ヘプタフルオロ-2-ブテン、HCF2CF2CF2CF2H以外のオクタフルオロブタン等)が10モル%であった。つまり、追加的化合物の含有量は45モル%であった。
 参考例4
 原料(基質)をICF2CF2CF2CF2IではなくClCF2CFClCF2CF2Iとし、溶媒をDMF20g(0.27mol)ではなく、キシレン20g(0.19mol)とDMF2.36g(0.03mol)との混合溶媒とすること以外は比較例1と同様に処理を行った。反応終了後、トラップに捕集された液をガスクロトマトグラフィーで分析したところ、CF2=CFCF=CF2が48モル%、CF2=CFCF2CF2Hが39モル%、HCF2CF2CF2CF2Hが0モル%、その他副生成物(オクタフルオロ-1-ブテン、オクタフルオロ-2-ブテン、CF2=CFCF2CF2H以外のヘプタフルオロ-1-ブテン、ヘプタフルオロ-2-ブテン、HCF2CF2CF2CF2H以外のオクタフルオロブタン等)が13モル%であった。つまり、追加的化合物の含有量は52モル%であった。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例3
 ICP(Inductive Coupled Plasma)放電電力600W、バイアス電力200W、圧力3mTorr(0.399Pa)、電子密度8×1010~2×1011cm-3、電子温度5~7eVのエッチング条件で、環状c-C4F8(従来品)と、実施例1にて製造した追加的成分を含むC4F6(構造CF2=CFCF=CF2)で、Si基板上に約1μm厚さのSiO2膜を有し、さらにその上にホール直径0.21μmのレジストパターンを有する半導体基板をエッチングした時のエッチング速度と選択比を以下の表2に示した。
 C4F6(構造CF2=CFCF=CF2)は、c-C4F8よりも対電子ビーム描画用レジスト選択比、対シリコン選択比がいずれも高かった。
Figure JPOXMLDOC01-appb-T000002

Claims (14)

  1. 一般式(1):
    CF2=CF-(CF2)n-4-CF=CF2   (1)
    [式中、nは4以上の整数を示す。]
    で表されるパーフルオロアルカジエン化合物の製造方法であって、
    一般式(2):
    X1CF2-CFX2-(CF2)n-4-CF2-CF2X1   (2)
    [式中、nは前記に同じである。X1は同一又は異なって、フッ素原子以外のハロゲン原子を示す。X2はハロゲン原子を示す。]
    で表される化合物の溶液に対して、含窒素化合物を添加する反応工程
    を備える、製造方法。
  2. 前記含窒素化合物の添加速度が、一般式(2)で表される化合物1モルに対して0.001~60mol/時間である、請求項1に記載の製造方法。
  3. 前記含窒素化合物がN,N-ジメチルホルムアミドである、請求項1又は2に記載の製造方法。
  4. 前記溶液は、有機溶媒の溶液である、請求項1~3のいずれかに記載の製造方法。
  5. 前記有機溶媒の沸点が、前記含窒素化合物の沸点以下である、請求項4に記載の製造方法。
  6. 前記反応工程において、前記一般式(2)で表される化合物の溶液中に、さらに、亜鉛又は亜鉛合金が含まれる、請求項1~5のいずれかに記載の製造方法。
  7. 前記含窒素化合物の添加は、前記一般式(2)で表される化合物の溶液を加熱した後に行う、請求項1~6のいずれかに記載の製造方法。
  8. 前記加熱を、還流温度下に行う、請求項7に記載の製造方法。
  9. 一般式(1):
    CF2=CF-(CF2)n-4-CF=CF2   (1)
    [式中、nは4以上の整数を示す。]
    で表されるパーフルオロアルカジエン化合物と、二重結合を1つ以上含むフルオロカーボン化合物(一般式(1)で表されるパーフルオロアルカジエン化合物を除く)からなる少なくとも1種の追加的化合物とを含有する、パーフルオロアルカジエン組成物。
  10. 前記パーフルオロアルカジエン組成物の総量を100モル%として、前記追加的化合物の含有量が0.1~45モル%である、請求項9に記載のパーフルオロアルカジエン組成物。
  11. 前記追加的化合物が、炭素数が4以上の含フッ素アルケン化合物及び炭素数が4以上の含フッ素アルカン化合物よりなる群から選ばれる少なくとも1種からなる、請求項9又は10に記載のパーフルオロアルカジエン組成物。
  12. 前記パーフルオロアルカジエン化合物が、ヘキサフルオロブタジエンである、請求項9~11のいずれかに記載のパーフルオロアルカジエン組成物。
  13. 前記追加的化合物が、オクタフルオロ-1-ブテン、オクタフルオロ-2-ブテン、ヘプタフルオロ-1-ブテン、及びヘプタフルオロ-2-ブテンよりなる群から選ばれる少なくとも1種である、請求項9~12のいずれかに記載のパーフルオロアルカジエン組成物。
  14. 請求項9~13のいずれかに記載のパーフルオロアルカジエン組成物からなる、エッチングガス、冷媒、熱移動媒体、発泡剤又は樹脂モノマー。
     
PCT/JP2018/003556 2017-02-03 2018-02-02 パーフルオロアルカジエン化合物の製造方法 WO2018143400A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197023269A KR102281001B1 (ko) 2017-02-03 2018-02-02 퍼플루오로알카디엔 화합물의 제조 방법
US16/482,856 US11001545B2 (en) 2017-02-03 2018-02-02 Method for producing perfluoroalkadiene compounds
EP18747524.9A EP3590912A4 (en) 2017-02-03 2018-02-02 PROCESS FOR PRODUCING PERFLUORALCADIUM COMPOUNDS
CN201880009934.8A CN110267933A (zh) 2017-02-03 2018-02-02 全氟二烯烃化合物的制造方法
SG11201907182QA SG11201907182QA (en) 2017-02-03 2018-02-02 Method for producing perfluoroalkadiene compounds
US17/225,598 US11225446B2 (en) 2017-02-03 2021-04-08 Method for producing perfluoroalkadiene compounds

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017018793 2017-02-03
JP2017-018793 2017-02-03
JP2017-204360 2017-10-23
JP2017204360 2017-10-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/482,856 A-371-Of-International US11001545B2 (en) 2017-02-03 2018-02-02 Method for producing perfluoroalkadiene compounds
US17/225,598 Division US11225446B2 (en) 2017-02-03 2021-04-08 Method for producing perfluoroalkadiene compounds

Publications (1)

Publication Number Publication Date
WO2018143400A1 true WO2018143400A1 (ja) 2018-08-09

Family

ID=63039828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003556 WO2018143400A1 (ja) 2017-02-03 2018-02-02 パーフルオロアルカジエン化合物の製造方法

Country Status (8)

Country Link
US (2) US11001545B2 (ja)
EP (1) EP3590912A4 (ja)
JP (1) JP6465224B1 (ja)
KR (1) KR102281001B1 (ja)
CN (1) CN110267933A (ja)
SG (1) SG11201907182QA (ja)
TW (2) TWI708755B (ja)
WO (1) WO2018143400A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082872A1 (ja) * 2017-10-23 2019-05-02 ダイキン工業株式会社 ヘキサフルオロブタジエンの製造方法
WO2019240249A1 (ja) * 2018-06-15 2019-12-19 ダイキン工業株式会社 パーフルオロアルカジエン化合物の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939648B1 (ja) * 1969-10-01 1974-10-28
JPS6226240A (ja) 1985-05-29 1987-02-04 アウシモント・ソチエタ・ペル・アツイオニ ヘキサフルオルブタジエン及び高級ペルフルオル化ジエンの合成方法
JPS63141935A (ja) * 1986-11-27 1988-06-14 アウシモント・ソチエタ・ペル・アツィオニ ペルフルオルアルカンジエンの合成方法
JP2001192347A (ja) * 1999-10-26 2001-07-17 Kanto Denka Kogyo Co Ltd ペルフルオロアルカジエンの製造方法
JP2001192346A (ja) * 1999-10-26 2001-07-17 Kanto Denka Kogyo Co Ltd ペルフルオロアルカジエンの製造方法
JP2001192345A (ja) * 2000-01-12 2001-07-17 Daikin Ind Ltd パーフルオロアルカジエンの製造方法
CN101774884B (zh) * 2010-01-14 2014-04-02 天津大学 一种六氟丁二烯的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949572B2 (ja) * 1972-08-19 1974-12-27
JP4354575B2 (ja) * 1999-06-15 2009-10-28 クロリンエンジニアズ株式会社 オゾン含有浄化液及びレジスト除去方法
JP4214941B2 (ja) * 2004-04-09 2009-01-28 日本電気株式会社 プレゼンス情報提供システム、その方法およびサーバ
KR100852900B1 (ko) 2007-04-20 2008-08-19 (주)후성 퍼플르오로 불포화 탄화수소를 제조하는 방법
JP2009258351A (ja) * 2008-04-16 2009-11-05 Seiko Epson Corp 配向膜の製造方法及び液晶表示装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939648B1 (ja) * 1969-10-01 1974-10-28
JPS6226240A (ja) 1985-05-29 1987-02-04 アウシモント・ソチエタ・ペル・アツイオニ ヘキサフルオルブタジエン及び高級ペルフルオル化ジエンの合成方法
JPS63141935A (ja) * 1986-11-27 1988-06-14 アウシモント・ソチエタ・ペル・アツィオニ ペルフルオルアルカンジエンの合成方法
JP2001192347A (ja) * 1999-10-26 2001-07-17 Kanto Denka Kogyo Co Ltd ペルフルオロアルカジエンの製造方法
JP2001192346A (ja) * 1999-10-26 2001-07-17 Kanto Denka Kogyo Co Ltd ペルフルオロアルカジエンの製造方法
JP2001192345A (ja) * 2000-01-12 2001-07-17 Daikin Ind Ltd パーフルオロアルカジエンの製造方法
CN101774884B (zh) * 2010-01-14 2014-04-02 天津大学 一种六氟丁二烯的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LO, ELIZABETH S.: "Reaction of Perfluoroalkyl Halides with Grignard Reagents", JOURNAL OF ORGANIC CHEMISTRY, vol. 36, no. 2, 1971, pages 364 - 366, XP055529478 *
See also references of EP3590912A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082872A1 (ja) * 2017-10-23 2019-05-02 ダイキン工業株式会社 ヘキサフルオロブタジエンの製造方法
JP2019077626A (ja) * 2017-10-23 2019-05-23 ダイキン工業株式会社 ヘキサフルオロブタジエンの製造方法
WO2019240249A1 (ja) * 2018-06-15 2019-12-19 ダイキン工業株式会社 パーフルオロアルカジエン化合物の製造方法

Also Published As

Publication number Publication date
KR20190100399A (ko) 2019-08-28
SG11201907182QA (en) 2019-09-27
US11225446B2 (en) 2022-01-18
US20200010389A1 (en) 2020-01-09
EP3590912A4 (en) 2020-12-30
TW202035348A (zh) 2020-10-01
US11001545B2 (en) 2021-05-11
JP2019069931A (ja) 2019-05-09
KR102281001B1 (ko) 2021-07-23
TWI708755B (zh) 2020-11-01
EP3590912A1 (en) 2020-01-08
JP6465224B1 (ja) 2019-02-06
US20210221757A1 (en) 2021-07-22
TWI761842B (zh) 2022-04-21
CN110267933A (zh) 2019-09-20
TW201841873A (zh) 2018-12-01

Similar Documents

Publication Publication Date Title
JP7158906B2 (ja) パーフルオロアルカジエン化合物の製造方法
TWI761616B (zh) 六氟丁二烯之製造方法
US11225446B2 (en) Method for producing perfluoroalkadiene compounds
WO2019240249A1 (ja) パーフルオロアルカジエン化合物の製造方法
JP5942985B2 (ja) プラズマエッチングガス及びプラズマエッチング方法
WO2001051436A1 (fr) Procede de production de perfluoroalcadienes
JP2020125356A (ja) ヘキサフルオロブタジエンの製造方法
JP2017171517A (ja) グラファイト膜の製造方法
JP2008266279A (ja) ペルフルオロ不飽和炭化水素を製造する方法
JP7337759B2 (ja) パーフルオロアルカジエン化合物の製造方法
TWI851578B (zh) 全氟鏈烷二烯化合物的製造方法
JP2023021141A (ja) パーフルオロアルカジエン化合物の製造方法
JP2023021148A (ja) パーフルオロアルカジエン化合物の製造方法
RU2787234C9 (ru) Способ производства перфторалкадиенового соединения
RU2787234C2 (ru) Способ производства перфторалкадиенового соединения
RU2780650C2 (ru) Способ производства перфторалкадиенового соединения
TW202434541A (zh) 全氟鏈烷二烯化合物的製造方法
JP2021522402A (ja) 機能化半導体ナノ粒子及びその製造の方法
JP2020203942A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197023269

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018747524

Country of ref document: EP