WO2018142950A1 - 超音波診断装置、超音波診断装置の制御方法及び超音波診断装置の制御プログラム - Google Patents

超音波診断装置、超音波診断装置の制御方法及び超音波診断装置の制御プログラム Download PDF

Info

Publication number
WO2018142950A1
WO2018142950A1 PCT/JP2018/001326 JP2018001326W WO2018142950A1 WO 2018142950 A1 WO2018142950 A1 WO 2018142950A1 JP 2018001326 W JP2018001326 W JP 2018001326W WO 2018142950 A1 WO2018142950 A1 WO 2018142950A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
index value
image
parts
recognition
Prior art date
Application number
PCT/JP2018/001326
Other languages
English (en)
French (fr)
Inventor
徹郎 江畑
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018566044A priority Critical patent/JP6674565B2/ja
Priority to EP18748229.4A priority patent/EP3578109B1/en
Publication of WO2018142950A1 publication Critical patent/WO2018142950A1/ja
Priority to US16/527,408 priority patent/US11589842B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/58Testing, adjusting or calibrating the diagnostic device
    • A61B8/585Automatic set-up of the device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5292Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves using additional data, e.g. patient information, image labeling, acquisition parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • A61B8/429Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by determining or monitoring the contact between the transducer and the tissue
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus, a method for controlling the ultrasonic diagnostic apparatus, and a control program for the ultrasonic diagnostic apparatus, and more particularly to an ultrasonic diagnostic apparatus for determining an imaging region of a subject and a method for controlling the ultrasonic diagnostic apparatus. And a control program of the ultrasonic diagnostic apparatus.
  • an ultrasonic diagnostic apparatus is known as an apparatus for obtaining an image inside a subject.
  • an ultrasonic diagnostic apparatus includes an ultrasonic probe including a transducer array in which a plurality of elements are arranged. In a state where the ultrasonic probe is in contact with the body surface of the subject, an ultrasonic beam is transmitted from the transducer array into the subject, and an ultrasonic echo from the subject is received by the transducer array to receive the element. Data is acquired. Furthermore, the ultrasonic diagnostic apparatus electrically processes the obtained element data to generate an ultrasonic image for the part of the subject.
  • imaging conditions are preferably set automatically when an ultrasonic image of each part is generated.
  • the imaging target currently being examined is set. It is necessary to automatically determine the imaging region of the specimen.
  • the ultrasonic diagnostic apparatus disclosed in Patent Literature 1 includes a pattern memory that stores a characteristic pattern in each part of a subject, and an image pattern extracted from the generated ultrasonic image is stored in the pattern memory.
  • the imaged region is discriminated by finding pattern data similar to the image pattern included in the generated ultrasonic image by collating with a plurality of pattern data stored in.
  • image recognition such as extracting an image pattern from a generated ultrasonic image and collating it with previously stored pattern data
  • image recognition requires a large calculation load, and in particular, a device with low processing performance.
  • image recognition is performed using the, it takes a long time to complete image recognition.
  • an image pattern extracted from the generated ultrasonic image corresponds to the plurality of parts. Since it is necessary to collate with a lot of pattern data, it takes much more time to determine the imaging region.
  • the present invention has been made to solve such a conventional problem, and an ultrasonic diagnostic apparatus, a method for controlling the ultrasonic diagnostic apparatus, and an ultrasonic wave capable of reducing the time required for determining an imaging region.
  • An object is to provide a control program for a diagnostic apparatus.
  • an ultrasonic diagnostic apparatus of the present invention generates an ultrasonic image by transmitting an ultrasonic beam from an ultrasonic probe toward a subject, and an image acquisition unit generates the ultrasonic image.
  • An image recognition unit that performs image recognition on the obtained ultrasonic image and calculates a recognition score of a plurality of parts of the subject, and a recognition score of the plurality of parts calculated for a predetermined number of ultrasonic images
  • An index value calculation unit that calculates index values for a plurality of parts based on the index, an order determination unit that determines a determination order for performing part determination in a plurality of parts based on the index value, and an image recognition unit that calculates according to the determination order
  • a part discriminating unit that discriminates an imaging part of the subject based on the recognized recognition score.
  • the index value calculation unit preferably uses the recognition scores of the plurality of parts calculated by the image recognition unit for the latest ultrasonic image acquired by the image acquisition unit as the index values of the plurality of parts.
  • the index value calculation unit includes a plurality of ultrasonic images calculated by the image recognition unit for each of a plurality of ultrasonic images acquired sequentially in time series including the latest ultrasonic image acquired by the image acquisition unit. It is also possible to calculate index values of a plurality of parts of the specimen using the part recognition scores.
  • the index value calculation unit sets the average value or median value of the recognition scores of the plurality of parts calculated for the plurality of ultrasonic images as the index values of the plurality of parts.
  • the index value calculation unit may use the maximum value or the minimum value of the recognition scores of the plurality of parts calculated for the plurality of ultrasonic images as the index values of the plurality of parts.
  • the index value calculation unit increases the weight of the ultrasonic image newly acquired by the image acquisition unit among the plurality of ultrasonic images, and the weighted average value of the recognition scores of the plurality of regions is calculated for the plurality of regions. It may be an index value.
  • the index value calculation unit assigns a ranking score such that the higher the recognition score is for a plurality of parts for each of the plurality of ultrasound images,
  • the total value of the ranking scores in each may be used as an index value for a plurality of parts.
  • the index value calculation unit has a recognition score threshold, and the number of recognition scores that exceed the threshold among the recognition scores of the plurality of parts calculated in the plurality of ultrasonic images is set for each of the plurality of parts. It may be an index value.
  • the index value calculation unit when calculating the same index value among the index values of a plurality of parts, super continuous in a smaller number of time series than the plurality of ultrasound images used to calculate the index value. It is preferable to calculate the index value again by using an ultrasonic image group that is constituted by a sound wave image and includes the latest ultrasonic image.
  • the index value calculation unit is acquired before the latest ultrasonic image in time series by the image acquisition unit when the same index value among the index values of a plurality of parts is calculated, and the time series
  • the index value can also be calculated again using an ultrasonic image group composed of a plurality of continuous ultrasonic images.
  • it further includes a probe state detection unit that detects that the imaging region has been changed by moving the ultrasonic probe, and the index value calculation unit calculates the index value after the probe state detection unit detects a change in the imaging region. It is preferable to start.
  • the order determination unit determines the determination order so that the larger the index value, the faster the order.
  • the control method of the ultrasonic diagnostic apparatus generates an ultrasonic image by transmitting an ultrasonic beam from an ultrasonic probe toward the subject, performs image recognition on the ultrasonic image, and performs control of the subject.
  • Calculate the recognition score of multiple parts calculate the index values of multiple parts based on the recognition scores of multiple parts calculated for a predetermined number of ultrasound images, and determine the part in multiple parts
  • the determination order is determined based on the index value, and the imaging region of the subject is determined based on the recognition score calculated according to the determination order.
  • the control program for the ultrasonic diagnostic apparatus includes a step of transmitting an ultrasonic beam from an ultrasonic probe toward a subject to generate an ultrasonic image, and performing image recognition on the ultrasonic image to perform detection. Calculating a recognition score for a plurality of parts of a specimen, calculating a plurality of part index values based on a plurality of part recognition scores calculated for a predetermined number of ultrasonic images, A step of determining a determination order for performing part determination in a plurality of parts based on the index value; and a step of determining an imaging part of the subject based on a recognition score calculated according to the determination order. .
  • the ultrasonic diagnostic apparatus includes an order determination unit that determines a determination order for performing part determination, and determines an imaging part based on the determination order, thereby reducing the time required to determine the imaging part. be able to.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. It is a block diagram which shows the internal structure of the receiving part of FIG. It is a block diagram which shows the internal structure of the image generation part of FIG. It is a flowchart which shows operation
  • FIG. 1 shows the configuration of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • the ultrasonic diagnostic apparatus 1 includes an ultrasonic probe 2 having a built-in transducer array 2A.
  • a display control unit 7 and a display unit 8 are sequentially connected to the ultrasonic probe 2 via an image acquisition unit 3.
  • the image acquisition unit 3 includes a reception unit 4 and a transmission unit 5 connected to the transducer array 2A of the ultrasonic probe 2, and an image generation unit 6 connected to the reception unit 4.
  • the image generation unit 6 In addition, a display control unit 7 is connected.
  • an image recognition unit 9 is connected to the image generation unit 6, an index value calculation unit 10 is connected to the image recognition unit 9, an order determination unit 11 is connected to the index value calculation unit 10, and the order determination unit 11
  • the part discriminating unit 12 is connected.
  • the image recognition unit 9 is connected to the part determination unit 12.
  • a probe state detection unit 13 is connected to the image generation unit 6.
  • an apparatus control unit 14 is connected to the image acquisition unit 3, display control unit 7, image recognition unit 9, index value calculation unit 10, order determination unit 11, region determination unit 12, and probe state detection unit 13, and device control is performed.
  • the operation unit 15 and the storage unit 16 are connected to the unit 14.
  • the device control unit 14 and the storage unit 16 are connected so as to be able to exchange information in both directions.
  • the transducer array 2A of the ultrasonic probe 2 shown in FIG. 1 has a plurality of elements (ultrasonic transducers) arranged one-dimensionally or two-dimensionally. Each of these elements transmits an ultrasonic wave according to the drive signal supplied from the transmission unit 5 and receives an ultrasonic echo from the subject to output a reception signal.
  • elements ultrasonic transducers
  • Each element includes, for example, a piezoelectric ceramic represented by PZT (Lead Zirconate Titanate), a polymer piezoelectric element represented by PVDF (PolyVinylidene DiDifluoride), and PMN-PT (Lead It is configured using a vibrator in which electrodes are formed at both ends of a piezoelectric body made of a piezoelectric single crystal or the like typified by Magnesium Niobate-Lead ⁇ Titanate: lead magnesium niobate-lead titanate solid solution).
  • PZT Lead Zirconate Titanate
  • PVDF PolyVinylidene DiDifluoride
  • PMN-PT Lead It is configured using a vibrator in which electrodes are formed at both ends of a piezoelectric body made of a piezoelectric single crystal or the like typified by Magnesium Niobate-Lead ⁇ Titanate: lead magnesium niobate-le
  • the piezoelectric material expands and contracts, and pulse or continuous wave ultrasonic waves are generated from the respective vibrators, and the synthesis of these ultrasonic waves. From the wave, an ultrasonic beam is formed.
  • Each transducer expands and contracts by receiving propagating ultrasonic waves to generate electric signals, and these electric signals are output from the respective transducers to the receiving unit 4 as ultrasonic reception signals.
  • the reception unit 4 of the image acquisition unit 3 has a configuration in which an amplification unit 17 and an A / D (Analog / Digital) conversion unit 18 are connected in series.
  • the receiving unit 4 amplifies the reception signal output from each element of the transducer array 2 ⁇ / b> A by the amplification unit 17, and outputs the element data obtained by digitizing by the A / D conversion unit 18 to the image generation unit 6.
  • the transmission unit 5 of the image acquisition unit 3 includes, for example, a plurality of pulse generators, and based on a transmission delay pattern selected according to a control signal from the device control unit 14, a plurality of transducer arrays 2A. Each drive signal is supplied to a plurality of elements by adjusting the delay amount so that the ultrasonic waves transmitted from the elements form an ultrasonic beam.
  • the image generation unit 6 of the image acquisition unit 3 has a configuration in which a B mode (brightness mode) processing unit 19 and an image processing unit 20 are sequentially connected in series.
  • the B-mode processing unit 19 Based on the reception delay pattern selected according to the control signal from the device control unit 14, the B-mode processing unit 19 gives each element data according to the set sound speed and performs addition (phased addition).
  • Receive focus processing By this reception focus processing, a sound ray signal in which the focus of the ultrasonic echo is narrowed is generated.
  • the B-mode processing unit 19 corrects the attenuation caused by the propagation distance according to the depth of the reflection position of the ultrasonic wave with respect to the sound ray signal, and then performs an envelope detection process, A B-mode image signal that is tomographic image information related to the tissue is generated.
  • the B mode image signal generated in the B mode processing unit 19 is output to the image processing unit 20.
  • the image processing unit 20 converts (raster conversion) the B-mode image signal generated in the B-mode processing unit 19 into an image signal in accordance with a normal television signal scanning method, and performs various processes such as gradation processing on the B-mode image signal. After performing necessary image processing, a B-mode image signal, that is, an ultrasonic image is output to the display control unit 7 and the image recognition unit 9.
  • the display control unit 7 of the ultrasonic diagnostic apparatus 1 displays an ultrasonic image on the display unit 8 based on the B-mode image signal acquired by the image acquisition unit 3.
  • the display unit 8 includes a display device such as an LCD (Liquid Crystal Display) and displays an ultrasonic image under the control of the device control unit 14.
  • the image recognition unit 9 receives an ultrasonic image subjected to various types of image processing from the image processing unit 20 of the image generation unit 6, performs image recognition such as pattern recognition on the ultrasonic image, and the like.
  • the recognition scores of a plurality of parts are calculated.
  • the recognition score of the plurality of parts of the subject is the similarity of the imaging part in the ultrasound image with respect to each of the plurality of parts of the subject, and the higher this similarity is, There is a high probability that the imaging site in the ultrasound image is the site.
  • the index value calculation unit 10 calculates the index values of the plurality of parts of the subject based on the recognition scores of the plurality of parts of the subject calculated by the image recognition unit 9.
  • the index values of a plurality of regions of the subject are a plurality of subjects calculated for a plurality of ultrasonic images. It is assumed that it is the average value of the recognition scores of each part.
  • the index value calculation unit 10 includes the latest ultrasonic image acquired by the image acquisition unit 3 when calculating the index value based on the recognition scores for the plurality of ultrasonic images. An index value is calculated based on recognition scores for a plurality of ultrasonic images acquired continuously in a series.
  • the order determination unit 11 determines the determination order for determining the imaging region for a plurality of regions of the subject based on the index values of the plurality of regions of the subject calculated by the index value calculation unit 10. At this time, the order determination unit 11 determines the order of determination so that a part having a high probability of being an imaged part currently being imaged is set to an early order.
  • the part discriminating unit 12 discriminates the imaging part of the subject based on the recognition score calculated by the image recognizing unit 9 according to the discriminating order for the ultrasonic image acquired by the image acquiring unit 3. That is, the part discriminating unit 12 discriminates the imaging part in order from the part to which the fast order is given according to the discriminating order determined by the order determining unit 11 among the plurality of parts of the subject.
  • the probe state detection unit 13 determines whether or not the ultrasonic probe 2 is in the air emission state.
  • the ultrasound probe 2 being in the air radiation state means that the ultrasound beam transmitted from the transducer array 2A to the subject is emitted into the air when the ultrasound probe 2 moves away from the body surface of the subject. It means the state to be done.
  • the ultrasonic probe 2 is in the air radiation state, the ultrasonic beam emitted from the transducer array 2A is not reflected by the site of the subject, and the received signal generated in the transducer array 2A has sufficient intensity. Since there is no image, no image appears in the ultrasonic image generated by the image generation unit 6.
  • the probe state detection unit 13 determines that the ultrasonic probe 2 is in the aerial emission state when no image is shown in the ultrasonic image, and when the image is shown in the ultrasonic image, It is determined that the acoustic probe 2 is in contact with the subject.
  • the apparatus control unit 14 controls each unit of the ultrasonic diagnostic apparatus 1 based on a command input by the operator via the operation unit 15.
  • the operation unit 15 is for an operator to perform an input operation, and can be configured to include a keyboard, a mouse, a trackball, a touch panel, and the like.
  • the storage unit 16 stores an operation program and the like of the ultrasonic diagnostic apparatus 1, and includes an HDD (Hard Disc Drive), an SSD (Solid State Drive), an FD (Flexible Disc), MO disc (Magneto-Optical disc), MT (Magnetic Tape), RAM (Random Access Memory), CD (Compact Disc), DVD (Digital Versatile Disc: Digital Versatile Disc)
  • HDD Hard Disc Drive
  • SSD Solid State Drive
  • an FD Fexible Disc
  • MO disc Magnetic-Optical disc
  • MT Magnetic Tape
  • RAM Random Access Memory
  • CD Compact Disc
  • DVD Digital Versatile Disc: Digital Versatile Disc
  • a recording medium such as a disk), an SD card (Secure Digital card), a USB memory (Universal Serial Bus memory), a server, or the like can be used.
  • the image generation unit 6, display control unit 7, image recognition unit 9, index value calculation unit 10, order determination unit 11, site determination unit 12, probe state detection unit 13, and device control unit 14 of the image acquisition unit 3 are A CPU (Central Processing Unit) and a control program for causing the CPU to perform various processes may be configured using a digital circuit and a computer.
  • the image generation unit 6, display control unit 7, image recognition unit 9, index value calculation unit 10, order determination unit 11, site determination unit 12, probe state detection unit 13, and apparatus control unit 14 are partially Alternatively, it can be configured to be integrated into one CPU as a whole.
  • step S1 transmission / reception and scanning of an ultrasonic beam using a plurality of ultrasonic transducers of the transducer array 2A of the ultrasonic probe 2, that is, imaging of an ultrasonic image is performed by the receiving unit 4 of the image acquiring unit 3 and This is performed by the transmission unit 5.
  • a reception signal is generated in each ultrasonic transducer that has received an ultrasonic echo from the subject, and this reception signal is input to the reception unit 4.
  • the reception signal input to the reception unit 4 is amplified by the amplification unit 17 of the reception unit 4 and A / D conversion is performed by the A / D conversion unit 18.
  • the received signal is input to the image generation unit 6, and a B-mode image, that is, an ultrasonic image is generated in the B-mode processing unit 19 of the image generation unit 6.
  • step S2 the probe state detection unit 13 determines whether or not the ultrasonic probe 2 is in the air radiation state. If it is determined in step S2 that the ultrasonic probe 2 is in the air emission state, the process returns to step S1. On the other hand, if it is determined in step S2 that the ultrasonic probe 2 is not in the air emission state but is in contact with the body surface of the subject, the process proceeds to step S3.
  • step S3 the part of the imaging part currently inspected is determined.
  • the part determination performed in step S3 will be described in detail later with reference to FIG.
  • the apparatus control unit 14 sets an imaging condition suitable for the part determined in step S3.
  • the imaging conditions include a frame rate at the time of ultrasonic diagnosis, a resolution of the ultrasonic image, a luminance of the ultrasonic image, a dynamic range at the time of ultrasonic diagnosis, and the like.
  • step S ⁇ b> 5 an ultrasonic image is acquired by the image acquisition unit 3.
  • the image acquisition unit 3 can acquire an ultrasonic image in which the imaging region is clearly shown.
  • step S6 it is determined again whether or not the ultrasonic probe 2 is in the air radiation state.
  • the probe state detection unit 13 determines that the ultrasonic probe 2 is not in the aerial radiation state but is in contact with the body surface of the subject, it is determined that the imaging region has not been changed.
  • step S5 acquisition of an ultrasonic image is performed again.
  • the probe state detection unit 13 determines that the ultrasonic probe 2 is in the air emission state, it is determined that the change of the imaging region has started, and the process returns to step S1.
  • step S3 the part determination in step S3 will be described in detail with reference to FIG.
  • step S7 an ultrasound image is acquired.
  • step S8 the image recognition unit 9 calculates recognition scores of a plurality of parts of the subject with respect to the ultrasonic image acquired in step S7.
  • step S ⁇ b> 9 the apparatus control unit 14 determines whether or not recognition scores of a plurality of parts of the subject are calculated in a predetermined number of ultrasonic images.
  • the part determination process of step S3 includes the determination step of step S9 in order to obtain the necessary number of recognition scores for the index value calculation unit 10 to calculate the index value. Therefore, if it is determined in step S9 that the recognition score has not been calculated for the predetermined number of ultrasonic images, the process returns to step S7 to acquire the ultrasonic image and calculate a new recognition score in the subsequent step S8. Is done. As described above, after steps S7 and S8 are repeated, if it is determined in step S9 that the recognition scores of a plurality of parts of the subject have been calculated in the ultrasonic image of a predetermined number of frames, the process proceeds to step S10.
  • step S10 the index value calculation unit 10 calculates an index value of a plurality of parts of the subject by averaging a predetermined number of recognition scores calculated by repeating steps S7 and S8 for each of the plurality of parts.
  • step S11 the order determining unit 11 assigns a determination order to the plurality of parts of the subject so that the order is earlier as the index values of the plurality of parts of the subject calculated in step S10 are larger. For example, when a plurality of parts of the subject include the heart and the lung, the index value of the heart is the largest, and the index value of the lung is the second largest after the index value of the heart, the order of the heart is the first, Is the second order.
  • step S12 when the image acquisition unit 3 newly acquires an ultrasonic image, the process proceeds to step S13.
  • step S13 the image recognizing unit 9 calculates a recognition score of a part to which the earliest order is given according to the determination order determined in step S11 with respect to the latest ultrasonic image acquired in step S12. For example, when the order of determining the heart is first, only the heart recognition score is calculated for the ultrasonic image acquired in step S12.
  • the part determination unit 12 performs threshold determination as to whether or not the recognition score for one part calculated in step S13 exceeds the determination threshold.
  • the discrimination threshold is a threshold value for recognition score when discriminating a part, and the same value can be used for all parts. If it is determined in step S14 that the recognition score of one part is equal to or less than the determination threshold, it is determined that the imaging part cannot be determined as the part for which the recognition score is calculated in step S13, and the process proceeds to step S15. move on.
  • step S15 the apparatus control unit 14 determines whether or not threshold determination for the recognition scores of all the parts of the plurality of parts of the subject has been completed in step S14. If it is determined in step S15 that the threshold determination for the recognition scores of all the parts of the plurality of parts of the subject has not been completed in step S14, the process proceeds to step S16.
  • step S16 the device control unit 14 updates the determination site. That is, the device control unit 14 changes the part for which the recognition score is calculated in the next step S13 from the first part to the second part in the determination order determined in step S11.
  • the part to be determined for the imaging part that is, the determination in step S14 is performed.
  • the target part is called a discrimination part.
  • step S13 only the recognition score of the part to which the second earliest order is given in the discrimination order determined in step S11 is calculated for the ultrasonic image acquired in step S12.
  • step S14 the part determination unit 12 determines whether or not the recognition score of the part to which the second earliest order is given in the determination order exceeds the determination threshold.
  • the process proceeds to step S15.
  • steps S13 to S16 are repeated according to the determination order determined in step S11. Further, as a result of repeating steps S13 to S16, if it is determined in step S15 that the threshold determination for the recognition scores of all of the plurality of parts of the subject has been performed in step S15, the acquisition is performed in step S12. It is determined that the part imaged in the ultrasonic image thus obtained cannot be determined as any of the plurality of parts of the subject, and the process returns to step S8.
  • the index values of the plurality of parts of the subject are newly calculated based on the newly calculated recognition scores of the plurality of parts of the subject, and newly determined based on the index values.
  • the order is determined. Further, according to the newly determined determination order, a recognition score is calculated for the ultrasound image newly acquired in step S12, and the region determination of the imaging region is performed based on the recognition score.
  • step S14 determines that the recognition score of the determination part has exceeded the determination threshold. If it is determined in step S14 that the recognition score of the determination part has exceeded the determination threshold, the process proceeds to step S17.
  • step S ⁇ b> 17 the part determination unit 12 determines that the currently imaged part is a determination part having a recognition score determined to have exceeded the determination threshold in step S ⁇ b> 14. As a result, the part determination operation ends.
  • the determination order is determined so that a region with a high probability of being an imaged region currently being imaged is set in an early order. Since the plurality of parts of the subject are sequentially determined according to the determination order, the calculation load of the ultrasonic diagnostic apparatus 1 can be reduced, and the time required for determining the imaging part can be shortened.
  • the index value calculation unit 10 has been described as calculating the index values of the plurality of parts of the subject by averaging the recognition scores of the plurality of parts of the subject calculated for the plurality of ultrasonic images.
  • the number of ultrasonic images required for the index value calculation unit 10 to calculate the index value can be set by the operator via the operation unit 15 or the like, and the index value calculation unit 10 and the storage unit in advance. 16 may be stored.
  • the index value calculation unit 10 can calculate the index value using various methods other than averaging the recognition scores of the plurality of parts of the subject. For example, the index value calculation unit 10 can use the median value of the recognition scores of the plurality of parts of the subject calculated for the plurality of ultrasonic images as the index value of the plurality of parts of the subject. . In addition, for example, the index value calculation unit 10 may set the maximum value of the recognition score of each of the plurality of parts of the subject calculated for the plurality of ultrasonic images as the index value of the plurality of parts of the subject. In addition, the minimum value of the recognition score of each of the plurality of parts of the subject calculated for the plurality of ultrasonic images can be used as the index value of the plurality of parts of the subject.
  • the index value calculation unit 10 weights and averages the respective recognition scores of the plurality of parts of the subject calculated for the plurality of ultrasonic images and weights the averages. It can also be used as an index value of a part. At this time, the index value calculation unit 10 increases the weight of the recognition score calculated for the ultrasound image newly acquired by the image acquisition unit 3 among the plurality of ultrasound images, and the weighted average value Can be calculated.
  • the index value calculation unit 10 can give a ranking score such that the higher the recognition score, the higher the score for a plurality of parts of the subject for each of the plurality of ultrasonic images.
  • the index value calculation unit 10 can use the total value of the ranking scores in each of the plurality of parts of the subject for the plurality of ultrasonic images as the index value of the plurality of parts of the subject. That is, for example, for each ultrasound image, a ranking score is assigned in the order of 5 points, 4 points, 3 points, 2 points, and 1 point in order from the part having the highest recognition score among the plurality of parts of the subject. Then, the index score of the plurality of parts of the subject is calculated by summing the rank scores for each part for the plurality of ultrasonic images.
  • the index value calculation unit 10 has a recognition score threshold value, and can also calculate the index value from the result of the recognition score threshold determination. In this case, the index value calculation unit 10 calculates the number of recognition scores exceeding the threshold among the recognition scores of the plurality of parts of the subject calculated in the plurality of ultrasonic images, for the plurality of parts of the subject.
  • Each index value can be used. That is, for example, the index value calculation unit 10 sets the heart index value to 3 when there are three recognition scores that exceed the threshold among the heart recognition scores calculated for a plurality of ultrasound images. It can be.
  • the index value calculation unit 10 can calculate an index value based on the recognition score calculated for a plurality of frames of ultrasound images.
  • the recognition score calculated in this way can be used as an index value.
  • the index value calculation unit 10 uses the recognition scores of the plurality of parts of the subject calculated only for the latest ultrasonic image acquired by the image acquisition unit 3 as the index values of the plurality of parts of the subject. can do.
  • the index value calculation unit 10 can calculate the index value again when calculating the same index value among the index values of a plurality of parts of the subject.
  • the index value calculation unit 10 is configured with a smaller number of ultrasonic images than the plurality of ultrasonic images used when calculating the same index value, and acquired by the image acquisition unit 3.
  • the index value can be calculated again using the recognition score calculated for the ultrasound image group including the latest ultrasound image. It is preferable that the ultrasonic image group used here is acquired continuously in time series by the image acquisition unit 3. Further, when calculating the index value again, the index value calculation unit 10 acquires a plurality of ultrasonic images acquired by the image acquisition unit 3 before the latest ultrasonic image in the time series and continuous in the time series.
  • the index value can also be calculated using the recognition score calculated for the ultrasound image group constituted by
  • the probe state detection unit 13 has been described as determining that the ultrasonic probe 2 is in the aerial radiation state when no image is reflected in the acquired ultrasonic image, but a plurality of time series acquired By comparing the ultrasonic images, it can also be determined whether or not the ultrasonic probe 2 is in the air radiation state. That is, the probe state detection unit 13 compares the plurality of ultrasonic images acquired in time series, and when the images reflected in the ultrasonic images have not changed between the plurality of ultrasonic images, the ultrasonic probe 2 is not in contact with the body surface, and it can be determined that the ultrasonic probe 2 is in the air radiation state.
  • the probe state detection unit 13 shows the part of the subject in the ultrasonic image when the images reflected in the multiple ultrasonic images acquired in time series change between the multiple ultrasonic images. It can be determined that the ultrasonic probe 2 is in contact with the body surface of the subject. As described above, the probe state detection unit 13 compares the plurality of ultrasonic images acquired in time series, for example, when the ultrasonic inspection gel or the like is attached to the ultrasonic probe 2. Even so, it can be determined whether or not the ultrasonic probe 2 is in the air radiation state.
  • step S ⁇ b> 3 the part determination in step S ⁇ b> 3 is started when a change in the imaging part is detected by the probe state detection unit 13.
  • the index value calculation unit 10 calculates the index value based on the recognition score calculated for the newly acquired ultrasound image when a change in the imaging region is detected by the probe state detection unit 13. Means to start.
  • the calculation load of the ultrasound diagnostic apparatus 1 can be reduced by calculating the index value for the ultrasound image only while the ultrasound probe 2 is in contact with the body surface of the subject.
  • the index value calculation unit 10 calculates the index value, it is possible to prevent the use of the recognition score before changing the imaging region.
  • the index value calculation unit 10 may also start calculating index values for a plurality of parts of the subject when a predetermined time has elapsed since the probe state detection unit 13 detected a change in the imaging part. it can.
  • the time from when the probe state detection unit 13 detects the change of the imaging region until the index value calculation unit 10 calculates the index values of the plurality of regions of the subject is input by the operator via the operation unit 15 or the like. Alternatively, it may be stored in advance in the storage unit 16 or the like.
  • the time until the ultrasound image of the target imaging region is obtained by bringing the ultrasonic probe 2 into contact with the body surface of the subject may vary depending on the skill of the operator, etc., and immediately after the imaging region is changed, recognition is performed.
  • the calculation of the recognition score is started by starting the calculation of the index values of a plurality of parts of the subject when a predetermined time has elapsed after the probe state detection unit 13 detects the change of the imaging part. Since the index value can be calculated based on a plurality of recognition scores calculated for a sufficiently clear ultrasonic image, the accuracy in calculating the index value can be improved.
  • step S12 and step S13 can be omitted in the flowchart of FIG.
  • the process proceeds to step S14.
  • the part determination unit 12 assigns the earliest order according to the determination order among the recognition scores of the plurality of parts of the subject calculated in step S8 to the latest ultrasonic image acquired in step S7.
  • the recognition score of the determined part is compared with the discrimination threshold. At this time, if the recognition score is equal to or less than the determination threshold, the process proceeds to step S15.
  • step S15 when it is determined in step S15 that the threshold determination for the recognition scores of all the parts of the plurality of parts of the subject has not been performed in step S14, the process proceeds to step S16.
  • the determination part is updated in step S16, it is determined in step S14 whether or not the recognition score of the part given the next fastest order according to the determination order exceeds the determination threshold value.
  • the determination threshold used by the region determination unit 12 in step S14 can use the same value for all the regions, but the determination threshold is set for each of a plurality of regions of the subject. You can also.
  • the ultrasonic diagnostic apparatus 1 described above since the ultrasonic diagnostic apparatus 1 described above is small, it may be a portable ultrasonic diagnostic apparatus that is easily carried and used, and is a stationary ultrasonic wave that is used in an examination room or the like. It may be a diagnostic device.
  • the ultrasonic probe 2 is not particularly limited as long as it can transmit and receive an ultrasonic beam toward the subject, and may be a sector type, a convex type, a linear type, a radial type, or the like.
  • Embodiment 2 In the operation of the ultrasound diagnostic apparatus 1 shown in the flowchart of FIG. 4, when the ultrasound probe 2 is in the air emission state in step S6, the process returns to step S1, and in the subsequent step S3, among the plurality of parts of the subject. Although site discrimination has been performed for all sites, the calculation load of the ultrasound diagnostic apparatus 1 when performing site discrimination can be further reduced by excluding the site of the subject already determined in step S3. it can.
  • FIG. 6 shows the operation of the ultrasonic diagnostic apparatus according to the second embodiment. Steps S1 to S6 in the flowchart shown in FIG. 6 are the same as steps S1 to S6 in the flowchart shown in FIG.
  • step S6 when the probe state detection unit 13 determines that the ultrasonic probe 2 is in the air emission state, the process proceeds to step S18.
  • step S ⁇ b> 18 the apparatus control unit 14 determines whether all of the plurality of parts of the subject have been confirmed. If it is determined in step S18 that all of the plurality of parts of the subject are not fixed, the process proceeds to step S19.
  • step S19 the apparatus control unit 14 excludes the part determined in the part determination in step S3, that is, the determined part from the determination target in the next step S3.
  • the process returns to step S1. If it is determined in the subsequent step S2 that the ultrasonic probe 2 is not in the air emission state, the region determination is performed in the subsequent step S3. At this time, since a part other than the part excluded in step S19 among the plurality of parts of the subject is to be discriminated, the part to be discriminated with respect to the imaging part is determined rather than the part determination in the first step S3. Can reduce candidates.
  • step S19 the number of objects to be discriminated is reduced one after another.
  • step S18 it is determined in step S18 that all the parts of the plurality of parts of the subject have been determined, ultrasonic waves End the operation of the diagnostic device.
  • step S19 the number of discrimination targets can be reduced. Therefore, every time step S19 is executed, the calculation load of the ultrasonic diagnostic apparatus when performing site discrimination in step S3 is reduced. This can be reduced, and the time required to determine the imaging region can be shortened.
  • Embodiment 3 In the region determination operation of the first embodiment shown in FIG. 5, when the threshold value is determined in step S14, 1 of the subject calculated by the image recognition unit 9 with respect to the ultrasonic image newly acquired in step S12. Although the recognition score of one part was used, the recognition score for part determination calculated based on the recognition score calculated with respect to several ultrasonic images can also be used for threshold value determination.
  • FIG. 7 shows a flowchart relating to the region discrimination operation of the ultrasonic diagnostic apparatus according to the third embodiment. The flowchart in FIG. 7 is the same as the flowchart in FIG. 5 except for steps S20 to S22.
  • step S9 When the part determination operation is started in the flowchart of FIG. 7, first, steps S7 to S9 are repeated until recognition scores for a plurality of parts of the subject are calculated for a predetermined number of frames of ultrasonic images.
  • the predetermined number of frames is referred to as a first predetermined number of frames for explanation. If it is determined in step S9 that the recognition scores of the plurality of parts of the subject have been calculated for the first predetermined number of ultrasonic images, the process proceeds to step S10.
  • step S10 when the index values of the plurality of parts of the subject are calculated from the recognition scores of the plurality of parts of the subject calculated for the ultrasonic image of the first predetermined number of frames, the order of determination is determined in step S11. Is determined.
  • step S12 an ultrasonic image is newly acquired, and the process proceeds to step S20.
  • Step S20 is the same as step S8 in the flowchart of FIG. 5.
  • the process proceeds to step S21.
  • step S21 the apparatus control unit 14 determines whether or not a recognition score has been calculated for the second predetermined number of ultrasonic images acquired in step S12. This is for obtaining the necessary number of recognition scores for calculating the recognition score for site determination. Therefore, when it is determined in step S21 that the recognition score has not been calculated for the second predetermined number of frames of ultrasonic images, the process returns to step S12, and an ultrasonic image is newly acquired. In subsequent step S20, recognition scores for a plurality of parts of the subject are newly calculated.
  • the first predetermined number of frames in step S9 and the second predetermined number of frames in step S21 may be the same or different from each other. Assume that the second predetermined number of frames is different from each other.
  • step S21 If it is determined in step S21 that the recognition score has been calculated for the second predetermined number of ultrasonic images, the process proceeds to step S22.
  • step S ⁇ b> 22 the image recognition unit 9 averages the recognition scores of the discriminated sites assigned the earliest order in the discrimination order calculated in step S ⁇ b> 20 for the second predetermined number of ultrasonic images. As described above, the image recognition unit 9 calculates the average value of the recognition scores of the discrimination sites as the recognition score for discrimination of the imaging sites. In this case, it is preferable that the plurality of ultrasonic images used for recognizing the discrimination site are continuous in time series.
  • step S14 the apparatus control unit 14 determines whether or not the recognition score for determination calculated in step S22 exceeds the determination threshold. If it is determined in step S14 that the discrimination recognition score is equal to or less than the discrimination threshold, it is determined that the discrimination site cannot be determined for the imaging site, and the process proceeds to step S15. In step S14, when it is determined in step S15 that the threshold determination has not been performed on the recognition scores of all of the plurality of parts of the subject, the determination part is updated in step S16, and the process returns to step S22. Returning to step S22, a recognition score for determination is calculated for a part to which the next highest order is assigned in the determination order.
  • step S14 when it is determined that the recognition score for determination exceeds the determination threshold value, the process proceeds to step S17 to determine the imaging region. In this way, the part determination operation shown in the flowchart of FIG. 7 ends.
  • the accuracy of determining the imaging region can be improved. For example, even if the part of the subject that appears in some of the ultrasonic images of the ultrasonic images acquired in step S12 is not sufficiently clear as an object for image recognition, the accuracy of determining the imaging part is high. improves.
  • the recognition score for the ultrasonic image of the second predetermined number of frames acquired in step S12 is used in calculating the recognition score for determining the imaging region in step S22. Based on both the calculated recognition score and the recognition score for the ultrasonic image of the first predetermined number of frames, the recognition score for determining the imaging region in step S22 can also be calculated. That is, the second predetermined number of frames can be the sum of the first predetermined number of frames and the number of frames of the ultrasonic image acquired in step S12.
  • the second predetermined number of frames is equal to or less than the first predetermined number of frames, that is, the recognition scores of the plurality of parts of the subject required for calculating the recognition score for determining the imaging part in step S22. If the number is less than or equal to the number of recognition scores required for calculating the index value in step S10, step S12, step S20, and step S21 can be omitted. Therefore, it is possible to further reduce the time required for determining the imaging region.
  • Embodiment 4 In the part determination operations of Embodiments 1 and 3 shown in FIGS. 5 and 7, a determination order for performing threshold determination on the recognition score of each part of the subject based on the index values of a plurality of parts of the subject However, at this time, it is also possible to narrow down the part to be discriminated with respect to the imaging part.
  • FIG. 8 shows the configuration of the ultrasonic diagnostic apparatus 21 according to the fourth embodiment.
  • the ultrasonic diagnostic apparatus 21 of the fourth embodiment is the same as the ultrasonic diagnostic apparatus 1 of the first embodiment shown in FIG. Therefore, detailed description of components other than the site narrowing portion 22 is omitted, and the same reference numerals are given.
  • a site narrowing unit 22 is connected to the index value calculation unit 10, and the site narrowing unit 22 is connected to the order determination unit 11. Further, the device control unit 14 is connected to the part narrowing unit 22. Based on the index values of the plurality of parts of the subject calculated by the index value calculation unit 10, the part narrowing part 22 is discriminated for the imaging part currently being imaged among the plurality of parts of the subject. Narrow down the region. At this time, the part narrowing unit 22 narrows down only a part of the plurality of parts of the subject whose index value exceeds a predetermined value as a discrimination part.
  • FIG. 9 shows a flowchart relating to the region discrimination operation of the ultrasonic diagnostic apparatus 21 according to the fourth embodiment.
  • the flowchart of FIG. 9 is the same as the flowchart of FIG. 5 except that step S11 in the flowchart of the first embodiment shown in FIG. 5 is replaced with step S23. Therefore, detailed description of the same steps as those in the flowchart of FIG. 5 is omitted.
  • step S10 an index value is calculated based on the recognition score.
  • step S23 first, the region narrowing unit 22 narrows down a region to be discriminated with respect to the currently imaged region based on the index values of the plurality of regions of the subject calculated in step S10. That is, the part narrowing unit 22 narrows down only a part of the plurality of parts of the subject whose index value calculated in step S10 exceeds the determined value as a discrimination part.
  • the order determination unit 11 determines the order of determination so that the order increases as the index value increases for a plurality of parts narrowed down by the part narrowing unit 22.
  • step S12 and S13 an ultrasonic image is newly acquired, and only the recognition score of the part with the earliest discrimination order is calculated. Then, in step S14 to step S16, it is determined whether or not the recognition score exceeds the determination threshold, and the determination site is updated.
  • step S15 that the threshold value determination for the recognition scores of all the parts among the plurality of parts narrowed down in step S20 is completed in step S15 as a result of continuing to update the determined part in step S16
  • step S12 In step S8, it is determined that the part imaged in the ultrasonic image acquired in step S8 cannot be determined in any of the plurality of parts of the subject, and the part determination operation is started again.
  • step S14 If it is determined in step S14 that the recognition score of the part calculated in step S13 exceeds the threshold value, the process proceeds to step S17.
  • step S ⁇ b> 17 when a region to be determined with respect to the currently imaged region is determined, the region determination operation ends.
  • the ultrasonic diagnostic apparatus for determining the determination order is determined in order to determine the determination order after narrowing down the number of determination regions with respect to the currently imaged imaged region.
  • the calculation load of 21 is reduced.
  • the number of determination parts is narrowed down in step S20, the number of times that the determination part is updated in step S16 can be reduced when steps S13 to S16 are repeated. Therefore, according to the ultrasonic diagnostic apparatus 21 of the fourth embodiment, the calculation load of the ultrasonic diagnostic apparatus 21 can be reduced, and the time required to determine the imaging region can be shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Theoretical Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Databases & Information Systems (AREA)
  • Multimedia (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Physiology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

超音波診断装置(1)は、超音波画像を生成する画像取得部(3)と、超音波画像に対して画像認識を行って認識スコアを算出する画像認識部(9)と、定められた数の超音波画像に対して算出された認識スコアに基づいて複数の部位の指標値をそれぞれ算出する指標値算出部(10)と、複数の部位において部位判別を行う判別順序を指標値に基づいて決定する順序決定部(11)と、判別順序に従って算出された認識スコアに基づいて被検体の撮像部位を判別する部位判別部(12)とを有することを特徴とする。

Description

超音波診断装置、超音波診断装置の制御方法及び超音波診断装置の制御プログラム
 本発明は、超音波診断装置、超音波診断装置の制御方法及び超音波診断装置の制御プログラムに係り、特に、被検体の撮像部位を判別する超音波診断装置、この超音波診断装置の制御方法及びこの超音波診断装置の制御プログラムに関する。
 従来から、被検体の内部の画像を得るものとして、超音波診断装置が知られている。一般的に、超音波診断装置は、複数の素子が配列された振動子アレイが備えられた超音波プローブを備えている。この超音波プローブを被検体の体表に接触させた状態において、振動子アレイから被検体内に向けて超音波ビームが送信され、被検体からの超音波エコーを振動子アレイにおいて受信して素子データが取得される。更に、超音波診断装置は、得られた素子データを電気的に処理して、被検体の当該部位に対する超音波画像を生成する。
 このような超音波診断装置を用いて被検体の部位の超音波画像を生成する際に、それぞれの部位に対して適切な画像化条件が存在することが知られている。これらの画像化条件は、それぞれの部位の超音波画像が生成される際に自動的に設定されることが好ましいが、画像化条件を自動的に設定するためには、現在検査している被検体の撮像部位を自動的に判別する必要がある。
 そこで、被検体の撮像部位を自動的に判別することができる超音波診断装置として、種々の提案がなされている。例えば、特許文献1に開示される超音波診断装置は、被検体のそれぞれの部位に特徴的なパターンを記憶しているパターンメモリを有し、生成した超音波画像から抽出した画像パターンをパターンメモリに記憶されている複数のパターンデータと照合して、生成した超音波画像に含まれる画像パターンと類似するパターンデータを見つけ出すことにより、撮像部位を判別する。
特開平4-224738号公報
 ところで、一般的に、生成した超音波画像から画像パターンを抽出して、予め記憶されたパターンデータと照合する等の画像認識は、その処理に要する計算負荷が大きく、特に、処理性能の低い装置を用いて画像認識を行った場合に、画像認識が完了するまでに多くの時間を要する。また、特許文献1に開示されている超音波診断装置において、被検体の複数の部位に対して画像認識を行う場合には、生成した超音波画像から抽出した画像パターンを、複数の部位に対応した多くのパターンデータに照合させる必要があるため、撮像部位の判別には、更に多くの時間を要する。また、特許文献1に開示されている超音波診断装置では、このような処理を、被検体の複数の部位のそれぞれについて行う必要がある。
 本発明は、このような従来の問題点を解消するためになされたものであり、撮像部位の判別に要する時間を短縮することができる超音波診断装置、超音波診断装置の制御方法及び超音波診断装置の制御プログラムを提供することを目的とする。
 上記目的を達成するために、本発明の超音波診断装置は、超音波プローブから被検体に向けて超音波ビームの送信を行って超音波画像を生成する画像取得部と、画像取得部において生成された超音波画像に対して画像認識を行って被検体の複数の部位の認識スコアを算出する画像認識部と、定められた数の超音波画像に対して算出された複数の部位の認識スコアに基づいて複数の部位の指標値をそれぞれ算出する指標値算出部と、複数の部位において部位判別を行う判別順序を指標値に基づいて決定する順序決定部と、判別順序に従って画像認識部により算出された認識スコアに基づいて被検体の撮像部位を判別する部位判別部と、を有することを特徴とする。
 また、指標値算出部は、画像取得部において取得された最新の超音波画像に対して画像認識部により算出された複数の部位の認識スコアを複数の部位の指標値とすることが好ましい。
 また、指標値算出部は、画像取得部において取得された最新の超音波画像を含む時系列に連続して取得された複数の超音波画像のそれぞれに対して画像認識部により算出された複数の部位の認識スコアを用いて検体の複数の部位の指標値を算出することもできる。
 更に、指標値算出部は、複数の超音波画像に対して算出された、複数の部位のそれぞれの認識スコアの平均値又は中央値を複数の部位の指標値とすることが好ましい。
 また、指標値算出部は、複数の超音波画像に対して算出された複数の部位のそれぞれの認識スコアの最大値又は最小値を複数の部位の指標値としてもよい。
 また、指標値算出部は、複数の超音波画像のうち画像取得部により新しく取得された超音波画像ほど重み付けを強くした、複数の部位のそれぞれの認識スコアの重み付き平均値を複数の部位の指標値としてもよい。
 また、指標値算出部は、複数の超音波画像毎に複数の部位に対して認識スコアが大きいほど高得点となるような順位スコアを付与し、複数の超音波画像に対して複数の部位のそれぞれにおける順位スコアの合計値を複数の部位の指標値としてもよい。
 また、指標値算出部は、認識スコアの閾値を有し、複数の超音波画像において算出された複数の部位のそれぞれの認識スコアのうち閾値を超えた認識スコアの数を複数の部位のそれぞれの指標値としてもよい。
 また、指標値算出部は、複数の部位の指標値のうち互いに同一の指標値を算出した場合に、指標値の算出に用いた複数の超音波画像よりも少ない数の時系列において連続した超音波画像により構成され、かつ、最新の超音波画像を含む超音波画像群を用いて、指標値を再度算出することが好ましい。
 また、指標値算出部は、複数の部位の指標値のうち互いに同一の指標値を算出した場合に、画像取得部により時系列において最新の超音波画像よりも以前に取得され、かつ、時系列において連続した複数の超音波画像により構成される超音波画像群を用いて、指標値を再度算出することもできる。
 また、超音波プローブが移動して撮像部位が変更されたことを検知するプローブ状態検知部を更に有し、プローブ状態検知部が撮像部位の変更を検知した後に指標値算出部が指標値の算出を開始することが好ましい。
 また、順序決定部は、指標値が大きいほど順序が早まるように判別順序を決定することが好ましい。
 本発明の超音波診断装置の制御方法は、超音波プローブから被検体に向けて超音波ビームの送信を行って超音波画像を生成し、超音波画像に対して画像認識を行って被検体の複数の部位の認識スコアを算出し、定められた数の超音波画像に対して算出された複数の部位の認識スコアに基づいて複数の部位の指標値をそれぞれ算出し、複数の部位において部位判別を行う判別順序を指標値に基づいて決定し、判別順序に従って算出された認識スコアに基づいて被検体の撮像部位を判別することを特徴とする。
 本発明の超音波診断装置の制御プログラムは、超音波プローブから被検体に向けて超音波ビームの送信を行って超音波画像を生成するステップと、超音波画像に対して画像認識を行って被検体の複数の部位の認識スコアを算出するステップと、定められた数の超音波画像に対して算出された複数の部位の認識スコアに基づいて複数の部位の指標値をそれぞれ算出するステップと、複数の部位において部位判別を行う判別順序を指標値に基づいて決定するステップと、判別順序に従って算出された認識スコアに基づいて被検体の撮像部位を判別するステップと、を有することを特徴とする。
 本発明によれば、超音波診断装置は、部位判別を行う判別順序を決定する順序決定部を有し、判別順序に基づいて撮像部位を判別するため、撮像部位の判別に要する時間を短縮することができる。
本発明の実施の形態1に係る超音波診断装置の構成を示すプロック図である。 図1の受信部の内部構成を示すブロック図である。 図1の画像生成部の内部構成を示すブロック図である。 本発明の実施の形態1に係る超音波診断装置の動作を示すフローチャートである。 本発明の実施の形態1に係る超音波診断装置における部位判別動作を示すフローチャートである。 本発明の実施の形態2に係る超音波診断装置の動作を示すフローチャートである。 本発明の実施の形態3に係る超音波診断装置における部位判別動作を示すフローチャートである。 本発明の実施の形態4に係る超音波診断装置の構成を示すプロック図である。 本発明の実施の形態4に係る超音波診断装置の部位判別動作を示すフローチャートである。
 以下、この発明の実施の形態を添付図面に基づいて説明する。
実施の形態1
 図1に、本発明の実施の形態1に係る超音波診断装置の構成を示す。超音波診断装置1は、振動子アレイ2Aを内蔵する超音波プローブ2を備え、超音波プローブ2に、画像取得部3を介して表示制御部7及び表示部8が順次接続されている。
 画像取得部3は、超音波プローブ2の振動子アレイ2Aに接続された受信部4及び送信部5と、受信部4に接続された画像生成部6とを有しており、画像生成部6に、表示制御部7が接続されている。また、画像生成部6に、画像認識部9が接続され、画像認識部9に、指標値算出部10が接続され、指標値算出部10に、順序決定部11が接続され、順序決定部11に、部位判別部12が接続されている。また、部位判別部12に、画像認識部9が接続されている。また、画像生成部6に、プローブ状態検知部13が接続されている。
 更に、画像取得部3、表示制御部7、画像認識部9、指標値算出部10、順序決定部11、部位判別部12及びプローブ状態検知部13に、装置制御部14が接続され、装置制御部14に、操作部15、格納部16がそれぞれ接続されている。なお、装置制御部14と格納部16とは、それぞれ双方向に情報を受け渡し可能に接続される。
 図1に示す超音波プローブ2の振動子アレイ2Aは、1次元又は2次元に配列された複数の素子(超音波振動子)を有している。これらの素子は、それぞれ送信部5から供給される駆動信号に従って超音波を送信すると共に被検体からの超音波エコーを受信して受信信号を出力する。各素子は、例えば、PZT(Lead Zirconate Titanate:チタン酸ジルコン酸鉛)に代表される圧電セラミック、PVDF(Poly Vinylidene Di Fluoride:ポリフッ化ビニリデン)に代表される高分子圧電素子及びPMN-PT(Lead Magnesium Niobate-Lead Titanate:マグネシウムニオブ酸鉛-チタン酸鉛固溶体)に代表される圧電単結晶等からなる圧電体の両端に電極を形成した振動子を用いて構成される。
 そのような振動子の電極に、パルス状又は連続波状の電圧を印加すると、圧電体が伸縮し、それぞれの振動子からパルス状又は連続波状の超音波が発生して、それらの超音波の合成波から、超音波ビームが形成される。また、それぞれの振動子は、伝搬する超音波を受信することにより伸縮して電気信号を発生し、それらの電気信号は、超音波の受信信号として、それぞれの振動子から受信部4に出力される。
 画像取得部3の受信部4は、図2に示すように、増幅部17とA/D(Analog/Digital:アナログ/デジタル)変換部18が直列接続された構成を有している。受信部4は、振動子アレイ2Aの各素子から出力される受信信号を増幅部17において増幅し、A/D変換部18においてデジタル化して得られた素子データを画像生成部6に出力する。
 画像取得部3の送信部5は、例えば、複数のパルス発生器を含んでおり、装置制御部14からの制御信号に応じて選択された送信遅延パターンに基づいて、振動子アレイ2Aの複数の素子から送信される超音波が超音波ビームを形成するようにそれぞれの駆動信号を、遅延量を調節して複数の素子に供給する。
 画像取得部3の画像生成部6は、図3に示すように、Bモード(Brightness mode:輝度モード)処理部19と画像処理部20とが順次直列に接続された構成を有している。
 Bモード処理部19は、装置制御部14からの制御信号に応じて選択された受信遅延パターンに基づき、設定された音速に従う各素子データにそれぞれの遅延を与えて加算(整相加算)を施す、受信フォーカス処理を行う。この受信フォーカス処理により、超音波エコーの焦点が絞り込まれた音線信号が生成される。更に、Bモード処理部19は、音線信号に対し、超音波の反射位置の深度に応じて伝搬距離に起因する減衰の補正を施した後、包絡線検波処理を施して、被検体内の組織に関する断層画像情報であるBモード画像信号を生成する。Bモード処理部19において生成されたBモード画像信号は、画像処理部20に出力される。
 画像処理部20は、Bモード処理部19において生成されたBモード画像信号を通常のテレビジョン信号の走査方式に従う画像信号に変換(ラスター変換)し、Bモード画像信号に諧調処理等の各種の必要な画像処理を施した後、Bモード画像信号、すなわち、超音波画像を表示制御部7及び画像認識部9に出力する。
 図1に示すように、超音波診断装置1の表示制御部7は、画像取得部3において取得されたBモード画像信号に基づいて、表示部8に超音波画像を表示させる。
 表示部8は、例えば、LCD(Liquid Crystal Display:液晶ディスプレイ)等のディスプレイ装置を含んでおり、装置制御部14による制御の下、超音波画像を表示する。
 画像認識部9は、画像生成部6の画像処理部20から各種の画像処理を施された超音波画像を受信して、その超音波画像に対してパターン認識等の画像認識を行い、被検体の複数の部位の認識スコアを算出する。ここで、被検体の複数の部位の認識スコアとは、被検体の複数の部位のそれぞれに対する、超音波画像内の撮像部位の類似度であり、この類似度が大きな値であればあるほど、超音波画像内の撮像部位が当該部位である確率が高い。
 指標値算出部10は、画像認識部9において算出された被検体の複数の部位の認識スコアに基づいて、被検体の複数の部位の指標値をそれぞれ算出する。この指標値の算出方法として種々の算出方法があるが、以下においては説明のため、被検体の複数の部位の指標値とは、複数の超音波画像に対して算出された、被検体の複数の部位のそれぞれの認識スコアの平均値であるとする。また、このように、指標値算出部10は、複数の超音波画像に対する認識スコアに基づいて指標値を算出する際には、画像取得部3において取得された最新の超音波画像を含む、時系列に連続して取得された複数の超音波画像に対する認識スコアに基づいて指標値を算出する。
 順序決定部11は、被検体の複数の部位に対して撮像部位の判別を行う判別順序を、指標値算出部10において算出された被検体の複数の部位の指標値に基づいて決定する。この際に、順序決定部11は、現在撮像されている撮像部位である確率の高い部位を早い順序とするように判別順序を決定する。
 部位判別部12は、画像取得部3により取得された超音波画像に対して、判別順序に従って画像認識部9により算出された認識スコアに基づいて被検体の撮像部位を判別する。すなわち、部位判別部12は、被検体の複数の部位のうち、順序決定部11において決定された判別順序に従って、早い順序が付与された部位から順番に、撮像部位の判別を行う。
 プローブ状態検知部13は、超音波プローブ2が空中放射状態であるか否かを判定する。ここで、超音波プローブ2が空中放射状態であるとは、超音波プローブ2が被検体の体表から離れることにより、振動子アレイ2Aから被検体に送信されていた超音波ビームが空中に放射される状態のことをいう。超音波プローブ2が空中放射状態にある場合には、振動子アレイ2Aから放出された超音波ビームが被検体の部位により反射されず、振動子アレイ2Aにおいて生成される受信信号が十分な強度を有さないため、画像生成部6において生成される超音波画像内に像が写らない。そのため、プローブ状態検知部13は、超音波画像内に像が映っていない場合に、超音波プローブ2が空中放射状態であると判定し、超音波画像内に像が映っている場合に、超音波プローブ2が被検体に対して接触している状態であると判定する。
 装置制御部14は、オペレータにより操作部15を介して入力された指令に基づいて超音波診断装置1の各部の制御を行う。
 操作部15は、オペレータが入力操作を行うためのものであり、キーボード、マウス、トラックボール及びタッチパネル等を備えて構成することができる。
 格納部16は、超音波診断装置1の動作プログラム等を格納するもので、HDD(Hard Disc Drive:ハードディスクドライブ)、SSD(Solid State Drive:ソリッドステートドライブ)、FD(Flexible Disc:フレキシブルディスク)、MOディスク(Magneto-Optical disc:光磁気ディスク)、MT(Magnetic Tape:磁気テープ)、RAM(Random Access Memory:ランダムアクセスメモリ)、CD(Compact Disc:コンパクトディスク)、DVD(Digital Versatile Disc:デジタルバーサタイルディスク)、SDカード(Secure Digital card:セキュアデジタルカード)、USBメモリ(Universal Serial Bus memory:ユニバーサルシリアルバスメモリ)等の記録メディア、又はサーバ等を用いることができる。
 なお、画像取得部3の画像生成部6、表示制御部7、画像認識部9、指標値算出部10、順序決定部11、部位判別部12、プローブ状態検知部13及び装置制御部14は、CPU(Central Processing Unit:中央処理装置)及び、CPUに各種の処理を行わせるための制御プログラムから構成されるが、それらを、デジタル回路及びコンピュータを用いて構成しても良い。また、これらの画像生成部6、表示制御部7、画像認識部9、指標値算出部10、順序決定部11、部位判別部12、プローブ状態検知部13及び装置制御部14を、部分的にあるいは全体的に1つのCPUに統合させて構成することもできる。
 次に、図4に示すフローチャートを用いて、実施の形態1における超音波診断装置1の動作について説明する。
 まず、ステップS1において、超音波プローブ2の振動子アレイ2Aの複数の超音波振動子を用いた超音波ビームの送受信及び走査、すなわち、超音波画像の撮像が画像取得部3の受信部4及び送信部5により行われる。この際に、被検体からの超音波エコーを受信した各超音波振動子において受信信号が生成され、この受信信号は、受信部4に入力される。受信部4に入力された受信信号は、受信部4の増幅部17において増幅され、また、A/D変換部18においてA/D変換がなされる。更に、受信信号は、画像生成部6に入力され、画像生成部6のBモード処理部19においてBモード画像、すなわち、超音波画像が生成される。
 続くステップS2において、プローブ状態検知部13は、超音波プローブ2が空中放射状態であるか否かを判定する。ステップS2において、超音波プローブ2が空中放射状態であると判定された場合には、ステップS1に戻る。一方、ステップS2において、超音波プローブ2が空中放射状態ではなく、被検体の体表に接触していると判定された場合に、ステップS3に進む。
 ステップS3においては、現在検査されている撮像部位の部位判別が行われる。このステップS3において行われる部位判別については、後ほど、図5を用いて詳細に説明する。
 ステップS3において撮像部位の判別が行われると、ステップS4に進む。このステップS4においては、ステップS3において判別された部位に適した画像化条件が装置制御部14により設定される。ここで、画像化条件は、超音波診断の際のフレームレート、超音波画像の解像度、超音波画像の輝度及び超音波診断の際のダイナミックレンジ等を含む。
 続くステップS5において、画像取得部3により超音波画像が取得される。この際に、画像化条件として、ステップS4において設定された画像化条件が用いられるため、画像取得部3は、撮像部位が鮮明に写った超音波画像を取得することができる。
 続くステップS6において、超音波プローブ2が空中放射状態であるか否かが、再度、判定される。ここで、超音波プローブ2が空中放射状態ではなく、被検体の体表に接触しているとプローブ状態検知部13により判定された場合に、撮像部位の変更が行われていないと判断されてステップS5に戻り、超音波画像の取得が再度行われる。一方、超音波プローブ2が空中放射状態であるとプローブ状態検知部13により判定された場合には、撮像部位の変更が開始されたと判断されて、ステップS1に戻る。
 次に、図5を参照しながらステップS3の部位判定について詳細に説明する。ステップS3において部位判別が開始されると、まず、ステップS7において、超音波画像の取得がなされる。
 続くステップS8において、画像認識部9は、ステップS7において取得された超音波画像に対して、被検体の複数の部位の認識スコアを算出する。
 続くステップS9において、装置制御部14は、所定フレーム数の超音波画像において被検体の複数の部位の認識スコアが算出されたか否かを判定する。ここで、ステップS3の部位判定の処理が、ステップS9の判定ステップを有しているのは、指標値算出部10が指標値を算出するために必要な数の認識スコアを得るためである。そのため、ステップS9において、所定フレーム数の超音波画像において認識スコアが算出されていないと判定された場合には、ステップS7に戻って超音波画像の取得及び続くステップS8において新たな認識スコアが算出される。このように、ステップS7及びS8を繰り返した後に、ステップS9において、所定フレーム数の超音波画像において被検体の複数の部位の認識スコアが算出されたと判定された場合に、ステップS10に進む。
 ステップS10において、指標値算出部10は、ステップS7及びS8の繰り返しにより算出された所定数の認識スコアをそれぞれ複数の部位別に平均することにより、被検体の複数の部位の指標値を算出する。
 続くステップS11において、順序決定部11は、ステップS10において算出された被検体の複数の部位の指標値が大きいほど順序が早まるように、被検体の複数の部位に対して判別順序を付与する。例えば、被検体の複数の部位が心臓及び肺を含んでおり、心臓の指標値が最も大きく、肺の指標値が心臓の指標値の次に大きい場合に、心臓の順序を1番目とし、肺の順序を2番目とする。
 続くステップS12において、画像取得部3が新たに超音波画像を取得すると、ステップS13に進む。
 ステップS13において、画像認識部9は、ステップS12において取得された最新の超音波画像に対して、ステップS11において決定された判別順序に従って、最も早い順序が付与された部位の認識スコアを算出する。例えば、心臓の判別順序が1番目であった場合に、ステップS12において取得された超音波画像に対して、心臓の認識スコアのみが算出される。
 続くステップS14において、部位判別部12は、ステップS13において算出された1つの部位に対する認識スコアが判別閾値を超えているか否かの閾値判定を行う。判別閾値とは、部位を判別する際の認識スコアの閾値であり、全ての部位に対して同一の値を用いることができる。ステップS14において、1つの部位の認識スコアが判別閾値以下であると判定された場合には、撮像部位をステップS13において認識スコアが算出された部位と確定することができないと判断し、ステップS15に進む。
 ステップS15において、装置制御部14は、被検体の複数の部位のうち全ての部位の認識スコアに対する閾値判定がステップS14において完了したか否かを判定する。被検体の複数の部位のうち全ての部位の認識スコアに対する閾値判定がステップS14において完了していないとステップS15において判定された場合に、ステップS16に進む。
 ステップS16において、装置制御部14は、判別部位を更新する。すなわち、装置制御部14は、次のステップS13において認識スコアが算出される部位を、ステップS11において決定された判別順序において1番目の部位から2番目の部位へと変更する。ここで、以下においては、説明のために、ステップS11において決定された判別順序に従って順序を付与された被検体の部位のうち、撮像部位に対する判別対象の部位、すなわち、ステップS14の判定がなされる対象の部位を判別部位と呼ぶ。この判別部位の更新がなされると、判別順序に基づく次の部位に対する撮像部位の判別を行うため、ステップS13に戻る。
 2度目のステップS13においては、ステップS12において取得された超音波画像に対して、ステップS11において決定された判別順序において2番目に早い順序が付与された部位の認識スコアのみが算出される。これに続くステップS14において、部位判別部12は、判別順序において2番目に早い順序が付与された部位の認識スコアが判別閾値を超えるか否かを判定する。ここで、認識スコアが判別閾値以下であると判定された場合に、ステップS15に進む。
 このように、ステップS14において判別部位の認識スコアが判別閾値以下であると判定され続けている限り、ステップS11において決定された判別順序に従って、ステップS13~ステップS16を繰り返す。また、ステップS13~ステップS16までを繰り返した結果、被検体の複数の部位の全ての部位の認識スコアに対する閾値判定がステップS14において行われたとステップS15において判定された場合には、ステップS12において取得された超音波画像に撮像されている部位が被検体の複数の部位のいずれにも確定することができないと判断して、ステップS8に戻る。以降のステップS8~ステップS14において、新たに算出された被検体の複数の部位の認識スコアに基づいて被検体の複数の部位の指標値が新たに算出され、この指標値に基づいて新たに判別順序が決定される。更に、新たに決定された判別順序に従って、ステップS12において新たに取得された超音波画像に対して認識スコアが算出され、その認識スコアに基づいて撮像部位の部位判別が行われる。
 また、ステップS14において判別部位の認識スコアが判別閾値を超えたと判定された場合には、ステップS17に進む。
 ステップS17において、部位判別部12は、現在撮像されている撮像部位が、ステップS14において判別閾値を超えたと判定された認識スコアを持つ判別部位であることを確定する。これにより、部位判別動作は終了する。
 以上において説明した実施の形態1の超音波診断装置1によれば、部位判別を行う際に、現在撮像されている撮像部位である確率の高い部位を早い順序とするように判別順序を決定し、その判別順序に従って被検体の複数の部位を、順次、判別していくため、超音波診断装置1の計算負荷を軽減し、また、撮像部位の判別に要する時間を短縮することができる。
 なお、指標値算出部10は、複数の超音波画像に対して算出された被検体の複数の部位のそれぞれの認識スコアを平均して、被検体の複数の部位の指標値を算出すると説明したが、指標値算出部10が指標値を算出するために要する超音波画像の数は、操作部15等を介してオペレータにより設定されることができ、また、予め指標値算出部10及び格納部16に記憶されていても良い。
 また、指標値算出部10は、被検体の複数の部位のそれぞれの認識スコアを平均する以外に、種々の方法を用いて指標値を算出することができる。例えば、指標値算出部10は、複数の超音波画像に対して算出された被検体の複数の部位のそれぞれの認識スコアの中央値を、被検体の複数の部位の指標値とすることもできる。
 また、例えば、指標値算出部10は、複数の超音波画像に対して算出された被検体の複数の部位のそれぞれの認識スコアの最大値を被検体の複数の部位の指標値とすることもでき、複数の超音波画像に対して算出された被検体の複数の部位のそれぞれの認識スコアの最小値を被検体の複数の部位の指標値とすることもできる。
 また、例えば、指標値算出部10は、複数の超音波画像に対して算出された被検体の複数の部位のそれぞれの認識スコアに重みを付けて平均した重み付き平均値を被検体の複数の部位の指標値とすることもできる。この際に、指標値算出部10は、複数の超音波画像のうち、画像取得部3により新しく取得された超音波画像に対して算出された認識スコアほど重み付けを強くして、重み付き平均値を算出することができる。
 また、例えば、指標値算出部10は、複数の超音波画像毎に被検体の複数の部位に対して、認識スコアが大きいほど高得点となるような順位スコアを付与することもできる。この場合に、指標値算出部10は、複数の超音波画像に対して被検体の複数の部位のそれぞれにおける順位スコアの合計値を被検体の複数の部位の指標値とすることができる。すなわち、例えば、超音波画像毎に、被検体の複数の部位のうち、認識スコアが高い部位から順番に、5点、4点、3点、2点及び1点というように、順位スコアを付与し、複数の超音波画像に対して部位別に順位スコアを合計することにより、被検体の複数の部位の指標値が算出される。
 また、例えば、指標値算出部10は、認識スコアの閾値を有し、認識スコアの閾値判定の結果から、指標値を算出することもできる。この場合に、指標値算出部10は、複数の超音波画像において算出された被検体の複数の部位のそれぞれの認識スコアのうち閾値を超えた認識スコアの数を、被検体の複数の部位のそれぞれの指標値とすることができる。すなわち、例えば、指標値算出部10は、複数の超音波画像に対して算出された心臓の認識スコアのうち、閾値を超えた認識スコアが3つであった場合に、心臓の指標値を3とすることができる。
 また、指標値算出部10は、以上において説明したように複数フレームの超音波画像に対して算出された認識スコアに基づいて指標値を算出することができるが、1フレームの超音波画像に対して算出された認識スコアを指標値とすることもできる。例えば、指標値算出部10は、画像取得部3において取得された最新の超音波画像のみに対して算出された被検体の複数の部位の認識スコアを、被検体の複数の部位の指標値とすることができる。
 また、指標値算出部10は、被検体の複数の部位の指標値のうち互いに同一の指標値を算出した場合に、指標値を再度算出することができる。この場合に、指標値算出部10は、互いに同一の指標値を算出した際に用いた複数の超音波画像よりも少ない数の超音波画像により構成され、かつ、画像取得部3により取得された最新の超音波画像を含む超音波画像群に対して算出された認識スコアを用いて、指標値を再度算出することができる。ここで用いられる超音波画像群は、画像取得部3により時系列において連続して取得されたものであることが好ましい。
 また、指標値算出部10は、指標値を再度算出する場合に、時系列において最新の超音波画像よりも以前に画像取得部3により取得され、かつ、時系列において連続した複数の超音波画像により構成される超音波画像群に対して算出された認識スコアを用いて、指標値を算出することもできる。
 また、プローブ状態検知部13は、取得された超音波画像内に像が映っていない場合に、超音波プローブ2が空中放射状態であると判定すると説明したが、時系列に取得された複数の超音波画像を比較することにより、超音波プローブ2が空中放射状態であるか否かを判定することもできる。すなわち、プローブ状態検知部13は、時系列に取得された複数の超音波画像を比較し、それらの超音波画像に写る像が複数の超音波画像間において変化していない場合に、超音波プローブ2が体表に接触していないと判断して、超音波プローブ2が空中放射状態であると判定することができる。また、プローブ状態検知部13は、時系列に取得された複数の超音波画像に写る像が複数の超音波画像間において変化している場合には、超音波画像内に被検体の部位が映っていると判断して、超音波プローブ2が被検体の体表に接触していると判定することができる。
 このように、プローブ状態検知部13は、時系列に取得された複数の超音波画像を比較することにより、例えば、超音波プローブ2に超音波検査用のジェル等が付着している場合であっても、超音波プローブ2が空中放射状態であるか否かを判定することができる。
 また、図4のフローチャートにおいて、プローブ状態検知部13により撮像部位の変更が検知された際に、ステップS3の部位判別が開始されると説明した。これは、プローブ状態検知部13により撮像部位の変更が検知された際に、新たに取得された超音波画像に対して算出された認識スコアに基づいて、指標値算出部10が指標値の算出を開始することを意味する。このように、被検体の体表に超音波プローブ2が接触している間のみ、超音波画像に対して指標値を算出することにより、超音波診断装置1の計算負荷を軽減することができ、また、指標値算出部10が指標値を算出する際に、撮像部位を変更する前の認識スコアを使用してしまうことを防ぐことができる。
 また、指標値算出部10は、プローブ状態検知部13が撮像部位の変更を検知してから定められた時間が経過した際に、被検体の複数の部位に対する指標値の算出を開始することもできる。プローブ状態検知部13が撮像部位の変更を検知してから指標値算出部10が被検体の複数の部位の指標値を算出するまでの時間は、操作部15等を介してオペレータにより入力されても良く、予め格納部16等に記憶させておいても良い。
 超音波プローブ2を被検体の体表に接触させて目標とする撮像部位の超音波画像を得るまでの時間は、オペレータの熟練等によりばらつくことがあり、撮像部位が変更された直後は、認識スコアの算出に対して十分鮮明な超音波画像が得られないこともある。したがって、プローブ状態検知部13が撮像部位の変更を検知してから定められた時間が経過した際に被検体の複数の部位の指標値の算出を開始することにより、認識スコアの算出に対して十分に鮮明な超音波画像に対して算出された複数の認識スコアに基づいて指標値を算出することができるため、指標値の算出における精度を向上させることができる。
 また、図5のフローチャートにおいて、ステップS12及びステップS13を省略することもできる。この場合には、ステップS11において撮像部位の判別を行う判別順序が決定されると、ステップS14に進む。ステップS14において、部位判別部12は、ステップS7において取得された最新の超音波画像に対してステップS8において算出された被検体の複数の部位の認識スコアのうち、判別順序に従って最も早い順序を付与された部位の認識スコアと判別閾値とを比較する。この際に、認識スコアが判別閾値以下である場合に、ステップS15に進む。更に、ステップS14において被検体の複数の部位のうち全ての部位の認識スコアに対する閾値判定が行われていないとステップS15において判定された場合に、ステップS16に進む。ステップS16において判別部位の更新がなされると、判別順序に従って次の早い順序を付与された部位の認識スコアが判別閾値を超えるか否かがステップS14において判定される。
 また、部位判別部12がステップS14において用いる判別閾値は、全ての部位に対して同一の値を用いることができると説明したが、被検体の複数の部位のそれぞれに対して判別閾値を設定することもできる。
 また、以上において説明した超音波診断装置1は、小型のため、容易に携帯されて用いられる携帯型の超音波診断装置であっても良く、診察室等に備え付けて用いられる据置型の超音波診断装置であっても良い。
 また、超音波プローブ2は、被検体に向けて超音波ビームを送受信できるものであれば特に限定されず、セクタ型、コンベックス型、リニア型及びラジアル型等の形態であっても良い。
実施の形態2
 図4のフローチャートに示す超音波診断装置1の動作においては、ステップS6において超音波プローブ2が空中放射状態である場合に、ステップS1に戻り、その後のステップS3において被検体の複数の部位のうち全ての部位に対して部位判別を行っていたが、ステップS3において既に確定した被検体の部位を除外することにより、部位判別を行う際の超音波診断装置1の計算負荷を更に軽減することができる。
 図6に、実施の形態2に係る超音波診断装置の動作を示す。図6に示すフローチャートのステップS1~ステップS6は、図4に示すフローチャートのステップS1~ステップS6と同一であるため、詳細な説明は省略する。
 ステップS6において、超音波プローブ2が空中放射状態であるとプローブ状態検知部13により判定された場合には、ステップS18に進む。このステップS18において、装置制御部14は、被検体の複数の部位のうち全ての部位が確定したか否かを判定する。ステップS18において、被検体の複数の部位のうち全ての部位が確定していないと判定された場合には、ステップS19に進む。
 ステップS19において、装置制御部14は、ステップS3の部位判別において確定した部位、すなわち、確定済みの部位を、次のステップS3における判別対象から除外する。ステップS19の処理が完了すると、ステップS1に戻る。続くステップS2において超音波プローブ2が空中放射状態ではないと判定されると、続くステップS3において部位判別が実施される。この際に、被検体の複数の部位のうちステップS19において除外された部位以外の部位が判別対象となるため、1回目のステップS3における部位判定よりも、撮像部位に対して判別される部位の候補を減らすことができる。
 こうして、ステップS1~ステップS19を繰り返すことにより、次々と判別対象を減らしていった結果、ステップS18において、被検体の複数の部位のうち全ての部位が確定したと判定された場合に、超音波診断装置の動作を終了する。
 このように、ステップS1~ステップS19を繰り返すことにより、判別対象を減らしていくことができるため、ステップS19を実行する度に、ステップS3における部位判別を行う際の超音波診断装置の計算負荷を軽減することができ、撮像部位の判別に要する時間を短縮していくことができる。
実施の形態3
 図5に示す実施の形態1の部位判別動作においては、ステップS14の閾値判定の際に、ステップS12において新たに取得された超音波画像に対して画像認識部9により算出された被検体の1つの部位の認識スコアが用いられたが、複数の超音波画像に対して算出された認識スコアに基づいて算出された部位判定用の認識スコアを閾値判定に用いることもできる。
 図7に実施の形態3の超音波診断装置の部位判別動作に係るフローチャートを示す。図7のフローチャートは、ステップS20~ステップS22を除いて、図5のフローチャートのステップと同一である。
 図7のフローチャートにおいて部位判別動作が開始されると、まず、所定フレーム数の超音波画像に対して被検体の複数の部位の認識スコアが算出されるまで、ステップS7~ステップS9が繰り返される。ここで、この所定フレーム数を、説明のために、第1の所定フレーム数と呼ぶ。ステップS9において、第1の所定フレーム数の超音波画像に対して被検体の複数の部位の認識スコアが算出されたと判定された場合に、ステップS10に進む。ステップS10において、第1の所定フレーム数の超音波画像に対して算出された被検体の複数の部位の認識スコアから被検体の複数の部位の指標値が算出されると、ステップS11において判別順序が決定される。
 続くステップS12において超音波画像が新たに取得され、ステップS20に進む。ステップS20は、図5のフローチャートのステップS8と同一であり、ステップS20において、最新の超音波画像に対して被検体の複数の部位の認識スコアが算出されると、ステップS21に進む。
 ステップS21において、装置制御部14は、ステップS12において取得された第2の所定フレーム数の超音波画像に対して認識スコアが算出されたか否かを判定する。これは、部位判定用の認識スコアを算出するために必要な数の認識スコアを得るためである。そのため、ステップS21において、第2の所定のフレーム数の超音波画像に対して認識スコアが算出されていないと判定された場合には、ステップS12に戻って、超音波画像が新たに取得され、続くステップS20において、被検体の複数の部位の認識スコアが新たに算出される。
 ここで、ステップS9における第1の所定フレーム数とステップS21における第2の所定フレーム数とは、互いに同一でも良く、互いに異なっていても良いが、説明のために、第1の所定フレーム数と第2の所定フレーム数とは互いに異なっているとする。
 ステップS21において、第2の所定フレーム数の超音波画像に対して認識スコアが算出されたと判定された場合に、ステップS22に進む。ステップS22において、画像認識部9は、第2の所定フレーム数の超音波画像に対してステップS20において算出された、判別順序において最も早い順序が付与された判別部位の認識スコアを平均する。このように、画像認識部9は、判別部位の認識スコアの平均値を撮像部位の判別用の認識スコアとして算出する。この場合に、判別部位の認識に用いられた複数の超音波画像は、時系列において連続していることが好ましい。
 続くステップS14において、装置制御部14は、ステップS22において算出された判別用の認識スコアが判別閾値を超えるか否かを判定する。ステップS14において、判別用の認識スコアが判別閾値以下であると判定された場合に、撮像部位に対して判別部位が確定できないとされて、ステップS15に進む。ステップS14において被検体の複数の部位のうち全ての部位の認識スコアに対する閾値判定が行われていないとステップS15において判定された場合に、ステップS16において判別部位が更新されて、ステップS22に戻る。
 ステップS22に戻ると、判別順序において次に早い順序が付与された部位に対する判別用の認識スコアが算出される。このように、ステップS14において、判別用の認識スコアが判別閾値以下である限り、ステップS22~ステップS16が繰り返される。ステップS14において、判別用の認識スコアが判別閾値を超えていると判定された場合には、ステップS17に進んで撮像部位が確定される。このようにして、図7のフローチャートに示す部位判別動作は終了する。
 このように、複数の超音波画像に対して算出された認識スコアから部位判別用の認識スコアを算出することにより、撮像部位の判別の精度を向上することができる。例えば、ステップS12において取得された超音波画像のうちのいくつかの超音波画像内に写る被検体の部位が、画像認識の対象として十分に鮮明でなかったとしても、撮像部位を確定する精度が向上する。
 なお、以上の説明においては、ステップS22における撮像部位の判別用の認識スコアの算出に際し、ステップS12において取得された第2の所定フレーム数の超音波画像に対する認識スコアを用いたが、ステップS20において算出された認識スコアと、第1の所定フレーム数の超音波画像に対する認識スコアの双方に基づいて、ステップS22における撮像部位の判別用の認識スコアを算出することもできる。すなわち、第2の所定フレーム数を、第1の所定フレーム数と、ステップS12において取得された超音波画像のフレーム数との和とすることができる。
 この際に、第2の所定フレーム数が第1の所定フレーム数以下である場合には、すなわち、ステップS22における撮像部位の判別用の認識スコアの算出に要する被検体の複数の部位の認識スコアの数がステップS10における指標値の算出に要する認識スコアの数以下である場合には、ステップS12、ステップS20、及び、ステップS21を省略することができる。そのため、撮像部位の判別に要する時間を更に短縮することができる。
実施の形態4
 図5及び図7に示す実施の形態1及び3の部位判別動作においては、被検体の複数の部位の指標値に基づいて、被検体の各部位の認識スコアに対して閾値判定を行う判別順序を決定したが、この際に、撮像部位に対して判別される部位を絞り込むこともできる。
 図8に、実施の形態4の超音波診断装置21の構成を示す。実施の形態4の超音波診断装置21は、部位絞り込み部22を有することを除いて、図1に示す実施の形態1の超音波診断装置1と同一である。そのため、部位絞り込み部22以外の構成要素については、詳細な説明を省略し、同一の参照番号を付す。
 実施の形態4の超音波診断装置21において、指標値算出部10に部位絞り込み部22が接続され、部位絞り込み部22は、順序決定部11に接続されている。また、部位絞り込み部22に、装置制御部14が接続されている。
 部位絞り込み部22は、指標値算出部10により算出された被検体の複数の部位の指標値に基づいて、被検体の複数の部位のうち、現在撮像されている撮像部位に対して判別される部位を絞り込む。この際に、部位絞り込み部22は、被検体の複数の部位のうち、指標値が定められた値を超えた部位のみを判別部位として絞り込む。
 図9に、実施の形態4の超音波診断装置21の部位判別動作に係るフローチャートを示す。図9のフローチャートは、図5に示す実施の形態1のフローチャートにおけるステップS11がステップS23に置き換わったことを除いて、図5のフローチャートと同一である。そのため、図5のフローチャートと同一のステップについては、詳細な説明は省略する。
 実施の形態4の超音波診断装置21の部位判別動作が開始されると、ステップS7~ステップS9において所定フレーム数の超音波画像に対して被検体の複数の部位の認識スコアが算出され、続くステップS10において、認識スコアに基づいた指標値の算出が行われる。
 続くステップS23において、まず、部位絞り込み部22が、ステップS10において算出された被検体の複数の部位の指標値に基づいて、現在撮像されている撮像部位に対して判別される部位を絞り込む。すなわち、部位絞り込み部22は、被検体の複数の部位のうち、ステップS10において算出された指標値が定められた値を超えている部位のみを判別部位として絞り込む。次に、順序決定部11が、部位絞り込み部22により絞り込まれた複数の部位に対して、指標値が大きいほど順序が早まるように判別順序を決定する。
 続くステップS12及びS13において、超音波画像が新たに取得され、判別順序が最も早い部位の認識スコアのみが算出される。そして、ステップS14~ステップS16において、認識スコアが判別閾値を超えるか否かの判定、及び、判別部位の更新が行われる。ステップS16において判別部位が更新され続けた結果、ステップS20において絞り込まれた複数の部位のうち全ての部位の認識スコアに対する閾値判定がステップS14において完了したとステップS15において判定された場合に、ステップS12において取得された超音波画像に撮像されている部位が被検体の複数の部位のいずれにも確定することができないと判断して、ステップS8に戻り、部位判別の動作が再度開始される。
 ステップS13において算出された部位の認識スコアが閾値を超えたとステップS14において判定された場合には、ステップS17に進む。ステップS17において、現在撮像されている撮像部位に対して判定される部位が確定すると、部位判定動作は終了する。
 以上のように、実施の形態4の部位判定動作においては、現在撮像されている撮像部位に対する判定部位の数を絞り込んでから判別順序を決定するため、判別順序を決定するための超音波診断装置21の計算負荷が軽減される。また、ステップS20において判定部位の数が絞り込まれるため、ステップS13~ステップS16を繰り返す場合に、ステップS16において判別部位を更新する回数を減らすことができる。従って、実施の形態4の超音波診断装置21によれば、超音波診断装置21の計算負荷を軽減することができ、撮像部位の判別に要する時間を短縮することができる。
 以上、本発明に係る超音波診断装置について詳細に説明したが、本発明は、以上の例には限定されず、本発明の要旨を逸脱しない範囲において、各種の改良及び変形を行っても良いのはもちろんである。また、以上において示した複数の実施の形態は、適宜組み合わせて用いることができる。
1,21 超音波診断装置、2 超音波プローブ、2A 振動子アレイ、3 画像取得部、4 受信部、5 送信部、6 画像生成部、7 表示制御部、8 表示部、9 画像認識部、10 指標値算出部、11 順序決定部、12 部位判別部、13 プローブ状態検知部、14 装置制御部、15 操作部、16 格納部、17 増幅部、18 A/D変換部、19 Bモード処理部、20 画像処理部、22 部位絞り込み部。

Claims (14)

  1.  超音波プローブから被検体に向けて超音波ビームの送信を行って超音波画像を生成する画像取得部と、
     前記画像取得部において生成された前記超音波画像に対して画像認識を行って前記被検体の複数の部位の認識スコアを算出する画像認識部と、
     定められた数の前記超音波画像に対して算出された前記複数の部位の認識スコアに基づいて前記複数の部位の指標値をそれぞれ算出する指標値算出部と、
     前記複数の部位において部位判別を行う判別順序を前記指標値に基づいて決定する順序決定部と、
     前記判別順序に従って前記画像認識部により算出された認識スコアに基づいて前記被検体の撮像部位を判別する部位判別部と、を有することを特徴とする超音波診断装置。
  2.  前記指標値算出部は、前記画像取得部において取得された最新の超音波画像に対して前記画像認識部により算出された前記複数の部位の認識スコアを前記複数の部位の前記指標値とする請求項1に記載の超音波診断装置。
  3.  前記指標値算出部は、前記画像取得部において取得された最新の超音波画像を含む時系列に連続して取得された複数の超音波画像のそれぞれに対して前記画像認識部により算出された前記複数の部位の認識スコアを用いて前記複数の部位の前記指標値を算出する請求項1に記載の超音波診断装置。
  4.  前記指標値算出部は、前記複数の超音波画像に対して算出された、前記複数の部位のそれぞれの認識スコアの平均値又は中央値を前記複数の部位の前記指標値とする請求項3に記載の超音波診断装置。
  5.  前記指標値算出部は、前記複数の超音波画像に対して算出された前記複数の部位のそれぞれの認識スコアの最大値又は最小値を前記複数の部位の前記指標値とする請求項3に記載の超音波診断装置。
  6.  前記指標値算出部は、前記複数の超音波画像のうち前記画像取得部により新しく取得された超音波画像ほど重み付けを強くした、前記複数の部位のそれぞれの認識スコアの重み付き平均値を前記複数の部位の前記指標値とする請求項3に記載の超音波診断装置。
  7.  前記指標値算出部は、前記複数の超音波画像毎に前記複数の部位に対して前記認識スコアが大きいほど高得点となるような順位スコアを付与し、前記複数の超音波画像に対して前記複数の部位のそれぞれにおける前記順位スコアの合計値を前記複数の部位の前記指標値とする請求項3に記載の超音波診断装置。
  8.  前記指標値算出部は、前記認識スコアの閾値を有し、前記複数の超音波画像において算出された前記複数の部位のそれぞれの前記認識スコアのうち前記閾値を超えた前記認識スコアの数を前記複数の部位のそれぞれの前記指標値とする請求項3に記載の超音波診断装置。
  9.  前記指標値算出部は、前記複数の部位の前記指標値のうち互いに同一の指標値を算出した場合に、前記指標値の算出に用いた前記複数の超音波画像よりも少ない数の時系列において連続した超音波画像により構成され、かつ、前記最新の超音波画像を含む超音波画像群を用いて、前記指標値を再度算出する請求項3~8のいずれか一項に記載の超音波診断装置。
  10.  前記指標値算出部は、前記複数の部位の前記指標値のうち互いに同一の指標値を算出した場合に、前記画像取得部により時系列において前記最新の超音波画像よりも以前に取得され、かつ、時系列において連続した複数の超音波画像により構成される超音波画像群を用いて、前記指標値を再度算出する請求項3~8のいずれか一項に記載の超音波診断装置。
  11.  前記超音波プローブが移動して前記撮像部位が変更されたことを検知するプローブ状態検知部を更に有し、
     前記プローブ状態検知部が前記撮像部位の変更を検知した後に前記指標値算出部が前記指標値の算出を開始する請求項1~10のいずれか一項に記載の超音波診断装置。
  12.  前記順序決定部は、前記指標値が大きいほど順序が早まるように前記判別順序を決定する請求項1~11のいずれか一項に記載の超音波診断装置。
  13.  超音波プローブから被検体に向けて超音波ビームの送信を行って超音波画像を生成し、
     前記超音波画像に対して画像認識を行って前記被検体の複数の部位の認識スコアを算出し、
     定められた数の超音波画像に対して算出された前記複数の部位の認識スコアに基づいて前記複数の部位の指標値をそれぞれ算出し、
     前記複数の部位において部位判別を行う判別順序を前記指標値に基づいて決定し、
     前記判別順序に従って算出された認識スコアに基づいて前記被検体の撮像部位を判別することを特徴とする超音波診断装置の制御方法。
  14.  超音波プローブから被検体に向けて超音波ビームの送信を行って超音波画像を生成するステップと、
     前記超音波画像に対して画像認識を行って前記被検体の複数の部位の認識スコアを算出するステップと、
     定められた数の超音波画像に対して算出された前記複数の部位の認識スコアに基づいて前記複数の部位の指標値をそれぞれ算出するステップと、
     前記複数の部位において部位判別を行う判別順序を前記指標値に基づいて決定するステップと、
     前記判別順序に従って算出された認識スコアに基づいて前記被検体の撮像部位を判別するステップと、を有することを特徴とする超音波診断装置の制御プログラム。
PCT/JP2018/001326 2017-02-01 2018-01-18 超音波診断装置、超音波診断装置の制御方法及び超音波診断装置の制御プログラム WO2018142950A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018566044A JP6674565B2 (ja) 2017-02-01 2018-01-18 超音波診断装置、超音波診断装置の制御方法及び超音波診断装置の制御プログラム
EP18748229.4A EP3578109B1 (en) 2017-02-01 2018-01-18 Ultrasound diagnostic device, ultrasound diagnostic device control method and ultrasound diagnostic device control program
US16/527,408 US11589842B2 (en) 2017-02-01 2019-07-31 Ultrasound diagnostic apparatus, method for controlling ultrasound diagnostic apparatus, and program for controlling ultrasound diagnostic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017016590 2017-02-01
JP2017-016590 2017-02-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/527,408 Continuation US11589842B2 (en) 2017-02-01 2019-07-31 Ultrasound diagnostic apparatus, method for controlling ultrasound diagnostic apparatus, and program for controlling ultrasound diagnostic apparatus

Publications (1)

Publication Number Publication Date
WO2018142950A1 true WO2018142950A1 (ja) 2018-08-09

Family

ID=63040552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001326 WO2018142950A1 (ja) 2017-02-01 2018-01-18 超音波診断装置、超音波診断装置の制御方法及び超音波診断装置の制御プログラム

Country Status (4)

Country Link
US (1) US11589842B2 (ja)
EP (1) EP3578109B1 (ja)
JP (1) JP6674565B2 (ja)
WO (1) WO2018142950A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224738A (ja) 1990-12-27 1992-08-14 Yokogawa Medical Syst Ltd 診断部位判別装置およびスキャンパラメータ設定装置
JP2010259662A (ja) * 2009-05-08 2010-11-18 Shimadzu Corp 超音波診断装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090098839A (ko) * 2006-12-26 2009-09-17 코닌클리케 필립스 일렉트로닉스 엔.브이. 메디컬 이미징 시스템
DE102009043955A1 (de) * 2009-09-07 2011-03-17 Mösch, René Verfahren und mobiles, lernfähiges System zur Ermittlung des Blasenfüllstandes
US8605969B2 (en) * 2010-04-06 2013-12-10 Siemens Corporation Method and system for multiple object detection by sequential Monte Carlo and hierarchical detection network
JP5673336B2 (ja) * 2011-05-06 2015-02-18 株式会社Jvcケンウッド 情報処理方法、表示方法、情報処理装置、表示装置、情報処理プログラム、表示プログラム
WO2014210431A1 (en) * 2013-06-28 2014-12-31 Tractus Corporation Image recording system
US9767380B2 (en) * 2015-04-13 2017-09-19 Varian Medical Systems International Ag. Image comparison tool tolerant to deformable image matching
JP6638230B2 (ja) * 2015-07-21 2020-01-29 コニカミノルタ株式会社 超音波画像処理装置及びプログラム
EP3490454A4 (en) * 2016-07-29 2020-08-05 Novadaq Technologies ULC METHODS AND SYSTEMS FOR CHARACTERIZING A SUBJECT FABRIC USING MACHINE LEARNING

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224738A (ja) 1990-12-27 1992-08-14 Yokogawa Medical Syst Ltd 診断部位判別装置およびスキャンパラメータ設定装置
JP2010259662A (ja) * 2009-05-08 2010-11-18 Shimadzu Corp 超音波診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3578109A4

Also Published As

Publication number Publication date
JPWO2018142950A1 (ja) 2019-11-07
EP3578109B1 (en) 2020-08-26
EP3578109A1 (en) 2019-12-11
US11589842B2 (en) 2023-02-28
JP6674565B2 (ja) 2020-04-01
US20190350560A1 (en) 2019-11-21
EP3578109A4 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
JP6419976B2 (ja) 超音波診断装置および超音波診断装置の制御方法
JP6389963B2 (ja) 超音波診断装置および超音波診断装置の制御方法
JP6637610B2 (ja) 超音波診断装置及び超音波診断装置の制御方法
US11607202B2 (en) Ultrasound diagnostic apparatus, method for controlling ultrasound diagnostic apparatus, and readable recording medium recording a program for controlling ultrasound diagnostic apparatus
US20210219960A1 (en) Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus
JPWO2018055819A1 (ja) 超音波診断装置および超音波診断装置の制御方法
WO2019078054A1 (ja) 音響波診断装置および音響波診断装置の制御方法
US10918360B2 (en) Ultrasound diagnostic apparatus and method for controlling ultrasound diagnostic apparatus
WO2019039050A1 (ja) 音響波診断装置および音響波診断装置の制御方法
EP3420915B1 (en) Ultrasonic diagnostic device and control method for ultrasonic diagnostic device
JP7313545B2 (ja) 超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ
US11116481B2 (en) Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus
CN111770730B (zh) 超声波诊断装置及超声波诊断装置的控制方法
WO2018142950A1 (ja) 超音波診断装置、超音波診断装置の制御方法及び超音波診断装置の制御プログラム
WO2020075575A1 (ja) 超音波診断装置および超音波診断装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566044

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018748229

Country of ref document: EP

Effective date: 20190902