WO2018139235A1 - 光学ユニット - Google Patents

光学ユニット Download PDF

Info

Publication number
WO2018139235A1
WO2018139235A1 PCT/JP2018/000856 JP2018000856W WO2018139235A1 WO 2018139235 A1 WO2018139235 A1 WO 2018139235A1 JP 2018000856 W JP2018000856 W JP 2018000856W WO 2018139235 A1 WO2018139235 A1 WO 2018139235A1
Authority
WO
WIPO (PCT)
Prior art keywords
holder
lens
lens holder
optical
optical unit
Prior art date
Application number
PCT/JP2018/000856
Other languages
English (en)
French (fr)
Inventor
浅見 桂一
大久保 純一
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201880004324.9A priority Critical patent/CN109952522B/zh
Publication of WO2018139235A1 publication Critical patent/WO2018139235A1/ja
Priority to US16/407,820 priority patent/US11141817B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • B23K26/282Seam welding of curved planar seams of tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/025Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/22Apparatus or processes for the manufacture of optical heads, e.g. assembly

Definitions

  • the present invention relates to an optical unit comprising an optical device and a holder for retaining the optical device.
  • Patent Document 1 discloses an optical unit in which the relative positions of a lens holder for holding a lens and a laser holder for holding a semiconductor laser are adjusted and then the holders are fixed by laser welding. .
  • FIG. 25 is a schematic view showing the configuration of a conventional optical unit.
  • the optical unit 200 shown in the figure includes a lens 201, a substantially cylindrical lens holder 202 for holding the lens 201, a semiconductor laser 203, and a cylindrical laser holder 204 for holding the semiconductor laser 203.
  • the lens 201 is fixed to the lens holder 202 by, for example, soldering or adhesion using an adhesive.
  • the semiconductor laser 203 is fixed to the laser holder 204 by, for example, laser welding.
  • the central axis of the lens holder 202 and the central axis of the laser holder 204 respectively coincide with the optical axis N 200 of the optical unit 200.
  • the lens holder 202 and the laser holder 204 are fixed by laser welding after the relative positions of the lens 201 and the semiconductor laser 203 are determined.
  • a concrete fixing method will be described. First, after the laser holder 204 is accommodated in the lens holder 202, the position of the laser holder 204 with respect to the lens holder 202 is adjusted so that the lens 201 and the semiconductor laser 203 are at a position satisfying the preset optical conditions.
  • the optical conditions at this time are conditions for the optical unit 200 to satisfy desired optical characteristics.
  • the position of the laser holder 204 is adjusted so that, for example, the distance d 200 between the lens 201 and the light source 203 a of the semiconductor laser 203 becomes a preset distance.
  • laser light is irradiated from the outer peripheral side of the lens holder 202 to weld the lens holder 202 and the laser holder 204.
  • a welded portion 205 is formed on the lens holder 202 and the laser holder 204 by mixing and solidifying the melted portions.
  • the lens holder 202 and the laser holder 204 are fixed.
  • the amount of contraction of the holder varies depending on the range of laser light irradiation. For example, as in the optical unit 200 shown in FIG. 25, if the dimensions of the weld portion 205 formed on the lens holder 202 differ from the dimensions of the weld portion 205 formed on the laser holder 204, the shrinkage amount of each holder is Because of the difference, the positional relationship between the lens 201 arranged to satisfy the optical condition and the semiconductor laser 203 is changed.
  • the dimension (hereinafter also referred to as a weld width) of the central portion in the thickness direction of the lens holder 202 of the weld portion 205 is d 201
  • the weld width of the central portion in the thickness direction of the laser holder 204 of the weld portion 205 is when the d 202
  • the difference between the weld width d 201 a weld width d 202 is greater, greater displacement of the relative position of the optical axis N 200 direction between the lens 201 and the semiconductor laser 203 when melted and solidified.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide an optical unit having desired optical characteristics even when holders holding optical devices are joined by welding. I assume.
  • an optical unit comprises: a first restraint section for retaining one or more first light devices therein; A sleeve-like first optical device retainer having a first fitting margin extending from the holder, and a second retainer having one or more second optical devices therein; And a sleeve-like second optical device retainer having a second fitting margin extending from the second retaining portion, and the first fitting margin and the second fitting.
  • the welding portion, the welding portion being a first welding width of the first fitting margin portion and a second welding width of the second fitting margin portion in the optical axis direction of the optical unit And are formed substantially in the same manner.
  • the ratio of the welding width of the other holder to the welding width of the holder positioned outermost in the direction orthogonal to the axial direction of the optical unit is 0.75. It is characterized by being more than or equal to 1.25 or less.
  • the welded portion extends from the outer peripheral surface of the outermost peripheral holder of the overlapping holders in the direction orthogonal to the axial direction of the optical unit, It is characterized by having reached the holder of
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an optical unit according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged view of a region R of FIG.
  • FIG. 3 is a view for explaining a method of measuring a dimensional change at the time of melting and solidification.
  • FIG. 4 is a view for explaining a method of measuring a dimensional change at the time of melting and solidification.
  • FIG. 5 is a view for explaining an example of the measurement result of dimensional change at the time of melting and solidification.
  • FIG. 6 is a schematic view illustrating the production of the optical unit according to Embodiment 1 of the present invention.
  • FIG. 7 is a view for explaining the characteristics of laser light used when performing laser welding.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an optical unit according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged view of a region R of FIG.
  • FIG. 3 is a
  • FIG. 8 is a cross-sectional view schematically showing the configuration of an optical unit according to a modification of Embodiment 1 of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing the configuration of an optical unit according to Embodiment 2 of the present invention.
  • FIG. 10 is a cross-sectional view schematically showing the configuration of an optical unit according to a modification of Embodiment 2 of the present invention.
  • FIG. 11 is a cross-sectional view schematically showing a configuration of an optical unit according to Embodiment 3 of the present invention.
  • FIG. 12 is a schematic view illustrating the production of the optical unit according to Embodiment 3 of the present invention.
  • FIG. 13 is a schematic view illustrating the production of the optical unit according to Embodiment 3 of the present invention.
  • FIG. 14 is a schematic view illustrating the production of the optical unit according to Embodiment 3 of the present invention.
  • FIG. 15 is a schematic view illustrating the production of the optical unit according to Embodiment 3 of the present invention.
  • FIG. 16 is a schematic view illustrating the production of the optical unit according to Embodiment 3 of the present invention.
  • FIG. 17 is a cross-sectional view schematically showing a configuration of an optical unit according to Embodiment 4 of the present invention.
  • FIG. 18 is a cross-sectional view schematically showing a configuration of an optical unit according to Embodiment 5 of the present invention.
  • FIG. 19 is a schematic view illustrating production of an optical unit according to Embodiment 5 of the present invention.
  • FIG. 19 is a schematic view illustrating production of an optical unit according to Embodiment 5 of the present invention.
  • FIG. 20 is a schematic view illustrating production of an optical unit according to Embodiment 5 of the present invention.
  • FIG. 21 is a schematic view illustrating production of an optical unit according to Embodiment 5 of the present invention.
  • FIG. 22 is a schematic view illustrating production of an optical unit according to Embodiment 5 of the present invention.
  • FIG. 23 is a schematic view illustrating production of an optical unit according to Embodiment 5 of the present invention.
  • FIG. 24 is a schematic view illustrating another example of a weld formed by laser welding.
  • FIG. 25 is a schematic view showing the configuration of a conventional optical unit.
  • FIG. 1 is a partial cross-sectional view schematically showing a configuration of an optical unit according to Embodiment 1 of the present invention, and a partial cross-sectional view in which a plane including an optical axis of the optical unit is a cutting plane.
  • the optical unit 1 shown in the figure includes a lens 2 as a first optical device, a substantially cylindrical lens holder 10 for retaining the lens 2, and a light source 3a for emitting a laser beam according to an input electric signal. And a cylindrical laser holder 20 for holding the semiconductor laser 3.
  • FIG. 1 it is assumed that the central axis of the lens holder 10 and the central axis of the laser holder 20 coincide with each other and coincide with the optical axis N of the optical unit 1.
  • the optical unit 1 emits the light emitted from the light source 3 a to the outside through the lens 2.
  • the lens holder 10 corresponds to a first optical device retainer
  • the laser holder 20 corresponds to a second optical device retainer.
  • the lens 2 is configured of a collimating lens or a condensing lens formed using glass or resin.
  • the lens holder 10 is described as holding one lens 2, but the lens holder 10 may hold an optical device including a plurality of lenses. .
  • the lens holder 10 extends along the optical axis N toward the semiconductor laser 3 from an annular first holding portion 10 a for holding the lens 2 and an end of the first holding portion 10 a in the optical axis N direction. And a cylindrical first fitting margin portion 10b to be fitted to the laser holder 20.
  • the lens 2 is fixed to the first retaining portion 10a by, for example, soldering or adhesion using an adhesive.
  • the diameter of the inner wall surface of the first fitting margin portion 10b is the same as the diameter of the outer periphery of the laser holder 20, it may be a diameter that allows the laser holder 20 to be fitted.
  • the laser holder 20 extends in the direction of the optical axis N from the end of the second holding portion 20a for holding the semiconductor laser 3 and the end of the second holding portion 20a in the direction of the optical axis N toward the lens 2 side. And a cylindrical second fitting margin 20b to be fitted to the lens holder 10.
  • the semiconductor laser 3 is fixed to the second holding portion 20a by, for example, laser welding.
  • the diameter of the outer periphery of the second retaining portion 20 a is equal to or slightly smaller than the diameter of the inner periphery of the lens holder 10.
  • the lens holder 10 and the laser holder 20 be configured using a material having the same degree of shrinkage when melted and solidified by a laser beam.
  • a material having the same degree of shrinkage when melted and solidified by a laser beam As this material, stainless steel (ferrite type, martensitic type, austenite type), steel material (carbon steel for machine structure, rolled steel for general structure), invar material, resin (Acrylonitrile Butadiene Styrene: ABS, Poly Ether Ether Ketone) : PEEK).
  • the first fitting margin portion 10 b and the first fitting margin 10 b can be easily adjusted in position between the lens holder 10 and the laser holder 20.
  • the surface roughness of the second fitting margin 20b may be reduced, or the first fitting margin may be a part of the fitting portion between the first fitting margin 10b and the second fitting margin 20b.
  • a clearance may be formed by a notch or the like so that the second fitting margin portion 20b does not contact with the second fitting margin portion 10b.
  • the distance d 1 between the lens 2 and the light source 3 a of the semiconductor laser 3 is a distance that satisfies an optical condition set in advance.
  • the lens holder 10 and the laser holder 20 are portions where the first fitting margin portion 10 b and the second fitting margin portion 20 b overlap in the radial direction, and in the optical axis N direction outer part of the region R a sandwiched catching surface P 20 of the lifting surface P 10 and the second catching portions 20a are joined by melting and solidification by a laser beam.
  • the “restraint surface P 10 ” referred to here is a plane which passes through the center in the direction of the optical axis N of the portion where the first restraint portion 10 a is in contact with the lens 2 and which is perpendicular to the optical axis N. is there.
  • the “restraint surface P 20 ” is a plane which passes through the center of the direction of the optical axis N of the portion where the second restraint portion 20 a is in contact with the semiconductor laser 3 and which is perpendicular to the optical axis N. is there.
  • a welded portion 30 is formed on the lens holder 10 and the laser holder 20 by mixing and curing the melted portions.
  • the lens 2 and the semiconductor laser 3 are respectively held by the lens holder 10 and the laser holder 20 on the same side with respect to the welding portion 30.
  • the portion holding the lens 2 and the semiconductor laser 3 and continuing to the device passes through the welding portion 30 and is on the same side with respect to the plane orthogonal to the optical axis N. It is in.
  • the restraint surface is described as passing through the center in the direction of the optical axis N of the portion where the restraint portion is in contact with the optical device, one of the portions in the direction of the optical axis N of the portion in contact with the optical device It is possible to change the design of the passing position, such as passing through the end of the.
  • FIG. 2 is an enlarged view of a region R including the weld portion 30 of the optical unit 1 shown in FIG.
  • the welding part 30 which mutually joins is formed in a part of 1st fitting margin part 10b, and a part of 2nd fitting margin part 20b.
  • the welded portion 30 has a thickness of the first fitting margin portion 10b.
  • the weld width w 1 of the central portion of the direction, and the weld width w 2 of the central portion in the thickness direction of the second Hamagodai portion 20b is substantially the same.
  • the weld width w 1 and the weld width w 2 is substantially the same, with respect to the weld width w 1 of the lens holder 10 that is irradiated with the laser light, the ratio of the weld width w 2 of the laser holder 20 (w 2 / w 1 ) satisfies the relationship of 0.75 ⁇ w 2 / w 1 ⁇ 1.25. In this range, for example, if the welding width w 1 is 0.4 mm, the welding width w 2 is the 0.3 ⁇ 0.5 mm.
  • FIG. 3 and FIG. 4 are diagrams for explaining the method of measuring the dimensional change at the time of solidifying.
  • markers M 1 and M 2 are applied to the outer surface of a cylindrical member for measurement (hereinafter referred to as a measurement member) 40 (see FIG. 3).
  • the markers M 1 and M 2 may be ink or may use a sealing material.
  • the markers M 1 and M 2 are preferably provided along the direction of the optical axis N 10 of the measuring member 40.
  • the distance d 11 is the distance in the optical axis N 10 direction between the markers M 1 and the marker M 2.
  • the laser beam is irradiated over the entire circumference of the measuring member 40.
  • a laser head for emitting laser light is irradiated with the laser beam while rotating along the outer circumference of the measuring member 40.
  • it welds 41 orbiting the optical axis N 10 to the measuring member 40 is formed. Due to the formation of the welding portion 41, the measuring member 40 contracts in a direction (arrows D 1 and D 2 in FIG. 4) in which both ends approach each other with the welding portion 41 as a boundary.
  • This distance d 12 is the contraction of the measuring member 40 by vitrification, smaller than the distance d 11 as described above.
  • the difference between this distance d 11 and the distance d 12, is calculated as the amount of dimensional change (shrinkage amount).
  • the intensity of the laser beam is changed to form the welding width w 10 as described above, and the dimensional change due to contraction is measured. By changing the intensity of the laser light, dimensional change amounts at different welding widths can be obtained.
  • FIG. 5 is a view for explaining an example of the measurement result of the dimensional change at the time of melting and solidification, and showing the relationship between the welding width and the dimensional change amount.
  • the welding width and the dimensional change amount are substantially proportional (see the approximate straight line S in FIG. 5).
  • FIG. 6 is a schematic view for explaining the production of the optical unit 1 according to Embodiment 1 of the present invention.
  • the laser holder 20 is inserted into and fitted to the inside of the first fitting margin portion 10b from the second retaining portion 20a side. Then, the distance d 1 between the lens 2 and the light source 3a is such that the optical condition is satisfied distance between the laser holder 20 by relatively moving the lens 2 and the semiconductor laser 3 to the lens holder 10 Adjust the light path length.
  • the laser head 100 is disposed, and the outer surface of the lens holder 10 is irradiated with the laser light L to melt and solidify a part of the lens holder 10 and a part of the laser holder 20.
  • the irradiation position of the laser beam L at this time is a position where the first fitting margin portion 10 b and the second fitting margin portion 20 b overlap in the radial direction, and is located outside the region RA in the optical axis N direction. ing.
  • the lens holder 10 and the laser holder 20 are melted and solidified so as to have a uniform welding width from the lens holder 10 to the laser holder 20 by the intensity distribution of the laser light L or the movement of the laser head 100.
  • the laser light may be intermittently irradiated by pulsed light or may be continuously irradiated.
  • the weld portion 30 may be such that a weld bead is intermittently formed along the circumferential direction of the holder, or continuously along the entire circumferential direction.
  • the weld bead may be continuous.
  • the welding part 30 consists of one welding bead extended to the circumferential direction, when a laser beam is irradiated continuously.
  • FIG. 7 is a view for explaining the characteristics of laser light used when performing laser welding.
  • FIG. 7 is a view showing the distribution of beam intensity in a cross section passing the beam waist of laser light.
  • the beam diameter W L of the meltable lower intensity I L of the holder approximately the same value of the beam diameter W P in the peak intensity I P, from the edge of the beam Laser welding is performed using a laser beam with a top hat type intensity distribution, in which the beam intensity rises sharply toward the center and reaches the peak intensity I P.
  • the holder is irradiated with a laser beam having a substantially uniform stored energy per unit area of the irradiation area.
  • the beam diameter W L and the beam diameter W P are approximately the same. It may be converted into a top hat type intensity distribution and the irradiation may be performed with the beam intensity rising sharply from the edge of the beam cross section toward the inside.
  • the first Hamagodai portion 10b and the second Hamagodai portion 20b overlap, and catching surfaces P 10 and the second catching portions of the first catching portion 10a outside the region R a sandwiched 20a catching surface P 20 of the weld width w 1 of the lens holder 10, and a weld width w 2 of the laser holder 20 forms a weld 30 is substantially the same, the lens The holder 10 and the laser holder 20 are joined. As a result, when laser welding is performed, each holder contracts with the same contraction amount, and the lens 2 and the semiconductor laser 3 move to the same side by contraction.
  • FIG. 8 is a cross-sectional view schematically showing the configuration of an optical unit according to a modification of Embodiment 1 of the present invention.
  • FIG. 8 is a partial cross-sectional view in which a plane including the central axis of the optical unit is a cutting plane.
  • the second optical device has been described as the semiconductor laser 3 in the first embodiment described above, the image sensor 4 is used as the second optical device in this modification.
  • the optical unit 1A according to the present modification is provided, for example, in an endoscope provided with an insertion portion to be inserted into a subject.
  • An optical unit 1A shown in the figure has a lens 2 as a first optical device, a substantially cylindrical lens holder 11 for retaining the lens 2, and a light receiving surface 4a for receiving light from the outside,
  • the image sensor 4, which is a second optical device that converts the generated light into an electrical signal, and the cylindrical sensor holder 21 that holds the image sensor 4 are provided.
  • the lens 2 is a lens for imaging light from the outside on the light receiving surface 4a.
  • the lens holder 11 corresponds to a first optical device retainer
  • the sensor holder 21 corresponds to a second optical device retainer.
  • the lens holder 11 has a diameter formed by the inner wall surface, and the diameter in the direction orthogonal to the optical axis N is substantially equal to the diameter formed by the outer periphery of the sensor holder 21.
  • the lens holder 11 extends in the direction of the optical axis N toward the image sensor 4 from an end portion in the direction of the optical axis N of the annular first holding portion 11a for holding the lens 2 and the first holding portion 11a.
  • the cylindrical 1st fitting margin part 11b fitted with the sensor holder 21.
  • the lens 2 is fixed to the first retaining portion 11a by, for example, soldering or adhesion using an adhesive.
  • the diameter of the inner wall surface of the lens holder 11 is the same as the diameter of the outer periphery of the sensor holder 21, but may be a diameter that allows the sensor holder 21 to be fitted.
  • the sensor holder 21 has a second holding portion 21a for holding the image sensor 4 and an end portion of the second holding portion 21a in the optical axis N direction toward the opposite side to the lens 2 side in the optical axis N direction. And a cylindrical second fitting margin portion 21 b extending and fitting with the lens holder 11.
  • the image sensor 4 is fixed to the second holding portion 21a by, for example, laser welding.
  • the diameter of the outer periphery of the sensor holder 21 is equal to or slightly smaller than the diameter of the inner periphery of the lens holder 11.
  • the image sensor 4 is implemented using, for example, a charge coupled device (CCD) image sensor or a complementary metal oxide semiconductor (CMOS) image sensor.
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • the distance d 2 between the light receiving surface 4a of the lens 2 and the image sensor 4 is an optical satisfy distance set in advance.
  • the lens holder 11 and the sensor holder 21 are portions where the first fitting margin portion 11 b and the second fitting margin portion 21 b overlap in the radial direction, and in the optical axis N direction outer part of the region R B sandwiched lifting surface P 11 and catching surface P 21 of the second catching portions 21a are joined by melting and solidification by a laser beam.
  • the “restraint surface P 11 ” referred to here is a plane which passes through the center in the direction of the optical axis N of the portion where the first restraint portion 11 a is in contact with the lens 2 and which is perpendicular to the optical axis N. is there.
  • the “restraint surface P 21 ” is a plane which passes through the center of the direction of the optical axis N of the portion where the second restraint portion 21 a is in contact with the image sensor 4 and which is perpendicular to the optical axis N. is there.
  • a welded portion 31 is formed on the lens holder 11 and the sensor holder 21 by mixing and curing the melted portions.
  • the lens 2 and the image sensor 4 are respectively held by the lens holder 11 and the sensor holder 21 on the same side with respect to the welding portion 31.
  • the weld width at the central portion in the thickness direction of the lens holder 11 and the weld width at the central portion in the thickness direction of the sensor holder 21 are substantially the same as in the weld portion 30 described above. There is.
  • the optical unit 1A is manufactured in the same manner as the optical unit 1 described above. Specifically, the sensor holder 21 is inserted into and fitted to the inside of the first fitting margin 11b from the second retaining portion 21a side. In this case, the distance d 2 between the lens 2 and the light receiving surface 4a is such that the optical condition is satisfied distance between the lens 2 and the image sensor 4 by the sensor holder 21 is moved relative to the lens holder 11 Adjust the optical path length between Thereafter, the above-described position on the outer surface of the lens holder 11 is irradiated with laser light to melt and solidify a part of the first fitting margin 11b and a part of the second fitting margin 21b.
  • the first fitting margin 11b and the second fitting margin 21b overlap with each other, and the first retaining portion 11a the outside of the region R B sandwiched catching surface P 11 and catching surface P 21 of the second catching portion 21a, the welding and the welding width of the lens holder 11, and the welding width of the sensor holder 21 is substantially the same
  • the portion 31 is formed to join the lens holder 11 and the sensor holder 21.
  • the second optical device is described as an image sensor, but the second optical device may be added to the image sensor, such as a DSP (Digital Signal Processor) that performs compression and filtering, etc. It may be provided separately from the sensor and may include an electronic component that processes the electrical signal acquired by the image sensor.
  • DSP Digital Signal Processor
  • FIG. 9 is a cross-sectional view schematically showing the configuration of an optical unit according to Embodiment 2 of the present invention.
  • FIG. 9 is a partial cross-sectional view in which a plane including the central axis of the optical unit is a cutting plane.
  • the configuration in which the laser holder 20 is accommodated in the lens holder 10 has been described, but in the second embodiment, the lens holder 12 is accommodated in the laser holder 22.
  • An optical unit 1B shown in the figure includes a lens 2 as a first optical device, a substantially cylindrical lens holder 12 for holding the lens 2, a semiconductor laser 3 described above, and a cylinder for holding the semiconductor laser 3 And a laser holder 22 in the form of a circle.
  • a lens 2 as a first optical device
  • a substantially cylindrical lens holder 12 for holding the lens 2
  • a semiconductor laser 3 described above
  • a cylinder for holding the semiconductor laser 3
  • a laser holder 22 in the form of a circle.
  • the central axis of the lens holder 12 and the central axis of the laser holder 22 coincide with each other and coincide with the optical axis N of the optical unit 1B.
  • the lens holder 12 corresponds to a first optical device retainer
  • the laser holder 22 corresponds to a second optical device retainer.
  • the lens holder 12 has an annular first retaining portion 12a for retaining the lens 2 and an end portion of the first retaining portion 12a in the direction of the optical axis N toward the side opposite to the semiconductor laser 3 side. And a cylindrical first fitting margin 12 b that fits with the laser holder 22.
  • the lens 2 is fixed to the first retaining portion 12a by, for example, soldering or adhesion using an adhesive.
  • the laser holder 22 has a diameter formed by the inner wall surface, and the diameter in the direction orthogonal to the optical axis N is equal to the diameter formed by the outer periphery of the lens holder 12.
  • the laser holder 22 extends in the direction of the optical axis N from the end of the second holding portion 22a for holding the semiconductor laser 3 and the end of the second holding portion 22a in the direction of the optical axis N, And a cylindrical second fitting margin 22b fitted to the holder 12.
  • the semiconductor laser 3 is fixed to the second holding portion 22a by, for example, laser welding.
  • the diameter of the inner wall surface of the second fitting margin 22b is the same as the diameter of the outer periphery of the lens holder 12, but may be a diameter that allows the first fitting margin 12b to be fitted.
  • the distance d 1 between the light source 3a of the lens 2 and the semiconductor laser 3 is an optical satisfy distance set in advance.
  • the lens holder 12 and the laser holder 22 are portions where the first fitting margin 12b and the second fitting margin 22b overlap in the radial direction, and the lens holder 12 and the laser holder 22 the lifting surfaces P 12 and region R a sandwiched catching surface P 22 of the second catching portions 22a, the outer part of the optical axis N direction, are joined by melting and solidification by a laser beam.
  • the “restraint surface P 12 ” referred to here is a plane which passes through the center of the direction of the optical axis N of the portion where the first restraint portion 12 a is in contact with the lens 2 and is perpendicular to the optical axis N. is there.
  • the “restraint surface P 22 ” is a plane which passes through the center of the direction in which the second restraint portion 22 a is in contact with the semiconductor laser 3 in the direction of the optical axis N and is perpendicular to the optical axis N. is there.
  • a welded portion 32 is formed on the lens holder 12 and the laser holder 22 by mixing and curing the melted portions.
  • the lens 2 and the semiconductor laser 3 are respectively held by the lens holder 12 and the laser holder 22 on the same side with respect to the welding portion 32.
  • the optical unit 1B is manufactured in the same manner as the optical unit 1 described above. Specifically, the lens holder 12 is inserted into and fitted to the inside of the second fitting margin 22b from the first retaining portion 12a side. At this time, the lens holder 12 is moved relative to the laser holder 22 so that the distance d 1 between the lens 2 and the light source 3 a becomes a distance satisfying the optical condition, and the distance between the lens 2 and the semiconductor laser 3 is Adjust the light path length of Thereafter, by irradiating the above-described position on the outer surface of the laser holder 22 with a laser beam, a part of the lens holder 12 and a part of the laser holder 22 are melted and solidified.
  • the cooling gas is injected into the lens holder 12 to force the melted portion on the inner side of the lens holder 12.
  • a protective member such as a cover for protecting the lens 2 is used.
  • the first fitting margin 12b and the second fitting margin 22b overlap each other, and the holding of the first retaining portion 12a is performed.
  • a welding width of the lens holder 12 outside the region R a sandwiched catching surface P 22 of the surface P 12 and the second catching portion 22a, a welding width of the lens holder 12, the welds 32 weld width and is substantially the same in the laser holder 22
  • the lens holder 12 and the laser holder 22 are joined.
  • the contraction amounts of the lens holder 12 and the laser holder 22 at the time of laser welding, and the moving directions of the optical devices retained by the respective holders become the same.
  • FIG. 10 is a cross-sectional view schematically showing the configuration of an optical unit according to a modification of Embodiment 2 of the present invention.
  • FIG. 10 is a partial cross-sectional view in which a plane including the central axis of the optical unit is a cutting plane.
  • the second optical device is described as the semiconductor laser 3 in the second embodiment described above, the second optical device is the image sensor 4 in this modification.
  • the optical unit 1C shown in the figure includes a lens 2 as a first optical device, a substantially cylindrical lens holder 13 for retaining the lens 2, a tube for retaining the image sensor 4 and the image sensor 4 described above. And a sensor holder 23 in the form of a circle.
  • the central axis of the lens holder 13 and the central axis of the sensor holder 23 coincide with each other and coincide with the optical axis N of the optical unit 1C.
  • the lens holder 13 corresponds to a first optical device retainer
  • the sensor holder 23 corresponds to a second optical device retainer.
  • the lens holder 13 has an annular first retaining portion 13a for retaining the lens 2 and the optical axis N from the end of the first retaining portion 13a in the direction of the optical axis N toward the image sensor 4 side. And a cylindrical first fitting margin 13 b extending in the direction and fitting with the sensor holder 23.
  • the lens 2 is fixed to the first retaining portion 13a by, for example, soldering or adhesion using an adhesive.
  • the sensor holder 23 has a diameter formed by the inner wall surface, and the diameter in the direction orthogonal to the optical axis N is equal to the diameter formed by the outer periphery of the lens holder 13.
  • the sensor holder 23 extends in the direction of the optical axis N toward the lens 2 from the second holding portion 23a for holding the image sensor 4 and the end of the second holding portion 23a in the direction of the optical axis N.
  • the image sensor 4 is fixed to the second holding portion 23a by, for example, laser welding.
  • the diameter of the inner wall surface of the second fitting margin 23b is the same as the diameter of the outer periphery of the lens holder 13, but may be a diameter that allows the first fitting margin 13b to be fitted.
  • the distance d 2 between the light receiving surface 4a of the lens 2 and the image sensor 4 is an optical satisfy distance set in advance.
  • the lens holder 13 and the sensor holder 23 are portions where the first fitting margin 13b and the second fitting margin 23b overlap in the radial direction, and in the optical axis N direction, the region R B sandwiched lifting surfaces P 13 and catching surface P 23 of the second catching portion 23a, the outer part of the optical axis N direction, are joined by melting and solidification by a laser beam.
  • the “restraint surface P 13 ” referred to here is a plane which passes through the center in the direction of the optical axis N of the portion where the first restraint portion 13 a is in contact with the lens 2 and which is perpendicular to the optical axis N. is there.
  • the “restraint surface P 23 ” is a plane which passes through the center of the direction of the optical axis N of the portion where the second restraint portion 23 a is in contact with the image sensor 4 and is perpendicular to the optical axis N. is there.
  • a welded portion 33 is formed on the lens holder 13 and the sensor holder 23 by mixing and curing the melted portions.
  • the lens 2 and the image sensor 4 are respectively held by the lens holder 13 and the sensor holder 23 on the same side with respect to the welding portion 33.
  • the weld width at the central portion in the thickness direction of the lens holder 13 and the weld width at the central portion in the thickness direction of the sensor holder 23 are substantially the same as in the weld portion 32 described above. There is.
  • the optical unit 1C is manufactured in the same manner as the optical unit 1B described above. Specifically, the lens holder 13 is inserted into the second fitting margin 23b from the first retaining portion 13a side. In this case, the distance d 2 between the lens 2 and the light receiving surface 4a is such that the optical condition is satisfied distance, to adjust the position of the lens holder 13 with respect to the sensor holder 23. Thereafter, the above-described position on the outer surface of the sensor holder 23 is irradiated with laser light to melt and solidify a part of the lens holder 13 and a part of the sensor holder 23.
  • the first fitting margin 13b and the second fitting margin 23b overlap each other, and the first retaining portion 13a the outside of the region R B sandwiched catching surface P 13 and catching surface P 23 of the second catching portion 23a, the welding and the welding width of the lens holder 13, and the welding width of the sensor holder 23 is substantially the same
  • the portion 33 is formed to join the lens holder 13 and the sensor holder 23. As a result, the amount of contraction and the direction of movement of the lens holder 13 and the sensor holder 23 become the same when laser welding is performed.
  • FIG. 11 is a cross-sectional view schematically showing a configuration of an optical unit according to Embodiment 3 of the present invention.
  • FIG. 11 is a partial cross-sectional view in which a plane including the central axis of the optical unit is a cutting plane.
  • the optical unit includes three lens holders.
  • the optical unit 1D shown in the figure includes three lenses (lenses 2a, 2b and 2c) which are the first optical device, and three substantially cylindrical lens holders (first lens holder 14A) for retaining the respective lenses. , The second lens holder 14B and the third lens holder 14C), the image sensor 4 described above, and the cylindrical sensor holder 24 for retaining the image sensor 4.
  • the central axes of the first lens holder 14A, the second lens holder 14B, and the third lens holder 14C, and the central axis of the sensor holder 24 coincide with each other and to the optical axis N of the optical unit 1D. It is assumed that they match.
  • one of the holders to be joined is a first optical device retainer, and the other is a second Become an optical device restraint body.
  • the first lens holder 14A has a shape in which the diameter of the outer periphery and the diameter of the inner periphery change stepwise along the axial direction.
  • the first lens holder 14A has an annular first retaining portion 141 for retaining the lens 2a, and an optical axis from the end of the first retaining portion 141 in the optical axis N direction toward the lens 2b.
  • the first fitting margin portion 142 extends in the N direction, engages with the sensor holder 24 at one end, and engages with the second lens holder 14B at the other end.
  • the first retaining portion 141 and the first fitting margin portion 142 have substantially the same thickness.
  • the first fitting margin portion 142 is continuous with the first retaining portion 141, and a cylindrical first main portion 142a whose outer periphery has a diameter substantially equal to that of the outer periphery of the first retaining portion 141; And a second main portion 142 b whose diameter is larger than the diameter of the outer circumference of the first main portion 142 a.
  • the lens 2a is fixed to the first retaining portion 141 by, for example, soldering or adhesion using an adhesive.
  • the second lens holder 14B has a stepped shape along the axial direction. Specifically, the second lens holder 14B has an annular first retaining portion 143 for retaining the lens 2b, and an optical axis from an end of the first retaining portion 143 in the optical axis N direction toward the lens 2c.
  • the first fitting margin portion 144 extends in the N direction, engages with the first lens holder 14A at one end, and engages with the third lens holder 14C at the other end.
  • the first retaining portion 143 and the first fitting margin portion 144 have substantially the same thickness.
  • the first fitting margin portion 144 is continuous with the first retaining portion 143, and a cylindrical first main portion 144a whose outer peripheral diameter is substantially the same as the outer peripheral diameter of the first retaining portion 143; And a second main body portion 144b whose diameter is larger than the diameter of the outer circumference of the first main body portion 144a.
  • the lens 2b is fixed to the first retaining portion 143 by, for example, soldering or adhesion using an adhesive.
  • the third lens holder 14C has a first holding portion 145 for holding the lens 2c, and an end portion of the first holding portion 145 in the optical axis N direction toward the opposite side to the lens 2b side. And a cylindrical first fitting margin 146 that engages with the second lens holder 14B.
  • the first retaining portion 145 and the first fitting margin 146 have substantially the same thickness.
  • the diameter of the outer periphery of the third lens holder 14C is substantially equal to the diameter of the inner periphery of the second main body portion 144b, as long as the diameter can be fitted into the second main body portion 144b.
  • the lens 2 c is fixed to the first retaining portion 145 by, for example, soldering or adhesion using an adhesive.
  • the sensor holder 24 has a stepped shape along the axial direction. Specifically, the sensor holder 24 has an annular second retaining portion 24a for retaining the image sensor 4 and an optical axis N toward the lens 2a from an end of the second retaining portion 24a in the optical axis N direction. And a second fitting margin portion 24b extending in the direction and fitting with the first lens holder 14A. The second retaining portion 24a and the second fitting margin 24b have substantially the same thickness. The second fitting margin portion 24b is connected to the second retaining portion 24a, and the cylindrical first main portion 241 having the same opening diameter as the second retaining portion 24a, and the opening diameter is the first main body. And a second main body portion 242 larger than the diameter of the opening of the portion 241.
  • the image sensor 4 is fixed to the second holding portion 24a by, for example, laser welding.
  • the first main body 142a of the first lens holder 14A is fixed in a state of being inserted into the second main body 242 of the sensor holder 24. Further, in the optical unit 1D, the first lens holder 14A and the sensor holder 24 are set such that the distance d 31 between the lens 2a and the light receiving surface 4a of the image sensor 4 becomes a distance satisfying the preset optical conditions. The relative position with is adjusted.
  • the first lens holder 14A and the sensor holder 24 are portions where the first fitting margin portion 142 and the second fitting margin portion 24b overlap in the radial direction, and in the optical axis N direction, outer part of the region R B sandwiched catching surface P 24 of the lifting surface P 14A and the second catching portions 24a are joined by melting and solidification by a laser beam.
  • the “restraint surface P 14A ” is a plane which passes through the center of the direction in which the first restraint portion 141 is in contact with the lens 2 a in the direction of the optical axis N and which is perpendicular to the optical axis N. is there.
  • the “restraint surface P 24 ” is a plane which passes through the center of the direction of the optical axis N of the portion where the second restraint portion 24 a is in contact with the image sensor 4 and which is perpendicular to the optical axis N. is there.
  • a welded portion 34a is formed in the first lens holder 14A and the sensor holder 24 by mixing and curing the melted portions.
  • the lens 2a and the image sensor 4 are each held by the first lens holder 14A and the sensor holder 24 on the same side with respect to the welding portion 34a.
  • the welding portion 34a has a welding width at the central portion in the thickness direction of the first lens holder 14A (here, the first body portion 142a) and the sensor holder 24 (here, the second body portion), similar to the welding portion 33 described above.
  • the welding width at the central portion in the thickness direction of 242) is substantially the same.
  • the first main body portion 144a of the second lens holder 14B is fixed in a state of being inserted into the second main body portion 142b of the first lens holder 14A.
  • the relative relationship between the first lens holder 14A and the second lens holder 14B is such that the distance d 32 between the lens 2a and the lens 2b satisfies the preset optical condition. The position has been adjusted.
  • first lens holder 14A and the second lens holder 14B are portions where the first fitting margin portion 142 and the first fitting margin portion 144 overlap in the radial direction, and the first holding in the optical axis N direction catching surface P 14A and catching surface portion outside the region R C 1 sandwiched P 14B of the first catching portion 143 parts 141 are joined by melting and solidification by a laser beam.
  • the “restraint surface P 14 B ” referred to here is a plane which passes through the center of the optical axis N direction of the portion where the first restraint portion 143 is in contact with the lens 2 b and which is perpendicular to the optical axis N. is there.
  • welded portions 34b are formed on the first lens holder 14A and the second lens holder 14B by mixing and curing the melted portions. Further, the lens 2a and the lens 2b are respectively held by the first lens holder 14A and the second lens holder 14B on the same side with respect to the welding portion 34b.
  • the welding portion 34b has a welding width at the central portion in the thickness direction of the first lens holder 14A (here, the second main body portion 142b) and the second lens holder 14B (here, the first lens holder 14B).
  • the welding width at the central portion in the thickness direction of the main body portion 144a) is substantially the same.
  • the third lens holder 14C is fixed in a state of being inserted into the second main body portion 144b of the second lens holder 14B.
  • the relative between the second lens holder 14B and the third lens holder 14C is such that the distance d 33 between the lens 2b and the lens 2c satisfies the preset optical condition. The position has been adjusted.
  • the second lens holder 14B and the third lens holder 14C are portions where the first fitting margin portion 144 and the first fitting margin portion 146 overlap in the radial direction, and the first holding in the optical axis N direction
  • the portion outside the region R C 2 between the retaining surface P 14 B of the portion 143 and the retaining surface P 14 C of the first retaining portion 145 is joined by the solidification by laser light.
  • the “restraint surface P 14 C ” referred to here is a plane which passes through the center of the direction of the optical axis N of the portion where the first restraint portion 145 is in contact with the lens 2 c and is perpendicular to the optical axis N. is there.
  • a welded portion 34c is formed on the second lens holder 14B and the third lens holder 14C by mixing and curing the melted portions.
  • the lens 2b and the lens 2c are respectively held by the second lens holder 14B and the third lens holder 14C on the same side with respect to the weld 34c.
  • the welding portion 34c has a welding width at a central portion in the thickness direction of the second lens holder 14B (here, the second main body portion 144b) and a third lens holder 14C (here, the first lens holder 14C).
  • the welding width at the central portion in the thickness direction of the fitting margin portion 146) is substantially the same.
  • FIGS. 12 to 16 are schematic views for explaining the production of an optical unit according to Embodiment 3 of the present invention.
  • the first main body portion 142a of the first lens holder 14A is inserted into the second main body portion 242 of the sensor holder 24 from the first retaining portion 141 side (see FIG. 12). Then, the distance d 31 between the lens 2a and the light receiving surface 4a is such that the optical condition is satisfied distance, to adjust the position of the first lens holder 14A with respect to the sensor holder 24.
  • the laser head 100 is disposed, and the outer surface of the second main body portion 242 of the sensor holder 24 is irradiated with the laser light L to melt a part of the first lens holder 14A and a part of the sensor holder 24. Solidify.
  • the irradiation position of the laser beam L at this time is a portion where the first fitting margin portion 142 and the second fitting margin portion 24 b overlap in the radial direction, and the securing surface P 14A of the first retaining portion 141 and the is located outside the region R B sandwiched catching surface P 24 2 catching portion 24a. Thereby, the welding portion 34a is formed, and the first lens holder 14A and the sensor holder 24 are joined (see FIG. 13).
  • the first main body portion 144a of the second lens holder 14B is inserted into the second main body portion 142b of the first lens holder 14A from the first retaining portion 143 side (see FIG. 14). Then, the distance d 32 between the lens 2a and the lens 2b is such that the optical condition is satisfied distance, to adjust the position of the second lens holder 14B for the first lens holder 14A.
  • the laser head 100 is disposed, and the outer surface of the second main body portion 142b of the first lens holder 14A is irradiated with the laser light L, whereby a part of the first lens holder 14A and the second lens holder 14B are Melt and solidify part.
  • the irradiation position of the laser beam L at this time is a portion where the first fitting margin portion 142 and the second fitting margin portion 144 overlap in the radial direction, and the retaining surface P 14A of the first retaining portion 141 and the is located outside the region R C 1 sandwiched catching surface P 14B 1 catching portion 143.
  • the welding portion 34b is formed, and the first lens holder 14A and the second lens holder 14B are joined (see FIG. 15).
  • the third lens holder 14C is inserted into the second body portion 144b of the second lens holder 14B from the first retaining portion 145 side (see FIG. 16). Then, the distance d 33 between the lens 2b and the lens 2c is, such that the optical condition is satisfied distance, to adjust the position of the third lens holder 14C with respect to the second lens holder 14B.
  • the laser head 100 is disposed, and the outer surface of the second main body portion 144b of the second lens holder 14B is irradiated with the laser light L, whereby a part of the second lens holder 14B and the third lens holder 14C are Melt and solidify part.
  • the irradiation position of the laser light L at this time is a portion where the first fitting margin portion 144 and the first fitting margin portion 146 overlap in the radial direction, and the securing surface P 14 B of the first retaining portion 143 and the first It is located on the outside of the region R C 2 sandwiched by the retaining surface P 14 C of the first retaining portion 145.
  • the welding part 34c is formed, and the second lens holder 14B and the third lens holder 14C are joined.
  • the distance d 31 between the lens 2 a and the light receiving surface 4 a and the distance d between the lens 2 a and the lens 2 b can be obtained by performing laser welding according to the arrangement of the optical devices held by each holder. 32.
  • the laser light is overlapped outside the region sandwiched by the retaining surfaces of the retaining portions of the holders adjacent to each other in the optical axis N direction.
  • the holders adjacent to each other in the optical axis N direction are joined by forming the welded portion by irradiating the As a result, the shrinkage amount and the moving direction of the holders to be joined become the same at the time of laser welding, and as a result, even if shrinkage occurs due to melting and solidification, the relative relationship between the optical devices to which each holder adheres It is possible to weld the first lens holder 14A, the second lens holder 14B, the third lens holder 14C, and the sensor holder 24 while suppressing positional deviation. As described above, according to the third embodiment, even when the holders are joined by welding, an optical unit having desired optical characteristics can be obtained.
  • the first lens holder 14A, the second lens holder 14B, and the sensor holder 24 whose outer peripheries have the same maximum diameter are connected in a stepped shape, It is possible to increase the number of connected lens holders without increasing the diameter of the unit.
  • optical unit 1D has been described as including three lens holders in the third embodiment described above, the present invention is also applicable to a configuration including two lens holders or four or more lens holders.
  • FIG. 17 is a cross-sectional view schematically showing a configuration of an optical unit according to Embodiment 4 of the present invention.
  • FIG. 17 is a partial cross-sectional view in which a plane including the central axis of the optical unit is a cutting plane.
  • holders adjacent in the coupling direction optical axis N direction
  • a sensor holder and a plurality of lens holders are Join together.
  • An optical unit 1E shown in FIG. 17 includes two lenses (lenses 2a and 2b) as first optical devices, and two substantially cylindrical lens holders (first lens holder 15A and first lens holder for holding the respective lenses).
  • a two-lens holder 15B), the image sensor 4 described above, and a cylindrical sensor holder 25 for holding the image sensor 4 are provided.
  • FIG. 17 it is assumed that the central axes of the first lens holder 15A and the second lens holder 15B and the central axes of the sensor holder 25 coincide with each other and coincide with the optical axis N of the optical unit 1E. explain.
  • the second lens holder 15B and the sensor holder 25 are second Became an optical device restraint body.
  • the first lens holder 15A extends in the direction of the optical axis N toward the image sensor 4 from an end portion of the first retaining portion 151 for retaining the lens 2a and the end of the first retaining portion 151 in the optical axis N direction. And a first fitting margin 152 which fits with the second lens holder 15B and the sensor holder 25 respectively.
  • the lens 2a is fixed to the first retaining portion 151 by, for example, soldering or adhesion using an adhesive.
  • the second lens holder 15B extends in the direction of the optical axis N toward the lens 2a from the end of the first retaining portion 153 for retaining the lens 2b and the end of the first retaining portion 153 in the optical axis N direction. And the first lens holder 15A, and further has a first fitting margin 154 for holding the sensor holder 25 via the first lens holder 15A.
  • the diameter of the inner periphery of the second lens holder 15B is substantially equal to the diameter of the outer periphery of the first lens holder 15A, and may be a diameter that allows the first lens holder 15A to be fitted.
  • the lens 2 b is fixed to the first retaining portion 153 by, for example, soldering or adhesion using an adhesive.
  • the sensor holder 25 has an annular second retaining portion 25a for retaining the image sensor 4 and an optical axis N from the end of the second retaining portion 25a in the optical axis N direction toward the side opposite to the lens 2a side. And a second fitting margin 25b extending in the direction and fitted to the first lens holder 15A.
  • the diameter of the outer periphery of the sensor holder 25 is substantially equal to the diameter of the inner periphery of the first lens holder 15A, and may be a diameter that can be fitted into the inside of the first lens holder 15A.
  • the image sensor 4 is fixed to the second holding portion 25a by, for example, laser welding.
  • the sensor holder 25 is fixed in a state of being inserted into the first fitting margin portion 152 of the first lens holder 15A from the second retaining portion 25a side.
  • the distance d 41 between the light receiving surface 4a of the lens 2a and the image sensor 4, such that the optical condition is satisfied distance that is set in advance, the first lens holder 15A and the sensor holder 25 The relative position has been adjusted.
  • the first lens holder 15A is fixed in a state of being inserted into the first fitting margin portion 154 of the second lens holder 15B from the first retaining portion 151 side.
  • the distance between the second lens holder 15B and the sensor holder 25 is set such that the distance d 42 between the lens 2b and the light receiving surface 4a of the image sensor 4 is a distance satisfying the preset optical conditions. The relative position has been adjusted.
  • the first lens holder 15A, the second lens holder 15B, and the sensor holder 25 are joined by melting and solidification by laser light in a region where all of them overlap along the direction orthogonal to the optical axis N direction.
  • the first lens holder 15A, the second lens holder 15B, and the sensor holder 25 are portions where the first fitting margin 152, the first fitting margin 154, and the second fitting margin 25b overlap in the radial direction.
  • the “restraint surface P 15A ” is a plane which passes through the center in the direction of the optical axis N of the portion where the first restraint portion 151 is in contact with the lens 2 a and which is perpendicular to the optical axis N. is there.
  • the “restraint surface P 15 B ” is a plane which passes through the center of the direction in which the first restraint portion 153 is in contact with the lens 2 b in the direction of the optical axis N and which is perpendicular to the optical axis N .
  • the “restraint surface P 25 ” is a plane which passes through the center of the direction of the optical axis N of the portion where the second restraint portion 25 a is in contact with the image sensor 4 and which is perpendicular to the optical axis N. is there.
  • the lenses 2a and 2b and the image sensor 4 are respectively held by the first lens holder 15A, the second lens holder 15B and the sensor holder 25 on the same side with respect to the welding portion 35.
  • the welding portion 35 has a welding width at the central portion in the thickness direction of the first lens holder 15A, a welding width at the central portion in the thickness direction of the second lens holder 15B, and a sensor holder, similarly to the welded portion 31 described above.
  • the welding width at the center in the thickness direction of 25 is substantially the same.
  • all of the first lens holder 15A, the second lens holder 15B and the sensor holder 25 overlap in the radial direction orthogonal to the optical axis N direction, and one end side in the optical axis N direction
  • the laser beam is irradiated to the outside of the area sandwiched between the holding surface of the holding part holding the device and the holding surface of the holding part holding the device at the other end, and each welding width is the same.
  • the welds 35 are formed to join the holders.
  • the shrinkage amount and the moving direction of the holders to be joined become the same at the time of laser welding, and as a result, even if shrinkage occurs due to melting and solidification, the relative relationship between the optical devices to which each holder adheres It is possible to weld the first lens holder 15A, the second lens holder 15B, and the sensor holder 25 while suppressing positional deviation.
  • an optical unit having desired optical characteristics can be obtained.
  • FIG. 18 is a cross-sectional view schematically showing a configuration of an optical unit according to Embodiment 5 of the present invention.
  • FIG. 18 is a partial cross-sectional view in which a plane including the central axis of the optical unit is a cutting plane.
  • a plurality of lens holders and one sensor holder are provided, and the other lens holders and the sensor holder are accommodated in a predetermined lens holder.
  • the optical unit 1F shown in FIG. 18 includes four lenses (lenses 2a, 2b, 2c and 2d) each of which is a first optical device, and a substantially cylindrical first lens holder 16A for retaining the lens 2a.
  • a substantially cylindrical second lens holder 16B for holding the lenses 2b and 2c, a substantially cylindrical third lens holder 16C for holding the lens 2d, the image sensor 4 described above, and the image sensor 4 are held.
  • a cylindrical sensor holder 26 is provided.
  • the central axes of the first lens holder 16A, the second lens holder 16B and the third lens holder 16C, and the central axis of the sensor holder 26 coincide with each other and to the optical axis N of the optical unit 1F.
  • first lens holder 16A the second lens holder 16B, the third lens holder 16C, and the sensor holder 26
  • first lens holder 16A is a first optical device retainer
  • second lens holder 16B the second lens holder 16B
  • the three-lens holder 16C and the sensor holder 26 serve as a second light device retainer.
  • the first lens holder 16A extends in the direction of the optical axis N from the end of the first retaining portion 161 in the annular direction holding the lens 2a and the end in the direction of the optical axis N of the first retaining portion 161 toward the lens 2b. And a first fitting margin portion 162 that fits with the second lens holder 16B, the third lens holder 16C, and the sensor holder 26.
  • the lens 2a is fixed to the first retaining portion 161 by, for example, soldering or adhesion using an adhesive.
  • the second lens holder 16B has an annular first retaining portion 163 for retaining the lenses 2b and 2c, and an end of the first retaining portion 163 in the optical axis N direction toward the lens 2d in the optical axis N direction. And a first fitting margin portion 164 extending and fitted to the first lens holder 16A.
  • the diameter of the outer periphery of the second lens holder 16B is substantially equal to the diameter of the inner periphery of the first lens holder 16A, and any diameter that can fit the second lens holder 16B into the inside of the first lens holder 16A may be used. .
  • the lenses 2b and 2c are fixed to the first retaining portion 163 by, for example, soldering or adhesion using an adhesive.
  • the third lens holder 16C extends in the direction of the optical axis N toward the image sensor 4 from an end portion of the first retaining portion 165 which holds the lens 2d and an end portion of the first retaining portion 165 in the optical axis N direction. And a first fitting margin portion 166 to be fitted to the first lens holder 16A.
  • the diameter of the outer periphery of the third lens holder 16C is substantially equal to the diameter of the inner periphery of the first lens holder 16A, and any diameter that can fit the third lens holder 16C into the inside of the first lens holder 16A may be used. .
  • the lens 2 d is fixed to the first retaining portion 165 by, for example, soldering or adhesion using an adhesive.
  • the sensor holder 26 has an annular second retaining portion 26a for retaining the image sensor 4 and an optical axis N directed from the end of the second retaining portion 26a in the optical axis N direction to the opposite side to the lens 2d side. And a second fitting margin portion 26b extending in the direction and fitting with the first lens holder 16A.
  • the diameter of the outer periphery of the sensor holder 26 is substantially equal to the diameter of the inner periphery of the first lens holder 16A, and may be a diameter that allows the sensor holder 26 to be fitted into the inside of the first lens holder 16A.
  • the image sensor 4 is fixed to the second holding portion 26a by, for example, laser welding.
  • the second lens holder 16B is fixed in a state of being inserted into the inside of the first lens holder 16A.
  • the relative relationship between the first lens holder 16A and the second lens holder 16B is such that the distance d 51 between the lens 2a and the lens 2b satisfies the preset optical condition. The position has been adjusted.
  • first lens holder 16A and the second lens holder 16B are portions where the first fitting margin portion 162 and the first fitting margin portion 164 overlap in the radial direction, and the first holding in the optical axis N direction catching surface P 16A and the outer portion of the region R C 3 sandwiched catching surface P 16B of the first catching portion 163 parts 161 are joined by melting and solidification by a laser beam.
  • “retaining surface P 16A ” is a plane which passes through the center of the direction in which the first retaining portion 161 is in contact with the lens 2 a in the direction of the optical axis N and which is perpendicular to the optical axis N is there.
  • the “restraint surface P 16B ” is a plane which passes through the center of the direction in which the first restraint portion 163 contacts the lens 2 c in the direction of the optical axis N and which is perpendicular to the optical axis N. .
  • the region R C 3 is a region that ends between the most distant elements.
  • the center of the portion in contact with the lens 2 a and the center of the portion in contact with the lens 2 c are both ends.
  • welded portions 36a are formed on the first lens holder 16A and the second lens holder 16B by mixing and curing the melted portions.
  • the lens 2a and the lenses 2b and 2c are respectively held by the first lens holder 16A and the second lens holder 16B on the same side with respect to the welding portion 36a.
  • the welding width at the central portion in the thickness direction of the first lens holder 16A and the welding width at the central portion in the thickness direction of the second lens holder 16B are substantially the same. It is the same.
  • the third lens holder 16C is fixed in a state of being inserted into the inside of the first lens holder 16A.
  • the relative relationship between the first lens holder 16A and the third lens holder 16C is such that the distance d 52 between the lens 2a and the lens 2d satisfies the preset optical condition. The position has been adjusted.
  • first lens holder 16A and the third lens holder 16C are portions where the first fitting margin portion 162 and the first fitting margin portion 166 overlap in the radial direction, and the first holding in the optical axis N direction
  • the portion outside the region R C 4 sandwiched between the retaining surface P 16 A of the portion 161 and the retaining surface P 16 C of the first retaining portion 165 is joined by the solidification by laser light.
  • the “restraint surface P 16 C ” referred to here is a plane which passes through the center in the direction of the optical axis N of the portion where the first restraint portion 165 is in contact with the lens 2 d and which is perpendicular to the optical axis N. is there.
  • welded portions 36b are formed in the first lens holder 16A and the third lens holder 16C by mixing and curing the melted portions.
  • the lens 2a and the lens 2d are respectively held by the first lens holder 16A and the third lens holder 16C on the same side with respect to the welding portion 36b.
  • the welding width at the central portion in the thickness direction of the first lens holder 16A and the welding width at the central portion in the thickness direction of the third lens holder 16C are substantially the same. It is the same.
  • the sensor holder 26 is fixed in a state of being inserted into the first lens holder 16A.
  • the distance d 53 between the light receiving surface 4a of the lens 2a and the image sensor 4, such that the optical condition is satisfied distance that is set in advance, the first lens holder 16A and the sensor holder 26 The relative position has been adjusted.
  • the first lens holder 16A and the sensor holder 26 are portions where the first fitting margin portion 162 and the second fitting margin portion 26b overlap in the radial direction, and the first retaining portion 161 in the optical axis N direction.
  • the “restraint surface P 26 ” referred to here is a plane which passes through the center of the optical axis N direction of the portion where the second restraint portion 26 a is in contact with the image sensor 4 and is perpendicular to the optical axis N. It is.
  • a welded portion 36c is formed on the first lens holder 16A and the sensor holder 26 by mixing and curing the melted portions.
  • the lens 2a and the image sensor 4 are each held by the first lens holder 16A and the sensor holder 26 on the same side with respect to the welding portion 36c.
  • the welding width at the central portion in the thickness direction of the first lens holder 16A and the welding width at the central portion in the thickness direction of the sensor holder 26 are substantially the same as in the welded portion 31 described above. It has become.
  • FIGS. 19 to 23 are schematic views for explaining the production of the optical unit according to the fifth embodiment of the present invention.
  • the second lens holder 16B is inserted into the first lens holder 16A from the first retaining portion 163 side (see FIG. 19). Then, the distance d 51 between the lens 2a and the lens 2b is such that the optical condition is satisfied distance, to adjust the position of the second lens holder 16B for the first lens holder 16A.
  • the laser head 100 is disposed, and the outer surface of the first lens holder 16A is irradiated with the laser light L to melt and solidify a part of the first lens holder 16A and a part of the second lens holder 16B. .
  • the irradiation position of the laser light L at this time is a position where the first fitting margin portion 162 and the first fitting margin portion 164 overlap in the radial direction, and is the outside of the above-mentioned region R C 3.
  • the welding portion 36a is formed, and the first lens holder 16A and the second lens holder 16B are joined (see FIG. 20).
  • the third lens holder 16C is inserted into the first lens holder 16A (see FIG. 21). Thereafter, the position of the third lens holder 16C with respect to the first lens holder 16A is adjusted such that the distance d 52 between the lens 2a and the lens 2d is a distance satisfying the optical condition.
  • the laser head 100 is disposed, and the outer surface of the first lens holder 16A is irradiated with the laser light L to melt and solidify part of the first lens holder 16A and part of the third lens holder 16C. .
  • the irradiation position of the laser beam L at this time is a position where the first fitting margin portion 162 and the first fitting margin portion 166 overlap in the radial direction, and is the outside of the above-described region R C 4.
  • the welding portion 36b is formed, and the first lens holder 16A and the third lens holder 16C are joined (see FIG. 22).
  • the sensor holder 26 is inserted into the inside of the first lens holder 16A (see FIG. 23). Then, the distance d 53 between the light receiving surface 4a of the lens 2a and the image sensor 4, such that the optical condition is satisfied distance, to adjust the position of the sensor holder 26 to the first lens holder 16A.
  • the laser head 100 is disposed, and the outer surface of the first lens holder 16A is irradiated with the laser light L to melt and solidify a part of the first lens holder 16A and a part of the sensor holder 26.
  • the irradiation position of the laser beam L in this case is a partial first Hamagodai portion 162 and the second Hamagodai portion 26b overlaps in the radial direction, and a position where the outer region R B.
  • the welding part 36c is formed, and the first lens holder 16A and the sensor holder 26 are joined.
  • the distance d 51 between the lens 2 a and the lens 2 b and the distance d 52 between the lens 2 a and the lens 2 d can be obtained by performing laser welding according to the arrangement of the optical devices held by each holder. , while suppressing the change in the distance d 53 between the lens 2a and the light receiving surface 4a, it is possible to bond the holder together.
  • the above-described manufacturing method is described as being inserted from the second lens holder 16B into the first lens holder 16A, the sensor holder 26 is inserted in the order of the third lens holder 16C and the second lens holder 16B. You may do it.
  • the holders overlap in the radial direction orthogonal to the optical axis N direction, and the device on one end side in the optical axis N direction is retained.
  • a laser beam is irradiated to the outside of each region sandwiched between the retaining surface of the retaining portion and the retaining surface of the retaining portion for retaining the device at the other end, and the welding portion has the same welding width.
  • the shrinkage amount and the moving direction of the holders to be joined become the same at the time of laser welding, and as a result, even if shrinkage occurs due to melting and solidification, the relative relationship between the optical devices to which each holder adheres It is possible to weld the first lens holder 16A, the second lens holder 16B, the third lens holder 16C, and the sensor holder 26 while suppressing positional deviation.
  • an optical unit having desired optical characteristics can be obtained.
  • the second lens holder 16B, the third lens holder 16C and the sensor holder 26 are inserted into the first lens holder 16A, for example, It is possible to increase the number of holders without decreasing the diameter of the lens disposed in the lens holder housed inside according to the order of storage.
  • FIG. 24 is a schematic view illustrating another example of a weld formed by laser welding.
  • the welding portion 30A may not reach the inner peripheral surface of the innermost holder.
  • the holders are joined by performing laser welding using a laser beam, but the joining method is not limited to this.
  • known welding techniques such as electron beam welding and resistance welding can also be used.
  • the second optical device holder is described as holding only a semiconductor laser or an image sensor, but the second optical device holder is The lens, which is an optical device, may be further restrained. In this case, the second light device holder will hold the plurality of light devices by the second holder.
  • the first and second optical devices described above each include a lens, a group lens consisting of a plurality of lenses bonded or separated, an optical fiber, an optical waveguide optical isolator, a semiconductor laser, a light emitting element, and a light receiving element , An optical amplifier, an imaging element, a photoelectric conversion element, etc., which is an element for transmitting light or converting it into other energy, and is selected from the element itself or a device provided with any of these elements It is one.
  • each holder may have a circular shape, an elliptical shape, or a polygonal shape as viewed in the optical axis N direction.
  • Each holder may be in the form of a sleeve capable of retaining the light device.
  • the holders forming the pair to be joined may have mutually different shapes when viewed from the optical axis N direction as long as they can be joined by welding. It is not necessary to fit in all the overlapping parts in the direction orthogonal to the optical axis N, as long as a part is fit, and it is possible to position the optical devices in the direction orthogonal to the optical axis N There may be gaps in the overlapping portions.
  • the optical unit according to the present invention is useful for obtaining a unit having desired optical characteristics, even when holders holding the optical devices are joined together by welding.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Lens Barrels (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Optical Head (AREA)

Abstract

本発明にかかる光学ユニットは、第一の光デバイスを拘持する第一の拘持部、および第一の拘持部から延設する第一の嵌合代部を有するスリーブ状の第一の光デバイス拘持体と、第二の光デバイスを拘持する第二の拘持部、および第二の拘持部から延設する第二の嵌合代部を有するスリーブ状の第二の光デバイス拘持体とを備えた光学ユニットにおいて、光学ユニットの光軸方向における、第一の拘持部を通過し、光軸と垂直な拘持面と、第二の拘持部を通過し、光軸と垂直な拘持面とに挟まれる領域から領域外の重ね部分で、第一の嵌合代部と第二の嵌合代部とに亘り溶融固化した溶接部を有し、溶接部は、光学ユニットの光軸方向において、第一の嵌合代部の第一の溶接幅と第二の嵌合代部の第二の溶接幅とが、略同じに形成されている。

Description

光学ユニット
 本発明は、光デバイスと、光デバイスを拘持するホルダとを備えた光学ユニットに関する。
 従来、産業用に用いられる光学ユニットは、所望の光学特性を得るために、例えば光電変換素子の特性に応じてレンズの相対的な位置が調整され固定されている(例えば、特許文献1を参照)。特許文献1には、レンズを拘持するレンズホルダと、半導体レーザを拘持するレーザホルダとの相対的な位置調整を行った後、レーザ溶接によりホルダ同士を固定した光学ユニットが開示されている。
 図25は、従来の光学ユニットの構成を示す模式図である。同図に示す光学ユニット200は、レンズ201と、レンズ201を拘持する略筒状のレンズホルダ202と、半導体レーザ203と、半導体レーザ203を拘持する筒状のレーザホルダ204とを備えている。レンズ201は、例えば半田付け、または接着剤を用いた接着によってレンズホルダ202に固定されている。半導体レーザ203は、例えばレーザ溶接によってレーザホルダ204に固定されている。なお、レンズホルダ202の中心軸と、レーザホルダ204の中心軸とは、光学ユニット200の光軸N200にそれぞれ一致している。
 また、レンズホルダ202とレーザホルダ204とは、レンズ201と半導体レーザ203との相対的な位置を決めた後、レーザ溶接によって固定される。具体的な固定方法を説明する。まず、レンズホルダ202にレーザホルダ204を収容後、レンズ201と半導体レーザ203とが予め設定された光学条件を満たす位置となるように、レンズホルダ202に対するレーザホルダ204の位置を調整する。この際の光学条件は、光学ユニット200が所望の光学特性を満たすための条件である。レーザホルダ204の位置は、例えば、レンズ201と半導体レーザ203の光源203aとの間の距離d200が、予め設定されている距離となるように調整される。その後、レンズホルダ202の外周側からレーザ光を照射して、レンズホルダ202およびレーザホルダ204を溶接する。このレーザ溶接によって、レンズホルダ202およびレーザホルダ204には、互いに溶融した部分が混合して固化してなる溶接部205が形成される。このようにして、レンズホルダ202とレーザホルダ204とが固定される。
特開平7-281062号公報
 ところで、ホルダをレーザ照射により溶融固化させる際、収縮によるホルダの寸法変化が生じる。ホルダの収縮量は、レーザ光を照射する範囲によって変わる。例えば、図25に示す光学ユニット200のように、レンズホルダ202に形成される溶接部205の寸法と、レーザホルダ204に形成される溶接部205の寸法とが異なると、各ホルダの収縮量が異なるために、光学条件を満たすように配置されたレンズ201と半導体レーザ203との位置関係が変化してしまう。具体的に、溶接部205のレンズホルダ202の厚さ方向の中央部の寸法(以下、溶接幅ともいう)をd201、溶接部205のレーザホルダ204の厚さ方向の中央部の溶接幅をd202としたとき、溶接幅d201と溶接幅d202との差が大きいと、溶融固化した際のレンズ201と半導体レーザ203との光軸N200方向の相対的な位置のずれも大きい。このような位置のずれが生じると、設定される光学条件を満たさなくなり、その結果、光学ユニット200において所望の光学特性を得ることができないという問題があった。
 本発明は、上記に鑑みてなされたものであって、光デバイスをそれぞれ拘持するホルダ同士が溶接によって接合された場合であっても、所望の光学特性を有する光学ユニットを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る光学ユニットは、内部に一つ以上の第一の光デバイスを拘持する第一の拘持部、および前記第一の拘持部から延設する第一の嵌合代部を有するスリーブ状の第一の光デバイス拘持体と、内部に一つ以上の第二の光デバイスを拘持する第二の拘持部、および前記第二の拘持部から延設する第二の嵌合代部を有するスリーブ状の第二の光デバイス拘持体とを備え、前記第一の嵌合代部と前記第二の嵌合代部とを嵌合し、前記第一の嵌合代部と前記第二の嵌合代部との重ね部分で溶接して固定された光学ユニットにおいて、前記光学ユニットの光軸方向における領域であって、前記第一の拘持部を通過し、前記光学ユニットの光軸と垂直な面である拘持面と、前記第二の拘持部を通過し、前記光軸と垂直な面である拘持面とに挟まれる領域から前記領域外の前記重ね部分で、前記第一の嵌合代部と前記第二の嵌合代部とに亘り溶融固化した溶接部を有し、前記溶接部は、前記光学ユニットの光軸方向において、前記第一の嵌合代部の第一の溶接幅と前記第二の嵌合代部の第二の溶接幅とが、略同じに形成されていることを特徴とする。
 また、本発明に係る光学ユニットは、上記発明において、当該光学ユニットの軸方向と直交する方向において最も外側に位置するホルダの前記溶接幅に対する他のホルダの前記溶接幅の比が、0.75以上1.25以下であることを特徴とする。
 また、本発明に係る光学ユニットは、上記発明において、前記溶接部は、当該光学ユニットの軸方向と直交する方向で重なり合うホルダの最も外周側のホルダの外周側の表面から延び、最も内周側のホルダに達していることを特徴とする。
 本発明によれば、光デバイスをそれぞれ拘持するホルダ同士が溶接によって接合された場合であっても、所望の光学特性を有する光学ユニットを得ることができるという効果を奏する。
図1は、本発明の実施の形態1に係る光学ユニットの構成を模式的に示す断面図である。 図2は、図1の領域Rを拡大した図である。 図3は、溶融固化した際の寸法変化を測定する方法を説明する図である。 図4は、溶融固化した際の寸法変化を測定する方法を説明する図である。 図5は、溶融固化した際の寸法変化の測定結果の一例を説明する図である。 図6は、本発明の実施の形態1に係る光学ユニットの作製を説明する模式図である。 図7は、レーザ溶接を行う際に用いるレーザ光の特性を説明する図である。 図8は、本発明の実施の形態1の変形例に係る光学ユニットの構成を模式的に示す断面図である。 図9は、本発明の実施の形態2に係る光学ユニットの構成を模式的に示す断面図である。 図10は、本発明の実施の形態2の変形例に係る光学ユニットの構成を模式的に示す断面図である。 図11は、本発明の実施の形態3に係る光学ユニットの構成を模式的に示す断面図である。 図12は、本発明の実施の形態3に係る光学ユニットの作製を説明する模式図である。 図13は、本発明の実施の形態3に係る光学ユニットの作製を説明する模式図である。 図14は、本発明の実施の形態3に係る光学ユニットの作製を説明する模式図である。 図15は、本発明の実施の形態3に係る光学ユニットの作製を説明する模式図である。 図16は、本発明の実施の形態3に係る光学ユニットの作製を説明する模式図である。 図17は、本発明の実施の形態4に係る光学ユニットの構成を模式的に示す断面図である。 図18は、本発明の実施の形態5に係る光学ユニットの構成を模式的に示す断面図である。 図19は、本発明の実施の形態5に係る光学ユニットの作製を説明する模式図である。 図20は、本発明の実施の形態5に係る光学ユニットの作製を説明する模式図である。 図21は、本発明の実施の形態5に係る光学ユニットの作製を説明する模式図である。 図22は、本発明の実施の形態5に係る光学ユニットの作製を説明する模式図である。 図23は、本発明の実施の形態5に係る光学ユニットの作製を説明する模式図である。 図24は、レーザ溶接により形成される溶接部の他の例を説明する模式図である。 図25は、従来の光学ユニットの構成を示す模式図である。
 以下、本発明を実施するための形態(以下、「実施の形態」という)を添付図面に基づいて詳細に説明する。なお、図面は模式的なものであり、各部の寸法の関係や比率は、現実と異なる。また、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれる。
(実施の形態1)
 図1は、本発明の実施の形態1に係る光学ユニットの構成を模式的に示す部分断面図であり、当該光学ユニットの光軸を含む平面を切断面とする部分断面図である。同図に示す光学ユニット1は、第一の光デバイスであるレンズ2と、レンズ2を拘持する略筒状のレンズホルダ10と、入力された電気信号に応じたレーザ光を出射する光源3aを有する第二の光デバイスである半導体レーザ3と、半導体レーザ3を拘持する筒状のレーザホルダ20とを備えている。図1では、レンズホルダ10の中心軸と、レーザホルダ20の中心軸とは、互いに一致しており、かつ光学ユニット1の光軸Nに一致しているものとして説明する。光学ユニット1は、光源3aが出射した光を、レンズ2を介して外部に出射する。本実施の形態1において、レンズホルダ10は第一の光デバイス拘持体、レーザホルダ20は第二の光デバイス拘持体に相当する。
 レンズ2は、ガラスや樹脂を用いて形成されるコリメートレンズや集光レンズにより構成される。なお、本実施の形態1では、レンズホルダ10が一つのレンズ2を拘持しているものとして説明するが、レンズホルダ10が複数のレンズからなる光デバイスを拘持するものであってもよい。
 レンズホルダ10は、レンズ2を拘持する環状の第1拘持部10aと、第1拘持部10aの光軸N方向の端部から半導体レーザ3に向けて光軸N方向に沿って延在し、レーザホルダ20と嵌合する筒状の第1嵌合代部10bと、を有する。第1拘持部10aには、例えば半田付け、または接着剤を用いた接着によってレンズ2が固定される。なお、第1嵌合代部10bの内部壁面のなす径は、レーザホルダ20の外周の径と同じであるが、レーザホルダ20が嵌入可能な径であればよい。
 レーザホルダ20は、半導体レーザ3を拘持する第2拘持部20aと、第2拘持部20aの光軸N方向の端部からレンズ2側と反対側に向けて光軸N方向に延在し、レンズホルダ10と嵌合する筒状の第2嵌合代部20bと、を有する。第2拘持部20aには、例えばレーザ溶接によって半導体レーザ3が固定される。第2拘持部20aの外周のなす径は、レンズホルダ10の内周のなす径と同等か、若干小さい。
 レンズホルダ10およびレーザホルダ20は、レーザ光によって溶融固化した際に、同じ程度の収縮率を有する材料を用いて構成されていることが好ましい。この材料としては、ステンレス鋼(フェライト系、マルテンサイト系、オーステナイト系)、鉄鋼材料(機械構造用炭素鋼、一般構造用圧延鋼)、インバー材、樹脂(Acrylonitrile Butadiene Styrene:ABS、Poly Ether Ether Ketone:PEEK)が挙げられる。また、光学ユニット1の作製において、レンズホルダ10とレーザホルダ20とを嵌合させるときに、レンズホルダ10とレーザホルダ20との位置調整を容易に行えるように、第1嵌合代部10bおよび第2嵌合代部20bの表面粗さを小さくしてもよいし、第1嵌合代部10bと第2嵌合代部20bとの嵌合部分の一部に、第1嵌合代部10bと第2嵌合代部20bとが非接触となるような切欠き等による隙間が形成されるようにしてもよい。
 光学ユニット1において、レンズ2と半導体レーザ3の光源3aとの間の距離d1は、予め設定されている光学条件を満たす距離である。
 また、レンズホルダ10とレーザホルダ20とは、第1嵌合代部10bおよび第2嵌合代部20bが径方向で重なる部分であって、光軸N方向において第1拘持部10aの拘持面P10および第2拘持部20aの拘持面P20に挟まれる領域RAの外側の部分が、レーザ光による溶融固化によって接合されている。ここでいう「拘持面P10」とは、第1拘持部10aがレンズ2と接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。また、「拘持面P20」とは、第2拘持部20aが半導体レーザ3と接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。このレーザ溶接によって、レンズホルダ10およびレーザホルダ20には、互いに溶融した部分が混合して硬化してなる溶接部30が形成される。この際、光学ユニット1において、レンズ2および半導体レーザ3は、各々が、溶接部30に対して同じ側でレンズホルダ10およびレーザホルダ20に拘持されている。すなわち、レンズホルダ10およびレーザホルダ20において、レンズ2および半導体レーザ3をそれぞれ拘持してデバイスに連なっている部分が、溶接部30を通過し、光軸Nと直交する平面に対して同じ側にある。なお、拘持面は、拘持部が光学デバイスと接触している部分の光軸N方向の中央を通過するものとして説明したが、光学デバイスと接触している部分の光軸N方向の一方の端部を通過する等、通過位置の設計変更が可能である。
 図2は、図1に示す光学ユニット1の溶接部30を含む領域Rを拡大した図である。上述したように、第1嵌合代部10bの一部と第2嵌合代部20bの一部とには、互いを接合する溶接部30が形成されている。各嵌合代部の光軸N方向と直交する径方向の長さを厚さ、光軸N方向の長さを幅としたとき、溶接部30は、第1嵌合代部10bの厚さ方向の中央部の溶接幅w1と、第2嵌合代部20bの厚さ方向の中央部の溶接幅w2とが、略同じである。具体的に、溶接幅w1と溶接幅w2とが略同じとは、レーザ光が照射されるレンズホルダ10の溶接幅w1に対する、レーザホルダ20の溶接幅w2の比(w2/w1)が、0.75≦w2/w1≦1.25の関係を満たしていることをいう。この範囲において、例えば、溶接幅w1が0.4mmである場合、溶接幅w2は0.3~0.5mmとなる。
 次に、溶融固化によるホルダの収縮について、図3および図4を参照して説明する。図3および図4は、溶融固化した際の寸法変化を測定する方法を説明する図である。
 まず、測定用の筒状部材(以下、測定用部材という)40の外表面に、二つのマーカM1、M2を付与する(図3参照)。マーカM1、M2は、インクによるものであってもよいし、シール材を用いたものであってもよい。マーカM1、M2は、測定用部材40の光軸N10方向に沿って設けられていることが好ましい。
 その後、マーカM1、M2の間の距離d11を測定する。距離d11は、マーカM1とマーカM2との間の光軸N10方向の距離である。
 溶融固化前のマーカM1、M2の間の距離d11を測定後、マーカM1とマーカM2との間の一部にレーザ光を照射して、測定用部材40の一部を溶融固化させる。この際、図4に示すように、測定用部材40の全周にわたってレーザ光を照射する。例えば、測定用部材40を光軸N10を回転軸として回転させるか、またはレーザ光を出射するレーザヘッドを測定用部材40の外周に沿って回転させながらレーザ光を照射する。これにより、測定用部材40に光軸N10を周回する溶接部41が形成される。溶接部41の形成により、測定用部材40は、該溶接部41を境界として両端部が互いに近づく方向(図4における矢印D1、D2)に収縮する。
 測定用部材40に溶接部41を形成した後、マーカM1とマーカM2との間の距離d12を測定する。この距離d12は、溶融固化による測定用部材40の収縮によって、上述した距離d11よりも小さくなる。この距離d11と距離d12との差を、寸法変化量(収縮量)として算出する。その後、レーザ光の強度を変えて、上述したように溶接幅w10を形成し、収縮による寸法変化量を測定する。レーザ光の強度を変えることにより、異なる溶接幅における寸法変化量が得られる。
 図5は、溶融固化した際の寸法変化の測定結果の一例を説明する図であって、溶接幅と寸法変化量との関係を示す図である。図5に示すように、溶接幅と寸法変化量とは、略比例している(図5中の近似直線S参照)。これにより、溶接部30において、レンズホルダ10における溶接幅と、レーザホルダ20の溶接幅との差が大きくなるほど、溶融固化前のレンズ2および半導体レーザ3の位置関係の変化が大きくなることが容易に予測できる。
 次に、上述した光学ユニット1を作製する方法について、図6を参照して説明する。図6は、本発明の実施の形態1に係る光学ユニット1の作製を説明する模式図である。
 まず、第1嵌合代部10bの内部に、第2拘持部20a側からレーザホルダ20を挿入して嵌合させる。その後、レンズ2と光源3aとの間の距離d1が、光学条件を満たす距離となるように、レンズホルダ10に対してレーザホルダ20を相対移動させてレンズ2と半導体レーザ3との間の光路長を調整する。
 その後、レーザヘッド100を配置して、レンズホルダ10の外表面にレーザ光Lを照射することにより、レンズホルダ10の一部、およびレーザホルダ20の一部を溶融固化させる。この際のレーザ光Lの照射位置は、第1嵌合代部10bと第2嵌合代部20bとが径方向で重なり合う位置であり、かつ光軸N方向における領域RAの外側に位置している。また、レーザ光Lの強度分布、または、レーザヘッド100の移動によって、レンズホルダ10からレーザホルダ20にかけて均一な溶接幅となるように、レンズホルダ10およびレーザホルダ20を溶融固化させる。この際、レーザ光は、パルス光により間欠的に照射してもよいし、連続的に照射してもよい。溶接部30は、レーザ光が間欠的に照射される場合に、ホルダの周方向に沿って間欠的に溶接ビードが形成されるものであってもよいし、周方向の全周にわたって連続的に溶接ビードが連なっているものであってもよい。また、溶接部30は、レーザ光が連続的に照射される場合、周方向に延びる一つの溶接ビードからなる。
 図7は、レーザ溶接を行う際に用いるレーザ光の特性を説明する図である。図7は、レーザ光のビームウエストを通る断面におけるビーム強度の分布を示す図である。図7に示すように、本実施の形態1では、ホルダを溶融可能な下限強度ILにおけるビーム径WLと、ピーク強度IPにおけるビーム径WPの値が略同じで、ビームの縁から中心に向かってビーム強度が急峻に立ち上がってピーク強度IPに達するトップハット型の強度分布のレーザ光を用いてレーザ溶接を行う。これにより、照射領域の単位面積当たりの蓄積エネルギーが略均一なレーザ光がホルダに照射される。また、例えば、一般的に知られているガウシアン型の強度分布を有するレーザ光を、ビーム強度分布変換を行う光学系を通過させることによって、ビーム径WLとビーム径WPとが略同じでビーム断面の縁から内部に向かってビーム強度が急峻に立ち上がるトップハット型の強度分布に変換して照射するようにしてもよい。
 以上説明した本発明の実施の形態1では、第1嵌合代部10bと第2嵌合代部20bとが重なり合い、かつ第1拘持部10aの拘持面P10および第2拘持部20aの拘持面P20に挟まれる領域RAの外側に、レンズホルダ10における溶接幅w1と、レーザホルダ20の溶接幅w2とが略同じである溶接部30を形成して、レンズホルダ10とレーザホルダ20とを接合するようにした。これにより、レーザ溶接した際、各ホルダは同じ収縮量で収縮し、かつレンズ2および半導体レーザ3が収縮により同じ側に移動する。その結果、溶融固化により収縮が生じても、各ホルダが拘持する光デバイス間の相対的な位置のずれを抑制しつつ、レンズホルダ10およびレーザホルダ20を溶接することが可能となる。このように、本実施の形態1によれば、溶接によってホルダ同士を接合した場合であっても、所望の光学特性を有する光学ユニットを得ることができる。
(実施の形態1の変形例)
 図8は、本発明の実施の形態1の変形例に係る光学ユニットの構成を模式的に示す断面図である。図8は、当該光学ユニットの中心軸を含む平面を切断面とする部分断面図である。上述した実施の形態1では、第二の光デバイスが半導体レーザ3であるものとして説明したが、本変形例では、第二の光デバイスとしてイメージセンサ4を用いる。本変形例に係る光学ユニット1Aは、例えば、被検体内に挿入される挿入部を備えた内視鏡に設けられる。
 同図に示す光学ユニット1Aは、第一の光デバイスであるレンズ2と、レンズ2を拘持する略筒状のレンズホルダ11と、外部からの光を受光する受光面4aを有し、受光した光を電気信号に変換する第二の光デバイスであるイメージセンサ4と、イメージセンサ4を拘持する筒状のセンサホルダ21とを備えている。図8では、レンズホルダ11の中心軸と、センサホルダ21の中心軸とは、互いに一致しており、かつ光学ユニット1Aの光軸Nに一致しているものとして説明する。レンズ2は、外部からの光を受光面4aで結像させるためのレンズである。本変形例において、レンズホルダ11は第一の光デバイス拘持体、センサホルダ21は第二の光デバイス拘持体に相当する。
 レンズホルダ11は、内部壁面のなす径であって、光軸Nと直交する方向の径が、センサホルダ21の外周のなす径と略同等である。レンズホルダ11は、レンズ2を拘持する環状の第1拘持部11aと、第1拘持部11aの光軸N方向の端部からイメージセンサ4に向けて光軸N方向に延在し、センサホルダ21と嵌合する筒状の第1嵌合代部11bと、を有する。第1拘持部11aには、例えば半田付け、または接着剤を用いた接着によってレンズ2が固定される。なお、レンズホルダ11の内部壁面のなす径は、センサホルダ21の外周の径と同じであるが、センサホルダ21を嵌入することが可能な径であればよい。
 センサホルダ21は、イメージセンサ4を拘持する第2拘持部21aと、第2拘持部21aの光軸N方向の端部からレンズ2側とは反対側に向けて光軸N方向に延在し、レンズホルダ11と嵌合する筒状の第2嵌合代部21bと、を有する。第2拘持部21aには、例えばレーザ溶接によってイメージセンサ4が固定される。センサホルダ21の外周のなす径は、レンズホルダ11の内周のなす径と同等か、若干小さい。
 イメージセンサ4は、例えばCCD(Charge Coupled Device)イメージセンサ、またはCMOS(Complementary Metal Oxide Semiconductor)イメージセンサを用いて実現される。イメージセンサ4は、受光した観察光を光電変換して電気信号を生成する。
 光学ユニット1Aにおいて、レンズ2とイメージセンサ4の受光面4aとの間の距離d2は、予め設定されている光学条件を満たす距離である。
 また、レンズホルダ11とセンサホルダ21とは、第1嵌合代部11bおよび第2嵌合代部21bが径方向で重なる部分であって、光軸N方向において第1拘持部11aの拘持面P11および第2拘持部21aの拘持面P21に挟まれる領域RBの外側の部分が、レーザ光による溶融固化によって接合されている。ここでいう「拘持面P11」とは、第1拘持部11aがレンズ2と接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。また、「拘持面P21」とは、第2拘持部21aがイメージセンサ4と接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。このレーザ溶接によって、レンズホルダ11およびセンサホルダ21には、互いに溶融した部分が混合して硬化してなる溶接部31が形成される。また、光学ユニット1Aにおいて、レンズ2およびイメージセンサ4は、各々が、溶接部31に対して同じ側でレンズホルダ11およびセンサホルダ21に拘持されている。溶接部31は、上述した溶接部30と同様に、レンズホルダ11の厚さ方向の中央部の溶接幅と、センサホルダ21の厚さ方向の中央部の溶接幅とが、ほぼ同じとなっている。
 光学ユニット1Aは、上述した光学ユニット1と同様にして作製される。具体的には、第1嵌合代部11bの内部に、第2拘持部21a側からセンサホルダ21を挿入して嵌合させる。この際、レンズ2と受光面4aとの間の距離d2が、光学条件を満たす距離となるように、レンズホルダ11に対してセンサホルダ21を相対移動させてレンズ2とイメージセンサ4との間の光路長を調整する。その後、レンズホルダ11の外表面における上述した位置に対してレーザ光を照射することにより、第1嵌合代部11bの一部、および第2嵌合代部21bの一部を溶融固化させる。
 以上説明した本発明の実施の形態1の変形例では、実施の形態1と同様にして、第1嵌合代部11bと第2嵌合代部21bとが重なり合い、かつ第1拘持部11aの拘持面P11および第2拘持部21aの拘持面P21に挟まれる領域RBの外側に、レンズホルダ11における溶接幅と、センサホルダ21の溶接幅とが略同じである溶接部31を形成して、レンズホルダ11とセンサホルダ21とを接合するようにした。これにより、レーザ溶接した際の、レンズホルダ11およびセンサホルダ21の収縮量、ならびに各ホルダが拘持する光デバイスの移動方向が同じになり、その結果、溶融固化により収縮が生じても、各ホルダが拘持する光デバイス間の相対的な位置のずれを抑制しつつ、レンズホルダ11およびセンサホルダ21を溶接することが可能となる。このように、本実施の形態1の変形例によれば、溶接によってホルダ同士を接合した場合であっても、所望の光学特性を有する光学ユニットを得ることができる。
 なお、上述した変形例では、第二の光デバイスがイメージセンサであるものとして説明したが、第二の光デバイスが、イメージセンサに加え、圧縮やフィルタリングを行うDSP(Digital Signal Processor)等、イメージセンサとは別に設けられ、該イメージセンサが取得した電気信号を処理する電子部品を含むものであってもよい。
(実施の形態2)
 図9は、本発明の実施の形態2に係る光学ユニットの構成を模式的に示す断面図である。図9は、当該光学ユニットの中心軸を含む平面を切断面とする部分断面図である。上述した実施の形態1では、レーザホルダ20がレンズホルダ10に収容される構成を説明したが、本実施の形態2では、レンズホルダ12がレーザホルダ22に収容される構成である。
 同図に示す光学ユニット1Bは、第一の光デバイスであるレンズ2と、レンズ2を拘持する略筒状のレンズホルダ12と、上述した半導体レーザ3と、半導体レーザ3を拘持する筒状のレーザホルダ22とを備えている。図9では、レンズホルダ12の中心軸と、レーザホルダ22の中心軸とは、互いに一致しており、かつ光学ユニット1Bの光軸Nに一致しているものとして説明する。本実施の形態2において、レンズホルダ12は第一の光デバイス拘持体、レーザホルダ22は第二の光デバイス拘持体に相当する。
 レンズホルダ12は、レンズ2を拘持する環状の第1拘持部12aと、第1拘持部12aの光軸N方向の端部から半導体レーザ3側と反対側に向けて光軸N方向に延在し、レーザホルダ22と嵌合する筒状の第1嵌合代部12bと、を有する。第1拘持部12aには、例えば半田付け、または接着剤を用いた接着によってレンズ2が固定される。
 レーザホルダ22は、内部壁面のなす径であって、光軸Nと直交する方向の径が、レンズホルダ12の外周のなす径と同等である。レーザホルダ22は、半導体レーザ3を拘持する第2拘持部22aと、第2拘持部22aの光軸N方向の端部からレンズ2に向けて光軸N方向に延在し、レンズホルダ12と嵌合する筒状の第2嵌合代部22bと、を有する。第2拘持部22aには、例えばレーザ溶接によって半導体レーザ3が固定される。なお、第2嵌合代部22bの内部壁面のなす径は、レンズホルダ12の外周の径と同じであるが、第1嵌合代部12bを嵌入することが可能な径であればよい。
 光学ユニット1Bにおいて、レンズ2と半導体レーザ3の光源3aとの間の距離d1は、予め設定されている光学条件を満たす距離である。
 また、レンズホルダ12とレーザホルダ22とは、第1嵌合代部12bおよび第2嵌合代部22bが径方向で重なる部分であって、光軸N方向において第1拘持部12aの拘持面P12および第2拘持部22aの拘持面P22に挟まれる領域RAの、該光軸N方向の外側の部分が、レーザ光による溶融固化によって接合されている。ここでいう「拘持面P12」とは、第1拘持部12aがレンズ2と接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。また、「拘持面P22」とは、第2拘持部22aが半導体レーザ3と接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。このレーザ溶接によって、レンズホルダ12およびレーザホルダ22には、互いに溶融した部分が混合して硬化してなる溶接部32が形成される。また、光学ユニット1Bにおいて、レンズ2および半導体レーザ3は、各々が、溶接部32に対して同じ側でレンズホルダ12およびレーザホルダ22に拘持されている。
 光学ユニット1Bは、上述した光学ユニット1と同様にして作製される。具体的には、第2嵌合代部22bの内部に、第1拘持部12a側からレンズホルダ12を挿入して嵌合させる。この際、レンズ2と光源3aとの間の距離d1が、光学条件を満たす距離となるように、レーザホルダ22に対してレンズホルダ12を相対移動させてレンズ2と半導体レーザ3との間の光路長を調整する。その後、レーザホルダ22の外表面における上述した位置に対してレーザ光を照射することにより、レンズホルダ12の一部、およびレーザホルダ22の一部を溶融固化させる。本実施の形態2では、溶融したホルダの一部がレンズ2に付着することを防止するために、冷却ガスをレンズホルダ12内に噴射して、レンズホルダ12の内部側の溶融部分を強制的に固化させたり、レンズ2を保護するカバー等の保護部材を用いたりすることが好ましい。
 以上説明した本発明の実施の形態2では、実施の形態1と同様にして、第1嵌合代部12bと第2嵌合代部22bとが重なり合い、かつ第1拘持部12aの拘持面P12および第2拘持部22aの拘持面P22に挟まれる領域RAの外側に、レンズホルダ12の溶接幅と、レーザホルダ22の溶接幅とが略同じである溶接部32を形成して、レンズホルダ12とレーザホルダ22とを接合するようにした。これにより、レーザ溶接した際の、レンズホルダ12およびレーザホルダ22の収縮量、ならびに各ホルダが拘持する光デバイスの移動方向が同じになり、その結果、溶融固化により収縮が生じても、各ホルダが拘持する光デバイス間の相対的な位置のずれを抑制しつつ、レンズホルダ12およびレーザホルダ22を固定することが可能となる。このように、本実施の形態2によれば、溶接によってホルダ同士を接合した場合であっても、所望の光学特性を有する光学ユニットを得ることができる。
(実施の形態2の変形例)
 図10は、本発明の実施の形態2の変形例に係る光学ユニットの構成を模式的に示す断面図である。図10は、当該光学ユニットの中心軸を含む平面を切断面とする部分断面図である。上述した実施の形態2では、第二の光デバイスが半導体レーザ3であるものとして説明したが、本変形例では、第二の光デバイスがイメージセンサ4である。
 同図に示す光学ユニット1Cは、第一の光デバイスであるレンズ2と、レンズ2を拘持する略筒状のレンズホルダ13と、上述したイメージセンサ4と、イメージセンサ4を拘持する筒状のセンサホルダ23とを備えている。図10では、レンズホルダ13の中心軸と、センサホルダ23の中心軸とは、互いに一致しており、かつ光学ユニット1Cの光軸Nに一致しているものとして説明する。本変形例において、レンズホルダ13は第一の光デバイス拘持体、センサホルダ23は第二の光デバイス拘持体に相当する。
 レンズホルダ13は、レンズ2を拘持する環状の第1拘持部13aと、第1拘持部13aの光軸N方向の端部からイメージセンサ4側と反対側に向けて該光軸N方向に延在し、センサホルダ23と嵌合する筒状の第1嵌合代部13bと、を有する。第1拘持部13aには、例えば半田付け、または接着剤を用いた接着によってレンズ2が固定される。
 センサホルダ23は、内部壁面のなす径であって、光軸Nと直交する方向の径が、レンズホルダ13の外周のなす径と同等である。センサホルダ23は、イメージセンサ4を拘持する第2拘持部23aと、第2拘持部23aの光軸N方向の端部からレンズ2に向けて光軸N方向に延在し、レンズホルダ13と嵌合する筒状の第2嵌合代部23bと、を有する。第2拘持部23aには、例えばレーザ溶接によってイメージセンサ4が固定される。なお、第2嵌合代部23bの内部壁面のなす径は、レンズホルダ13の外周の径と同じであるが、第1嵌合代部13bを嵌入することが可能な径であればよい。
 光学ユニット1Cにおいて、レンズ2とイメージセンサ4の受光面4aとの間の距離d2は、予め設定されている光学条件を満たす距離である。
 また、レンズホルダ13とセンサホルダ23とは、第1嵌合代部13bおよび第2嵌合代部23bが径方向で重なる部分であって、光軸N方向において第1拘持部13aの拘持面P13および第2拘持部23aの拘持面P23に挟まれる領域RBの、該光軸N方向の外側の部分が、レーザ光による溶融固化によって接合されている。ここでいう「拘持面P13」とは、第1拘持部13aがレンズ2と接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。また、「拘持面P23」とは、第2拘持部23aがイメージセンサ4と接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。このレーザ溶接によって、レンズホルダ13およびセンサホルダ23には、互いに溶融した部分が混合して硬化してなる溶接部33が形成される。また、光学ユニット1Cにおいて、レンズ2およびイメージセンサ4は、各々が、溶接部33に対して同じ側でレンズホルダ13およびセンサホルダ23に拘持されている。溶接部33は、上述した溶接部32と同様に、レンズホルダ13の厚さ方向の中央部の溶接幅と、センサホルダ23の厚さ方向の中央部の溶接幅とが、ほぼ同じとなっている。
 光学ユニット1Cは、上述した光学ユニット1Bと同様にして作製される。具体的には、第2嵌合代部23bの内部に、第1拘持部13a側からレンズホルダ13を挿入する。この際、レンズ2と受光面4aとの間の距離d2が、光学条件を満たす距離となるように、センサホルダ23に対するレンズホルダ13の位置を調整する。その後、センサホルダ23の外表面における上述した位置に対してレーザ光を照射することにより、レンズホルダ13の一部、およびセンサホルダ23の一部を溶融固化させる。
 以上説明した本発明の実施の形態2の変形例では、実施の形態2と同様にして、第1嵌合代部13bと第2嵌合代部23bとが重なり合い、かつ第1拘持部13aの拘持面P13および第2拘持部23aの拘持面P23に挟まれる領域RBの外側に、レンズホルダ13における溶接幅と、センサホルダ23の溶接幅とが略同じである溶接部33を形成して、レンズホルダ13およびセンサホルダ23を接合するようにした。これにより、レーザ溶接した際の、レンズホルダ13およびセンサホルダ23の収縮量および移動方向が同じになり、その結果、溶融固化により収縮が生じても、各ホルダが拘持する光デバイス間の相対的な位置のずれを抑制しつつ、レンズホルダ13およびセンサホルダ23を溶接することが可能となる。このように、本実施の形態2の変形例によれば、溶接によってホルダ同士を接合した場合であっても、所望の光学特性を有する光学ユニットを得ることができる。
(実施の形態3)
 図11は、本発明の実施の形態3に係る光学ユニットの構成を模式的に示す断面図である。図11は、当該光学ユニットの中心軸を含む平面を切断面とする部分断面図である。本実施の形態3では、光学ユニットが三つのレンズホルダを備える。
 同図に示す光学ユニット1Dは、第一の光デバイスである三つのレンズ(レンズ2a、2b、2c)と、各レンズをそれぞれ拘持する略筒状の三つのレンズホルダ(第1レンズホルダ14A、第2レンズホルダ14Bおよび第3レンズホルダ14C)と、上述したイメージセンサ4と、イメージセンサ4を拘持する筒状のセンサホルダ24とを備えている。図11では、第1レンズホルダ14A、第2レンズホルダ14B、第3レンズホルダ14Cの中心軸と、センサホルダ24の中心軸とは、互いに一致しており、かつ光学ユニット1Dの光軸Nに一致しているものとして説明する。本実施の形態3では、第1レンズホルダ14A、第2レンズホルダ14B、第3レンズホルダ14Cおよびセンサホルダ24において、接合対象のホルダの一方が第一の光デバイス拘持体、他方が第二の光デバイス拘持体となる。
 第1レンズホルダ14Aは、外周の径および内周の径が軸方向に沿って段階的に変化する形状をなしている。具体的には、第1レンズホルダ14Aは、レンズ2aを拘持する環状の第1拘持部141と、第1拘持部141の光軸N方向の端部からレンズ2bに向けて光軸N方向に延在し、一端でセンサホルダ24と嵌合し、他端で第2レンズホルダ14Bと嵌合する第1嵌合代部142と、を有する。第1拘持部141および第1嵌合代部142は、厚さが略同じである。第1嵌合代部142は、第1拘持部141に連なり、外周のなす径が第1拘持部141の外周のなす径と略同じである筒状の第1本体部142aと、外周のなす径が、第1本体部142aの外周のなす径よりも大きい第2本体部142bとを有する。第1拘持部141には、例えば半田付け、または接着剤を用いた接着によってレンズ2aが固定される。
 第2レンズホルダ14Bは、軸方向に沿って段付き形状をなしている。具体的には、第2レンズホルダ14Bは、レンズ2bを拘持する環状の第1拘持部143と、第1拘持部143の光軸N方向の端部からレンズ2cに向けて光軸N方向に延在し、一端で第1レンズホルダ14Aと嵌合し、他端で第3レンズホルダ14Cと嵌合する第1嵌合代部144と、を有する。第1拘持部143および第1嵌合代部144は、厚さが略同じである。第1嵌合代部144は、第1拘持部143に連なり、外周のなす径が第1拘持部143の外周のなす径と略同じである筒状の第1本体部144aと、外周のなす径が、第1本体部144aの外周のなす径よりも大きい第2本体部144bとを有する。第1拘持部143には、例えば半田付け、または接着剤を用いた接着によってレンズ2bが固定される。
 第3レンズホルダ14Cは、レンズ2cを拘持する第1拘持部145と、第1拘持部145の光軸N方向の端部からレンズ2b側とは反対側に向けて光軸N方向に延在し、第2レンズホルダ14Bと嵌合する筒状の第1嵌合代部146と、を有する。第1拘持部145および第1嵌合代部146は、厚さが略同じである。第3レンズホルダ14Cの外周のなす径は、第2本体部144bの内周の径とほぼ同等であり、第2本体部144bの内部に嵌入できる径であればよい。第1拘持部145には、例えば半田付け、または接着剤を用いた接着によってレンズ2cが固定される。
 センサホルダ24は、軸方向に沿って段付き形状をなしている。具体的には、センサホルダ24は、イメージセンサ4を拘持する環状の第2拘持部24aと、第2拘持部24aの光軸N方向の端部からレンズ2aに向けて光軸N方向に延在し、第1レンズホルダ14Aと嵌合する第2嵌合代部24bと、を有する。第2拘持部24aおよび第2嵌合代部24bは、厚さが略同じである。第2嵌合代部24bは、第2拘持部24aに連なり、開口の径が第2拘持部24aと同じである筒状の第1本体部241と、開口の径が、第1本体部241の開口の径よりも大きい第2本体部242とを有する。第2拘持部24aには、例えばレーザ溶接によってイメージセンサ4が固定される。
 光学ユニット1Dにおいて、第1レンズホルダ14Aの第1本体部142aが、センサホルダ24の第2本体部242に挿入された状態で固定されている。また、光学ユニット1Dでは、レンズ2aとイメージセンサ4の受光面4aとの間の距離d31が、予め設定されている光学条件を満たす距離となるように、第1レンズホルダ14Aとセンサホルダ24との相対的な位置が調整されている。第1レンズホルダ14Aとセンサホルダ24とは、第1嵌合代部142および第2嵌合代部24bが径方向で重なる部分であって、光軸N方向において第1拘持部141の拘持面P14Aおよび第2拘持部24aの拘持面P24に挟まれる領域RBの外側の部分が、レーザ光による溶融固化によって接合されている。ここでいう「拘持面P14A」とは、第1拘持部141がレンズ2aと接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。また、「拘持面P24」とは、第2拘持部24aがイメージセンサ4と接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。このレーザ溶接によって、第1レンズホルダ14Aおよびセンサホルダ24には、互いに溶融した部分が混合して硬化してなる溶接部34aが形成される。また、レンズ2aおよびイメージセンサ4は、各々が、溶接部34aに対して同じ側で第1レンズホルダ14Aおよびセンサホルダ24に拘持されている。溶接部34aは、上述した溶接部33と同様に、第1レンズホルダ14A(ここでは第1本体部142a)の厚さ方向の中央部の溶接幅と、センサホルダ24(ここでは第2本体部242)の厚さ方向の中央部の溶接幅とが、ほぼ同じとなっている。
 また、光学ユニット1Dにおいて、第2レンズホルダ14Bの第1本体部144aが、第1レンズホルダ14Aの第2本体部142bに挿入された状態で固定されている。光学ユニット1Dでは、レンズ2aとレンズ2bとの間の距離d32が、予め設定されている光学条件を満たす距離となるように、第1レンズホルダ14Aと第2レンズホルダ14Bとの相対的な位置が調整されている。また、第1レンズホルダ14Aと第2レンズホルダ14Bとは、第1嵌合代部142および第1嵌合代部144が径方向で重なる部分であって、光軸N方向において第1拘持部141の拘持面P14Aおよび第1拘持部143の拘持面P14Bに挟まれる領域RC1の外側の部分が、レーザ光による溶融固化によって接合されている。ここでいう「拘持面P14B」とは、第1拘持部143がレンズ2bと接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。このレーザ溶接によって、第1レンズホルダ14Aおよび第2レンズホルダ14Bには、互いに溶融した部分が混合して硬化してなる溶接部34bが形成される。また、レンズ2aおよびレンズ2bは、各々が、溶接部34bに対して同じ側で第1レンズホルダ14Aおよび第2レンズホルダ14Bに拘持されている。溶接部34bは、上述した溶接部34aと同様に、第1レンズホルダ14A(ここでは第2本体部142b)の厚さ方向の中央部の溶接幅と、第2レンズホルダ14B(ここでは第1本体部144a)の厚さ方向の中央部の溶接幅とが、ほぼ同じとなっている。
 また、光学ユニット1Dにおいて、第3レンズホルダ14Cが、第2レンズホルダ14Bの第2本体部144bに挿入された状態で固定されている。光学ユニット1Dでは、レンズ2bとレンズ2cとの間の距離d33が、予め設定されている光学条件を満たす距離となるように、第2レンズホルダ14Bと第3レンズホルダ14Cとの相対的な位置が調整されている。また、第2レンズホルダ14Bと第3レンズホルダ14Cとは、第1嵌合代部144および第1嵌合代部146が径方向で重なる部分であって、光軸N方向において第1拘持部143の拘持面P14Bおよび第1拘持部145の拘持面P14Cに挟まれる領域RC2の外側の部分が、レーザ光による溶融固化によって接合されている。ここでいう「拘持面P14C」とは、第1拘持部145がレンズ2cと接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。このレーザ溶接によって、第2レンズホルダ14Bおよび第3レンズホルダ14Cには、互いに溶融した部分が混合して硬化してなる溶接部34cが形成される。また、レンズ2bおよびレンズ2cは、各々が、溶接部34cに対して同じ側で第2レンズホルダ14Bおよび第3レンズホルダ14Cに拘持されている。溶接部34cは、上述した溶接部34aと同様に、第2レンズホルダ14B(ここでは第2本体部144b)の厚さ方向の中央部の溶接幅と、第3レンズホルダ14C(ここでは第1嵌合代部146)の厚さ方向の中央部の溶接幅とが、ほぼ同じとなっている。
 次に、上述した光学ユニット1Dを作製する方法について、図12~図16を参照して説明する。図12~図16は、本発明の実施の形態3に係る光学ユニットの作製を説明する模式図である。
 まず、センサホルダ24の第2本体部242の内部に、第1拘持部141側から、第1レンズホルダ14Aの第1本体部142aを挿入する(図12参照)。その後、レンズ2aと受光面4aとの間の距離d31が、光学条件を満たす距離となるように、センサホルダ24に対する第1レンズホルダ14Aの位置を調整する。
 その後、レーザヘッド100を配置して、センサホルダ24の第2本体部242の外表面にレーザ光Lを照射することにより、第1レンズホルダ14Aの一部、およびセンサホルダ24の一部を溶融固化させる。この際のレーザ光Lの照射位置は、第1嵌合代部142および第2嵌合代部24bが径方向で重なる部分であって、第1拘持部141の拘持面P14Aおよび第2拘持部24aの拘持面P24に挟まれる領域RBの外側に位置している。これにより、溶接部34aが形成され、第1レンズホルダ14Aとセンサホルダ24とが接合される(図13参照)。
 続いて、第1レンズホルダ14Aの第2本体部142bの内部に、第1拘持部143側から、第2レンズホルダ14Bの第1本体部144aを挿入する(図14参照)。その後、レンズ2aとレンズ2bとの間の距離d32が、光学条件を満たす距離となるように、第1レンズホルダ14Aに対する第2レンズホルダ14Bの位置を調整する。
 その後、レーザヘッド100を配置して、第1レンズホルダ14Aの第2本体部142bの外表面にレーザ光Lを照射することにより、第1レンズホルダ14Aの一部、および第2レンズホルダ14Bの一部を溶融固化させる。この際のレーザ光Lの照射位置は、第1嵌合代部142および第2嵌合代部144が径方向で重なる部分であって、第1拘持部141の拘持面P14Aおよび第1拘持部143の拘持面P14Bに挟まれる領域RC1の外側に位置している。これにより、溶接部34bが形成され、第1レンズホルダ14Aと第2レンズホルダ14Bとが接合される(図15参照)。
 続いて、第2レンズホルダ14Bの第2本体部144bの内部に、第1拘持部145側から第3レンズホルダ14Cを挿入する(図16参照)。その後、レンズ2bとレンズ2cとの間の距離d33が、光学条件を満たす距離となるように、第2レンズホルダ14Bに対する第3レンズホルダ14Cの位置を調整する。
 その後、レーザヘッド100を配置して、第2レンズホルダ14Bの第2本体部144bの外表面にレーザ光Lを照射することにより、第2レンズホルダ14Bの一部、および第3レンズホルダ14Cの一部を溶融固化させる。この際のレーザ光Lの照射位置は、第1嵌合代部144および第1嵌合代部146が径方向で重なる部分であって、第1拘持部143の拘持面P14Bおよび第1拘持部145の拘持面P14Cに挟まれる領域RC2の外側に位置している。これにより、図11に示すように、溶接部34cが形成され、第2レンズホルダ14Bと第3レンズホルダ14Cとが接合される。
 このようにして、各ホルダが拘持する光デバイスの配置に応じてレーザ溶接を行うことによって、レンズ2aと受光面4aとの間の距離d31、レンズ2aとレンズ2bとの間の距離d32、レンズ2bとレンズ2cとの間の距離d33、さらには、レンズ2cから受光面4aまでの距離d3(=d31+d32+d33)の変化を抑制しつつ、ホルダ同士を接合することができる。
 以上説明した本発明の実施の形態3では、実施の形態1と同様にして、互いに重なり合い、かつ光軸N方向で隣り合うホルダの拘持部の拘持面によって挟まれる領域の外側にレーザ光を照射して溶接部を形成することによって、光軸N方向で隣り合うホルダ同士を接合するようにした。これにより、レーザ溶接した際の、接合対象のホルダ同士の収縮量および移動方向が同じになり、その結果、溶融固化により収縮が生じても、各ホルダが拘持する光デバイス間の相対的な位置のずれを抑制しつつ、第1レンズホルダ14A、第2レンズホルダ14B、第3レンズホルダ14Cおよびセンサホルダ24を溶接することが可能となる。このように、本実施の形態3によれば、溶接によってホルダ同士を接合した場合であっても、所望の光学特性を有する光学ユニットを得ることができる。
 また、上述した実施の形態3によれば、外周のなす最大径が同じである第1レンズホルダ14A、第2レンズホルダ14Bおよびセンサホルダ24が段付き形状をなして連結しているため、光学ユニットの径を増大させずに、連結するレンズホルダの数を増やすことが可能である。
 なお、上述した実施の形態3では、光学ユニット1Dが三つのレンズホルダを備えるものとして説明したが、二つのレンズホルダ、または四つ以上のレンズホルダを備える構成であっても適用可能である。
(実施の形態4)
 図17は、本発明の実施の形態4に係る光学ユニットの構成を模式的に示す断面図である。図17は、当該光学ユニットの中心軸を含む平面を切断面とする部分断面図である。上述した実施の形態3では、連結方向(光軸N方向)で隣り合うホルダ同士をレーザ溶接によって接合するものとして説明したが、本実施の形態4では、センサホルダと、複数のレンズホルダとを一括して接合する。
 図17に示す光学ユニット1Eは、第一の光デバイスである二つのレンズ(レンズ2a、2b)と、各レンズをそれぞれ拘持する略筒状の二つのレンズホルダ(第1レンズホルダ15A、第2レンズホルダ15B)と、上述したイメージセンサ4と、イメージセンサ4を拘持する筒状のセンサホルダ25とを備えている。図17では、第1レンズホルダ15A、第2レンズホルダ15Bの中心軸と、センサホルダ25の中心軸とは、互いに一致しており、かる光学ユニット1Eの光軸Nに一致しているものとして説明する。なお、第1レンズホルダ15A、第2レンズホルダ15Bおよびセンサホルダ25において、第1レンズホルダ15Aを第一の光デバイス拘持体とした場合、第2レンズホルダ15Bおよびセンサホルダ25が第二の光デバイス拘持体となる。
 第1レンズホルダ15Aは、レンズ2aを拘持する環状の第1拘持部151と、第1拘持部151の光軸N方向の端部からイメージセンサ4に向けて光軸N方向に延在し、第2レンズホルダ15Bおよびセンサホルダ25とそれぞれ嵌合する第1嵌合代部152と、を有する。第1拘持部151には、例えば半田付け、または接着剤を用いた接着によってレンズ2aが固定される。
 第2レンズホルダ15Bは、レンズ2bを拘持する環状の第1拘持部153と、第1拘持部153の光軸N方向の端部からレンズ2aに向けて光軸N方向に延在し、第1レンズホルダ15Aを嵌合し、さらに第1レンズホルダ15Aを介してセンサホルダ25を保持する第1嵌合代部154を有する。第2レンズホルダ15Bの内周のなす径は、第1レンズホルダ15Aの外周の径とほぼ同等であり、第1レンズホルダ15Aを嵌入できる径であればよい。第1拘持部153には、例えば半田付け、または接着剤を用いた接着によってレンズ2bが固定される。
 センサホルダ25は、イメージセンサ4を拘持する環状の第2拘持部25aと、第2拘持部25aの光軸N方向の端部からレンズ2a側とは反対側に向けて光軸N方向に延在し、第1レンズホルダ15Aと嵌合する第2嵌合代部25bと、を有する。センサホルダ25の外周のなす径は、第1レンズホルダ15Aの内周の径とほぼ同等であり、第1レンズホルダ15Aの内部に嵌入できる径であればよい。第2拘持部25aには、例えばレーザ溶接によってイメージセンサ4が固定される。
 光学ユニット1Eにおいて、センサホルダ25は、第2拘持部25a側から第1レンズホルダ15Aの第1嵌合代部152に挿入された状態で固定されている。光学ユニット1Eでは、レンズ2aとイメージセンサ4の受光面4aとの間の距離d41が、予め設定されている光学条件を満たす距離となるように、第1レンズホルダ15Aとセンサホルダ25との相対的な位置が調整されている。
 また、光学ユニット1Eにおいて、第1レンズホルダ15Aが、第1拘持部151側から第2レンズホルダ15Bの第1嵌合代部154に挿入された状態で固定されている。光学ユニット1Eでは、レンズ2bとイメージセンサ4の受光面4aとの間の距離d42が、予め設定されている光学条件を満たす距離となるように、第2レンズホルダ15Bとセンサホルダ25との相対的な位置が調整されている。
 第1レンズホルダ15A、第2レンズホルダ15Bおよびセンサホルダ25は、光軸N方向と直交する方向に沿ってすべてが重なる領域において、レーザ光による溶融固化によって接合されている。具体的に、第1レンズホルダ15A、第2レンズホルダ15Bおよびセンサホルダ25は、第1嵌合代部152、第1嵌合代部154および第2嵌合代部25bが径方向で重なる部分であって、光軸N方向において第1拘持部151の拘持面P15Aおよび第2拘持部25aの拘持面P25に挟まれる領域RB1の外側の部分、かつ光軸N方向において第1拘持部153の拘持面P15Bおよび第2拘持部25aの拘持面P25に挟まれる領域RB2の外側の部分が、レーザ光による溶融固化によって接合されている。ここでいう「拘持面P15A」とは、第1拘持部151がレンズ2aと接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。また、「拘持面P15B」とは、第1拘持部153がレンズ2bと接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。また、「拘持面P25」とは、第2拘持部25aがイメージセンサ4と接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。このレーザ溶接によって、第1レンズホルダ15A、第2レンズホルダ15Bおよびセンサホルダ25には、互いに溶融した部分が混合して硬化してなる溶接部35が形成される。また、レンズ2a、2bおよびイメージセンサ4は、各々が、溶接部35に対して同じ側で第1レンズホルダ15A、第2レンズホルダ15Bおよびセンサホルダ25にそれぞれ拘持されている。溶接部35は、上述した溶接部31と同様に、第1レンズホルダ15Aの厚さ方向の中央部の溶接幅と、第2レンズホルダ15Bの厚さ方向の中央部の溶接幅と、センサホルダ25の厚さ方向の中央部の溶接幅とが、ほぼ同じとなっている。
 以上説明した本発明の実施の形態4では、第1レンズホルダ15A、第2レンズホルダ15Bおよびセンサホルダ25のすべてが光軸N方向と直交する径方向で重なり、かつ光軸N方向において一端側のデバイスを拘持する拘持部の拘持面と他端側のデバイスを拘持する拘持部の拘持面とに挟まれる領域の外側にレーザ光を照射して、各溶接幅が同じである溶接部35を形成して、ホルダを接合するようにした。これにより、レーザ溶接した際の、接合対象のホルダ同士の収縮量および移動方向が同じになり、その結果、溶融固化により収縮が生じても、各ホルダが拘持する光デバイス間の相対的な位置のずれを抑制しつつ、第1レンズホルダ15A、第2レンズホルダ15Bおよびセンサホルダ25を溶接することが可能となる。このように、本実施の形態4によれば、溶接によってホルダ同士を接合した場合であっても、所望の光学特性を有する光学ユニットを得ることができる。
(実施の形態5)
 図18は、本発明の実施の形態5に係る光学ユニットの構成を模式的に示す断面図である。図18は、当該光学ユニットの中心軸を含む平面を切断面とする部分断面図である。本実施の形態5では、複数のレンズホルダと、一つのセンサホルダとを備え、所定のレンズホルダの内部に、その他のレンズホルダと、センサホルダとが収容されている。
 図18に示す光学ユニット1Fは、各々が第一の光デバイスである四つのレンズ(レンズ2a、2b、2c、2d)と、レンズ2aを拘持する略筒状の第1レンズホルダ16Aと、レンズ2b、2cを拘持する略筒状の第2レンズホルダ16Bと、レンズ2dを拘持する略筒状の第3レンズホルダ16Cと、上述したイメージセンサ4と、イメージセンサ4を拘持する筒状のセンサホルダ26とを備えている。図18では、第1レンズホルダ16A、第2レンズホルダ16Bおよび第3レンズホルダ16Cの中心軸と、センサホルダ26の中心軸とは、互いに一致しており、かつ光学ユニット1Fの光軸Nにそれぞれ一致しているものとして説明する。なお、第1レンズホルダ16A、第2レンズホルダ16B、第3レンズホルダ16Cおよびセンサホルダ26において、第1レンズホルダ16Aを第一の光デバイス拘持体とした場合、第2レンズホルダ16B、第3レンズホルダ16Cおよびセンサホルダ26が第二の光デバイス拘持体となる。
 第1レンズホルダ16Aは、レンズ2aを拘持する環状の第1拘持部161と、第1拘持部161の光軸N方向の端部からレンズ2bに向けて光軸N方向に延在し、第2レンズホルダ16B、第3レンズホルダ16Cおよびセンサホルダ26と嵌合する第1嵌合代部162と、を有する。第1拘持部161には、例えば半田付け、または接着剤を用いた接着によってレンズ2aが固定される。
 第2レンズホルダ16Bは、レンズ2b、2cを拘持する環状の第1拘持部163と、第1拘持部163の光軸N方向の端部からレンズ2dに向けて光軸N方向に延在し、第1レンズホルダ16Aと嵌合する第1嵌合代部164と、を有する。第2レンズホルダ16Bの外周のなす径は、第1レンズホルダ16Aの内周の径とほぼ同等であり、第2レンズホルダ16Bを、第1レンズホルダ16Aの内部に嵌入できる径であればよい。第1拘持部163には、例えば半田付け、または接着剤を用いた接着によってレンズ2b、2cが固定される。
 第3レンズホルダ16Cは、レンズ2dを拘持する環状の第1拘持部165と、第1拘持部165の光軸N方向の端部からイメージセンサ4に向けて光軸N方向に延在し、第1レンズホルダ16Aと嵌合する第1嵌合代部166と、を有する。第3レンズホルダ16Cの外周のなす径は、第1レンズホルダ16Aの内周の径とほぼ同等であり、第3レンズホルダ16Cを、第1レンズホルダ16Aの内部に嵌入できる径であればよい。第1拘持部165には、例えば半田付け、または接着剤を用いた接着によってレンズ2dが固定される。
 センサホルダ26は、イメージセンサ4を拘持する環状の第2拘持部26aと、第2拘持部26aの光軸N方向の端部からレンズ2d側とは反対側に向けて光軸N方向に延在し、第1レンズホルダ16Aと嵌合する第2嵌合代部26bと、を有する。センサホルダ26の外周のなす径は、第1レンズホルダ16Aの内周の径とほぼ同等であり、センサホルダ26を、第1レンズホルダ16Aの内部に嵌入できる径であればよい。第2拘持部26aには、例えばレーザ溶接によってイメージセンサ4が固定される。
 光学ユニット1Fにおいて、第2レンズホルダ16Bが、第1レンズホルダ16Aの内部に挿入された状態で固定されている。光学ユニット1Fでは、レンズ2aとレンズ2bとの間の距離d51が、予め設定されている光学条件を満たす距離となるように、第1レンズホルダ16Aと第2レンズホルダ16Bとの相対的な位置が調整されている。また、第1レンズホルダ16Aと第2レンズホルダ16Bとは、第1嵌合代部162および第1嵌合代部164が径方向で重なる部分であって、光軸N方向において第1拘持部161の拘持面P16Aおよび第1拘持部163の拘持面P16Bに挟まれる領域RC3の外側の部分が、レーザ光による溶融固化によって接合されている。ここでいう「拘持面P16A」とは、第1拘持部161がレンズ2aと接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。また、「拘持面P16B」とは、第1拘持部163がレンズ2cと接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。光デバイスが複数の素子を有する場合、領域RC3は、最も離れている素子間を端とする領域となる。この場合、領域RC3は、レンズ2aと接触する部分の中央とレンズ2cと接触する部分の中央とが両端となる。このレーザ溶接によって、第1レンズホルダ16Aおよび第2レンズホルダ16Bには、互いに溶融した部分が混合して硬化してなる溶接部36aが形成される。また、レンズ2aおよびレンズ2b、2cは、各々が、溶接部36aに対して同じ側で第1レンズホルダ16Aおよび第2レンズホルダ16Bに拘持されている。溶接部36aは、上述した溶接部31と同様に、第1レンズホルダ16Aの厚さ方向の中央部の溶接幅と、第2レンズホルダ16Bの厚さ方向の中央部の溶接幅とが、ほぼ同じとなっている。
 また、光学ユニット1Fにおいて、第3レンズホルダ16Cが、第1レンズホルダ16Aの内部に挿入された状態で固定されている。光学ユニット1Fでは、レンズ2aとレンズ2dとの間の距離d52が、予め設定されている光学条件を満たす距離となるように、第1レンズホルダ16Aと第3レンズホルダ16Cとの相対的な位置が調整されている。また、第1レンズホルダ16Aと第3レンズホルダ16Cとは、第1嵌合代部162および第1嵌合代部166が径方向で重なる部分であって、光軸N方向において第1拘持部161の拘持面P16Aおよび第1拘持部165の拘持面P16Cに挟まれる領域RC4の外側の部分が、レーザ光による溶融固化によって接合されている。ここでいう「拘持面P16C」とは、第1拘持部165がレンズ2dと接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。このレーザ溶接によって、第1レンズホルダ16Aおよび第3レンズホルダ16Cには、互いに溶融した部分が混合して硬化してなる溶接部36bが形成される。また、レンズ2aおよびレンズ2dは、各々が、溶接部36bに対して同じ側で第1レンズホルダ16Aおよび第3レンズホルダ16Cに拘持されている。溶接部36bは、上述した溶接部31と同様に、第1レンズホルダ16Aの厚さ方向の中央部の溶接幅と、第3レンズホルダ16Cの厚さ方向の中央部の溶接幅とが、ほぼ同じとなっている。
 また、光学ユニット1Fにおいて、センサホルダ26が、第1レンズホルダ16Aに挿入された状態で固定されている。光学ユニット1Fでは、レンズ2aとイメージセンサ4の受光面4aとの間の距離d53が、予め設定されている光学条件を満たす距離となるように、第1レンズホルダ16Aとセンサホルダ26との相対的な位置が調整されている。また、第1レンズホルダ16Aとセンサホルダ26とは、第1嵌合代部162および第2嵌合代部26bが径方向で重なる部分であって、光軸N方向において第1拘持部161の拘持面P16Aおよび第2拘持部26aの拘持面P26に挟まれる領域RBの外側の部分が、レーザ光による溶融固化によって接合されている。ここでいう「拘持面P26」とは、第2拘持部26aがイメージセンサ4と接触している部分の光軸N方向の中央を通過し、かつ光軸Nに対して垂直な平面である。このレーザ溶接によって、第1レンズホルダ16Aおよびセンサホルダ26には、互いに溶融した部分が混合して硬化してなる溶接部36cが形成される。また、レンズ2aおよびイメージセンサ4は、各々が、溶接部36cに対して同じ側で第1レンズホルダ16Aおよびセンサホルダ26に拘持されている。溶接部36cは、上述した溶接部31と同様に、第1レンズホルダ16Aの厚さ方向の中央部の溶接幅と、センサホルダ26の厚さ方向の中央部の溶接幅とが、ほぼ同じとなっている。
 次に、上述した光学ユニット1Fを作製する方法について、図19~図23を参照して説明する。図19~図23は、本発明の実施の形態5に係る光学ユニットの作製を説明する模式図である。
 まず、第1レンズホルダ16Aの内部に、第1拘持部163側から第2レンズホルダ16Bを挿入する(図19参照)。その後、レンズ2aとレンズ2bとの間の距離d51が、光学条件を満たす距離となるように、第1レンズホルダ16Aに対する第2レンズホルダ16Bの位置を調整する。
 その後、レーザヘッド100を配置して、第1レンズホルダ16Aの外表面にレーザ光Lを照射することにより、第1レンズホルダ16Aの一部、および第2レンズホルダ16Bの一部を溶融固化させる。この際のレーザ光Lの照射位置は、第1嵌合代部162および第1嵌合代部164が径方向で重なる部分であり、かつ上述した領域RC3の外側となる位置である。これにより、溶接部36aが形成され、第1レンズホルダ16Aと第2レンズホルダ16Bとが接合される(図20参照)。
 続いて、第1レンズホルダ16Aの内部に、第3レンズホルダ16Cを挿入する(図21参照)。その後、レンズ2aとレンズ2dとの間の距離d52が、光学条件を満たす距離となるように、第1レンズホルダ16Aに対する第3レンズホルダ16Cの位置を調整する。
 その後、レーザヘッド100を配置して、第1レンズホルダ16Aの外表面にレーザ光Lを照射することにより、第1レンズホルダ16Aの一部、および第3レンズホルダ16Cの一部を溶融固化させる。この際のレーザ光Lの照射位置は、第1嵌合代部162および第1嵌合代部166が径方向で重なる部分であり、かつ上述した領域RC4の外側となる位置である。これにより、溶接部36bが形成され、第1レンズホルダ16Aと第3レンズホルダ16Cとが接合される(図22参照)。
 続いて、第1レンズホルダ16Aの内部に、センサホルダ26を挿入する(図23参照)。その後、レンズ2aとイメージセンサ4の受光面4aとの間の距離d53が、光学条件を満たす距離となるように、第1レンズホルダ16Aに対するセンサホルダ26の位置を調整する。
 その後、レーザヘッド100を配置して、第1レンズホルダ16Aの外表面にレーザ光Lを照射することにより、第1レンズホルダ16Aの一部、およびセンサホルダ26の一部を溶融固化させる。この際のレーザ光Lの照射位置は、第1嵌合代部162および第2嵌合代部26bが径方向で重なる部分であり、かつ領域RBの外側となる位置である。これにより、図18に示すように、溶接部36cが形成され、第1レンズホルダ16Aとセンサホルダ26とが接合される。
 このようにして、各ホルダが拘持する光デバイスの配置に応じてレーザ溶接を行うことによって、レンズ2aとレンズ2bとの間の距離d51、レンズ2aとレンズ2dとの間の距離d52、レンズ2aと受光面4aとの間の距離d53の変化を抑制しつつ、ホルダ同士を接合することができる。なお、上述した作製方法では、第2レンズホルダ16Bから第1レンズホルダ16Aに挿入していくものとして説明したが、センサホルダ26から、第3レンズホルダ16C、第2レンズホルダ16Bの順で挿入するようにしてもよい。
 以上説明した本発明の実施の形態5では、実施の形態1と同様にして、ホルダ同士が光軸N方向と直交する径方向で重なり、かつ光軸N方向において一端側のデバイスを拘持する拘持部の拘持面と他端側のデバイスを拘持する拘持部の拘持面とに挟まれる各領域の外側にレーザ光をそれぞれ照射して、各溶接幅が同じである溶接部36a~36cを形成して、第1レンズホルダ16A、第2レンズホルダ16B、第3レンズホルダ16Cおよびセンサホルダ26のうちの接合対象同士をそれぞれ接合するようにした。これにより、レーザ溶接した際の、接合対象のホルダ同士の収縮量および移動方向が同じになり、その結果、溶融固化により収縮が生じても、各ホルダが拘持する光デバイス間の相対的な位置のずれを抑制しつつ、第1レンズホルダ16A、第2レンズホルダ16B、第3レンズホルダ16Cおよびセンサホルダ26を溶接することが可能となる。このように、本実施の形態5によれば、溶接によってホルダ同士を接合した場合であっても、所望の光学特性を有する光学ユニットを得ることができる。
 また、上述した実施の形態5によれば、第1レンズホルダ16Aの内部に、第2レンズホルダ16B、第3レンズホルダ16Cおよびセンサホルダ26を挿入するようにしたので、例えば、他のホルダの内部に収容されるレンズホルダに配置するレンズの径を収容順に応じて段階的に小さくする必要なく、ホルダを増やすことが可能である。
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態によってのみ限定されるべきものではない。例えば、上述した実施の形態1~5では、溶接部が、光軸N方向と直交する方向で重なり合う部材のうち、最も外周側のホルダの外周側の表面から最も内周側のホルダの内周側の表面に達するものとして説明したが、溶接部はこの構成に限らない。図24は、レーザ溶接により形成される溶接部の他の例を説明する模式図である。例えば、図24に示すように、溶接部30Aが、最も内周側のホルダの内周側の表面に達しないものであってもよい。
 また、上述した実施の形態1~5では、レーザ光によるレーザ溶接を行ってホルダ同士を接合するものとして説明したが、接合方法はこれに限らない。例えば、電子ビーム溶接や、抵抗溶接等の公知の溶接技術を用いることも可能である。ただし、接触式の溶接装置を用いる場合は、溶接する際にホルダ間に位置ずれが生じないように、被接触式の溶接を行う場合と比して、一段と強固にホルダを固定することが好ましい。
 また、上述した実施の形態1~5では、第二の光デバイス拘持体が、半導体レーザまたはイメージセンサのみを拘持しているものとして説明したが、第二の光デバイス拘持体が、光デバイスであるレンズをさらに拘持するようにしてもよい。この場合、第二の光デバイス拘持体は、第2拘持部が複数の光デバイスを拘持することになる。
 また、上述した第一および第二の光デバイスは、各々が、レンズや、貼り合せまたは互い独立した複数のレンズからなる群レンズ、光ファイバ、光導波路光アイソレータ、半導体レーザ、発光素子、受光素子、光増幅器、撮像素子、光電変換素子等、光を伝達したり、他のエネルギーに変換したりする素子であって、その素子そのものや、これらの何れかの素子を備えたデバイスから選択される一つである。
 また、上述した実施の形態1~5において、各ホルダは、光軸N方向からみた形状が、円でもよいし、楕円でもよいし、多角形でもよい。各ホルダは、光デバイスを拘持可能なスリーブ状をなしていればよい。
 また、上述した実施の形態1~5において、接合対象の組をなすホルダは、溶接により接合可能であれば、光軸N方向からみた形状が互いに異なる形状をなすものであってもよいし、光軸Nと直交する方向で重なり合うすべての部分において嵌合する必要はなく、一部が嵌合していればよいし、光デバイス同士における光軸Nと直交する方向の位置決めが可能であれば、重なり合う部分に隙間があってもよい。
 このように、本発明は、請求の範囲に記載した技術的思想を逸脱しない範囲内において、様々な実施の形態を含みうるものである。
 以上のように、本発明にかかる光学ユニットは、光デバイスをそれぞれ拘持するホルダ同士が溶接によって接合された場合であっても、所望の光学特性を有するユニットを得るのに有用である。
 1、1A~1F 光学ユニット
 2、2a~2d レンズ
 3 半導体レーザ
 4 イメージセンサ
 10、11、12、13 レンズホルダ
 10a、11a、12a、13a、141、143、145、151、153、161、163、165 第1拘持部
 10b、11b、12b、13b、142、144、146、152、154、162、164、166 第1嵌合代部
 14A、15A、16A 第1レンズホルダ
 14B、15B、16B 第2レンズホルダ
 14C、16C 第3レンズホルダ
 20、22 レーザホルダ
 21、23、24、25、26 センサホルダ
 30、30A、31、32、33、34a~34c、35、36a~36c 溶接部
 20a、21a、22a、23a、24a、25a、26a 第2拘持部
 20b、21b、22b、23b、24b、25b、26b 第2嵌合代部

Claims (3)

  1.  内部に一つ以上の第一の光デバイスを拘持する第一の拘持部、および前記第一の拘持部から延設する第一の嵌合代部を有するスリーブ状の第一の光デバイス拘持体と、
     内部に一つ以上の第二の光デバイスを拘持する第二の拘持部、および前記第二の拘持部から延設する第二の嵌合代部を有するスリーブ状の第二の光デバイス拘持体とを備え、
     前記第一の嵌合代部と前記第二の嵌合代部とを嵌合し、前記第一の嵌合代部と前記第二の嵌合代部との重ね部分で溶接して固定された光学ユニットにおいて、
     前記光学ユニットの光軸方向における領域であって、前記第一の拘持部を通過し、前記光学ユニットの光軸と垂直な面である拘持面と、前記第二の拘持部を通過し、前記光軸と垂直な面である拘持面とに挟まれる領域から前記領域外の前記重ね部分で、前記第一の嵌合代部と前記第二の嵌合代部とに亘り溶融固化した溶接部を有し、
     前記溶接部は、前記光学ユニットの光軸方向において、前記第一の嵌合代部の第一の溶接幅と前記第二の嵌合代部の第二の溶接幅とが、略同じに形成されていることを特徴とする光学ユニット。
  2.  当該光学ユニットの軸方向と直交する方向において最も外側に位置するホルダの前記溶接幅に対する他のホルダの前記溶接幅の比が、0.75以上1.25以下である
     ことを特徴とする請求項1に記載の光学ユニット。
  3.  前記溶接部は、当該光学ユニットの軸方向と直交する方向で重なり合うホルダの最も外周側のホルダの外周側の表面から延び、最も内周側のホルダに達している
     ことを特徴とする請求項1または2に記載の光学ユニット。
PCT/JP2018/000856 2017-01-26 2018-01-15 光学ユニット WO2018139235A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880004324.9A CN109952522B (zh) 2017-01-26 2018-01-15 光学单元
US16/407,820 US11141817B2 (en) 2017-01-26 2019-05-09 Optical unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-012485 2017-01-26
JP2017012485A JP6934725B2 (ja) 2017-01-26 2017-01-26 光学ユニット

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/407,820 Continuation US11141817B2 (en) 2017-01-26 2019-05-09 Optical unit

Publications (1)

Publication Number Publication Date
WO2018139235A1 true WO2018139235A1 (ja) 2018-08-02

Family

ID=62979170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000856 WO2018139235A1 (ja) 2017-01-26 2018-01-15 光学ユニット

Country Status (4)

Country Link
US (1) US11141817B2 (ja)
JP (1) JP6934725B2 (ja)
CN (1) CN109952522B (ja)
WO (1) WO2018139235A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10852503B2 (en) * 2018-03-20 2020-12-01 Ricoh Company, Ltd. Joint structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416807U (ja) * 1987-07-20 1989-01-27
JP2003021747A (ja) * 2001-07-10 2003-01-24 Seiko Instruments Inc コリメータ、コリメータ・ブロック、及びコリメータ組立方法。
JP2008233706A (ja) * 2007-03-23 2008-10-02 Fujifilm Corp レーザモジュールの組立方法および装置
JP2010276840A (ja) * 2009-05-28 2010-12-09 Nichia Corp 発光装置の製造方法
WO2015174406A1 (ja) * 2014-05-15 2015-11-19 オリンパス株式会社 光学ユニットおよびこの光学ユニットを備えた内視鏡

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108349U (ja) * 1989-02-17 1990-08-29
JPH0688926A (ja) * 1992-07-24 1994-03-29 Tdk Corp 光アイソレータ付き光ファイバ端子とその組立方法
JPH07281062A (ja) 1994-04-12 1995-10-27 Nippon Sheet Glass Co Ltd 半導体レーザモジュール
JP2010243619A (ja) * 2009-04-02 2010-10-28 Tamron Co Ltd 光学装置、撮像装置および光学装置の製造方法
JP5609632B2 (ja) * 2010-12-27 2014-10-22 スズキ株式会社 レーザ重ね溶接方法
JP5648492B2 (ja) * 2011-01-20 2015-01-07 住友電気工業株式会社 光モジュールの製造方法
JP5425353B1 (ja) * 2012-04-25 2014-02-26 オリンパスメディカルシステムズ株式会社 内視鏡用撮像ユニット及び内視鏡
JP2014147962A (ja) * 2013-02-01 2014-08-21 Olympus Medical Systems Corp 部材接合方法、部材接合構造、および継手管
JP6782650B2 (ja) * 2017-03-02 2020-11-11 オリンパス株式会社 光学ユニット
EP3603477A4 (en) * 2017-03-28 2020-02-05 FUJIFILM Corporation MEASUREMENT SUPPORT DEVICE, ENDOSCOPIC SYSTEM AND PROCESSOR
JP7033001B2 (ja) * 2018-05-16 2022-03-09 オリンパス株式会社 光学ユニット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416807U (ja) * 1987-07-20 1989-01-27
JP2003021747A (ja) * 2001-07-10 2003-01-24 Seiko Instruments Inc コリメータ、コリメータ・ブロック、及びコリメータ組立方法。
JP2008233706A (ja) * 2007-03-23 2008-10-02 Fujifilm Corp レーザモジュールの組立方法および装置
JP2010276840A (ja) * 2009-05-28 2010-12-09 Nichia Corp 発光装置の製造方法
WO2015174406A1 (ja) * 2014-05-15 2015-11-19 オリンパス株式会社 光学ユニットおよびこの光学ユニットを備えた内視鏡

Also Published As

Publication number Publication date
JP6934725B2 (ja) 2021-09-15
US11141817B2 (en) 2021-10-12
CN109952522B (zh) 2021-06-04
JP2018120137A (ja) 2018-08-02
US20190262943A1 (en) 2019-08-29
CN109952522A (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
US20190384031A1 (en) Optical unit
JP2010243619A (ja) 光学装置、撮像装置および光学装置の製造方法
JP2010139626A (ja) 光学装置、撮像装置および光学装置の製造方法
JP5466929B2 (ja) ガラス溶着方法及びガラス層定着方法
JP5306463B2 (ja) レーザヘッド及びレーザ照射による管状部品の接合方法
TW201341879A (zh) 一光學鏡頭組與其雷射焊接固定方法
KR20120035231A (ko) 유리 용착 방법 및 유리층 정착 방법
WO2018139235A1 (ja) 光学ユニット
JP2007298873A (ja) 樹脂製レンズの固定方法
JP2006011234A (ja) レンズユニットとその製造方法
JP2001246488A (ja) 容器の製造方法
JP5678168B2 (ja) 鏡筒付きレンズ及び鏡筒付きレンズの製造方法
JP6813083B2 (ja) コア製造方法及びコア
JP7033001B2 (ja) 光学ユニット
JP2014006300A (ja) 鏡筒付きレンズ及びこれを用いた光モジュール
WO2018139180A1 (ja) 光学ユニットの組立方法
JP6354899B2 (ja) 接合部品及びその製造方法
JP2010281962A (ja) 光学装置および撮像装置
JP2007193270A (ja) レンズ付きキャップ及びその製造方法
JP2010139625A (ja) 光学装置および撮像装置
JP2010286563A (ja) レンズ装置、撮像装置およびレンズ装置の組立方法
JP2015136727A (ja) 管の製造方法及び管
JP6183258B2 (ja) レーザ装置の製造方法
JP2005219449A (ja) 複合製品の製造方法並びに製造装置
JP2005316045A (ja) 光学ユニット、光学部材固定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744051

Country of ref document: EP

Kind code of ref document: A1