WO2018139079A1 - 点火プラグの製造方法 - Google Patents
点火プラグの製造方法 Download PDFInfo
- Publication number
- WO2018139079A1 WO2018139079A1 PCT/JP2017/044453 JP2017044453W WO2018139079A1 WO 2018139079 A1 WO2018139079 A1 WO 2018139079A1 JP 2017044453 W JP2017044453 W JP 2017044453W WO 2018139079 A1 WO2018139079 A1 WO 2018139079A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- period
- laser beam
- power
- tip
- base
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T13/00—Sparking plugs
- H01T13/20—Sparking plugs characterised by features of the electrodes or insulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0626—Energy control of the laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/0823—Devices involving rotation of the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/0869—Devices involving movement of the laser head in at least one axial direction
- B23K26/0876—Devices involving movement of the laser head in at least one axial direction in at least two axial directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
- B23K26/24—Seam welding
- B23K26/28—Seam welding of curved planar seams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T13/00—Sparking plugs
- H01T13/20—Sparking plugs characterised by features of the electrodes or insulation
- H01T13/32—Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T21/00—Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
- H01T21/02—Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T13/00—Sparking plugs
- H01T13/20—Sparking plugs characterised by features of the electrodes or insulation
- H01T13/39—Selection of materials for electrodes
Definitions
- the present specification relates to a spark plug including an electrode having a base and a tip fixed to the base.
- a highly durable tip eg, a tip containing a noble metal
- the electrode eg, the center electrode or the ground electrode.
- a technique for fixing the chip for example, a technique for welding the chip to the ground electrode by irradiating a laser beam while moving the laser beam relative to the boundary between the ground electrode and the ground electrode chip has been proposed. .
- a technique for gradually reducing the output of the laser beam has been proposed in consideration of the fact that the heat given by the laser beam is conducted through the melted part and the temperature of the part not yet irradiated with the laser beam also increases. Yes.
- This specification discloses the technique which can weld a chip
- a spark plug manufacturing method comprising an electrode having a base and a tip fixed to the base, Welding the tip to the base by irradiating an energy beam at a boundary between the base and the tip; Welding the tip to the base, Irradiating the energy beam continuously while moving the irradiation position of the energy beam in a first period; Irradiating the energy beam multiple times in a pulsed output pattern while moving the irradiation position of the energy beam in a second period following the first period; Manufacturing method.
- the base and the chip are bonded to each other. It can suppress that a crack arises in a part.
- the energy beam is irradiated a plurality of times in a pulsed output pattern, so that the output energy per unit time of the pulsed energy beam is not excessively reduced, and the average per unit time.
- the output energy of can be reduced. Therefore, excessive melting between the base and the chip can be suppressed.
- the output energy per unit time of the energy beam does not need to be excessively reduced, so that the energy beam can be prevented from becoming unstable. As a result, the tip can be properly welded to the base using the energy beam.
- Application Example 2 A method of manufacturing a spark plug according to Application Example 1, In a specific period that is at least a part of the first period, the output energy per unit time of the energy beam is gradually reduced. Production method.
- Application Example 3 A method of manufacturing a spark plug according to Application Example 2, The specific period is a period continuous to the second period. Production method.
- the output energy per unit time of the energy beam gradually decreases in at least a relatively specific period in the first period, so that excessive melting between the base and the chip can be suppressed.
- the second period includes a first partial period and a second partial period after the first partial period,
- the average output energy per unit time of the energy beam in the second partial period is smaller than the average output energy per unit time of the energy beam in the first partial period.
- Application Example 5 A method for manufacturing a spark plug according to any one of Application Examples 1 to 4, The output energy per unit time of the energy beam in the second period is the same as the output energy per unit time of the energy beam at the end of the first period. Production method.
- the base portion It is possible to suppress the molten portion between the tip and the chip from being scattered. In addition, it is possible to suppress the energy beam from becoming unstable compared to the case where the output energy per unit time in the pulse-like output pattern is smaller than the output energy per unit time at the end of the first period. As a result, the tip can be appropriately welded to the base.
- the second period includes a first sub-period and a second sub-period after the first sub-period,
- the pulse width of the energy beam in the second sub period is narrower than the pulse width of the energy beam in the first sub period. Production method.
- the period of irradiation with the pulsed energy beam can be shortened without increasing the averaged output energy per unit time. It can suppress that the time when the energy beam between is not irradiated becomes long. As a result, it is possible to suppress an increase in the distance between the irradiation position of the pulsed energy beam and the adjacent irradiation position in the second sub period. As a result, it is possible to prevent the chip and the base from being insufficiently melted between the irradiation position and the adjacent irradiation position.
- a spark plug manufacturing method a spark plug manufactured by the manufacturing method, an ignition device including the spark plug, This can be realized in an aspect of an internal combustion engine provided with a spark plug.
- FIG. 1 is a schematic view of a welding system 900.
- FIG. It is explanatory drawing of welding. It is a graph which shows the change of the output conditions of laser beam Lz. It is explanatory drawing of another embodiment of a ground electrode.
- FIG. 1 is a cross-sectional view of a spark plug 100 according to an embodiment including an electrode including a tip.
- a center axis CL also referred to as “axis line CL”
- axis line CL the direction parallel to the central axis CL
- a direction perpendicular to the axis CL is also referred to as a “radial direction”.
- the circumferential direction of the circle centered on the axis CL is also referred to as “circumferential direction”.
- the lower direction in FIG. 1 is referred to as the front end direction Df or the front direction Df
- the upper direction is also referred to as the rear end direction Dfr or the rear direction Dfr.
- the tip direction Df is a direction from the terminal fitting 40 described later toward the center electrode 20. 1 is referred to as the front end side of the spark plug 100
- the rear end direction Dfr side in FIG. 1 is referred to as the rear end side of the spark plug 100.
- the spark plug 100 includes a cylindrical insulator 10 having a through-hole 12 (also referred to as a shaft hole 12) extending along the axis CL, a center electrode 20 held on the tip side of the through-hole 12, and the through-hole 12.
- the terminal metal fitting 40 held on the rear end side, the resistor 73 disposed between the center electrode 20 and the terminal metal fitting 40 in the through-hole 12, and the center electrode 20 and the resistor 73 are brought into contact with these.
- a conductive first seal portion 72 that electrically connects the members 20 and 73, and a conductive second seal that contacts the resistor 73 and the terminal fitting 40 to electrically connect the members 73 and 40.
- a large-diameter portion 14 having the largest outer diameter is formed at the approximate center in the axial direction of the insulator 10.
- a rear end side body portion 13 is formed on the rear end side from the large diameter portion 14.
- a front end side body portion 15 having an outer diameter smaller than that of the rear end side body portion 13 is formed on the front end side of the large diameter portion 14.
- a further reduced diameter portion 16 and a leg portion 19 are formed in this order toward the distal end side further on the distal end side than the distal end side body portion 15.
- the outer diameter of the reduced outer diameter portion 16 gradually decreases toward the front direction Df. In the vicinity of the reduced outer diameter portion 16 (in the example of FIG.
- the front end side body portion 15), a reduced inner diameter portion 11 is formed in which the inner diameter gradually decreases in the front direction Df.
- the insulator 10 is preferably formed in consideration of mechanical strength, thermal strength, and electrical strength.
- the insulator 10 is formed by firing alumina (other insulating materials can also be used). is there). *
- the center electrode 20 is a metal member, and is disposed at the end on the front direction Df side in the through hole 12 of the insulator 10.
- the center electrode 20 has a substantially cylindrical rod portion 28 and a first tip 29 joined to the tip of the rod portion 28 (for example, laser welding).
- the rod portion 28 includes a head portion 24 that is a portion on the rear direction Dfr side, and a shaft portion 27 that is connected to the front direction Df side of the head portion 24.
- the shaft portion 27 extends in the forward direction Df parallel to the axis line CL.
- a portion on the front direction Df side of the head portion 24 forms a flange portion 23 having an outer diameter larger than the outer diameter of the shaft portion 27.
- the surface on the front direction Df side of the flange portion 23 is supported by the reduced inner diameter portion 11 of the insulator 10.
- the shaft portion 27 is connected to the front direction Df side of the flange portion 23.
- the first chip 29 is joined to the tip of the shaft portion 27. Note that the first chip 29 may be omitted. *
- the rod portion 28 includes an outer layer 21 and a core portion 22 disposed on the inner peripheral side of the outer layer 21.
- the outer layer 21 is formed of a material (for example, an alloy containing nickel as a main component) that has better oxidation resistance than the core portion 22.
- the main component means a component having the highest content rate (weight percent (wt%)).
- the core portion 22 is formed of a material having higher thermal conductivity than the outer layer 21 (for example, pure copper, an alloy containing copper as a main component, etc.).
- the first chip 29 is formed using a material (for example, a noble metal such as iridium (Ir) or platinum (Pt)) that is more durable against discharge than the shaft portion 27. A part of the center electrode 20 on the tip side including the first tip 29 is exposed from the shaft hole 12 of the insulator 10 to the front direction Df side.
- the core portion 22 may be omitted. *
- the terminal fitting 40 is a rod-shaped member extending in parallel with the axis CL.
- the terminal fitting 40 is formed using a conductive material (for example, a metal containing iron as a main component).
- the terminal fitting 40 includes a cap mounting portion 49, a flange portion 48, and a shaft portion 41, which are arranged in order in the front direction Df.
- the shaft portion 41 is inserted into a portion on the rear direction Dfr side of the shaft hole 12 of the insulator 10.
- the cap mounting portion 49 is exposed outside the shaft hole 12 on the rear end side of the insulator 10. *
- a resistor 73 for suppressing electrical noise is disposed between the terminal fitting 40 and the center electrode 20.
- the resistor 73 is formed using a conductive material (for example, a mixture of glass, carbon particles, and ceramic particles).
- a first seal portion 72 is disposed between the resistor 73 and the center electrode 20, and a second seal portion 74 is disposed between the resistor 73 and the terminal fitting 40.
- These seal portions 72 and 74 are formed using a conductive material (for example, a mixture of metal particles and the same glass as that included in the material of the resistor 73).
- the center electrode 20 is electrically connected to the terminal fitting 40 by the first seal portion 72, the resistor 73, and the second seal portion 74. *
- the metal shell 50 is a cylindrical member having a through hole 59 extending along the axis CL.
- the insulator 10 is inserted into the through hole 59 of the metal shell 50, and the metal shell 50 is fixed to the outer periphery of the insulator 10.
- the metal shell 50 is formed using a conductive material (for example, a metal such as carbon steel containing iron as a main component). A part of the insulator 10 on the front direction Df side is exposed outside the through hole 59. Further, a part of the insulator 10 on the rear direction Dfr side is exposed outside the through hole 59. *
- the metal shell 50 has a tool engaging part 51 and a body part 52.
- the tool engaging portion 51 is a portion into which a spark plug wrench (not shown) is fitted.
- the trunk portion 52 is a portion including the front end surface 55 of the metal shell 50.
- a screw portion 57 for screwing into a mounting hole of an internal combustion engine (for example, a gasoline engine) is formed.
- the screw portion 57 is a portion where a male screw extending in the direction of the axis line CL is formed, and has a spiral thread and a spiral thread groove (not shown). *
- a flange-shaped flange portion 54 protruding outward in the radial direction is formed on the outer peripheral surface between the tool engaging portion 51 and the body portion 52 of the metal shell 50.
- An annular gasket 90 is disposed between the threaded portion 57 and the flange portion 54 of the body portion 52.
- the gasket 90 is formed by, for example, bending a metal plate member, and is crushed and deformed when the spark plug 100 is attached to the engine. Due to the deformation of the gasket 90, the gap between the spark plug 100 (specifically, the surface on the front direction Df side of the flange portion 54) and the engine is sealed, and leakage of combustion gas is suppressed.
- the gasket 90 may be omitted. In this case, the flange portion 54 may directly contact a portion (for example, an engine head) that forms a mounting hole for the spark plug 100 of the engine. *
- the body portion 52 of the metal shell 50 is formed with a reduced inner diameter portion 56 whose inner diameter gradually decreases toward the distal end side.
- the front end side packing 8 is sandwiched between the reduced inner diameter portion 56 of the metal shell 50 and the reduced outer diameter portion 16 of the insulator 10.
- the front end side packing 8 is, for example, a plate ring made of iron (other materials (for example, metal materials such as copper) can also be used). *
- a thin caulking portion 53 is formed on the rear end side of the metal shell 50 from the tool engaging portion 51. Further, a thin buckled portion 58 is formed between the flange portion 54 and the tool engaging portion 51. Annular ring members 61 and 62 are inserted between the inner peripheral surface of the metal shell 50 from the tool engaging portion 51 to the caulking portion 53 and the outer peripheral surface of the rear end side body portion 13 of the insulator 10. ing. Further, the talc 70 powder is filled between the ring members 61 and 62.
- the buckling portion 58 is deformed outward (buckling) with the addition of compressive force, and as a result, the metal shell 50 And the insulator 10 are fixed.
- the talc 70 is compressed during the caulking process, and the airtightness between the metal shell 50 and the insulator 10 is improved.
- the packing 8 is pressed between the reduced outer diameter portion 16 of the insulator 10 and the reduced inner diameter portion 56 of the metal shell 50, and seals between the metal shell 50 and the insulator 10.
- the ground electrode 30 is a metal member, and has a rod-shaped main body portion 37 and a tip portion 300 attached to the distal end portion 34 of the main body portion 37.
- the other end portion 33 (also referred to as a base end portion 33) of the main body portion 37 is joined to the distal end surface 55 of the metal shell 50 (for example, resistance welding).
- the main body portion 37 extends from the base end portion 33 joined to the metal shell 50 in the distal direction Df, bends toward the central axis CL, and reaches the distal end portion 34.
- the tip part 300 is fixed to a part on the rear direction Dfr side of the tip part 34.
- the tip portion 300 of the ground electrode 30 and the first tip 29 of the electrode 20 form a gap g. That is, the tip portion 300 of the ground electrode 30 is disposed on the front direction Df side of the first tip 29 of the center electrode 20 and faces the first tip 29 via the gap g. *
- the chip unit 300 includes a base part 320 and a chip 310 joined to the base part 320.
- the shape of the chip 310 is a substantially cylindrical shape centered on the axis CL.
- the base 320 includes a large diameter part 321 and a small diameter part 322 provided on the rear direction Dfr side of the large diameter part 321.
- the shapes of these portions 321 and 322 are all substantially cylindrical with the axis CL as the center.
- the outer diameter of the large diameter portion 321 is larger than the outer diameter of the small diameter portion 322.
- the outer diameter of the small diameter part 322 is approximately the same as the outer diameter of the chip 310.
- the chip 310 is welded to the surface on the rear direction Dfr side of the base portion 320 (that is, the surface on the rear direction Dfr side of the small diameter portion 322) by laser welding.
- a joining portion 330 in the drawing is a portion that joins the chip 310 and the base portion 320.
- the joining portion 330 is a portion where the melted portion of the tip 310 and the base portion 320 is cooled and solidified during welding (also referred to as a melting portion 330).
- the surface on the rear direction Dfr side of the chip 310 forms a gap g.
- the surface on the front direction Df side of the base part 320 is joined to the main body part 37 (for example, resistance welding). *
- the main body portion 37 includes an outer layer 31 and an inner layer 32 disposed on the inner peripheral side of the outer layer 31.
- the outer layer 31 is made of a material (for example, an alloy containing nickel as a main component) that has better oxidation resistance than the inner layer 32.
- the inner layer 32 is formed of a material having higher thermal conductivity than the outer layer 31 (for example, pure copper, an alloy containing copper as a main component, etc.). The inner layer 32 may be omitted. *
- the chip 310 of the chip unit 300 is formed using a material (for example, a noble metal such as iridium (Ir) or platinum (Pt)) that is more durable against discharge than the main body unit 37.
- the base part 320 of the chip part 300 is formed of a material excellent in oxidation resistance (for example, an alloy containing nickel as a main component) like the main body part 37 (particularly the outer layer 31). *
- FIG. 2 is a flowchart showing an example of a method for manufacturing the spark plug 100.
- each member of the spark plug 100 is prepared.
- the chip 310 and the base 320 of the chip unit 300 are prepared.
- various known methods can be employed (detailed description is omitted).
- the chip 310 and the base 320 before bonding can be manufactured by various methods such as forging and cutting.
- FIG. 3 is a schematic diagram of a welding system 900 used for welding the tip 310 and the base 320.
- the welding system 900 includes a laser device 920 that generates a laser beam Lz for welding, and a control device 910 that controls the laser device 920.
- the control device 910 is, for example, a computer having a processor (eg, CPU), a volatile storage device (eg, RAM), and a nonvolatile storage device (eg, flash memory).
- a program is stored in the nonvolatile storage device in advance.
- the processor controls the laser device 920 by operating according to a program.
- the processing performed by the processor of the control device 910 is also expressed as the control device 910 executing the processing. *
- S110 in FIG. 2 includes S112 and S114.
- the chip 310 (FIG. 1) and the base 320 are supported by a support device (not shown).
- FIG. 4 is an explanatory view of welding. 4A and 4B show the arrangement of the tip 310 and the base 320 during welding.
- the center axis CL and the directions Df and Dfr in the figure indicate the center axis CL and the directions Df and Dfr as viewed from the members 310 and 320 in the completed spark plug 100 (FIG. 1).
- the positional relationship will be described using the central axis CL and the directions Df and Dfr.
- FIG. 4A shows an appearance viewed in a direction parallel to the central axis CL (specifically, the front direction Df), and FIG. 4B shows the appearance viewed in a direction perpendicular to the central axis CL. Shows the appearance.
- the large-diameter portion 321 of the base portion 320 is not shown.
- a convex portion 321p protruding toward the front direction Df is provided at the center of the surface on the front direction Df side of the large diameter portion 321.
- the central axes of the chip 310 and the base 320 are the same as the central axes CL shown in FIGS. 4 (A) and 4 (B). *
- the chip 310 is placed on the surface of the base 320 on the rear direction Dfr side.
- the chip 310 and the base 320 are supported by a support device (not shown). *
- the laser beam Lz is irradiated to the boundary 312 between the chip 310 (FIGS. 4A and 4B) and the base 320.
- the boundary 312 is a planar portion where the chip 310 and the base 320 are in contact with each other.
- the laser beam Lz is applied to the boundary 312 (here, the edge of the boundary 312) on the outer peripheral surface of the chip 310 and the base 320.
- the vicinity of the irradiation position Lp of the laser beam Lz is melted by the heat received from the laser beam Lz.
- the chip 310 and the base 320 are rotated around the central axis CL while irradiating the laser beam Lz.
- the irradiation position Lp of the laser beam Lz moves in the circumferential direction along the boundary 312 on the outer peripheral surface of the members 310 and 320.
- the portion of the tip 310 and base 320 near the boundary 312 melts and cools and hardens. As a result, welding is performed over the entire boundary 312 and the tip 310 is joined to the base 320.
- the laser beam Lz is emitted in a direction perpendicular to the central axis CL.
- the laser beam Lz may be inclined with respect to the central axis CL.
- the irradiation position Lp may be moved by the laser device 920 (FIG. 3) moving around the members 310 and 320. *
- FIG. 4C is a schematic view of the welded tip 310 and the base portion 320 (that is, the tip portion 300).
- FIG. 4C shows an external appearance viewed in a direction perpendicular to the central axis CL, as in FIG. 4B.
- a joint 330 is formed between the chip 310 and the base 320.
- marks 332, 334a, 334b, and 334c indicating portions irradiated with the laser beam Lz are formed in a line in the circumferential direction on the surface of the bonding portion 330.
- the trace 332 is a continuous trace extending in the circumferential direction (referred to as a continuous trace 332).
- the three types of marks 334a, 334b, and 334c are all spot-shaped marks (also referred to as spot marks 334a, 334b, and 334c). As will be described later, the size (for example, the maximum outer diameter) is different between the spot marks 334a, 334b, and 334c. The largest order is the order of the marks 334a, 334b, and 334c. *
- a plurality of three types of spot marks 334a, 334b, and 334c are formed.
- the three types of spot marks 334a, 334b, and 334c are formed in the circumferential direction in the order of the spot marks 334a, 334b, and 334c from the boundary 332e between the continuous mark 332 and the spot mark.
- the reason why the continuous marks 332 and the plurality of spot marks 334a, 334b, and 334c are formed is that the laser beam Lz output condition is changed while moving the irradiation position of the laser beam Lz during welding. Because. *
- FIG. 5 is a graph showing changes in the output conditions of the laser beam Lz during welding.
- the horizontal axis represents time T, and the vertical axis represents output energy P per unit time of the laser beam Lz (also simply referred to as power P).
- the power P is represented by the output power of the laser device 920 (for example, the output power of a laser transmitter (not shown) included in the laser device 920) (the unit is, for example, watts).
- the irradiation of the laser beam Lz starts at the first time Ta, and the irradiation of the laser beam Lz ends at the third time Tc.
- the supporting device moves the chip 310 (FIGS. 4A and 4B) and the base 320 one or more times at a constant angular velocity. Rotate. Thereby, the boundary 312 between the tip 310 and the base 320 is welded over the entire circumference.
- the period from the first time Ta to the third time Tc is divided into a first period T1 from the first time Ta to the second time Tb and a second period T2 from the second time Tb to the third time Tc. Is done.
- the power P gradually decreases from the first power P1 to the second power P2.
- both the first power P1 and the second power P2 are set within the range of the power P at which the laser device 920 can stably output the laser beam Lz.
- the first power P1 is the maximum power P that can be output
- the second power P2 is about 10% of the first power P1.
- the laser beam Lz is continuously applied to the boundary 312 (FIG. 4B), and the power P gradually decreases. *
- the power P of the laser beam Lz is large enough to melt the members 310 and 320.
- the members 310 and 320 are irradiated with such a laser beam Lz, in addition to the temperature of the portion irradiated with the laser beam Lz, the temperature of the portion not irradiated with the surrounding laser beam Lz also rises. In such a state, the irradiation position Lp moves, and the laser beam Lz is irradiated to another irradiation position Lp.
- the members 310 and 320 may melt excessively.
- the members 310 and 320 are excessively melted, the melted members may be scattered.
- the continuous trace 332 in FIG. 4C is a trace formed by irradiation with the laser beam Lz in the first period T1.
- each pulse PLa, PLb, and PLc is a substantially rectangular pulse.
- the laser beam Lz is irradiated to the boundary 312 (FIG. 4B) multiple times in a pulsed output pattern.
- the second period T2 includes a sub period T2a from the second time Tb to the first intermediate time Tb1, a sub period T2b from the first intermediate time Tb1 to the second intermediate time Tb2, and a second intermediate time. It is divided into a sub-period T2c from Tb2 to the third time Tc.
- the plurality of pulses PLa are repeated at a constant period
- the plurality of pulses PLb are repeated at a constant period
- the last sub-period T2c the plurality of pulses PLc are Repeated at regular intervals.
- time widths PWa, PWb, and PWc in the figure are the time widths of one pulse PLa, PLb, and PLc, respectively (also referred to as pulse widths PWa, PWb, and PWc).
- time widths POa, POb, and POc in the figure are time widths between two adjacent pulses PLa, PLb, and PLc in the sub-periods T2a, T2b, and T2c, respectively (the off times POa, POb, and POc are also the same). Call).
- the power P is zero in the period of the off times POa, POb, and POc between the two adjacent pulses PLa, PLb, and PLc. *
- the power P of each pulse PLa, PLb, PLc is the same.
- the power P of each pulse PLa, PLb, PLc is the second power P2 that is the same as the power P at the end of the first period T1.
- the pulse widths PWa, PWb, and PWc of the pulses PLa, PLb, and PLc are different from each other. Specifically, PWa> PWb> PWc> zero. Thus, the pulse width in the relatively later sub-period is narrower than the pulse width in the relatively earlier sub-period.
- the duty ratio in a relatively later sub-period is smaller than the duty ratio in a relatively earlier sub-period.
- the duty ratio is the ratio of the on time (ie, pulse width) to the time of one cycle of the laser beam Lz being on and off (ie, pulse width + off time).
- the duty ratio (PWb / (PWb + POb)) in the central sub-period T2b is smaller than the duty ratio (PWa / (PWa + POa)) in the sub-period T2a before the central sub-period T2b, and the last sub-period T2c. Is smaller than the duty ratio (PWb / (PWb + POb)) in the sub-period T2b before the last sub-period T2c. *
- Average powers Pa, Pb, and Pc in the figure indicate time averages of power P in the sub-periods T2a, T2b, and T2c, respectively.
- the time width of the pulse in the relatively later sub-period is narrower than the time width of the pulse in the relatively earlier sub-period.
- the duty ratio in a relatively later sub-period is smaller than the duty ratio in a relatively earlier sub-period.
- the averaged power P in a relatively later sub-period is smaller than the averaged power P in a relatively earlier sub-period.
- the averaged power P decreases.
- the averaged power P decreases as the time T elapses while the irradiation position Lp moves, so that the second period T2 does not depend on the irradiation position Lp. Further, excessive melting of the members 310 and 320 can be suppressed.
- the averaged power Pa, Pb, Pc in the second period T2 is smaller than the second power P2 at the end of the first period T1. Therefore, excessive melting of the members 310 and 320 can be suppressed throughout the first period T1 and the second period T2.
- the plurality of spot marks 334a, 334b, and 334c in FIG. 4C are marks formed by the pulsed laser beam Lz in the sub-periods T2a, T2b, and T2c, respectively.
- the program of the control device 910 (FIG. 3) is configured in advance so as to control the power P as in the graph shown in FIG.
- the control device 910 controls the power P of the laser beam Lz output from the laser device 920 according to this program as shown in the graph of FIG. This allows the welding system 900 to properly weld the tip 310 to the base 320.
- S114 in FIG. 2, and thus S110, is completed.
- the spark plug 100 is assembled using the prepared members. For example, first, an assembly including the insulator 10, the center electrode 20, and the terminal fitting 40 is created. For example, the center electrode 20 is inserted from the opening on the rear direction Dfr side of the insulator 10. The center electrode 20 is disposed at a predetermined position in the through hole 12 by being supported by the reduced inner diameter portion 11 of the insulator 10. Next, the material powder of each of the first seal portion 72, the resistor 73, and the second seal portion 74 and the molding of the charged powder material are performed in the order of the members 72, 73, and 74. The powder material is put into the through hole 12 from the opening on the rear direction Dfr side of the insulator 10.
- the insulator 10 is heated to a predetermined temperature higher than the softening point of the glass component contained in the material powder of the members 72, 73, and 74, and the insulator 10 is heated to the predetermined temperature in the rear direction Dfr side.
- the shaft portion 41 of the terminal fitting 40 is inserted into the through hole 12 from the opening.
- the material powders of the members 72, 73, 74 are compressed and sintered to form the members 72, 73, 74.
- the terminal fitting 40 is fixed to the insulator 10. *
- the tip portion 300 is joined to the rod-shaped main body portion 37 of the ground electrode 30.
- the portion on the front direction Df side of the tip portion 300 (specifically, the surface on the front direction Df side of the base portion 320 (FIG. 4B)) is welded to the main body portion 37 by resistance welding.
- the convex portion 321 p is provided in the center of the surface on the front direction Df side of the chip portion 300.
- welding proceeds from a contact portion between the convex portion 321p of the tip portion 300 and the main body portion 37 (that is, the central portion of the surface on the front direction Df side of the tip portion 300). Therefore, a portion that is not welded remains between the tip portion 300 and the main body portion 37.
- the base end portion 33 of the main body portion 37 is joined to the metal shell 50 (for example, resistance welding). *
- the assembly including the insulator 10 is fixed to the metal shell 50.
- the front end side packing 8, the assembly, the ring member 62, the talc 70, and the ring member 61 are disposed in the through hole 59 of the metal shell 50, and the caulking portion of the metal shell 50.
- the insulator 10 is fixed to the metal shell 50 by caulking 53 so as to be bent inward. Then, the distance of the gap g is adjusted by bending the rod-shaped ground electrode 30. Thus, the spark plug 100 is completed. *
- the laser beam Lz is irradiated a plurality of times with a pulsed output pattern while moving the irradiation position Lp of the laser beam Lz. Therefore, the averaged output energy per unit time can be reduced without excessively reducing the output energy P per unit time of the pulsed laser beam Lz. Therefore, excessive melting of the members 310 and 320 can be suppressed.
- the output energy P per unit time of the laser beam Lz does not need to be excessively reduced, so that the laser beam Lz can be prevented from becoming unstable. As a result, the tip can be appropriately welded to the base using the laser beam Lz. *
- the power P of the laser beam Lz can be rapidly reduced from the second power P2 to zero. In this way, when the power P rapidly decreases, the temperature of the melted portion of the members 310 and 320 rapidly decreases, so that a crack can be formed in the joint portion 330.
- the laser beam Lz is irradiated so that the averaged output energy per unit time becomes smaller than the second power P2, so that the temperature of the members 310 and 320 is rapidly increased. Reduction can be suppressed. As a result, it is possible to suppress the formation of cracks in the joint portion 330. *
- welding the tip 310 to the base 320 changes the output condition of the laser beam Lz while moving the irradiation position Lp of the laser beam Lz in the first period T1 (FIG. 5). Including that. Specifically, in the first period T1, the power P of the laser beam Lz is gradually reduced while continuously irradiating the laser beam Lz. Therefore, excessive melting of the members 310 and 320 can be suppressed. *
- the period in which the power P of the laser beam Lz gradually decreases in the first period T1 is a period continuing to the second period T2 (in the embodiment of FIG. 5, the entire first period T1).
- the power P gradually decreases in at least a relatively partial period (that is, a partial period continuous with the second period T2). Therefore, the energy further supplied to the members 310 and 320 becomes excessive in a state where the members 310 and 320 are melted by the irradiation of the laser beam Lz in the relatively previous partial period of the first period T1. Is suppressed. As a result, excessive melting of the members 310 and 320 can be suppressed.
- the second period T2 is divided into a plurality of sub-periods T2a, T2b, and T2c.
- the average of the power P of the laser beam Lz in a relatively later sub period is smaller than the average of the power P of the laser beam Lz in a relatively earlier sub period (specifically, Pa> Pb> Pc).
- the power P of the laser beam Lz in the second period T2 is the same as the power P (specifically, the second power P2) at the end of the first period T1. If the power P of the pulsed laser beam Lz in the second period T2 is greater than the power P2 at the end of the first period T1, the irradiation with the pulsed laser beam Lz with a large power P results in: There is a possibility that the melted portions of the members 310 and 320 may be scattered. In this embodiment, such a malfunction can be suppressed. If the power P of the pulsed laser beam Lz in the second period T2 is smaller than the power P2 at the end of the first period T1, the laser beam Lz may become unstable. In this embodiment, such a malfunction can be suppressed. *
- the second period T2 is divided into a plurality of sub-periods T2a, T2b, and T2c.
- the pulse width of the laser beam Lz in a relatively later sub period is narrower than the pulse width of the laser beam Lz in a relatively earlier sub period. Accordingly, the averaged power in a relatively later sub-period can be easily made smaller than the averaged power in a relatively earlier sub-period.
- spot marks 334a, 334b, and 334c are marks formed in the sub-periods T2a, T2b, and T2c, respectively.
- the size (for example, the maximum outer diameter) of the spot marks 334a, 334b, and 334c is larger as the pulse width is larger.
- the order of increasing spot marks is the order of spot marks 334a, 334b, and 334c.
- a boundary 332e between the continuous mark 332 and the spot mark 334a indicates a change from the first period T1 to the second period T2. *
- the width of the continuous mark 332 (here, the width in the direction parallel to the axis line CL) gradually decreases toward the spot mark 334a. This is because the power P gradually decreases with the passage of time T in the first period T1.
- the width of the continuous mark 332 at the boundary 332e between the continuous mark 332 and the spot mark 334a is approximately the same as the maximum outer diameter of the spot mark 334a. This is because the power P at the end of the first period T1 is the same as the power P of the pulsed laser beam Lz in the sub-period T2a following the first period T1. *
- the actual total number of each of the spot marks 334a, 334b, and 334c is the same as the total number of pulses in each of the sub-periods T2a, T2b, and T2c.
- FIG. 4C illustration of the plurality of spot marks 334a, 334b, and 334c is simplified, and the total number of each is smaller than the number corresponding to the pattern of FIG.
- the spot marks 334a, 334b, and 334c overlap the adjacent spot marks 334a, 334b, and 334c.
- the plurality of spot marks 334a, 334b, and 334c may be formed apart from each other. *
- the pulse width of the laser beam Lz is narrow, so that the period of irradiation with the pulsed laser beam Lz is shortened without increasing the averaged output energy per unit time. it can. Therefore, it is possible to suppress an increase in the off time during which the laser beam Lz is not irradiated between the pulses of the laser beam Lz, so that the spot-shaped irradiation position Lp of the pulsed laser beam Lz and the adjacent irradiation position Lp It can suppress that the distance between becomes large. As a result, it is possible to prevent the members 310 and 320 from being insufficiently melted between the irradiation position Lp and the adjacent irradiation position Lp. *
- the repetition period (PWc + POc) of the pulse PLc in the sub-period T2c is equal to the repetition period of the pulse in the sub-period prior to the sub-period T2c (for example, the period (PWa + POa in the sub-period T2a). ) And the period (PWb + POb)) in the sub-period T2b. Therefore, it is possible to suppress the occurrence of poor bonding due to insufficient melting in the portions of the members 310 and 320 (FIG. 4B) that are welded by irradiation with the laser beam Lz in the sub-period T2c.
- FIG. 4B the repetition period (PWc + POc) of the pulse PLc in the sub-period T2c is equal to the repetition period of the pulse in the sub-period prior to the sub-period T2c (for example, the period (PWa + POa in the sub-period T2a).
- the off time POc of the sub-period T2c is greater than the off-time of the sub-period prior to the sub-period T2c (for example, the off-time POa of the sub-period T2a and the off-time POb of the sub-period T2b). Also short. Therefore, the malfunction of the part welded by irradiation of the laser beam Lz of the sub period T2c among the members 310 and 320 (FIG. 4 (B)) can be suppressed appropriately. *
- FIG. 6 is an explanatory diagram of another embodiment of the ground electrode.
- the ground electrode 30b can be used instead of the ground electrode 30 of the spark plug 100 of FIG.
- the center axis CL and the directions Df and Dfr in the figure indicate the center axis CL and the directions Df and Dfr as viewed from the front end portion 34 of the main body portion 37 of the ground electrode 30b in the completed spark plug 100.
- the positional relationship will be described using the central axis CL and the directions Df and Dfr.
- 6A shows an appearance viewed in a direction parallel to the central axis CL (specifically, the front direction Df), and FIG.
- the chip 310b is a substantially rectangular member centered on the central axis CL, and is made of a material (for example, a noble metal such as iridium (Ir) or platinum (Pt)) that is more durable against discharge than the main body portion 37. Is formed.
- the structure of the other part of the ground electrode 30b is the same as the structure of the corresponding part of the ground electrode 30 in FIG. 1 (detailed description is omitted).
- the manufacturing method of the spark plug 100 having the ground electrode 30b is the same as the method described in FIG. 2 except for the processing of S110 (FIG. 2).
- S ⁇ b> 110 the tip 310 b is welded to the main body portion 37.
- the main body portion 37 corresponds to a base portion to which the chip 310b is fixed.
- the tip 310b When welding the tip 310b to the main body portion 37, the tip 310b is placed on the surface of the front end portion 34 of the main body portion 37 on the rear direction Dfr side, as shown in FIG.
- a support device (not shown) supports the chip 310b and the main body portion 37 in this state.
- the welding system 900 (FIG. 3) irradiates the boundary 314 between the tip 310 b and the main body portion 37 with the laser beam Lz.
- the laser beam Lz is irradiated in a direction opposite to the direction Dp in which the distal end portion 34 of the main body portion 37 extends. Then, the laser beam Lz irradiation position Lp (FIG.
- control apparatus 910 (FIG. 3) controls the laser apparatus 920 according to the graph demonstrated in FIG.
- this embodiment can also realize various advantages described in FIG. For example, since the power P of the laser beam Lz decreases with the passage of time T, excessive melting of the members 310b and 37 can be suppressed.
- the method of welding the tip to the base is not limited to the above method, and various methods of irradiating the laser beam Lz while moving the irradiation position Lp of the laser beam Lz can be employed.
- Various embodiments including the first period and the second period following the first period are not limited to the embodiment described in the graph of FIG. 5.
- the laser beam Lz is continuously irradiated while moving the irradiation position Lp.
- the laser beam Lz is irradiated a plurality of times in a pulsed output pattern while moving the irradiation position Lp. That is, turning on (that is, irradiation) and turning off (that is, stopping irradiation) of the laser beam Lz is repeated a plurality of times.
- the specific period in which the power P gradually decreases may be at least a part of the first period T1.
- the specific period may be the entire first period T1, or may be a partial period of the first period T1 instead.
- the specific period may be a part of a period including the start timing of the first period T1 (that is, a comparatively previous partial period), and a part of the period continuous to the second period T2 (that is, relatively It may be a later partial period), or may be a partial period that is later than the start timing of the first period T1 and earlier than the start timing of the second period T2.
- the power P is preferably constant without increasing. According to this, excessive melting of the base and the chip can be suppressed. However, the power P may increase with the passage of time T in a period different from the specific period in the first period T1.
- the power P may decrease linearly with the passage of time T or may decrease so as to draw a curve. In this way, the power P may continuously decrease with the passage of time T. Further, the power P may decrease stepwise as time T elapses. In any case, in the specific period of the first period T1, when the power P does not become zero, does not increase, and decreases at a plurality of timings, the power P gradually decreases within the specific period. It can be said that. *
- the power P of the pulsed laser beam Lz in the second period T2 may be larger than the power P of the laser beam Lz at the end of the first period T1 (second power P2 in the example of FIG. 5). It can be good or small.
- the power P of the pulsed laser beam Lz may change with the passage of time T.
- the power P of the relatively later pulse may be smaller than the power P of the relatively earlier pulse.
- the shape of one pulse (also referred to as a waveform) is not limited to a rectangular shape, and may be represented by a line indicating that the power P changes with the passage of time T, such as a curved line or a broken line.
- the maximum power of one pulse may be adopted as the power P of one pulse.
- a width at half power of the maximum power also called full width at half maximum
- the laser beam Lz may be irradiated a plurality of times in a pulsed output pattern on the boundary between the chip and the base while moving the irradiation position Lp.
- the pulse width changes between the two sub-periods T2a and T2b and between the two sub-periods T2b and T2c.
- the pulse width changes twice within the second period T2.
- the number of times that the pulse width changes in the second period T2 is not limited to two, but may be one or three or more.
- the second period T2 includes N (N is an integer of 2 or more) equal width pulse periods. May include. Further, the pulse width may be gradually changed as time T elapses.
- the pulse width of a relatively later part of the second period T2 is narrower than the pulse width of a relatively earlier part of the period. According to this configuration, the averaged power P can be easily reduced with the passage of time T, so that excessive melting of the chip and the base can be suppressed.
- the pulse width of a relatively later period may be wider than the pulse width of a relatively earlier period.
- the pulse width may be constant over the entire second period T2.
- the cycle in which the pulsed laser beam Lz is output (that is, the cycle of the pulse) may change with the passage of time T. Further, the pulse period may be constant over the entire second period T2. *
- the average of the power P may be changed independently of the change of the pulse width.
- a continuous partial period in which the average power P is the same may be different from a partial period in which one or more pulses having the same pulse width are continuous.
- the power P and the pulse width are constant throughout the second period T2, and the magnitude relationship between the off times POa, POb, and POc of the sub-periods T2a, T2b, and T2c is POa ⁇ POb ⁇ POc. May be.
- the order of the average power P is the order of the sub-periods T2a, T2b, and T2c.
- the average of the power P changes twice, as with the pulse width.
- the number of times the average power P changes is not limited to two, but may be one or three or more.
- the average of the power P may be gradually changed as time T elapses.
- the power P and the pulse width may be constant over the entire second period T2, and the off-time may gradually increase as the time T elapses.
- it is preferable that the average of the power P in the relatively later part of the second period T2 is smaller than the average of the power P in the relatively part of the previous period. According to this configuration, the averaged power P can be reduced with the passage of time T, so that excessive melting of the chip and the base can be suppressed.
- the second period T2 does not include a period in which the average of the power P increases, and includes at least one of a period in which the average of the power P is constant and a period in which the average of the power P decreases. It is preferable. That is, in the second period T2, the average temporal change of the power P does not increase, and is maintained at a constant value or reduced, so that the laser beam Lz is configured to be at least one of the following. It is preferable to control the output conditions. Note that various methods can be adopted as a method for controlling the output condition for changing the average of the power P. As a method for reducing the average of the power P, for example, the power P may be reduced, the pulse width may be reduced, or the off time may be increased. *
- the power P at the end of the first period T1 is an adjustable range of power P (hereinafter also referred to as a stable range) in which the laser device 920 (FIG. 3) can stably output the laser beam Lz. ) Is preferable.
- a stable range in which the laser device 920 (FIG. 3) can stably output the laser beam Lz. ) Is preferable.
- the power P at the end of the first period T1 may be larger than the minimum value in the stable range.
- the power P at the end of the first period T1 is preferably equal to or greater than the minimum value in the stable range. *
- the power P of the pulsed laser beam Lz in the second period T2 is preferably the minimum value in the stable range of the power P of the laser device 920. According to this configuration, the malfunction (for example, rapid temperature change) caused by the high power P of the pulsed laser beam Lz while suppressing the irradiation of the laser beam Lz during the second period T2 from becoming unstable. Formation of cracks due to splattering and scattering of the molten material due to irradiation with the laser beam Lz having a large power P can be suppressed. However, the power P of the laser beam Lz in the second period T2 may be larger than the minimum value in the stable range.
- the power P of the pulsed laser beam Lz in the second period T2 is not less than the minimum value in the stable range.
- the power P of the pulsed laser beam Lz in the second period T2 may be the same as the power P at the end of the first period T1, and compared with the power P at the end of the first period T1, It may be large or small.
- the output condition in the second period T2 (for example, the pulse period and pulse width and the power P of the irradiated laser beam Lz) is such that the averaged output energy per unit time in the second period T2 is the first. It is preferable to be configured so as to be equal to or lower than the output energy P per unit time at the end of the period T1. According to this configuration, excessive melting of the chip and the base portion in the second period T2 can be suppressed. Moreover, it is preferable that the output condition in the second period T2 is configured such that the averaged output energy per unit time decreases as the time T elapses. For example, the output condition may be configured such that the averaged output energy per unit time decreases stepwise by a plurality of sub-periods included in the second period T2. *
- the base to which the chip is welded may be other various members in place of a pedestal such as the base 320 of FIG. 3 or a bar member such as the main body 37 of FIG.
- a method including the first period and the second period may be applied to the welding of the tip of the center electrode (for example, the welding of the first tip 29 and the rod portion 28 of the center electrode 20 in FIG. 1).
- the first period the laser beam Lz is continuously irradiated while moving the irradiation position Lp of the laser beam Lz
- the second period the laser beam Lz is moved in a pulsed output pattern while moving the irradiation position Lp. Irradiate multiple times with.
- the material of the chip is not limited to a material containing a noble metal (for example, platinum), and may be various other materials.
- the base material to which the chip is welded is not limited to a material containing nickel, but may be other various materials. *
- the laser beam Lz may be irradiated over the entire circumference of the edge of the boundary between the chip and the base (for example, the boundary 312). Further, as in the embodiment of FIG. 6A, the laser beam Lz may be applied to only a part of the edge of the boundary between the chip and the base (for example, the boundary 314). In any case, it is preferable that the laser beam Lz has a power P sufficient to realize welding over the entire boundary.
- the pulse width in the relatively later sub-period of the period using the laser beam Lz is narrower than the pulse width in the relatively earlier sub-period.
- the step of joining the ground electrode 30 to the metal shell 50 may be performed after the assembly including the insulator 10, the center electrode 20, and the terminal metal fitting 40 is fixed to the metal shell 50.
- the step of joining the chip part 300 to the main body part 37 may be performed after the main body part 37 is joined to the metal shell 50.
- the configuration of the spark plug may be various other configurations instead of the configuration described in FIG.
- a discharge gap may be formed between the side surface of the center electrode (the surface on the side perpendicular to the axis CL) and the ground electrode.
- the total number of gaps for discharge may be 2 or more.
- the resistor 73 may be omitted.
- a magnetic body may be disposed between the center electrode 20 in the through hole 12 of the insulator 10 and the terminal fitting 40. *
- the control device 910 shown in FIG. 3 may be incorporated in the laser device 920 (and thus an apparatus that outputs an energy beam).
- a part of the configuration realized by hardware may be replaced with software.
- part or all of the configuration realized by software is replaced with hardware. It may be.
- the function of changing the output condition of the energy beam may be realized by a dedicated hardware circuit.
- the program is provided in a form stored in a computer-readable recording medium (for example, a non-temporary recording medium). be able to.
- the program can be used in a state where it is stored in the same or different recording medium (computer-readable recording medium) as provided.
- the “computer-readable recording medium” is not limited to a portable recording medium such as a memory card or a CD-ROM, but is connected to an internal storage device in a computer such as various ROMs or a computer such as a hard disk drive. An external storage device may also be included.
- SYMBOLS 8 ... Front end side packing, 10 ... Insulator, 11 ... Reduced inner diameter part, 12 ... Shaft hole (through-hole), 13 ... Rear end side body part, 14 ... Large diameter part, 15 ... Front end side body part, 16 ... Shrinkage Outer diameter part, 19 ... leg part, 20 ... center electrode, 21 ... outer layer, 22 ... core part, 23 ... collar part, 24 ... head part, 27 ... shaft part, 28 ... rod part, 29 ... first chip, 30 30 ... ground electrode, 31 ... outer layer, 32 ... inner layer, 33 ... proximal end, 34 ... distal end, 37 ... main body, 40 ... terminal fitting, 41 ... shaft, 48 ...
- collar 49 ... cap mounting part , 50 ... metal shell, 51 ... tool engaging part, 52 ... body part, 53 ... caulking part, 54 ... collar part, 55 ... tip surface, 56 ... reduced inner diameter part, 57 ... screw part, 58 ... buckling part, 59 ... Through-hole, 61, 62 ... Ring member, 70 ... Talc, 72 ... First seal part, 73 ... Resistor, 74 ... Second seal part, 90 ... Gasket, 1 DESCRIPTION OF SYMBOLS 0 ... Spark plug, 300 ... Tip part, 310, 310b ... Tip, 312, 314 ... Border, 314L ... Edge, 314a, 314b ... End, 320 ...
- Base part 321 ... Large diameter part, 321p ... Convex part, 322 ... Small diameter , 330, 330b ... Junction (melting part), 332 ... continuous trace, 332e ... boundary, 334a, 334b, 334c ... spot trace, 900 ... welding system, 910 ... control device, 920 ... laser device, g ... gap, CL: central axis (axis), Df: tip direction (front direction), Dfr: rear end direction (rear direction), Dp ... direction, Lp ... irradiation position, Lz ... laser beam
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Spark Plugs (AREA)
- Laser Beam Processing (AREA)
Abstract
エネルギービームを用いて、適切に、チップを溶接する。基部とチップとの境界にエネルギービームを照射することにより、基部にチップを溶接する。基部にチップを溶接することは、第1期間で、エネルギービームの照射位置を移動させながら、エネルギービームを連続的に照射することと、第1期間に続く第2期間で、エネルギービームの照射位置を移動させながら、エネルギービームをパルス状の出力パターンで複数回照射することと、を含む。
Description
本明細書は、基部と基部に固定されたチップとを有する電極を備える点火プラグに関する。
点火プラグの電極の耐久性を向上するために、電極(例えば、中心電極、または、接地電極)に、耐久性の高いチップ(例えば、貴金属を含むチップ)が固定される場合がある。チップを固定する技術としては、例えば、レーザビームを、接地電極と接地電極チップとの境界に対して相対的に移動させながら照射することによって、接地電極にチップを溶接する技術が提案されている。また、レーザビームによって与えられた熱が溶融部を伝導し、まだレーザビームが照射されていない部分の温度も高くなることを考慮して、レーザビームの出力を徐々に小さくする技術も提案されている。
ところが、レーザビームの出力を小さくすると、適切な溶接ができなくなる場合があった。例えば、レーザビームが不安定になり、レーザビームの照射が意図せず停止する場合があった。なお、このような問題は、レーザビームを用いる場合に限らず、電子ビームなどエネルギービームを用いる場合に共通する問題であった。
本明細書は、エネルギービームを用いて、適切に、チップを溶接できる技術を開示する。
本明細書は、例えば、以下の適用例を開示する。
[適用例1]
基部と前記基部に固定されたチップとを有する電極を備える点火プラグの製造方法であって、
前記基部と前記チップとの境界にエネルギービームを照射することにより、前記基部に前記チップを溶接することを含み、
前記基部に前記チップを溶接することは、
第1期間で、前記エネルギービームの照射位置を移動させながら、前記エネルギービームを連続的に照射することと、
前記第1期間に続く第2期間で、前記エネルギービームの照射位置を移動させながら、前記エネルギービームをパルス状の出力パターンで複数回照射することと、
を含む、製造方法。
基部と前記基部に固定されたチップとを有する電極を備える点火プラグの製造方法であって、
前記基部と前記チップとの境界にエネルギービームを照射することにより、前記基部に前記チップを溶接することを含み、
前記基部に前記チップを溶接することは、
第1期間で、前記エネルギービームの照射位置を移動させながら、前記エネルギービームを連続的に照射することと、
前記第1期間に続く第2期間で、前記エネルギービームの照射位置を移動させながら、前記エネルギービームをパルス状の出力パターンで複数回照射することと、
を含む、製造方法。
この構成によれば、第1期間においてパルス状の出力パターンでエネルギービームが複数回照射される場合と比べて、基部とチップとの急激な温度変化が抑制されるので、基部とチップとの接合部分にクラックが生じることを抑制できる。さらに、第2期間では、パルス状の出力パターンでエネルギービームが複数回照射されるので、パルス状のエネルギービームの単位時間当たりの出力エネルギーを過度に小さくせずに、平均化された単位時間当たりの出力エネルギーを小さくすることができる。従って、基部とチップとの過度の溶融を抑制できる。また、第2期間では、エネルギービームの単位時間当たりの出力エネルギーを過度に小さくせずに済むので、エネルギービームが不安定になることを抑制できる。これらの結果、エネルギービームを用いて、チップを基部に適切に溶接できる。
[適用例2]
適用例1に記載の点火プラグの製造方法であって、
前記第1期間のうちの少なくとも一部の期間である特定期間では、前記エネルギービームの単位時間当たりの出力エネルギーを徐々に低下させる、
製造方法。
適用例1に記載の点火プラグの製造方法であって、
前記第1期間のうちの少なくとも一部の期間である特定期間では、前記エネルギービームの単位時間当たりの出力エネルギーを徐々に低下させる、
製造方法。
この構成によれば、特定期間では、エネルギービームの単位時間当たりの出力エネルギーが徐々に小さくなるので、基部とチップとの過度の溶融を更に抑制できる。
[適用例3]
適用例2に記載の点火プラグの製造方法であって、
前記特定期間は、前記第2期間に連続する期間である、
製造方法。
適用例2に記載の点火プラグの製造方法であって、
前記特定期間は、前記第2期間に連続する期間である、
製造方法。
この構成によれば、第1期間のうち、少なくとも比較的後の特定期間において、エネルギービームの単位時間当たりの出力エネルギーが徐々に小さくなるので、基部とチップとの過度の溶融を抑制できる。
[適用例4]
適用例1から3のいずれかに記載の点火プラグの製造方法であって、
前記第2期間は、第1部分期間と、前記第1部分期間よりも後の第2部分期間と、を含み、
前記第2部分期間における前記エネルギービームの単位時間当たりの出力エネルギーの平均は、前記第1部分期間における前記エネルギービームの単位時間当たりの出力エネルギーの平均よりも、小さい、
製造方法。
適用例1から3のいずれかに記載の点火プラグの製造方法であって、
前記第2期間は、第1部分期間と、前記第1部分期間よりも後の第2部分期間と、を含み、
前記第2部分期間における前記エネルギービームの単位時間当たりの出力エネルギーの平均は、前記第1部分期間における前記エネルギービームの単位時間当たりの出力エネルギーの平均よりも、小さい、
製造方法。
この構成によれば、後の第2部分期間においては、前の第1部分期間よりも、単位時間当たりの出力エネルギーの平均が小さいので、基部とチップとの過度の溶融を抑制できる。
[適用例5]
適用例1から4のいずれかに記載の点火プラグの製造方法であって、
前記第2期間における前記エネルギービームの単位時間当たりの出力エネルギーは、前記第1期間の最後における前記エネルギービームの単位時間当たりの出力エネルギーと、同じである、
製造方法。
適用例1から4のいずれかに記載の点火プラグの製造方法であって、
前記第2期間における前記エネルギービームの単位時間当たりの出力エネルギーは、前記第1期間の最後における前記エネルギービームの単位時間当たりの出力エネルギーと、同じである、
製造方法。
この構成によれば、パルス状の出力パターンで照射されるエネルギービームの単位時間当たりの出力エネルギーが、第1期間の最後におけるエネルギービームの単位時間当たりの出力エネルギーよりも大きい場合と比べて、基部とチップとの溶融した部分が飛び散ることを抑制できる。また、パルス状の出力パターンでの単位時間当たりの出力エネルギーが、第1期間の最後における単位時間当たりの出力エネルギーよりも小さい場合と比べて、エネルギービームが不安定になることを抑制できる。これらの結果、チップを基部に適切に溶接できる。
[適用例6]
適用例1から5のいずれかに記載の点火プラグの製造方法であって、
前記第2期間は、第1サブ期間と、前記第1サブ期間よりも後の第2サブ期間と、を含み、
前記第2サブ期間における前記エネルギービームのパルス幅は、前記第1サブ期間における前記エネルギービームのパルス幅よりも、狭い、
製造方法。
適用例1から5のいずれかに記載の点火プラグの製造方法であって、
前記第2期間は、第1サブ期間と、前記第1サブ期間よりも後の第2サブ期間と、を含み、
前記第2サブ期間における前記エネルギービームのパルス幅は、前記第1サブ期間における前記エネルギービームのパルス幅よりも、狭い、
製造方法。
この構成によれば、第2サブ期間において、平均化された単位時間当たりの出力エネルギーを大きくせずに、パルス状のエネルギービームが照射される周期を短くできるので、エネルギービームのパルスとパルスとの間のエネルギービームが照射されない時間が長くなることを抑制できる。この結果、第2サブ期間においてパルス状のエネルギービームの照射位置と隣の照射位置との間の距離が大きくなることを抑制できる。この結果、照射位置と隣の照射位置との間におけるチップと基部との溶融が不十分になることを抑制できる。
なお、本明細書に開示の技術は、種々の態様で実現することが可能であり、例えば、点火プラグの製造方法、その製造方法によって製造された点火プラグ、その点火プラグを備える点火装置、その点火プラグを備える内燃機関等の態様で実現することができる。
A.第1実施形態:
A-1.点火プラグ100の構成:
図1は、チップを含む電極を備える一実施形態としての点火プラグ100の断面図である。図中には、点火プラグ100の中心軸CL(「軸線CL」とも呼ぶ)と、点火プラグ100の中心軸CLを含む平らな断面と、が示されている。以下、中心軸CLに平行な方向を「軸線CLの方向」、または、単に「軸線方向」または「前後方向」とも呼ぶ。軸線CLに垂直な方向を、「径方向」とも呼ぶ。軸線CLを中心とする円の円周方向を、「周方向」とも呼ぶ。中心軸CLに平行な方向のうち、図1における下方向を先端方向Df、または、前方向Dfと呼び、上方向を後端方向Dfr、または、後方向Dfrとも呼ぶ。先端方向Dfは、後述する端子金具40から中心電極20に向かう方向である。また、図1における先端方向Df側を点火プラグ100の先端側と呼び、図1における後端方向Dfr側を点火プラグ100の後端側と呼ぶ。
点火プラグ100は、軸線CLに沿って延びる貫通孔12(軸孔12とも呼ぶ)を有する筒状の絶縁体10と、貫通孔12の先端側で保持される中心電極20と、貫通孔12の後端側で保持される端子金具40と、貫通孔12内で中心電極20と端子金具40との間に配置された抵抗体73と、中心電極20と抵抗体73とに接触してこれらの部材20、73を電気的に接続する導電性の第1シール部72と、抵抗体73と端子金具40とに接触してこれらの部材73、40を電気的に接続する導電性の第2シール部74と、絶縁体10の外周側に固定された筒状の主体金具50と、一端が主体金具50の先端面55に接合されるとともに他端が中心電極20とギャップgを介して対向するように配置された接地電極30と、を有している。
絶縁体10の軸線方向の略中央には、外径が最も大きな大径部14が形成されている。大径部14より後端側には、後端側胴部13が形成されている。大径部14よりも先端側には、後端側胴部13よりも外径の小さな先端側胴部15が形成されている。先端側胴部15よりもさらに先端側には、縮外径部16と、脚部19とが、先端側に向かってこの順に形成されている。縮外径部16の外径は、前方向Dfに向かって、徐々に小さくなっている。縮外径部16の近傍(図1の例では、先端側胴部15)には、前方向Dfに向かって内径が徐々に小さくなる縮内径部11が形成されている。絶縁体10は、機械的強度と、熱的強度と、電気的強度とを考慮して形成されることが好ましく、例えば、アルミナを焼成して形成されている(他の絶縁材料も採用可能である)。
中心電極20は、金属製の部材であり、絶縁体10の貫通孔12内の前方向Df側の端部に配置されている。中心電極20は、略円柱状の棒部28と、棒部28の先端に接合(例えば、レーザ溶接)された第1チップ29と、を有している。棒部28は、後方向Dfr側の部分である頭部24と、頭部24の前方向Df側に接続された軸部27と、を有している。軸部27は、軸線CLに平行に前方向Dfに向かって延びている。頭部24のうちの前方向Df側の部分は、軸部27の外径よりも大きな外径を有する鍔部23を形成している。鍔部23の前方向Df側の面は、絶縁体10の縮内径部11によって、支持されている。軸部27は、鍔部23の前方向Df側に接続されている。第1チップ29は、軸部27の先端に接合されている。なお、第1チップ29は、省略されてもよい。
棒部28は、外層21と、外層21の内周側に配置された芯部22と、を有している。外層21は、芯部22よりも耐酸化性に優れる材料(例えば、ニッケルを主成分として含む合金)で形成されている。ここで、主成分は、含有率(重量パーセント(wt%))が最も高い成分を意味している。芯部22は、外層21よりも熱伝導率が高い材料(例えば、純銅、銅を主成分として含む合金、等)で形成されている。第1チップ29は、軸部27よりも放電に対する耐久性に優れる材料(例えば、イリジウム(Ir)、白金(Pt)等の貴金属)を用いて形成されている。中心電極20のうち第1チップ29を含む先端側の一部分は、絶縁体10の軸孔12から前方向Df側に露出している。なお、芯部22は、省略されてもよい。
端子金具40は、軸線CLに平行に延びる棒状の部材である。端子金具40は、導電性材料を用いて形成されている(例えば、鉄を主成分として含む金属)。端子金具40は、前方向Dfに向かって順番で並ぶ、キャップ装着部49と、鍔部48と、軸部41と、を有している。軸部41は、絶縁体10の軸孔12の後方向Dfr側の部分に挿入されている。キャップ装着部49は、絶縁体10の後端側で、軸孔12の外に露出している。
絶縁体10の軸孔12内において、端子金具40と中心電極20との間には、電気的なノイズを抑制するための抵抗体73が配置されている。抵抗体73は、導電性材料(例えば、ガラスと炭素粒子とセラミック粒子との混合物)を用いて形成されている。抵抗体73と中心電極20との間には、第1シール部72が配置され、抵抗体73と端子金具40との間には、第2シール部74が配置されている。これらのシール部72、74は、導電性材料(例えば、金属粒子と抵抗体73の材料に含まれるものと同じガラスとの混合物)を用いて形成されている。中心電極20は、第1シール部72、抵抗体73、第2シール部74によって、端子金具40に電気的に接続されている。
主体金具50は、軸線CLに沿って延びる貫通孔59を有する筒状の部材である。主体金具50の貫通孔59には、絶縁体10が挿入され、主体金具50は、絶縁体10の外周に固定されている。主体金具50は、導電材料(例えば、主成分である鉄を含む炭素鋼等の金属)を用いて形成されている。絶縁体10の前方向Df側の一部は、貫通孔59の外に露出している。また、絶縁体10の後方向Dfr側の一部は、貫通孔59の外に露出している。
主体金具50は、工具係合部51と、胴部52と、を有している。工具係合部51は、点火プラグ用のレンチ(図示せず)が嵌合する部分である。胴部52は、主体金具50の先端面55を含む部分である。胴部52の外周面には、内燃機関(例えば、ガソリンエンジン)の取付孔に螺合するためのネジ部57が形成されている。ネジ部57は、軸線CLの方向に延びる雄ねじが形成された部分であり、螺旋状のネジ山と螺旋状のネジ溝とを有している(図示省略)。
主体金具50の工具係合部51と胴部52との間の外周面には、径方向外側に突き出たフランジ状の鍔部54が形成されている。胴部52のネジ部57と鍔部54との間には、環状のガスケット90が配置されている。ガスケット90は、例えば金属の板状部材を折り曲げることによって形成されており、点火プラグ100がエンジンに取り付けられた際に押し潰されて変形する。このガスケット90の変形によって、点火プラグ100と(具体的には、鍔部54の前方向Df側の面)、エンジンと、の隙間が封止され、燃焼ガスの漏出が抑制される。なお、ガスケット90が省略されてもよい。この場合、鍔部54は、直接に、エンジンの点火プラグ100用の取付孔を形成する部分(例えば、エンジンヘッド)に接触してよい。
主体金具50の胴部52には、先端側に向かって内径が徐々に小さくなる縮内径部56が形成されている。主体金具50の縮内径部56と、絶縁体10の縮外径部16と、の間には、先端側パッキン8が挟まれている。本実施形態では、先端側パッキン8は、例えば、鉄製の板状リングである(他の材料(例えば、銅等の金属材料)も採用可能である)。
主体金具50の工具係合部51より後端側には、薄肉のカシメ部53が形成されている。また、鍔部54と工具係合部51との間には、薄肉の座屈部58が形成されている。主体金具50の工具係合部51からカシメ部53にかけての内周面と、絶縁体10の後端側胴部13の外周面との間には、円環状のリング部材61,62が挿入されている。さらにこれらのリング部材61,62の間には、タルク70の粉末が充填されている。点火プラグ100の製造工程において、カシメ部53が内側に折り曲げられて加締められると、座屈部58が圧縮力の付加に伴って外向きに変形(座屈)し、この結果、主体金具50と絶縁体10とが固定される。タルク70は、この加締め工程の際に圧縮され、主体金具50と絶縁体10との間の気密性が高められる。また、パッキン8は、絶縁体10の縮外径部16と主体金具50の縮内径部56との間で押圧され、そして、主体金具50と絶縁体10との間をシールする。
接地電極30は、金属製の部材であり、棒状の本体部37と、本体部37の先端部34に取り付けられたチップ部300と、を有している。本体部37の他方の端部33(基端部33とも呼ぶ)は、主体金具50の先端面55に接合されている(例えば、抵抗溶接)。本体部37は、主体金具50に接合された基端部33から先端方向Dfに向かって延び、中心軸CLに向かって曲がって、先端部34に至る。チップ部300は、先端部34の後方向Dfr側の部分に固定されている。接地電極30のチップ部300と、電極20の第1チップ29とは、ギャップgを形成している。すなわち、接地電極30のチップ部300は、中心電極20の第1チップ29の前方向Df側に配置されており、第1チップ29とギャップgを介して対向している。
図1に右部には、チップ部300の拡大図が示されている。この拡大図は、軸線CLに垂直な方向を向いて見た側面図である。チップ部300は、基部320と、基部320に接合されたチップ310と、を有している。本実施形態では、チップ310の形状は、軸線CLを中心とする略円柱である。基部320は、大径部321と、大径部321の後方向Dfr側に設けられた小径部322と、を有している。これらの部分321、322の形状は、いずれも、軸線CLを中心とする略円柱である。大径部321の外径は、小径部322の外径よりも、大きい。小径部322の外径は、チップ310の外径と、おおよそ同じである。本実施形態では、チップ310は、基部320の後方向Dfr側の面(すなわち、小径部322の後方向Dfr側の面)に、レーザ溶接によって、溶接されている。図中の接合部330は、チップ310と基部320とを接合する部分である。接合部330は、溶接時にチップ310と基部320との溶融した部分が冷えて固まった部分である(溶融部330とも呼ぶ)。チップ310の後方向Dfr側の面が、ギャップgを形成している。基部320の前方向Df側の面は、本体部37に、接合されている(例えば、抵抗溶接)。
本体部37は、外層31と、外層31の内周側に配置された内層32と、を有している。外層31は、内層32よりも耐酸化性に優れる材料(例えば、ニッケルを主成分として含む合金)で形成されている。内層32は、外層31よりも熱伝導率が高い材料(例えば、純銅、銅を主成分として含む合金、等)で形成されている。なお、内層32は、省略されてもよい。
なお、チップ部300のチップ310は、本体部37よりも放電に対する耐久性に優れる材料(例えば、イリジウム(Ir)、白金(Pt)等の貴金属)を用いて形成されている。チップ部300の基部320は、本体部37(特に外層31)と同様に耐酸化性に優れる材料(例えば、ニッケルを主成分として含む合金)で形成されている。
A-2.プラグの製造方法:
図2は、点火プラグ100の製造方法の例を示すフローチャートである。S100では、点火プラグ100の各部材が準備される。例えば、主体金具50と、絶縁体10と、中心電極20と、シール部72、74と抵抗体73とのそれぞれの粉末材料と、端子金具40と、接地電極30の棒状の本体部37と、チップ部300のチップ310と基部320と、が準備される。これらの部材を準備する方法としては、公知の種々の方法を採用可能である(詳細な説明を省略する)。例えば、接合前のチップ310と基部320とは、鍛造や切削などの、種々の方法で製造可能である。
図2は、点火プラグ100の製造方法の例を示すフローチャートである。S100では、点火プラグ100の各部材が準備される。例えば、主体金具50と、絶縁体10と、中心電極20と、シール部72、74と抵抗体73とのそれぞれの粉末材料と、端子金具40と、接地電極30の棒状の本体部37と、チップ部300のチップ310と基部320と、が準備される。これらの部材を準備する方法としては、公知の種々の方法を採用可能である(詳細な説明を省略する)。例えば、接合前のチップ310と基部320とは、鍛造や切削などの、種々の方法で製造可能である。
S110では、基部320にチップ310が溶接される。図3は、チップ310と基部320との溶接に用いられる溶接システム900の概略図である。この溶接システム900は、溶接用のレーザビームLzを生成するレーザ装置920と、レーザ装置920を制御する制御装置910と、を含んでいる。制御装置910は、例えば、プロセッサ(例えば、CPU)と、揮発性記憶装置(例えば、RAM)と、不揮発性記憶装置(例えば、フラッシュメモリ)と、を有するコンピュータである。不揮発性記憶装置には、予め、プログラムが格納されている。プロセッサは、プログラムに従って動作することによって、レーザ装置920を制御する。以下、制御装置910のプロセッサが処理を実行することを、制御装置910が処理を実行する、とも表現する。
図2のS110は、S112とS114とを含んでいる。S112では、チップ310(図1)と基部320とが、図示しない支持装置によって、支持される。図4は、溶接の説明図である。図4(A)、図4(B)は、溶接時のチップ310と基部320との配置を示している。図中の中心軸CLと方向Df、Dfrとは、完成した点火プラグ100(図1)における部材310、320から見た中心軸CLと方向Df、Dfrとを示している。以下、中心軸CLと方向Df、Dfrとを用いて、位置関係を説明する。図4(A)は、中心軸CLに平行な方向(具体的には前方向Df)を向いて見た外観を示し、図4(B)は、中心軸CLに垂直な方向を向いて見た外観を示している。図4(A)では、基部320の大径部321の図示が省略されている。なお、図4(B)に示すように、大径部321の前方向Df側の面の中央部には、前方向Dfに向かって突出する凸部321pが設けられている。また、本実施形態では、チップ310と基部320とのそれぞれの中心軸は、図4(A)、図4(B)に示す中心軸CLと同じである。
図示するように、チップ310は、基部320の後方向Dfr側の面上に載せ置かれている。図2のS112では、この状態で、チップ310と基部320とが、図示しない支持装置によって支持される。
図2のS114では、チップ310(図4(A)、図4(B))と基部320との境界312に、レーザビームLzが照射される。境界312は、チップ310と基部320とが互いに接触する面状の部分である。本実施形態では、チップ310と基部320との外周面上の境界312(ここでは、境界312の縁)に、レーザビームLzが照射される。チップ310と基部320とのうちのレーザビームLzの照射位置Lpの近傍(特に、照射位置LpからレーザビームLzの進行方向側の部分)は、レーザビームLzから受ける熱によって溶融する。そして、レーザビームLzの照射位置Lpを移動させながら、レーザビームLzを境界312に照射する処理が、行われる(詳細は、後述)。本実施形態では、レーザビームLzを照射させながら、チップ310と基部320とが、中心軸CLを中心に、回転される。これにより、レーザビームLzの照射位置Lpは、部材310、320の外周面上を、境界312に沿って、周方向に移動する。チップ310と基部320とのうちの境界312の近傍の部分は、溶融し、そして、冷えて固まる。これにより、境界312の全体に亘って溶接が行われ、基部320にチップ310が接合される。なお、本実施形態では、レーザビームLzは、中心軸CLに垂直な方向に向かって、照射される。ただし、レーザビームLzが、中心軸CLに対して傾斜していてもよい。また、部材310、320が回転する代わりに、レーザ装置920(図3)が、部材310、320の周りを移動することによって、照射位置Lpが移動してもよい。
図4(C)は、溶接済のチップ310と基部320(すなわち、チップ部300)の概略図である。図4(C)には、図4(B)と同様に、中心軸CLに垂直な方向を向いて見た外観が示されている。図示するように、チップ310と基部320との間に接合部330が形成されている。また、接合部330の表面には、レーザビームLzが照射された部分を示す痕332、334a、334b、334cが、周方向に並んで形成されている。痕332は、周方向に延びる連続な痕である(連続痕332と呼ぶ)。3種類の痕334a、334b、334cは、いずれも、スポット状の痕である(スポット痕334a、334b、334cとも呼ぶ)。後述するように、これらのスポット痕334a、334b、334cの間では、大きさ(例えば、最大外径)が、互いに異なっている。大きい順は、痕334a、334b、334cの順である。
図4(C)の例では、3種類のスポット痕334a、334b、334cは、それぞれ、複数個ずつ形成されている。そして、3種類のスポット痕334a、334b、334cは、連続痕332とスポット痕との境界332eからスポット痕334a、334b、334cの順に周方向に並んで形成されている。このように、連続痕332と、複数のスポット痕334a、334b、334cとが形成される理由は、溶接時に、レーザビームLzの照射位置を移動させながら、レーザビームLzの出力条件を変化させているからである。
図5は、溶接時のレーザビームLzの出力条件の変化を示すグラフである。横軸は、時間Tを示し、縦軸は、レーザビームLzの単位時間当たりの出力エネルギーPを示している(単に、パワーPとも呼ぶ)。パワーPは、レーザ装置920の出力パワー(例えば、レーザ装置920に含まれる図示しないレーザ発信器の出力パワー)によって表される(単位は、例えば、ワット)。図5の例では、第1時間TaにレーザビームLzの照射が始まり、第3時間TcにレーザビームLzの照射が終了する。この第1時間Taから第3時間Tcまでの間に、図示しない支持装置は、チップ310(図4(A)、図4(B))と基部320とを、一定の角速度で、1周以上回転させる。これにより、チップ310と基部320との境界312が、全周に亘って、溶接される。
第1時間Taから第3時間Tcまでの期間は、第1時間Taから第2時間Tbまでの第1期間T1と、第2時間Tbから第3時間Tcまでの第2期間T2と、に区分される。第1期間T1内では、パワーPは、第1パワーP1から第2パワーP2まで徐々に低下する。ここで、P1>P2>ゼロである。また、第1パワーP1と第2パワーP2とは、いずれも、レーザ装置920がレーザビームLzを安定して出力可能なパワーPの範囲内に、設定される。例えば、第1パワーP1は、出力可能な最大のパワーPであり、第2パワーP2は、第1パワーP1の10%程度のパワーPである。なお、第1期間T1内では、レーザビームLzは連続的に境界312(図4(B))に照射され、そして、パワーPは徐々に小さくなる。
このように、パワーPを徐々に小さくする理由は、以下の通りである。レーザビームLz(図4(A)、図4(B))によってチップ310と基部320とを接合するために、レーザビームLzのパワーPは、部材310、320を溶融させるのに十分な大きさに設定される。このようなレーザビームLzが部材310、320に照射される場合、レーザビームLzが照射された部分の温度に加えて、その周囲のレーザビームLzが照射されていない部分の温度も、上昇する。このような状態で、照射位置Lpが移動し、別の照射位置LpにレーザビームLzが照射される。ここで、パワーPが同じである場合、部材310、320が過度に溶融し得る。部材310、320が過度に溶融すると、溶融した部材が飛び散る場合がある。図5の第1期間T1のグラフのように、時間Tの経過とともに(すなわち、照射位置Lpを移動させながら)パワーPを徐々に小さくすることによって、照射位置Lpによらずに、部材310、320の適切な溶融を実現できる。なお、図4(C)の連続痕332は、第1期間T1でのレーザビームLzの照射によって形成された痕である。
図5の下部には、第2期間T2のグラフの拡大図が示されている。第2期間T2内では、パワーPは、複数のパルスPLa、PLb、PLcを繰り返すパターンで、変化する。本実施形態では、各パルスPLa、PLb、PLcは、略矩形状のパルスである。このように、第2期間T2内では、レーザビームLzは、パルス状の出力パターンで、複数回、境界312(図4(B))に照射される。
本実施形態では、第2期間T2は、第2時間Tbから第1中間時間Tb1までのサブ期間T2aと、第1中間時間Tb1から第2中間時間Tb2までのサブ期間T2bと、第2中間時間Tb2から第3時間Tcまでのサブ期間T2cと、に区分される。先頭のサブ期間T2aでは、複数のパルスPLaが一定の周期で繰り返され、中央のサブ期間T2bでは、複数のパルスPLbが一定の周期で繰り返され、最後のサブ期間T2cでは、複数のパルスPLcが一定の周期で繰り返される。図中の時間幅PWa、PWb、PWcは、それぞれ、1個のパルスPLa、PLb、PLcの時間幅である(パルス幅PWa、PWb、PWcとも呼ぶ)。また、図中の時間幅POa、POb、POcは、それぞれ、サブ期間T2a、T2b、T2cにおける隣合う2個のパルスPLa、PLb、PLc間の時間幅である(オフ時間POa、POb、POcとも呼ぶ)。隣合う2個のパルスPLa、PLb、PLcの間のオフ時間POa、POb、POcの期間内では、パワーPがゼロである。
各パルスPLa、PLb、PLcのパワーPは、同じである。本実施形態では、各パルスPLa、PLb、PLcのパワーPは、第1期間T1の最後におけるパワーPと同じ第2パワーP2である。
また、本実施形態では、パルスPLa、PLb、PLcのパルス幅PWa、PWb、PWcが、互いに異なっている。具体的には、PWa>PWb>PWc>ゼロである。このように、比較的後のサブ期間におけるパルス幅は、比較的前のサブ期間におけるパルス幅よりも、狭い。
また、本実施形態では、比較的後のサブ期間でのデューティ比は、比較的前のサブ期間でのデューティ比よりも、小さい。ここで、デューティ比は、レーザビームLzのオンとオフとの1周期の時間(すなわち、パルス幅+オフ時間)に対するオンの時間(すなわち、パルス幅)の割合である。中央のサブ期間T2bでのデューティ比(PWb/(PWb+POb))は、中央のサブ期間T2bよりも前のサブ期間T2aでのデューティ比(PWa/(PWa+POa))よりも小さく、最後のサブ期間T2cでのデューティ比(PWc/(PWc+POc))は、最後のサブ期間T2cよりも前のサブ期間T2bでのデューティ比(PWb/(PWb+POb))よりも小さい。
図中の平均パワーPa、Pb、Pcは、それぞれ、サブ期間T2a、T2b、T2cにおけるパワーPの時間平均を示している。上述したように、本実施形態では、比較的後のサブ期間でのパルスの時間幅は、比較的前のサブ期間でのパルスの時間幅よりも、狭い。そして、比較的後のサブ期間でのデューティ比は、比較的前のサブ期間でのデューティ比よりも、小さい。そして、比較的後のサブ期間での平均化されたパワーPは、比較的前のサブ期間での平均化されたパワーPよりも、小さい。具体的には、P2>Pa>Pb>Pc>ゼロである。第2期
間T2では、時間Tの経過に応じて、平均化されたパワーPが小さくなる。このように、第2期間T2では、照射位置Lpが移動しつつ、平均化されたパワーPが時間Tの経過に応じて小さくなるので、第2期間T2においても、照射位置Lpによらずに、部材310、320の過度の溶融を抑制できる。また、第2期間T2での平均化されたパワーPa、Pb、Pcは、第1期間T1の最後での第2パワーP2よりも小さい。従って、第1期間T1と第2期間T2との全体を通じて、部材310、320の過度の溶融を抑制できる。なお、図4(C)の複数のスポット痕334a、334b、334cは、それぞれ、サブ期間T2a、T2b、T2cでのパルス状のレーザビームLzによって形成された痕である。
間T2では、時間Tの経過に応じて、平均化されたパワーPが小さくなる。このように、第2期間T2では、照射位置Lpが移動しつつ、平均化されたパワーPが時間Tの経過に応じて小さくなるので、第2期間T2においても、照射位置Lpによらずに、部材310、320の過度の溶融を抑制できる。また、第2期間T2での平均化されたパワーPa、Pb、Pcは、第1期間T1の最後での第2パワーP2よりも小さい。従って、第1期間T1と第2期間T2との全体を通じて、部材310、320の過度の溶融を抑制できる。なお、図4(C)の複数のスポット痕334a、334b、334cは、それぞれ、サブ期間T2a、T2b、T2cでのパルス状のレーザビームLzによって形成された痕である。
制御装置910(図3)のプログラムは、図5に示すグラフのようにパワーPを制御するように、予め構成されている。制御装置910は、このプログラムに従って、図5のグラフのようにレーザ装置920から出力されるレーザビームLzのパワーPを制御する。これにより、溶接システム900は、適切に、チップ310を基部320に溶接できる。以上により、図2のS114、ひいては、S110が、終了する。
図2のS120では、準備された部材を用いて、点火プラグ100が組み立てられる。例えば、先ず、絶縁体10と中心電極20と端子金具40とを有する組立体が作成される。例えば、絶縁体10の後方向Dfr側の開口から中心電極20が挿入される。中心電極20は、絶縁体10の縮内径部11に支持されることにより、貫通孔12内の所定位置に配置される。次に、第1シール部72、抵抗体73、第2シール部74のそれぞれの材料粉末の投入と投入された粉末材料の成形とが、部材72、73、74の順番に、行われる。粉末材料は、絶縁体10の後方向Dfr側の開口から貫通孔12内に投入される。次に、絶縁体10を、部材72、73、74の材料粉末に含まれるガラス成分の軟化点よりも高い所定温度まで加熱し、所定温度に加熱した状態で、絶縁体10の後方向Dfr側の開口から、端子金具40の軸部41を貫通孔12に挿入する。この結果、部材72、73、74の材料粉末が圧縮および焼結されて、部材72、73、74が形成される。そして、端子金具40が、絶縁体10に固定される。
また、接地電極30の棒状の本体部37に、チップ部300が接合される。本実施形態では、抵抗溶接によって、チップ部300の前方向Df側の部分(具体的には、基部320(図4(B))の前方向Df側の面)が本体部37に溶接される。図4(B)で説明したように、チップ部300の前方向Df側の面の中央には、凸部321pが設けられている。溶接時には、チップ部300の凸部321pと本体部37との接触部分(すなわち、チップ部300の前方向Df側の面の中央部分)から溶接が進行する。従って、チップ部300と本体部37との間に、溶接されない部分が残ることが抑制される。また、本体部37の基端部33は、主体金具50に接合される(例えば、抵抗溶接)。
次に、主体金具50に絶縁体10を含む上記の組立体が固定される。具体的には、主体金具50の貫通孔59内に、先端側パッキン8と、組立体と、リング部材62と、タルク70と、リング部材61とが配置され、そして、主体金具50のカシメ部53を内側に折り曲げるように加締めることによって、主体金具50に絶縁体10が固定される。そして、棒状の接地電極30を曲げることによって、ギャップgの距離が調整される。以上により、点火プラグ100が完成する。
以上のように、本実施形態では、図2、図4、図5で説明したように、基部320にチップ310を溶接すること(図2:S110)は、第1期間T1(図5)で、レーザビームLzの照射位置Lpを移動させながら、レーザビームLzを連続的に照射することを含んでいる。従って、第1期間T1において、パルス状のレーザビームLzが、複数回、境界312(図4(B))に照射される場合と比べて、パワーPの急激な変化が抑制されるので、第1期間T1において、部材310、320の急激な温度変化を抑制できる。この結果、チップ310と基部320との接合部330の不具合(例えば、クラック)を抑制できる。
さらに、第1期間T1に続く第2期間T2では、レーザビームLzの照射位置Lpを移動させながら、レーザビームLzは、パルス状の出力パターンで複数回照射される。従って、パルス状のレーザビームLzの単位時間当たりの出力エネルギーPを過度に小さくせずに、平均化された単位時間当たりの出力エネルギーを小さくすることができる。従って、部材310、320の過度の溶融を抑制できる。また、第2期間T2では、レーザビームLzの単位時間当たりの出力エネルギーPを過度に小さくせずに済むので、レーザビームLzが不安定になることを抑制できる。これらの結果、レーザビームLzを用いて、チップを基部に適切に溶接できる。
また、仮に第2期間T2での溶接が省略される場合には、レーザビームLzのパワーPは、第2パワーP2からゼロへ急激に低下し得る。このようにパワーPが急激に低下する場合、部材310、320の溶融した部分の温度が急激に低下するので、接合部330にクラックが形成され得る。本実施形態では、第2期間T2において、平均化された単位時間当たりの出力エネルギーが第2パワーP2よりも小さくなるように、レーザビームLzが照射されるので、部材310、320の温度の急激な低下を抑制できる。この結果、接合部330にクラックが形成されることを抑制できる。
また、基部320にチップ310を溶接すること(図2:S110)は、第1期間T1(図5)において、レーザビームLzの照射位置Lpを移動させながら、レーザビームLzの出力条件を変化させることを含んでいる。具体的には、第1期間T1では、レーザビームLzを連続的に照射しつつ、レーザビームLzのパワーPを徐々に低下させる。従って、部材310、320の過度の溶融を抑制できる。
また、第1期間T1のうちのレーザビームLzのパワーPが徐々に低下する期間は、第2期間T2に連続する期間である(図5の実施形態では、第1期間T1の全体)。このように、第1期間T1のうち、少なくとも比較的後の部分期間(すなわち、第2期間T2に連続する部分期間)において、パワーPが徐々に低下する。従って、第1期間T1のうちの比較的前の部分期間でのレーザビームLzの照射によって部材310、320の溶融が進行した状態で、部材310、320に更に供給されるエネルギーが過大になることが抑制される。この結果、部材310、320の過度の溶融を抑制できる。
また、第2期間T2は、複数のサブ期間T2a、T2b、T2cに区分されている。そして、比較的後のサブ期間でのレーザビームLzのパワーPの平均は、比較的前のサブ期間でのレーザビームLzのパワーPの平均よりも、小さい(具体的には、Pa>Pb>Pc)。このように、パワーPの平均が時間Tの経過に応じて小さくなるので、部材310、320の過度の溶融を抑制できる。
また、第2期間T2におけるレーザビームLzのパワーPは、第1期間T1の最後におけるパワーP(具体的には、第2パワーP2)と同じである。仮に、第2期間T2でのパルス状のレーザビームLzのパワーPが、第1期間T1の最後でのパワーP2よりも大きい場合には、大きなパワーPのパルス状のレーザビームLzの照射によって、部材310、320の溶融した部分が飛び散る可能性がある。本実施形態では、そのような不具合を抑制できる。また、仮に、第2期間T2でのパルス状のレーザビームLzのパワーPが、第1期間T1の最後でのパワーP2よりも小さい場合には、レーザビームLzが不安定になり得る。本実施形態では、そのような不具合を抑制できる。
また、第2期間T2は、複数のサブ期間T2a、T2b、T2cに区分されている。そして、比較的後のサブ期間でのレーザビームLzのパルス幅は、比較的前のサブ期間でのレーザビームLzのパルス幅よりも、狭い。従って、比較的後のサブ期間での平均化されたパワーを、比較的前のサブ期間での平均化されたパワーよりも、容易に小さくできる。
なお、図4(C)の概略図では、スポット痕334a、334b、334cは、それぞれ、サブ期間T2a、T2b、T2cに形成された痕である。スポット痕334a、334b、334cの大きさ(例えば、最大外径)は、パルス幅が大きいほど大きい。本実施形態では、スポット痕の大きい順番は、スポット痕334a、334b、334cの順である。また、連続痕332とスポット痕334aとの境界332eは、第1期間T1から第2期間T2への切り替わりを示している。
また、連続痕332の幅(ここでは、軸線CLに平行な方向の幅)は、スポット痕334aに向かって、徐々に小さくなっている。この理由は、第1期間T1において、パワーPが、時間Tの経過に応じて徐々に小さくなっているからである。そして、連続痕332とスポット痕334aとの境界332eにおける連続痕332の幅は、スポット痕334aの最大外径と、おおよそ同じである。これは、第1期間T1の最後でのパワーPが、第1期間T1に続くサブ期間T2aでのパルス状のレーザビームLzのパワーPと、同じであるからである。
なお、スポット痕334a、334b、334cのそれぞれの実際の総数は、サブ期間T2a、T2b、T2cのそれぞれにおけるパルスの総数と同じである。図4(C)では、複数のスポット痕334a、334b、334cの図示が簡略化されており、それぞれの総数は、図5のパターンに対応する数よりも少ない。また、図4(C)の例では、スポット痕334a、334b、334cは、隣のスポット痕334a、334b、334cと重なっている。パルスの繰り返しの周期が長い場合、複数のスポット痕334a、334b、334cは、互いに離間して形成され得る。
また、比較的後のサブ期間においては、レーザビームLzのパルス幅が狭いので、平均化された単位時間当たりの出力エネルギーを大きくせずに、パルス状のレーザビームLzが照射される周期を短くできる。従って、レーザビームLzのパルスとパルスとの間のレーザビームLzが照射されないオフ時間が長くなることを抑制できるので、パルス状のレーザビームLzのスポット状の照射位置Lpと隣の照射位置Lpとの間の距離が大きくなることを抑制できる。この結果、照射位置Lpと隣の照射位置Lpとの間における部材310、320の溶融が不十分になることを抑制できる。
例えば、図5の実施形態では、サブ期間T2cのパルスPLcの繰り返しの周期(PWc+POc)は、サブ期間T2cよりも前のサブ期間のパルスの繰り返しの周期(例えば、サブ期間T2aでの周期(PWa+POa)とサブ期間T2bでの周期(PWb+POb))よりも、短い。従って、部材310、320(図4(B))のうちのサブ期間T2cのレーザビームLzの照射によって溶接される部分に、溶融不足に起因する接合不良が生じることを抑制できる。特に、図5の実施形態では、サブ期間T2cのオフ時間POcは、サブ期間T2cよりも前のサブ期間のオフ時間(例えば、サブ期間T2aのオフ時間POaとサブ期間T2bのオフ時間POb)よりも短い。従って、部材310、320(図4(B))のうちのサブ期間T2cのレーザビームLzの照射によって溶接される部分の不具合を、適切に、抑制できる。
B.第2実施形態:
図6は、接地電極の別の実施形態の説明図である。図中には、接地電極30bの先端部が示されている。接地電極30bは、図1の点火プラグ100の接地電極30の代わりに、利用可能である。図中の中心軸CLと方向Df、Dfrとは、完成した点火プラグ100における接地電極30bの本体部37の先端部34から見た中心軸CLと方向Df、Dfrとを示している。以下、中心軸CLと方向Df、Dfrとを用いて、位置関係を説明する。図6(A)は、中心軸CLに平行な方向(具体的には、前方向Df)を向いて見た外観を示し、図6(B)は、中心軸CLに垂直な方向を向いて見た外観を示している。本実施形態では、チップ部300(図1)の代わりにチップ310bが、本体部37の先端部34の後方向Dfr側の面に溶接される。チップ310bは、中心軸CLを中心とする略矩形状の部材であり、本体部37よりも放電に対する耐久性に優れる材料(例えば、イリジウム(Ir)、白金(Pt)等の貴金属)を用いて形成されている。接地電極30bの他の部分の構成は、図1の接地電極30の対応する部分の構成と同じである(詳細な説明を省略する)。
図6は、接地電極の別の実施形態の説明図である。図中には、接地電極30bの先端部が示されている。接地電極30bは、図1の点火プラグ100の接地電極30の代わりに、利用可能である。図中の中心軸CLと方向Df、Dfrとは、完成した点火プラグ100における接地電極30bの本体部37の先端部34から見た中心軸CLと方向Df、Dfrとを示している。以下、中心軸CLと方向Df、Dfrとを用いて、位置関係を説明する。図6(A)は、中心軸CLに平行な方向(具体的には、前方向Df)を向いて見た外観を示し、図6(B)は、中心軸CLに垂直な方向を向いて見た外観を示している。本実施形態では、チップ部300(図1)の代わりにチップ310bが、本体部37の先端部34の後方向Dfr側の面に溶接される。チップ310bは、中心軸CLを中心とする略矩形状の部材であり、本体部37よりも放電に対する耐久性に優れる材料(例えば、イリジウム(Ir)、白金(Pt)等の貴金属)を用いて形成されている。接地電極30bの他の部分の構成は、図1の接地電極30の対応する部分の構成と同じである(詳細な説明を省略する)。
接地電極30bを有する点火プラグ100の製造方法は、S110(図2)の処理を除いて、図2で説明した方法と同じである。S110では、本体部37にチップ310bが溶接される。なお、本実施形態では、本体部37は、チップ310bが固定される基部に対応する。
チップ310bを本体部37に溶接する際には、図6(B)に示すように、チップ310bは、本体部37の先端部34の後方向Dfr側の面上に、載せ置かれる。図2のS112では、図示しない支持装置は、この状態で、チップ310bと本体部37とを支持する。S114では、溶接システム900(図3)は、チップ310bと本体部37との境界314に、レーザビームLzを照射する。レーザビームLzは、本体部37の先端部34の延びる方向Dpとは反対の方向に向かって、照射される。そして、レーザビームLzの照射位置Lp(図6(A))が、境界314の方向Dp側の縁314Lの全体を、縁314Lの端314aから反対側の端314bまで、走査するように、レーザビームLzは、方向Dpに垂直な方向に向かって、移動される。これにより、境界314の全体に亘って溶接が行われ、チップ310bと本体部37とを接合する接合部330b(図6(A))が形成される。そして、チップ310bが本体部37に接合される。このように、本実施形態では、溶接される部材310b、37は動かずに、レーザビームLzが移動する。
本実施形態においても、制御装置910(図3)は、図5で説明したグラフに従って、レーザ装置920を制御する。これにより、本実施形態も、図5で説明した種々の利点を、実現可能である。例えば、レーザビームLzのパワーPが時間Tの経過に応じて小さくなるので、部材310b、37の過剰な溶融を抑制できる。
C.変形例:
(1)チップを基部に溶接する方法としては、上記の方法に限らず、レーザビームLzの照射位置Lpを移動させながら、レーザビームLzを照射する種々の方法を採用可能である。図5のグラフで説明した実施形態に限らず、第1期間と、第1期間に続く第2期間と、を含む種々の実施形態を採用可能である。ここで、第1期間では、照射位置Lpを移動させながら、レーザビームLzを連続的に照射する。第2期間では、照射位置Lpを移動させながら、レーザビームLzをパルス状の出力パターンで複数回照射する。すなわち、レーザビームLzのオン(すなわち、照射)とオフ(すなわち、照射の停止)とが、複数回、繰り返される。
(1)チップを基部に溶接する方法としては、上記の方法に限らず、レーザビームLzの照射位置Lpを移動させながら、レーザビームLzを照射する種々の方法を採用可能である。図5のグラフで説明した実施形態に限らず、第1期間と、第1期間に続く第2期間と、を含む種々の実施形態を採用可能である。ここで、第1期間では、照射位置Lpを移動させながら、レーザビームLzを連続的に照射する。第2期間では、照射位置Lpを移動させながら、レーザビームLzをパルス状の出力パターンで複数回照射する。すなわち、レーザビームLzのオン(すなわち、照射)とオフ(すなわち、照射の停止)とが、複数回、繰り返される。
チップを基部に溶接する方法としては、例えば、以下のような変形例を採用してよい。レーザビームLzが連続的に照射される第1期間T1のうち、パワーPが徐々に低下する期間である特定期間は、第1期間T1の少なくとも一部の期間であってよい。特定期間は、第1期間T1の全体であってよく、これに代えて、第1期間T1のうちの一部の部分期間であってもよい。例えば、特定期間は、第1期間T1の開始タイミングを含む一部の期間(すなわち、比較的前の部分期間)であってよく、第2期間T2に連続な一部の期間(すなわち、比較的後の部分期間)であってよく、第1期間T1の開始タイミングよりも遅く、かつ、第2期間T2の開始タイミングよりも早い、一部の期間であってよい。いずれの場合も、第1期間T1のうちの特定期間とは異なる期間では、パワーPは、増大せずに一定であることが好ましい。これによれば、基部とチップとの過度の溶融を抑制できる。ただし、第1期間T1のうちの特定期間とは異なる期間において、時間Tの経過に応じてパワーPが増大してもよい。
第1期間T1のうちの特定期間において、パワーPは、時間Tの経過に対して、直線的に低下してもよく、曲線を描くように低下してもよい。このように、パワーPは、時間Tの経過に対して、連続的に低下してよい。また、パワーPは、時間Tの経過に対して、階段状に低下してもよい。いずれの場合も、第1期間T1のうちの特定期間において、パワーPが、ゼロにならず、増加せず、複数のタイミングで低下する場合には、パワーPは、特定期間内で徐々に低下しているといえる。
また、第2期間T2におけるパルス状のレーザビームLzのパワーPは、第1期間T1の最後におけるレーザビームLzのパワーP(図5の例では、第2パワーP2)と比べて、大きくてもよく、小さくてもよい。また、第2期間T2において、パルス状のレーザビームLzのパワーPが、時間Tの経過に応じて変化してもよい。例えば、比較的後のパルスのパワーPが、比較的先のパルスのパワーPよりも、小さくてもよい。また、1個のパルスの形状(波形とも呼ばれる)は、矩形状に限らず、曲線や折れ線など、時間Tの経過に応じてパワーPが変化することを示す線で表されてもよい。いずれの場合も、1個のパルスのパワーPとしては、1個のパルスの最大のパワーを採用してよい。また、1個のパルスのパルス幅としては、最大のパワーの半分のパワーでの幅(半値全幅とも呼ばれる)を採用してよい。
また、第1期間T1の前に別の期間が設けられていてもよい。第1期間T1の前の期間では、例えば、照射位置Lpを移動させながら、レーザビームLzをチップと基部との境界にパルス状の出力パターンで複数回照射してもよい。
また、図5の実施形態では、第2期間T2において、パルス幅は、2つのサブ期間T2a、T2bの間と、2つのサブ期間T2b、T2cの間とで、変化している。このように、第2期間T2内で、パルス幅は、2回、変化している。第2期間T2においてパルス幅が変化する回数は、2回に限らず、1回であってもよく、3回以上であってもよい。同じパルス幅の1個以上のパルスが連続する部分期間を1個の等幅パルス期間として特定する場合に、第2期間T2は、N個(Nは2以上の整数)の等幅パルス期間を含んでよい。また、パルス幅は、時間Tの経過に応じて徐々に変化してもよい。いずれの場合も、第2期間T2のうち、比較的後の一部の期間のパルス幅は、比較的前の一部の期間のパルス幅よりも狭いことが好ましい。この構成によれば、平均化されたパワーPを時間Tの経過に応じて容易に小さくできるので、チップと基部との過度の溶融を抑制できる。但し、比較的後の一部の期間のパルス幅が、比較的前の一部の期間のパルス幅よりも、広くてもよい。また、パルス幅が、第2期間T2の全体に亘って、一定であってもよい。また、パルス状のレーザビームLzが出力される周期(すなわち、パルスの周期)が、時間Tの経過に応じて変化してもよい。また、パルスの周期は、第2期間T2の全体に亘って、一定であってもよい。
また、図5の実施形態では、第2期間T2において、レーザビームLzのパワーPの平均が同じである連続な部分期間は、レーザビームLzのパルス幅が同じである連続な部分期間と、共通である(具体的には、3つのサブ期間T2a、T2b、T2c)。ただし、パワーPの平均は、パルス幅の変化とは独立に、変化してよい。例えば、パワーPの平均が同じである連続な部分期間が、同じパルス幅の1個以上のパルスが連続する部分期間とは、異なっていてもよい。また、第2期間T2の全体に亘ってパワーPとパルス幅が一定であり、サブ期間T2a、T2b、T2cのそれぞれのオフ時間POa、POb、POcの大小関係が、POa<POb<POcであってもよい。この場合には、パワーPの平均の大きい順番は、サブ期間T2a、T2b、T2cの順である。
また、図5の実施形態では、パワーPの平均は、パルス幅と同じく、2回変化している。パワーPの平均が変化する回数は、2回に限らず、1回でもよく、3回以上であってもよい。また、パワーPの平均は、時間Tの経過に応じて徐々に変化してもよい。例えば、第2期間T2の全体に亘ってパワーPとパルス幅とが一定であり、オフ時間が、時間Tの経過に応じて徐々に大きくなってもよい。いずれの場合も、第2期間T2のうち、比較的後の一部の期間におけるパワーPの平均は、比較的前の一部の期間におけるパワーPの平均よりも、小さいことが好ましい。この構成によれば、平均化されたパワーPを時間Tの経過に応じて小さくできるので、チップと基部との過度の溶融を抑制できる。
ここで、第2期間T2は、パワーPの平均が増大する期間を含まず、パワーPの平均が一定である期間と、パワーPの平均が低減する期間と、の少なくとも一方で構成されていることが好ましい。すなわち、第2期間T2においては、パワーPの平均の経時変化が、増大せずに、一定値を維持することと、低減することと、の少なくとも一方で構成されるように、レーザビームLzの出力条件を制御することが好ましい。なお、パワーPの平均を変化させるための出力条件の制御方法としては、種々の方法を採用可能である。パワーPの平均を小さくする方法としては、例えば、パワーPを小さくしてもよく、パルス幅を小さくしてもよく、オフ時間を長くしてもよい。
いずれの場合も、第1期間T1の最後におけるパワーPは、レーザ装置920(図3)が安定してレーザビームLzを出力することが可能なパワーPの調整可能範囲(以下、安定範囲とも呼ぶ)のうちの最小値であることが好ましい。この構成によれば、第1期間T1では、レーザ装置920によるパワーPの安定範囲を有効に利用して、パワーPを低下させることができるので、チップと基部との過剰な溶融を適切に抑制できる。ただし、第1期間T1の最後におけるパワーPが、安定範囲のうちの最小値よりも大きくてもよい。一般的には、レーザビームLzの照射を安定化させるためには、第1期間T1の最後におけるパワーPは、安定範囲のうちの最小値以上であることが好ましい。
また、第2期間T2におけるパルス状のレーザビームLzのパワーPは、レーザ装置920のパワーPの安定範囲のうちの最小値であることが好ましい。この構成によれば、第2期間T2におけるレーザビームLzの照射が不安定になることを抑制しつつ、パルス状のレーザビームLzのパワーPが大きいことに起因する不具合(例えば、急激な温度変化によるクラックの形成や、大きなパワーPのレーザビームLzの照射による溶融材料の飛散など)を抑制できる。ただし、第2期間T2におけるレーザビームLzのパワーPが、安定範囲のうちの最小値よりも大きくてもよい。一般的には、レーザビームLzの照射を安定化させるためには、第2期間T2におけるパルス状のレーザビームLzのパワーPは、安定範囲のうちの最小値以上であることが好ましい。いずれの場合も、第2期間T2におけるパルス状のレーザビームLzのパワーPは、第1期間T1の最後におけるパワーPと同じであってよく、第1期間T1の最後におけるパワーPと比べて、大きくてもよく、小さくてもよい。
なお、第2期間T2における出力条件(例えば、パルスの周期とパルス幅と照射されるレーザビームLzのパワーP)は、第2期間T2における平均化された単位時間当たりの出力エネルギーが、第1期間T1の最後における単位時間当たりの出力エネルギーP以下であるように、構成されていることが好ましい。この構成によれば、第2期間T2におけるチップと基部との過度の溶融を抑制できる。また、第2期間T2における出力条件は、平均化された単位時間当たりの出力エネルギーが時間Tの経過に応じて小さくなるように、構成されていることが好ましい。例えば、平均化された単位時間当たりの出力エネルギーが、第2期間T2に含まれる複数のサブ期間によって、段階的に小さくなるように、出力条件が構成されていてもよい。
(2)チップが溶接される基部は、図3の基部320のような台座や、図6の本体部37のような棒部材に代えて、他の種々の部材であってよい。また、中心電極のチップの溶接(例えば、図1の中心電極20の第1チップ29と棒部28との溶接)に、第1期間と第2期間とを含む方法を適用してよい。ここで、第1期間では、レーザビームLzの照射位置Lpを移動させながらレーザビームLzを連続的に照射し、第2期間では、照射位置Lpを移動させながらレーザビームLzをパルス状の出力パターンで複数回照射する。また、チップの材料は、貴金属(例えば、白金)を含む材料に限らず、他の種々の材料であってよい。チップが溶接される基部の材料も、ニッケルを含む材料に限らず、他の種々の材料であってよい。
(3)レーザビームLzの照射位置Lpを移動させる方法としては、種々の方法を採用可能である。図4(A)の実施形態のように、レーザビームLzを動かさずにチップと基部(例えば、チップ310と基部320)を動かす方法を採用してもよい。図6(A)の実施形態のように、チップと基部(例えば、チップ310bと本体部37)を動かさずにレーザビームLzを動かす方法を採用してもよい。また、チップと基部とで構成される部材と、レーザビームLzと、の双方を動かす方法を採用してもよい。また、レーザビームLzは、図4(A)の実施形態のように、チップと基部との境界(例えば、境界312)の縁の全周に亘って照射されてよい。また、レーザビームLzは、図6(A)の実施形態のように、チップと基部との境界(例えば、境界314)の縁の一部のみに照射されてもよい。いずれの場合も、レーザビームLzは、境界の全体に亘って溶接を実現するのに十分なパワーPを有していることが好ましい。
(4)チップの溶接用のビームとしては、レーザビームに代えて、電子ビームなど、チップと基部とのうちのビームが照射された部分を溶融させることが可能な種々のエネルギービームを採用可能である。いずれの場合も、チップと基部との接合部の外面上には、エネルギービームが照射された部分の痕が残り得る。図4(C)の実施形態のように連続痕とスポット痕(例えば、連続痕332とスポット痕334a、334b、334c)とが形成されている場合には、エネルギ
ービームの照射位置を移動させながら出力条件を変化させる溶接が行われた(具体的には、エネルギービームの連続的な照射とパルス状のエネルギービームの複数回の照射とを用いる溶接が行われた)、と推定可能である。また、連続痕とスポット痕との境界から比較的遠いスポット痕の大きさ(例えば、最大外径)が、連続痕とスポット痕との境界に比較的近いスポット痕の大きさよりも小さい場合、パルス状のレーザビームLzを用いる期間のうちの比較的後のサブ期間でのパルス幅が、比較的前のサブ期間でのパルス幅よりも、狭い、と推定可能である。
ービームの照射位置を移動させながら出力条件を変化させる溶接が行われた(具体的には、エネルギービームの連続的な照射とパルス状のエネルギービームの複数回の照射とを用いる溶接が行われた)、と推定可能である。また、連続痕とスポット痕との境界から比較的遠いスポット痕の大きさ(例えば、最大外径)が、連続痕とスポット痕との境界に比較的近いスポット痕の大きさよりも小さい場合、パルス状のレーザビームLzを用いる期間のうちの比較的後のサブ期間でのパルス幅が、比較的前のサブ期間でのパルス幅よりも、狭い、と推定可能である。
(5)点火プラグ100の製造方法としては、図2で説明した方法に代えて、他の種々の方法を採用可能である。例えば、主体金具50に接地電極30を接合する工程は、主体金具50に絶縁体10と中心電極20と端子金具40とを含む組立体が固定されるよりも後に行われてもよい。また、本体部37にチップ部300を接合する工程は、主体金具50に本体部37を接合するよりも後に行われてもよい。
(6)点火プラグの構成は、図1で説明した構成に代えて、他の種々の構成であってよい。例えば、中心電極の側面(軸線CLに垂直な方向側の面)と、接地電極とが、放電用のギャップを形成してもよい。放電用のギャップの総数が2以上であってもよい。抵抗体73が省略されてもよい。絶縁体10の貫通孔12内の中心電極20と端子金具40との間に、磁性体が配置されてもよい。
(7)図3の制御装置910は、レーザ装置920(ひいては、エネルギービームを出力する装置)に組み込まれていてもよい。また、上記各実施形態において、ハードウェアによって実現されていた構成の一部をソフトウェアに置き換えるようにしてもよく、逆に、ソフトウェアによって実現されていた構成の一部あるいは全部をハードウェアに置き換えるようにしてもよい。例えば、エネルギービームの出力条件を変更する機能を、専用のハードウェア回路によって実現してもよい。
また、本発明の機能の一部または全部がコンピュータプログラムで実現される場合には、そのプログラムは、コンピュータ読み取り可能な記録媒体(例えば、一時的ではない記録媒体)に格納された形で提供することができる。プログラムは、提供時と同一または異なる記録媒体(コンピュータ読み取り可能な記録媒体)に格納された状態で、使用され得る。「コンピュータ読み取り可能な記録媒体」は、メモリーカードやCD-ROMのような携帯型の記録媒体に限らず、各種ROM等のコンピュータ内の内部記憶装置や、ハードディスクドライブ等のコンピュータに接続されている外部記憶装置も含み得る。
以上、実施形態、変形例に基づき本発明について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれる。
8…先端側パッキン、10…絶縁体、11…縮内径部、12…軸孔(貫通孔)、13…後端側胴部、14…大径部、15…先端側胴部、16…縮外径部、19…脚部、20…中心電極、21…外層、22…芯部、23…鍔部、24…頭部、27…軸部、28…棒部、29…第1チップ、30、30b…接地電極、31…外層、32…内層、33…基端部、34…先端部、37…本体部、40…端子金具、41…軸部、48…鍔部、49…キャップ装着部、50…主体金具、51…工具係合部、52…胴部、53…カシメ部、54…鍔部、55…先端面、56…縮内径部、57…ネジ部、58…座屈部、59…貫通孔、61、62…リング部材、70…タルク、72…第1シール部、73…抵抗体、74…第2シール部、90…ガスケット、100…点火プラグ、300…チップ部、310、310b…チップ、312、314…境界、314L…縁、314a、314b…端、320…基部、321…大径部、321p…凸部、322…小径部、330、330b…接合部(溶融部)、332…連続痕、332e…境界、334a、334b、334c…スポット痕、900…溶接システム、910…制御装置、920…レーザ装置、g…ギャップ、CL…中心軸(軸線)、Df…先端方向(前方向)、Dfr…後端方向(後方向)、Dp…方向、Lp…照射位置、Lz…レーザビーム
Claims (6)
-
基部と前記基部に固定されたチップとを有する電極を備える点火プラグの製造方法であって、
前記基部と前記チップとの境界にエネルギービームを照射することにより、前記基部に前記チップを溶接することを含み、
前記基部に前記チップを溶接することは、
第1期間で、前記エネルギービームの照射位置を移動させながら、前記エネルギービームを連続的に照射することと、
前記第1期間に続く第2期間で、前記エネルギービームの照射位置を移動させながら、前記エネルギービームをパルス状の出力パターンで複数回照射することと、
を含む、製造方法。 -
請求項1に記載の点火プラグの製造方法であって、
前記第1期間のうちの少なくとも一部の期間である特定期間では、前記エネルギービームの単位時間当たりの出力エネルギーを徐々に低下させる、
製造方法。 -
請求項2に記載の点火プラグの製造方法であって、
前記特定期間は、前記第2期間に連続する期間である、
製造方法。 - 請求項1から3のいずれかに記載の点火プラグの製造方法であって、
前記第2期間は、第1部分期間と、前記第1部分期間よりも後の第2部分期間と、を含み、
前記第2部分期間における前記エネルギービームの単位時間当たりの出力エネルギーの平均は、前記第1部分期間における前記エネルギービームの単位時間当たりの出力エネルギーの平均よりも、小さい、
製造方法。 -
請求項1から4のいずれかに記載の点火プラグの製造方法であって、
前記第2期間における前記エネルギービームの単位時間当たりの出力エネルギーは、前記第1期間の最後における前記エネルギービームの単位時間当たりの出力エネルギーと、
同じである、
製造方法。 -
請求項1から5のいずれかに記載の点火プラグの製造方法であって、
前記第2期間は、第1サブ期間と、前記第1サブ期間よりも後の第2サブ期間と、を含み、
前記第2サブ期間における前記エネルギービームのパルス幅は、前記第1サブ期間における前記エネルギービームのパルス幅よりも、狭い、
製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780084647.9A CN110235323B (zh) | 2017-01-27 | 2017-12-11 | 火花塞的制造方法 |
US16/481,164 US10680416B2 (en) | 2017-01-27 | 2017-12-11 | Method for producing a spark plug including an electrode having a base portion and a tip fixed to the base portion |
DE112017006667.0T DE112017006667B4 (de) | 2017-01-27 | 2017-12-11 | Verfahren zur Herstellung von Zündkerzen und Zündkerze |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017012807A JP6532491B2 (ja) | 2017-01-27 | 2017-01-27 | 点火プラグの製造方法 |
JP2017-012807 | 2017-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018139079A1 true WO2018139079A1 (ja) | 2018-08-02 |
Family
ID=62978953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/044453 WO2018139079A1 (ja) | 2017-01-27 | 2017-12-11 | 点火プラグの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10680416B2 (ja) |
JP (1) | JP6532491B2 (ja) |
CN (1) | CN110235323B (ja) |
DE (1) | DE112017006667B4 (ja) |
WO (1) | WO2018139079A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6545211B2 (ja) * | 2017-03-15 | 2019-07-17 | 日本特殊陶業株式会社 | 点火プラグの製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01233085A (ja) * | 1988-03-15 | 1989-09-18 | Nec Corp | レーザ溶接方法 |
JP2013178912A (ja) * | 2012-02-28 | 2013-09-09 | Denso Corp | 内燃機関用のスパークプラグ及びその製造方法 |
JP2014223660A (ja) * | 2013-05-17 | 2014-12-04 | 日本アビオニクス株式会社 | レーザ溶接方法およびレーザ溶接装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3878807B2 (ja) * | 2000-11-30 | 2007-02-07 | 日本特殊陶業株式会社 | スパークプラグの製造方法 |
JP2008270185A (ja) * | 2007-03-29 | 2008-11-06 | Ngk Spark Plug Co Ltd | スパークプラグの製造方法 |
WO2012039381A1 (ja) * | 2010-09-24 | 2012-03-29 | 日本特殊陶業株式会社 | スパークプラグ用の電極を形成するための電極用複合体の製造方法、及びスパークプラグの製造方法 |
JP5576753B2 (ja) | 2010-09-29 | 2014-08-20 | 日本特殊陶業株式会社 | スパークプラグの製造方法 |
US9257817B2 (en) | 2010-11-17 | 2016-02-09 | Ngk Spark Plug Co., Ltd. | Spark plug having fusion zone |
-
2017
- 2017-01-27 JP JP2017012807A patent/JP6532491B2/ja active Active
- 2017-12-11 CN CN201780084647.9A patent/CN110235323B/zh active Active
- 2017-12-11 DE DE112017006667.0T patent/DE112017006667B4/de active Active
- 2017-12-11 WO PCT/JP2017/044453 patent/WO2018139079A1/ja active Application Filing
- 2017-12-11 US US16/481,164 patent/US10680416B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01233085A (ja) * | 1988-03-15 | 1989-09-18 | Nec Corp | レーザ溶接方法 |
JP2013178912A (ja) * | 2012-02-28 | 2013-09-09 | Denso Corp | 内燃機関用のスパークプラグ及びその製造方法 |
JP2014223660A (ja) * | 2013-05-17 | 2014-12-04 | 日本アビオニクス株式会社 | レーザ溶接方法およびレーザ溶接装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6532491B2 (ja) | 2019-06-19 |
DE112017006667B4 (de) | 2024-09-12 |
US20190393683A1 (en) | 2019-12-26 |
US10680416B2 (en) | 2020-06-09 |
CN110235323B (zh) | 2020-07-21 |
JP2018120808A (ja) | 2018-08-02 |
CN110235323A (zh) | 2019-09-13 |
DE112017006667T5 (de) | 2019-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5639021B2 (ja) | スパークプラグの製造方法 | |
JP6017027B2 (ja) | スパークプラグ | |
EP3378593B1 (en) | Method of manufacturing spark plug with first and second laser welding steps | |
US8506341B2 (en) | Method of manufacturing sparkplugs | |
KR101915376B1 (ko) | 스파크 플러그 | |
WO2018139079A1 (ja) | 点火プラグの製造方法 | |
US9825432B2 (en) | Spark plug for internal combustion engine and production method thereof | |
JP5576753B2 (ja) | スパークプラグの製造方法 | |
US9899805B2 (en) | Method for manufacturing spark plug | |
JP2005203121A (ja) | スパークプラグの製造方法 | |
JP2009158408A (ja) | スパークプラグの製造方法 | |
JP6971956B2 (ja) | 点火プラグの製造方法、および、点火プラグ | |
JP2017195127A (ja) | スパークプラグの製造方法 | |
JP2020119800A (ja) | 点火プラグ | |
JP2019129083A (ja) | 点火プラグの製造方法 | |
JP6174971B2 (ja) | グロープラグの製造方法 | |
KR20090123055A (ko) | 점화플러그 귀금속 전극팁 용접방법 | |
JP2010205492A (ja) | スパークプラグ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17894190 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17894190 Country of ref document: EP Kind code of ref document: A1 |