WO2018137605A1 - 传输方法及装置 - Google Patents

传输方法及装置 Download PDF

Info

Publication number
WO2018137605A1
WO2018137605A1 PCT/CN2018/073779 CN2018073779W WO2018137605A1 WO 2018137605 A1 WO2018137605 A1 WO 2018137605A1 CN 2018073779 W CN2018073779 W CN 2018073779W WO 2018137605 A1 WO2018137605 A1 WO 2018137605A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
transmission
parameter
information
determined
Prior art date
Application number
PCT/CN2018/073779
Other languages
English (en)
French (fr)
Inventor
黎超
张兴炜
时洁
孙迎花
刘哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22171708.5A priority Critical patent/EP4102749A1/en
Priority to EP18744627.3A priority patent/EP3573263B1/en
Priority to ES18744627T priority patent/ES2924502T3/es
Priority to JP2019539815A priority patent/JP6918950B2/ja
Priority to CN201880008374.4A priority patent/CN110235395B/zh
Priority to KR1020197024377A priority patent/KR102301337B1/ko
Priority to RU2019126450A priority patent/RU2754433C2/ru
Priority to BR112019015083-8A priority patent/BR112019015083A2/pt
Publication of WO2018137605A1 publication Critical patent/WO2018137605A1/zh
Priority to US16/521,335 priority patent/US11356977B2/en
Priority to US17/739,539 priority patent/US11963197B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the embodiments of the present invention relate to the technical field of communication methods, and in particular, to a transmission method and apparatus.
  • the entire 5G system will be more flexible and complicated than the LTE system.
  • the process of transmission a large number of parameters for data transmission need to be transmitted and detected between transceivers. Once some of the parameters are in the process of communication, an uncorrectable error will occur in the subsequent transmission process.
  • the traditional channel coding and decoding mechanism can only solve the correctness of the information bits in the data transmission process, and cannot solve the verification problem of the transmission parameters. Therefore, it is particularly important to further support a mechanism for flexible and timely verification of a large number of transmission parameters.
  • Embodiments of the present invention provide a transmission method and apparatus to provide a new mechanism for verifying transmission errors.
  • an embodiment of the present invention provides a transmission method, where the method includes: a first device generating a sequence according to a transmission parameter; wherein the transmission parameter includes at least one of: a time domain resource type, and a transmission waveform Indication information, subcarrier spacing indication information, device type information, service type indication information, multiple input multiple output MIMO parameter information, duplex mode indication information, control channel format indication information, transmission carrier indication information, and the first device usage
  • the sequence generates information to be transmitted; the first device sends the information to be transmitted.
  • the generating, by the first device, the information to be transmitted by using the sequence includes: the first device uses the sequence to perform data scrambling, and the information to be transmitted is scrambled. Transmitting data; or, the first device generates a reference signal using the sequence, and the information to be transmitted is a scrambled reference signal.
  • a transmission parameter is introduced in the sequence, and the information to be transmitted is generated by using the sequence, and the receiver determines whether the transmission parameter is correctly received according to whether the information is correctly received, and can implement the transmission. Verification of parameters.
  • the sequence is generated by using the transmission parameter, used to scramble data or generate a reference signal, and after receiving the data or reference signal scrambled by the sequence, the receiver first De-interference is performed. If the transmission parameter estimates an error during communication, regardless of how high the SNR of the current receiver is, the receiver determines the received packet error, and the receiving opportunity promptly checks whether the previously received transmission parameter is received correctly. It will not be tried or retransmitted all the time, which can reduce unnecessary retransmissions and power consumption, and can also reduce the accumulation or transmission of data transmission errors.
  • the first device generates a sequence according to the transmission parameter, including: the first device determines an initial value of the sequence according to at least one of the transmission parameters and/or the The initial position of the sequence is generated based on an initial value of the sequence and/or an initial position of the sequence.
  • the transmission parameter is introduced into the initial value and/or the initial position of the sequence, and the receiver generates the sequence in the same manner, and uses the generated sequence to verify whether the transmitted information is correct, thereby implementing the transmission parameter. check.
  • the transmission parameter is introduced into the initial value and/or the initial position of the sequence, and the verification of more transmission parameters can be implemented without increasing the sequence length.
  • the transmission parameters further include a time domain resource index and/or a cell identity.
  • the time domain resource index is determined by any one of the following methods: a positive integer determined by signaling; determined by a system message period or a synchronization signal transmission interval; determined by a subcarrier spacing; by a predefined The number of slots under the subcarrier spacing used within the duration is determined.
  • the first device may determine an initial value and/or an initial position of the sequence according to an index of the time domain, and may re-number the time domain resources and renumber the re-divided time domain resources. Determining a new time domain resource index, thereby determining a sequence by using a new time domain resource index, thereby solving how to allocate time slots for different subcarrier intervals within a preset length of time-frequency resources without modifying the sequence.
  • the parameter generates a problem with the scrambling sequence.
  • the first device determines an initial value of the sequence and/or an initial position of the sequence according to at least one of the transmission parameters, including: the first device uses the A first parameter of the transmission parameter generates an initial value of the sequence, and a second parameter of the transmission parameter is used to generate an initial position of the sequence, the first parameter being different from the second parameter; or The initial value of the sequence and the initial position of the sequence are determined according to different bits of the same transmission parameter, respectively.
  • the transmission parameters used to determine the initial value of the sequence and the initial position of the sequence may be different or the same.
  • different bits of the same transmission parameter may be respectively used to determine the initial value and the initial position of the sequence, for example, all bits of the same transmission parameter are divided into Two parts, one part is used to generate the initial value of the sequence, and the other part is used to determine the initial position of the sequence, so that the transmission parameter can be verified by combining the initial value of the sequence and the initial position of the sequence.
  • the first device uses the sequence to generate information to be transmitted, including: the first device determines to be used according to a service type parameter of the data to be transmitted and/or a capability type of the receiving device. Generating a sequence of the information to be transmitted; the first device generates information to be transmitted using the determined sequence.
  • multiple or multiple types of transmission parameters may be defined in advance, and each or each type of transmission parameter respectively corresponds to a different service type and/or a capability type of the receiving device.
  • the first device determines the sequence to be used according to the service type parameter of the data to be transmitted and/or the capability type of the receiving device, and generates the information to be transmitted using the determined sequence.
  • the first device generates a sequence according to the transmission parameter, including: the first device generates a plurality of sub-sequences according to the transmission parameters, and each sub-sequence is determined by all or a part of the transmission parameters; The first device generates the sequence according to the plurality of sub-sequences, and the length of the sequence is a sum of lengths of the plurality of sub-sequences.
  • the sequence used to generate the information to be transmitted is generated according to multiple sub-sequences, and each sub-sequence is determined by one or more of the foregoing transmission parameters, thereby being introduced in one sequence. More and / or longer transmission parameters.
  • the first device generates a sequence according to the transmission parameter, including: the first device generates a plurality of sub-sequences according to the transmission parameters, and each sub-sequence is determined by all or a part of the transmission parameters;
  • the first device uses the sequence to generate information to be transmitted, including: the first device uses the multiple sub-sequences to scramble data and/or generate a reference signal; or The subsequences are used for different time domain resources.
  • the first device generates multiple sub-sequences according to the transmission parameters, and the first device may use the multiple sub-sequences to scramble the data and/or generate the reference signal.
  • the first device further scrambles data in control information (eg, information in a physical broadcast channel PBCH) transmitted with the synchronization signal, for example, using a time slot or symbol number
  • control information eg, information in a physical broadcast channel PBCH
  • the relevant parameters scramble the control information sent with the synchronization signal.
  • an embodiment of the present invention provides a transmission method, where the method includes: determining, by a first device, an initial location of a generated sequence according to a transmission parameter, where the transmission parameter is a non-constant; the first device uses the The sequence generates information to be transmitted; the first device transmits the information to be transmitted.
  • a transmission parameter is introduced in an initial position of the sequence, and the information to be transmitted is generated by using the sequence, so that more sequences can be introduced in the sequence without changing the sequence length. And / or longer transmission parameters.
  • the receiver determines whether the transmission parameter is correctly received according to whether the information is correctly received, and can verify the transmission parameter.
  • the transmission parameter includes at least one of the following: an index of a time domain resource, a time domain resource type, a transmission waveform indication information, a subcarrier spacing indication information, a device type information, and a service type indication information.
  • the method further comprises the first device determining an initial value of the sequence based on the transmission parameter.
  • the transmission parameter is introduced into the initial value and the initial position of the sequence, and the receiver generates the sequence in the same manner, and uses the generated sequence to verify whether the transmitted information is correct, thereby implementing verification of the transmission parameter.
  • the transmission parameter is introduced into the initial value and the initial position of the sequence, thereby enabling verification of more transmission parameters.
  • the transmission parameter used to determine the initial value of the sequence is different from the transmission parameter used to determine the initial position of the sequence; or the initial value of the sequence and the initial position of the sequence Determined according to different bits of the same transmission parameter.
  • the transmission parameters used to determine the initial value of the sequence and the initial position of the sequence may be different or the same.
  • different bits of the same transmission parameter may be respectively used to determine the initial value and the initial position of the sequence, for example, all bits of the same transmission parameter are divided into Two parts, one part is used to generate the initial value of the sequence, and the other part is used to determine the initial position of the sequence, so that the transmission parameter can be verified by combining the initial value of the sequence and the initial position of the sequence.
  • the index of the time domain resource is determined according to a parameter M, which is determined according to any one of the following ways: a positive integer indicated by a predefined or signaling; by a system message period or synchronization
  • the signal transmission interval is determined; determined by the subcarrier spacing; determined by the number of time slots under the subcarrier spacing used within a predefined duration.
  • the first device may determine an initial value and/or an initial position of the sequence according to an index of the time domain, and may re-number the time domain resources and renumber the re-divided time domain resources. Determining a new time domain resource index, thereby determining a sequence by using a new time domain resource index, thereby solving how to allocate time slots for different subcarrier intervals within a preset length of time-frequency resources without modifying the sequence.
  • the parameter generates a problem with the scrambling sequence.
  • the sequence is determined from a plurality of subsequences, each of the subsequences being determined by all or a portion of the transmission parameters, the length of the sequence being the sum of the plurality of subsequence values.
  • the sequence used to generate the information to be transmitted is generated according to multiple sub-sequences, and each sub-sequence is determined by one or more of the foregoing transmission parameters, thereby being introduced in one sequence. More and / or longer transmission parameters.
  • the sequence includes a plurality of subsequences, each of the subsequences being determined by all or a portion of the transmission parameters; correspondingly, the first device uses the sequence to generate information to be transmitted The first device uses the plurality of sub-sequences to scramble the data to be transmitted and/or generate the reference signal respectively; or the plurality of sub-sequences are respectively used on different time domain resources.
  • the first device generates multiple sub-sequences according to the transmission parameters, and the first device may use the multiple sub-sequences to scramble the data and/or generate the reference signal.
  • the first device uses the sequence to generate information to be transmitted, including: the first device determines to be used according to a service type parameter of the data to be transmitted and/or a capability type of the receiving device. Generating a sequence of the information to be transmitted; the first device generates information to be transmitted using the determined sequence.
  • multiple or multiple types of transmission parameters may be defined in advance, and each or each type of transmission parameter respectively corresponds to a different service type and/or a capability type of the receiving device.
  • the first device determines the sequence to be used according to the service type parameter of the data to be transmitted and/or the capability type of the receiving device, and generates the information to be transmitted using the determined sequence.
  • an embodiment of the present invention provides a transmission method, where the method includes: a second device receives information transmitted by a first device; and the second device uses a sequence to demodulate the received information, where The sequence is determined according to a transmission parameter, where the transmission parameter includes at least one of: a time domain resource type, a transmission waveform indication information, a subcarrier spacing indication information, a device type information, a service type indication information, and a multiple input multiple output MIMO parameter.
  • a transmission parameter is introduced in the sequence, and the information to be transmitted is generated by using the sequence, and the receiver (corresponding to the second device) determines whether the transmission parameter is correctly according to whether the information is correctly received. Receive, which enables verification of transmission parameters.
  • the sequence is generated by using the transmission parameter, used to scramble data or generate a reference signal, and after receiving the data or reference signal scrambled by the sequence, the receiver first De-interference is performed. If the transmission parameter estimates an error during communication, regardless of how high the SNR of the current receiver is, the receiver determines the received packet error, and the receiving opportunity promptly checks whether the previously received transmission parameter is received correctly. It will not be tried or retransmitted all the time, which can reduce unnecessary retransmissions and power consumption, and can also reduce the accumulation or transmission of data transmission errors.
  • the second device determines an initial value of the sequence and/or an initial position of the sequence according to at least one of the transmission parameters, according to an initial value of the sequence and/or The initial position of the sequence generates the sequence.
  • the transmission parameters further include a time domain resource index and/or a cell identity.
  • the time domain resource index is determined by any one of the following methods: a positive integer determined by signaling; determined by a system message period or a synchronization signal transmission interval; determined by a subcarrier spacing; by a predefined The number of slots under the subcarrier spacing used within the duration is determined.
  • the second device determines an initial value of the sequence and/or an initial position of the sequence according to at least one of the transmission parameters, including: the second device uses the A first parameter of the transmission parameter generates an initial value of the sequence, and a second parameter of the transmission parameter is used to generate an initial position of the sequence, the first parameter being different from the second parameter; or The initial value of the sequence and the initial position of the sequence are determined according to different bits of the same transmission parameter, respectively.
  • the second device uses the sequence to demodulate the received information, including: the second device determines to be used according to a service type parameter of the transmission data and/or a capability type of the receiving device. a sequence of demodulating the received information; the second device demodulates the received information using the determined sequence.
  • the sequence is determined according to transmission parameters, including: the sequence is determined according to a plurality of sub-sequences, each sub-sequence being determined by all or a part of the transmission parameters, the length of the sequence being The sum of the lengths of the subsequences.
  • the determining according to the transmission parameter comprises: the sequence comprises a plurality of sub-sequences, each sub-sequence being determined by all or a part of the transmission parameter; correspondingly, the second device uses a sequence solution And adjusting the received information, the second device demodulating the received information by using the multiple subsequences; or the plurality of subsequences are respectively used on different time domain resources.
  • an embodiment of the present invention provides a transmission method, where the method includes: a second device receives information transmitted by a first device; and the second device uses a sequence to demodulate the received information, where The initial position of the sequence is determined based on transmission parameters, which are non-constant.
  • a transmission parameter is introduced in an initial position of the sequence, and the information to be transmitted is generated by using the sequence, so that more sequences can be introduced in the sequence without changing the sequence length. And / or longer transmission parameters.
  • the receiver (corresponding to the second device) can determine whether the transmission parameter is correctly received according to whether the information is correctly received, and can verify the transmission parameter.
  • the transmission parameter includes at least one of the following: an index of a time domain resource, a time domain resource type, a transmission waveform indication information, a subcarrier spacing indication information, a device type information, and a service type indication information.
  • the initial position of the sequence is determined based on the transmission parameters.
  • the transmission parameter used to determine the initial value of the sequence is different from the transmission parameter used to determine the initial position of the sequence; or the initial value of the sequence and the initial position of the sequence Determined according to different bits of the same transmission parameter.
  • the index of the time domain resource is determined according to a parameter M, which is determined according to any one of the following ways: a positive integer indicated by a predefined or signaling; by a system message period or synchronization
  • the signal transmission interval is determined; determined by the subcarrier spacing; determined by the number of time slots under the subcarrier spacing used within a predefined duration.
  • the sequence is determined from a plurality of subsequences, each of the subsequences being determined by all or a portion of the transmission parameters, the length of the sequence being the sum of the plurality of subsequence values.
  • the sequence includes a plurality of subsequences, each of the subsequences being determined by all or a portion of the transmission parameters; correspondingly, the second device demodulates the received using the sequence
  • the information includes: the second device demodulating the received information by using the multiple subsequences; or the plurality of subsequences are respectively used on different time domain resources.
  • the second device uses the sequence to demodulate the received information, including: the second device determines to receive the data according to the service type parameter of the transmission data and/or the capability type of the receiving device.
  • the obtained information is subjected to a sequence of demodulation; the received information is demodulated using the determined sequence.
  • an embodiment of the present invention provides a transmission apparatus, where the transmission apparatus has a function of implementing behavior of a first device in the foregoing transmission method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the apparatus includes a sequence generation module, configured to generate a sequence according to a transmission parameter, where the transmission parameter includes at least one of: a time domain resource type, a transmission waveform indication information, and a subcarrier.
  • a sequence generation module configured to generate a sequence according to a transmission parameter, where the transmission parameter includes at least one of: a time domain resource type, a transmission waveform indication information, and a subcarrier.
  • Interval indication information, device type information, service type indication information, multiple input multiple output MIMO parameter information, duplex mode indication information, control channel format indication information, transmission carrier indication information, and transmission information generation module configured to generate using the sequence Information to be transmitted;
  • a sending module configured to send the information to be transmitted.
  • the sequence generating module, the transmission information generating module, and the sending module are also used to perform the steps related to the related design in the first aspect embodiment.
  • the sequence generating module, the transmission information generating module, and the sending module are also used to perform the steps related to the related design in the first aspect embodiment.
  • the sequence generating module, the transmission information generating module, and the sending module are also used to perform the steps related to the related design in the first aspect embodiment.
  • the first aspect embodiment refer to the first aspect embodiment.
  • the apparatus includes: a processor and a transceiver, the processor is configured to implement the functions of the sequence generation module and the transmission information generation module, and the transceiver is configured to implement the function of the transmission module.
  • an embodiment of the present invention provides a transmission apparatus, where the transmission apparatus has a function of implementing behavior of a first device in the foregoing transmission method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the transmitting device comprises a first generating module, configured to determine an initial position of the generated sequence according to the transmission parameter, wherein the transmission parameter is a non-constant number; and a second generating module, configured to use the sequence Generating information to be transmitted; and sending a module, configured to send the information to be transmitted.
  • the first generation module, the second generation module, and the sending module are further used to perform the steps related to the related design in the embodiment of the second aspect.
  • the first generation module, the second generation module, and the sending module are further used to perform the steps related to the related design in the embodiment of the second aspect.
  • the second aspect refers to the second aspect.
  • the apparatus includes: a processor and a transceiver, the processor is configured to implement functions of the first generation module and the second generation module, and the transceiver is configured to implement a function of the sending module.
  • an embodiment of the present invention provides a transmission apparatus, where the transmission apparatus has a function of implementing behavior of a second device in the foregoing transmission method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the apparatus includes: a receiving module, configured to receive information transmitted by the first device; and a demodulation processing module, configured to demodulate the received information using a sequence, wherein the sequence is based on The transmission parameter determines that the transmission parameter includes at least one of: a time domain resource type, a transmission waveform indication information, a subcarrier spacing indication information, a device type information, a service type indication information, a multiple input multiple output MIMO parameter information, and a dual Work mode indication information, control channel format indication information, and transmission carrier indication information.
  • the receiving module and the demodulation processing module are further configured to perform the steps related to the related design in the embodiment of the third aspect.
  • the receiving module and the demodulation processing module are further configured to perform the steps related to the related design in the embodiment of the third aspect.
  • the apparatus includes a processor and a transceiver for implementing the functions of the above-described demodulation processing module, the transceiver being configured to implement the function of the receiving module.
  • an embodiment of the present invention provides a transmission apparatus, where the transmission apparatus has a function of implementing behavior of a second device in the foregoing transmission method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the transmission device includes: a receiving module, configured to receive information transmitted by the first device; and a processing module, configured to demodulate the received information using a sequence, wherein the sequence The initial position is determined based on transmission parameters, which are non-constant.
  • the receiving module and the processing module are further used to perform the steps related to the related design in the embodiment of the fourth aspect.
  • the fourth aspect refers to the fourth aspect.
  • the apparatus includes a processor and a transceiver for implementing the functions of the processing module described above, the transceiver for implementing the function of the receiving module.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by each of the foregoing transmission devices, including a program for executing a transmission method corresponding to each transmission device.
  • the transmission scheme of the embodiment of the present invention provides a new mechanism for verifying transmission errors, which can implement verification of transmission parameters.
  • FIG. 1 is a schematic diagram of a possible application scenario involved in the present application
  • FIG. 2 is a schematic diagram of another possible application scenario involved in the present application.
  • FIG. 3 is a flowchart of a transmission method of an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a prior art scrambling sequence occupied bit
  • FIG. 6 is a flow chart of a method for determining a sequence used in a transmission method in an embodiment of the present application
  • FIG. 7 is a schematic diagram of re-division of time domain resources in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of re-division and numbering of time domain resources in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a time slot resource number in an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a transmission device provided by the present application.
  • FIG. 13 is a schematic structural diagram of still another transmission device provided by the present application.
  • 15 is a schematic structural diagram of an access device according to the present application.
  • FIG. 16 is a schematic structural diagram of a terminal device according to the present application.
  • FIG. 1 is a schematic diagram of a possible application scenario involved in the present application.
  • each terminal device such as UE1 and UE2
  • an access device such as an eNB
  • data communication between the terminal devices requires transit of the access device, where the terminal device sends data to the access device.
  • a wireless link is called an uplink (UL)
  • UL uplink
  • DL downlink
  • FIG. 2 is a schematic diagram of another possible application scenario involved in the present application.
  • the scenario includes multiple terminal devices, and multiple terminal devices (such as UE1 and UE2) perform data transmission and information interaction through a device to device (D2D) pass-through technology.
  • D2D device to device
  • a link for direct data communication between a terminal device and a terminal device is called a through link or a side link (Sidelink, SL).
  • the two devices that are connected to each other may be any transmission node or terminal device of the same type, which is not limited in this embodiment of the present invention.
  • the terminal device involved in the embodiments of the present invention may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of user devices (user Equipment, UE), mobile station (MS), terminal, terminal equipment, and the like.
  • the access device to which the present invention relates may be a base station, wherein the base station is a device deployed in the radio access network to provide a wireless communication function for the UE.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with base station functions may be different, for example, in an LTE network, called an evolved NodeB (eNB or eNodeB), in the third generation.
  • eNB evolved NodeB
  • 3G network it is called a Node B or the like, and is called a next-generation Node B or a Gbit Node B in the 5G network, which is referred to as gNB.
  • gNB next-generation Node B
  • the above-mentioned devices that provide wireless communication functions for the UE are collectively referred to as a base station or a BS.
  • an embodiment of the present invention provides a transmission method.
  • the transmission method in the embodiment of the present invention may be applied to a communication scenario in which the access device needs to be transited as shown in FIG. 1 or in a through communication scenario as shown in FIG. 2 .
  • the transmission method of the embodiment of the present invention can be applied to the uplink communication process of the scenario shown in FIG. 1 and FIG. 2, or to the downlink communication process of the communication scenario shown in FIG. 1 and FIG. .
  • a device used as a transmitting end in a communication process is referred to as a first device
  • a device used as a receiving end is referred to as a second device.
  • the transmission information may be scrambled, for example, the sequence is used to scramble the transmission data, or the sequence is used to generate the reference signal; when the transmission information is added
  • the transmission information is sent after the disturbance.
  • the sequence for scrambling the transmission information is a predefined sequence known in advance, and the prior art communication method lacks a verification mechanism for the transmission parameters. If the transmission parameter verification process is separately set, Will increase the complexity of communication.
  • a sequence for scrambling the transmission information is determined according to the transmission parameters. After receiving the information, the receiver first generates a corresponding sequence according to the transmission parameters, and then uses the sequence to perform descrambling or receiving detection. If the transmission parameter estimates an error during communication, the receiver determines the received packet error regardless of the current signal-to-noise ratio (SNR) of the receiver.
  • SNR signal-to-noise ratio
  • the receiving opportunity promptly checks whether the transmission parameter used for data scrambling (or the modified information to be transmitted) is correctly received, and does not always try or retransmit, thereby Reducing unnecessary retransmissions and power consumption can also reduce the accumulation or delivery of data transmission errors. Further, the method of the embodiment of the invention can solve the problem of verifying a large number of transmission parameters at the same time, thereby improving the flexibility and robustness of the system.
  • the sequence is generated according to the following manner.
  • An initial value of the sequence is determined based on the at least one transmission parameter.
  • the sequence c 1 (n) is generated based on the initial values of the sequence and the corresponding generator polynomials.
  • the initial position of the sequence is then determined based on the at least one transmission parameter.
  • the sequence of the data to be scrambled or the length of the parameter signal to be transmitted is then taken from the initial position of the sequence from the sequence c 1 (n), ie the first sequence c(n) of the embodiment of the invention is obtained.
  • the initial value of the sequence in the embodiment of the present invention refers to the initial parameter used to generate the sequence. For example, for a sequence generated based on a shift register, such as an m sequence, a Gold sequence, etc., the initial value of the sequence refers to the initialized value of the shift register that generated one or more subsequences of the sequence.
  • the initial position of the sequence in the embodiment of the present invention refers to the starting position for reading the sequence.
  • a sequence c 1 (n) is generated from the initial value of the generated sequence, 0 ⁇ n ⁇ L-1, where L is the length of the sequence c 1 and the L value is usually greater than the length of the sequence to be used.
  • L is the length of the sequence c 1 and the L value is usually greater than the length of the sequence to be used.
  • a 31-bit long Gold sequence has an L value of (231-1), and the actual sequence to be used is usually no more than 10,000. Therefore, from a need to determine how long the original sequence c 1 c taken to be the sequence used.
  • the sequence to be used c(n) c 1 (n+a), where 0 ⁇ n ⁇ M-1, M is the length of the sequence to be used.
  • the constant a is the initial position of the generated sequence referred to in the present invention.
  • generating a sequence according to the transmission parameter may include at least one of the following cases:
  • a sequence for determining information to be transmitted is directly generated according to at least one transmission parameter.
  • the generated sequence may be a sequence or a plurality of sub-sequences.
  • an initial value of the first sequence is directly generated according to the transmission parameter A, and the initial position of the first sequence is a constant one, according to the initial value of the first sequence and the initial of the first sequence.
  • the location determines the first sequence.
  • each sub-sequence is generated in the same manner as the above-described method of generating the first sequence, and the transmission parameters used may be different.
  • the information to be transmitted may be determined according to the multiple sub-sequences.
  • one sequence may be generated according to the multiple sub-sequences, and the length of the generated sequence is the sum of the lengths of the multiple sub-sequences. The generated sequence determines the information to be transmitted.
  • the sequence to be used is intercepted from the target sequence, wherein the intercepted initial position corresponds to the initial position of the sequence to be used last.
  • the sequence to be used that is intercepted from the target sequence may be one sequence or multiple sub-sequences.
  • the information to be transmitted may be determined according to the multiple sub-sequences; optionally, one sequence may be generated according to the multiple sub-sequences that are intercepted, and the generated sequence has a length of the multiple The sum of the subsequence lengths, using the generated sequence to determine the information to be transmitted.
  • the initial value of the sequence to be used and/or the initial position of the sequence are determined according to the transmission parameter, wherein the optional transmission parameters include but are not limited to one or more of the following:
  • the uplink/downlink indication information is used to indicate whether the current transmission is an uplink transmission or a downlink transmission. For example, 1 bit is used to indicate up/down information, such as 1 for downlink and 0 for uplink.
  • the uplink/downlink indication information can be used for the scenario in which the waveform used in the uplink and downlink transmission is the same, and the OFDM waveform is used in the downlink transmission, and the waveform used in the uplink and downlink transmission is different, as follows.
  • the OFDM waveform is used for line transmission and the non-OFDM waveform is used for uplink transmission.
  • the transmission parameter of the sequence is generated as this information, whether the current link that is detected is uplink or downlink is verified, in particular, in the TDD system, the uplink and downlink are on one carrier, thereby It is timely found that the detection of this parameter in the previous steps is correct.
  • the information of the waveform used in the transmission is used to indicate the specific waveform used for the transmission.
  • the waveform includes an OFDM waveform or SC-FDM.
  • One bit can be used to indicate information of a waveform used in transmission, such as 1 indicating an OFDM waveform used for transmission, and 0 indicating an SC-FDM waveform used for transmission.
  • the waveform information includes: a multi-carrier waveform and a single-carrier waveform.
  • one bit can be used to indicate the information of the waveform used in the transmission, such as 1 for the OFDM waveform used for transmission and 0 for the single carrier waveform used for transmission.
  • the information of the waveform used by the current link can be detected, for example, OFDM can be used in the uplink or SC-FDM can be used, if the waveform detected by the receiver is judged If there is an error, all subsequent demodulation will be continuously errored, so that it can be found in time that the detection of this parameter in the previous step is correct.
  • the MIMO mode indication information indicates the manner of MIMO used in the current transmission, which may be a spatial multiplexing mode or a beamforming mode. It can also be a spatial multiplexing mode or a diversity mode. For example, using a 1-bit indication, 1 indicates spatial multiplexing and 0 indicates transmit diversity. Alternatively, the multiplexing may be single stream multiplexing or multi-stream multiplexing.
  • the MIMO parameter information may also be used to indicate the type of the beam or the identification of the beam.
  • the type of beam may be an analog beam or a beam generated based on a codebook or codeword.
  • the type of beam can also be: a dynamic beam or a static or semi-static beam. Dynamic beams can change relatively quickly over time and frequency, enabling beam scanning or tracking over time or frequency resources. Indicates the identifier of the beam, that is, the number or index of the beam that is sent or received by the current device.
  • the MIMO parameter or mode in which the current link is located can be detected.
  • the transmission parameter of the sequence is generated as this information
  • the MIMO parameter or mode in which the current link is located can be detected.
  • the transmitted parameter of the sequence is generated as this information
  • the MIMO parameter or mode in which the current link is located can be detected.
  • the high frequency it is also possible to confirm the identity of the currently detected beam, and if the detected beam is inconsistent with the beam identifier of the actual communication, although it does not cause all communication errors, the received SNR is greatly increased. The decline, which affects the quality of communication. By verifying this parameter, it can be timely found whether the detection of this parameter in the previous step is correct.
  • the device type information may be a device type divided according to different costs, a device type divided according to different device capabilities, or a device type divided according to different functions.
  • Types of equipment by cost for example, low-cost equipment, high-cost equipment, this type is usually used in the transmission terminal of the Internet of Things.
  • the type of device divided by device capability for example, a low-capacity device, a medium-capacity device, a high-capacity device, or a capability level of a direct device (such as a capability level of 1 to 10, etc.).
  • Types of devices divided by different functions for example, base station equipment, relay equipment, and terminal equipment. It can also be devices defined by different access functions, such as: Internet of Things, standby, mobile broadband service equipment, low-latency, high-reliability equipment.
  • the transmission parameter of the sequence When the transmission parameter of the sequence is generated as this information, the service type accessed by the current device can be detected. For example, if the currently transmitted device is for a low-capability terminal of the Internet of Things, but an error occurs in this parameter detection, the subsequent transmission parameters are not matched, and a continuous error of subsequent detection occurs. It can be found in time that the detection of this parameter in the foregoing steps is correct.
  • the service type indication information is used to indicate a service type, where the service type includes a mobile broadband service, a low-latency service, a high-reliability service, a low-latency service, a high-reliability service, and an Internet of Things service.
  • Service types can also be characterized using different values of different quality of service parameters.
  • the transmission parameter of the sequence When the transmission parameter of the sequence is generated as this information, the service type accessed by the current device can be detected. For example, if the currently transmitted service is a low-latency service with high reliability, once the error is detected in this parameter, the data of the subsequent service layer will not match, and the upper layer data detection error occurs. It can be found in time that the detection of this parameter in the foregoing steps is correct.
  • the transmitted carrier index indication information includes the current transmission carrier type or the identity of the current transmission carrier.
  • the type of the transmission carrier may be a type of a master-slave carrier, such as a primary carrier or a secondary carrier.
  • the type of transmission carrier can control the type of face, such as control carrier or data carrier.
  • the type of transmission carrier may be the type of scheduling: a scheduling based carrier or a scheduling based carrier.
  • a transmission carrier may also refer to an authorized carrier or an unlicensed carrier.
  • the transmission parameter of the sequence is generated as this information, it is possible to prevent an error from occurring when detecting the current carrier type, thereby erroneously using different types of carriers. It can be found in time that the detection of this parameter in the foregoing steps is correct.
  • the duplex mode indication information is used to indicate the duplex mode of the current transmission carrier.
  • the duplex mode indication information includes at least two of TDD, FDD, and FD (full duplex mode).
  • the duplex type of the current carrier can be detected, thereby preventing the duplex type from being judged incorrectly. It can be found in time that the detection of this parameter in the foregoing steps is correct.
  • the control channel or control information format is a transmission mode used to indicate the data scheduled by the corresponding control information. For example, different MIMO modes, different service types, and different transmission link types.
  • the format or type of a different control channel is: a long control channel or a short control channel.
  • 1 bit is used to indicate that 1 represents a long control channel (for example, there are more time domain symbols when transmitting, such as 4 symbols, one time slot or a control length of one subframe length), and 0 represents a short control channel. (For example, there are fewer time domain symbols when transmitting, such as 1 or 2 symbols of control channels).
  • Another example is the format or type: a control channel based on the primary scheduling, or a control channel based on the secondary scheduling.
  • the transmission parameter of the sequence is generated as this information, it is possible to detect whether the mode of the control channel detects an error. Once this parameter is detected incorrectly, the corresponding control information detection will also be incorrect. As a result, more unnecessary blind detection occurs in the receiver. It can be timely found that the detection of this parameter in the foregoing steps is correct, and the blind detection is reduced.
  • the indication information of different subcarrier spacings is used to indicate the size value or type of the subcarrier spacing used in the current transmission.
  • the indicated subcarrier spacing is at least two of the following subcarrier spacing values: ⁇ 15, 30, 60, 120, 240, 480 ⁇ kHz.
  • the transmission parameter of the sequence When the transmission parameter of the sequence is generated as this information, it can be detected whether the parameter of the subcarrier interval detects an error. Once this parameter is detected incorrectly, all subsequent transmission tests will be in error. The reason is that the subcarrier spacing is the most critical parameter in the transmission of the multi-carrier system. Once a detection error occurs in this parameter, the receiver continuously performs control and data decoding detection, which increases the implementation complexity of the entire receiver.
  • time domain resources include: normal time domain resources, short time domain resources.
  • a slot slot and a minislot mini-slot may be included.
  • the length of the Mini-slot is usually no larger than the slot.
  • the types of the time domain resources include: transmission indication information of the single resource and transmission indication information of the multiple resource aggregation.
  • the transmission of a single resource refers to the use of one of the most basic transmission resource units in a single transmission, such as a time slot, a carrier, or transmission in units of a single frequency domain resource.
  • the transmission of multiple resource aggregation refers to the simultaneous use of multiple transmission resources in one transmission, such as using multiple time slots for aggregation transmission in one transmission, using multiple carriers for aggregation transmission, and using multiple basic frequency domain resource units for aggregation. transmission.
  • One bit can be used to indicate whether the current transmission is a single resource transmission or a multiple resource aggregation transmission. Multiple bits may also be used to indicate the number of currently aggregated transmission resources.
  • the transmission parameter of the sequence When the transmission parameter of the sequence is generated as this information, it can be detected whether the type of the time domain resource at the time detects an error. Once this parameter is detected incorrectly, subsequent data symbols will be fetched or retrieved when reading the time domain resource, resulting in subsequent communication errors. It can be found in time that the detection of this parameter in the foregoing steps is correct, and the number of blind detection and decoding is reduced.
  • the cell identifier refers to a physical identifier used to identify the current cell where the UE is located.
  • the time domain resource index information is an indication of a time domain resource under a certain subcarrier interval, and may be, for example, an index of the time domain resource.
  • the sequence may be generated using any one or more of the above transmission parameters.
  • the above transmission parameters are used to generate a sequence.
  • the transmission parameters can be bidirectionally verified, and on the other hand, interference randomization can be performed on different scenarios corresponding to the transmission parameters, thereby avoiding indiscriminate or different generations in different scenarios. Continued interference.
  • the purpose of bidirectional verification of multiple parameters can be achieved at the same time, thereby further improving the stability and reliability of the system.
  • the transmission method of the present application will be specifically described below in conjunction with specific embodiments.
  • FIG. 3 is a flow chart of a transmission method of an embodiment of the present application. As shown in FIG. 3, the method includes:
  • Step S101 The first device generates a sequence according to the transmission parameter.
  • the first device may generate the sequence by using at least one of the foregoing two methods, where the first device needs to determine an initial value of the sequence according to the transmission parameter when generating the sequence. / or initial location.
  • the transmission parameters for determining the initial value and/or the initial position of the sequence are as described above.
  • the first device determines the initial value of the sequence and/or the initial position of the sequence according to the transmission parameter, including:
  • the first device determines an initial value of the sequence based on the transmission parameter, and the initial position of the sequence is a constant.
  • the initial position of the sequence is a constant one.
  • the initial position of the interception of the sequence may be set to be constant.
  • the first device further determines an initial position of the sequence according to the transmission parameter, for example, in a scheme of generating a target sequence according to the transmission parameter and intercepting the sequence to be used from the target sequence, the first device is further The transmission parameter determines the interception initial position of the sequence (corresponding to the initial position of the sequence).
  • the first device may generate an initial value of the sequence by using a first parameter of the transmission parameter, and generate an initial position of the sequence by using a second parameter of the transmission parameter.
  • the first parameter and the second parameter may be the same or different.
  • the initial value of the sequence and the initial position of the sequence may be determined according to different bits of the same transmission parameter, respectively.
  • the transmission parameter may be any one of the enumerated transmission parameters, and in one specific example, the transmission parameter may be It is user identification indication information, such as a Radio Network Temporary Identifier (RNTI), and for example, the transmission parameter may be a cell identifier.
  • RNTI Radio Network Temporary Identifier
  • the transmission parameter is a cell identifier, and if the cell identifier has a maximum of 10 bits (ie, there are 1024 different values in total), the initial value of the sequence may be determined according to the first 5 bits of the transmission parameter. The initial position of the sequence is determined according to the last 5 bits of the transmission parameter, and the manner of selecting the specific bit can be determined according to actual application requirements.
  • Step S102 The first device uses the sequence to generate information to be transmitted.
  • the generating, by using the sequence, the information to be transmitted by the first device includes:
  • the information to be transmitted is scrambled transmission data; or, using the sequence to generate a reference signal, the information to be transmitted is a scrambled reference signal.
  • the first device uses the one sequence to scramble data or generate a reference signal.
  • the first device may generate a sequence according to the multiple sub-sequences, and use the one sequence to scramble data or generate a reference signal; in another possible design, when When a device generates multiple subsequences, the first device may use the multiple subsequences to scramble the data to be transmitted or generate a reference signal.
  • the first device when the first device generates multiple sub-sequences, the multiple sub-sequences respectively correspond to different time domain resources or transmission systems, and the first device is based on the current time domain resource or transmission system type.
  • a sequence is selected from a plurality of subsequences and the selected sequence is used to scramble the data or generate a reference signal.
  • Step S103 The first device sends the information to be transmitted.
  • the receiving device may receive the information, where the receiving device may be the terminal device in the direct mode or the base station in the base station forwarding mode.
  • Step S104 The second device receives the information transmitted by the first device.
  • Step S105 The second device uses the sequence to demodulate the received transmission information.
  • the sequence used by the second device is also determined according to the transmission parameter.
  • the second device determines the sequence according to the transmission parameter refer to the manner in which the first device determines the sequence, and details are not described herein again.
  • the second device demodulates the received transmission information, including the second device using the sequence to demodulate the transmission data and/or the second device using the received reference signal for receiving processing.
  • the receiving process using the received reference signal includes demodulating the received data using the reference signal; or using the reference signal for estimating the channel state information and/or demodulating the data.
  • the transmission parameters are used, for example, using the newly introduced transmission parameters in the system and/or the transmission parameters after the length is increased, and the generated sequence is used to scramble the data and/or generate.
  • the reference signal, the second device (corresponding to the receiver) also generates a parameter signal before the reception process and then de-interferes at the corresponding link.
  • the second device determines the received data packet error regardless of the SNR of the second device, and the second device promptly checks the previously acquired transmission. Whether the parameters are correct or not, to avoid the accumulation or transmission of data transmission errors.
  • 4 is a flow chart of a transmission method of another embodiment of the present application. In the method of the embodiment of the present invention, the initial position of the sequence is determined according to at least the transmission parameter. As shown in FIG. 4, the method includes:
  • Step S201 The first device determines an initial location of the generated sequence according to the transmission parameter, where the transmission parameter is a non-constant.
  • the transmission parameter of the non-constant number may be one or more of the transmission parameters listed above, and details are not described herein again.
  • the initial value of the sequence to be used by the first device is constant.
  • the first device determines a known sequence as the target sequence, and the first device only needs to determine the initial interception from the target sequence according to the transmission parameter. Position (corresponding to the initial position).
  • the first device further determines an initial value of the sequence according to the transmission parameter, for example, the first device determines the target sequence according to the transmission parameter.
  • Step S202 The first device uses the sequence to generate information to be transmitted.
  • the method for generating the information to be transmitted by using the sequence in the embodiment of the present invention is the same as the embodiment shown in FIG. 3, and details are not described herein again.
  • Step S203 The first device sends the information to be transmitted.
  • the receiving device may receive the information, where the receiving device may be the terminal device in the direct mode or the base station in the base station forwarding mode.
  • Step S204 The second device receives the information transmitted by the first device.
  • Step S205 The second device uses the sequence to demodulate the received transmission information.
  • the sequence used by the second device is also determined according to the transmission parameter.
  • the second device determines the sequence according to the transmission parameter refer to the manner in which the first device determines the sequence, and details are not described herein again.
  • the second device uses the sequence to demodulate the transmission data and/or the second device performs the reception process using the received reference signal.
  • the receiving processing using the received reference information includes demodulating the received data using a reference signal; or using the reference signal to make an estimation of channel state information.
  • the transmission method of the embodiment of the present invention is mainly different from the prior art in that the solution of the present application introduces transmission parameters into a sequence for scrambling data or for generating a reference signal, in combination with the methods shown in FIG. 3 and FIG.
  • the following embodiment mainly describes a process of determining the sequence according to a transmission parameter, and in some embodiments, a process of scrambling data or generating a reference signal according to the generated sequence, wherein the following embodiments are described.
  • the description will be made by taking an example of determining a random sequence based on transmission parameters.
  • the first device determines an initial position of the random sequence according to one or more of the foregoing transmission parameters when generating a random sequence.
  • the random sequence generated in the prior art is fixed to 31 bits, and the output initial position is a constant value, such as 1600.
  • the random sequence may still be determined according to the existing method, or the random sequence may be determined according to one or more of the foregoing transmission parameters, regardless of which method is used to generate the random sequence.
  • the initial position of the random sequence is determined based on one or more transmission parameters.
  • LTE Long Term Evolution
  • a random sequence with a length of 31 bits is defined as:
  • c(n) is the output value of the random sequence
  • x1 and x2 are generated by the following generator polynomial:
  • x 1 (n+31) (x 1 (n+3)+x 1 (n)) mod2
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n)) mod2
  • the initial value namely:
  • the initial value of the sequence, Cinit is usually given, and then the initial value in each of the status bits of the x2 sequence shift register is determined by converting the initial value into a binary value.
  • an initial value generated by a physical uplink shared channel (PUSCH) data scrambling sequence is:
  • the nRNTI is a value of a Radio Network Temporary Identity (RNTI), which is represented by 16 bits, q is a codeword number, and there are two codewords in LTE, which are represented by 1 bit, and the value thereof is represented by 0 or 1, ns is the number of the slot.
  • RNTI Radio Network Temporary Identity
  • LTE Long Term Evolution
  • the value is 0 to 9, which is represented by 4 bits.
  • the value is 0 to 503.
  • bits in the sequence of the bit length of 31 are all occupied. If the new parameters need to be randomized, the existing LTE technology can no longer expand or add new parameters, or when the bits occupied by one or more parameters in the existing parameters become longer, the existing sequence is because of the bits. The bit length limit can no longer be used.
  • the embodiment of the present invention may determine the sequence by using the following method for a specific sequence (which may be a multiplexed existing sequence or a newly defined sequence).
  • the initial value and the initial position wherein, as shown in FIG. 6, include:
  • Step S301 determining a first partial transmission parameter, wherein the first partial transmission parameter is used to determine an initial value of the sequence, for example, still according to a formula
  • the initial value of the random sequence is determined, and the first part of the transmission parameters includes RNTI, q, ns, and cell ID.
  • Step S302 determining a second partial transmission parameter, wherein the second partial transmission parameter is used to determine an initial position of the random sequence, and the second partial transmission parameter may select one or more of the foregoing listed transmission parameters, when the transmission parameter is selected.
  • the initial position of the random sequence is:
  • f() represents a function of the transmission parameters x, y, z.
  • Nc may be any of the following:
  • N C a + x
  • N C a + x + y
  • N C a + a ⁇ x
  • N C a + a ⁇ (x + y).
  • N C a + a ⁇ x + b ⁇ y
  • N C mod(f(x), L) - M PN
  • N C mod(f(x, y), L) - M PN
  • L is the length of the random sequence
  • MPN is the read length of the random sequence
  • mod(x, y) indicates that the transmission parameter x performs the modulo operation on the transmission parameter y.
  • Nc may be a specific example of any one of the following:
  • N C 1600(1+n s ),
  • N C 1600+mod(n s ,M)
  • N C 1600 (1+mod(n s ,M))
  • ns can also be replaced with other transmission parameters.
  • the second part of the transmission parameter may be the same as or different from the first part of the transmission parameter.
  • the second part of the transmission parameter may be: a time domain resource type, a transmission waveform indication information, a subcarrier spacing indication information, and a beam indication information.
  • the device type information and the service type indication information, the MIMO mode indication information, the duplex mode indication information, and the control channel format indication information, and the first part of the transmission parameter may be at least one of a UE identifier and a cell identifier.
  • the second partial transmission parameter may be a partial bit of a transmission parameter of the first partial transmission parameter.
  • the time domain resource indication information is divided into indication information of a subframe index and indication information of a slot index.
  • the first partial transmission parameter includes a subframe number or a frame number
  • the second partial transmission parameter includes a slot number within a specific subframe.
  • the first partial transmission parameter includes a slot number within a specific subframe
  • the second transmission parameter includes a subframe number or a frame number.
  • each bit of the cell identifier can be divided into two parts, one part corresponding to the first transmission parameter and the other part corresponding to the second transmission parameter.
  • the first device determines an initial value and an initial position of the random sequence according to an index of the time domain resource.
  • the index of the time domain resource may be a defined time domain resource index value in the existing system.
  • the index of the time domain resource is a continuous time domain resource according to a smaller time.
  • the generation parameters of the random sequence are different in the smaller time domain resources, and the generation parameters of the random sequence between the smaller time domain resources may be The same can also be different.
  • a time slot refers to a set of one or consecutive multiple time domain symbols corresponding to transmission resources.
  • the length of the time domain resource occupied by the time slot is usually not more than 1 ms.
  • Figure 7 shows a schematic diagram of the re-division of time domain resources.
  • a frame of 10 ms (milliseconds) includes 10 subframes of 1 ms in length, and the frame of 10 ms can be divided into 5 sub-time domain resources, each symbol or time slot in each sub-time domain resource.
  • the generation parameters of the random sequence are different.
  • the generation parameters of the corresponding random sequence may be the same or different among different sub-time domain resources.
  • the random sequence corresponding to sub-time domain resource 0 and sub-time domain resource 1 is the same.
  • the 10 ms frame can be divided into 10 equal-length sub-time domain resources, each sub-time domain resource is 1 subframe, and the length is 1 ms.
  • the generation parameters of the random sequence are different on each symbol or time slot within each sub-time domain resource.
  • the sequence generation parameters may be the same or different between different sub-time domain resources, such as symbols or time slots at the same position in the first subframe and the second subframe.
  • the solution in this embodiment of the present invention is applicable to a scenario in which time domain resources are randomized.
  • time slots on different subcarrier intervals For example, for a normal cyclic prefix (CP), if each time slot occupies 7 symbols, time slots on different subcarrier intervals ( The number of slots) is shown in Table 1:
  • the number of slots on different subcarrier intervals shown in Table 1 can also be expressed in the manner of FIG.
  • a further method of this embodiment is to replace the slot number ns of the generated random sequence with f(ns, M).
  • f(ns, M) represents a function generated by the slot number ns parameter and M, that is, determined by ns and M.
  • f(ns,M) mod(ns,M), that is, the slot number ns is moduloed to the parameter M.
  • M is represented as consecutive M time slots, and the M value can be determined according to any of the following methods:
  • M is a fixed predefined positive integer such as 20, 16, 32, and so on.
  • M is equal to the corresponding synchronization signal period under various subcarrier intervals, for example, M is the number of all slots in the synchronization signal period; and, for example, M is half of the number of slots in the synchronization signal period.
  • M time slots in a specific subcarrier interval in one frame are regarded as a smaller sub-time domain resource, and f times are performed on M time slots in each sub-time domain resource.
  • Ns, M to generate a random sequence.
  • the first device may separately generate multiple sequences according to different transmission parameters or according to different bits in the same transmission parameter, and then use multiple sequences separately or jointly. Scramble the data or generate a reference signal.
  • an optional method is to perform two-level numbering on time slots, and then generate different sequences according to different time slot numbers.
  • each sub-time domain resource is numbered using fix(ns/M), where fix(x) represents the logarithm x.
  • the value of M is the same as defined above.
  • the slot numbers are the same, and the slot numbers of different sub-time domain resources are different.
  • n s1 fix(n s /M)
  • n s2 mod(n s , M)
  • the subcarrier spacing is 30 kHz
  • the number of the time domain resource on the 10 ms frame and the number in the time domain resource are as shown in Table 3 and FIG. 9:
  • Table 3 Numbering of time domain resources on a 10 kHz frame at 30 kHz and numbering within time domain resources
  • two sequence-sequenced time slot parameters may be randomized by using two sequences, and the two sequences may be the same or different, and the two sequences are respectively:
  • f(x) represents the function of x, the initial value of the two sequences determined by the input variable x.
  • the duration of each sub-time domain unit is 1 ms
  • the number of the sub-time domain resource is the number of the subframe.
  • the initial value of the first sequence is:
  • the initial value of the second sequence is:
  • K and M0 are positive integers.
  • another optional method is: separately generating different sequences by using different transmission parameters, and then using the generated sequences to perform data randomization or reference signal generation.
  • the index of the time domain resource, the time domain resource type, the transmission waveform indication information, the subcarrier spacing indication information, the beam indication information, and the UE identifier is the index of the time domain resource, the time domain resource type, the transmission waveform indication information, the subcarrier spacing indication information, the beam indication information, and the UE identifier.
  • Cell identifier Cell identifier, device type information, and service type indication information, MIMO mode indication information, duplex mode indication information, control channel format indication information, and carrier indication information.
  • the first sequences c 1 (n) and c 2 (n) are then obtained, respectively, using at least one of the following methods for data scrambling and generating reference signals:
  • the second sequence can be used in the following two ways.
  • Manner 1 The first and second reference signals are respectively generated by using the first and second sequences, and then the target reference signals are generated by the first and second reference signals.
  • n denotes the identity of each chip from which the reference signal is generated.
  • Manner 2 jointly use the first and second sequences to generate a target reference signal sequence, and use the target reference signal sequence to generate a target reference signal.
  • x mod 2 means that x is modulo 2, which has the same meaning as mod(x, 2) above, but is expressed differently.
  • the beneficial effects of this embodiment are: solving the problem of how to perform transmission check on more transmission parameters.
  • the method in this embodiment can transmit more parameters, and does not need to force different time domain resources for intra-frame pins of 10 ms. Packets can guarantee that the transmission parameters on each subframe within 10ms are different.
  • the transmission parameters can be used to generate more than two sequences, and use these sequences to scramble the data or generate a reference signal.
  • the method used is the same as the two sequences, and will not be enumerated here.
  • the scheme of determining the initial value and the initial position of the random sequence according to the index of the time domain resource one of the schemes given in FIGS. 7 to 9 and the related description is to make the continuous time domain resource smaller in time granularity.
  • the time domain resource index is redefined, and the redefined time domain resource index is used as a generating parameter for determining the random sequence.
  • the symbol under the time slot may be used as a mini-slot and for one or several time slots.
  • Mini-slots are further numbered and sequences are generated based on the numbers.
  • the mini-slots in one or several time slots are further numbered, and the method for transmitting according to the number generation sequence includes:
  • the subcarrier transmission interval corresponding to the index is different from the subcarrier spacing corresponding to the second time domain resource index.
  • the i-th slot (sloti) is an index of the second time domain resource, and the second symbol in the slot i corresponds to the time-domain resource as a mini-slot (mini-slot) ), the Mini-slot includes 4 symbols, numbered 0 to 3.
  • the number of symbols in the original time slot i occupied by the optional Mini-slot may be one or more, but does not exceed all the symbols in the sloti.
  • Mini-slot is the first time domain resource.
  • the subcarrier spacing of the sloti is smaller than the subframe carrier of the mini-slot.
  • the subcarrier spacing of sloti is 15 kHz
  • the subcarrier spacing of mini-slot is 30 kHz or 60 kHz.
  • one symbol 2 in the sloti can correspond to 4 symbols in the mini-slot, according to the time in the OFDM system. Frequency relationship, the larger the subcarrier spacing, the shorter the duration of each symbol.
  • determining the first time domain resource index according to at least one of the following manners, including:
  • Manner 1 The slot index of the second time domain resource index occupied by the first time domain resource index.
  • the index of the time domain resource of the mini-slot is represented by the time domain resource index i of sloti.
  • Manner 2 The symbol index of the second time domain resource index occupied by the first time domain resource index.
  • the index of the time domain resource of the mini-slot is represented by the symbol number 2 in the sloti.
  • the time slot type indication information of the first time domain resource index may be a mini-slot indicating which symbol length, or a mini-slot of which subcarrier spacing.
  • Manner 4 an index of each symbol in a time slot of the first time domain resource index.
  • an index of which time domain symbol is used to generate a mini-slot index may be further scrambled using parameters related to the time slot or the symbol number.
  • any one of the following embodiments may be employed:
  • the data of the control information sent together with the synchronization signal is scrambled to implement bidirectional verification of the synchronization detection reference.
  • the slot index and the symbol index may be used in combination between the data of the control information and the reference signal used when the control information is transmitted. That is, the two can appear separately or simultaneously in the sequence generation of the reference signal, or in the generation of the data scrambling sequence.
  • the time domain resources related to the subcarrier spacing are scrambled, and the time domain resources on the predefined duration (such as 1 radio frame) are divided into M sub-time domain resources, and the data on each sub-time domain resource is scrambled and referenced.
  • Signal generation is generated using a secondary sequence.
  • the control information sent together with the synchronization is scrambled using parameters related to the slot or symbol index for the purpose of bidirectional verification.
  • a new random sequence with a length greater than 31 bits can be defined, whereby the extended time slot length and more transmission parameters needed to generate a random sequence can be input to the random In the sequence.
  • the manner in which a new random sequence having a length greater than 31 bits is determined includes one or a combination of the following:
  • a random sequence having a single length greater than 31 bits is directly used, and the random sequence used is not limited to the Gold sequence, and may be other random sequences such as an m sequence, a Gold-like sequence, a Kasami sequence, and the like.
  • c 1 is a subsequence
  • N 1 is the length of the c 1 subsequence
  • c 2 is another subsequence
  • N 2 is the length of the c 2 subsequence
  • the length of the sequence c is N 1 *N 2 .
  • c 1 and c 2 may use a Gold sequence of length 31, or one of them uses a Gold sequence of 31 bits long, and the other uses an m sequence or a Gold sequence of length 5 bits or more.
  • an initial value of each subsequence may be determined according to one or more transmission parameters.
  • the transmission parameters corresponding to the respective sub-sequences may be the same or different.
  • the transmission parameters that need to be randomized may be divided into multiple groups, and each group of transmission parameters are respectively mapped to initial values of different sub-sequences.
  • the plurality of random sequences may belong to the same type, such that the plurality of random sequences are Gold sequences; of course, some or all of the plurality of random sequences belong to different types,
  • the plurality of random sequences include: a Gold sequence, an m sequence, and the like.
  • different random sequences may correspond to different service types or different device types.
  • the first random sequence is for eMBB
  • the second random sequence is for mMTC
  • the third random sequence is for URLLC.
  • the first random sequence is for high-capacity devices
  • the second random sequence is for medium-capacity terminals
  • the third random sequence is for low-capacity devices.
  • a random sequence When scrambling data to be transmitted using a random sequence or generating a reference signal using a random sequence, a random sequence may be determined according to data to be transmitted or system parameters and/or device parameters associated with the reference signal to be generated, and then determined using The random sequence scrambles the transmitted data or generates a reference signal using the determined random sequence.
  • the transmission parameters to be randomized are set on a longer sequence, or used on different subsequences of the synthesized sequence, the length of the random sequence is extended, and the randomizable transmission parameters are extended. Quantity or length.
  • a part of the transmission parameter may be used to generate a random sequence, and another part is carried in the control information.
  • a part of the field of the cell identifier is used to generate a random sequence, and another part of the field identifier may be carried in the control information.
  • a part of the RNTI field is used to generate a random sequence, and another part of the RNTI field may be carried in the control information.
  • the length of the generated random sequence may be shorter than the length of the random sequence defined in the prior art, and when the generated random sequence has a short length,
  • the original bit used to carry the random sequence may be used to carry other information, for example, the time domain resource index related to the subcarrier interval may completely occupy more random sequence bits, thereby achieving spacing from the subcarrier.
  • a complete indication or randomization of the relevant time domain resource index information is provided.
  • the embodiment of the present invention further provides a transmission apparatus for performing the above transmission method, and the transmission apparatus of the embodiment of the present invention will be described below with reference to the schematic diagram.
  • FIG. 11 is a schematic structural diagram of a transmission device provided by the present application.
  • the transmission device shown in FIG. 11 is configured to perform the steps performed by the first device in the foregoing method embodiment.
  • the device includes: a sequence generation module 301, a transmission information generation module 302, and a transmission module 303, where:
  • the sequence generating module 301 is configured to generate a sequence according to the transmission parameter, where the transmission parameter includes at least one of the following: a time domain resource type, a transmission waveform indication information, a subcarrier spacing indication information, a device type information, and a service type indication. Information, multiple input and multiple output MIMO parameter information, duplex mode indication information, control channel format indication information, and transmission carrier indication information; the transmission information generation module 302 is configured to generate information to be transmitted by using the sequence;
  • the sending module 303 is configured to send the information to be transmitted.
  • the sequence generation module 301 generates a sequence according to the transmission parameter, and specifically includes:
  • An initial value of the sequence and/or an initial position of the sequence is determined based on at least one of the transmission parameters, the sequence being generated based on an initial value of the sequence and/or an initial position of the sequence.
  • the transmission parameters further include a time domain resource index and/or a cell identity.
  • the time domain resource index is determined by any of the following methods:
  • the sequence generation module 301 determines an initial value of the sequence and/or an initial position of the sequence according to at least one of the transmission parameters, and specifically includes:
  • the initial value of the sequence and the initial position of the sequence are each determined based on different bits of the same transmission parameter.
  • the transmission information generating module 302 uses the sequence to generate information to be transmitted, and specifically includes:
  • the sequence generation module 301 generates a sequence according to the transmission parameters, and specifically includes:
  • each sub-sequence being determined by all or a part of the transmission parameters; generating the sequence according to the plurality of sub-sequences, the length of the sequence being a sum of lengths of the plurality of sub-sequences.
  • the sequence generation module 301 generates a sequence according to the transmission parameters, and specifically includes:
  • the transmission information generating module 302 uses the sequence to generate information to be transmitted, specifically including:
  • FIG. 12 is a schematic structural diagram of another transmission device provided by the present application.
  • the transmission device shown in FIG. 12 is configured to perform the steps performed by the second device in the foregoing method embodiment. As shown in FIG. 12, the device includes:
  • a first generating module 401 configured to determine, according to a transmission parameter, an initial position of the generated sequence, where the transmission parameter is a non-constant; the second generating module 402 is configured to generate information to be transmitted by using the sequence;
  • the sending module 403 is configured to send the information to be transmitted.
  • the transmission parameter includes at least one of the following: an index of a time domain resource, a time domain resource type, a transmission waveform indication information, a subcarrier spacing indication information, a device type information, and a service type indication information.
  • the first generating module 401 is further configured to: determine an initial value of the sequence according to the transmission parameter.
  • the transmission parameters used to determine the initial value of the sequence are different from the transmission parameters used to determine the initial position of the sequence; or,
  • the initial value of the sequence and the initial position of the sequence are each determined based on different bits of the same transmission parameter.
  • the index of the time domain resource is determined according to a parameter M, and the parameter M is determined according to any one of the following ways:
  • a positive integer indicated by a predefined or signaling determined by a system message period or a synchronization signal transmission interval; determined by a subcarrier spacing; determined by the number of time slots under the subcarrier spacing used within a predefined duration.
  • the sequence is determined from a plurality of subsequences, each of the subsequences being determined by all or a portion of the transmission parameters, the length of the sequence being the sum of the plurality of subsequence values.
  • the sequence includes a plurality of subsequences, each of the subsequences being determined by all or a portion of the transmission parameters; correspondingly, the second generation module 402 uses the sequence to generate a to-be-transmitted Information, including implementation:
  • the plurality of subsequences are used to scramble the data to be transmitted and/or to generate the reference signal; or the plurality of subsequences are respectively used on different time domain resources.
  • the second generating module 402 generates the information to be transmitted by using the sequence, and specifically includes:
  • FIG. 13 is a schematic structural diagram of still another transmission device provided by the present application.
  • the transmission device shown in FIG. 13 is configured to perform the steps performed by the second transmission device in the foregoing method embodiment. As shown in FIG. 13, the device includes:
  • the receiving module 501 is configured to receive information transmitted by the first device, and the demodulation processing module 502 is configured to demodulate the received information by using a sequence, where the sequence is determined according to a transmission parameter, where the transmission parameter includes the following At least one of: time domain resource type, transmission waveform indication information, subcarrier spacing indication information, device type information, service type indication information, multiple input multiple output MIMO parameter information, duplex mode indication information, control channel format indication information, Transmit carrier indication information.
  • the demodulation processing module 502 is further configured to determine an initial value of the sequence and/or an initial position of the sequence according to at least one of the transmission parameters, according to the sequence The initial value and/or the initial position of the sequence generates the sequence.
  • the transmission parameters further include a time domain resource index and/or a cell identity.
  • the time domain resource index is determined by any of the following methods:
  • the demodulation processing module 502 determines an initial value of the sequence and/or an initial position of the sequence according to at least one of the transmission parameters, and specifically includes:
  • the initial value of the sequence and the initial position of the sequence are each determined based on different bits of the same transmission parameter.
  • the demodulation processing module 502 uses the sequence to demodulate the received information, including:
  • the sequence is determined based on transmission parameters, including:
  • the sequence is determined from a plurality of subsequences, each subsequence being determined by all or a portion of the transmission parameters, the length of the sequence being the sum of the lengths of the plurality of subsequences.
  • the determining of the sequence according to transmission parameters includes: the sequence includes a plurality of subsequences, each subsequence being determined by all or a portion of the transmission parameters; the demodulation processing module 502 demodulating using a sequence
  • the received information includes the following:
  • the received information is demodulated using the plurality of subsequences; or the plurality of subsequences are respectively used on different time domain resources.
  • FIG. 14 is a schematic structural diagram of still another transmission device provided by the present application.
  • the transmission device shown in FIG. 14 is configured to perform the steps performed by the second transmission device in the foregoing method embodiment.
  • the device includes:
  • the receiving module 601 is configured to receive information transmitted by the first device, and the processing module 602 is configured to demodulate and receive the received information by using a sequence, where an initial position of the sequence is determined according to a transmission parameter, where the transmission parameter is For very few.
  • the transmission parameter includes at least one of the following: an index of a time domain resource, a time domain resource type, a transmission waveform indication information, a subcarrier spacing indication information, a device type information, and a service type indication information.
  • the initial position of the sequence is determined based on the transmission parameters.
  • the transmission parameters used to determine the initial value of the sequence are different from the transmission parameters used to determine the initial position of the sequence; or,
  • the initial value of the sequence and the initial position of the sequence are each determined based on different bits of the same transmission parameter.
  • the index of the time domain resource is determined according to a parameter M, and the parameter M is determined according to any one of the following ways:
  • a positive integer indicated by a predefined or signaling determined by a system message period or a synchronization signal transmission interval; determined by a subcarrier spacing; determined by the number of time slots under the subcarrier spacing used within a predefined duration.
  • the sequence is determined from a plurality of subsequences, each of the subsequences being determined by all or a portion of the transmission parameters, the length of the sequence being the sum of the plurality of subsequence values.
  • the sequence includes a plurality of subsequences, each of the subsequences being determined by all or a portion of the transmission parameters; correspondingly, the processing module 602 demodulates the received using the sequence Information, including implementation:
  • the received information is demodulated using the plurality of subsequences; or the plurality of subsequences are respectively used on different time domain resources.
  • the processing module 602 uses the sequence to demodulate the received information, including:
  • the transmission device in FIG. 11 to FIG. 14 may be an access device.
  • FIG. 15 is a schematic diagram showing a possible structure of an access device involved in the above embodiment.
  • the access device includes a transmitter/receiver 1001, a controller/processor 1002, a memory 1003, and a communication unit 1004.
  • the transmitter/receiver 1001 is configured to support the transmission and reception of information between the access device and the terminal device in the foregoing embodiment, and to support radio communication between the terminal device and other terminal devices.
  • the controller/processor 1002 performs various functions for communicating with the terminal device.
  • the uplink signal from the terminal device is received via the antenna, coordinated by the receiver 1001, and further processed by the controller/processor 1002 to recover the service data and signaling information transmitted by the terminal device. .
  • traffic data and signaling messages are processed by controller/processor 1002 and mediated by transmitter 1001 to generate downlink signals for transmission to the terminal device via the antenna.
  • the controller/processor 1002 also performs a data transmission method performed by the first device or the second device in the solution of the embodiment of the present invention.
  • the memory 1003 is used to store program codes and data of the access device.
  • the communication unit 1004 is configured to support the access device to communicate with other network entities.
  • the controller/processor 1002 in FIG. 15 is independent or through cooperation with the memory 1003.
  • the functions implemented by the sequence generation module 301 and the transmission information generation module 302 in FIG. 11 are implemented, and the transmitter/receiver 1001 is configured to implement the present functions shown in the transmission module 303 in FIG.
  • the controller/processor 1002 in FIG. 15 is independent or through cooperation with the memory 1003.
  • the functions implemented by the first generation module 401 and the second generation module 402 in FIG. 12 are implemented, and the transmitter/receiver 1001 is used to implement the functions implemented by the transmission module 403 in FIG.
  • the controller/processor 1002 in FIG. 15 is independent or through cooperation with the memory 1003.
  • the function implemented by the demodulation processing module 502 in FIG. 13 is implemented, and the transmitter/receiver 1001 is used to implement the functions implemented by the receiving module 501 in FIG.
  • the controller/processor 1002 in FIG. 15 is independent or through cooperation with the memory 1003.
  • the function implemented by the processing module 602 in FIG. 14 is implemented, and the transmitter/receiver 1001 is used to implement the functions implemented by the receiving module 601 in FIG.
  • Figure 15 only shows a simplified design of the access device.
  • the access device may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all access devices that can implement the present invention are within the scope of the present invention. .
  • the transmission device in FIG. 11 to FIG. 14 may be a terminal device.
  • Fig. 16 is a simplified schematic diagram showing a possible design structure of the terminal device involved in the above embodiment.
  • the terminal device includes a transmitter 1101, a receiver 1102, a controller/processor 1103, a memory 1104, and a modem processor 1105.
  • Transmitter 1101 conditions (e.g., analog transforms, filters, amplifies, and upconverts, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the access device described in the above embodiments.
  • the antenna receives the downlink signal transmitted by the access device in the above embodiment.
  • Receiver 1102 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • encoder 1106 receives the traffic data and signaling messages to be transmitted on the uplink and processes (e.g., formats, codes, and interleaves) the traffic data and signaling messages.
  • Modulator 1107 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides output samples.
  • Demodulator 1109 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 1108 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the terminal device.
  • Encoder 1106, modulator 1107, demodulator 1109, and decoder 1108 may be implemented by a composite modem processor 1105. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
  • the controller/processor 1103 performs control management on the action of the terminal device, and is used to execute the data transmission method performed by the first device or the second device in the embodiment of the present invention.
  • the memory 1104 is for storing program codes and data for the terminal device 110.
  • the controller/processor 1103 in FIG. 16 is implemented independently or by cooperation with the memory 1003.
  • the functions implemented by the sequence generation module 301 and the transmission information generation module 302 in FIG. 11 are used to implement the functions shown by the transmission module 303 in FIG.
  • the controller/processor 1103 in FIG. 16 is implemented independently or by cooperation with the memory 1003.
  • the function implemented by the first generation module 401 and the second generation module 402 in FIG. 12, the transmitter/receiver 1001 is used to implement the functions implemented by the transmission module 403 in FIG.
  • the controller/processor 1103 in FIG. 16 is implemented independently or by cooperation with the memory 1003.
  • the function implemented by the demodulation processing module 502 in FIG. 13 is used to implement the functions implemented by the receiving module 501 in FIG.
  • the controller/processor 1103 in FIG. 16 is implemented independently or by cooperation with the memory 1003.
  • the function implemented by the processing module 602 in FIG. 14 is used by the transmitter/receiver 1001 to implement the functions implemented by the receiving module 601 in FIG.
  • the controller/processor for performing the above access device of the present invention may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and field programmable Gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the terminal device.
  • the processor and the storage medium can also exist as discrete components in the terminal device.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

本发明实施例涉及通信方法技术领域,尤其涉及一种传输方法及装置。所述传输方法包括:第一设备根据传输参数生成序列;其中,所述传输参数包括以下中的至少一种:时域资源类型、传输波形指示信息、子载波间隔指示信息、设备类型信息、业务类型指示信息、多输入多输出MIMO参数信息、双工方式指示信息、控制信道格式指示信息、传输载波指示信息;使用所述序列生成待传输的信息;发送所述待传输的信息。本发明实施例的传输方法及装置,提供了一种新的校验传输错误的机制。

Description

传输方法及装置
本申请要求于2017年01月24日提交中国专利局、申请号为CN201710054817.0、申请名称为“传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信方法技术领域,尤其涉及一种传输方法及装置。
背景技术
在信号的传输过程中,需要保证数据传输的可靠性。如果在通信系统中传输的数据总是产生错误,则会导致系统的性能或可工作性很差。然而,在实际的通信系统中,例如无线通信系统中,由于信道的随机性和干扰的不确定性,数据传输差错经常会发生。尤其,当某一次的数据传输错误时,有可能会导致后续数据连续发生错误。为了确保通信系统获得稳定可靠的传输性能,在设计通信系统时,可以从多方面、多角度地考虑如何提高传输数据的可靠性,以尽可能地在每次传输时都能随机化干扰。特别地,系统在传输时,有一些关键参数不能出错,一旦出错会使后续的解调都会发生不可恢复的错误。
在3GPP正在研究的5G通信系统中,整个5G系统将会比LTE系统更加灵活和复杂。在传输的过程中,需要有大量用于数据传输的参数需要在收发机之间进行传输和检测。一旦其中的部分参数在通信的过程中发生错误,后续的整个传输过程都会发生不可纠正的错误。而传统的信道编译码机制只能解决信息比特在数据传输过程中的正确与否,不能解决传输参数的校验问题。因此进一步地支持大量传输参数灵活地和及时校验的机制就显得特别重要。
发明内容
本发明实施例提供了一种传输方法及装置,以提供一种新的校验传输错误的机制。
第一方面,本发明实施例提供了一种传输方法,所述方法包括:第一设备根据传输参数生成序列;其中,所述传输参数包括以下中的至少一种:时域资源类型、传输波形指示信息、子载波间隔指示信息、设备类型信息、业务类型指示信息、多输入多输出MIMO参数信息、双工方式指示信息、控制信道格式指示信息、传输载波指示信息;所述第一设备使用所述序列生成待传输的信息;所述第一设备发送所述待传输的信息。
在本发明实施例方案中,第一设备使用所述序列生成待传输的信息包括:所述第一设备使用所述序列对待传输的数据进行加扰,所述待传输的信息为加扰后的传输数据;或者,所述第一设备,使用所述序列生成参考信号,所述待传输的信息为加扰参考信号。
在本发明实施例实现方式中,在所述序列中引入传输参数,并使用所述序列生成待传输的信息,接收机根据信息是否正确被接收,确定传输参数是否被正确接收,能够实现对传输参数的校验。
进一步,在本发明实施例方案中,使用所述传输参数生成所述序列,以用于对数据加扰或者生成参考信号,接收机接收到用所述序列加扰的数据或者参考信号后,首先进行去干扰,如果传输参数在通信过程中估计错误,则不论当前接收机的SNR多高,接收机均判定接收到的数据包错误,接收机会及时检查之前接收到的传输参数是否接收正确,而不会一直尝试或重传下去,从而可以减少不必要的重传和功率消耗,也可以降低数据传输错误的积累或传递。
在一种可能的设计中,所述第一设备根据所述传输参数生成序列,包括:所述第一设备根据所述传输参数中的至少一种确定所述序列的初始值和/或所述序列的初始位置,根据所述所述序列的初始值和/或所述序列的初始位置生成所述序列。
在本发明实施例实现方式中,将传输参数引入序列的初始值和/或初始位置,接收机通过同样的方式生成序列,并利用生成的序列验证传输的信息是否正确,从而实现对传输参数的校验。
进一步,本发明实施例方案中,将传输参数引入序列的初始值和/或初始位置,可以在不增加序列长度的前提下,实现对更多传输参数的验证。
在一种可能的设计中,所述传输参数还包括时域资源索引和/或小区标识。
在一种可能的设计中,所述时域资源索引由以下任意一种方式确定:由信令指示的正整数确定;由系统消息周期或同步信号发送间隔确定;由子载波间隔确定;由预定义时长内使用的子载波间隔下的时隙数确定。
在本发明实施例实现方式中,第一设备可以根据时域的索引确定序列的初始值和/或初始位置,并且可以通过对时域资源的重新划分以及对重新划分后的时域资源重新编号确定新的时域资源索引,由此可以利用新的时域资源索引确定序列,从而在不必修改序列的前提下解决了如何在预设长度的时频资源内针对不同子载波间隔下的时隙参数生成加扰序列的问题。
在一种可能的设计中,所述第一设备根据所述传输参数中的至少一种确定所述序列的初始值和/或所述序列的初始位置,包括:所述第一设备使用所述传输参数中的第一参数生成所述序列的初始值,使用所述传输参数中的第二参数生成所述序列的初始位置,所述第一参数与所述第二参数不同;或者,所述序列的初始值和所述序列的初始位置分别根据同一传输参数的不同比特位确定。
在本发明实施例方案中,用来确定序列的初始值和序列初始位置的传输参数可以不同,也可以相同。其中,当使用相同的传输参数确定序列的初始值和初始位置时,可以分别使用同一传输参数的不同比特位来确定序列的初始值和初始位置,例如,将同一传输参数的所有比特位划分为两部分,一部分用来生成序列的初始值,一部分用来确定序列的初始位置,从而可以结合序列的初始值和序列的初始位置实现对传输参数的验证。
在一种可能的设计中,所述第一设备使用所述序列生成待传输的信息,包括:所述第一设备根据待传输数据的业务类型参数和/或接收设备的能力类型,确定用于生成所述待传输信息的序列;所述第一设备使用确定出的所述序列生成待传输的信息。
在本发明实施例方案中,可以预先定义多个或多类传输参数,每个或每类传输参数分别对应不同的业务类型和/或接收设备的能力类型。第一设备在生成待传输的信息时,根 据待传输数据的业务类型参数和/或接收设备的能力类型来确定要使用的序列,并且使用确定出的序列生成待传输的信息。
在一种可能的设计中,所述第一设备根据传输参数生成序列,包括:所述第一设备根据所述传输参数生成多个子序列,每个子序列由所述传输参数的全部或一部分确定;所述第一设备根据所述多个子序列生成所述序列,所述序列的长度为所述多个子序列长度之和。
在本发明实施例方案中,用来生成待传输信息的序列是根据多个子序列生成的,每个子序列是由上述传输参数中的一种或多种确定的,由此可以在一个序列中引入更多和/或更长的传输参数。
在一种可能的设计中,所述第一设备根据传输参数生成序列,包括:所述第一设备根据所述传输参数生成多个子序列,每个子序列由所述传输参数的全部或一部分确定;相应的,所述第一设备使用所述序列生成待传输的信息,包括:所述第一设备使用所述多个子序列对待传输的数据进行加扰和/或生成参考信号;或者,所述多个子序列分别用于不同的时域资源上。
在本发明实施例方案中,第一设备根据传输参数生成多个子序列,第一设备可以使用该多个子序列来加扰数据和/或生成参考信号。
在一种可能的设计中,所述第一设备还进一步对与同步信号一起发送的控制信息(例如物理广播信道PBCH中的信息)中的数据进行加扰,例如,使用与时隙或符号编号有关的参数对与同步信号一起发送的控制信息加扰。
第二方面,本发明实施例提供了一种传输方法,所述方法包括:第一设备根据传输参数确定生成序列的初始位置,其中所述传输参数为非常数;所述第一设备使用所述序列生成待传输的信息;所述第一设备发送所述待传输的信息。
在本发明实施例实现方式中,在所述序列的初始位置中引入传输参数,并使用所述序列生成待传输的信息,从而可以在不改变序列长度的前提下在所述序列中引入更多和/或更长的传输参数。接收机根据信息是否正确被接收,确定传输参数是否被正确接收,能够实现对传输参数的校验。
在一种可能的设计中,所述传输参数包括以下中的至少一种:时域资源的索引、时域资源类型、传输波形指示信息、子载波间隔指示信息、设备类型信息、业务类型指示信息、MIMO参数信息、双工方式指示信息、控制信道格式指示信息、小区标识、传输载波指示信息。
在一种可能的设计中,所述方法还包括:所述第一设备根据所述传输参数确定所述序列的初始值。
在本发明实施例实现方式中,将传输参数引入序列的初始值和初始位置,接收机通过同样的方式生成序列,并利用生成的序列验证传输的信息是否正确,从而实现对传输参数的校验。
进一步,本发明实施例方案中,将传输参数引入序列的初始值和初始位置,由此可以实现对更多传输参数的验证。
在一种可能的设计中,用来确定所述序列的初始值的传输参数与用来确定所述序列的初始位置的传输参数不同;或者,所述序列的初始值和所述序列的初始位置分别根据同一 传输参数的不同比特位确定。
在本发明实施例方案中,用来确定序列的初始值和序列初始位置的传输参数可以不同,也可以相同。其中,当使用相同的传输参数确定序列的初始值和初始位置时,可以分别使用同一传输参数的不同比特位来确定序列的初始值和初始位置,例如,将同一传输参数的所有比特位划分为两部分,一部分用来生成序列的初始值,一部分用来确定序列的初始位置,从而可以结合序列的初始值和序列的初始位置实现对传输参数的验证。
在一种可能的设计中,所述时域资源的索引根据参数M确定,所述参数M根据以下任意一种方式确定:为预定义的或信令指示的正整数;由系统消息周期或同步信号发送间隔确定;由子载波间隔确定;由预定义时长内使用的子载波间隔下的时隙数确定。
在本发明实施例实现方式中,第一设备可以根据时域的索引确定序列的初始值和/或初始位置,并且可以通过对时域资源的重新划分以及对重新划分后的时域资源重新编号确定新的时域资源索引,由此可以利用新的时域资源索引确定序列,从而在不必修改序列的前提下解决了如何在预设长度的时频资源内针对不同子载波间隔下的时隙参数生成加扰序列的问题。
在一种可能的设计中,所述序列根据多个子序列确定,每个所述子序列由所述传输参数的全部或一部分确定,所述序列的长度为所述多个子序列值之和。
在本发明实施例方案中,用来生成待传输信息的序列是根据多个子序列生成的,每个子序列是由上述传输参数中的一种或多种确定的,由此可以在一个序列中引入更多和/或更长的传输参数。
在一种可能的设计中,所述序列包括多个子序列,每个所述子序列由所述传输参数的全部或一部分确定;相应的,所述第一设备使用所述序列生成待传输的信息,包括:所述第一设备使用所述多个子序列分别对待传输的数据进行加扰和/或生成所述参考信号;或者,所述多个子序列分别用于不同的时域资源上。
在本发明实施例方案中,第一设备根据传输参数生成多个子序列,第一设备可以使用该多个子序列来加扰数据和/或生成参考信号。
在一种可能的设计中,所述第一设备使用所述序列生成待传输的信息,包括:所述第一设备根据待传输数据的业务类型参数和/或接收设备的能力类型,确定用于生成所述待传输信息的序列;所述第一设备使用确定出的所述序列生成待传输的信息。
在本发明实施例方案中,可以预先定义多个或多类传输参数,每个或每类传输参数分别对应不同的业务类型和/或接收设备的能力类型。第一设备在生成待传输的信息时,根据待传输数据的业务类型参数和/或接收设备的能力类型来确定要使用的序列,并且使用确定出的序列生成待传输的信息。
第三方面,本发明实施例提供了一种传输方法,所述方法包括:第二设备接收第一设备传输的信息;所述第二设备使用序列解调接收到的所述信息,其中,所述序列根据传输参数确定,所述传输参数包括以下中的至少一种:时域资源类型、传输波形指示信息、子载波间隔指示信息、设备类型信息、业务类型指示信息、多输入多输出MIMO参数信息、双工方式指示信息、控制信道格式指示信息、传输载波指示信息。
在本发明实施例实现方式中,在所述序列中引入传输参数,并使用所述序列生成待传 输的信息,接收机(对应第二设备)根据信息是否正确被接收,确定传输参数是否被正确接收,能够实现对传输参数的校验。
进一步,在本发明实施例方案中,使用所述传输参数生成所述序列,以用于对数据加扰或者生成参考信号,接收机接收到用所述序列加扰的数据或者参考信号后,首先进行去干扰,如果传输参数在通信过程中估计错误,则不论当前接收机的SNR多高,接收机均判定接收到的数据包错误,接收机会及时检查之前接收到的传输参数是否接收正确,而不会一直尝试或重传下去,从而可以减少不必要的重传和功率消耗,也可以降低数据传输错误的积累或传递。
在一种可能的设计中,所述第二设备根据所述传输参数中的至少一种确定所述序列的初始值和/或所述序列的初始位置,根据所述序列的初始值和/或所述序列的初始位置生成所述序列。
在一种可能的设计中,所述传输参数还包括时域资源索引和/或小区标识。
在一种可能的设计中,所述时域资源索引由以下任意一种方式确定:由信令指示的正整数确定;由系统消息周期或同步信号发送间隔确定;由子载波间隔确定;由预定义时长内使用的子载波间隔下的时隙数确定。
在一种可能的设计中,所述第二设备根据所述传输参数中的至少一种确定所述序列的初始值和/或所述序列的初始位置,包括:所述第二设备使用所述传输参数中的第一参数生成所述序列的初始值,使用所述传输参数中的第二参数生成所述序列的初始位置,所述第一参数与所述第二参数不同;或者,所述序列的初始值和所述序列的初始位置分别根据同一传输参数的不同比特位确定。
在一种可能的设计中,所述第二设备使用序列解调接收到的所述信息,包括:所述第二设备根据传输数据的业务类型参数和/或接收设备的能力类型,确定用于对接收到的所述信息进行解调的序列;所述第二设备使用确定出的所述序列解调接收到的所述信息。
在一种可能的设计中,所述序列根据传输参数确定,包括:所述序列根据多个子序列确定,每个子序列由所述传输参数的全部或一部分确定,所述序列的长度为所述多个子序列长度之和。
在一种可能的设计中,所述序列根据传输参数确定包括:所述序列包括多个子序列,每个子序列由所述传输参数的全部或一部分确定;相应的,所述第二设备使用序列解调接收到的所述信息,包括:所述第二设备使用所述多个子序列解调接收到的所述信息;或者,所述多个子序列分别用于不同的时域资源上。
第四方面,本发明实施例提供了一种传输方法,所述方法包括:第二设备接收第一设备传输的信息;所述第二设备使用序列解调接收到的所述信息,其中,所述序列的初始位置根据传输参数确定,所述传输参数为非常数。
在本发明实施例实现方式中,在所述序列的初始位置中引入传输参数,并使用所述序列生成待传输的信息,从而可以在不改变序列长度的前提下在所述序列中引入更多和/或更长的传输参数。接收机(对应第二设备)根据信息是否正确被接收,确定传输参数是否被正确接收,能够实现对传输参数的校验。
在一种可能的设计中,所述传输参数包括以下中的至少一种:时域资源的索引、时域 资源类型、传输波形指示信息、子载波间隔指示信息、设备类型信息、业务类型指示信息、MIMO参数信息、双工方式指示信息、控制信道格式指示信息、小区标识、传输载波指示信息。
在一种可能的设计中,所述序列的初始位置根据所述传输参数确定。
在一种可能的设计中,用来确定所述序列的初始值的传输参数与用来确定所述序列的初始位置的传输参数不同;或者,所述序列的初始值和所述序列的初始位置分别根据同一传输参数的不同比特位确定。
在一种可能的设计中,所述时域资源的索引根据参数M确定,所述参数M根据以下任意一种方式确定:为预定义的或信令指示的正整数;由系统消息周期或同步信号发送间隔确定;由子载波间隔确定;由预定义时长内使用的子载波间隔下的时隙数确定。
在一种可能的设计中,所述序列根据多个子序列确定,每个所述子序列由所述传输参数的全部或一部分确定,所述序列的长度为所述多个子序列值之和。
在一种可能的设计中,所述序列包括多个子序列,每个所述子序列由所述传输参数的全部或一部分确定;相应的,所述第二设备使用序列解调接收到的所述信息,包括:所述第二设备使用所述多个子序列解调接收到的所述信息;或者,所述多个子序列分别用于不同的时域资源上。
在一种可能的设计中,所述第二设备使用序列解调接收到的所述信息,包括:第二设备根据传输数据的业务类型参数和/或接收设备的能力类型,确定用于对接收到的所述信息进行解调的序列;使用确定出的所述序列解调接收到的所述信息。
第五方面,为了实现上述第一方面的传输方法,本发明实施例提供了一种传输装置,该传输装置具有实现上述传输方法中第一设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,所述装置包括序列生成模块,用于根据传输参数生成序列;其中,所述传输参数包括以下中的至少一种:时域资源类型、传输波形指示信息、子载波间隔指示信息、设备类型信息、业务类型指示信息、多输入多输出MIMO参数信息、双工方式指示信息、控制信道格式指示信息、传输载波指示信息;传输信息生成模块,用于使用所述序列生成待传输的信息;发送模块,用于发送所述待传输的信息。
在本发明实施例方案中,所述序列生成模块、传输信息生成模块和发送模块还用于执行第一方面实施例中相关设计可能的步骤,具体内容参见第一方面实施例。
在另一种可能的设计中,所述装置包括:处理器和收发器,所述处理器用于实现上述序列生成模块和传输信息生成模块的功能,所述收发器用于实现发送模块的功能。
第六方面,为了实现上述第二方面的传输方法,本发明实施例提供了一种传输装置,该传输装置具有实现上述传输方法中第一设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,所述传输装置包括第一生成模块,用于根据传输参数确定生成序列的初始位置,其中所述传输参数为非常数;第二生成模块,用于使用所述序列生成待 传输的信息;发送模块,用于发送所述待传输的信息。
在本发明实施例方案中,所述第一生成模块、第二生成模块和发送模块还用于执行第二方面实施例中相关设计可能的步骤,具体内容参见第二方面实施例。
在另一种可能的设计中,所述装置包括:处理器和收发器,所述处理器用于实现上述第一生成模块和第二生成模块的功能,所述收发器用于实现发送模块的功能。
第七方面,为了实现上述第三方面的传输方法,本发明实施例提供了一种传输装置,该传输装置具有实现上述传输方法中第二设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,所述装置包括:接收模块,用于接收第一设备传输的信息;解调处理模块,用于使用序列解调接收到的所述信息,其中,所述序列根据传输参数确定,所述传输参数包括以下中的至少一种:时域资源类型、传输波形指示信息、子载波间隔指示信息、设备类型信息、业务类型指示信息、多输入多输出MIMO参数信息、双工方式指示信息、控制信道格式指示信息、传输载波指示信息。
在本发明实施例方案中,所述接收模块和所述解调处理模块还用于执行第三方面实施例中相关设计可能的步骤,具体内容参见第三方面实施例。
在另一种可能的设计中,所述装置包括:处理器和收发器,所述处理器用于实现上述解调处理模块的功能,所述收发器用于实现接收模块的功能。
第八方面,为了实现上述第四方面的传输方法,本发明实施例提供了一种传输装置,该传输装置具有实现上述传输方法中第二设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,所述传输装置包括:接收模块,用于接收第一设备传输的信息;处理模块,用于使用序列解调解调接收到的所述信息,其中,所述序列的初始位置根据传输参数确定,所述传输参数为非常数。
在本发明实施例方案中,所述接收模块和所述处理模块还用于执行第四方面实施例中相关设计可能的步骤,具体内容参见第四方面实施例。
在另一种可能的设计中,所述装置包括:处理器和收发器,所述处理器用于实现上述处理模块的功能,所述收发器用于实现接收模块的功能。
第九方面,本发明实施例提供了一种计算机存储介质,用于储存为上述各个传输装置所用的计算机软件指令,其包含用于执行各个传输装置所对应的传输方法的程序。
本发明实施例的传输方案,提供了一种新的校验传输错误的机制,能够实现对传输参数的校验。
附图说明
图1是本申请所涉及的一种可能的应用场景示意图;
图2是本申请所涉及的另一种可能的应用场景示意图;
图3是本申请一个实施例的传输方法的流程图;
图4是本申请另一个实施例的传输方法的流程图;
图5是现有技术的加扰序列占用比特示意图;
图6是本申请一个实施例中确定传输方法中所用序列的方法流程图;
图7是本申请的一个实施例中对时域资源重新划分的示意图;
图8是不同子载波间隔上的时隙数示意图;
图9是本申请一个实施例中对时域资源重新划分及编号的示意图;
图10是本申请一个实施例中对某个时隙资源编号的示意图;
图11是本申请提供的一种传输装置的结构示意图;
图12是本申请提供的另一种传输装置的结构示意图;
图13是本申请提供的又一种传输装置的结构示意图;
图14是本申请提供的再一种传输装置的结构示意图;
图15是本申请所涉及的一种接入设备的结构示意图;
图16是本申请所涉及的一种终端设备的结构示意图。
具体实施方式
图1是本申请所涉及的一种可能的应用场景示意图。如图1所示,各个终端设备(如UE1和UE2)与接入设备(如eNB)连接,终端设备之间的数据通信需要接入设备的中转,其中,终端设备向接入设备发送数据的无线链路称为上行链路(uplink,UL),接入设备向终端设备发送数据的无线链路称为下行链路(downlink,DL)。
图2是本申请所涉及的另一种可能的应用场景示意图。如图2所示,该场景中包括多个终端设备,多个终端设备(如UE1和UE2)通过设备到设备(device to device,D2D)直通技术进行数据传输和信息的交互。在图2所示场景中,终端设备与终端设备之间进行数据直接通信的链路称为直通链路或边链路(Sidelink,SL)。D2D通信中,对通的2个设备可以是任意相同类型的传输节点或终端设备,本发明实施例对此不做限定。
本发明实施例所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),终端(terminal),终端设备(terminal equipment)等等。本发明所涉及到的接入设备可以是基站,其中基站是一种部署在无线接入网中用以为UE提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代3G网络中,称为节点B(Node B)等等,在5G网络中称之为下一代节点B或者Gbit的节点B,简称gNB。为方便描述,本申请中,上述为UE提供无线通信功能的装置统称为基站或BS。
基于图1和图2所示的场景,本发明实施例提供了一种传输方法。本发明实施例的传输方法可以应用在如图1所示的需要接入设备中转的通信场景中,也可以应用在如图2所示的直通通信场景中。从另一个角度,本发明实施例的传输方法既可以应用在如图1和图2所示场景的上行通信过程中,也可以应用在如图1和图2所示通信场景的下行通信过程 中。为便于描述,将通信过程中用于作为发送端的设备称为第一设备,将用于作为接收端的设备称为第二设备。
在图1和图2所示系统的通信过程中,为了提高系统的抗干扰性会对传输信息进行加扰,例如使用序列对传输数据加扰,或者使用序列生成参考信号;当对传输信息加扰之后再将传输信息发送过去。在现有技术中,用于对传输信息加扰的序列是预先定义好的已知序列,而且现有技术的通信方法缺乏对传输参数的校验机制,如果单独设置对传输参数校验流程,会增加通信的复杂性。
为了实现对传输参数的校验,本发明实施例的传输方法中,根据传输参数确定用于对传输信息加扰的序列。接收机接收到所述信息后,首先生根据传输参数生成相应的序列,然后使用所述序列进行去扰或做接收检测。如果传输参数在通信过程中估计出错,则不论当前接收机的信噪比(Signal Noise Ratio,SNR)多高,接收机均判定接收到的数据包错误。当接收SNR较高且发生译码错误时,接收机会及时检查用于进行数据加扰(或修改后的待传输信息)的传输参数是否接收正确,而不会一直尝试或重传下去,从而可以减少不必要的重传和功率消耗,也可以降低数据传输错误的积累或传递。进一步地,本发明实施例的方法可以解决同时对大量传输参数进行校验的问题,从而提高了系统的灵活性和鲁棒性。
在本发明的实施方案中,根据以下方式来生成序列。根据至少一种传输参数确定序列的初始值。基于序列的初始值以及相应的生成多项式来生成序列c 1(n)。然后根据至少一种传输参数确定序列的初始位置。然后从序列c 1(n)中从序列的初始位置开始取出待加扰数据或待传输参数信号长度的序列,即得到本发明实施例的第一序列c(n)。本发明实施例中的序列的初始值是指用来生成序列的初始参数。例如对于使用基于移位寄存器生成的序列,例如:m序列,Gold序列等,序列的初始值是指生成这个序列的一个或多个子序列的移位寄存器的初始化的值。
本发明实施例中的序列的初始位置是指用来读取序列的开始位置。下面结合实例来做进一步说明。例如,根据生成序列的初始值来生成一个序列c 1(n),0≤n≤L-1,这里L为序列c 1的长度,L值通常大于待使用序列的长度。例如,31位长的Gold序列,L值为(231-1),而实际待使用序列的长度通常不大于10000。所以需要确定如何从一个很长的原始序列c 1中取出待使用的序列c。例如,可以定义待使用序列c(n)=c 1(n+a),其中0≤n≤M-1,M为待使用序列的长度。这里的常数a为本发明中所指的生成序列的初始位置。
在本发明实施例方案中,根据传输参数生成序列可能包括以下至少一种情况:
(1)根据至少一种传输参数直接生成用于确定待传输信息的序列,具体的,生成的所述序列可以是一个序列,也可以是多个子序列。
例如,当生成的序列为一个序列时,根据传输参数A直接生成第一序列的初始值,所述第一序列的初始位置为常数一,根据第一序列的初始值和第一序列的初始位置确定所述第一序列。
当生成多个子序列时,每个子序列的生成方法与上述生成第一序列的方法相同,采用的传输参数可以不同。可选的,当生成多个子序列后,可以根据多个子序列确定待传输信息;可选的,可以根据多个子序列生成一个序列,生成的序列的长度为所述多个子序列长 度之和,利用生成后的一个序列确定待传输的信息。
(2)根据至少一种传输参数生成一个目标序列,生成的所述目标序列对应最终要使用的所述序列的初始值;所述目标序列的长度大于需要使用的序列的长度,或者,所述目标序列为循环序列。在本发明实施例方案中,从所述目标序列中截取出最终要使用的序列,其中,截取的初始位置对应最终要使用的序列的初始位置。在本发明实施例方案中,从所述目标序列中截取出的最终要使用的序列可以是一个序列,也可以是多个子序列。可选的,当截取出的是多个子序列时,可以根据多个子序列确定待传输信息;可选的,可以根据截取出的多个子序列生成一个序列,生成的这个序列的长度为所述多个子序列长度之和,利用生成后的一个序列确定待传输的信息。
在本发明实施例中,根据传输参数确定要使用序列的初始值和/或序列的初始位置,其中,可选用的传输参数包括但不限于以下一种或多种:
(1)上/下行指示信息
上/下行指示信息用来指示当前的传输是上行传输还是下行传输。例如,使用1比特来指示上/下行的信息,如1表示下行,0表示上行。可选的,上/下行指示信息可以用于上下行传输时使用的波形相同的场景,如上下行传输时使用的都是OFDM波形,也可以用于上下行传输使用的波形不同的场景,如下行传输使用的是OFDM波形,上行传输使用的是非OFDM波形。
当生成所述序列的传输参数为这个信息时,可以检测到的当前的链路是上行还是下行链路进行校验,特别地在TDD系统中,上、下行链路在一个载波上,从而可以及时地发现前述步骤中这个参数检测是否正确。
(2)传输时使用的波形的信息
传输时使用的波形的信息用于指示传输使用的具体波形。所述波形包括:OFDM波形或SC-FDM。可以使用1比特指示传输时使用的波形的信息,如1表示传输时使用的OFDM波形,0表示传输时使用的SC-FDM波形。
或者另一种可选的方式是,波形信息包括:多载波波形和单载波波形。同样的,可以使用1比特指示传输时使用的波形的信息,如1表示传输时使用的OFDM波形,0表示传输时使用的单载波波形。
当生成所述序列的传输参数为这个信息时,可以检测到的当前的链路使用的波形的信息,特如,在上行中可以使用OFDM也可以使用SC-FDM,如果接收机检测的波形判断错误,则后续的所有的解调都会连续出错,从而可以及时地发现前述步骤中这个参数检测是否正确。
(3)MIMO参数信息
MIMO模式指示信息指示当前传输时使用的MIMO的方式,它可以是空间复用模式、波束赋形模式。它还可以是空间复用模式、分集模式。例如使用1比特指示,1表示空间复用,0表示发射分集。可选地,复用可以单流复用,也可以是多流复用。
可选地,MIMO参数信息还可以用来指示波束的类型或波束的标识。波束的类型可以是模拟波束或基于码本或码字产生的波束。波束的类型还可以是:动态波束或静态或半静态波束。动态波束随着时间、频率可以相对较快的发生变化,从而可以实现在时间或频率资 源上的波束扫描或跟踪。指示波束的标识,即指示当前设备发送或接收到的波束的编号或索引。
当生成所述序列的传输参数为这个信息时,可以检测到的当前的链路所处的MIMO参数或模式。特别地,在高频中,还能够确认当前检测到的波束的标识,如果检测到的波束与实际通信的波束标识不一致,虽然不致于导致所有的通信错误,但会使接收到的SNR大幅度的下降,从而影响了通信的质量。通过对这个参数的校验,可以及时地发现前述步骤中这个参数检测是否正确。
(4)设备类型信息
设备类型信息可以是按不同的成本划分的设备类型,按不同的设备能力划分的设备类型,也可以是按不同的功能划分的设备类型。按成本划分的设备类型:例如低成本设备,高成本设备,这种类型通常用于物联网的传输终端中。按设备能力划分的设备类型:例如低能力设备、中等能力设备、高能力设备,或者直接设备的能力等级(如能力等级可以是1~10等)来划分的。按不同的功能划分的设备类型:例如,基站设备,中继设备,终端设备。还可以是按不同的接入功能定义的设备,例如:物联网信备,移动宽带业务设备、低时延高可靠设备。
当生成所述序列的传输参数为这个信息时,可以检测当前设备接入的业务类型。例如,如果当前传输的设备是给物联网的低能力终端的,但这个参数检测发生错误,则会导致后面传输参数都匹配不上,从而发生后续检测的连续错误。可以及时地发现前述步骤中这个参数检测是否正确。
(5)业务类型指示信息
业务类型指示信息用于指示业务类型,其中,业务类型包括移动宽带业务、低时延业务、高可靠业务、低时延业务高可靠业务及物联网业务等类型。业务类型还可以使用不同的业务质量的参数的不同取值来表征。
当生成所述序列的传输参数为这个信息时,可以检测当前设备接入的业务类型。例如,如果当前传输的业务是低时延业务高可靠业务的,一旦这个参数检测发生错误,则会导致后面的业务层的数据都匹配不上,从而发生上层数据检测的错误。可以及时地发现前述步骤中这个参数检测是否正确。
(6)传输载波指示信息
传输的载波索引指示信息包括当前传输载波类型或当前传输载波的标识。传输载波的类型可以是主从载波的类型,如:主载波还是辅载波。传输载波的类型可以控制面的类型,如:控制载波或数据载波。传输载波的类型可以是调度的类型:基于调度的载波或基于免调度的载波。传输载波还可以是指授权载波或非授权载波。
当生成所述序列的传输参数为这个信息时,可以防止在检测当前载波类型的时候发生错误,从而把不同类型的载波错误地使用。可以及时地发现前述步骤中这个参数检测是否正确。
(7)双工方式指示信息
双工方式指示信息用于指示当前传输载波的双工方式。例如双工方式指示信息包括TDD,FDD,FD(全双工方式)中的至少2种。
当生成所述序列的传输参数为这个信息时,可以检测当前载波的双工类型,从而防止双工类型判断错误。可以及时地发现前述步骤中这个参数检测是否正确。
(8)不同的控制信道或控制信息格式
控制信道或控制信息格式是用来指示相应的控制信息所调度的数据的传输模式。例如,不同的MIMO模式,不同的业务类型,不同的传输链路类型。
或者是不同的控制信道的格式或类型。例如格式或类型为:长的控制信道或短的控制信道。例如使用1比特来表示,1表示长的控制信道(例如,传输时具有更多的时域符号,如4个符号、一个时隙或一个子帧长度的控制信道),0表示短的控制信道(例如,传输时具有更少的时域符号,如1或2个符号的控制信道)。又如格式或类型为:基于一级调度的控制信道,或基于二级调度的控制信道。
当生成所述序列的传输参数为这个信息时,可以检测控制信道的模式是否检测错误。一旦这个参数检测错误,相应的控制信息检测也会不正确。从而导致接收机发生更多的不必要的盲检。可以及时地发现前述步骤中这个参数检测是否正确,减少盲检。
(9)不同子载波间隔的指示信息
不同子载波间隔的指示信息用来指示当前传输时使用的子载波间隔的大小值或类型。例如指示的子载波间隔至少是以下子载波间隔值中的2种:{15,30,60,120,240,480}kHz。
当生成所述序列的传输参数为这个信息时,可以检测子载波间隔的参数是否检测错误。一旦这个参数检测错误,后面所有的传输检测都会出错。原因是子载波间隔是多载波系统传输中的最关键参数,这个参数一旦发生检测错误,接收机则会不断地进行控制和数据的译码检测,增加整个接收机的实现复杂度。
(10)时域资源的类型
时域资源的类型包括:正常的时域资源,短的时域资源。例如可以包括时隙slot和迷你时隙mini-slot。Mini-slot的长度通常不大于slot。
可选地,时域资源的类型包括:单个资源的传输指示信息和多资源汇聚的传输指示信息。单个资源的传输指的是,一次传输时使用一个最基本的传输资源单元,如一个时隙、一个载波,或以单个频域资源为单位进行传输。多资源汇聚的传输是指一次传输时,同时使用多个传输资源,如一次传输时使用多个时隙进行汇聚传输,使用多个载波进行汇聚传输,使用多个基本的频域资源单元进行汇聚传输。可以使用1比特来指示当前的传输是单资源传输还是多资源汇聚传输。可以也使用多个比特来指示当前汇聚的传输资源的数量。
当生成所述序列的传输参数为这个信息时,可以检测当时的时域资源的类型是否检测错误。一旦这个参数检测错误,后续在读取时域资源时都会少取或多取数据符号,从而后续通信的错误。可以及时地发现前述步骤中这个参数检测是否正确,减少盲检和译码次数。
(11)小区标识信息
小区标识是指用来标识UE所处当前小区的物理标识。
(13)时域资源的索引信息
时域资源索引信息,是在某种特定的子载波间隔下的时域资源的指示信息,例如可以是这个时域资源的索引。
在本发明实施例方案中,可以使用上述传输参数中的任意一种或多种来生成所述序列。 使用上述传输参数生成序列,一方面可以对上述传输参数进行双向校验,另一方面还可以对上述传输参数对应的不同场景做干扰随机化,由此以避免在不同场景下产生的不可区分或持续的干扰。当使用多于一种传输参数生成序列时,可以达到同时对多种参数进行双向校验的目的,从而进一步提高系统的稳定性和可靠性。以下将结合具体实施例对本申请的传输方法进行具体说明。;图3是本申请一个实施例的传输方法的流程图。如图3所示,该方法包括:
步骤S101:第一设备根据传输参数生成序列。
在本发明实施例方案中,第一设备可以采用上述两种方式中的至少一种生成所述序列,其中,第一设备在生成所述序列时,均需要根据传输参数确定序列的初始值和/或初始位置。
在本发明实施例方案中,用于确定序列的初始值和/或初始位置的传输参数参见上文所述。
在本发明实施例方案中,第一设备根据传输参数确定序列的初始值和/或序列的初始位置,包括:
第一设备根据传输参数确定序列的初始值,序列的初始位置为一个常数。例如,在由传输参数直接生成所述序列的方案中,序列的初始位置为常数一。又例如,在根据传输参数生成目标序列,从目标序列中截取所要使用的序列的方案中,可以设置序列的截取初始位置(对应序列的初始位置)为常数。
在另一种可能的设计中,第一设备还根据传输参数确定序列的初始位置,例如,在根据传输参数生成目标序列,从目标序列中截取所要使用的序列的方案中,第一设备还根据传输参数确定序列的截取初始位置(对应序列的初始位置)。
可选的,第一设备可以使用所述传输参数中的第一参数生成所述序列的初始值,使用所述传输参数中的第二参数生成所述序列的初始位置。
需要说明的是,所述第一参数和所述第二参数可以相同,也可以不同。在一个具体示例中,当第一参数和第二参数相同时,所述序列的初始值和所述序列的初始位置可以分别根据同一传输参数的不同比特位确定。当序列的初始值和序列的初始位置分别根据同一传输参数的不同比特位确定时,所述传输参数可以上述所列举传输参数中的任意一种,在一种具体示例中,所述传输参数可以是用户标识指示信息,如无线网络临时标识(Radio Network Temporary Identifier,RNTI),又例如所述传输参数可以是小区标识。在一个具体示例中,传输参数为小区标识,若小区标识最多有10个比特(即其总共有1024个不同的取值),则可以根据该传输参数的前5个比特位确定序列的初始值,根据该传输参数的后5个比特位确定序列的初始位置,具体比特位的选取方式可以根据实际的应用需求进行确定。
步骤S102:第一设备使用所述序列生成待传输的信息。
在本发明实施例方案中,第一设备使用所述序列生成待传输的信息包括:
使用所述序列对待传输的数据进行加扰,所述待传输的信息为加扰后的传输数据;或者,使用所述序列生成参考信号,所述待传输的信息为加扰参考信号。
可选的,当第一设备生成的为一个序列时,第一设备使用该一个序列对数据加扰或者 生成参考信号。
当第一设备生成的为多个子序列时,第一设备可以根据该多个子序列生成一个序列后,利用该一个序列对数据加扰或生成参考信号;在另一种可能的设计中,当第一设备生成的为多个子序列时,第一设备可以使用该多个子序列对待传输的数据加扰或者生成参考信号。
在另一种可能的设计中,当第一设备生成的为多个子序列时,该多个子序列分别对应不同的时域资源或传输系统,第一设备根据当前的时域资源或传输系统类型,从多个子序列中选取序列,并利用选取的序列对数据加扰或者生成参考信号。
步骤S103:第一设备发送待传输的信息。
在本发明实施例方案中,第一设备发送待传输的信息后,由接收设备进行接收,其中,所述接收设备可以为直通方式中的终端设备,也可以是由基站转发方式中的基站。
步骤S104:第二设备接收第一设备传输的信息。
步骤S105:第二设备使用序列解调接收到的传输信息。
其中,第二设备使用的序列也是根据传输参数确定的,第二设备根据传输参数确定序列的方式参见第一设备确定序列的方式,此处不再赘述。
在本发明实施例方案中,第二设备解调接收到的传输信息,包括第二设备使用序列解调传输数据和/或第二设备使用接收到的参考信号进行接收处理。其中,使用接收到的参考信号进行接收处理包括使用参考信号对接收到的数据进行解调;或者使用参考信号做信道状态信息的估计和/或数据的解调。
综上可以看出,本发明实施例方案中,使用传输参数,例如使用系统中新引入的传输参数和/或长度增加后的传输参数生成序列,并使用生成的序列加扰数据和/或生成参考信号,第二设备(对应接收机)在接收处理之前同样会生成参数信号然后在相应的环节去干扰。
如果第二设备在与第一设备的通信过程中传输参数估计错误,则不论第二设备的SNR多高,第二设备均判断接收的数据包错误,第二设备即会及时检查之前获取的传输参数是否正确,避免数据传输错误的积累或传递。;图4是本申请另一个实施例的传输方法的流程图。在本发明实施例方法中,至少根据传输参数确定序列的初始位置,如图4所示,该方法包括:
步骤S201:第一设备根据传输参数确定生成序列的初始位置,其中,所述传输参数为非常数。其中,所述非常数的传输参数可以为上文所列传输参数中的一种或多种,不再赘述。
在一种可能的设计中,第一设备要使用的序列的初始值为常数,例如,第一设备确定一个已知序列作为目标序列,第一设备只需根据传输参数从目标序列中确定截取初始位置(对应初始位置)。
在另一种可能的设计中,第一设备还根据传输参数确定所述序列的初始值,例如,第一设备根据传输参数确定所述目标序列。
步骤S202:第一设备使用所述序列生成待传输的信息。
本发明实施例使用所述序列生成待传输的信息的方法与图3所示实施例相同,不再赘述。
步骤S203:第一设备发送所述待传输的信息。
在本发明实施例方案中,第一设备发送待传输的信息后,由接收设备进行接收,其中,所述接收设备可以为直通方式中的终端设备,也可以是由基站转发方式中的基站。
步骤S204:第二设备接收第一设备传输的信息。
步骤S205:第二设备使用序列解调接收到的传输信息。
其中,第二设备使用的序列也是根据传输参数确定的,第二设备根据传输参数确定序列的方式参见第一设备确定序列的方式,此处不再赘述。
在本发明实施例方案中,第二设备使用序列解调传输数据和/或第二设备使用接收到的参考信号进行接收处理。其中,使用接收到的参考信息进行接收处理包括使用参考信号对接收到的数据进行解调;或者使用参考信号做信道状态信息的估计。;本发明实施例的传输方法与现有技术相比,主要区别在于本申请方案将传输参数引入到用于加扰数据或用于生成参考信号的序列中,结合图3和图4所示方法,下述实施例主要对根据传输参数确定所述序列的过程进行详细说明,并且在部分实施例中对根据生成的序列对数据加扰或者生成参考信号的过程进行说明,其中,在下述实施例中以根据传输参数确定随机序列为例进行说明。
在本申请传输方法的一个具体实施例中,第一设备在生成随机序列时,根据上述传输参数中的一种或多种确定所述随机序列的初始位置。例如,现有技术中生成的随机序列固定为31比特,输出初始位置为常数值,如为1600。利用本发明实施例的传输方法在生成随机序列时,仍可以按照现有方法确定随机序列,也可以根据上述传输参数中的一种或多种确定随机序列,无论采用哪种方式生成的随机序列,都根据一种或多种传输参数确定随机序列的初始位置。
以下将结合长期演进(Long Term Evolution,LTE)系统中的一个具体例子对本发明实施例传输方法中的随机序列生成过程来做进一步说明。
在LTE系统中,定义了长为31比特的随机序列为:
c(n)=(x 1(n+N C)+x 2(n+N C))mod2
c(n)是随机序列的输出值,x1和x2以由下生成多项式生成:
x 1(n+31)=(x 1(n+3)+x 1(n))mod2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod2
其中,x1对应的序列初始值为:x 1(0)=1,x 1(n)=0,n=1,2,...,30,随机序列c(n)对应的初始值为x2的初始值,即:
Figure PCTCN2018073779-appb-000001
在一些实际的具体应用中,通常是给出序列的初始值Cinit,然后根据这个初始值转换成2进制后来确定x2序列移位寄存器各个状态位中的初始值。
在一些具体的应用实例中,例如物理上行共享信道(Physical Uplink Shared Channel,PUSCH)数据加扰序列生成的初始值为:
Figure PCTCN2018073779-appb-000002
如图5所示,nRNTI是无线网络临时标识(Radio Network Temporary Identity,RNTI)的值,使用16比特来表示,q为码字数,LTE中有2个码字,使用1比特来表示,其值为0或1,ns为时隙的编号,LTE中其值为0~9,用4比特表示,
Figure PCTCN2018073779-appb-000003
为小区的标识,LTE中, 其值为0~503。
根据图5可知,位数长度为31的序列中的30个比特位全部被占用。如果需要对新的参数进行随机化,现有的LTE技术无法再扩展或添加新的参数,又或者现有的参数中一个或多个参数占用的比特位变长时,现有的序列因为比特位长度的限制也不能再使用了。
为了在序列中扩展或添加新传输参数,本发明实施例在生成序列时,对于一个特定的序列(可以是复用现有的序列,也可以是新定义的序列)可以采用如下方法确定序列的初始值和初始位置,其中,如图6所示,包括:
步骤S301:确定第一部分传输参数,其中,第一部分传输参数用于确定序列的初始值,例如,仍根据公式
Figure PCTCN2018073779-appb-000004
确定随机序列的初始值,此时第一部分传输参数包括RNTI,q,ns,小区ID。
步骤S302:确定第二部分传输参数,其中,第二部分传输参数用于确定随机序列的初始位置,第二部分传输参数可以选取上述所列传输参数中的一种或多种,当选取传输参数时,可以只使用传输参数的部分比特位,相应的,随机序列的初始位置为:
N C=f(x),N C=f(x,y),N C=f(x,y,z)。
其中,f()表示是传输参数x,y,z的函数。
作为一些可选的具体实施例,Nc可以是以下中的任意一种:
N C=a+x,
N C=a+x+y
N C=a+a·x
N C=a+a·(x+y)。
N C=a+a·x+b·y
N C=mod(f(x),L)-M PN
N C=mod(f(x,y),L)-M PN
上述a,b为预定义的常实数,L为随机序列的长度,MPN为随机序列的读取长度,mod(x,y)表示传输参数x对传输参数y进行取模操作。
可选地,以ns为例,Nc可以是以下中的任意一种的具体例子:
N C=1600+n s,
N C=1600(1+n s),
Figure PCTCN2018073779-appb-000005
Figure PCTCN2018073779-appb-000006
N C=1600+mod(n s,M),
N C=1600(1+mod(n s,M))
其中m为整数,显然地,ns也可以换为其他传输参数。
对应的,随机序列的输出值为:c(n)=(x 1(n+N C)+x 2(n+N C))mod2。
可选的,第二部分传输参数可以与第一部分传输参数相同,也可以不同,例如,第二部分传输参数可以是:时域资源类型、传输波形指示信息、子载波间隔指示信息、波束指示信息、设备类型信息和业务类型指示信息、MIMO模式指示信息、双工方式指示信息、控制信道格式指示信息;而第一部分传输参数可以是:UE标识、小区标识中的至少一种。
可选的,第二部分传输参数可以是第一部分传输参数中某个传输参数的部分比特。例如,时域资源指示信息分成子帧索引的指示信息和时隙索引的指示信息。在一个具体示例中,第一部分传输参数包括子帧号或帧号,第二部分传输参数包括某个特定子帧内的时隙号。又例如,第一部分传输参数包括某个特定子帧内的时隙号,第二传输参数包括子帧号或帧号。又例如,可以将小区标识的各比特位分为两部分,其中的一部分对应第一传输参 数,另一部分对应第二传输参数。
本实施例的传输方法,在确定随机序列时,需要根据传输参数确定随机序列的初始值和初始位置两个维度,与现有定义随机序列的方法相比,在不强制要求修改随机序列的前提下能够实现对更多的序列实现随机化,增加了随机化的维度,能够进一步对新引入的传输参数或者在原有参数变得更大之后进行随机化,从而确保对更多传输参数实现随机化。;在本申请传输方法的另一个具体实施例中,第一设备根据时域资源的索引确定随机序列的初始值和初始位置。在本发明实施例方法,时域资源的索引可以是现有系统中已定义的时域资源索引值,可选的,所述时域资源的索引是将连续的时域资源按更小的时间粒度划分后重新定义的时域资源索引,所述重新定义的时域资源索引为随机序列的生成参数。其中,在将连续的时域资源按更小的时间粒度分成不同部分后,在更小的时域资源内随机序列的生成参数不同,在更小的时域资源之间随机序列的生成参数可以相同也可以不同。
在本发明实施例中,时隙是指占用的1个或连续多个时域符号对应传输资源的集合。时隙占用的时域资源的长度通常不大于1ms。
图7给出了对时域资源重新划分的示意图。如图7所示,长为10ms(毫秒)的帧包括10个长为1ms的子帧,可以将10ms的帧分成5个子时域资源,在每个子时域资源内的各个符号或时隙上,随机序列的生成参数不同,在不同的子时域资源间,对应的随机序列的生成参数可以相同也可以不同。例如,子时域资源0和子时域资源1对应的随机序列相同。又如,可以将10ms的帧分成10个等长的子时域资源,每个子时域资源为1个子帧,长为1ms。在每个子时域资源内的各个符号或时隙上,随机序列的生成参数不同。在不同的子时域资源间,如第1个子帧和第2个子帧中相同位置上的符号或时隙上,序列的生成参数可以相同也可以不同。
本发明实施例方案适用于对时域资源进行随机化的场景,例如,对于正常循环前缀(cyclic prefix,CP),如果每个时隙占用7个符号,则不同子载波间隔上的时隙(slot)数如表1所示:
表1:每1ms内不同子载波间隔时的slot数
子载波间隔(kHz) 15 30 60 120 240 480
每ms内Slot数 2 4 8 16 32 64
表1所示的不同子载波间隔上的时隙(slot)数也可以用图8的方式表示。
又例如,对于正常CP,如果每个时隙占用14个符号,则不同子载波间隔上的slot数如表2所示:
表2:每1ms内不同子载波间隔时的slot数
子载波间隔(kHz) 15 30 60 120 240 480
每ms内Slot数 1 2 4 8 16 32
本实施例的进一步的方法是:对于生成随机序列的时隙号ns,使用f(ns,M)来替换。f(ns,M)表示由时隙号ns参数和M来生成的函数,即由ns和M来确定。
如f(ns,M)=mod(ns,M),即表示时隙号ns对参数M来取模。
又如f(ns,M)在时隙ns所表示的2进制整数中取出k个比特,其中k为不大于ceil(log2(M))。例如M=20时,ceil(log2(M))=5,将当时的时隙ns写成二进制,取其中的某5比特。例如,当前的ns为56,则写成二进制为:0111000。可以取其中的5比特,如从右往左取,即取小的比特位,则当前用于生成序列的时隙号为11000=24,又如从左往右取5比特,即取较大的比特位,则当前用于生成序列的时隙号为01110=14。
这里M表示为连续M个时隙,M值可以根据如下的任意一种方式来确定:
(1)M为一固定的预定义的正整数,如20,16,32等。
(2)M等于各种子载波间隔下对应的同步信号周期,例如,M为同步信号周期内的所有slot数;又例如,M为同步信号周期内slot数的一半。
(3)M为ns占用的预定义的比特数k确定的数,即M=2k。
(4)M为预定义的时长内不同子载波间隔下的ns数。例如在1ms内,不同子载波间隔下的slot数为M=K*M0,M0为参考子载波间隔下的slot数,如参考子载波间隔为15kHz,则M0=2或1。K为当前子载波间隔与参考子载波间隔的倍数,例如当前子载波间隔为120kHz,参考子载波间隔为15kHz,则K=120/15=8,对应的此时M=16。
在本发明实施例方案中,将一个帧内的某种特定子载波间隔下的M个时隙作为一个更小的子时域资源,每个子时域资源内的M个时隙上按f(ns,M)来生成随机序列。
需要说明的是,与现有技术不同的是:对于不同的子载波间隔,不同的M个时隙占用的时间长度的大小不同。例如,对于M=16时,对于15kHz的子载波间隔,M对应于8ms;而30kHz的子载波间隔,则M对应的时隙数为4ms;而60kHz的子载波间隔,则M对应的时隙数为2ms。
在本发明实施例方案中,解决了如何在预设长度的时频资源(如10ms的帧内)针对不同子帧间隔下的时隙参数生成加扰序列的问题。从而在不必修改序列的前提下解决了如何使用变长了ns值来生成加扰序列的问题。这个子实施例对实施后,相邻的不同的子时域资源上的加扰也是不同的。即在10ms的帧内,所有时隙上的加扰的生成序列可以相同或不相同。;在本申请传输方法的又一个实施例方案中,第一设备可以根据不同的传输参数,或者根据相同传输参数中的不同比特位分别用来生成多个序列,然后使用多个序列分别或联合对数据进行加扰或生成参考信号。
在本发明实施例方案中,一种可选的方法是对时隙进行两级的编号,然后分别根据不同的时隙编号来生成不同的序列。
例如,对每个子时域资源使用fix(ns/M)来进行编号,其中fix(x)表示对数x取整。例如fix(15.2)=15,fix(16.7)=16。M的取值与上面的定义相同。在连续的M个时隙组成的子时域资源内,时隙的编号相同,不同的子时域资源的时隙编号不同。在生成随机序列时,会产生两个编号:
n s1=fix(n s/M)
n s2=mod(n s,M)
例如,当M=8,子载波间隔为30kHz,在10ms的帧上的时域资源的编号以及时域资源内的编号如表3及图9所示:;
表3:对30kHz在10ms的帧上的时域资源的编号以及时域资源内的编号
Figure PCTCN2018073779-appb-000007
在本发明实施例方案中,可选地,可以使用两个序列对两级编号后的时隙参数进行随机化,这两个序列可以相同,也可以不同,该两个序列分别为:
c 1,init=f(n s1)
c 2,init=f(n s2)
f(x)表示x的函数,即由输入变量x来确定的两个序列的初始值。
例如,如果每个子时域单元占用的时长为1ms,则子时域资源的编号为子帧的编号
(nsubframe),即ns1=fix(ns/M)=nsubframe
以上面提到的PUSCH的加扰为例,则第一序列的初始值为:
Figure PCTCN2018073779-appb-000008
第二序列的初始值为:
c 2,init=n s2=(n s,M)
M=K*M 0
这里K和M0为正整数。
在本发明实施例方案中,另一种可选的方法是:用不同的传输参数分别生成不同的序列,然后使用这些生成的序列来做数据的随机化或参考信号的生成。
例如使用以下参数中的至少一种来生成第一序列的初始值和/或初始位置c 1,init
时域资源的索引、时域资源类型、传输波形指示信息、子载波间隔指示信息、波束指示信息、UE标识来。
例如使用以下参数中的至少一种来生成第一序列的初始值和/或初始位置c 1,init
小区标识、设备类型信息和业务类型指示信息、MIMO模式指示信息、双工方式指示信息、控制信道格式指示信息、载波指示信息。
然后分别得到第一序列c 1(n)和c 2(n),使用以下方式中的至少一种各自来做数据加扰和生成参考信号:
假设待加扰的数据为d(n),则加扰后输出的数据b(n)为由以下方式生成:
b(n)=(d(n)+c 1(n)+c 2(n))mod2
如果使用随机序列生成参考信号,则可以按如下两种方式使用第二序列。
方式一:分别使用第一、第二序列分别生成第一、第二参考信号,然后由第一、第二参考信号生成目标参考信号。
例如:先分别生成两个参考信号序列r 1(m),r 2(m),
Figure PCTCN2018073779-appb-000009
Figure PCTCN2018073779-appb-000010
其中m表示生成参考信号的每个码片的标识。
然后生成目标参考信号序列:
r(m)=r 1(m)·r 2(m)或
Figure PCTCN2018073779-appb-000011
其中
Figure PCTCN2018073779-appb-000012
表示r2(m)的复共轭。
方式二:联合使用第一、第二序列生成目标参考信号序列,使用目标参考信号序列生成目标参考信号。
例如:联合使用第一、第二序列生成目标参考信号序列r(m):
Figure PCTCN2018073779-appb-000013
c(2m)=(c 1(2m)+c 2(2m))mod2
c(2m)=(c 1(2m+1)+c 2(2m+1))mod2
其中x mod 2表示x对2取模,与上面的mod(x,2)含义相同,只是表达方式不同。
本实施例的有益效果是:解决了如何对更多传输参数进行传输校验的问题,本实施例的方法可以传输更多的参数,也不需要强制对10ms的帧内针的不同时域资源分组,能够保证10ms内各个子帧上的传输参数各不相同。
可选的,我们可以使用传输参数生成多于2个序列,分别用这些序列对数据进行加扰或生成参考信号,使用的方法与2个序列的相同,这里不再一一列举。;在根据时域资源的索引确定随机序列的初始值和初始位置的方案中,一种是图7至图9以及相关说明中给出的方案是将连续的时域资源按更小的时间粒度划分后重新定义时域资源索引,并且将重新定义后的时域资源索引作为确定随机序列的生成参数。
在根据时域资源的索引确定随机序列的初始值和初始位置的另一种方案中,可以将时隙下的符号作为迷你时隙(mini-slot),并且对一个或几个时隙下的迷你时隙(mini-slot)进一步编号,以及根据所述编号生成序列。具体的对一个或几个时隙下的迷你时隙(Mini-slot)进一步编号,以及根据所述编号生成序列进行传输的方法包括:
(1)确定第一时域资源索引,其中,所述第一时域资源索引所对应的时域资源位于第二时域资源索引所对应的时域资源中,并且所述第一时域资源索引所对应的子载波传输间隔与所述第二时域资源索引所对应的子载波间隔不同。
在一个具体示例中,如图10所示,第i个时隙(sloti)为第二时域资源的索引,时隙i中第2个符号对应时域资源为一个迷你时隙(mini-slot),Mini-slot下包括4个符号,编号为0~3。可选的Mini-slot占用的原时隙i中的符号数可以是1个,也可以是多个,但不超过sloti中的所有的符号数。Mini-slot为第一时域资源。
(2)根据第一时域资源索引生成所述序列。
(3)使用所述序列对待传输的数据进行加扰和/或生成参考信号。
进一步地,可选地,sloti的子载波间隔比mini-slot的子帧载波小。例如,sloti的子载波间隔为15kHz,mini-slot的子载波间隔为30kHz或60kHz。如图10所示,当sloti的子载波间隔为15kHz时,mini-slot的子载波间隔为60kHz,则sloti中的一个符号2可以对应mini-slot中的4个符号,根据OFDM系统中的时频关系,子载波间隔越大,每个符号占用的时长则越短。
本实施例中,因为在一个sloti中同时有不同子载波间隔的时域传输资源,需要确定在对mini-slot中使用的传输的数据进行加扰和/或生成参考信号的序列的生成参数,尤其是时域资源索引的参数。即在生成mini-slot的数据和/或参考信号时,需要确定它自身的标识,还需要确定它下面各个不同符号的标识。如果不确定这些参数,则在生成相应序列的时候就会发生参数错乱,从而影响到对相应传输参数的双向校验,从而影响通信的性能和系统的稳定性。
可选的,根据以下方式中的至少一种确定所述第一时域资源索引,包括:
方式一:所述第一时域资源索引所占用的第二时域资源索引的时隙索引。在一个具体示例中,如图10所示,将mini-slot的时域资源的索引用sloti的时域资源索引i来表示。
方式二:所述第一时域资源索引所占用的第二时域资源索引的符号索引。在一个具体示例中,如图10所示,;将mini-slot的时域资源的索引用sloti中的符号编号2来表示。
方式三:所述第一时域资源索引的时隙类型指示信息。具体示例中,可以是指示哪种符号长度的mini-slot,或者哪种子载波间隔的mini-slot。
方式四:所述第一时域资源索引的时隙内的各个符号的索引。具体示例中,可以使用mini-slot哪个时域符号的索引来生成mini-slot的索引。;在本发明实施例方案中,还可以进一步地对与同步信号一起发送的控制信息(例如物理广播信道PBCH中的信息)中的数据使用与时隙或符号编号有关的参数进行加扰。
例如,可以采用是以下中的任意一种实施方式:
Figure PCTCN2018073779-appb-000014
Figure PCTCN2018073779-appb-000015
Figure PCTCN2018073779-appb-000016
在本发明实施例方案中,对与同步信号一起发的控制信息的数据进加扰来实现对同步检测参考的双向校验。;可选的,时隙索引和符号索引可以分别在控制信息的数据和控制信息传输时使用的参考信号间联合使用。即这两者可以分别或同时出现在参考信号的序列生成中,也可以出现在数据加扰序列的生成中。
对与子载波间隔相关的时域资源进行加扰,对预定义时长(如1个无线帧)上的时域资源分成M个子时域资源,针对每个子时域资源上的数据加扰和参考信号生成使用二级序列来生成。同时对与同步一起发送的控制信息使用与时隙或符号索引有关的参数进行加扰,以起到双向校验的目的。;在本申请的一个可能的示例中,可以定义一个新的长度大于31比特位的随机序列,由此可以将扩展了的时隙长度以及更多需要用来生成随机序列的传输参数输入到随机序列中。其中定一个新的长度大于31比特位的随机序列的方式包括以下一种方式或多种方式的组合:
(1)直接使用一个单一长度大于31比特的随机序列,所使用的随机序列不限于Gold序列,还可以是其它的随机序列,如m序列,类Gold序列,Kasami序列等。
(2)根据多个子序列确定一个新的随机序列。
在一个可能的设计示例中,根据公式c(n)=c 1(nmodN 1)·c 2(nmodN 2),0≤n≤N 1·N 2-1生成一个新的随机序列。
其中,c 1为一个子序列,N 1为c 1子序列的长度,c 2为另一个子序列,N 2为c 2子序列的长度,序列c的长度为N 1*N 2
可选的,c 1和c 2可以使用长为31的Gold序列,或者其中一个使用长为31比特的Gold序列,另一个使用长为5比特及以上长度的的m序列或Gold序列。
可选的,一个子序列使用31比特长的Gold序列,该序列可以为现有序列,也可以为 根据本发明实施例方法重新确定的序列;另一个子序列使用长度为7比特的序列,其中,长度为7比特的序列可以根据 x1(n+7)=(x 1(n+1)+1)mod2生成,则生成序列的长度为38比特。
可选的,一个子序列使用31比特长的Gold序列,该序列可以为现有序列,也可以为根据本发明实施例方法重新确定的序列;另一个子序列使用长度为12比特的序列,其中,长度为12比特的序列可以根据x 1(n+12)=(x 1(n+3)+1)mod2生成,则生成序列的长度为49比特。
在又一种可能的设计示例中,可以使用三个子序列生成一个更长的新序列,例如,根据公式c(n)=c 1(nmodN 1)·c 2(nmodN 2)·c 3(nmodN 3),0≤n≤N 1·N 2·N 3-1生成一个新序列,其中,c 1、c 2和c 3分别为三个子序列,N 1、N 2和N 3分别为该三个子序列的长度。
在本发明实施例方案中,可以根据一种或多种传输参数确定各个子序列的初始值。各个子序列对应的传输参数可以相同也可以不同。在一种具体的实现方式中,可以对需要随机化的传输参数分成多组,每组传输参数分别映射到不同子序列的初始值上。
(3)定义多种随机序列,其中,该多种随机序列可以属于同一类型,如该多种随机序列均为Gold序列;当然,该多种随机序列中的部分或全部分别属于不同的类型,例如,该多种随机序列包括:Gold序列及m序列等。
在本发明实施例方案中,不同的随机序列可以对应不同的业务类型或者不同的设备类型。例如,第一种随机序列用于eMBB,第二种随机序列用于mMTC,第三种随机序列用于URLLC。例如,第一种随机序列用于高能力设备,第二种随机序列用于中等能力终端,第三种随机序列用于低能力设备。
在使用随机序列对待传输的数据进行加扰或者使用随机序列生成参考信号时,可以根据待传输的数据或者待生成的参考信号所关联的系统参数和/或设备参数确定随机序列,之后使用确定出的随机序列对待传输的数据加扰,或者使用确定出的随机序列生成参考信号。
在本发明实施例方案中,将待随机化的传输参数设置在更长的序列上,或者用于合成序列的不同子序列上,扩展了随机序列的长度以及扩展了可随机化的传输参数的数量或者长度。;在本发明实施例方案中,可以使用传输参数的一部分来生成随机序列,另一部分承载于控制信息中。
例如:使用小区标识的一部分字段来生成随机序列,小区标识的另一部分字段可以承载于控制信息中。
又例如:将RNTI的一部分字段来生成随机序列,RNTI的另一部分字段可以承载于控制信息中。
在本发明实施例方法中,由于是使用传输参数的一部分来生成随机序列,生成的随机序列的长度可能比现有技术中定义的随机序列的长度短,当生成的随机序列长度较短时,原有的用于承载随机序列的比特位可以用于承载其它信息,例如可以将与子载波间隔有关的时域资源索引完整地占用更多地随机序列的比特位,从而实现对与子载波间隔有关的时域资源索引信息的完整指示或随机化。;对应上述的传输方法,本发明实施例还提供了用于执行上述传输方法的传输装置,以下将结合示意图对本发明实施例的传输装置进行说明。
图11是本申请提供的一种传输装置的结构示意图。图11所示传输装置用于执行上述方法实施例中第一设备所执行的步骤,如图11所示,该装置包括:序列生成模块301、传输信息生成模块302和发送模块303,其中:
序列生成模块301,用于根据传输参数生成序列;其中,所述传输参数包括以下中的至少一种:时域资源类型、传输波形指示信息、子载波间隔指示信息、设备类型信息、业务类型指示信息、多输入多输出MIMO参数信息、双工方式指示信息、控制信道格式指示信息、传输载波指示信息;传输信息生成模块302,用于使用所述序列生成待传输的信息;
发送模块303,用于发送所述待传输的信息。
在一种可能的设计中,所述序列生成模块301根据所述传输参数生成序列,具体包括执行:
根据所述传输参数中的至少一种确定所述序列的初始值和/或所述序列的初始位置,根据所述所述序列的初始值和/或所述序列的初始位置生成所述序列。
在一种可能的设计中,所述传输参数还包括时域资源索引和/或小区标识。
在一种可能的设计中,所述时域资源索引由以下任意一种方式确定:
由信令指示的正整数确定;由系统消息周期或同步信号发送间隔确定;由子载波间隔确定;由预定义时长内使用的子载波间隔下的时隙数确定。
在一种可能的设计中,所述序列生成模块301根据所述传输参数中的至少一种确定所述序列的初始值和/或所述序列的初始位置,具体包括执行:
使用所述传输参数中的第一参数生成所述序列的初始值,使用所述传输参数中的第二参数生成所述序列的初始位置,所述第一参数与所述第二参数不同;或者,
所述序列的初始值和所述序列的初始位置分别根据同一传输参数的不同比特位确定。
在一种可能的设计中,所述传输信息生成模块302使用所述序列生成待传输的信息,具体包括执行:
根据待传输数据的业务类型参数和/或接收设备的能力类型,确定用于生成所述待传输信息的序列;使用确定出的所述序列生成待传输的信息。
在一种可能的设计中,所述序列生成模块301根据传输参数生成序列,具体包括执行:
根据所述传输参数生成多个子序列,每个子序列由所述传输参数的全部或一部分确定;根据所述多个子序列生成所述序列,所述序列的长度为所述多个子序列长度之和。
在一种可能的设计中,所述序列生成模块301根据传输参数生成序列,具体包括执行:
根据所述传输参数生成多个子序列,每个子序列由所述传输参数的全部或一部分确定;相应的,所述传输信息生成模块302使用所述序列生成待传输的信息,具体包括执行:
使用所述多个子序列对待传输的数据进行加扰和/或生成参考信号;或者,所述多个子序列分别用于不同的时域资源上。;图12是本申请提供的另一种传输装置的结构示意图。图12所示传输装置用于执行上述方法实施例中第二设备所执行的步骤,如图12所示,所述装置包括:
第一生成模块401,用于根据传输参数确定生成序列的初始位置,其中所述传输参数为非常数;第二生成模块402,用于使用所述序列生成待传输的信息;
发送模块403,用于发送所述待传输的信息。
在一种可能的设计中,所述传输参数包括以下中的至少一种:时域资源的索引、时域资源类型、传输波形指示信息、子载波间隔指示信息、设备类型信息、业务类型指示信息、MIMO参数信息、双工方式指示信息、控制信道格式指示信息、小区标识、传输载波指示信 息。
在一种可能的设计中,所述第一生成模块401还用于:根据所述传输参数确定所述序列的初始值。
在一种可能的设计中,用来确定所述序列的初始值的传输参数与用来确定所述序列的初始位置的传输参数不同;或者,
所述序列的初始值和所述序列的初始位置分别根据同一传输参数的不同比特位确定。
在一种可能的设计中,所述时域资源的索引根据参数M确定,所述参数M根据以下任意一种方式确定:
为预定义的或信令指示的正整数;由系统消息周期或同步信号发送间隔确定;由子载波间隔确定;由预定义时长内使用的子载波间隔下的时隙数确定。
在一种可能的设计中,所述序列根据多个子序列确定,每个所述子序列由所述传输参数的全部或一部分确定,所述序列的长度为所述多个子序列值之和。
在一种可能的设计中,所述序列包括多个子序列,每个所述子序列由所述传输参数的全部或一部分确定;相应的,所述第二生成模块402使用所述序列生成待传输的信息,具体包括执行:
使用所述多个子序列分别对待传输的数据进行加扰和/或生成所述参考信号;或者,所述多个子序列分别用于不同的时域资源上。
在一种可能的设计中,所述第二生成模块402使用所述序列生成待传输的信息,具体包括执行:
根据待传输数据的业务类型参数和/或接收设备的能力类型,确定用于生成所述待传输信息的序列;使用确定出的所述序列生成待传输的信息。;图13是本申请提供的又一种传输装置的结构示意图。图13所示传输装置用于执行上述方法实施例中第二传输装置所执行的步骤,如图13所示,所述装置包括:
接收模块501,用于接收第一设备传输的信息;解调处理模块502,用于使用序列解调接收到的所述信息,其中,所述序列根据传输参数确定,所述传输参数包括以下中的至少一种:时域资源类型、传输波形指示信息、子载波间隔指示信息、设备类型信息、业务类型指示信息、多输入多输出MIMO参数信息、双工方式指示信息、控制信道格式指示信息、传输载波指示信息。
在一种可能的设计中,所述解调处理模块502还用于根据所述传输参数中的至少一种确定所述序列的初始值和/或所述序列的初始位置,根据所述序列的初始值和/或所述序列的初始位置生成所述序列。
在一种可能的设计中,所述传输参数还包括时域资源索引和/或小区标识。
在一种可能的设计中,所述时域资源索引由以下任意一种方式确定:
由信令指示的正整数确定;由系统消息周期或同步信号发送间隔确定;由子载波间隔确定;由预定义时长内使用的子载波间隔下的时隙数确定。
在一种可能的设计中,所述解调处理模块502根据所述传输参数中的至少一种确定所述序列的初始值和/或所述序列的初始位置,具体包括执行:
使用所述传输参数中的第一参数生成所述序列的初始值,使用所述传输参数中的第二 参数生成所述序列的初始位置,所述第一参数与所述第二参数不同;或者,
所述序列的初始值和所述序列的初始位置分别根据同一传输参数的不同比特位确定。
在一种可能的设计中,所述解调处理模块502使用序列解调接收到的所述信息,具体包括执行:
根据传输数据的业务类型参数和/或接收设备的能力类型,确定用于对接收到的所述信息进行解调的序列;使用确定出的所述序列解调接收到的所述信息。
在一种可能的设计中,所述序列根据传输参数确定,包括:
所述序列根据多个子序列确定,每个子序列由所述传输参数的全部或一部分确定,所述序列的长度为所述多个子序列长度之和。
在一种可能的设计中,所述序列根据传输参数确定包括:所述序列包括多个子序列,每个子序列由所述传输参数的全部或一部分确定;所述解调处理模块502使用序列解调接收到的所述信息,具体包括执行:
使用所述多个子序列解调接收到的所述信息;或者,所述多个子序列分别用于不同的时域资源上。
图14是本申请提供的再一种传输装置的结构示意图。图14所示传输装置用于执行上述方法实施例中第二传输装置所执行的步骤,如图14所示,所述装置包括:
接收模块601,用于接收第一设备传输的信息;处理模块602,用于使用序列解调解调接收到的所述信息,其中,所述序列的初始位置根据传输参数确定,所述传输参数为非常数。
在一种可能的设计中,所述传输参数包括以下中的至少一种:时域资源的索引、时域资源类型、传输波形指示信息、子载波间隔指示信息、设备类型信息、业务类型指示信息、MIMO参数信息、双工方式指示信息、控制信道格式指示信息、小区标识、传输载波指示信息。
在一种可能的设计中,所述序列的初始位置根据所述传输参数确定。
在一种可能的设计中,用来确定所述序列的初始值的传输参数与用来确定所述序列的初始位置的传输参数不同;或者,
所述序列的初始值和所述序列的初始位置分别根据同一传输参数的不同比特位确定。
在一种可能的设计中,所述时域资源的索引根据参数M确定,所述参数M根据以下任意一种方式确定:
为预定义的或信令指示的正整数;由系统消息周期或同步信号发送间隔确定;由子载波间隔确定;由预定义时长内使用的子载波间隔下的时隙数确定。
在一种可能的设计中,所述序列根据多个子序列确定,每个所述子序列由所述传输参数的全部或一部分确定,所述序列的长度为所述多个子序列值之和。
在一种可能的设计中,所述序列包括多个子序列,每个所述子序列由所述传输参数的全部或一部分确定;相应的,所述处理模块602使用序列解调接收到的所述信息,具体包括执行:
使用所述多个子序列解调接收到的所述信息;或者,所述多个子序列分别用于不同的时域资源上。
在一种可能的设计中,所述处理模块602使用序列解调接收到的所述信息,具体包括执行:
根据传输数据的业务类型参数和/或接收设备的能力类型,确定用于对接收到的所述信息进行解调的序列;
使用确定出的所述序列解调接收到的所述信息。;在本发明实施例方案中,图11至图14中的传输装置可以为接入设备。图15示出了上述实施例中所涉及的接入设备的一种可能的结构示意图。如图15所示,接入设备包括发射器/接收器1001,控制器/处理器1002,存储器1003以及通信单元1004。所述发射器/接收器1001用于支持接入设备与上述实施例中的所述的终端设备之间收发信息,以及支持所述终端设备与其他终端设备之间进行无线电通信。所述控制器/处理器1002执行各种用于与终端设备通信的功能。在上行链路,来自所述终端设备的上行链路信号经由天线接收,由接收器1001进行调解,并进一步由控制器/处理器1002进行处理来恢复终端设备所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由控制器/处理器1002进行处理,并由发射器1001进行调解来产生下行链路信号,并经由天线发射给终端设备。控制器/处理器1002还执行本发明实施例方案中第一设备或者第二设备所执行的数据传输方法。存储器1003用于存储接入设备的程序代码和数据。通信单元1004用于支持接入设备与其他网络实体进行通信。
可选的,当图15所示的接入设备作为图11所示的传输装置执行本发明实施例的传输方法时,图15中的控制器/处理器1002独立或者通过与存储器1003的配合来实现图11中序列生成模块301、传输信息生成模块302所实现的功能,发射器/接收器1001用于实现图11中发送模块303所示现的功能。
可选的,当图15所示的接入设备作为图12所示的传输装置执行本发明实施例的传输方法时,图15中的控制器/处理器1002独立或者通过与存储器1003的配合来实现图12中第一生成模块401、第二生成模块402所实现的功能,发射器/接收器1001用于实现图12中发送模块403所实现的功能。
可选的,当图15所示的接入设备作为图13所示的传输装置执行本发明实施例的传输方法时,图15中的控制器/处理器1002独立或者通过与存储器1003的配合来实现图13中解调处理模块502所实现的功能,发射器/接收器1001用于实现图13中接收模块501所实现的功能。
可选的,当图15所示的接入设备作为图14所示的传输装置执行本发明实施例的传输方法时,图15中的控制器/处理器1002独立或者通过与存储器1003的配合来实现图14中处理模块602所实现的功能,发射器/接收器1001用于实现图14中接收模块601所实现的功能。
可以理解的是,图15仅仅示出了接入设备的简化设计。在实际应用中,接入设备可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本发明的接入设备都在本发明的保护范围之内。
在本发明实施例方案中,图11至图14中的传输装置可以为终端设备。图16示出了上述实施例中所涉及的终端设备的一种可能的设计结构的简化示意图。所述终端设备包括发射器1101,接收器1102,控制器/处理器1103,存贮器1104和调制解调处理器1105。
发射器1101调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的接入设备。在下行链路上,天线接收上述实施例中接入设备发射的下行链路信号。接收器1102调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器1105中,编码器1106接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器1107进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器1109处理(例如,解调)该输入采样并提供符号估计。解码器1108处理(例如,解交织和解码)该符号估计并提供发送给终端设备的已解码的数据和信令消息。编码器1106、调制器1107、解调器1109和解码器1108可以由合成的调制解调处理器1105来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。
控制器/处理器1103对终端设备的动作进行控制管理,用于执行本发明实施例中第一设备或者第二设备所执行的数据传输方法。存储器1104用于存储用于终端设备110的程序代码和数据。
可选的,当图16所示的终端设备作为图11所示的传输装置执行本发明实施例的传输方法时,图16中的控制器/处理器1103独立或者通过与存储器1003的配合来实现图11中序列生成模块301、传输信息生成模块302所实现的功能,发射器/接收器1001用于实现图11中发送模块303所示现的功能。
可选的,当图16所示的终端设备作为图12所示的传输装置执行本发明实施例的传输方法时,图16中的控制器/处理器1103独立或者通过与存储器1003的配合来实现图12中第一生成模块401、第二生成模块402所实现的功能,发射器/接收器1001用于实现图12中发送模块403所实现的功能。
可选的,当图16所示的终端设备作为图13所示的传输装置执行本发明实施例的传输方法时,图16中的控制器/处理器1103独立或者通过与存储器1003的配合来实现图13中解调处理模块502所实现的功能,发射器/接收器1001用于实现图13中接收模块501所实现的功能。
可选的,当图16所示的终端设备作为图14所示的传输装置执行本发明实施例的传输方法时,图16中的控制器/处理器1103独立或者通过与存储器1003的配合来实现图14中处理模块602所实现的功能,发射器/接收器1001用于实现图14中接收模块601所实现的功能。
用于执行本发明上述接入设备,终端设备功能的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可 以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端设备中。当然,处理器和存储介质也可以作为分立组件存在于终端设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (35)

  1. 一种传输方法,其特征在于,所述方法包括:
    第一设备根据传输参数生成序列;
    其中,所述传输参数包括以下中的至少一种:时域资源类型、传输波形指示信息、子载波间隔指示信息、设备类型信息、业务类型指示信息、多输入多输出MIMO参数信息、双工方式指示信息、控制信道格式指示信息、传输载波指示信息;
    所述第一设备使用所述序列生成待传输的信息;
    所述第一设备发送所述待传输的信息。
  2. 如权利要求1所述的方法,其特征在于,所述第一设备根据所述传输参数生成序列,包括:
    所述第一设备根据所述传输参数中的至少一种确定所述序列的初始值和/或所述序列的初始位置,根据所述所述序列的初始值和/或所述序列的初始位置生成所述序列。
  3. 如权利要求1或2所述的方法,其特征在于,所述传输参数还包括时域资源索引和/或小区标识。
  4. 如权利要求3所述的方法,其特征在于,所述时域资源索引由以下任意一种方式确定:
    由信令指示的正整数确定;
    由系统消息周期或同步信号发送间隔确定;
    由子载波间隔确定;
    由预定义时长内使用的子载波间隔下的时隙数确定。
  5. 如权利要求2所述的方法,其特征在于,所述第一设备根据所述传输参数中的至少一种确定所述序列的初始值和/或所述序列的初始位置,包括:
    第一设备使用所述传输参数中的第一参数生成所述序列的初始值,使用所述传输参数中的第二参数生成所述序列的初始位置,所述第一参数与所述第二参数不同;或者,
    所述序列的初始值和所述序列的初始位置分别根据同一传输参数的不同比特位确定。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述第一设备使用所述序列生成待传输的信息,包括:
    所述第一设备根据待传输数据的业务类型参数和/或接收设备的能力类型,确定用于生成所述待传输信息的序列;
    所述第一设备使用确定出的所述序列生成待传输的信息。
  7. 如权利要求1至6中任一项所述的方法,所述第一设备根据传输参数生成序列,包括:
    所述第一设备根据所述传输参数生成多个子序列,每个子序列由所述传输参数的全部或一部分确定;
    所述第一设备根据所述多个子序列生成所述序列,所述序列的长度为所述多个子序列长度之和。
  8. 如权利要求1至6中任一项所述的方法,其特征在于,所述第一设备根据传输参数生成序列,包括:
    所述第一设备根据所述传输参数生成多个子序列,每个子序列由所述传输参数的全部或一部分确定;
    相应的,所述第一设备使用所述序列生成待传输的信息,包括:
    所述第一设备使用所述多个子序列对待传输的数据进行加扰和/或生成参考信号;或者,所述多个子序列分别用于不同的时域资源上。
  9. 一种传输方法,其特征在于,所述方法包括:
    第二设备接收第一设备传输的信息;
    第二设备使用序列解调接收到的所述信息,其中,所述序列根据传输参数确定,所述传输参数包括以下中的至少一种:时域资源类型、传输波形指示信息、子载波间隔指示信息、设备类型信息、业务类型指示信息、多输入多输出MIMO参数信息、双工方式指示信息、控制信道格式指示信息、传输载波指示信息。
  10. 如权利要求9所述的方法,其特征在于,所述第二设备根据所述传输参数中的至少一种确定所述序列的初始值和/或所述序列的初始位置,根据所述序列的初始值和/或所述序列的初始位置生成所述序列。
  11. 如权利要求9或10所述的方法,其特征在于,所述传输参数还包括时域资源索引和/或小区标识。
  12. 如权利要求11所述的方法,其特征在于,所述时域资源索引由以下任意一种方式确定:
    由信令指示的正整数确定;
    由系统消息周期或同步信号发送间隔确定;
    由子载波间隔确定;
    由预定义时长内使用的子载波间隔下的时隙数确定。
  13. 如权利要求10所述的方法,其特征在于,所述第二设备根据所述传输参数中的至少一种确定所述序列的初始值和/或所述序列的初始位置,包括:
    所述第二设备使用所述传输参数中的第一参数生成所述序列的初始值,使用所述传输参数中的第二参数生成所述序列的初始位置,所述第一参数与所述第二参数不同;或者,
    所述序列的初始值和所述序列的初始位置分别根据同一传输参数的不同比特位确定。
  14. 如权利要求9至13中任一项所述的方法,其特征在于,所述第二设备使用序列解调接收到的所述信息,包括:
    所述第二设备根据传输数据的业务类型参数和/或接收设备的能力类型,确定用于对接收到的所述信息进行解调的序列;
    所述第二设备使用确定出的所述序列解调接收到的所述信息。
  15. 如权利要求9至14中任一项所述的方法,所述序列根据传输参数确定,包括:
    所述序列根据多个子序列确定,每个子序列由所述传输参数的全部或一部分确定,所述序列的长度为所述多个子序列长度之和。
  16. 如权利要求9至14中任一项所述的方法,其特征在于,所述序列根据传输参数确定包括:所述序列包括多个子序列,每个子序列由所述传输参数的全部或一部分确定;
    相应的,所述第二设备使用序列解调接收到的所述信息,包括:
    所述第二设备使用所述多个子序列解调接收到的所述信息;或者,所述多个子序列分别用于不同的时域资源上。
  17. 一种传输装置,其特征在于,所述装置部署于第一设备,包括:
    序列生成模块,用于根据传输参数生成序列;
    其中,所述传输参数包括以下中的至少一种:时域资源类型、传输波形指示信息、子载波间隔指示信息、设备类型信息、业务类型指示信息、多输入多输出MIMO参数信息、双工方式指示信息、控制信道格式指示信息、传输载波指示信息;
    传输信息生成模块,用于使用所述序列生成待传输的信息;
    发送模块,用于发送所述待传输的信息。
  18. 如权利要求17所述的装置,其特征在于,所述序列生成模块根据所述传输参数生成序列,具体包括执行:
    根据所述传输参数中的至少一种确定所述序列的初始值和/或所述序列的初始位置,根据所述所述序列的初始值和/或所述序列的初始位置生成所述序列。
  19. 如权利要求17或18所述的装置,其特征在于,所述传输参数还包括时域资源索引和/或小区标识。
  20. 如权利要求19所述的装置,其特征在于,所述时域资源索引由以下任意一种方式确定:
    由信令指示的正整数确定;
    由系统消息周期或同步信号发送间隔确定;
    由子载波间隔确定;
    由预定义时长内使用的子载波间隔下的时隙数确定。
  21. 如权利要求18所述的装置,其特征在于,所述序列生成模块根据所述传输参数中的至少一种确定所述序列的初始值和/或所述序列的初始位置,具体包括执行:
    使用所述传输参数中的第一参数生成所述序列的初始值,使用所述传输参数中的第二参数生成所述序列的初始位置,所述第一参数与所述第二参数不同;或者,
    所述序列的初始值和所述序列的初始位置分别根据同一传输参数的不同比特位确定。
  22. 如权利要求17至21中任一项所述的装置,其特征在于,所述传输信息生成模块使用所述序列生成待传输的信息,具体包括执行:
    根据待传输数据的业务类型参数和/或接收设备的能力类型,确定用于生成所述待传输信息的序列;
    使用确定出的所述序列生成待传输的信息。
  23. 如权利要求17至22中任一项所述的装置,所述序列生成模块根据传输参数生成序列,具体包括执行:
    根据所述传输参数生成多个子序列,每个子序列由所述传输参数的全部或一部分确定;
    根据所述多个子序列生成所述序列,所述序列的长度为所述多个子序列长度之和。
  24. 如权利要求17至22中任一项所述的装置,其特征在于,所述序列生成模块根据传输参数生成序列,具体包括执行:
    根据所述传输参数生成多个子序列,每个子序列由所述传输参数的全部或一部分确定;
    相应的,所述传输信息生成模块使用所述序列生成待传输的信息,具体包括执行:
    使用所述多个子序列对待传输的数据进行加扰和/或生成参考信号;或者,所述多个子序列分别用于不同的时域资源上。
  25. 一种传输装置,其特征在于,所述装置部署于第二设备,包括:
    接收模块,用于接收第一设备传输的信息;
    解调处理模块,用于使用序列解调接收到的所述信息,其中,所述序列根据传输 参数确定,所述传输参数包括以下中的至少一种:时域资源类型、传输波形指示信息、子载波间隔指示信息、设备类型信息、业务类型指示信息、多输入多输出MIMO参数信息、双工方式指示信息、控制信道格式指示信息、传输载波指示信息。
  26. 如权利要求25所述的装置,其特征在于,所述解调处理模块还用于根据所述传输参数中的至少一种确定所述序列的初始值和/或所述序列的初始位置,根据所述序列的初始值和/或所述序列的初始位置生成所述序列。
  27. 如权利要求25或26所述的装置,其特征在于,所述传输参数还包括时域资源索引和/或小区标识。
  28. 如权利要求27所述的装置,其特征在于,所述时域资源索引由以下任意一种方式确定:
    由信令指示的正整数确定;
    由系统消息周期或同步信号发送间隔确定;
    由子载波间隔确定;
    由预定义时长内使用的子载波间隔下的时隙数确定。
  29. 如权利要求26所述的装置,其特征在于,所述解调处理模块根据所述传输参数中的至少一种确定所述序列的初始值和/或所述序列的初始位置,具体包括执行:
    使用所述传输参数中的第一参数生成所述序列的初始值,使用所述传输参数中的第二参数生成所述序列的初始位置,所述第一参数与所述第二参数不同;或者,
    所述序列的初始值和所述序列的初始位置分别根据同一传输参数的不同比特位确定。
  30. 如权利要求25至29中任一项所述的装置,其特征在于,所述解调处理模块使用序列解调接收到的所述信息,具体包括执行:
    根据传输数据的业务类型参数和/或接收设备的能力类型,确定用于对接收到的所述信息进行解调的序列;
    使用确定出的所述序列解调接收到的所述信息。
  31. 如权利要求25至30中任一项所述的装置,其特征在于,所述序列根据传输参数确定,包括:
    所述序列根据多个子序列确定,每个子序列由所述传输参数的全部或一部分确定,所述序列的长度为所述多个子序列长度之和。
  32. 如权利要求25至30中任一项所述的装置,其特征在于,所述序列根据传输参数确定包括:所述序列包括多个子序列,每个子序列由所述传输参数的全部或一部分确定;
    所述解调处理模块使用序列解调接收到的所述信息,具体包括执行:
    使用所述多个子序列解调接收到的所述信息;或者,所述多个子序列分别用于不同的时域资源上。
  33. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至8中任一项所述的方法,或使得计算机执行如权利要求9至16中任一项所述的方法。
  34. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1至8中任一项所述的方法,或使得计算机执行如权利要求9至16中任一项所述的方法。
  35. 一种通信设备,其特征在于,包括存储器、处理器及存储在存储器上并可在 处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时,实现如权利要求1至8中任一项所述的方法,或实现如权利要求9至16中任一项所述的方法。
PCT/CN2018/073779 2017-01-24 2018-01-23 传输方法及装置 WO2018137605A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP22171708.5A EP4102749A1 (en) 2017-01-24 2018-01-23 Transmission method and apparatus
EP18744627.3A EP3573263B1 (en) 2017-01-24 2018-01-23 Transmission method and apparatus
ES18744627T ES2924502T3 (es) 2017-01-24 2018-01-23 Método y aparato de transmisión
JP2019539815A JP6918950B2 (ja) 2017-01-24 2018-01-23 伝送方法および伝送装置
CN201880008374.4A CN110235395B (zh) 2017-01-24 2018-01-23 无线通信系统中的数据加扰方法、传输方法及装置
KR1020197024377A KR102301337B1 (ko) 2017-01-24 2018-01-23 송신 방법 및 장치
RU2019126450A RU2754433C2 (ru) 2017-01-24 2018-01-23 Способ и устройство для передачи
BR112019015083-8A BR112019015083A2 (pt) 2017-01-24 2018-01-23 Método de transmissão, aparelho, mídia de armazenamento legível por computador e sistema
US16/521,335 US11356977B2 (en) 2017-01-24 2019-07-24 Transmission method and apparatus
US17/739,539 US11963197B2 (en) 2017-01-24 2022-05-09 Transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710054817.0 2017-01-24
CN201710054817.0A CN108347293B (zh) 2017-01-24 2017-01-24 传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/521,335 Continuation US11356977B2 (en) 2017-01-24 2019-07-24 Transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2018137605A1 true WO2018137605A1 (zh) 2018-08-02

Family

ID=62962816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073779 WO2018137605A1 (zh) 2017-01-24 2018-01-23 传输方法及装置

Country Status (9)

Country Link
US (2) US11356977B2 (zh)
EP (2) EP3573263B1 (zh)
JP (1) JP6918950B2 (zh)
KR (1) KR102301337B1 (zh)
CN (4) CN109257147B (zh)
BR (1) BR112019015083A2 (zh)
ES (1) ES2924502T3 (zh)
RU (1) RU2754433C2 (zh)
WO (1) WO2018137605A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022531168A (ja) * 2019-04-28 2022-07-06 華為技術有限公司 参照信号生成方法、参照信号検出方法、及び通信装置
JP2022543686A (ja) * 2019-08-16 2022-10-13 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて信号を送受信する方法及びそのための装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109257147B (zh) * 2017-01-24 2020-01-17 华为技术有限公司 传输方法及装置
US11575554B2 (en) * 2017-08-11 2023-02-07 Apple Inc. Scrambling sequence initial seed configuration for reference signals, data, and control channel for new radio
CN109842472B (zh) 2017-11-25 2024-01-09 华为技术有限公司 一种参考信号的配置方法和装置
CN110972252B (zh) * 2018-09-28 2022-02-08 大唐移动通信设备有限公司 信号的发送方法、波形的配置方法、终端及网络设备
CN111355565B (zh) * 2018-12-24 2021-06-25 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111436127A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种参考信号发送方法及装置
CN113302867B (zh) * 2019-01-11 2023-08-08 上海诺基亚贝尔股份有限公司 用于多种参数集的公共信号结构
WO2020211095A1 (zh) * 2019-04-19 2020-10-22 Oppo广东移动通信有限公司 一种信号加扰方法及装置、通信设备
CN111901890A (zh) 2020-01-16 2020-11-06 中兴通讯股份有限公司 参考信号处理方法、装置、第一通信节点和第二通信节点
CN115702556A (zh) * 2020-06-19 2023-02-14 深圳传音控股股份有限公司 信号处理方法、设备及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997568A (zh) * 2009-08-18 2011-03-30 华为技术有限公司 一种对定位参考信号进行加扰的方法及装置
US20110077038A1 (en) * 2009-09-30 2011-03-31 Qualcomm Incorporated Scrambling sequence initialization for coordinated multi-point transmissions
WO2013022244A2 (en) * 2011-08-05 2013-02-14 Samsung Electronics Co., Ltd. Apparatus and method for ue-specific demodulation reference signal scrambling
CN104205691A (zh) * 2012-01-31 2014-12-10 苹果公司 用于增强的扰码序列的方法和装置
CN105453629A (zh) * 2013-08-05 2016-03-30 三星电子株式会社 在无线通信系统中用于通过波束分组发送和接收参考信号的方法和装置

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6574211B2 (en) * 1997-11-03 2003-06-03 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
CN1917383A (zh) * 2005-08-17 2007-02-21 西门子(中国)有限公司 无线移动通信系统中的数据发送方法与发送设备
BRPI0717952A2 (pt) * 2006-11-06 2013-11-05 Qualcomm Inc Embaralhamento de nível de palavra-código para transmissão mimo
CN101179282A (zh) * 2006-11-09 2008-05-14 中兴通讯股份有限公司 一种利用加扰消除同频发射机信号干扰的方法
KR100911307B1 (ko) * 2008-03-17 2009-08-11 엘지전자 주식회사 기준신호 전송 방법
CN101272232B (zh) * 2008-05-14 2013-11-06 中兴通讯股份有限公司 物理混合重传指示信道的加扰方法
KR101478246B1 (ko) * 2008-12-09 2015-01-02 삼성전자주식회사 멀티 인풋 멀티 아웃풋 시스템의 하향링크 컨트롤 정보 송수신 방법 및 장치
US20100172235A1 (en) * 2009-01-06 2010-07-08 Samsung Electronics Co., Ltd. System and method for initialization of a scrambling sequence for a downlink reference signal
KR101663616B1 (ko) 2009-04-29 2016-10-07 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 참조 신호 시퀀스 생성 방법 및 이를 위한 장치
CN101931485B (zh) * 2009-06-19 2014-02-12 北京三星通信技术研究有限公司 一种专用参考信号生成方法和装置
US8300587B2 (en) * 2009-08-17 2012-10-30 Nokia Corporation Initialization of reference signal scrambling
AU2014268269B2 (en) * 2009-09-07 2016-08-04 Lg Electronics Inc. Method and apparatus for transmitting/receiving a reference signal in a wireless communication system
KR101733489B1 (ko) * 2010-01-17 2017-05-24 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
JP5424346B2 (ja) * 2010-08-11 2014-02-26 日本電気株式会社 受信装置および受信方法、プログラム、並びに通信システム
CN102065054B (zh) * 2011-01-06 2014-06-04 大唐移动通信设备有限公司 一种加扰传输方法及其装置
JP5271373B2 (ja) * 2011-03-24 2013-08-21 シャープ株式会社 基地局、端末、通信システム、通信方法、および集積回路
KR101943821B1 (ko) * 2011-06-21 2019-01-31 한국전자통신연구원 무선 통신 시스템에서 제어채널 송수신 방법
CN103875202B (zh) * 2011-10-09 2018-01-09 Lg电子株式会社 在无线通信系统中设置数据信道的起始位置的方法和使用该方法的装置
CN103095625B (zh) * 2011-10-27 2015-07-22 普天信息技术研究院有限公司 一种扰码初始值的配置方法
CN103178883B (zh) * 2011-12-26 2016-09-14 华为技术有限公司 物理下行控制信道数据的处理方法、发射端和用户终端
CN103259635B (zh) * 2012-02-15 2016-06-08 电信科学技术研究院 一种dmrs扰码序列的生成方法及装置
CN103840909B (zh) * 2012-11-22 2017-07-07 普天信息技术研究院有限公司 一种提高解调正确率的方法
GB2508871A (en) * 2012-12-13 2014-06-18 Broadcom Corp Providing a UE with scrambling code initialization parameters associated with an interfering signal
WO2014098542A1 (en) * 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control channel by beamforming in a wireless communication system
EP2768273B1 (en) * 2013-02-15 2020-04-01 Samsung Electronics Co., Ltd. Scrambling sequence generation method for use in device-to-device communication
WO2014183296A1 (zh) * 2013-05-17 2014-11-20 华为技术有限公司 业务数据加扰方法、业务数据解扰方法、装置及系统
US9516541B2 (en) * 2013-09-17 2016-12-06 Intel IP Corporation Congestion measurement and reporting for real-time delay-sensitive applications
CN104853339A (zh) 2014-02-19 2015-08-19 中兴通讯股份有限公司 一种信号处理的方法及装置
CN105024778B (zh) * 2014-04-16 2018-08-10 普天信息技术有限公司 下行信道的加扰方法
CN103986684B (zh) * 2014-05-30 2017-05-24 江苏中兴微通信息科技有限公司 一种mimo无线通信系统中的帧加扰和解扰方法及其通信装置
WO2016006903A1 (ko) * 2014-07-07 2016-01-14 엘지전자 주식회사 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 신호 송신 방법 및 이를 위한 장치
WO2016013351A1 (ja) * 2014-07-25 2016-01-28 株式会社Nttドコモ 基地局、ユーザ装置および無線通信ネットワーク
CN104158557B (zh) * 2014-07-31 2016-08-17 重庆邮电大学 Gold序列参数估计方法
CN104168095B (zh) * 2014-08-15 2017-10-24 北京北方烽火科技有限公司 非连续性传输检测方法及装置
CN105763294B (zh) * 2014-12-19 2019-03-15 中兴通讯股份有限公司 控制信息处理方法及装置
JP6962823B2 (ja) * 2015-06-25 2021-11-05 アイディーエーシー ホールディングス インコーポレイテッド ビームフォーミングを使用した初期セル探索および選択のための方法および装置
CN105262557B (zh) * 2015-09-07 2019-02-01 东南大学 Lte系统中一种伪随机序列的生成方法
CN105187151B (zh) * 2015-09-30 2018-02-09 广州慧睿思通信息科技有限公司 一种wcdma系统下行扰码序列的产生方法及系统
US10855407B2 (en) 2016-05-09 2020-12-01 Apple Inc. Extended physical broadcast channel design for 5G standalone system
US11063717B2 (en) * 2016-08-08 2021-07-13 Lg Electronics Inc. Channel state information transmitting method and user equipment, and channel state information receiving method and base station
EP3451605B1 (en) * 2016-09-30 2022-03-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Channel transmission method, terminal device, and network device
CN109257147B (zh) * 2017-01-24 2020-01-17 华为技术有限公司 传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997568A (zh) * 2009-08-18 2011-03-30 华为技术有限公司 一种对定位参考信号进行加扰的方法及装置
US20110077038A1 (en) * 2009-09-30 2011-03-31 Qualcomm Incorporated Scrambling sequence initialization for coordinated multi-point transmissions
WO2013022244A2 (en) * 2011-08-05 2013-02-14 Samsung Electronics Co., Ltd. Apparatus and method for ue-specific demodulation reference signal scrambling
CN104205691A (zh) * 2012-01-31 2014-12-10 苹果公司 用于增强的扰码序列的方法和装置
CN105453629A (zh) * 2013-08-05 2016-03-30 三星电子株式会社 在无线通信系统中用于通过波束分组发送和接收参考信号的方法和装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022531168A (ja) * 2019-04-28 2022-07-06 華為技術有限公司 参照信号生成方法、参照信号検出方法、及び通信装置
US11637729B2 (en) 2019-04-28 2023-04-25 Huawei Technologies Co., Ltd. Reference signal generation method, reference signal detection method, and communications apparatus
JP7305796B2 (ja) 2019-04-28 2023-07-10 華為技術有限公司 参照信号生成方法、参照信号検出方法、及び通信装置
JP2022543686A (ja) * 2019-08-16 2022-10-13 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて信号を送受信する方法及びそのための装置
JP7356572B2 (ja) 2019-08-16 2023-10-04 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて信号を送受信する方法及びそのための装置

Also Published As

Publication number Publication date
CN109257147A (zh) 2019-01-22
US11963197B2 (en) 2024-04-16
RU2019126450A (ru) 2021-02-26
RU2019126450A3 (zh) 2021-03-01
KR102301337B1 (ko) 2021-09-10
JP2020506598A (ja) 2020-02-27
EP3573263A1 (en) 2019-11-27
US11356977B2 (en) 2022-06-07
CN110545159A (zh) 2019-12-06
CN110545159B (zh) 2021-01-05
JP6918950B2 (ja) 2021-08-11
US20190349893A1 (en) 2019-11-14
ES2924502T3 (es) 2022-10-07
CN110235395B (zh) 2020-12-25
EP3573263B1 (en) 2022-06-15
EP4102749A1 (en) 2022-12-14
CN108347293A (zh) 2018-07-31
BR112019015083A2 (pt) 2020-03-10
US20220264528A1 (en) 2022-08-18
EP3573263A4 (en) 2020-02-19
CN110235395A (zh) 2019-09-13
CN108347293B (zh) 2023-10-24
KR20190108142A (ko) 2019-09-23
CN109257147B (zh) 2020-01-17
RU2754433C2 (ru) 2021-09-02

Similar Documents

Publication Publication Date Title
WO2018137605A1 (zh) 传输方法及装置
ES2927975T3 (es) Canal de control del enlace descendente para comunicaciones ultra confiables y de baja latencia del enlace ascendente
US11122556B2 (en) Communication method and communication apparatus
JP6515176B2 (ja) カバレッジの拡張における必要なharq繰り返し数の伝達
US20180092104A1 (en) Grant-free access method for urllc service
US11171748B2 (en) Indicating resources for transmitting modulation symbols
US20120076043A1 (en) Wireless communication base station device, wireless communication terminal device, control channel transmission method, and control channel reception method
US20100054188A1 (en) Wireless Communication Base Station Apparatus and Wireless Communication Method
JP2017539165A (ja) バースト性干渉の軽減
US11368243B2 (en) Codeword adaptation for non-orthogonal coded access
WO2018082485A1 (zh) 数据处理的方法、基站与终端
WO2018064062A1 (en) Grant-free access method for urllc service
CN108289009B (zh) 一种被用于信道编码的ue、基站中的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744627

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019539815

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019015083

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197024377

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018744627

Country of ref document: EP

Effective date: 20190826

ENP Entry into the national phase

Ref document number: 112019015083

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190722