WO2018082485A1 - 数据处理的方法、基站与终端 - Google Patents

数据处理的方法、基站与终端 Download PDF

Info

Publication number
WO2018082485A1
WO2018082485A1 PCT/CN2017/107575 CN2017107575W WO2018082485A1 WO 2018082485 A1 WO2018082485 A1 WO 2018082485A1 CN 2017107575 W CN2017107575 W CN 2017107575W WO 2018082485 A1 WO2018082485 A1 WO 2018082485A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
terminal
resource
base station
configuration information
Prior art date
Application number
PCT/CN2017/107575
Other languages
English (en)
French (fr)
Inventor
卢亚伟
张鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17866808.3A priority Critical patent/EP3528578B1/en
Priority to JP2019523740A priority patent/JP6784426B2/ja
Publication of WO2018082485A1 publication Critical patent/WO2018082485A1/zh
Priority to US16/399,644 priority patent/US11006396B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power

Definitions

  • the present application relates to the field of communications, and more particularly to a method, base station and terminal for data processing.
  • the user In the uplink scheme of the long term evolution (LTE) system, the user is required to initiate a resource scheduling request before the uplink transmission, and usually requires at least seven transmission time intervals (transmission time interval, TTI) from the initiation of the resource scheduling request to the data transmission. ).
  • TTI transmission time interval
  • the resource scheduling request mechanism cannot meet the requirements of short-latency services. For example, ultra-reliable and low-latency communications (URLLC) services require very high reliability and very short time. The typical value is 99.999% reliability and 1 ms delay.
  • URLLC ultra-reliable and low-latency communications
  • the base station divides the uplink system resource into a common resource and a reserved resource, and the reserved resource is a resource reserved for the URLLC service, and the URLLC service is used.
  • the data arrives, it is transmitted directly on the latest reserved resource in the time domain.
  • eMBB enhanced mobile broadband
  • the base station determines all uplink system resources, that is, common resources and reserved resources.
  • the transmission resource of the short-latency service (described below as an example of the eMBB service).
  • the eMBB terminal simultaneously sends the eMBB service data on the common resource and the reserved resource.
  • the URLLC terminal When the data of the URLLC service arrives, the URLLC terminal also sends the URLLC service data on the reserved resource. In this case, the eMBB service data and the URLLC service data. If the reserved resources are multiplexed and multiplexed in a non-orthogonal manner, the eMBB service data and the URLLC service data may interfere, which may result in the eMBB service data cannot be successfully decoded. The URLLC service data cannot be eliminated due to the interference of the eMBB service data. It is also impossible to successfully decode, which in turn causes the transmission performance of both to decrease at the same time.
  • the present application provides a data processing method, a base station, and a terminal, which can effectively improve the decoding success rate of data of different users transmitted on the same block of resources.
  • a method of data processing comprising: a base station receiving first data from a first terminal on a first resource; the base station receiving, on a second resource, a first from the first terminal Two data and third data from the second terminal, the modulation order of the second data is lower than a modulation order of the first data, and/or the code rate of the second data is lower than the first a code rate of the data, and/or a transmit power of the second data is lower than a transmit power of the first data; the base station demodulates and decodes the first data; The second data is demodulated and decoded with the third data.
  • the first terminal transmits data to the base station on the first resource and the second resource respectively based on the same modulation order, code rate, and transmission power, and the second terminal also sends data to the base station on the second resource.
  • the two types of data transmitted on the second resource may interfere, thereby possibly causing the second data of the first terminal transmitted on the second resource.
  • the third data of the second terminal fails to decode.
  • the first terminal uses different configuration information when transmitting data on the first resource and the second resource, that is, the modulation order of the data sent by the first terminal on the second resource is lower than that of the first terminal.
  • a modulation order of data transmitted on a resource, and/or a code rate of data transmitted by the first terminal on the second resource is lower than a code rate of data transmitted by the first terminal on the first resource, and/or a second
  • the transmission power of the data is lower than the transmission power of the first data. It should be understood that the lower the modulation order of the second data, the higher the probability that the second data is successfully decoded, and the more accurate the reconstruction of the second data is, the higher the interference cancellation rate is.
  • the probability that the third data is successfully decoded is higher; the lower the code rate of the second data, the higher the probability that the second data is successfully decoded, and the reconstruction of the second data when the interference is eliminated. The more accurate, the higher the interference cancellation rate is. Further, the probability that the third data is successfully decoded is higher; the lower the transmission power of the second data, the smaller the interference to the third data, and the third data is translated. The higher the probability of success of the code, the more accurate the reconstruction of the third data is, and the higher the interference cancellation rate is. Further, the probability that the second data is successfully decoded is higher. The provided technical solution can effectively improve the decoding success rate of the two types of data (the data sent by the first terminal and the second terminal on the second resource) transmitted by the base station to the second resource.
  • the method further includes: the base station sending, to the first terminal, first configuration information, where the first configuration information is the first
  • the configuration information required by the terminal to transmit data on the first resource, the first configuration information includes at least one of the following information: modulation order information of the first data, code of the first data Rate information and transmission power information of the first data.
  • the base station sends the second configuration information to the first terminal, where the second configuration information is The configuration information required by the first terminal to transmit data on the second resource, the second configuration information includes at least one of the following information: modulation order information of the second data, the first Rate information of the second data and transmission power information of the second data.
  • the base station may control signaling through physical layer, such as through a physical downlink control channel (PDCCH), or through media access control (medium) Access control, MAC) signaling, such as a MAC control element (CE), or the first configuration information is sent to the first terminal by using radio resource control (RRC) signaling.
  • PDCCH physical downlink control channel
  • MAC media access control
  • CE MAC control element
  • RRC radio resource control
  • configuration information required for the first terminal to send data on the first resource and the second resource may also be predefined by the system.
  • the second data and the third data are both encoded by a multiple access coding technology, where The codebook used when the two data is subjected to the multiple access encoding is different from the codebook used when the third data is subjected to the multiple access encoding.
  • the first terminal and the second terminal that multiplex the second resource select different codebooks to perform multiple access encoding on the data to be transmitted, and it should be understood that the multiple access coding technology allows multiple users to reuse the same resource.
  • the receiving end can recover data of all users multiplexing the second resource, that is, the base station can successfully decode the data of the first terminal and the second terminal on the second resource. Therefore, the technical solution provided by the present application can further improve the two transmissions on the second resource by the base station.
  • the decoding success rate of the data (the data transmitted by the first terminal and the second terminal on the second resource).
  • the method further includes: sending, by the base station, the first codebook to the first terminal, Instructing the first terminal to perform code division multiple access processing by using the first codebook when transmitting data on the second resource; and/or the base station sending a second codebook to the second terminal to indicate The second terminal performs code division multiple access processing by using the second codebook when transmitting data on the second resource.
  • the method further includes: the base station receiving a resource scheduling request from the first terminal, where The resource scheduling request is used to request the transmission resource of the first terminal; the base station sends a resource scheduling response to the first terminal, where the resource scheduling response is used to indicate that the first resource and the second resource are The transmission resource of the first terminal.
  • the second resource is a resource reserved for the second terminal.
  • the second resource may also be referred to as a reserved resource of the second terminal.
  • the first terminal is a mobile broadband enhanced eMBB terminal
  • the second terminal is ultra-high reliability Short latency communication URLLC terminal.
  • a second aspect provides a data processing method, the method comprising: a first terminal determining target data to be transmitted; the first terminal transmitting first data in the target data on a first resource; Transmitting, by the first terminal, second data in the target data, where the second data is remaining data in the target data except the first data, where the second resource is further used Transmitting third data sent by the second terminal, the modulation order of the second data is lower than a modulation order of the first data, and/or the code rate of the second data is lower than the first data The code rate, and/or the transmission power of the second data is lower than the transmission power of the first data.
  • the first terminal uses different configuration information when transmitting data on the first resource and the second resource, that is, the modulation order of the data sent by the first terminal on the second resource is lower than that of the first terminal.
  • a modulation order of data transmitted on a resource, and/or a code rate of data transmitted by the first terminal on the second resource is lower than a code rate of data transmitted by the first terminal on the first resource, and/or a second
  • the transmission power of the data is lower than the transmission power of the first data. It should be understood that the lower the modulation order of the second data, the higher the probability that the second data is successfully decoded, and the more accurate the reconstruction of the second data is, the higher the interference cancellation rate is.
  • the probability that the third data is successfully decoded is higher; the lower the code rate of the second data is, the more accurate the reconstruction of the second data is when the interference is eliminated, and the interference cancellation rate is higher, further, The higher the probability that the three data is successfully decoded; the lower the transmission power of the second data, the smaller the interference to the third data, the higher the probability that the third data is successfully decoded, and the interference is eliminated. The more accurate the reconstruction of the three data is, the higher the interference cancellation rate is. Further, the probability that the second data is successfully decoded is higher. Therefore, the technical solution provided by the present application can effectively improve the transmission of the base station to the second resource.
  • the decoding success rate of the two kinds of data (the data transmitted by the first terminal and the second terminal on the second resource).
  • the method further includes: the first terminal receiving first configuration information from the base station, where the first configuration information is Configuration information required when a terminal transmits data on the first resource, the first configuration information includes at least one of the following information: modulation order information of the first data, and the first data Rate information and transmission power information of the first data.
  • the method further includes: the first terminal receiving second configuration information from the base station, where the second configuration information is a configuration required when the first terminal sends data on the second resource Information, the second configuration information includes at least one of the following: modulation order information of the second data, code rate information of the second data, and transmission power information of the second data.
  • the first terminal may perform physical layer control signaling, such as a PDCCH, or a MAC signaling delivered by the base station, such as a MAC CE, sent by the base station. Or obtaining the first configuration information and/or the second configuration information by using RRC signaling delivered by the base station.
  • physical layer control signaling such as a PDCCH
  • a MAC signaling delivered by the base station such as a MAC CE
  • configuration information required for the first terminal to send data on the first resource and the second resource may also be predefined by the system.
  • the first terminal sends the second data of the target data to the base station on a second resource Data, including: the first terminal transmitting, by using the multiple access coding technology, the second data to the base station on the second resource, where the third data is also encoded by using the multiple access coding technology, and The multiple access codebook corresponding to the second data is different from the multiple access codebook corresponding to the third data.
  • the first terminal and the second terminal that multiplex the second resource select different codebooks to perform multiple access encoding on the data to be transmitted, and it should be understood that the multiple access coding technology allows multiple users to reuse the same resource.
  • the receiving end can recover data of all users multiplexing the second resource, that is, the base station can successfully decode the data of the first terminal and the second terminal on the second resource. Therefore, the technical solution provided by the present application can further improve the decoding success rate of the two types of data (the data sent by the first terminal and the second terminal on the second resource) transmitted by the base station to the second resource.
  • the method further includes: receiving, by the first terminal, the first codebook sent by the base station,
  • the first codebook is a codebook required for the first terminal to perform multiple access encoding on the second data
  • the base station further sends a second codebook to the second terminal, where the second codebook The codebook required for the second terminal to perform the multiple access encoding on the third data, the first codebook being different from the second codebook.
  • the target data is that the first terminal obtains an encoded bit stream after performing channel coding on the original data
  • the encoded bitstream includes information bits and redundant bits, the second data including all or a portion of the redundant bits in the encoded bitstream.
  • the first terminal preferentially transmits the redundant bits on the second resource, that is, the information bits are mainly transmitted on the first resource, and the base station can successfully decode the data transmitted on the first resource, so that the first terminal can If the redundant bit decoding on the two resources is successful, the base station can successfully decode the data sent by the first terminal even if the first terminal and the second terminal multiplex the second resource, and then successfully decode the second terminal to send the data.
  • the data Therefore, the technical solution provided by the present application can effectively improve the decoding success rate of the two types of data (the data sent by the first terminal and the second terminal on the second resource) transmitted by the base station to the second resource.
  • the method further includes: performing a required transmission of all redundant bits in the encoded bitstream When the resource is equal to the second resource, all redundant bits in the encoded bitstream are used as the second data; when all redundant bits in the encoded bitstream require less transmission resources than the second a resource, all redundant bits and partial information bits in the encoded bitstream are used as the second data, and all redundant bits and transmission resources required for the partial information bits a sum of sources equal to the second partial resource; when a transmission resource required for all redundant bits in the encoded bitstream is greater than the second resource, a partial redundant bit in the encoded bitstream is taken as For the second data, the transmission resource required for the partial redundant bits is equal to the second resource.
  • the method further includes: the first terminal sending a resource scheduling request to the base station, The resource scheduling request is used to request the transmission resource of the first terminal; the first terminal receives a resource scheduling response from the base station, where the resource scheduling response is used to indicate that the first resource and the second resource are The transmission resource of the first terminal.
  • the second resource is a resource reserved for the second terminal.
  • the first terminal is a mobile broadband enhanced eMBB terminal
  • the second terminal is ultra-high reliability Short latency communication URLLC terminal.
  • the second resource is predefined by the system as a resource reserved for the second terminal.
  • the second resource is a resource reserved by the base station for the second terminal, and the base station sends a message to the first terminal and the second terminal, The reserved resource for informing the second resource as the second terminal.
  • a base station configured to perform the method in any of the foregoing first aspect or the first aspect of the first aspect.
  • the base station may comprise means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a terminal configured to perform the method in any of the foregoing second aspect or the second aspect.
  • the terminal may comprise means for performing the method of any of the possible implementations of the second aspect or the second aspect.
  • a base station including a memory and a processor, the memory is configured to store an instruction, the processor is configured to execute the instruction stored by the memory, and execute an instruction stored in the memory
  • the processor is caused to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • a terminal comprising a memory for storing instructions, the processor for executing the instructions stored by the memory, and execution of instructions stored in the memory
  • the processor is caused to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for data processing provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a first resource and a second resource in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a method for data processing provided by an embodiment of the present application.
  • FIG. 5 is another schematic diagram of a method for data processing provided by an embodiment of the present application.
  • FIG. 6 is still another schematic diagram of a method for data processing provided by an embodiment of the present application.
  • FIG. 7 is still another schematic diagram of a method for data processing provided by an embodiment of the present application.
  • FIG. 8 is still another schematic diagram of a method for data processing provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a base station provided by an embodiment of the present application.
  • FIG. 10 is another schematic block diagram of a base station provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a terminal provided by an embodiment of the present application.
  • FIG. 12 is another schematic block diagram of a terminal provided by an embodiment of the present application.
  • LTE long term evolution
  • FDD LTE frequency division duplex LTE
  • time division duplex time division duplex
  • PLMN public land mobile network
  • the embodiment of the application relates to a terminal.
  • the terminal may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal device, wireless communication device, User agent or user device.
  • the terminal can be a mobile phone (or "cellular" phone), a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, personal digital processing ( Personal digital assistant (PDA), a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal in a future 5G network or a network after 5G, etc. This example does not limit this.
  • the terminal may communicate with one or more core networks via a radio access network (RAN), or may access a distributed peer-to-peer (Ad-Hoc) mode network and user deployment through self-organizing or unauthorized access.
  • RAN radio access network
  • Ad-Hoc distributed peer-to-peer
  • the terminal can also access the network for communication in other manners, which is not limited in this embodiment of the present application.
  • Embodiments of the present application are also related to a base station.
  • the base station can be a network device for communicating with the terminal.
  • the base station may be a network device that provides wireless access and communication services for mobile or fixed terminals in the cell.
  • the base station may be an evolved base station (eNB or eNodeB) in the LTE system, or may also be a relay station, an access point, an in-vehicle device, a wearable device, and a network in a future 5G network or a network after 5G.
  • a side device or a network side device in a future evolved PLMN network may also be referred to as a network device.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the base station 110 and the terminal 120 communicate with each other through some air interface technology, and the air interface technology includes, for example, 4G technology, 4.5G technology, or 5G technology.
  • the terminal 120 includes at least two types of terminals as shown in FIG. 1 : a first terminal 120A and a second terminal 120B.
  • the first terminal 120A needs to initiate a resource scheduling request to the base station 110 before the uplink transmission, and the base station 110 allocates an uplink transmission resource to the first terminal 120A according to the resource scheduling request.
  • the base station 110 may reserve a transmission resource (reserved resource) for the second terminal 120B, that is, when the second terminal 120B has uplink data, the second terminal 120B may directly use the reserved resource for uplink transmission without sending to the base station 110.
  • Resource scheduling request It should be understood that the second terminal 120B may also initiate a resource scheduling request to the base station 110 before the uplink transmission.
  • the base station 110 divides system resources into common resources and reserved resources for uplink services.
  • the reserved resource is a resource reserved for the second terminal 120B.
  • the reserved resource may be predefined by the system as a resource reserved for the second terminal 120B; or the reserved resource is a resource reserved by the base station for the second terminal 120B, and the base station is used to notify the first terminal 120A.
  • the reserved resource is a resource reserved for the second terminal 120B.
  • the base station 110 allocates the entire system resource to the first terminal 120A, that is, the first terminal 120A can send uplink data on the common resource and the reserved resource.
  • the second terminal 120B may be referred to as a high priority terminal, and correspondingly, the service processed by the second terminal 120B is a high priority service.
  • the service handled by the second terminal 120B has a requirement of low latency and high reliability.
  • the service is a URLLC service
  • the second terminal 120B may also be referred to as a URLLC terminal.
  • the first terminal 120A may be referred to as a low-priority terminal, and the service processed by the first terminal 120A is a low-priority service.
  • the service processed by the first terminal 120A is an eMBB service, and the first terminal 120A may also be referred to as an eMBB terminal.
  • URLLC, eMBB, and mass machine type communication (mMTC) are three typical application scenarios of the future 5G defined by the international telecommunications union (ITU).
  • the first terminal 120A does not distinguish between reserved resources and common resources.
  • the modulation mode used by the first terminal 120A when reserving resources to transmit data and the modulation used when transmitting data on common resources are used.
  • the manner is the same, or the code rate used by the first terminal 120A when the reserved resource is sent is the same as the code rate used when the data is transmitted on the common resource, or the sending power used by the first terminal 120A when the resource is reserved for sending data.
  • the transmit power used when sending data on a normal resource is the same.
  • the base station 110 After receiving two types of data on the reserved resource, the base station 110 first decodes one of the data, and then decodes another data by using the interference cancellation method, because the first terminal 120A is usually at the first.
  • the modulation order or the code rate or the transmission power used on the resource is high, so that the data of the first terminal and the data of the second terminal transmitted on the second resource may be decoded.
  • the interference cancellation method includes, but is not limited to, the following methods: (1) signal orthogonalization/pseudo-orthogonalization; (2) advanced receiver interference cancellation algorithm and the like.
  • the foregoing interference cancellation methods are all prior art, and are not described herein for the sake of brevity.
  • the embodiment of the present application provides a data processing method, a base station, and a terminal, which can effectively improve the decoding success rate of data of different users transmitted on the same block of resources.
  • FIG. 2 is a schematic flowchart of a method 200 for data processing provided by an embodiment of the present application, where the method 200 includes:
  • the first terminal determines target data to be transmitted.
  • the first terminal is, for example, the first terminal 120A shown in FIG.
  • the first terminal sends the first data in the target data to the base station on the first resource.
  • the base station is, for example, the terminal 110 shown in FIG.
  • the first terminal sends the second data in the target data to the base station on the second resource, where the second data is the remaining data except the first data in the target data, and the modulation order of the second data is lower than the first data.
  • the modulation order, and/or the code rate of the second data is lower than the code rate of the first data, and/or the transmission power of the second data is lower than the transmission power of the first data.
  • the method 200 further includes: the first terminal sends a resource scheduling request to the base station, where the resource scheduling request is used to request the transmission resource of the first terminal; One terminal And sending a resource scheduling response, where the resource scheduling response is used to indicate that the first resource and the second resource are transmission resources of the first terminal.
  • the base station divides the system resources of the uplink transmission into the first resource and the second resource, and after receiving the resource scheduling request of the first terminal, configuring the first resource and the second resource as the first The transmission resource of a terminal.
  • the first resource and the second resource are different time-frequency resources, as shown in FIG. 3.
  • the second terminal sends the third data to the base station on the second resource.
  • the second terminal is, for example, the second terminal 120B shown in FIG.
  • the base station sets the second resource as the reserved resource of the second terminal, that is, when the second terminal has uplink data, directly uses the second resource shown in FIG.
  • the uplink data is sent to the base station without reporting the resource scheduling request.
  • the first resource may correspond to the common resource described above
  • the second resource corresponds to the reserved resource described above.
  • the second resource may be predefined by the system as a reserved resource of the second terminal, or may be notified by the base station to the second terminal by using downlink control signaling.
  • the second resource may also be notified to the first terminal for the reserved resource of the second terminal.
  • the base station demodulates and decodes the first data.
  • the base station demodulates and decodes the first data according to a modulation mode and an encoding mode of the first data.
  • the base station demodulates and decodes the second data and the third data.
  • the base station demodulates and decodes the second data according to the modulation mode and the coding mode of the second data, and the base station demodulates and decodes the third data according to the modulation mode and the coding mode of the third data.
  • the first terminal uses different configuration information when transmitting data on the first resource and the second resource, that is, the modulation order of the data sent by the first terminal on the second resource is lower than the first terminal.
  • a modulation order of data transmitted on the first resource, and/or a code rate of data transmitted by the first terminal on the second resource is lower than a code rate of data transmitted by the first terminal on the first resource, and/or
  • the transmission power of the second data is lower than the transmission power of the first data. It should be understood that the lower the modulation order of the second data, the higher the probability that the second data is successfully decoded, and the more accurate the reconstruction of the second data is, the higher the interference cancellation rate is.
  • the probability that the third data is successfully decoded is higher; the lower the code rate of the second data is, the more accurate the reconstruction of the second data is when the interference is eliminated, and the interference cancellation rate is higher, further, The higher the probability that the three data is successfully decoded; the lower the transmission power of the second data, the smaller the interference to the third data, the higher the probability that the third data is successfully decoded, and the interference is eliminated. The more accurate the reconstruction of the three data is, the higher the interference cancellation rate is. Further, the probability that the second data is successfully decoded is higher. Therefore, the embodiment of the present application can effectively improve the transmission of the second resource by the base station.
  • the decoding success rate of the data (the data transmitted by the first terminal and the second terminal on the second resource).
  • the method 200 further includes: the base station sending the first configuration information to the first terminal, where the first configuration information is a configuration required when the first terminal sends data on the first resource.
  • the information, the first configuration information includes at least one of the following information: modulation order information of the first data, code rate information of the first data, and transmit power information of the first data; 220 the first terminal is on the first resource And sending, by the base station, the first data of the target data, the first terminal sending, by using the first configuration information, the first data processed by the first configuration information to the base station.
  • the base station may send the first configuration information to the first terminal by using physical layer control signaling, such as by using a PDCCH, or by using MAC signaling, such as a MAC CE, or by using RRC signaling.
  • physical layer control signaling such as by using a PDCCH
  • MAC signaling such as a MAC CE
  • the method 200 further includes: the base station sending the second configuration information to the first terminal, where the second configuration information is a configuration required when the first terminal sends data on the second resource.
  • Information, second configuration packet At least one of the following information: modulation order information of the second data, code rate information of the second data, and transmission power information of the second data; 230, the first terminal transmitting the target data to the base station on the second resource
  • the second data includes: the first terminal sends the second data processed by the second configuration information to the base station on the second resource.
  • the base station sends the second configuration information to the first terminal by using the lower physical layer control signaling, such as by using a PDCCH, or by using MAC signaling, such as a MAC CE, or by using RRC signaling.
  • the lower physical layer control signaling such as by using a PDCCH
  • MAC signaling such as a MAC CE
  • the first terminal sends the first data processed by the first configuration information to the base station on the first resource, and sends the second data processed by the second configuration information to the base station on the second resource, so that The modulation order of the second data is lower than the modulation order of the first data, and/or the code rate of the second data is lower than the code rate of the first data, and/or the transmission power of the second data is lower than the first data
  • the power is transmitted, so that the decoding success rate of the two types of data (the second data sent by the first terminal and the third data sent by the second terminal) transmitted by the base station to the second resource can be effectively improved.
  • the first configuration information and the second configuration information may be delivered by the base station to the first terminal, or may be predefined by the system.
  • the first configuration information is sent by the base station to the first terminal, and the second configuration information is predefined by the system; or the first configuration information is predefined by the system, and the second configuration information is determined by the base station.
  • the first configuration information and the second configuration information are all sent by the base station to the first terminal; or the first configuration information and the second configuration information are predefined by the system.
  • the first terminal in the foregoing embodiment may be an eMBB terminal
  • the second terminal may be a URLLC terminal.
  • the method for data processing provided by the embodiment of the present application is described in detail below with reference to FIG. 4 and FIG. 8 , where the first terminal is an eMBB terminal and the second terminal is a URL LC terminal.
  • a modulation order of a second data sent on a second resource is lower than a modulation of a first data sent on a first resource. Order.
  • the eMBB terminal sends a resource scheduling request to the base station to request the transmission resource of the eMBB terminal.
  • the base station uses the first resource and the second resource (as shown in FIG. 3) as the transmission resource of the eMBB terminal, and determines corresponding configuration information according to different resources used by the eMBB terminal, and determines the first configuration information as the eMBB terminal at the first.
  • the configuration information required when the data is transmitted on the resource determines the second configuration information as configuration information required when the eMBB terminal transmits data on the second resource.
  • the first configuration information and the second configuration information each include at least information indicating a modulation order, and the modulation order in the second configuration information is lower than a modulation order in the first configuration information.
  • the first configuration information may be determined according to uplink configuration information of the existing LTE system.
  • the base station sends a resource scheduling response to the first terminal, where the first resource and the second resource are the transmission resources of the first terminal, and the resource scheduling response further includes the first configuration information and the second configuration information.
  • the eMBB terminal After receiving the resource scheduling response, sends data to the base station on the first resource and the second resource, where the first configuration information is used to process the first data sent on the first resource, and the second configuration information is processed in the second configuration information. The second data sent on the second resource.
  • the first configuration information includes modulation mode A
  • the second configuration information includes modulation mode B
  • the modulation order of modulation mode B is lower than the modulation order of modulation mode A.
  • the eMBB terminal modulates the first data transmitted on the first resource by using modulation mode A, and modulates the second data transmitted on the second resource by using modulation mode B.
  • the base station After receiving the data sent by the eMBB terminal, the base station demodulates the first data received on the first resource based on the modulation mode A, and demodulates the second data received on the second resource based on the modulation mode B.
  • the transmitting end device (corresponding to the eMBB terminal in this embodiment) needs to send data.
  • the data to be transmitted (denoted as data D) is subjected to channel coding, rate matching (RM), and scrambling processing to obtain a target code sequence, and then the target code sequence is modulated (Modulation) ), finally transmitting the modulated sequence through the channel.
  • the receiving end device (corresponding to the base station in this embodiment) receives the sequence of the channel transmission, and obtains decoding corresponding to the data D after demodulation, descrambling, de-rate matching, and channel decoding, respectively.
  • Data also known as decoded data).
  • a code segmentation process may be performed before channel coding, and conversely, a corresponding inverse process may be performed at the receiving end.
  • the receiving end may perform a corresponding inverse process to obtain the sink information.
  • all processing (part of the dotted line frame in FIG. 4) of the eMBB terminal before modulation does not distinguish the first data from the second data, that is, the target data to be transmitted is uniformly processed, but the rate is matched.
  • the data is divided into first data and second data, and the first data is modulated by modulation mode A, and the second data is modulated by modulation mode B.
  • the eMBB terminal transmits the first data modulated by the modulation mode A on the first resource, and transmits the second data modulated by the modulation mode B on the second resource.
  • the base station demodulates the first data using the modulation mode A, and demodulates the second data using the modulation mode B.
  • modulation refers to the process of mapping bit information to modulation symbols.
  • the modulation scheme B is lower than the modulation order of the modulation scheme A, and means that the bit information carried on one modulation symbol of the modulation scheme B is smaller than the bit information carried on the modulation symbol of the modulation scheme A. It should also be understood that the lower the modulation order of the data, the higher the demodulation and decoding success rate of the data.
  • the URLLC terminal sends the third data on the second resource, that is, the URLLC terminal and the eMBB terminal simultaneously send the uplink data in the second resource, since the data sent by the eMBB terminal and the URLLC terminal are non-orthogonal in the same resource region, they interfere with each other, thereby
  • the second data of the eMBB terminal transmitted on the second resource and the third data of the URLLC terminal may all be decoded.
  • the base station notifies the eMBB terminal to use a lower-order modulation mode in the second resource, so that the second data sent by the eMBB terminal can be successfully decoded with a higher probability even if it is interfered by the third data sent by the uRLLC terminal.
  • the third data of the uRLLC terminal can be successfully decoded with a higher probability.
  • the first configuration information and the second configuration information may further include information for indicating a code rate, a transmission power, and the like.
  • FIG. 5 is another schematic diagram of a method for data processing according to an embodiment of the present disclosure.
  • a code rate of second data sent on a second resource is lower than a first data sent on a first resource.
  • Code rate refers to the ratio of the number of information bits before channel coding to the number of bits actually carried by the physical resource.
  • the eMBB terminal sends a resource scheduling request to the base station to request the transmission resource of the eMBB terminal.
  • the base station uses the first resource and the second resource (as shown in FIG. 3) as the transmission resource of the eMBB terminal, and determines corresponding configuration information according to different resources used by the eMBB terminal, and determines the first configuration information as the eMBB terminal at the first.
  • the configuration information required when the data is transmitted on the resource determines the second configuration information as configuration information required when the eMBB terminal transmits data on the second resource.
  • the first configuration information and the second configuration information each include at least information for indicating a code rate, and the code rate in the second configuration information is lower than a code rate in the first configuration information.
  • the first configuration information may be determined according to uplink configuration information of the existing LTE system.
  • the base station sends a resource scheduling response to the first terminal, where the first resource is used to indicate
  • the second resource is a transmission resource of the first terminal, and the resource scheduling response further includes the first configuration information and the second configuration information.
  • the eMBB terminal After receiving the resource scheduling response, sends data to the base station on the first resource and the second resource, where the first configuration information is used to process the first data sent on the first resource, and the second configuration information is processed in the second configuration information. The second data sent on the second resource.
  • the first configuration information includes the configuration mode A
  • the second configuration information includes the configuration mode B.
  • the data rate of the data processed by the configuration mode B is lower than the data rate of the data processed by the configuration mode A.
  • the first data in the channel-encoded data of the eMBB terminal is processed by the configuration method A
  • the second data (data other than the first data) in the channel-coded data is configured by the configuration mode B. deal with.
  • the configuration mode A and the configuration mode B each include a process step of rate matching, scrambling, and modulation, wherein the rate matching corresponding to the rate matching in the configuration mode B is lower than the rate matching in the configuration mode A. Code rate.
  • the manner of the scrambling modes included in the configuration mode A and the configuration mode B may be the same or different, and the manners of the modulation modes included in the configuration mode A and the configuration mode B may be the same or different.
  • the base station After receiving the data sent by the eMBB terminal, the base station demodulates the first data received on the first resource based on the configuration mode A, and demodulates the second data received on the second resource based on the configuration mode B.
  • rate matching means that bits on the transmission channel are retransmitted or punctured to match the carrying capacity of the physical channel, and the bit rate required for the transmission format is reached during channel mapping. It should also be understood that, in this embodiment, all processing (part of the dotted line frame in FIG. 5) of the eMBB terminal before rate matching does not distinguish the first data from the second data, that is, the data to be transmitted is uniformly processed, but The channel-encoded data is divided into the first data and the second data, and the first data is processed by the configuration mode A, and the second data is modulated by the configuration mode B.
  • the data that needs to be sent by the eMBB terminal may be directly divided into two parts of data before channel coding, and then the two parts of the data are separately channel coded, and then the channel coding is performed.
  • a part of the data ie, the first data
  • another part of the data after the channel coding ie, the second data
  • the code rate of the data processed by the configuration mode B is lower than the code rate of the data processed by the configuration mode A, and refers to the data of the same number of bits processed by the configuration mode B compared to the configuration mode A (total code) Meta) carries less valid information (number of information symbols). It should also be understood that the lower the code rate of the second data, the more accurate the reconstruction of the second data when the interference is eliminated, and the higher the interference cancellation rate, and further, the higher the probability that the third data is successfully decoded. .
  • the URLLC terminal sends the third data on the second resource, that is, the URLLC terminal and the eMBB terminal simultaneously send the uplink data in the second resource, since the data sent by the eMBB terminal and the URLLC terminal are non-orthogonal in the same resource region, they interfere with each other, thereby
  • the second data of the eMBB terminal transmitted on the second resource and the third data of the URLLC terminal may all be decoded.
  • the base station notifies the eMBB terminal to use a lower code rate in the second resource, so that the second data sent by the eMBB terminal can be successfully decoded with higher probability even if it is interfered by the third data sent by the uRLLC terminal.
  • the third data of the uRLLC terminal can be successfully decoded with a higher probability.
  • FIG. 6 is still another schematic diagram of a data processing method according to an embodiment of the present disclosure.
  • a sending power of a second data sent on a second resource is lower than a first data sent on a first resource. Transmit power.
  • the eMBB terminal sends a resource scheduling request to the base station to request the transmission resource of the eMBB terminal.
  • the base station uses the first resource and the second resource (as shown in FIG. 3) as the transmission resource of the eMBB terminal, and ends according to the eMBB.
  • the different resources used by the terminal determine the corresponding configuration information, determine the first configuration information as the configuration information required by the eMBB terminal to send data on the first resource, and determine the second configuration information to be sent by the eMBB terminal on the second resource.
  • Configuration information required for data The first configuration information and the second configuration information both include at least information for indicating the transmission power, and the transmission power in the second configuration information is lower than the transmission power in the first configuration information.
  • the first configuration information may be determined according to uplink configuration information of the existing LTE system.
  • the base station sends a resource scheduling response to the first terminal, where the first resource and the second resource are the transmission resources of the first terminal, and the resource scheduling response further includes the first configuration information and the second configuration information.
  • the eMBB terminal After receiving the resource scheduling response, sends data to the base station on the first resource and the second resource, where the first configuration information is used to process the first data sent on the first resource, and the second configuration information is processed in the second configuration information.
  • the second data sent on the second resource As shown in FIG. 6, the transmission power of the data transmitted by the eMBB terminal on the second resource is lower than the transmission power of the data transmitted on the first resource.
  • the sending power of the eMBB transmitting data on the second resource is low, which reduces the impact on the data sent by the URLLC terminal.
  • the URLLC terminal may have multiple transmission opportunities in a short time, even if it is several times.
  • the transmission error can also be successfully transmitted on the subsequent resources, so that the probability that the URLLC terminal transmits successfully in a short time (for example, 1 ms) is extremely high (for example, 99.99%), and therefore, the transmission performance of the data transmitted by the URLLC terminal can be guaranteed. Therefore, the embodiment of the present application can further increase the reliability of data transmission of the URLLC terminal by reducing the power of the eMBB terminal in the second resource.
  • the interference cancellation of the data of the eMBB terminal is further performed, so that the decoding success rate of the data of the eMBB terminal can be greatly improved.
  • the first terminal sends the second data of the target data to the base station on the second resource, where the first terminal sends the second terminal to the base station on the second resource.
  • the second data encoded by the multiple access coding technique is also encoded by the multiple access coding technique, and the multiple access codebook corresponding to the second data is different from the multiple access codebook corresponding to the third data.
  • the multiple access coding technique includes, but is not limited to, sparse code multiple access (SCMA) and code division multiple access (CDMA).
  • SCMA sparse code multiple access
  • CDMA code division multiple access
  • the method 200 further includes: the first terminal receives the first codebook sent by the base station, where the first codebook is a code required for the first terminal to perform multiple access encoding on the second data.
  • the base station further sends a second codebook to the second terminal, where the second codebook is a codebook required for the second terminal to perform multiple address encoding on the third data, and the first codebook is different from the second codebook.
  • the first terminal is an eMBB terminal
  • the second terminal is an eMBB terminal
  • the multiple access coding technology is an SCMA.
  • the second data sent by the eMBB terminal in the second resource and the third data sent by the URLLC terminal in the second resource need to be SCMA encoded after channel coding.
  • the URLLC terminal performs SCMA coding on the channel-encoded encoded data, and transmits the SCMA-encoded third data on the second resource.
  • the eMBB terminal After completing the channel coding, the eMBB terminal performs SCMA coding on the second data (such as the coding block 2 shown in FIG. 7) sent on the second resource, and the first data sent on the first resource (as shown in FIG. 7).
  • the illustrated coding block 1) may not be SCMA encoded.
  • SCMA coding allows multiple users to multiplex the same resources, and the possible cases of multiplexing the same second resource include: 1) one eMBB user and one or more URLLC users; 2) multiple URLLC users.
  • the base station can effectively separate the data of all the users multiplexed with the same second resource, that is, the base station can successfully decode the second data sent by the eMBB terminal and the third data sent by the URLLC terminal.
  • the SCMA codebook needs to be configured for SCMA coding, and the base station and all users store multiple SCMA codebooks.
  • the user needs to select one of the multiple SCMA codebooks when doing the SCMA coding, and ensure that the SCMA codebooks of different users multiplexing the same second resource are different.
  • the method for ensuring different SCMA codebooks of different users includes, but is not limited to: 1) the base station is configured by signaling, for example, by using RRC signaling notification or by using the downlink control information to notify the eMBB terminal or the URLLC terminal to configure the SCMA codebook; 2) the user When SCMA coding is required, the SCMA codebook is selected from the SCMA codebook set according to the preset rule.
  • the selection rule may be based on the UE ID, UE re-grouping, and the like.
  • the UE ID mode refers to that the user first numbers the available SCMA codebooks (for example, numbers 1, 2, ..., N), and then uses the UE ID of the user to modulo the total number N of available SCMA codebooks. If the value after modulo is X, the SCMA codebook numbered X is selected.
  • the UE re-grouping mode means that the user group corresponding to each SCMA codebook changes continuously in different second resources, even if the SCMA codebooks of the two users in the current second resource are the same, the next transmission is also performed. It can guarantee that the SCMA codebooks of different users are different.
  • the eMBB user multiplexed with the second resource and the URLLC user select different SCMA codebooks for SCMA coding according to the configuration, so that the receiving end (ie, the base station) can recover all the data of different users multiplexing the second resource. . Therefore, the embodiment of the present application can solve the problem that the eMBB user and the URLLC user interfere with each other in the second resource, and can effectively solve the problem that multiple URLLC users collide in the same second resource transmission.
  • the target data is that the first terminal performs channel coding on the original data to obtain an encoded bit stream, where the encoded bit stream includes information bits and redundant bits, and the second data. Includes all or part of the redundant bits in the encoded bitstream.
  • the transmission resource required for encoding all redundant bits in the bitstream is equal to the second resource
  • all redundant bits in the encoded bitstream are used as the second data
  • all redundant bits and partial information bits in the encoded bit stream are used as the second data, and all redundant bits and partial information bits are required for transmission resources.
  • the sum is equal to the second partial resource; when the transmission resource required for all the redundant bits in the encoded bitstream is larger than the second resource, the partial redundant bits in the encoded bitstream are used as the second data, and the partial redundant bits are required
  • the transmission resource is equal to the second resource.
  • the first terminal is an eMBB terminal
  • the second terminal is an eMBB terminal.
  • the eMBB terminal After the channel coding, the eMBB terminal has information bits and redundant bits in the bit stream of each coding block.
  • the eMBB terminal preferentially maps redundant bits to the second resource.
  • the redundant bits are sequentially extracted for each coding block, and are sequentially mapped to the second resource according to the extraction order. If the resources required for the redundant bits are greater than the second resource, the redundant redundant bits are mapped to the first resource; if the resources required for the redundant bits are smaller than the second resource, the information bits need to be mapped to the second resource.
  • the information bits of each coded block are then mapped onto the remaining resources.
  • the purpose is to make the eMBB terminal data on the second resource as redundant as possible.
  • the base station When receiving the eMBB service data, the base station extracts redundant bits (and possibly partial information bits) in the second resource according to the mapping rule, and extracts information bits (and possibly partial redundant bits) in the first resource. All bits are rearranged in the order of channel coding and decoded.
  • the eMBB terminal mainly sends redundant bits on the second resource, and mainly transmits information bits on the first resource. Even if the third data of the URLLC terminal transmitted on the second resource interferes with the redundant bit of the eMBB terminal, the base station can successfully decode the redundant bit received on the second resource according to the received information bit on the first resource. Thus, the third data of the URLLC terminal is also successfully decoded by the interference cancellation rate technique.
  • the processing is performed by using any one of the methods shown in FIG. 4 and FIG. 7 , and is not limited by the embodiment of the present application.
  • the first terminal uses different configuration information when transmitting data on the first resource and the second resource, that is, the modulation order of the data sent by the first terminal on the second resource.
  • the modulation order of the data sent by the first terminal on the first resource, and/or the code rate of the data sent by the first terminal on the second resource is lower than the code of the data sent by the first terminal on the first resource
  • the transmission power of the rate and/or the second data is lower than the transmission power of the first data, so that the two types of data transmitted by the base station to the second resource can be effectively improved (the first terminal and the second terminal are sent on the second resource)
  • the decoding success rate of the data is lower than the transmission power of the first data
  • FIG. 9 shows a schematic block diagram of a base station 900 according to an embodiment of the present application, the base station 900 includes:
  • the receiving module 910 is configured to receive first data from the first terminal on the first resource
  • the receiving module 910 is further configured to receive second data from the first terminal and third data from the second terminal on the second resource, where a modulation order of the second data is lower than a modulation order of the first data, and Or the code rate of the second data is lower than the code rate of the first data, and/or the transmission power of the second data is lower than the transmission power of the first data;
  • Demodulation and decoding module 920 configured to demodulate and decode the first data
  • the demodulation decoding module 920 is further configured to demodulate and decode the second data and the third data.
  • the first terminal uses different configuration information when transmitting data on the first resource and the second resource, that is, the modulation order of the data sent by the first terminal on the second resource is lower than the first terminal.
  • a modulation order of data transmitted on the first resource, and/or a code rate of data transmitted by the first terminal on the second resource is lower than a code rate of data transmitted by the first terminal on the first resource, and/or
  • the transmission power of the second data is lower than the transmission power of the first data. Therefore, the embodiment of the present application can effectively improve the decoding success rate of the two types of data (the data sent by the first terminal and the second terminal on the second resource) transmitted by the base station to the second resource.
  • the base station 900 may further include a sending module 930, where the sending module 930 is configured to send a message to the terminal, for example, to send physical layer control signaling to the terminal, such as the PDCCH, or send the MAC signaling to the terminal.
  • the sending module 930 is configured to send a message to the terminal, for example, to send physical layer control signaling to the terminal, such as the PDCCH, or send the MAC signaling to the terminal.
  • the MAC signaling For example, MAC CE
  • RRC signaling to the terminal.
  • the sending module 930 includes a first sending module 931, configured to send first configuration information to the first terminal, where the first configuration information is required when the first terminal sends data on the first resource.
  • the configuration information, the first configuration information includes at least one of the following: modulation order information of the first data, code rate information of the first data, and transmission power information of the first data.
  • the sending module 930 includes a second sending module 932, configured to send second configuration information to the first terminal, where the second configuration information is required by the first terminal to send data on the second resource.
  • the configuration information, the second configuration information includes at least one of the following: modulation order information of the second data, code rate information of the second data, and transmission power information of the second data.
  • the receiving module 910 is further configured to: receive a resource scheduling request from the first terminal, where the resource scheduling request is used to request the transmission resource of the first terminal, and the sending module 930 includes a third sending module 933.
  • the resource scheduling response is sent to the first terminal, where the resource scheduling response is used to indicate that the first resource and the second resource are transmission resources of the first terminal.
  • the second resource is a resource reserved for the second terminal.
  • the demodulation and decoding module 920 in the embodiment of the present application may be implemented by a processor or a processor related circuit.
  • the receiving module 910 can be implemented by a receiver or receiver related circuitry.
  • the transmitting module 930 can be implemented by a transmitter or a transmitter related circuit.
  • the embodiment of the present application further provides a base station 1000, which includes a processor 1010, a memory 1020, a bus system 1030, a receiver 1040, and a transmitter 1050.
  • the processor 1010, the memory 1020, the receiver 1040, and the transmitter 1050 are connected by a bus system 1030.
  • the memory 1020 is configured to store instructions for executing the instructions stored by the memory 1020 to control the receiver 1040 to receive. Signal, and control transmitter 1050 to send a signal.
  • the receiver 1040 is configured to receive first data from the first terminal on the first resource, receive second data from the first terminal, and third data from the second terminal, the second data on the second resource.
  • the modulation order is lower than the modulation order of the first data, and/or the code rate of the second data is lower than the code rate of the first data, and/or the transmission power of the second data is lower than the transmission power of the first data;
  • the processor 1010 is configured to demodulate and decode the first data, and demodulate and decode the second data and the third data.
  • the first terminal uses different configuration information when transmitting data on the first resource and the second resource, that is, the modulation order of the data sent by the first terminal on the second resource is lower than the first terminal.
  • a modulation order of data transmitted on the first resource, and/or a code rate of data transmitted by the first terminal on the second resource is lower than a code rate of data transmitted by the first terminal on the first resource, and/or
  • the transmission power of the second data is lower than the transmission power of the first data. Therefore, the embodiment of the present application can effectively improve the decoding success rate of the two types of data (the data sent by the first terminal and the second terminal on the second resource) transmitted by the base station to the second resource.
  • the transmitter 1040 is configured to send first configuration information to the first terminal, where the first configuration information is configuration information required when the first terminal sends data on the first resource, where the first configuration is configured.
  • the information includes at least one of the following information: modulation order information of the first data, code rate information of the first data, and transmission power information of the first data.
  • the transmitter 1040 is configured to send, to the first terminal, second configuration information, where the second configuration information is configuration information required when the first terminal sends data on the second resource, and the second configuration
  • the information includes at least one of the following information: modulation order information of the second data, code rate information of the second data, and transmission power information of the second data.
  • the receiver 1030 is configured to receive a resource scheduling request from the first terminal, where the resource scheduling request is used to request the transmission resource of the first terminal, and the transmitter 1040 is configured to send the resource to the first terminal.
  • the scheduling response is used to indicate that the first resource and the second resource are transmission resources of the first terminal.
  • the second resource is a resource reserved for the second terminal.
  • the first terminal is a mobile broadband enhanced eMBB terminal
  • the second terminal is a super high reliability short delay communication URL LC terminal.
  • the base station 900 shown in FIG. 9 or the base station 1000 shown in FIG. 10 can be used to perform the operations or procedures related to the base station in the foregoing method embodiments, and the operations and/or functions of the respective modules in the base station 900 or the base station 1000.
  • the base station 900 or the base station 1000 shown in FIG. 10 can be used to perform the operations or procedures related to the base station in the foregoing method embodiments, and the operations and/or functions of the respective modules in the base station 900 or the base station 1000.
  • details are not described herein again.
  • FIG. 11 shows a schematic block diagram of a terminal 1100 in accordance with an embodiment of the present application. As shown in FIG. 11, the terminal 1100 includes:
  • a determining module 1110 configured to determine target data to be transmitted
  • the sending module 1120 is configured to send first data in the target data on the first resource
  • the sending module 1120 is further configured to send the second data in the target data on the second resource, where the second data is the remaining data in the target data except the first data, and the second resource is further used to transmit the second terminal
  • the third data the modulation order of the second data is lower than the modulation order of the first data, and/or the code rate of the second data is lower than the code rate of the first data, and/or the transmission power of the second data is lower than The transmission power of the first data.
  • the first terminal uses different configuration information when transmitting data on the first resource and the second resource, that is, the modulation order of the data sent by the first terminal on the second resource is lower than the first terminal.
  • a modulation order of data transmitted on the first resource, and/or a code rate of data transmitted by the first terminal on the second resource is lower than a code rate of data transmitted by the first terminal on the first resource, and/or
  • the transmission power of the second data is lower than the transmission power of the first data. Therefore, the embodiment of the present application can effectively improve the decoding success rate of the two types of data (the data sent by the first terminal and the second terminal on the second resource) transmitted by the base station to the second resource.
  • the terminal 1100 may further include a receiving module 1130, where the receiving module 1130 is configured to receive a message sent by the base station, for example, to receive physical layer control signaling sent by the base station, such as a PDCCH, or for receiving The MAC signaling sent by the base station, such as MAC CE, or the RRC signaling sent by the base station.
  • a message sent by the base station for example, to receive physical layer control signaling sent by the base station, such as a PDCCH, or for receiving The MAC signaling sent by the base station, such as MAC CE, or the RRC signaling sent by the base station.
  • the receiving module 1130 includes a first receiving module 1131, configured to receive first configuration information from a base station, where the first configuration information is a configuration required when the first terminal sends data on the first resource.
  • the information, the first configuration information includes at least one of the following: modulation order information of the first data, code rate information of the first data, and transmission power information of the first data.
  • the receiving module 1130 includes a second receiving module 1132, configured to receive second configuration information from the base station, where the second configuration information is a configuration required when the first terminal sends data on the second resource.
  • the information, the second configuration information includes at least one of the following information: modulation order information of the second data, code rate information of the second data, and transmission power information of the second data.
  • the sending module 1120 is further configured to send a resource scheduling request to the base station, where the resource scheduling request is used to request the transmission resource of the first terminal, and the receiving module 1130 includes a third receiving module 1131, configured to receive the The resource scheduling response of the base station, where the resource scheduling response is used to indicate that the first resource and the second resource are transmission resources of the first terminal.
  • the second resource is a resource reserved for the second terminal.
  • the terminal is a mobile broadband enhanced eMBB terminal
  • the second terminal is an ultra-high reliability short delay communication URL LC terminal.
  • the determining module 1110 in the embodiment of the present application may be implemented by a processor or a processor related circuit.
  • the transmitting module 1120 can be implemented by a transmitter or a transmitter related circuit.
  • the receiving module 1130 can be implemented by a receiver or receiver related circuitry.
  • the embodiment of the present application further provides a terminal 1200.
  • the terminal 1200 includes a processor 1210, a memory 1220, a bus system 1230, a receiver 1240, and a transmitter 1250.
  • the processor 1210 is configured to determine target data to be transmitted
  • the transmitter 1250 is configured to send first data in the target data on the first resource, and send the second data in the target data on the second resource, where The second data is the remaining data except the first data in the target data
  • the second resource is further used to transmit the third data sent by the second terminal, where the modulation order of the second data is lower than the modulation order of the first data, and / or the code rate of the second data is lower than the code rate of the first data, and / or the transmission power of the second data is lower than the transmission power of the first data.
  • the first terminal uses different configuration letters when sending data on the first resource and the second resource.
  • the modulation order of the data sent by the first terminal on the second resource is lower than the modulation order of the data sent by the first terminal on the first resource, and/or the first terminal sends the second resource.
  • the code rate of the data is lower than the code rate of the data transmitted by the first terminal on the first resource, and/or the transmission power of the second data is lower than the transmission power of the first data. Therefore, the embodiment of the present application can effectively improve the decoding success rate of the two types of data (the data sent by the first terminal and the second terminal on the second resource) transmitted by the base station to the second resource.
  • the receiver 1230 is configured to receive first configuration information from the base station, where the first configuration information is configuration information required when the first terminal sends data on the first resource, and the first configuration information is used. At least one of the following information is included: modulation order information of the first data, code rate information of the first data, and transmission power information of the first data.
  • the receiver 1230 is configured to receive second configuration information from the base station, where the second configuration information is configuration information required when the first terminal sends data on the second resource, and the second configuration information is used. At least one of the following information is included: modulation order information of the second data, code rate information of the second data, and transmission power information of the second data.
  • the transmitter 1240 is configured to send a resource scheduling request to the base station, where the resource scheduling request is used to request the transmission resource of the first terminal, and the receiver 1230 is configured to receive the resource scheduling response, the resource from the base station.
  • the scheduling response is used to indicate that the first resource and the second resource are transmission resources of the first terminal.
  • the second resource is a resource reserved for the second terminal.
  • the first terminal is a mobile broadband enhanced eMBB terminal
  • the second terminal is a super high reliability short delay communication URL LC terminal.
  • terminal 1100 shown in FIG. 11 or the terminal 1200 shown in FIG. 12 can be used to perform the operations or processes related to the cloud side device in the foregoing method embodiment, and the operations of the respective modules in the terminal 1100 or the terminal 1200 and/or The functions are respectively implemented in order to implement the corresponding processes in the foregoing method embodiments, and are not described herein for brevity.
  • the processor in the embodiment of the present application may be a central processing unit (CPU), or may be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits (application specific Integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM). SDRAM), double data rate synchronous DRAM (DDR SDRAM), enhanced synchronous dynamic random access memory (ESDRAM), synchronously connected dynamic random access memory (synchlink DRAM, SLDRAM) ) and direct memory bus random access memory (DR RAM).
  • processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic
  • memory storage module
  • the bus system may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus.
  • various buses are labeled as a bus system in FIGS. 10 and 12.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division.
  • there may be another division manner for example, multiple modules or components may be combined or Can be integrated into another module, or some features can be ignored or not executed.
  • the modules described as separate components may or may not be physically separated.
  • the components displayed as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network units.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist physically separately, or two or more modules may be integrated into one module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种数据处理的方法、基站和终端,所述方法包括:基站在第一资源上接收来自第一终端的第一数据;所述基站在第二资源上接收来自所述第一终端的第二数据以及来自第二终端的第三数据,其中,所述第二数据的调制阶数低于所述第一数据的调制阶数,和/或所述第二数据的码率低于所述第一数据的码率,和/或所述第二数据的发送功率低于所述第一数据的发送功率;所述基站对所述第一数据进行解调和译码;所述基站对所述第二数据与所述第三数据进行解调和译码。因此,本申请实施例能够有效提高在同一块资源上传输的不同用户的数据的译码成功率。

Description

数据处理的方法、基站与终端
本申请要求于2016年11月02日提交中国专利局、申请号为201610945881.3、申请名称为“数据处理的方法、基站与终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种数据处理的方法、基站与终端。
背景技术
在长期演进(long term evolution,LTE)系统的上行方案中,要求用户在上行传输之前先发起资源调度请求,通常从发起资源调度请求到数据发送至少需要7个传输时间间隔(transmission time interval,TTI)。资源调度请求的机制不能满足短时延业务的要求,例如,超高可靠性与超低时延通信(ultra-reliable and low-latency communications,URLLC)业务要求非常高的可靠性和非常短的时延,典型值为可靠性99.999%、时延1ms。
当前技术中,针对短时延业务(下文以URLLC业务为例进行描述),基站将上行系统资源划分为普通资源与预留资源,该预留资源为预留给URLLC业务的资源,当URLLC业务的数据到达时,直接在时域上最近的预留资源上传输。对于其他非短时延业务,例如,增强型移动宽带(enhanced mobile broadband,eMBB)业务,基站在接收到其资源调度请求后,将所有上行系统资源,即普通资源与预留资源均确定为非短时延业务(下文以eMBB业务为例进行描述)的传输资源。eMBB终端同时在普通资源与预留资源上发送eMBB业务数据,当URLLC业务的数据到达时,URLLC终端也会在预留资源上发送URLLC业务数据,这种情况下,eMBB业务数据和URLLC业务数据复用该预留资源,且是以非正交方式复用,则eMBB业务数据和URLLC业务数据会发生干扰,可能导致eMBB业务数据不能成功译码,URLLC业务数据由于eMBB业务数据的干扰不能消除也无法成功译码,进而导致两者的传输性能同时降低。
发明内容
本申请提出一种数据处理的方法、基站与终端,能够有效提高在同一块资源上传输的不同用户的数据的译码成功率。
第一方面,提供一种数据处理的方法,所述方法包括:基站在第一资源上接收来自第一终端的第一数据;所述基站在第二资源上接收来自所述第一终端的第二数据以及来自第二终端的第三数据,所述第二数据的调制阶数低于所述第一数据的调制阶数,和/或所述第二数据的码率低于所述第一数据的码率,和/或所述第二数据的发送功率低于所述第一数据的发送功率;所述基站对所述第一数据进行解调和译码;所述基站对所述第二数据与所述第三数据进行解调和译码。
在现有技术中,第一终端基于相同的调制阶数、码率和发送功率分别在第一资源与第二资源上向基站发送数据,当第二终端也在第二资源上向基站发送数据时,在第二资源上传输的两种数据(第一终端与第二终端在第二资源上发送的数据)会发生干扰,从而可能导致在第二资源上传输的第一终端的第二数据和第二终端的第三数据均译码失败。
在本方案中,第一终端在第一资源与第二资源上发送数据时采用不同的配置信息,即:第一终端在第二资源上发送的数据的调制阶数低于第一终端在第一资源上发送的数据的调制阶数,和/或第一终端在第二资源上发送的数据的码率低于第一终端在第一资源上发送的数据的码率,和/或第二数据的发送功率低于第一数据的发送功率。应理解,第二数据的调制阶数越低,该第二数据被成功译码的概率就越高,干扰消除时对该第二数据的重构就越准确,从而干扰消除率就越高,进一步,第三数据被译码成功的概率就越高;第二数据的码率越低,该第二数据被成功译码的概率就越高,干扰消除时对该第二数据的重构就越准确,从而干扰消除率就越高,进一步,第三数据被译码成功的概率就越高;第二数据的发送功率越低,对第三数据的干扰就越小,第三数据被译码成功的概率就越高,干扰消除时对该第三数据的重构就越准确,从而干扰消除率就越高,进一步,第二数据被译码成功的概率就越高,因此,本申请提供的技术方案能够有效提高基站对第二资源上传输的两种数据(第一终端与第二终端在第二资源上发送的数据)的译码成功率。
结合第一方面,在第一方面的一种可能的实现方式中,所述方法还包括:所述基站向所述第一终端发送第一配置信息,所述第一配置信息为所述第一终端在所述第一资源上发送数据时所需的配置信息,所述第一配置信息包括下列信息中的至少一种:所述第一数据的调制阶数信息、所述第一数据的码率信息与所述第一数据的发送功率信息。
结合第一方面或第一方面的上述某些实现方式,在第一方面的一种可能的实现方式中,所述基站向所述第一终端发送第二配置信息,所述第二配置信息为所述第一终端在所述第二资源上发送数据时所需的配置信息,所述第二配置信息包括下列信息中的至少一种:所述第二数据的调制阶数信息、所述第二数据的码率信息与所述第二数据的发送功率信息。
可选地,作为一种实现方式,在上述某些实现方式中,基站可以通过物理层控制信令,如通过物理下行控制信道(physical downlink control channel,PDCCH),或通过媒体接入控制(medium access control,MAC)信令,如MAC控制元素(control element,CE),或通过无线资源控制(radio resource control,RRC)信令向所述第一终端下发所述第一配置信息和/或所述第二配置信息。
可选地,作为一种实现方式,在上述某些实现方式中,第一终端在所述第一资源与第二资源上发送数据所需的配置信息也可以是系统预定义的。
结合第一方面或第一方面的上述某些实现方式,在第一方面的一种可能的实现方式中,所述第二数据与所述第三数据均采用多址编码技术编码,所述第二数据进行多址编码时采用的码本不同于所述第三数据进行多址编码时采用的码本。
在本方案中,复用第二资源的第一终端与第二终端选用不同的码本对要传输的数据进行多址编码,应理解,多址编码技术允许多个用户复用相同的资源,接收端能够恢复出所有复用第二资源的用户的数据,即基站能够成功译码出第一终端与第二终端在第二资源上的数据。因此,本申请提供的技术方案,能够更进一步地提高基站对第二资源上传输的两 种数据(第一终端与第二终端在第二资源上发送的数据)的译码成功率。
结合第一方面或第一方面的上述某些实现方式,在第一方面的一种可能的实现方式中,所述方法还包括:所述基站向所述第一终端发送第一码本,以指示所述第一终端在所述第二资源上发送数据时采用所述第一码本进行码分多址处理;和/或所述基站向所述第二终端发送第二码本,以指示所述第二终端在所述第二资源上发送数据时采用所述第二码本进行码分多址处理。
结合第一方面或第一方面的上述某些实现方式,在第一方面的一种可能的实现方式中,所述方法还包括:所述基站接收来自所述第一终端的资源调度请求,所述资源调度请求用于请求所述第一终端的传输资源;所述基站向所述第一终端发送资源调度响应,所述资源调度响应用于指示所述第一资源与所述第二资源为所述第一终端的传输资源。
结合第一方面或第一方面的上述某些实现方式,在第一方面的一种可能的实现方式中,所述第二资源是为所述第二终端预留的资源。所述第二资源也可称为第二终端的预留资源。
结合第一方面或第一方面的上述某些实现方式,在第一方面的一种可能的实现方式中,所述第一终端为移动宽带增强eMBB终端,所述第二终端为超高可靠性短时延通信URLLC终端。
第二方面,提供一种数据处理的方法,所述方法包括:第一终端确定待传输的目标数据;所述第一终端在第一资源上发送所述目标数据中的第一数据;所述第一终端在第二资源上发送所述目标数据中的第二数据,所述第二数据为所述目标数据中除所述第一数据之外的剩余数据,所述第二资源还用于传输第二终端发送的第三数据,所述第二数据的调制阶数低于所述第一数据的调制阶数,和/或所述第二数据的码率低于所述第一数据的码率,和/或所述第二数据的发送功率低于所述第一数据的发送功率。
在本方案中,第一终端在第一资源与第二资源上发送数据时采用不同的配置信息,即:第一终端在第二资源上发送的数据的调制阶数低于第一终端在第一资源上发送的数据的调制阶数,和/或第一终端在第二资源上发送的数据的码率低于第一终端在第一资源上发送的数据的码率,和/或第二数据的发送功率低于第一数据的发送功率。应理解,第二数据的调制阶数越低,该第二数据被成功译码的概率就越高,干扰消除时对该第二数据的重构就越准确,从而干扰消除率就越高,进一步,第三数据被译码成功的概率就越高;第二数据的码率越低,干扰消除时对该第二数据的重构就越准确,从而干扰消除率就越高,进一步,第三数据被译码成功的概率就越高;第二数据的发送功率越低,对第三数据的干扰就越小,第三数据被译码成功的概率就越高,干扰消除时对该第三数据的重构就越准确,从而干扰消除率就越高,进一步,第二数据被译码成功的概率就越高,因此,本申请提供的技术方案能够有效提高基站对第二资源上传输的两种数据(第一终端与第二终端在第二资源上发送的数据)的译码成功率。
结合第二方面,在第二方面的一种可能的实现方式中,所述方法还包括:所述第一终端接收来自所述基站的第一配置信息,所述第一配置信息为所述第一终端在所述第一资源上发送数据时所需的配置信息,所述第一配置信息包括下列信息中的至少一种:所述第一数据的调制阶数信息、所述第一数据的码率信息与所述第一数据的发送功率信息。
结合第二方面或第二方面的上述某些实现方式,在第二方面的一种可能的实现方式 中,所述方法还包括:所述第一终端接收来自所述基站的第二配置信息,所述第二配置信息为所述第一终端在所述第二资源上发送数据时所需的配置信息,所述第二配置信息包括下列信息中的至少一种:所述第二数据的调制阶数信息、所述第二数据的码率信息与所述第二数据的发送功率信息。
可选地,作为一种实现方式,在上述某些实现方式中,第一终端可以通过基站下发的物理层控制信令,如PDCCH,或通过基站下发的MAC信令,如MAC CE,或通过基站下发的RRC信令,获取所述第一配置信息和/或所述第二配置信息。
可选地,作为一种实现方式,在上述某些实现方式中,第一终端在所述第一资源与第二资源上发送数据所需的配置信息也可以是系统预定义的。
结合第二方面或第二方面的上述某些实现方式,在第二方面的一种可能的实现方式中,所述第一终端在第二资源上向所述基站发送所述目标数据的第二数据,包括:所述第一终端在所述第二资源上向所述基站发送采用多址编码技术编码的所述第二数据,所述第三数据也采用所述多址编码技术编码,且所述第二数据对应的多址编码码本不同于所述第三数据对应的多址编码码本。
在本方案中,复用第二资源的第一终端与第二终端选用不同的码本对要传输的数据进行多址编码,应理解,多址编码技术允许多个用户复用相同的资源,接收端能够恢复出所有复用第二资源的用户的数据,即基站能够成功译码出第一终端与第二终端在第二资源上的数据。因此,本申请提供的技术方案,能够更进一步地提高基站对第二资源上传输的两种数据(第一终端与第二终端在第二资源上发送的数据)的译码成功率。
结合第二方面或第二方面的上述某些实现方式,在第二方面的一种可能的实现方式中,所述方法还包括:所述第一终端接收所述基站发送的第一码本,所述第一码本为所述第一终端对所述第二数据进行多址编码时所需的码本,所述基站还向所述第二终端发送第二码本,所述第二码本为所述第二终端对所述第三数据进行多址编码时所需的码本,所述第一码本不同于所述第二码本。
结合第二方面或第二方面的上述某些实现方式,在第二方面的一种可能的实现方式中,所述目标数据为所述第一终端对原始数据进行信道编码之后得到编码比特流,所述编码比特流包括信息比特与冗余比特,所述第二数据包括所述编码比特流中的全部或部分冗余比特。
在本方案中,第一终端优先将冗余比特在第二资源上传输,即信息比特主要在第一资源上传输,由于基站能够将第一资源上传输的数据译码成功,从而可以将第二资源上的冗余比特译码成功,则,即使第一终端与第二终端复用第二资源,基站也可以成功译码出第一终端发送的数据,进而成功译码出第二终端发送的数据。因此,本申请提供的技术方案,能够有效提高基站对第二资源上传输的两种数据(第一终端与第二终端在第二资源上发送的数据)的译码成功率。
结合第二方面或第二方面的上述某些实现方式,在第二方面的一种可能的实现方式中,所述方法还包括:当所述编码比特流中的全部冗余比特所需的传输资源等于所述第二资源时,将所述编码比特流中的全部冗余比特作为所述第二数据;当所述编码比特流中的全部冗余比特所需的传输资源小于所述第二资源时,将所述编码比特流中的全部冗余比特与部分信息比特作为所述第二数据,所述全部冗余比特与所述部分信息比特所需的传输资 源之和等于所述第二部分资源;当所述编码比特流中的全部冗余比特所需的传输资源大于所述第二资源时,将所述编码比特流中的部分冗余比特作为所述第二数据,所述部分冗余比特所需的传输资源等于所述第二资源。
结合第二方面或第二方面的上述某些实现方式,在第二方面的一种可能的实现方式中,所述方法还包括:所述第一终端向所述基站发送资源调度请求,所述资源调度请求用于请求所述第一终端的传输资源;所述第一终端接收来自所述基站的资源调度响应,所述资源调度响应用于指示所述第一资源与所述第二资源为所述第一终端的传输资源。
结合第二方面或第二方面的上述某些实现方式,在第二方面的一种可能的实现方式中,所述第二资源是为所述第二终端预留的资源。
结合第二方面或第二方面的上述某些实现方式,在第二方面的一种可能的实现方式中,所述第一终端为移动宽带增强eMBB终端,所述第二终端为超高可靠性短时延通信URLLC终端。
可选地,在上述各个实现方式中,所述第二资源被系统预定义为预留给所述第二终端的资源。
可选地,在上述各个实现方式中,所述第二资源是所述基站为所述第二终端预留的资源,且所述基站向所述第一终端与所述第二终端发送消息,用于告知第二资源为第二终端的预留资源。
第三方面,提供一种基站,所述基站用于执行上述第一方面或第一方面的任一可能的实现方式中的方法。具体地,该基站可以包括用于执行第一方面或第一方面的任一可能的实现方式中的方法的模块。
第四方面,提供一种终端,所述终端用于执行上述第二方面或第二方面的任一可能的实现方式中的方法。具体地,该终端可以包括用于执行第二方面或第二方面的任一可能的实现方式中的方法的模块。
第五方面,提供一种基站,所述基站包括存储器和处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理器执行第一方面或第一方面的任一可能的实现方式中的方法。
第六方面,提供一种终端,所述终端包括存储器和处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理器执行第二方面或第二方面的任一可能的实现方式中的方法。
附图说明
图1是本申请实施例的应用场景的示意图。
图2是本申请实施例提供的数据处理的方法的示意性流程图。
图3是本申请实施例中的第一资源与第二资源的示意图。
图4是本申请实施例提供的数据处理的方法的示意图。
图5是本申请实施例提供的数据处理的方法的另一示意图。
图6是本申请实施例提供的数据处理的方法的再一示意图。
图7是本申请实施例提供的数据处理的方法的再一示意图。
图8是本申请实施例提供的数据处理的方法的再一示意图。
图9是本申请实施例提供的基站的示意性框图。
图10是本申请实施例提供的基站的另一示意性框图。
图11是本申请实施例提供的终端的示意性框图。
图12是本申请实施例提供的终端的另一示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于长期演进(long term evolution,LTE)架构,频分双工长期演进(frequency division duplex LTE,FDD LTE)架构与时分双工长期演进(time division duplex LTE,TDD LTE)架构。本申请实施例的技术方案还可以应用于其他通信系统,例如公共陆地移动网络(public land mobile network,PLMN)系统,甚至未来的5G通信系统或5G之后的通信系统等,本申请实施例对此不作限定。
本申请实施例涉及终端。终端还可以称之为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端设备、无线通信设备、用户代理或用户装置。例如,该终端可以是移动电话(或称为“蜂窝”电话)、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络或5G之后的网络中的终端等,本申请实施例对此不作限定。
终端可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,或者可以通过自组织或免授权的方式接入分布式的点对点(Ad-Hoc)模式网络以及用户部署的子网络,终端还可以通过其他方式接入网络进行通信,本申请实施例对此不作限定。
本申请实施例还涉及基站。基站可以是用于与终端进行通信的网络设备。具体地,基站可以是为小区内移动或固定的终端提供无线接入、通信服务的网络设备。例如,基站可以是LTE系统中的演进型基站(evolutional node B,eNB或eNodeB),或者还可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络或5G之后的网络中的网络侧设备或未来演进的PLMN网络中的网络侧设备等。本申请实施例中的基站还可以称之为网络设备。
图1是本申请实施例的应用场景的示意图。基站110与终端120通过某种空口技术相互通信,空口技术例如包括4G技术、4.5G技术或5G技术。终端120至少包括如图1所示的两类终端:第一终端120A与第二终端120B。其中,第一终端120A在上行传输之前需要向基站110发起资源调度请求,基站110根据资源调度请求为第一终端120A分配上行传输资源。而对于第二终端120B,基站110可以为其预留一块传输资源(预留资源),即第二终端120B在有上行数据时,可以直接利用预留资源进行上行传输,而不用向基站110发送资源调度请求。应该理解,第二终端120B在上行传输之前也可以向基站110发起资源调度请求。
具体地,基站110为上行业务将系统资源划分为普通资源与预留资源。该预留资源是预留给第二终端120B的资源,即第二终端120有上行数据时,直接在该预留资源上发送。 具体地,该预留资源可以被系统预定义为预留给第二终端120B的资源;或者,该预留资源是基站为第二终端120B预留的资源,且基站用于告知第一终端120A与第二终端120B,该预留资源为预留给第二终端120B的资源。
基站110在处理第一终端120A的资源调度请求时,将整个系统资源分配给第一终端120A,即第一终端120A可以在该普通资源与该预留资源上发送上行数据。
还应理解,在图1所示的应用场景中,第二终端120B可以称为高优先级终端,对应地,第二终端120B处理的业务为高优先级业务。例如第二终端120B处理的业务具有低时延与高可靠性的要求,具体地,该业务为URLLC业务,该第二终端120B也可称为URLLC终端。第一终端120A可以称为低优先级终端,第一终端120A处理的业务为低优先级业务,例如,第一终端120A处理的业务为eMBB业务,该第一终端120A也可称为eMBB终端。URLLC、eMBB与海量机器类通信(massive machine type communication,mMTC)为国际电信联盟(international telecommunications union,ITU)定义的未来5G的三大类典型应用场景。
在现有技术中,第一终端120A并不区分预留资源和普通资源,换句话说,第一终端120A在预留资源发送数据时使用的调制方式与在普通资源上发送数据时使用的调制方式相同,或者第一终端120A在预留资源发送数据时使用的码率与在普通资源上发送数据时使用的码率相同,或者第一终端120A在预留资源发送数据时使用的发送功率与在普通资源上发送数据时使用的发送功率相同。当第二终端120B有上行数据到达时,在预留资源上发送数据,则第一终端120A与第二终端120B同时在预留资源上发送数据,由于这两种数据通过非正交的方式复用预留资源,这两种数据会互相干扰。当前技术中,基站110在预留资源上同时接收到两种数据后,首先译码出其中一种数据,然后通过干扰消除的方法译码另一种数据,由于第一终端120A通常在第一资源上采用的调制阶数或码率或发送功率均较高,从而可能导致在第二资源上传输的第一终端的数据和第二终端的数据均译码失败。
应理解,干扰消除方法包括但不限于下列方法:(1)信号正交化/伪正交化;(2)先进接收机干扰消除算法等。上述干扰消除方法均为现有技术,为了简洁,这里不做赘述。
为了解决上述技术问题,本申请实施例提出一种数据处理的方法、基站与终端,能够有效地提高在同一块资源上传输的不同用户的数据的译码成功率。
图2是本申请实施例提供的数据处理的方法200的示意性流程图,该方法200包括:
210,第一终端确定待传输的目标数据。
该第一终端例如为图1中所示的第一终端120A。
220,第一终端在第一资源上向基站发送目标数据中的第一数据。
该基站例如为图1中所示的终端110。
230,第一终端在第二资源上向基站发送目标数据中的第二数据,第二数据为目标数据中除第一数据之外的剩余数据,第二数据的调制阶数低于第一数据的调制阶数,和/或第二数据的码率低于第一数据的码率,和/或第二数据的发送功率低于第一数据的发送功率。
可选地,在本申请实施例中,在步骤220与230之前,该方法200还包括:第一终端向基站发送资源调度请求,资源调度请求用于请求第一终端的传输资源;基站向第一终端 发送资源调度响应,资源调度响应用于指示第一资源与第二资源为第一终端的传输资源。
具体地,如图3所示,基站将上行传输的系统资源划分为第一资源与第二资源,在收到第一终端的资源调度请求后,将第一资源与第二资源均配置为第一终端的传输资源。第一资源与第二资源为不同的时频资源,如图3所示。
240,第二终端在第二资源上向基站发送第三数据。
该第二终端例如为图1中所示的第二终端120B。
具体地,还以图3为例,可选地,基站将第二资源设置为第二终端的预留资源,即当第二终端有上行数据到达时,直接利用图3所示的第二资源向基站发送上行数据,无需上报资源调度请求。具体地,第一资源可以对应于上文所述的普通资源,第二资源对应于上文所述的预留资源。
具体地,第二资源可以系统预定义为第二终端的预留资源,也可以通过下行控制信令由基站告知给第二终端。可选地,还可以将第二资源为第二终端的预留资源告知给第一终端。
250,基站对第一数据进行解调和译码。
具体地,基站根据第一数据的调制方式与编码方式,对第一数据进行解调与译码。
260,基站对第二数据与第三数据进行解调和译码。
具体地,基站根据第二数据的调制方式与编码方式,对第二数据进行解调与译码;基站根据第三数据的调制方式与编码方式,对第三数据进行解调与译码。
在本申请实施例中,第一终端在第一资源与第二资源上发送数据时采用不同的配置信息,即:第一终端在第二资源上发送的数据的调制阶数低于第一终端在第一资源上发送的数据的调制阶数,和/或第一终端在第二资源上发送的数据的码率低于第一终端在第一资源上发送的数据的码率,和/或第二数据的发送功率低于第一数据的发送功率。应理解,第二数据的调制阶数越低,该第二数据被成功译码的概率就越高,干扰消除时对该第二数据的重构就越准确,从而干扰消除率就越高,进一步,第三数据被译码成功的概率就越高;第二数据的码率越低,干扰消除时对该第二数据的重构就越准确,从而干扰消除率就越高,进一步,第三数据被译码成功的概率就越高;第二数据的发送功率越低,对第三数据的干扰就越小,第三数据被译码成功的概率就越高,干扰消除时对该第三数据的重构就越准确,从而干扰消除率就越高,进一步,第二数据被译码成功的概率就越高,因此,本申请实施例能够有效提高基站对第二资源上传输的两种数据(第一终端与第二终端在第二资源上发送的数据)的译码成功率。
可选地,在图2所示实施例中,该方法200还包括:基站向第一终端发送第一配置信息,第一配置信息为第一终端在第一资源上发送数据时所需的配置信息,第一配置信息包括下列信息中的至少一种:第一数据的调制阶数信息、第一数据的码率信息与第一数据的发送功率信息;220第一终端在第一资源上向基站发送目标数据的第一数据,包括:第一终端在第一资源上向基站发送采用第一配置信息处理的第一数据。
具体地,基站可以通过物理层控制信令,如通过PDCCH,或通过MAC信令,如MACCE,或通过RRC信令向所述第一终端下发所述第一配置信息。
可选地,在图2所示实施例中,该方法200还包括:基站向第一终端发送第二配置信息,第二配置信息为第一终端在第二资源上发送数据时所需的配置信息,第二配置信息包 括下列信息中的至少一种:第二数据的调制阶数信息、第二数据的码率信息与第二数据的发送功率信息;230第一终端在第二资源上向基站发送目标数据的第二数据,包括:第一终端在第二资源上向基站发送采用第二配置信息处理的第二数据。
具体地,基站通过下物理层控制信令,如通过PDCCH,或通过MAC信令,如MACCE,或通过RRC信令向第一终端发送该第二配置信息。
在本申请实施例中,第一终端在第一资源上向基站发送采用第一配置信息处理的第一数据,以及在第二资源上向基站发送采用第二配置信息处理的第二数据,使得第二数据的调制阶数低于第一数据的调制阶数,和/或第二数据的码率低于第一数据的码率,和/或第二数据的发送功率低于第一数据的发送功率,从而能够有效提高基站对第二资源上传输的两种数据(第一终端发送的第二数据与第二终端发送的第三数据)的译码成功率。
可选地,在本申请实施例中,第一配置信息与第二配置信息可以由基站下发到第一终端,也可以被系统预定义。
可选地,第一配置信息是由基站下发到第一终端的,第二配置信息是被系统预定义的;或者,第一配置信息是被系统预定义的,第二配置信息是由基站下发到第一终端的;或者,第一配置信息与第二配置信息均是由基站下发到第一终端的;或者,第一配置信息与第二配置信息均是被系统预定义的。
可选地,作为一个实施例,上述实施例中的第一终端可以为eMBB终端,第二终端可以为URLLC终端。
具体地,下文结合图4-图8,以第一终端为eMBB终端、第二终端为URLLC终端为例,详细描述本申请实施例提供的数据处理的方法。
图4为本申请实施例提供的数据处理的方法的示意图,在该实施例中,在第二资源上发送的第二数据的调制阶数低于在第一资源上发送的第一数据的调制阶数。
具体地,eMBB终端向基站发送资源调度请求,用于请求eMBB终端的传输资源。基站将第一资源与第二资源(如图3所示)作为eMBB终端的传输资源,并根据eMBB终端所使用的不同资源确定对应的配置信息,将第一配置信息确定为eMBB终端在第一资源上发送数据时所需的配置信息,将第二配置信息确定为eMBB终端在第二资源上发送数据时所需的配置信息。第一配置信息与第二配置信息中均至少包括用于指示调制阶数的信息,且第二配置信息中的调制阶数低于第一配置信息中的调制阶数。应理解,第一配置信息可以按照现有LTE系统的上行配置信息确定。基站向第一终端发送资源调度响应,用于指示第一资源与第二资源为第一终端的传输资源,资源调度响应还包括第一配置信息与第二配置信息。eMBB终端接收到资源调度响应后,分别在第一资源与第二资源上向基站发送数据,其中,采用第一配置信息处理在第一资源上发送的第一数据,采用第二配置信息处理在第二资源上发送的第二数据。
假设第一配置信息包括调制方式A,第二配置信息包括调制方式B,调制方式B的调制阶数低于调制方式A的调制阶数。如图4所示,eMBB终端采用调制方式A对在第一资源上发送的第一数据进行调制,采用调制方式B对在第二资源上发送的第二数据进行调制。基站接收到eMBB终端发送的数据后,基于调制方式A解调第一资源上接收到的第一数据,基于调制方式B解调第二资源上接收到的第二数据。
应理解,如图4所示,发送端设备(对应于本实施例中的eMBB终端)需要发送数据 时,首先对需要发送的数据(记为数据D)进行信道编码(coding)、速率匹配(rate matching,RM)以及加扰(Scrambling)处理得到目标码序列,然后对目标码序列进行调制(Modulation),最后通过信道发送调制后的序列。相应地,接收端设备(对应于本实施例中的基站)接收到该信道传输的序列后,分别经过解调、解扰(Descrambling)、解速率匹配、信道解码后获得与数据D对应的解码数据(也可称为译码数据)。
应理解,图4中信息传输的方法只是示意性的,在实际传输过程中还可以包括其他过程。例如,在信道编码之前还可以进行码块分割(Segmentation)处理,相反地,接收端可以进行对应的逆过程。再例如,在进行调制过程之后还可以进行交织、小区相关加扰、资源映射到信道的物理资源上进行传输,相反地,接收端可以进行对应的逆过程,获取到信宿信息。
在本实施例中,eMBB终端在调制之前的所有处理(图4中虚线框中的部分)并不区分第一数据与第二数据,即对待传输的目标数据统一处理,但是将速率匹配后的数据划分为第一数据与第二数据,并采用调制方式A对第一数据进行调制,采用调制方式B对第二数据进行调制。eMBB终端在第一资源上发送采用调制方式A进行调制的第一数据,在第二资源上发送采用调制方式B进行调制的第二数据。对应地,基站接收到eMBB终端发送的数据后,使用调制方式A解调第一数据,使用调制方式B解调第二数据。
应理解,调制指的是,将比特信息对应到调制符号的过程。调制方式B比调制方式A的调制阶数低,指的是,调制方式B的一个调制符号上承载的比特信息比调制方式A的调制符号上承载的比特信息少。还应理解,数据的调制阶数越低,该数据的解调与译码成功率越高。
当URLLC终端在第二资源上发送第三数据,即URLLC终端和eMBB终端同时在第二资源发送上行数据,由于eMBB终端与URLLC终端发送的数据在同一资源区域非正交,会互相干扰,从而可能导致在第二资源上传输的eMBB终端的第二数据和URLLC终端的第三数据均译码失败。在本实施例中,基站通知eMBB终端在第二资源使用更低阶的调制方式,使得eMBB终端发送的第二数据即使受到uRLLC终端发送的第三数据的干扰也可以较高的概率译码成功,干扰消除时对该第二数据的重构就越准确,从而干扰消除率就越高,进一步,uRLLC终端的第三数据也可以较高的概率译码成功。
还应理解,在结合图4所述的实施例中,第一配置信息与第二配置信息中除了包括用于指示调制阶数的信息外,还可以包括用于指示码率、发送功率等信息。
图5为本申请实施例提供的数据处理的方法的另一示意图,在该实施例中,在第二资源上发送的第二数据的码率低于在第一资源上发送的第一数据的码率。码率指的是,信道编码前的信息比特个数与物理资源实际承载的比特个数的比值。
具体地,eMBB终端向基站发送资源调度请求,用于请求eMBB终端的传输资源。基站将第一资源与第二资源(如图3所示)作为eMBB终端的传输资源,并根据eMBB终端所使用的不同资源确定对应的配置信息,将第一配置信息确定为eMBB终端在第一资源上发送数据时所需的配置信息,将第二配置信息确定为eMBB终端在第二资源上发送数据时所需的配置信息。第一配置信息与第二配置信息中均至少包括用于指示码率的信息,且第二配置信息中的码率低于第一配置信息中的码率。例如,第一配置信息可以按照现有LTE系统的上行配置信息确定。基站向第一终端发送资源调度响应,用于指示第一资源与 第二资源为第一终端的传输资源,资源调度响应还包括该第一配置信息与该第二配置信息。eMBB终端接收到资源调度响应后,分别在第一资源与第二资源上向基站发送数据,其中,采用第一配置信息处理在第一资源上发送的第一数据,采用第二配置信息处理在第二资源上发送的第二数据。
假设第一配置信息包括配置方式A,第二配置信息包括配置方式B,经过配置方式B处理后的数据的码率低于经过配置方式A处理后的数据的码率。如图5所示,eMBB终端对信道编码后的数据中的第一数据通过配置方式A处理,对信道编码后的数据中的第二数据(除第一数据之外的数据)通过配置方式B处理。如图5所示,配置方式A与配置方式B均包括速率匹配、加扰与调制等处理步骤,其中,配置方式B中的速率匹配对应的码率低于配置方式A中的速率匹配对应的码率。配置方式A与配置方式B中包括的加扰的方式可以相同也可以不同,配置方式A与配置方式B中包括的调制的方式可以相同也可以不同。基站接收到eMBB终端发送的数据后,基于配置方式A解调第一资源上接收到的第一数据,基于配置方式B解调第二资源上接收到的第二数据。
应理解,速率匹配(RM)是指传输信道上的比特被重发(Repeated)或者被打孔(Punctured),以匹配物理信道的承载能力,信道映射时达到传输格式所要求的比特速率。还应理解,在本实施例中,eMBB终端在速率匹配之前的所有处理(图5中虚线框中的部分)并不区分第一数据与第二数据,即对待传输的数据统一处理,但是将信道编码后的数据划分为第一数据与第二数据,并采用配置方式A对第一数据进行处理,采用配置方式B对第二数据进行调制。
可选地,在本申请实施例中,还可以直接将eMBB终端所需要发送的数据在信道编码之前就划分为两部分数据,然后对这两部分数据分别进行信道编码,然后对信道编码之后的一部分数据(即第一数据)采用配置方式A处理,对信道编码之后的另一部分数据(即第二数据)采用配置方式B处理。
应理解,配置方式B处理得到的数据的码率低于配置方式A处理得到的数据的码率,指的是,配置方式B相比于配置方式A处理得到的相同比特数的数据(总码元)所承载的有效信息(信息码元数)更少。还应理解,第二数据的码率越低,干扰消除时对该第二数据的重构就越准确,从而干扰消除率就越高,进一步,第三数据被译码成功的概率就越高。
当URLLC终端在第二资源上发送第三数据,即URLLC终端和eMBB终端同时在第二资源发送上行数据,由于eMBB终端与URLLC终端发送的数据在同一资源区域非正交,会互相干扰,从而可能导致在第二资源上传输的eMBB终端的第二数据和URLLC终端的第三数据均译码失败。在本实施例中,基站通知eMBB终端在第二资源使用更低的码率,使得eMBB终端发送的第二数据即使受到uRLLC终端发送的第三数据的干扰也可以较高的概率译码成功,干扰消除时对该第二数据的重构就越准确,从而干扰消除率就越高,进一步,uRLLC终端的第三数据也可以较高的概率译码成功。
图6为本申请实施例提供的数据处理的方法的再一示意图,在该实施例中,在第二资源上发送的第二数据的发送功率低于在第一资源上发送的第一数据的发送功率。
具体地,eMBB终端向基站发送资源调度请求,用于请求eMBB终端的传输资源。基站将第一资源与第二资源(如图3所示)作为eMBB终端的传输资源,并根据eMBB终 端所使用的不同资源确定对应的配置信息,将第一配置信息确定为eMBB终端在第一资源上发送数据时所需的配置信息,将第二配置信息确定为eMBB终端在第二资源上发送数据时所需的配置信息。第一配置信息与第二配置信息中均至少包括用于指示发送功率的信息,且第二配置信息中的发送功率低于第一配置信息中的发送功率。应理解,第一配置信息可以按照现有LTE系统的上行配置信息确定。基站向第一终端发送资源调度响应,用于指示第一资源与第二资源为第一终端的传输资源,资源调度响应还包括第一配置信息与第二配置信息。eMBB终端接收到资源调度响应后,分别在第一资源与第二资源上向基站发送数据,其中,采用第一配置信息处理在第一资源上发送的第一数据,采用第二配置信息处理在第二资源上发送的第二数据。如图6所示,eMBB终端在第二资源上发送的数据的发送功率低于在第一资源上发送的数据的发送功率。
在本实施例中,eMBB在第二资源上发送数据的发送功率较低,降低了对URLLC终端发送的数据的影响,例如,URLLC终端在短时间内可以有多次传输机会,即使前几次传输错误也可在后面的资源上传输成功,从而使得URLLC终端在短时间内(例如1ms)传输成功的概率极高(例如99.99%),因此,能够保证URLLC终端发送的数据的传输性能。因此,本申请实施例通过降低eMBB终端在第二资源的功率,能够进一步增加URLLC终端的数据传输的可靠性。在URLLC终端的数据成功译码后,进一步对eMBB终端的数据进行干扰消除,使得eMBB终端的数据的译码成功率也可大幅提高。
可选地,作为一个实施例,在图2所示实施例中,230第一终端在第二资源上向基站发送目标数据的第二数据,包括:第一终端在第二资源上向基站发送采用多址编码技术编码的第二数据,第三数据也采用多址编码技术编码,且第二数据对应的多址编码码本不同于第三数据对应的多址编码码本。
具体地,多址编码技术包括但不限于稀疏码多址(sparse code multiple access,SCMA)与码分多址(code division multiple access,CDMA)。
可选地,在本申请实施例中,该方法200还包括:第一终端接收基站发送的第一码本,第一码本为第一终端对第二数据进行多址编码时所需的码本,基站还向第二终端发送第二码本,第二码本为第二终端对第三数据进行多址编码时所需的码本,第一码本不同于第二码本。
具体地,如图7所示,以第一终端为eMBB终端为例,第二终端为eMBB终端,多址编码技术为SCMA为例。eMBB终端在第二资源发送的第二数据与URLLC终端在第二资源发送的第三数据均需要在信道编码后再使用SCMA编码。URLLC终端对信道编码后的编码数据再进行SCMA编码,将SCMA编码后的第三数据在第二资源上发送。eMBB终端完成信道编码后,对在第二资源上发送的第二数据(如图7中所示的编码块2)进行SCMA编码,对于在第一资源上发送的第一数据(如图7中所示的编码块1)可以不进行SCMA编码。
应理解,SCMA编码允许多个用户复用相同的资源,复用同一个第二资源的可能情况包括:1)一个eMBB用户与一个或多个URLLC用户;2)多个URLLC用户。基站能有效分离出复用同一个第二资源的所有用户的数据,即基站可以成功译码出eMBB终端发送的第二数据与URLLC终端发送的第三数据。
SCMA编码时需要配置SCMA码本,基站以及所有用户均储存了多个SCMA码本。 用户在做SCMA编码时需要从多个SCMA码本中选择一个,并保证复用相同第二资源的不同用户的SCMA码本互异。保证不同用户的SCMA码本互异的方法包括但不限于:1)基站通过信令配置的,例如通过RRC信令通知或者通过下行控制信息通知eMBB终端或URLLC终端配置SCMA码本;2)用户在需要SCMA编码时自行根据预设规则从SCMA码本集合中选取合适的SCMA码本,选取规则可以依据UE ID、UE re-grouping等方式。其中,UE ID方式指的是,用户先将可用SCMA码本进行编号(例如,编号为1,2,…,N),然后,利用该用户的UE ID对可用SCMA码本的总数N取模,假设取模后的值为X,则选择编号为X的SCMA码本。UE re-grouping方式指的是,每个SCMA码本对应的用户组会在不同的第二资源中不断变化,即使某两个用户在当前第二资源中的SCMA码本相同,在下一次传输也能保证不同用户的SCMA码本互异。
在本申请实施例中,复用第二资源的eMBB用户与URLLC用户根据配置选用不同SCMA码本进行SCMA编码,使得接收端(即基站)能够恢复出所有复用第二资源的不同用户的数据。因此,本申请实施例,不仅能够解决eMBB用户与URLLC用户在第二资源互相干扰的问题,而且能够有效解决多个URLLC用户在同一个第二资源传输发生碰撞的问题。
可选地,作为一个实施例,在图2所示实施例中,目标数据为第一终端对原始数据进行信道编码之后得到编码比特流,编码比特流包括信息比特与冗余比特,第二数据包括编码比特流中的全部或部分冗余比特。
可选地,在本申请实施例中,当编码比特流中的全部冗余比特所需的传输资源等于第二资源时,将编码比特流中的全部冗余比特作为第二数据;当编码比特流中的全部冗余比特所需的传输资源小于第二资源时,将编码比特流中的全部冗余比特与部分信息比特作为第二数据,全部冗余比特与部分信息比特所需的传输资源之和等于第二部分资源;当编码比特流中的全部冗余比特所需的传输资源大于第二资源时,将编码比特流中的部分冗余比特作为第二数据,部分冗余比特所需的传输资源等于第二资源。
具体地,如图8所示,还以第一终端为eMBB终端为例,第二终端为eMBB终端为例。eMBB终端在信道编码后,每个编码块的比特流都有信息比特和冗余比特。在资源映射时,eMBB终端优先将冗余比特映射到第二资源。一种可能的方式是,eMBB终端完成信道编码后,对每个编码块顺序取出冗余比特,按照取出顺序依次映射到第二资源。如果冗余比特所需的资源大于第二资源,多余的冗余比特映射到第一资源;如果冗余比特所需的资源小于第二资源,需要将信息比特映射到第二资源。接下来将各个编码块的信息比特映射到剩余的资源上。目的是使得第二资源上的eMBB终端数据尽可能是冗余比特。
基站在接收eMBB业务数据时,根据映射规则分别在第二资源取出冗余比特(也可能包含部分信息比特)、在第一资源取出信息比特(也可能包含部分冗余比特)。将所有比特按照信道编码后的顺序重新排列后解码。
在本申请实施例中,eMBB终端在第二资源上主要发送冗余比特,在第一资源上主要发送信息比特。即使在第二资源上传输的URLLC终端的第三数据与eMBB终端的冗余比特产生干扰,基站也可以根据第一资源上接收到信息比特将第二资源上接收的冗余比特成功译码出来,从而通过干扰消除率技术,将URLLC终端的第三数据也成功译码出来。
可选地,在图8所示实施例中,eMBB终端的冗余比特在第二资源上传输时,也可以 采用图4-图7所示的任一种方法或多种方法的组合进行处理,本申请实施例对此不作限定。
应理解,上文结合图4-图8所描述的方法可以单独执行,也可以任一方式组合执行。
综上所述,在本申请实施例中,第一终端在第一资源与第二资源上发送数据时采用不同的配置信息,即:第一终端在第二资源上发送的数据的调制阶数低于第一终端在第一资源上发送的数据的调制阶数,和/或第一终端在第二资源上发送的数据的码率低于第一终端在第一资源上发送的数据的码率,和/或第二数据的发送功率低于第一数据的发送功率,从而能够有效提高基站对第二资源上传输的两种数据(第一终端与第二终端在第二资源上发送的数据)的译码成功率。
上文中结合图2至图8,描述了本申请实施例提供的数据处理的方法,下面将结合图9至图12,描述本申请实施例提供的基站与终端。
图9示出了根据本申请实施例的基站900的示意性框图,该基站900包括:
接收模块910,用于在第一资源上接收来自第一终端的第一数据;
接收模块910还用于,在第二资源上接收来自第一终端的第二数据以及来自第二终端的第三数据,第二数据的调制阶数低于第一数据的调制阶数,和/或第二数据的码率低于第一数据的码率,和/或第二数据的发送功率低于第一数据的发送功率;
解调译码模块920,用于对第一数据进行解调和译码;
解调译码模块920还用于,对第二数据与第三数据进行解调和译码。
在本申请实施例中,第一终端在第一资源与第二资源上发送数据时采用不同的配置信息,即:第一终端在第二资源上发送的数据的调制阶数低于第一终端在第一资源上发送的数据的调制阶数,和/或第一终端在第二资源上发送的数据的码率低于第一终端在第一资源上发送的数据的码率,和/或第二数据的发送功率低于第一数据的发送功率。因此,本申请实施例能够有效提高基站对第二资源上传输的两种数据(第一终端与第二终端在第二资源上发送的数据)的译码成功率。
应理解,如图9所示,基站900还可以包括发送模块930,发送模块930用于向终端发送消息,例如向终端发送物理层控制信令,如通PDCCH,或向终端发送MAC信令,如MAC CE),或向终端发送RRC信令等。
可选地,作为一个实施例,发送模块930包括第一发送模块931,用于向第一终端发送第一配置信息,第一配置信息为第一终端在第一资源上发送数据时所需的配置信息,第一配置信息包括下列信息中的至少一种:第一数据的调制阶数信息、第一数据的码率信息与第一数据的发送功率信息。
可选地,作为一个实施例,发送模块930包括第二发送模块932,用于向第一终端发送第二配置信息,第二配置信息为第一终端在第二资源上发送数据时所需的配置信息,第二配置信息包括下列信息中的至少一种:第二数据的调制阶数信息、第二数据的码率信息与第二数据的发送功率信息。
可选地,作为一个实施例,接收模块910还用于,接收来自第一终端的资源调度请求,资源调度请求用于请求第一终端的传输资源;发送模块930包括第三发送模块933,用于向第一终端发送资源调度响应,资源调度响应用于指示第一资源与第二资源为第一终端的传输资源。
可选地,作为一个实施例,第二资源是为第二终端预留的资源。
具体地,本申请实施例中的解调译码模块920可以由处理器或处理器相关电路来实现。接收模块910可以由接收器或接收器相关电路来实现。发送模块930可以由发送器或发送器相关电路来实现。
如图10所示,本申请实施例还提供了一种基站1000,该基站1000包括处理器1010、存储器1020、总线系统1030、接收器1040和发送器1050。其中,处理器1010、存储器1020、接收器1040和发送器1050通过总线系统1030相连,该存储器1020用于存储指令,该处理器1010用于执行该存储器1020存储的指令,以控制接收器1040接收信号,并控制发送器1050发送信号。其中,接收器1040用于,在第一资源上接收来自第一终端的第一数据;在第二资源上接收来自第一终端的第二数据以及来自第二终端的第三数据,第二数据的调制阶数低于第一数据的调制阶数,和/或第二数据的码率低于第一数据的码率,和/或第二数据的发送功率低于第一数据的发送功率;处理器1010用于,对第一数据进行解调和译码;对第二数据与第三数据进行解调和译码。
在本申请实施例中,第一终端在第一资源与第二资源上发送数据时采用不同的配置信息,即:第一终端在第二资源上发送的数据的调制阶数低于第一终端在第一资源上发送的数据的调制阶数,和/或第一终端在第二资源上发送的数据的码率低于第一终端在第一资源上发送的数据的码率,和/或第二数据的发送功率低于第一数据的发送功率。因此,本申请实施例能够有效提高基站对第二资源上传输的两种数据(第一终端与第二终端在第二资源上发送的数据)的译码成功率。
可选地,作为一个实施例,发送器1040用于,向第一终端发送第一配置信息,第一配置信息为第一终端在第一资源上发送数据时所需的配置信息,第一配置信息包括下列信息中的至少一种:第一数据的调制阶数信息、第一数据的码率信息与第一数据的发送功率信息。
可选地,作为一个实施例,发送器1040用于,向第一终端发送第二配置信息,第二配置信息为第一终端在第二资源上发送数据时所需的配置信息,第二配置信息包括下列信息中的至少一种:第二数据的调制阶数信息、第二数据的码率信息与第二数据的发送功率信息。
可选地,作为一个实施例,接收器1030用于,接收来自第一终端的资源调度请求,资源调度请求用于请求第一终端的传输资源;发送器1040用于,向第一终端发送资源调度响应,资源调度响应用于指示第一资源与第二资源为第一终端的传输资源。
可选地,作为一个实施例,第二资源是为第二终端预留的资源。
可选地,作为一个实施例,第一终端为移动宽带增强eMBB终端,第二终端为超高可靠性短时延通信URLLC终端。
应理解,图9所示的基站900或图10所示的基站1000可用于执行上述方法实施例中与基站相关的操作或流程,并且基站900或基站1000中的各个模块的操作和/或功能分别为了实现上述方法实施例中的相应流程,为了简洁,在此不再赘述。
图11示出了根据本申请实施例的终端1100的示意性框图。如图11所示,该终端1100包括:
确定模块1110,用于确定待传输的目标数据;
发送模块1120,用于在第一资源上发送目标数据中的第一数据;
发送模块1120还用于,在第二资源上发送目标数据中的第二数据,第二数据为目标数据中除第一数据之外的剩余数据,第二资源还用于传输第二终端发送的第三数据,第二数据的调制阶数低于第一数据的调制阶数,和/或第二数据的码率低于第一数据的码率,和/或第二数据的发送功率低于第一数据的发送功率。
在本申请实施例中,第一终端在第一资源与第二资源上发送数据时采用不同的配置信息,即:第一终端在第二资源上发送的数据的调制阶数低于第一终端在第一资源上发送的数据的调制阶数,和/或第一终端在第二资源上发送的数据的码率低于第一终端在第一资源上发送的数据的码率,和/或第二数据的发送功率低于第一数据的发送功率。因此,本申请实施例能够有效提高基站对第二资源上传输的两种数据(第一终端与第二终端在第二资源上发送的数据)的译码成功率。
应理解,如图11所示,终端1100还可以包括接收模块1130,接收模块1130用于接收基站发送的消息,例如用于接收基站发送的物理层控制信令,如通PDCCH,或用于接收基站发送的MAC信令,如MAC CE),或用于接收基站发送的RRC信令等。
可选地,作为一个实施例,接收模块1130包括第一接收模块1131,用于接收来自基站的第一配置信息,第一配置信息为第一终端在第一资源上发送数据时所需的配置信息,第一配置信息包括下列信息中的至少一种:第一数据的调制阶数信息、第一数据的码率信息与第一数据的发送功率信息。
可选地,作为一个实施例,接收模块1130包括第二接收模块1132,用于接收来自基站的第二配置信息,第二配置信息为第一终端在第二资源上发送数据时所需的配置信息,第二配置信息包括下列信息中的至少一种:第二数据的调制阶数信息、第二数据的码率信息与第二数据的发送功率信息。
可选地,作为一个实施例,发送模块1120还用于,向基站发送资源调度请求,资源调度请求用于请求第一终端的传输资源;接收模块1130包括第三接收模块1131,用于接收来自基站的资源调度响应,资源调度响应用于指示第一资源与第二资源为第一终端的传输资源。
可选地,作为一个实施例,第二资源是为第二终端预留的资源。
可选地,作为一个实施例,终端为移动宽带增强eMBB终端,第二终端为超高可靠性短时延通信URLLC终端。
具体地,本申请实施例中的确定模块1110可以由处理器或处理器相关电路来实现。发送模块1120可以由发送器或发送器相关电路来实现。接收模块1130可以由接收器或接收器相关电路来实现。
如图12所示,本申请实施例还提供了一种终端1200,该终端1200包括:处理器1210、存储器1220、总线系统1230、接收器1240和发送器1250。其中,处理器1210用于,确定待传输的目标数据;发送器1250用于,在第一资源上发送目标数据中的第一数据;在第二资源上发送目标数据中的第二数据,第二数据为目标数据中除第一数据之外的剩余数据,第二资源还用于传输第二终端发送的第三数据,第二数据的调制阶数低于第一数据的调制阶数,和/或第二数据的码率低于第一数据的码率,和/或第二数据的发送功率低于第一数据的发送功率。
在本申请实施例中,第一终端在第一资源与第二资源上发送数据时采用不同的配置信 息,即:第一终端在第二资源上发送的数据的调制阶数低于第一终端在第一资源上发送的数据的调制阶数,和/或第一终端在第二资源上发送的数据的码率低于第一终端在第一资源上发送的数据的码率,和/或第二数据的发送功率低于第一数据的发送功率。因此,本申请实施例能够有效提高基站对第二资源上传输的两种数据(第一终端与第二终端在第二资源上发送的数据)的译码成功率。
可选地,作为一个实施例,接收器1230用于,接收来自基站的第一配置信息,第一配置信息为第一终端在第一资源上发送数据时所需的配置信息,第一配置信息包括下列信息中的至少一种:第一数据的调制阶数信息、第一数据的码率信息与第一数据的发送功率信息。
可选地,作为一个实施例,接收器1230用于,接收来自基站的第二配置信息,第二配置信息为第一终端在第二资源上发送数据时所需的配置信息,第二配置信息包括下列信息中的至少一种:第二数据的调制阶数信息、第二数据的码率信息与第二数据的发送功率信息。
可选地,作为一个实施例,发送器1240用于,向基站发送资源调度请求,资源调度请求用于请求第一终端的传输资源;接收器1230用于,接收来自基站的资源调度响应,资源调度响应用于指示第一资源与第二资源为第一终端的传输资源。
可选地,作为一个实施例,第二资源是为第二终端预留的资源。
可选地,作为一个实施例,第一终端为移动宽带增强eMBB终端,第二终端为超高可靠性短时延通信URLLC终端。
应理解,图11所示的终端1100或图12所示的终端1200可用于执行上述方法实施例中与云侧设备相关的操作或流程,并且终端1100或终端1200中的各个模块的操作和/或功能分别为了实现上述方法实施例中的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器 件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
还应理解,在本申请实施例中,总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图10与图12中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
还应理解,本文中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
应该理解,在本申请所提供的几个实施例中,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个模块,或一些特征可以忽略,或不执行。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络单元上。
另外,在本申请实施例各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
以上所述,仅为本申请实施例的具体实施方式,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种数据处理的方法,其特征在于,包括:
    基站在第一资源上接收来自第一终端的第一数据;
    所述基站在第二资源上接收来自所述第一终端的第二数据以及来自第二终端的第三数据,所述第二数据的调制阶数低于所述第一数据的调制阶数,和/或所述第二数据的码率低于所述第一数据的码率,和/或所述第二数据的发送功率低于所述第一数据的发送功率;
    所述基站对所述第一数据进行解调和译码;
    所述基站对所述第二数据与所述第三数据进行解调和译码。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述基站向所述第一终端发送第一配置信息,所述第一配置信息为所述第一终端在所述第一资源上发送数据时所需的配置信息,所述第一配置信息包括下列信息中的至少一种:所述第一数据的调制阶数信息、所述第一数据的码率信息与所述第一数据的发送功率信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述基站向所述第一终端发送第二配置信息,所述第二配置信息为所述第一终端在所述第二资源上发送数据时所需的配置信息,所述第二配置信息包括下列信息中的至少一种:所述第二数据的调制阶数信息、所述第二数据的码率信息与所述第二数据的发送功率信息。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    所述基站接收来自所述第一终端的资源调度请求,所述资源调度请求用于请求所述第一终端的传输资源;
    所述基站向所述第一终端发送资源调度响应,所述资源调度响应用于指示所述第一资源与所述第二资源为所述第一终端的传输资源。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述第二资源是为所述第二终端预留的资源。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述第一终端为增强型移动宽带eMBB终端,所述第二终端为超高可靠性短时延通信URLLC终端。
  7. 一种数据处理的方法,其特征在于,包括:
    第一终端确定待传输的目标数据;
    所述第一终端在第一资源上发送所述目标数据中的第一数据;
    所述第一终端在第二资源上发送所述目标数据中的第二数据,所述第二数据为所述目标数据中除所述第一数据之外的剩余数据,所述第二资源还用于传输第二终端的第三数据,所述第二数据的调制阶数低于所述第一数据的调制阶数,和/或所述第二数据的码率低于所述第一数据的码率,和/或所述第二数据的发送功率低于所述第一数据的发送功率。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第一终端接收来自所述基站的第一配置信息,所述第一配置信息为所述第一终端 在所述第一资源上发送数据时所需的配置信息,所述第一配置信息包括下列信息中的至少一种:所述第一数据的调制阶数信息、所述第一数据的码率信息与所述第一数据的发送功率信息。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述第一终端接收来自所述基站的第二配置信息,所述第二配置信息为所述第一终端在所述第二资源上发送数据时所需的配置信息,所述第二配置信息包括下列信息中的至少一种:所述第二数据的调制阶数信息、所述第二数据的码率信息与所述第二数据的发送功率信息。
  10. 根据权利要求7-9中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端向所述基站发送资源调度请求,所述资源调度请求用于请求所述第一终端的传输资源;
    所述第一终端接收来自所述基站的资源调度响应,所述资源调度响应用于指示所述第一资源与所述第二资源为所述第一终端的传输资源。
  11. 根据权利要求7-10中任一项所述的方法,其特征在于,所述第二资源是为所述第二终端预留的资源。
  12. 根据权利要求7-11中任一项所述的方法,其特征在于,所述第一终端为移动宽带增强eMBB终端,所述第二终端为超高可靠性短时延通信URLLC终端。
  13. 一种基站,其特征在于,包括:
    接收模块,用于在第一资源上接收来自第一终端的第一数据;
    所述接收模块还用于,在第二资源上接收来自所述第一终端的第二数据以及来自第二终端的第三数据,所述第二数据的调制阶数低于所述第一数据的调制阶数,和/或所述第二数据的码率低于所述第一数据的码率,和/或所述第二数据的发送功率低于所述第一数据的发送功率;
    解调译码模块,用于对所述第一数据进行解调和译码;
    所述解调译码模块还用于,对所述第二数据与所述第三数据进行解调和译码。
  14. 根据权利要求13所述的基站,其特征在于,所述基站还包括:
    第一发送模块,用于向所述第一终端发送第一配置信息,所述第一配置信息为所述第一终端在所述第一资源上发送数据时所需的配置信息,所述第一配置信息包括下列信息中的至少一种:所述第一数据的调制阶数信息、所述第一数据的码率信息与所述第一数据的发送功率信息。
  15. 根据权利要求13或14所述的基站,其特征在于,所述基站还包括:
    第二发送模块,用于向所述第一终端发送第二配置信息,所述第二配置信息为所述第一终端在所述第二资源上发送数据时所需的配置信息,所述第二配置信息包括下列信息中的至少一种:所述第二数据的调制阶数信息、所述第二数据的码率信息与所述第二数据的发送功率信息。
  16. 根据权利要求13-15中任一项所述的基站,其特征在于,所述接收模块还用于,接收来自所述第一终端的资源调度请求,所述资源调度请求用于请求所述第一终端的传输资源;
    所述基站还包括:
    第三发送模块,用于向所述第一终端发送资源调度响应,所述资源调度响应用于指示所述第一资源与所述第二资源为所述第一终端的传输资源。
  17. 根据权利要求13-16中任一项所述的基站,其特征在于,所述第二资源是为所述第二终端预留的资源。
  18. 一种终端,其特征在于,包括:
    确定模块,用于确定待传输的目标数据;
    发送模块,用于在第一资源上发送所述目标数据中的第一数据;
    所述发送模块还用于,在第二资源上发送所述目标数据中的第二数据,所述第二数据为所述目标数据中除所述第一数据之外的剩余数据,所述第二资源还用于传输第二终端的第三数据,所述第二数据的调制阶数低于所述第一数据的调制阶数,和/或所述第二数据的码率低于所述第一数据的码率,和/或所述第二数据的发送功率低于所述第一数据的发送功率。
  19. 根据权利要求18所述的终端,其特征在于,所述终端还包括:
    第一接收模块,用于接收来自所述基站的第一配置信息,所述第一配置信息为所述第一终端在所述第一资源上发送数据时所需的配置信息,所述第一配置信息包括下列信息中的至少一种:所述第一数据的调制阶数信息、所述第一数据的码率信息与所述第一数据的发送功率信息。
  20. 根据权利要求18或19所述的终端,其特征在于,所述终端还包括:
    第二接收模块,用于接收来自所述基站的第二配置信息,所述第二配置信息为所述第一终端在所述第二资源上发送数据时所需的配置信息,所述第二配置信息包括下列信息中的至少一种:所述第二数据的调制阶数信息、所述第二数据的码率信息与所述第二数据的发送功率信息。
  21. 根据权利要求18-20中任一项所述的终端,其特征在于,所述发送模块还用于,向所述基站发送资源调度请求,所述资源调度请求用于请求所述第一终端的传输资源;
    所述终端还包括:
    第三接收模块,用于接收来自所述基站的资源调度响应,所述资源调度响应用于指示所述第一资源与所述第二资源为所述第一终端的传输资源。
  22. 根据权利要求18-21中任一项所述的终端,其特征在于,所述第二资源是为所述第二终端预留的资源。
  23. 根据权利要求18-22中任一项所述的终端,其特征在于,所述终端为移动宽带增强eMBB终端,所述第二终端为超高可靠性短时延通信URLLC终端。
  24. 一种基站,其特征在于,包括:存储器与处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得,所述处理器用于执行如权利要求1至6中任一项所述的方法。
  25. 一种终端,其特征在于,包括:存储器与处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得,所述处理器用于执行如权利要求7至12中任一项所述的方法。
  26. 一种芯片,所述芯片包括处理模块与通信接口,所述处理模块用于控制所述通信接口与外部进行通信,所述处理模块还用于执行如权利要求1至6中任一项所述的方法。
  27. 一种芯片,所述芯片包括处理模块与通信接口,所述处理模块用于控制所述通信接口与外部进行通信,所述处理模块还用于执行如权利要求7至12中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被基站执行时使得基站执行如权利要求1至6中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被终端执行时使得终端执行如权利要求7至12中任一项所述的方法。
  30. 一种包含指令的计算机程序产品,其特征在于,所述指令被计算机执行时使得计算机执行如权利要求1至6中任一项所述的方法。
  31. 一种包含指令的计算机程序产品,其特征在于,所述指令被计算机执行时使得计算机执行如权利要求7至12中任一项所述的方法。
PCT/CN2017/107575 2016-11-02 2017-10-25 数据处理的方法、基站与终端 WO2018082485A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17866808.3A EP3528578B1 (en) 2016-11-02 2017-10-25 Data processing method, base station, and terminal
JP2019523740A JP6784426B2 (ja) 2016-11-02 2017-10-25 データ処理方法、基地局および端末
US16/399,644 US11006396B2 (en) 2016-11-02 2019-04-30 Data processing method, base station, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610945881.3 2016-11-02
CN201610945881.3A CN108024372B (zh) 2016-11-02 2016-11-02 数据处理的方法、基站与终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/399,644 Continuation US11006396B2 (en) 2016-11-02 2019-04-30 Data processing method, base station, and terminal

Publications (1)

Publication Number Publication Date
WO2018082485A1 true WO2018082485A1 (zh) 2018-05-11

Family

ID=62070005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107575 WO2018082485A1 (zh) 2016-11-02 2017-10-25 数据处理的方法、基站与终端

Country Status (5)

Country Link
US (1) US11006396B2 (zh)
EP (1) EP3528578B1 (zh)
JP (1) JP6784426B2 (zh)
CN (1) CN108024372B (zh)
WO (1) WO2018082485A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112425226A (zh) * 2018-07-16 2021-02-26 株式会社Ntt都科摩 通信方法及相应的用户终端、基站
JP2021532634A (ja) * 2018-08-10 2021-11-25 富士通株式会社 ダウンリンク制御情報の送信方法、受信方法、装置及び通信システム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018086807A1 (en) * 2016-11-11 2018-05-17 Sony Corporation Wireless telecommunications apparatus and methods
CN110636619A (zh) * 2018-06-25 2019-12-31 珠海市魅族科技有限公司 上行复用传输功率的配置方法及上行复用的数据传输方法
CN110719149B (zh) * 2018-07-11 2022-04-19 普天信息技术有限公司 一种用于对上行抢占信息的监测进行指示的方法和装置
CN109150345B (zh) * 2018-10-26 2021-02-23 中国联合网络通信集团有限公司 信道复用方法、装置及存储介质
CN111642001B (zh) * 2019-03-01 2023-11-21 中兴通讯股份有限公司 信道或信号的发送方法及装置、存储介质
CN110611558B (zh) * 2019-10-16 2022-04-22 深圳前海中电慧安科技有限公司 采集移动终端信息的方法、装置、采集设备和存储介质
US11742908B2 (en) * 2019-11-04 2023-08-29 Qualcomm Incorporated Wireless device cooperative transmission schemes
US20230049027A1 (en) * 2021-08-12 2023-02-16 Nxp B.V. Wireless device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064679A (zh) * 2006-04-29 2007-10-31 华为技术有限公司 获取用户数据状态指示信息的方法及系统
CN101282324A (zh) * 2008-04-25 2008-10-08 北京交通大学 基于跨层用于自适应mimo-ofdm系统的联合无线资源管理方法
US20120113920A1 (en) * 2010-11-09 2012-05-10 Samsung Electronics Co. Ltd. Resource allocation method and apparatus for wireless communication system
CN103731909A (zh) * 2013-12-30 2014-04-16 北京工业大学 一种移动计算终端低功耗设计方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6898193B2 (en) * 2002-06-20 2005-05-24 Qualcomm, Incorporated Adaptive gain adjustment control
US7602768B2 (en) * 2006-04-26 2009-10-13 Motorola, Inc. Method of optimizing use of high-rate packet data resources
CN101945445B (zh) * 2009-07-10 2012-10-03 华为技术有限公司 数据上报方法、用户设备及基站
US20130094456A1 (en) * 2010-04-06 2013-04-18 Nec Corporation Method of configuring cross-carrier cfi
US9319197B2 (en) 2010-11-10 2016-04-19 Interdigital Patent Holdings, Inc. Method and apparatus for interference mitigation via successive cancellation in heterogeneous networks
EP2503835A1 (en) * 2011-03-23 2012-09-26 Panasonic Corporation Resouce assignment for single and multiple cluster transmission
CN105191189B (zh) * 2013-03-07 2018-01-23 Lg 电子株式会社 在无线通信系统中改变动态资源的使用时消除干扰的方法及其设备
US10075266B2 (en) * 2013-10-09 2018-09-11 Qualcomm Incorporated Data transmission scheme with unequal code block sizes
CN104869655B (zh) 2014-02-21 2019-07-23 株式会社Ntt都科摩 上行链路资源调度方法、无线基站和移动台
US10009157B2 (en) * 2014-04-21 2018-06-26 Lg Electronics Inc. Method and apparatus for supporting different cell range per modulation in wireless communication system
US10009859B2 (en) 2014-05-30 2018-06-26 Huawei Technologies Co., Ltd. Transmit power control method and device in D2D communication
US10389477B2 (en) * 2015-03-15 2019-08-20 Qualcomm Incorporated Devices and methods for facilitating a non-orthogonal underlay in wireless communications systems
WO2016163690A1 (ko) * 2015-04-09 2016-10-13 삼성전자 주식회사 비면허 주파수 대역을 사용하는 통신 시스템에서 harq를 지원하는 방법 및 이를 적용한 장치
US10039030B2 (en) * 2015-04-22 2018-07-31 Lg Electronics Inc. Method for transmitting and receiving signals in wireless communication system, and device for performing same
US20170142662A1 (en) * 2015-11-17 2017-05-18 Ilan Sutskover Methods for controlling uplink transmit power in a wireless network
CN105553608B (zh) * 2015-12-07 2019-03-01 北京邮电大学 一种基于非正交多址方式的数据传输方法、装置及系统
JP2019530998A (ja) * 2016-07-19 2019-10-24 日本電気株式会社 無線通信方法
US11172444B2 (en) * 2016-10-10 2021-11-09 Qualcomm Incorporated Techniques for power control and management

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064679A (zh) * 2006-04-29 2007-10-31 华为技术有限公司 获取用户数据状态指示信息的方法及系统
CN101282324A (zh) * 2008-04-25 2008-10-08 北京交通大学 基于跨层用于自适应mimo-ofdm系统的联合无线资源管理方法
US20120113920A1 (en) * 2010-11-09 2012-05-10 Samsung Electronics Co. Ltd. Resource allocation method and apparatus for wireless communication system
CN103731909A (zh) * 2013-12-30 2014-04-16 北京工业大学 一种移动计算终端低功耗设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3528578A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112425226A (zh) * 2018-07-16 2021-02-26 株式会社Ntt都科摩 通信方法及相应的用户终端、基站
CN112425226B (zh) * 2018-07-16 2024-02-20 株式会社Ntt都科摩 通信方法及相应的用户终端、基站
JP2021532634A (ja) * 2018-08-10 2021-11-25 富士通株式会社 ダウンリンク制御情報の送信方法、受信方法、装置及び通信システム
JP7243808B2 (ja) 2018-08-10 2023-03-22 富士通株式会社 ダウンリンク制御情報の送信方法、受信方法、装置及び通信システム

Also Published As

Publication number Publication date
JP6784426B2 (ja) 2020-11-11
EP3528578A4 (en) 2019-09-18
JP2019533394A (ja) 2019-11-14
CN108024372A (zh) 2018-05-11
CN108024372B (zh) 2020-06-02
EP3528578B1 (en) 2023-08-09
EP3528578A1 (en) 2019-08-21
US20190261357A1 (en) 2019-08-22
US11006396B2 (en) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2018082485A1 (zh) 数据处理的方法、基站与终端
US10834737B2 (en) Wireless communication method and apparatus
US11647528B2 (en) Method for transmitting data, terminal device and network device
US11601956B2 (en) Method and device in wireless communication
CN105723643B (zh) 用于处理网络中的盲传输(重传)的设备和方法
EP3576478B1 (en) Data sending method, receiving method and related equipment
CN105812106A (zh) 传输上行数据的方法和装置
US11743088B2 (en) Method and device in base station for unlicensed spectrum
CN110266451B (zh) 一种被用于非授权频谱的用户设备、基站中的方法和装置
JP6813211B2 (ja) データ伝送方法および装置
WO2018152714A1 (zh) 用于信息传输的方法和设备
WO2018209803A1 (zh) 一种传输信息的方法和装置
WO2018141291A1 (zh) 一种数据传输的方法和装置
TW202041072A (zh) 通訊方法和終端設備
WO2022016411A1 (en) Method and apparatus for harq-ack feedback transmission
WO2020216013A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022267020A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019523740

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017866808

Country of ref document: EP

Effective date: 20190516