WO2018137269A1 - 一种铁基非晶合金及其制备方法 - Google Patents

一种铁基非晶合金及其制备方法 Download PDF

Info

Publication number
WO2018137269A1
WO2018137269A1 PCT/CN2017/075138 CN2017075138W WO2018137269A1 WO 2018137269 A1 WO2018137269 A1 WO 2018137269A1 CN 2017075138 W CN2017075138 W CN 2017075138W WO 2018137269 A1 WO2018137269 A1 WO 2018137269A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
based amorphous
amorphous alloy
alloy
preparation
Prior art date
Application number
PCT/CN2017/075138
Other languages
English (en)
French (fr)
Inventor
李晓雨
庞靖
李庆华
杨东
刘红玉
Original Assignee
青岛云路先进材料技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛云路先进材料技术有限公司 filed Critical 青岛云路先进材料技术有限公司
Priority to US16/065,670 priority Critical patent/US20210198761A1/en
Publication of WO2018137269A1 publication Critical patent/WO2018137269A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous

Definitions

  • the invention relates to the technical field of soft magnetic materials, in particular to an iron-based amorphous alloy and a preparation method thereof.
  • Iron-based amorphous ribbon is a new type of energy-saving material. It is prepared by rapid quenching and solidification production process. This new material is used in transformer core. Compared with traditional silicon steel transformer, the magnetization process is quite easy, which greatly reduces the no-load of the transformer. loss, if the transformer oil for further reduction CO, SO, NO x and other harmful gases, known as "green material" 21 century.
  • iron-based amorphous ribbons with a saturation magnetic induction of about 1.56T are generally used.
  • iron-based amorphous has the disadvantage of increasing volume when preparing a transformer.
  • Hitachi Metals in Chinese Patent Application Publication No. CN1721563A, discloses a Fe-Si-BC alloy of the name HB1 having a saturation magnetic induction strength of 1.64T, but the disclosed process conditions mentions blowing in the preparation process.
  • the process of controlling the C element content distribution on the surface of the strip by C gas which directly leads to the difficulty in controlling the production process conditions of the product, and the stability of industrial production cannot be guaranteed.
  • the technical problem to be solved by the present invention is to provide an iron-based amorphous alloy and a preparation method thereof.
  • the iron-based amorphous alloy provided by the present application has high saturation magnetic induction strength, amorphous forming ability and low loss.
  • the present application provides an iron-based amorphous alloy as shown in formula (I).
  • the iron-based amorphous alloy has a saturation magnetic induction of ⁇ 1.62T.
  • the atomic percentage of the Si is 5.5 ⁇ b ⁇ 9.0.
  • the atomic percentage of the P is 0.001 ⁇ d ⁇ 0.2.
  • the atomic percentage of the P is 0.01 ⁇ d ⁇ 0.1.
  • the iron-based amorphous alloy 81.7 ⁇ a ⁇ 81.99, 3.0 ⁇ b ⁇ 8.0, 10.0 ⁇ c ⁇ 15.0, and 0.01 ⁇ d ⁇ 0.3.
  • the present application also provides a method for preparing an iron-based amorphous alloy according to the above aspect, comprising:
  • the raw material after the compounding is smelted, and the melted molten metal is heated and kept warm, and then subjected to single-roll quenching to obtain an iron-based amorphous alloy.
  • the method further comprises:
  • the obtained iron-based amorphous alloy ribbon was subjected to heat treatment.
  • the temperature of the heat treatment is 300-360 ° C
  • the heat preservation time of the heat treatment is 60-120 min
  • the magnetic field strength is 800-1400 A/m.
  • the heat-treated iron-based amorphous alloy strip has a coercive force of ⁇ 4 A/m; and at 50 Hz, 1.35 T, the heat-affected iron-based amorphous alloy strip has an excitation power of less than or equal to 0.2200VA/kg, core loss ⁇ 0.1800W/kg.
  • the iron-based amorphous alloy strip is in a completely amorphous state with a critical thickness of at least 45 ⁇ m.
  • the iron-based amorphous alloy ribbon has a thickness of 23 to 32 ⁇ m and a width of 100 to 300 mm.
  • the present application provides an iron-based amorphous alloy represented by the formula Fe a Si b B c P d M e , which includes Fe, Si, B and P, wherein the Fe element is a ferromagnetic element and is an iron-based amorphous
  • the main source of alloy magnetism is to ensure the high saturation magnetic induction intensity of amorphous alloy; Si and B are amorphous forming elements, and the proper amount can ensure the iron-based amorphous alloy has good amorphous forming ability, and the P element is also the same.
  • an appropriate amount of P element can make the amorphous alloy have better amorphous forming ability and can ensure the magnetic properties of the amorphous alloy; it can also improve the fluidity of the alloy molten steel and reduce the pouring temperature in the preparation process. , reducing the difficulty of preparation. Further, in the process of preparing an iron-based amorphous alloy, the present application further improves the comprehensive magnetic properties of the iron-based amorphous alloy by limiting the temperature of the heat treatment, the holding time, and the strength of the magnetic field.
  • Figure 2 is a graph showing the relationship between magnetic properties and heat treatment temperature of an embodiment of the present invention and a comparative example
  • Figure 3 is a graph comparing the loss curves of the embodiment of the present invention and the comparative example at 50 Hz.
  • the embodiment of the invention discloses an iron-based amorphous alloy as shown in formula (I),
  • the iron-based amorphous alloy of the present application has a chemical composition expression of Fe a Si b B c P d M e , wherein M is an unavoidable impurity element, wherein the atomic ratio of a, b, c, and d is in atomic percentage.
  • the contents are: 80.5 ⁇ a ⁇ 84.0, 3.0 ⁇ b ⁇ 9.0, 8.0 ⁇ c ⁇ 15.0, 0.001 ⁇ d ⁇ 0.3; the rest is e: e ⁇ 0.4.
  • the invention makes the iron-based amorphous alloy have better comprehensive magnetic properties by adding the above elements and defining the atomic percentage thereof.
  • the Fe element in the iron-based amorphous alloy is a ferromagnetic element, and is an iron-based amorphous alloy magnetic
  • the main source of sex, high Fe content makes iron-based amorphous alloys an important guarantee for high saturation magnetic induction.
  • the atomic percentage of Fe in the present application is 80.5-84.0.
  • the atomic percentage of Fe is 80.95-83.95.
  • the atomic percentage of Fe is 81.15, 81.35. , 81.5, 81.7, 81.99, 82.05, 82.15, 82.30, 82.45, 82.65, 82.80, 82.95, 83.25, 83.55 or 83.95.
  • the content of Fe exceeding 83.95 leads to a decrease in the amorphous forming ability of the alloy, making industrial production difficult to achieve.
  • the Si element and the B element as amorphous forming elements are necessary conditions for the alloy system to form amorphous under industrial production conditions.
  • the content of Si is 3.0 to 9.0, and in the embodiment, the content of Si is 5.5 to 9.0, and more specifically, the content of Si is 5.5, 6.0, 6.5, 6.8, 7, 7.2, 7.8. 8.0, 8.5 or 9.0.
  • the atomic percentage of Si exceeds 9.0, the deviation from the eutectic point also reduces the amorphous forming ability. Below 3.0, the amorphous forming ability is lowered, and the magnetic properties of the strip are affected.
  • the content of B in the present application is 8.0 to 15.0.
  • the content of B is 8.0, 8.5, 9.0, 9.5, 10.0, 10.8, 11.0, 11.2, 11.8, 12.0, 12.7, 13.0, 13.6 or 14.0.
  • the atomic percentage of B is less than 8.0, the amorphous forming ability of the alloy is low, greater than 15.0, which deviates from the eutectic point, and the amorphous forming ability of the alloy is lowered.
  • P is also an amorphous forming element, but the addition of a trace amount of P element in the present application is mainly for improving the fluidity of the alloy molten steel, lowering the pouring temperature in the preparation process, and reducing the preparation difficulty.
  • the addition of P element is mainly achieved by ferrophosphorus, but the current level of domestic production of ferrophosphorus is limited. A large amount of addition will introduce a large amount of impurities in the molten steel, which will seriously reduce the quality of molten steel, affecting both iron-based amorphous alloys.
  • the success rate of the preparation of the strip makes the strip unable to form amorphous, and also affects the magnetic properties of the amorphous alloy strip.
  • the atomic percentage of P is 0.001 to 0.3, and in the specific example, the content of P is 0.001 to 0.2, and further, the content of P is 0.01 to 0.1.
  • M is an impurity element, and the content thereof is of course as low as possible. Therefore, the content of M in the present application is not particularly limited as long as it is ⁇ 0.4.
  • composition and content of the iron-based amorphous alloy of the present application form a high-saturation magnetic induction powder-iron-based amorphous alloy from a reasonable combination of improving magnetic induction, improving amorphous forming ability and reducing preparation difficulty.
  • the present application also provides a method for preparing the above iron-based amorphous alloy, comprising the following steps:
  • the raw material after the smelting is smelted, and the melted molten metal is heated and maintained, and then subjected to single-roll quenching to obtain iron-based amorphous. Alloy strip.
  • the present application employs the technical means conventional in the art to prepare an iron-based amorphous alloy of the specific composition of the present application.
  • the specific operation means of the present application are not specifically described.
  • the parameters of the smelting are specifically 1300 to 1600 ° C and the time is 80 to 130 min.
  • the melted molten metal is heated and maintained, and then subjected to single-roll quenching to obtain an iron-based amorphous alloy strip.
  • the temperature for the temperature rise is preferably from 1,350 to 1,550 ° C, and the time for the heat retention is preferably from 90 to 120 minutes.
  • the single-roll quenching spray belt temperature is 1300 to 1450 ° C, and the cooling roll linear speed is 20-30 m/s.
  • the present invention obtains an iron-based amorphous alloy strip which is completely amorphous, has a critical thickness of at least 45 ⁇ m, and has a good toughness of the strip, and is folded 180 degrees continuously.
  • the amorphous forming ability (GFA) of an alloy refers to the size of an amorphous alloy that can be obtained under certain preparation conditions. The larger the size, the stronger the amorphous forming ability.
  • the critical thickness is an important indicator for evaluating its amorphous forming ability. The greater the thickness, the stronger the amorphous forming ability. For the purposes of the present invention, the critical thickness is at least 45 ⁇ m, which has a considerable margin of preparation for the industrial production of the product, reducing the requirements for cooling equipment during its industrialization.
  • ductile and brittleness is an important application index. Because the strip needs to be sheared in the next application, if the strip is brittle, it will lead to more debris during the shearing process. Indeed affect the shaping of the core and the assembly of the transformer.
  • the strip of the invention has good toughness, can be folded 180 degrees continuously, and no fragments are generated during the subsequent shearing process.
  • the iron-based amorphous alloy strip prepared by the present application has a thickness of 23 to 32 ⁇ m and a width of 100 to 300 mm.
  • strip thickness is one of the important parameters affecting the core loss, which is also the main factor for amorphous strips superior to silicon steel sheets in terms of no-load loss.
  • the core loss of soft magnetic materials mainly consists of three parts. Points: hysteresis loss, eddy current loss and residual loss. The thickness of the thickness directly affects the eddy current loss. For the magnetic material, eddy current will appear at the magnetic domain wall, and the eddy current will generate a magnetic flux opposite to the magnetic flux generated by the external magnetic field at each moment.
  • the present application prepares an iron-based amorphous alloy strip having a thickness of 23 to 32 ⁇ m by the selection of a preparation process.
  • the width of the strip commonly used on the market is 142 mm, 170 mm, 213 mm, and the wider the width of the strip, the more difficult it is to prepare.
  • the present application heat-treats after obtaining an iron-based amorphous alloy strip having a temperature of 300 to 360 ° C, a holding time of 60 to 120 min, and a magnetic field strength of 800 to 1400 A/m.
  • Influencing factors of magnetic properties of amorphous and nanocrystalline soft magnetic materials In addition to the composition of the alloy itself, the heat treatment process is also a key factor. In general, the annealing process can eliminate the stress of the amorphous magnetic material, reduce the coercive force, increase the magnetic permeability, and obtain excellent magnetic properties.
  • the heat treatment process mainly includes three parameters: the holding temperature, the holding time and the magnetic field strength. First, the holding temperature must be lower than the crystallization temperature.
  • the crystallization temperature of the alloy of the present invention is less than 500 ° C, lower than the crystal. Under the premise of the temperature, the suitable temperature range of the insulation is the guarantee of the excellent magnetic properties of the amorphous ribbon.
  • the research of the present application shows that the relationship between the core loss of the strip, the excitation power and the holding temperature of the heat treatment is that as the holding temperature is increased, the two parameters have a tendency to decrease first and then increase, that is, for the present invention, When the holding temperature is less than 300 ° C or more than 360 ° C, performance deterioration occurs, and acceptable magnetic properties can be obtained between 300 and 360 ° C.
  • the principle is similar to the holding temperature, and there is a suitable time interval, and the holding time is too short or too long to achieve the optimal performance of the present invention.
  • a suitable magnetic field strength is a necessary guarantee for the magnetization of the material.
  • the main reason for magnetic field annealing of amorphous materials is that the fixed direction, fixed intensity magnetic field promotes the magnetic domain deflection of the material toward the magnetic field, reduces the magnetic anisotropy of the material, and optimizes the soft magnetic properties.
  • the magnetic field strength is less than 800 A/m, the magnetization process of the material is incomplete and the best effect cannot be achieved.
  • the magnetic field strength is >1400 A/m, the material is completely magnetized, and the magnetic properties are not increased due to the magnetic field strength. Large and optimized, it will increase the difficulty and cost of the heat treatment process.
  • Coercivity is an important indicator for evaluating the properties of soft magnetic materials. The smaller the coercivity, the better the soft magnetic properties.
  • the parameters for evaluating their magnetic properties mainly include two parameters: core loss and excitation power. The smaller these two parameters, the better the performance of the subsequent core and transformer. Therefore, the iron-based amorphous alloy prepared by the present application can be applied to a core material of a transformer, an engine, and a generator.
  • the metal raw material is remelted by using an intermediate frequency smelting furnace (melting temperature is 1300-1600 ° C, holding time is 80-130 min), and the molten steel is discharged after the smelting is completed.
  • an intermediate frequency bottom furnace After warming and sedation (heating to 1350 ⁇ 1550 ° C, holding time 90 ⁇ 120), using a single roll quenching (spray temperature of 1300 ⁇ 1450 ° C, cooling roller line speed of 20 ⁇ 30m /
  • the method of s prepared an iron-based amorphous broadband having a width of 142 mm and a thickness of 23 to 28 ⁇ m.
  • the alloy composition, casting temperature and critical thickness of the inventive examples and comparative examples are listed in Table 1. Examples 1 to 29 are examples of the present invention, and comparative examples 30 to 35 are comparative examples.
  • the alloy composition of the present invention can produce a completely amorphous strip having a critical thickness of at most 45 ⁇ m; as can be seen from Examples 7 to 11 and Comparative Example 31, the alloy composition of a trace amount of P is added.
  • the casting temperature is significantly reduced, thereby reducing the difficulty in preparing the iron-based amorphous ribbon and making the product easier to industrialize.
  • 1 is an XRD pattern of an iron-based amorphous alloy according to an embodiment of the present invention, and can be seen in conjunction with FIG. 1 and Table 1.
  • Excessive addition of P element causes crystallization of the strip, mainly due to industrial preparation.
  • the phosphorus iron impurity content is too high, so that the present invention cannot produce a completely amorphous strip in actual industrial production.
  • Table 2 lists the saturation magnetic induction value (Bs), the excitation power (Pe), and the core loss (P) after heat treatment of each of the examples and the comparative examples.
  • the heat treatment temperature in the present application is 300 to 360 ° C, the time is 60 to 120 min, and the magnetic field strength is 800 to 1400 A/m.
  • Example 1 Serial number Fe Si B P Bs/T Pe/(VA/kg) P/(W/kg)
  • Example 1 80.95 3 16 0.05 1.623 0.18 0.155
  • Example 2 80.95 4 15 0.05 1.625 0.172 0.145
  • Example 3 80.95 5 14 0.05 1.628 0.168 0.149
  • Example 5 80.95 7 12 0.05 1.629 0.164 0.139
  • Example 7 81.99 3 15 0.01 1.635 0.15 0.123
  • Example 8 81.97 3 15 0.03 1.64 0.148 0.12
  • Example 9 81.95 3 15 0.05 1.648 0.145 0.119
  • Example 10 81.9 3 15 0.1 1.638 0.15 0.121
  • Example 11 81.7 3 15 0.3 1.632 0.152 0.124
  • Example 13 81.
  • Example 25 83.95 4 12 0.05 1.628 0.174 0.159
  • Example 26 83.95 5 11 0.05 1.622 0.166 0.145
  • Example 27 83.95 6 10 0.05 1.624 0.164 0.142
  • Example 28 83.95 7 9 0.05 1.638 0.154 0.138
  • Example 29 83.95 8 8 0.05 1.63 0.16 0.138 Comparative example 30 78 9 13 0 1.566 0.152 0.134 Comparative example 31 82 3 15 0 1.608 0.165 0.142 Comparative example 32 81.5 3 15 0.5 1.543 0.564 0.365 Comparative example 33 80.95 2 17 0.05 1.592 0.325 0.289 Comparative example 34 82.95 10 7 0.05 1.603 0.245 0.201 Comparative example 35 84.95 3 12 0.05 1.562 0.689 0.469
  • the annular sample is used for heat treatment: inner diameter 50.5mm, outer diameter 52.5 ⁇ 54.5mm, test condition: 1.35T/50Hz.
  • the iron-based amorphous alloy of the embodiment of the present invention can obtain a good saturation magnetic induction intensity, and the value is not less than 1.62 T, which exceeds the conventional iron of the conventional magnetic transformer with a saturation magnetic induction of 1.56 T.
  • Amorphous amorphous material (Comparative Example 30).
  • the improvement of the saturation magnetic induction strength can further optimize the design of the transformer core, reduce the volume of the transformer, and reduce the cost. It can also be seen from Table 2 that the alloy composition according to the example of the present invention has good magnetic properties.
  • the excitation power of the iron core after heat treatment is ⁇ 0.2200 VA/kg, and the core loss is ⁇ 0.1800 W/kg, compared to conventional amorphous materials (Comparative Example 31), meets the requirements for use.
  • FIG. 2 is a graph showing the relationship between the magnetic properties and the heat treatment temperature of the exemplary embodiment of the present invention and the comparative example.
  • the curve in FIG. 2(a) is the relationship between the excitation power and the heat treatment temperature of Example 9, and the curve is the embodiment 20.
  • the relationship between the excitation power and the heat treatment temperature, and the curve ⁇ is the relationship between the excitation power of Example 28 and the heat treatment temperature.
  • the curve is the relationship between the excitation power of Comparative Example 30 and the heat treatment temperature.
  • the curve in Fig. 2(b) is the relationship between the core loss and the heat treatment temperature of Example 9, and the curve is the core loss and heat treatment of Example 20.
  • the relationship between the temperature and the ⁇ curve is the relationship between the core loss and the heat treatment temperature of Example 28.
  • the curve is the relationship between the core loss of the comparative example 30 and the heat treatment temperature; as can be seen from Fig. 2, the alloy of the present invention has stable magnetic properties at a temperature of at least 20 ° C in a wide temperature range, that is, the excitation power (Pe) and The core loss (P) fluctuates within ⁇ 0.01.
  • the optimum heat treatment temperature is at least 20 °C, which can reduce the temperature control requirements of the heat treatment equipment, increase the service life of the heat treatment equipment, and indirectly reduce the cost of the heat treatment process.
  • FIG. 3 is a comparison diagram of loss curves in a typical embodiment of the present invention and a comparative example at 50 Hz.
  • the curve in FIG. 3 is the loss curve of the embodiment 9, the curve is the loss curve of the embodiment 20, and the curve is the embodiment 28 Loss curve,
  • the curve is the iron loss curve of Comparative Example 30; as can be seen from Figure 3, the alloy of the present invention has a better performance advantage in comparison with conventional iron-based amorphous materials under higher working magnetic density conditions, that is, the alloy of the present invention.
  • the core and transformer prepared from the iron-based amorphous material prepared by the component can be operated under higher working magnetic density conditions.

Abstract

一种铁基非晶合金及其制备方法,该合金的表达式为Fe aSi bB cP dM e,其中,a、b、c、d与e分别表示对应组分的原子百子含量;80.5≤a≤84.0,3.0≤b≤9.0,8.0≤c≤15.0,0.001≤d≤0.3,e≤0.4,a+b+c+d+e=100;M为杂质元素。所述铁基非晶合金的制备方法,进一步的,其经过合适的热处理后可以获得优良的软磁性能,可用于制作电力变压器、发电机以及发动机的铁芯材料。

Description

一种铁基非晶合金及其制备方法
本申请要求于2017年01月25日提交中国专利局、申请号为201710060830.7、发明名称为“一种铁基非晶合金及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及软磁材料技术领域,尤其涉及一种铁基非晶合金及其制备方法。
背景技术
铁基非晶带材是一种新型节能材料,采用快速急冷凝固生产工艺制备,这种新材料用于变压器铁心,与传统硅钢变压器相比,磁化过程相当容易,从而大幅度降低变压器的空载损耗,若用于油浸变压器还可减排CO、SO、NOx等有害气体,被称为21世纪的“绿色材料”。
目前,国内外在非晶变压器的制备过程中,普遍使用的均为饱和磁感应强度为1.56T左右的铁基非晶带材。与硅钢接近2.0T的饱和磁感应强度相比,铁基非晶在制备变压器时存在着体积增大的缺点。为了增强铁基非晶材料在变压器行业的竞争力,需开发饱和磁感应强度大于1.6T的铁基非晶材料。
对于具有高饱和磁感应强度的非晶材料研发,已经开展了很多年。最具有代表性的是美国Allied-Signal公司开发的一款牌号为Metglas2605Co的合金,这种合金的饱和磁感应强度达到1.8T,但其合金中包含18%的Co元素使其成本过高无法在工业生产中应用。
日立金属在公开号为CN1721563A的中国专利申请中公开了一种名HB1的Fe-Si-B-C合金,其饱和磁感应强度在1.64T,但其公开的工艺条件中提到了在制备过程中通过吹含C气体而控制带材表面C元素含量分布的工艺,这将直接导致其产品生产工艺条件难以控制,工业生产稳定性无法保证。
新日本制铁公司在专利CN1356403A中公布了一种Fe-Si-B-P-C合金,虽然其饱和磁感应强度达到1.75T,但由于其Fe含量过高非晶形成能力较差,导致在其工业化生产中无法形成非晶态,带材磁性能较差;同事其在专利中一方面未提到关于P元素添加的问题,另一方面P元素的添加含量较大,结合目前国内外磷铁行业的实际情况,磷铁的制备条件相对粗放,杂质含量过高,无法达到 非晶合金的使用条件。在制备过程中,大量使用常规条件的磷铁会导致带材晶化、偏脆,且热处理后性能较差。若使用此种合金成分进行工业化成产,必须添加磷铁精炼的环节,一方面增加工艺流程的复杂性,另一方面需提高目前的冶炼水平,导致工业化生产难度加大。
发明内容
本发明解决的技术问题在于提供一种铁基非晶合金及其制备方法,本申请提供的铁基非晶合金具有高饱和磁感应强度、非晶形成能力与低损耗。
有鉴于此,本申请提供了一种如式(Ⅰ)所示的铁基非晶合金,
FeaSibBcPdMe           (Ⅰ);
其中,a、b、c、d与e分别表示对应组分的原子百子含量;80.5≤a≤84.0,3.0≤b≤9.0,8.0≤c≤15.0,0.001≤d≤0.3,e≤0.4,a+b+c+d+e=100;M为杂质元素。
优选的,所述铁基非晶合金的饱和磁感应强度≥1.62T。
优选的,所述Si的原子百分含量为5.5≤b≤9.0。
优选的,所述P的原子百分含量为0.001≤d≤0.2。
优选的,所述P的原子百分含量为0.01≤d≤0.1。
优选的,所述铁基非晶合金中,a=80.95,3.0≤b≤8.0,11.0≤c≤15.0,d=0.05。
优选的,所述铁基非晶合金中,81.7≤a≤81.99,3.0≤b≤8.0,10.0≤c≤15.0,0.01≤d≤0.3。
优选的,所述铁基非晶合金中,a=82.95,3.0≤b≤8.0,8.0≤c≤14.0,d=0.05。
优选的,所述铁基非晶合金中,a=83.95,3.0≤b≤8.0,8.0≤c≤13.0,d=0.05。
本申请还提供了上述方案所述的铁基非晶合金的制备方法,包括:
按照式FeaSibBcPd的铁基非晶合金的原子百分比配料,将配料后的原料进行熔炼,将熔炼后的熔液升温保温后进行单辊快淬,得到铁基非晶合金带材。
优选的,所述单辊快淬之后还包括:
将得到的铁基非晶合金带材进行热处理。
优选的,所述热处理的温度为300~360℃,所述热处理的保温时间为60~120min,磁场强度为800~1400A/m。
优选的,所述热处理后的铁基非晶合金带材的矫顽力≤4A/m;在50Hz,1.35T条件下,所述热处理后的铁基非晶合金带材的激磁功率小于等于 0.2200VA/kg,铁芯损耗≤0.1800W/kg。
优选的,所述铁基非晶合金带材为完全非晶状态,临界厚度至少为45μm。
优选的,所述铁基非晶合金带材的厚度为23~32μm,宽度为100~300mm。
本申请提供了一种如式FeaSibBcPdMe所示的铁基非晶合金,其包括Fe、Si、B与P,其中Fe元素作为铁磁性元素,为铁基非晶合金磁性的主要来源,以保证非晶合金的高饱和磁感应强度;Si与B为非晶形成元素,适量的含量才能保证铁基非晶合金具有较好的非晶形成能力,所述P元素同样为非晶形成元素,适量的P元素能够使非晶合金具有较好的非晶形成能力,可保证非晶合金的磁性能;其还可改善合金钢水的流动性,降低制备过程中的浇注温度,降低制备难度。进一步的,在制备铁基非晶合金的过程中,本申请通过限定热处理的温度、保温时间与磁场强度,进一步提高了铁基非晶合金的综合磁性能。
附图说明
图1为本发明实施例与对比例不同厚度铁基非晶合金的XRD图谱;
图2为本发明实施例与对比例的磁性能与热处理温度的关系图;
图3为本发明实施例与对比例的50Hz条件下的损耗曲线对比图。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明实施例公开了一种如式(Ⅰ)所示的铁基非晶合金,
FeaSibBcPdMe           (Ⅰ);
其中,a、b、c、d与e分别表示对应组分的原子百子含量;80.5≤a≤84.0,3.0≤b≤9.0,8.0≤c≤15.0,0.001≤d≤0.3,e≤0.4,a+b+c+d+e=100;M为杂质元素。
本申请的铁基非晶合金按照原子百分比计,其化学成分表达式为FeaSibBcPdMe,其中M为不可避免的杂质元素,其中a、b、c、d的原子比含量分别为:80.5≤a≤84.0,3.0≤b≤9.0,8.0≤c≤15.0,0.001≤d≤0.3;其余为e:e≤0.4。本发明通过添加上述元素,并限定其原子百分含量,使铁基非晶合金具有较好的综合磁性能。
具体的,所述铁基非晶合金中Fe元素为铁磁性元素,为铁基非晶合金磁 性的主要来源,高Fe含量使铁基非晶合金具有高饱和磁感应强度的重要保障。本申请中所述Fe的原子百分含量为80.5~84.0,在实施例中,所述Fe的原子百分含量为80.95~83.95,更具体的,所述Fe的原子百分含量为81.15、81.35、81.5、81.7、81.99、82.05、82.15、82.30、82.45、82.65、82.80、82.95、83.25、83.55或83.95。所述Fe的含量超过83.95会导致合金的非晶形成能力下降,使工业生产难以实现。
所述Si元素与B元素作为非晶形成元素,是合金系统在工业生产条件下能形成非晶的必要条件。本申请中Si的含量为3.0~9.0,在实施例中,所述Si的含量为5.5~9.0,更具体的,所述Si的含量为5.5、6.0、6.5、6.8、7、7.2、7.8、8.0、8.5或9.0。Si的原子百分含量超过9.0,则会偏离共晶点同样会降低非晶形成能力,低于3.0则会导致非晶形成能力下降,影响带材的磁性能。本申请中B的含量为8.0~15.0,在具体实施例中,所述B的含量为8.0、8.5、9.0、9.5、10.0、10.8、11.0、11.2、11.8、12.0、12.7、13.0、13.6或14.0。B的原子百分含量小于8.0,则合金非晶形成能力偏低,大于15.0,其偏离共晶点,合金非晶形成能力降低。
P同样为非晶形成元素,但是本申请添加微量P元素主要是为了改善合金钢水的流动性,降低制备过程中的浇注温度,降低制备难度。在实际工业生产工程中,P元素的添加主要通过磷铁实现,但是目前国内生产磷铁的水平有限,大量添加会在钢水中引入大量杂质,使钢水质量严重下降,既影响铁基非晶合金带材的制备成功率,使带材无法形成非晶,也会影响非晶合金带材的磁性能,大量夹杂固化在带材中,在带材内部形成内部缺陷极值点,热处理过程中对磁畴有钉扎作用,从而使带材的磁性能恶化。因此,本申请中P的原子百分含量为0.001~0.3,在具体实施例中,所述P的含量为0.001~0.2,进一步的,所述P的含量为0.01~0.1。
M为杂质元素,其含量当然越低越好,因此,本申请对M的含量不进行具体限定,只要其≤0.4即可。
在某些具体实施例中,所述非晶铁基合金中,a=80.95,3.0≤b≤8.0,11.0≤c≤15.0,d=0.05;在某些具体实施例中,所述铁基非晶合金中,81.7≤a≤81.99,3.0≤b≤8.0,1,0.0≤c≤15.0,0.01≤d≤0.3;在某些具体实施例中, 所述铁基非晶合金中,a=82.95,3.0≤b≤8.0,8.0≤c≤14.0,d=0.05;在某些具体实施例中,所述铁基非晶合金中,a=83.95,3.0≤b≤8.0,8.0≤c≤13.0,d=0.05。
因此,本申请的铁基非晶合金的组分及含量分别从提高磁感应强度、提高非晶形成能力以及降低制备难度的合理组合,而形成了一种高饱和磁感应强度粉铁基非晶合金。
本申请还提供了上述铁基非晶合金的制备方法,包括以下步骤:
按照式FeaSibBcPd的铁基非晶合金的原子百分比配料,将配料后的原料进行熔炼,将熔炼后的熔液升温保温后采用进行单辊快淬,得到铁基非晶合金带材。
在制备铁基非晶合金的过程中,本申请采用了本领域常规的技术手段,制备了本申请具体成分的铁基非晶合金。对于其制备方法关于配料与熔炼的过程,本申请对其具体操作手段不进行特别的说明。在熔炼过程中,所述熔炼的参数具体为温度为1300~1600℃,时间为80~130min。在熔炼之后,本申请将熔炼后的熔液升温保温后采用单辊快淬,而得到了铁基非晶合金带材。所述升温的温度优选为1350~1550℃,所述保温的时间优选为90~120min。所述单辊快淬的喷带温度为1300~1450℃,冷却辊线速度为20~30m/s。经过单辊快淬之后,本申请得到了铁基非晶合金带材,为完全非晶状态,其临界厚度至少为45μm,且带材韧性较好,对折180度不断。合金的非晶形成能力(GFA)是指在一定的制备条件下所能获得的非晶态合金的尺寸,尺寸越大,非晶形成能力越强。对于非晶带材而言,临界厚度就是评价其非晶形成能力的一项重要指标,临厚度越大,非晶形成能力越强。对本发明而言,其临界厚度至少45μm,对于本产品的工业化生产有相当大的制备余量,降低了在其工业化过程中对冷却设备的要求。对于非晶带材的应用,韧脆性是一项重要的应用指标,因带材在下一步的应用过程中,需进行剪切,若带材脆性较大,则会导致在剪切过程中碎片增多,严重会影响铁芯的整形及变压器的组装。本发明带材其韧性较好,可对折180度不断,在后续剪切过程中无碎片产生。
本申请制备的铁基非晶合金带材的厚度为23~32μm,宽度为100~300mm。对于非晶带材而言,带厚是影响其铁芯损耗的重要参数之一,这也是非晶带材在空载损耗方面优于硅钢片的主要因素。软磁材料的铁芯损耗主要包含三个部 分:磁滞损耗、涡流损耗与剩余损耗。而厚度的大小直接影响涡流损耗的大小,对于磁性材料而言,在磁畴壁处会出现涡电流,涡电流的流动,在每个瞬间都会产生与外磁场产生的磁通方向相反的磁通,越到材料内部,这种反向的作用就越强,致使磁感应强度和磁场强度沿样品截面严重不均匀。这就是软磁材料要制成薄带的原因-减少涡流的作用。但是对于非晶带材并不是越薄越好,带材越薄在后续铁芯的剪切加工过程中会增加刀具的磨损,增加带材组数,进而提高铁芯的成本。综合考虑以上两个方面,本申请通过制备工艺的选择,制备了厚度为23~32μm的铁基非晶合金带材。目前,市场上通用的带材的宽度为142mm、170mm、213mm,而带材的宽度越宽制备难度越大。
本申请在得到铁基非晶合金带材之后进行了热处理,所述热处理的温度为300~360℃,保温时间为60~120min,磁场强度为800~1400A/m。非晶、纳米晶软磁材料磁性能的影响因素除自身合金成分外,热处理工艺也是一个关键因素。一般而言,通过退火处理可以消除非晶磁性材料的应力,降低矫顽力,提高磁导率,获得优良的磁性能。对于铁基非晶带材而言,其热处理工艺主要包含三个参数:保温温度、保温时间与磁场强度。首先对于保温温度必须低于晶化温度,一旦高于晶化温度,非晶带材会发生晶化,磁性能急剧恶化,本发明所述合金其晶化温度均小于500℃,在低于晶化温度的前提下,合适的保温温度区间是非晶带材获得优良磁性能的保障。本申请的研究表明:带材的铁芯损耗、激磁功率与热处理的保温温度的关系是随着保温温度提高的,此两项参数有先降低后增大的趋势,即对于本发明而言,当保温温度小于300℃或大于360℃时,都会出现性能恶化的现象,在300~360℃之间能获得合格的磁性能。其次,对于保温时间,其原理与保温温度相似,有一合适的时间区间,保温时间过短或过长,均不能使本发明达到最优的性能。最后,合适的磁场强度是材料磁化的必要保证。对非晶材料进行磁场退火的主要原因是固定方向、固定强度的磁场促使材料的磁畴偏转向磁场方向,降低材料的磁各向异性,优化软磁性能。对于本发明而言,当磁场强度小于800A/m时,材料磁化过程不完全,无法达到最佳的效果,当磁场强度>1400A/m时,材料磁化完全,磁性能不会因磁场强度的增大而优化,反而会增加热处理过程的难度及成本。
本发明经过退火后的铁基非晶带材的铁芯损耗P≤0.1800W/kg,激磁功率 Pe≤0.2200VA/kg,矫顽力Hc≤4A/m。矫顽力为评价软磁材料性能的一项重要指标,矫顽力越小,软磁性能越好。对于应用于配电变压器行业的非晶带材而言,评价其磁性能的参数主要包含两个参数:铁芯损耗、激磁功率。此两项参数越小,对后续铁芯及变压器的性能越好。因此,本申请制备的铁基非晶合金可应用于变压器、发动机、发电机的铁芯材料上。
为了进一步理解本发明,下面结合实施例对本发明提供的铁基非晶合金及其制备方法进行详细说明,本发明的保护范围不受以下实施例的限制。
按FeaSibBcPdMf的合金组成进行配料,使用中频冶炼炉将金属原材料重熔(熔炼的温度为1300~1600℃、保温时间为80~130min),熔炼完成后出钢液至中频底筑炉,升温保温镇静后(升温至1350~1550℃,保温的时间90~120),使用单辊快淬(喷带温度为1300~1450℃,冷却辊线速度为20~30m/s)的方法制备了宽度为142mm,厚度为23~28μm的铁基非晶宽带。表1中列举了本发明例与对比例的合金成分、浇注温度与临界厚度;其中实施例1~29为本发明实施例,对比例30~35为对比例。
表1 本发明实施例与对比例的合金成分、浇注温度与临界厚度的数据表
Figure PCTCN2017075138-appb-000001
Figure PCTCN2017075138-appb-000002
从以上实施例可以看出,本发明的合金成分均能制备出完全非晶的带材,临界厚度最大为45μm;从实施例7~11与对比例31可以看出,微量添加P的合金成分,其浇注温度明显下降,从而降低了铁基非晶带材的制备难度,使本产品更容易工业化。图1为本发明实施例与对比例铁基非晶合金的XRD图谱,结合附图1与表1还可以看出,过量添加P元素会导致带材出现晶化的现象,主要是由于工业制备的磷铁杂质含量过高,使本发明在实际工业生产中无法制备出完全非晶的带材。
表2中列举了各实施例与对比例热处理后的饱和磁感应强度值(Bs)、激磁功率(Pe)与铁芯损耗(P)。本申请中热处理的温度为300~360℃,时间为60~120min,磁场强度为800~1400A/m。
表2 本发明实施例与对比例的磁性能数据表
序号 Fe Si B P Bs/T Pe/(VA/kg) P/(W/kg)
实施例1 80.95 3 16 0.05 1.623 0.18 0.155
实施例2 80.95 4 15 0.05 1.625 0.172 0.145
实施例3 80.95 5 14 0.05 1.628 0.168 0.149
实施例4 80.95 6 13 0.05 1.631 0.151 0.125
实施例5 80.95 7 12 0.05 1.629 0.164 0.139
实施例6 80.95 8 11 0.05 1.627 0.163 0.146
实施例7 81.99 3 15 0.01 1.635 0.15 0.123
实施例8 81.97 3 15 0.03 1.64 0.148 0.12
实施例9 81.95 3 15 0.05 1.648 0.145 0.119
实施例10 81.9 3 15 0.1 1.638 0.15 0.121
实施例11 81.7 3 15 0.3 1.632 0.152 0.124
实施例12 81.95 4 14 0.05 1.621 0.175 0.158
实施例13 81.95 5 13 0.05 1.638 0.152 0.134
实施例14 81.95 6 12 0.05 1.634 0.156 0.137
实施例15 81.95 7 11 0.05 1.631 0.165 0.14
实施例16 81.95 8 10 0.05 1.625 0.168 0.145
实施例17 82.95 3 14 0.05 1.621 0.173 0.148
实施例18 82.95 4 13 0.05 1.623 0.169 0.14
实施例19 82.95 5 12 0.05 1.623 0.174 0.152
实施例20 82.95 6 11 0.05 1.642 0.151 0.13
实施例21 82.95 7 10 0.05 1.631 0.15 0.134
实施例22 82.95 8 9 0.05 1.632 0.154 0.138
实施例23 82.95 9 8 0.05 1.623 0.162 0.142
实施例24 83.95 3 13 0.05 1.625 0.18 0.166
实施例25 83.95 4 12 0.05 1.628 0.174 0.159
实施例26 83.95 5 11 0.05 1.622 0.166 0.145
实施例27 83.95 6 10 0.05 1.624 0.164 0.142
实施例28 83.95 7 9 0.05 1.638 0.154 0.138
实施例29 83.95 8 8 0.05 1.63 0.16 0.138
对比例30 78 9 13 0 1.566 0.152 0.134
对比例31 82 3 15 0 1.608 0.165 0.142
对比例32 81.5 3 15 0.5 1.543 0.564 0.365
对比例33 80.95 2 17 0.05 1.592 0.325 0.289
对比例34 82.95 10 7 0.05 1.603 0.245 0.201
对比例35 84.95 3 12 0.05 1.562 0.689 0.469
备注:热处理时采用的为环形样品:内径50.5mm,外径52.5~54.5mm,测试条件:1.35T/50Hz。
从以上实施例可以看出,本发明实施例的铁基非晶合金均能获得较好的饱和磁感应强度,数值不小于1.62T,超过目前电力变压器常规使用的饱和磁感应强度为1.56T的常规铁基非晶材料(对比例30)。饱和磁感应强度的提高可进一步优化变压器铁芯的设计,降低变压器的体积,减少成本。从表2中还可以看出,符合本发明例的合金成分具有较好的磁性能,在50Hz,1.35T的条件下,热处理后的铁芯的激磁功率≤0.2200VA/kg、铁芯损耗≤0.1800W/kg,与常规非晶材料(对比例31)相比,达到了使用要求。
图2为本发明典型实施例与对比例的磁性能与热处理温度的关系图,图2(a)中■曲线为实施例9的激磁功率与热处理温度的关系曲线,●曲线为实施例20的激磁功率与热处理温度的关系曲线,▲曲线为实施例28的激磁功率与热处理温度的关系曲线,
Figure PCTCN2017075138-appb-000003
曲线为对比例30的激磁功率与热处理温度的关系曲线,图2(b)中■曲线为实施例9的铁芯损耗与热处理温度的关系曲线,●曲线为实施例20的铁芯损耗与热处理温度的关系曲线,▲曲线为实施例28的铁芯损耗与热处理温度的关系曲线,
Figure PCTCN2017075138-appb-000004
曲线为对比例30的铁芯损耗与热处理温度的关系曲线;由图2可知,本发明合金在较宽的温度范围内,至少20℃,均有稳定的磁性能,即激磁功率(Pe)与铁芯损耗(P)的波动在±0.01范围内。 与常规1.56T的非晶带材相比,其最佳热处理温度偏低至少20℃,可以降低对热处理设备的温控要求,增加热处理设备的使用寿命,间接降低热处理过程的成本。
图3为本发明典型发明例与对比例的50Hz条件下的损耗曲线对比图,图3中■曲线为实施例9的损耗曲线,●曲线为实施例20的损耗曲线,▲曲线为实施例28的损耗曲线,
Figure PCTCN2017075138-appb-000005
曲线为对比例30的铁损耗曲线;由图3可知,本发明合金与常规铁基非晶对比,在较高的工作磁密条件下,有较好的性能优势,也就是说,由本发明合金成分制备的铁基非晶材料制备的铁芯及变压器可在更高的工作磁密条件下运行。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种如式(Ⅰ)所示的铁基非晶合金,
    FeaSibBcPdMe      (Ⅰ);
    其中,a、b、c、d与e分别表示对应组分的原子百子含量;80.5≤a≤84.0,3.0≤b≤9.0,8.0≤c≤15.0,0.001≤d≤0.3,e≤0.4,a+b+c+d+e=100;M为杂质元素。
  2. 根据权利要求1所述的铁基非晶合金,其特征在于,所述铁基非晶合金的饱和磁感应强度≥1.62T。
  3. 根据权利要求1所述的铁基非晶合金,其特征在于,所述Si的原子百分含量为5.5≤b≤9.0。
  4. 根据权利要求1所述的铁基非晶合金,其特征在于,所述P的原子百分含量为0.001≤d≤0.2。
  5. 根据权利要求1所述的铁基非晶合金,其特征在于,所述P的原子百分含量为0.01≤d≤0.1。
  6. 根据权利要求1所述的铁基非晶合金,其特征在于,所述铁基非晶合金中,a=80.95,3.0≤b≤8.0,11.0≤c≤15.0,d=0.05。
  7. 根据权利要求1所述的铁基非晶合金,其特征在于,所述铁基非晶合金中,81.7≤a≤81.99,3.0≤b≤8.0,10.0≤c≤15.0,0.01≤d≤0.3。
  8. 根据权利要求1所述的铁基非晶合金,其特征在于,所述铁基非晶合金中,a=82.95,3.0≤b≤8.0,8.0≤c≤14.0,d=0.05。
  9. 根据权利要求1所述的铁基非晶合金,其特征在于,所述铁基非晶合金中,a=83.95,3.0≤b≤8.0,8.0≤c≤13.0,d=0.05。
  10. 权利要求1所述的铁基非晶合金的制备方法,包括:
    按照式FeaSibBcPd的铁基非晶合金的原子百分比配料,将配料后的原料进行熔炼,将熔炼后的熔液升温保温后进行单辊快淬,得到铁基非晶合金带材。
  11. 根据权利要求10所述的制备方法,其特征在于,所述单辊快淬之后还包括:
    将得到的铁基非晶合金带材进行热处理。
  12. 根据权利要求11所述的制备方法,其特征在于,所述热处理的温度 为300~360℃,所述热处理的保温时间为60~120min,磁场强度为800~1400A/m。
  13. 根据权利要求11或12所述的制备方法,其特征在于,所述热处理后的铁基非晶合金带材的矫顽力≤4A/m;在50Hz,1.35T条件下,所述热处理后的铁基非晶合金带材的激磁功率小于等于0.2200VA/kg,铁芯损耗≤0.1800W/kg。
  14. 根据权利要求10或11所述的制备方法,其特征在于,所述铁基非晶合金带材为完全非晶状态,临界厚度至少为45μm。
  15. 根据权利要求10或11所述的制备方法,其特征在于,所述铁基非晶合金带材的厚度为23~32μm,宽度为100~300mm。
PCT/CN2017/075138 2017-01-25 2017-02-28 一种铁基非晶合金及其制备方法 WO2018137269A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/065,670 US20210198761A1 (en) 2017-01-25 2017-02-28 Iron-based amorphous alloy and method for preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710060830 2017-01-25
CN201710060830.7 2017-01-25

Publications (1)

Publication Number Publication Date
WO2018137269A1 true WO2018137269A1 (zh) 2018-08-02

Family

ID=58911440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075138 WO2018137269A1 (zh) 2017-01-25 2017-02-28 一种铁基非晶合金及其制备方法

Country Status (3)

Country Link
US (1) US20210198761A1 (zh)
CN (1) CN106702291A (zh)
WO (1) WO2018137269A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107236911A (zh) * 2017-07-31 2017-10-10 青岛云路先进材料技术有限公司 一种铁基非晶合金
CN108109803A (zh) * 2017-12-19 2018-06-01 青岛云路先进材料技术有限公司 配电用非晶变压器
CN108018504B (zh) * 2017-12-21 2020-05-08 青岛云路先进材料技术股份有限公司 一种铁基非晶合金及其制备方法
CN109504924B (zh) * 2018-12-17 2021-02-09 青岛云路先进材料技术股份有限公司 一种铁基非晶合金带材及其制备方法
CN110656329A (zh) * 2019-09-28 2020-01-07 南昌大学 一种铁基非晶合金带材的封装方法
CN111057970B (zh) * 2019-12-30 2020-11-10 宁波中科毕普拉斯新材料科技有限公司 一种高磁导率的非晶纳米晶合金的制备方法
CN112143985B (zh) * 2020-10-15 2022-03-15 太原理工大学 一种低矫顽力的铁基非晶合金及其成分设计方法
CN113046657B (zh) * 2021-03-01 2022-02-15 青岛云路先进材料技术股份有限公司 一种铁基非晶纳米晶合金及其制备方法
CN115247242A (zh) * 2021-04-25 2022-10-28 安泰非晶科技有限责任公司 一种非晶合金带材及其制备方法
CN113546653A (zh) * 2021-07-23 2021-10-26 合肥工业大学 一种用于高效降解染料的Fe-Si-B-P系非晶合金催化剂及其制备方法与应用
CN115161579B (zh) * 2021-09-08 2023-05-23 武汉苏泊尔炊具有限公司 炊具及其制造方法
CN114058810B (zh) * 2021-11-18 2023-06-23 安徽中环晶研新材料有限公司 一种高性能铁基非晶纳米晶合金的热处理方法
CN114250426B (zh) * 2021-12-22 2022-10-11 青岛云路先进材料技术股份有限公司 一种铁基非晶纳米晶合金及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356403A (zh) 2000-11-27 2002-07-03 新日本制铁株式会社 铁基无定形合金薄带及用它做的铁心
CN1721563A (zh) 2004-07-05 2006-01-18 日立金属株式会社 Fe基非晶态合金带
CN101595237A (zh) * 2006-12-04 2009-12-02 东北泰克诺亚奇股份有限公司 非晶态合金组合物
CN101834046A (zh) * 2009-03-10 2010-09-15 中国科学院宁波材料技术与工程研究所 高饱和磁化强度铁基纳米晶软磁合金材料及其制备方法
CN104073749A (zh) * 2014-06-18 2014-10-01 安泰科技股份有限公司 一种元素分布均匀的铁基非晶软磁合金及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300950A (en) * 1978-04-20 1981-11-17 General Electric Company Amorphous metal alloys and ribbons thereof
EP0055327B2 (en) * 1980-12-29 1990-09-26 Allied Corporation Amorphous metal alloys having enhanced ac magnetic properties
AU9179282A (en) * 1982-05-27 1983-12-01 Allegheny Ludlum Steel Corp. Amorphous, magnetic iron base - boron silicon alloy
JP3644062B2 (ja) * 1995-01-13 2005-04-27 Jfeスチール株式会社 軟磁気特性に優れた低ボロンアモルファス合金
CN101840764B (zh) * 2010-01-25 2012-08-08 安泰科技股份有限公司 一种低成本高饱和磁感应强度的铁基非晶软磁合金
US8968490B2 (en) * 2010-09-09 2015-03-03 Metglas, Inc. Ferromagnetic amorphous alloy ribbon with reduced surface protrusions, method of casting and application thereof
JP6347606B2 (ja) * 2013-12-27 2018-06-27 井上 明久 高延性・高加工性を持つ高磁束密度軟磁性鉄基非晶質合金

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356403A (zh) 2000-11-27 2002-07-03 新日本制铁株式会社 铁基无定形合金薄带及用它做的铁心
CN1721563A (zh) 2004-07-05 2006-01-18 日立金属株式会社 Fe基非晶态合金带
CN101595237A (zh) * 2006-12-04 2009-12-02 东北泰克诺亚奇股份有限公司 非晶态合金组合物
CN101834046A (zh) * 2009-03-10 2010-09-15 中国科学院宁波材料技术与工程研究所 高饱和磁化强度铁基纳米晶软磁合金材料及其制备方法
CN104073749A (zh) * 2014-06-18 2014-10-01 安泰科技股份有限公司 一种元素分布均匀的铁基非晶软磁合金及其制备方法

Also Published As

Publication number Publication date
CN106702291A (zh) 2017-05-24
US20210198761A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
WO2018137269A1 (zh) 一种铁基非晶合金及其制备方法
JP5327074B2 (ja) 軟磁性合金薄帯及びその製造方法、並びに軟磁性合金薄帯を有する磁性部品
WO2018137270A1 (zh) 一种铁基非晶合金
JP6025864B2 (ja) 生産性及び磁気的性質に優れた高珪素鋼板及びその製造方法
TWI445828B (zh) High strength non - directional electromagnetic steel plate
US11230754B2 (en) Nanocrystalline magnetic alloy and method of heat-treatment thereof
KR102175064B1 (ko) 무방향성 전기강판 및 그 제조방법
JP6237630B2 (ja) 超微結晶合金薄帯、微結晶軟磁性合金薄帯及びこれを用いた磁性部品
JP2008231463A (ja) Fe基軟磁性合金、アモルファス合金薄帯、および磁性部品
KR20090113903A (ko) 연자성 박대, 자심, 자성 부품, 및 연자성 박대의 제조 방법
JP6404356B2 (ja) 軟質高珪素鋼板及びその製造方法
WO2006104148A1 (ja) 磁心ならびにそれを用いた応用品
US10584406B2 (en) Electrical steel sheet
CN106636983A (zh) 一种铁基非晶合金的制备方法
KR20170103845A (ko) 나노결정성 자기 합금 배경에 기초한 자기 코어
WO2020125094A1 (zh) 一种铁基非晶合金带材及其制备方法
JP6080094B2 (ja) 巻磁心およびこれを用いた磁性部品
WO2018227792A1 (zh) 一种具有低应力敏感性的铁基非晶合金及其制备方法
WO2019024285A1 (zh) 一种铁基非晶合金
WO2018184273A1 (zh) 一种铁基非晶合金及其制备方法
TWI421352B (zh) 附有鎂橄欖石覆膜的方向性電磁鋼板及其製造方法
CN110640104A (zh) 一种磁性能优良的无取向电工钢板及其制造方法
WO2019127867A1 (zh) 一种铁钴基纳米晶合金及其制备方法
JP4320794B2 (ja) 圧延方向の磁気特性に優れた電磁鋼板の製造方法
JPH0734127A (ja) 磁気特性の優れた超高珪素電磁鋼板およびその熱処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017877381

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017877381

Country of ref document: EP

Effective date: 20180522

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE