WO2018137167A1 - 指纹辨识系统及电子装置 - Google Patents

指纹辨识系统及电子装置 Download PDF

Info

Publication number
WO2018137167A1
WO2018137167A1 PCT/CN2017/072527 CN2017072527W WO2018137167A1 WO 2018137167 A1 WO2018137167 A1 WO 2018137167A1 CN 2017072527 W CN2017072527 W CN 2017072527W WO 2018137167 A1 WO2018137167 A1 WO 2018137167A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
circuit
coupled
output signal
capacitor
Prior art date
Application number
PCT/CN2017/072527
Other languages
English (en)
French (fr)
Inventor
方信文
赵国豪
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201780000068.1A priority Critical patent/CN107077256B/zh
Priority to PCT/CN2017/072527 priority patent/WO2018137167A1/zh
Priority to EP17894615.8A priority patent/EP3416030B1/en
Publication of WO2018137167A1 publication Critical patent/WO2018137167A1/zh
Priority to US16/130,665 priority patent/US10853615B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing

Definitions

  • the present invention relates to a fingerprint identification system and an electronic device, and more particularly to a fingerprint identification system and an electronic device capable of reducing the influence of parasitic capacitance.
  • a capacitive fingerprint identification system is a popular fingerprint identification method, which uses a contact layer to receive finger contact from a user and senses a change in capacitance of the contact layer to determine a fingerprint of the user. Finger Ridge or Finger Valley.
  • conventional techniques usually place a shielding layer under the contact layer during circuit layout to create a shielding effect to avoid interference of the contact layer under the shielding layer.
  • parasitic capacitance is generated between the contact layer and the shielding layer, and the capacitance value of the parasitic capacitance is often larger than that due to contact. The capacitance value of the generated contact capacitance affects the capacitance sensing circuit or the capacitive fingerprint identification system to determine the capacitance value of the contact capacitance, so that the accuracy of fingerprint identification is reduced.
  • a main object of some embodiments of the present invention is to provide a fingerprint identification system and an electronic device capable of reducing the influence of parasitic capacitance and reducing sensitivity to temperature and noise.
  • the present application provides a fingerprint identification system, which includes a plurality of first pixel circuits, wherein a first pixel circuit of the plurality of first pixel circuits forms a contact capacitance with a finger;
  • the first circuit is coupled to the first pixel circuit for sensing the contact capacitance and outputting a first output signal
  • the first sensing circuit includes a first integrating circuit having a first integral input end And a first correction circuit coupled to the first integration input for correcting the first output signal; at least one second pixel circuit; and a second sensing circuit coupled to the at least one a second pixel circuit in the second pixel circuit for outputting a second output signal
  • the second sensing circuit includes a second integrating circuit having a second integrating input terminal, and a second correcting circuit coupled
  • the second integration input terminal is coupled to the second integration input terminal, wherein the second correction circuit and the third correction circuit are configured to correct the second output signal ;
  • a differential amplifying circuit coupled to the first sensing circuit and the second sensing the
  • the first correction circuit includes a first correction capacitor coupled to the first integration input terminal, and a first correction switch coupled to the first correction capacitor at one end and coupled to the other end And a second correction switch, one end of which is coupled to the first correction capacitor, and the other end of which receives a first correction voltage.
  • the second correction circuit includes a second correction capacitor coupled to the second integration input terminal, and a third correction switch coupled to the second correction capacitor at one end and coupled to the other end And a fourth correction switch, one end of which is coupled to the second correction capacitor, and the other end of which receives the first correction voltage.
  • the third correction circuit includes a third correction capacitor coupled to the second integration input terminal; a fifth correction switch having one end coupled to the third correction capacitor and the other end coupled to the And a sixth correction switch, one end of which is coupled to the third correction capacitor, and the other end of which receives a second correction voltage.
  • the second correction capacitance is greater than the third correction capacitance.
  • the second correction capacitance is 25 times the third correction capacitance.
  • the fingerprint identification system further includes a correction voltage generating circuit coupled to the differential amplifying circuit and the first sensing circuit and the second sensing circuit for generating according to the amplified output signal.
  • the first correction voltage and the second correction voltage are coupled to the differential amplifying circuit and the first sensing circuit and the second sensing circuit for generating according to the amplified output signal.
  • the first integrating circuit includes a first amplifier coupled to the first integrating input terminal, and a first integrating capacitor coupled to the first integrating input terminal and one of the first amplifiers Between the first outputs.
  • the second integrating circuit includes a second amplifier coupled to the second integrating input terminal, and a second integrating capacitor coupled to the second integrating input terminal and the second amplifier. Between the second outputs.
  • the first correction circuit causes the first output signal to have a first correction amount
  • the second correction circuit causes the second output signal to have a second correction amount
  • the third correction circuit causes the The second output signal has a third correction amount, and the second correction amount is greater than the third correction the amount.
  • the present application further provides an electronic device including an operation circuit, and a fingerprint identification system
  • the fingerprint identification system includes a plurality of first pixel circuits, and a first pixel circuit and a plurality of the first pixel circuits Forming a contact capacitor; a first sensing circuit coupled to the first pixel circuit for sensing the contact capacitance and outputting a first output signal, the first sensing circuit including a first An integrating circuit having a first integrating input terminal; and a first correcting circuit coupled to the first integrating input terminal for correcting the first output signal; at least one second pixel circuit; a second sense The second circuit is coupled to a second pixel circuit of the at least one second pixel circuit for outputting a second output signal, and the second sensing circuit includes a second integrating circuit having a second integral input a second correction circuit coupled to the second integration input; and a third correction circuit coupled to the second integration input, wherein the second correction circuit and the third correction Electricity For calibrating the second output signal; and a differential amplifying circuit coupled to
  • the present application further provides a fingerprint identification system and an electronic device provided by the present application, which utilize a dummy pixel circuit to generate a dummy output signal, thereby eliminating the effect of parasitic capacitance, thereby improving the accuracy and performance of capacitive sensing or fingerprint identification.
  • FIG. 1 is a schematic diagram of a fingerprint identification system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a normal sensing circuit and a dummy sensing circuit according to an embodiment of the present application.
  • FIG. 3 is a schematic top view of a fingerprint identification system according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • the output signal of the pixel circuit is affected by the internal parasitic capacitance of the pixel circuit and the sensing circuit, so that the signal component of the output signal of the pixel circuit related to the change amount of the contact capacitance is not significant, and the output of the pixel circuit is not significant.
  • the signal is also affected by temperature and noise, which reduces the accuracy of fingerprint recognition. Therefore, in addition to the normal pixel circuit, the present application further includes a dummy pixel circuit for generating a dummy output signal by using a dummy pixel circuit to cancel a signal component affected by parasitic capacitance, temperature, and noise in an output signal of a plurality of normal pixel circuits.
  • the fingerprint signal components in the output signals of the plurality of normal pixel circuits are amplified and subjected to subsequent signal processing to determine the FingerRidge or FingerValley, and the fingerprint identification accuracy is increased.
  • the driving circuit in the normal pixel circuit and the driving circuit in the dummy pixel circuit are hardly identical in circuit implementation, the dummy output signal enters a saturation state or is caused to be coupled to the normal pixel circuit. And the differential amplifier of the dummy pixel circuit enters a saturated state. Therefore, the present application utilizes two correction circuits included in a dummy sensing circuit to correct the dummy output signal such that the dummy output signal is within a range to avoid dummy output signals or differential amplifiers. Into the saturated state.
  • FIG. 1 is a schematic diagram of a fingerprint identification system 10 according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a normal sensing circuit 115 and a dummy sensing circuit 125 according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a normal pixel circuit and a dummy pixel circuit of a plurality of normal pixel circuits in the fingerprint identification system 10.
  • the fingerprint identification system 10 includes a normal pixel circuit 11 and a dummy device.
  • the pixel circuit 12 the normal sensing circuit 115, the dummy sensing circuit 125, and a differential amplifying circuit DAmp.
  • the normal sensing circuit 115 is coupled to the normal pixel circuit 11 for outputting a normal output signal Vo1 to the differential amplifying circuit DAmp.
  • the dummy sensing circuit 125 is coupled to the dummy pixel circuit 12 for outputting a dummy output signal Vo2.
  • the differential amplifying circuit DAmp is for amplifying a phase difference (Vo1-Vo2) between the normal output signal Vo1 and the dummy output signal Vo2 to generate an amplified output signal Vo.
  • both the normal pixel circuit 11 and the dummy pixel circuit 12 can receive the contact of a finger FG, and form a contact capacitance Cf_1 and a contact capacitance Cf_2 with the finger FG, respectively.
  • the normal sensing circuit 115 can sense the contact capacitance Cf_1 and output the normal output signal Vo1.
  • the second sensing circuit 125 is coupled to the dummy pixel circuit 12 for outputting the dummy output signal Vo2.
  • the normal output signal Vo1 contains a large signal component And a small signal component ⁇ Vo1 (ie, the normal output signal Vo1 can be expressed as ), where large signal components It may be an average value of the normal output signal Vo1, and the small signal component ⁇ Vo1 is related to a change amount ⁇ Cf_1 of the contact capacitance Cf_1, which is a fingerprint signal used for fingerprint recognition.
  • the dummy pixel circuit 12 can be appropriately designed to make the large output signal of the dummy output signal Vo2 and the normal output signal Vo1.
  • Equal ie, the dummy output signal Vo2 can be expressed as ).
  • the differential amplifier circuit DAmp can be a Programmable Gain Amplifier (PGA).
  • the differential amplifier circuit DAmp can be coupled to an analog-to-digital converter (ADC) and a back-end circuit (not shown in FIG. 1) for performing subsequent signal processing on the amplified output signal Vo and determining
  • ADC analog-to-digital converter
  • back-end circuit not shown in FIG. 1 for performing subsequent signal processing on the amplified output signal Vo and determining
  • the normal pixel circuit 11 corresponds to a bee or a grain of the finger FG.
  • the normal output signal Vo1 corresponding to the normal pixel circuit 11 is related to the contact capacitance Cf_1 corresponding to the normal pixel circuit 11, that is, the normal output signal Vo1 contains the fingerprint signal (ie, the small signal component ⁇ Vo1).
  • the dummy output signal Vo2 corresponding to the dummy pixel circuit 12 is used to cancel the signal component affected by the parasitic capacitance, temperature and noise in the normal output signal Vo1, and the dummy output signal Vo2 does not include the fingerprint signal (ie, the dummy pixel circuit)
  • the corresponding contact capacitance Cf_2 of 12 does not affect the dummy output signal Vo2).
  • the fingerprint identification system 10 amplifies the phase difference (Vo1-Vo2) between the normal output signal Vo1 and the dummy output signal Vo2 by using the differential amplifying circuit DAmp, that is, amplifying the fingerprint signal for subsequent signal processing.
  • the normal sensing circuit 115 includes an integrating circuit 1150 and an adjusting circuit 1152.
  • the integrating circuit 1150 includes an amplifier Amp1 and an integrating capacitor CI1.
  • the integrating capacitor CI1 is coupled to a negative input terminal of the amplifier Amp1. (marked with "-" sign) and an output (where the negative input of amplifier Amp1 is the integral input of integrating circuit 1150), and a positive input of amplifier Amp1 (labeled with "+”) is received.
  • the correction circuit 1152 includes a correction capacitor C1 and a correction switch S1, S2.
  • a first end of the calibration switch S1, S2 is coupled to the correction capacitor C1, a second end of the correction switch S1 receives a positive voltage V DD , and the calibration switch S2
  • a second terminal receives a first correction voltage V DAC .
  • the dummy sense circuit 125 includes an integration circuit 1250 and correction circuits 1252, 1254.
  • the integrating circuit 1250 includes an amplifier Amp2 and an integrating capacitor CI2 coupled between a negative input terminal (labeled with a "-" sign) and an output terminal of the amplifier Amp2 (the negative input of the amplifier Amp2) The terminal is the integral input terminal of the integrating circuit 1250, and a positive input terminal (labeled with a "+" sign) of the amplifier Amp2 receives the voltage Vref.
  • the correction circuit 1252, 1254 is similar to the correction circuit 1152.
  • the correction circuit 1252 includes a correction capacitor C2 and correction switches S3, S4.
  • the correction circuit 1254 includes a correction capacitor C3 and correction switches S5, S6, and the first ends of the correction switches S3, S4.
  • the first end of the correction switch S5, S6 is coupled to the correction capacitor C3, the second end of the correction switch S3, S5 receives the positive voltage V DD , and the second end of the correction switch S4 receives the first correction.
  • the voltage V DAC a second terminal of the correction switch S6 receives a second correction voltage V DAC '.
  • the correction switches S1, S3, S5 can control a signal CK1
  • the correction switches S2, S4, S6 can control a signal CK2.
  • the fingerprint identification system 10 further includes a correction voltage generating circuit 14 coupled between the differential amplifying circuit DAmp and the normal sensing circuit 115 and the dummy sensing circuit 125 for generating a first correction voltage V according to the amplified output signal Vo.
  • the correction circuits 1152, 1252, 1254 can be used to correct the normal output signal Vo1 and the dummy output signal Vo2 such that the normal output signal Vo1 is maintained in a specific range RG1 and is dummy.
  • the output signal Vo2 is maintained at a specific range RG2.
  • the correction voltage generating circuit 14 may first determine the first correction voltage V DAC to ensure that the voltage of the normal output signal Vo1 is in the specific range RG1, and then determine the second correction voltage V DAC ' depending on the situation, so that the dummy output is The voltage of the signal Vo2 is located in the specific range RG2.
  • an output signal of the correction circuit 1152 is applied to the integration input of the integration circuit 1150 such that the voltage of the normal output signal Vo1 is raised upward by a correction value ⁇ V1
  • the voltage of the normal output signal Vo1 is located in the specific range RG1
  • an output signal of the correction circuit 1252 is applied to the integral input terminal of the integration circuit 1250, so that the voltage of the dummy output signal Vo2 is also raised upward by a correction value ⁇ V2, if the output is false.
  • the voltage of the signal Vo2 is still outside the specific range RG2, the correction voltage generating circuit 14 can also generate the second correction voltage V DAC ', and the correction circuit 1254 generates an output according to the positive voltage V DD and the second correction voltage V DAC '
  • the signal is applied to the integral input of the integrating circuit 1250 such that the voltage of the dummy output signal Vo2 is again raised upward by a correction value ⁇ V3 such that the voltage of the dummy output signal Vo2 is within a specific range RG2.
  • the fingerprint recognition system 10 uses the correction circuit 1252 to perform a coarse correction (Coarse Tune Calibration) on the dummy output signal Vo2, and the correction circuit 1254 performs a fine correction (Fine Tune Calibration) on the dummy output signal Vo2, that is,
  • the correction value ⁇ V2 is greater than the correction value ⁇ V3.
  • the correction value C2 may be greater than the correction capacitor C3.
  • the correction capacitor C2 can be 25 times the correction capacitor C3.
  • the circuit structure of the normal pixel circuit 11 and the dummy pixel circuit 12 is not limited.
  • the normal pixel circuit 11 may include a contact layer 110 , a shielding layer 112 , and a
  • the driving circuit 113, the contact layer 110 and the shielding layer 112 are all metal layers in the integrated circuit layout, and the contact layer 110 is a top metal layer for receiving the contact of the finger FG, and the contact layer 110 is in contact with the finger FG.
  • the capacitor Cf_1, and the shielding layer 112 may be the next metal layer of the top metal layer, that is, the shielding layer 112 is disposed directly under the contact layer 100 to shield the circuit below the shielding layer 112 to avoid the shielding layer 112.
  • the following circuit interferes with the contact layer 110, and the shield layer 112 forms a parasitic capacitance Cp_1 with the contact layer 110.
  • the contact layer 110 is coupled to the normal sensing circuit 115.
  • the normal output signal Vo1 is related to the contact capacitance Cf_1 and the parasitic capacitance Cp_1, and the normal output signal Vo1 can be expressed as Where A, B, and D are parameters related to the positive voltage V DD or the driving circuit and the voltage generated by it. It can represent an average of a plurality of contact capacitances formed by a plurality of pixel circuits. In addition, parameters A, B, and D are subject to changes in temperature or noise.
  • the dummy pixel circuit 12 can include a contact layer 120, a shielding layer 122, metal layers 124, 126, a driving circuit 121, and a driving circuit 123.
  • the contact layer 120, the shielding layer 122, and the metal layers 124, 126 are all The metal layer in the layout of the integrated circuit, wherein the contact layer 120 is a top metal layer for receiving the contact of the finger FG, the contact layer 120 forms a contact capacitance Cf_2 with the finger FG, and the shielding layer 122 can be the next layer of the top metal layer.
  • the layer metal layer that is, the shielding layer 122 is disposed directly under the contact layer 120, and is used to shield the circuit below the shielding layer 122 to prevent the circuit below the shielding layer 122 from interfering with the contact layer 120, and the shielding layer 122 is in contact with Layer 120 forms a parasitic capacitance Cp_2.
  • the metal layer 124 may be the next metal layer of the shielding layer 122 (ie, the metal layer 124 may be disposed/disposed under the shielding layer 122), and the metal layer 126 may be the next metal layer of the metal layer 124 (ie, metal)
  • the layer 126 can be disposed/disposed under the metal layer 124), and a parasitic capacitance Cp_3 is formed between the metal layer 124 and the metal layer 126.
  • the contact layer 120 is coupled to the driving circuit 121.
  • the metal layer 124 is coupled to the driving circuit 123.
  • the shielding layer 122 and the metal layer 126 are coupled to the driving circuit 123.
  • the dummy sensing circuit 125 is coupled to the metal layer 124 .
  • the second sensing circuit 125 is not connected to the contact layer 120. Therefore, the contact capacitance Cf_2 (and the parasitic capacitance Cp_2) does not affect the dummy output signal Vo2.
  • the dummy pixel circuit 12 can be appropriately designed such that That is, the large signal component of the dummy output signal Vo2 and the normal output signal Vo1 equal
  • the back end circuit of the fingerprint identification system 10 can determine the normal pixel circuit 11 corresponding to the bee or grain of the finger FG according to the amplified output signal VO.
  • the parameters A, B, and D will be affected by temperature or noise, but in the dummy output signal Vo2, the parameters E and F will also be affected by temperature or noise. And it changes. That is to say, with the differential amplifying circuit Amp, the signal component affected by temperature or noise in the normal output signal Vo1 can be eliminated (the normal output signal Vo1 minus the dummy output signal Vo2), and the differential amplifying circuit Amp is only for the contact
  • the fingerprint signal of the capacitance change amount ⁇ Cf_1 is amplified to increase the fingerprint identification accuracy of the fingerprint recognition system 10.
  • the fingerprint identification system 10 uses the correction circuit 1252 and the correction circuit 1254 to perform coarse correction and fine correction on the dummy output signal Vo2, respectively, so that the voltage of the dummy output signal Vo2 is within the specific range RG2.
  • FIG. 3 is a schematic top view of the fingerprint identification system 30 according to the embodiment of the present application.
  • the fingerprint identification system 30 includes an arrangement. An array of a plurality of normal pixel circuits 31 and a plurality of dummy pixel circuits 32 are shown in FIG. 3, and a plurality of dummy pixel circuits 32 are arranged in a random manner. Array. It should be noted that the arrangement of the plurality of normal pixel circuits 31 and the plurality of dummy pixel circuits 32 is only one embodiment, and a plurality of dummy pixel circuits may be arranged around the array or arranged in the same manner. One row or column of the array, not limited to this.
  • FIG. 4 is a schematic diagram of an electronic device 40 according to an embodiment of the present application.
  • the electronic device 40 can be a tablet computer or a smart phone.
  • the electronic device 40 includes an operation circuit 42 and a fingerprint identification.
  • the system 44, the fingerprint identification system 44 is coupled to the operation circuit 42, which can be implemented by the fingerprint identification system 10.
  • the operation circuit 42 can include a processor and a storage device, and the storage device can be a read-only memory (Read -Only Memory, ROM), Random-Access Memory (RAM), Non-Volatile Memory (for example, an Erasable Programmable Read Only Memory) , EEPROM) or a flash memory (Flash Memory).
  • ROM Read -Only Memory
  • RAM Random-Access Memory
  • Non-Volatile Memory for example, an Erasable Programmable Read Only Memory
  • EEPROM Electrically Memory
  • flash memory Flash Memory
  • the present application utilizes a dummy pixel circuit to generate a dummy output signal to cancel a signal component affected by parasitic capacitance, temperature, and noise in an output signal of a normal pixel circuit, and performs a fingerprint signal in an output signal of a normal pixel circuit. Amplification and subsequent signal processing to increase fingerprint identification accuracy.
  • the present application utilizes two correction circuits to perform coarse correction and fine correction on the dummy output signals, respectively, so that the voltage of the dummy output signals is within a specific range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Security & Cryptography (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种指纹辨识系统,包括多个第一像素电路(11);一第一感测电路(115),用来输出一第一输出信号;至少一第二像素电路(12);一第二感测电路(125),用来输出一第二输出信号,所述第二感测电路(125)包括一第二积分电路(1250),具有一第二积分输入端;一第二校正电路(1252),耦接于所述第二积分输入端;以及一第三校正电路(1254),耦接于所述第二积分输入端,其中所述第二校正电路(1252)及所述第三校正电路(1254)用来校正所述第二输出信号;以及一差分放大电路,耦接于所述第一感测电路(115)及所述第二感测电路(125),用来产生一放大输出信号。

Description

指纹辨识系统及电子装置 技术领域
本申请涉及一种指纹辨识系统及电子装置,尤其涉及一种可降低寄生电容影响的指纹辨识系统及电子装置。
背景技术
随着科技日新月异,移动电话、数字相机、平板计算机、笔记本电脑等越来越多携带型电子装置已经成为了人们生活中必备的工具。由于携带型电子装置通常供个人使用,而具有一定的隐私性,因此其内部储存的数据,例如电话簿、相片、个人信息等等为私人所有。一旦电子装置丢失,则这些数据可能被他人所利用,而造成不必要的损失。虽然目前已有利用密码保护的方式来避免电子装置为他人所使用,但密码容易泄露或遭到破解,具有较低的安全性。并且,用户需记住密码才能使用电子装置,若忘记密码,则会带给使用者许多不便。因此,目前发展出利用个人指纹辨识系统的方式来达到身份认证的目的,以提升数据安全性。
在习知技术中,电容式指纹辨识系统是相当受欢迎的一种指纹辨识方法,其系利用接触层接受来自使用者的手指接触,并感测接触层的电容变化,以判断使用者指纹的纹蜂(Finger Ridge)或纹谷(Finger Valley)。为了避免接触层受到来自其他电路的干扰,习知技术通常会在电路布局时在接触层下方布局一屏蔽层,以产生屏蔽效应,避免屏蔽层以下的电路对接触层产生干扰。然而,接触层与屏蔽层的间会产生寄生电容,而寄生电容的电容值往往大于因接触而 产生的接触电容的电容值,影响电容感测电路或电容式指纹辨识系统判断接触电容的电容值,以致于降低了指纹辨识的精准度。
发明内容
因此,本发明部分实施例主要目的即在于提供一种既可降低寄生电容影响又可降低对温度及噪声敏感度的指纹辨识系统及电子装置。
为了解决上述技术问题,本申请提供了一指纹辨识系统,其包括复数个第一像素电路,所述复数个第一像素电路中一第一像素电路与一手指形成一接触电容;一第一感测电路,耦接于所述第一像素电路,用来感测所述接触电容并输出一第一输出信号,所述第一感测电路包括一第一积分电路,具有一第一积分输入端;以及一第一校正电路,耦接于所述第一积分输入端,用来校正所述第一输出信号;至少一第二像素电路;一第二感测电路,耦接于所述至少一第二像素电路中一第二像素电路,用来输出一第二输出信号,所述第二感测电路包括一第二积分电路,具有一第二积分输入端;一第二校正电路,耦接于所述第二积分输入端;以及一第三校正电路,耦接于所述第二积分输入端,其中所述第二校正电路及所述第三校正电路用来校正所述第二输出信号;以及一差分放大电路,耦接于所述第一感测电路及所述第二感测电路,用来将所述第一输出信号与所述第二输出信号的一相差值放大,以产生一放大输出信号。
例如,所述第一校正电路包括一第一校正电容,耦接于所述第一积分输入端;一第一校正开关,其一端耦接于所述第一校正电容,另一端耦接于一正电压;以及一第二校正开关,其一端耦接于所述第一校正电容,另一端接收一第一校正电压。
例如,所述第二校正电路包括一第二校正电容,耦接于所述第二积分输入端;一第三校正开关,其一端耦接于所述第二校正电容,另一端耦接于所述正电压;以及一第四校正开关,其一端耦接于所述第二校正电容,另一端接收所述第一校正电压。
例如,所述第三校正电路包括一第三校正电容,耦接于所述第二积分输入端;一第五校正开关,其一端耦接于所述第三校正电容,另一端耦接于所述正电压;以及一第六校正开关,其一端耦接于所述第三校正电容,另一端接收一第二校正电压。
例如,所述第二校正电容大于所述第三校正电容。
例如,所述第二校正电容为所述第三校正电容的25倍。
例如,所述指纹辨识系统另包含一校正电压产生电路,耦接于所述差分放大电路与所述第一感测电路及所述第二感测电路,用来根据所述放大输出信号,产生所述第一校正电压以及所述第二校正电压。
例如,所述第一积分电路包括一第一放大器,耦接于所述第一积分输入端;以及一第一积分电容,耦接于所述第一积分输入端与所述第一放大器的一第一输出端之间。
例如,所述第二积分电路包括一第二放大器,耦接于所述第二积分输入端;以及一第二积分电容,耦接于所述第二积分输入端与所述第二放大器的一第二输出端之间。
例如,所述第一校正电路导致所述第一输出信号具有一第一校正量,所述第二校正电路导致所述第二输出信号具有一第二校正量,所述第三校正电路导致所述第二输出信号具有一第三校正量,所述第二校正量大于所述第三校正 量。
本申请另提供了一种电子装置,包括一运作电路;以及一指纹辨识系统,所述指纹辨识系统包括复数个第一像素电路,所述复数个第一像素电路中一第一像素电路与一手指形成一接触电容;一第一感测电路,耦接于所述第一像素电路,用来感测所述接触电容并输出一第一输出信号,所述第一感测电路包括一第一积分电路,具有一第一积分输入端;以及一第一校正电路,耦接于所述第一积分输入端,用来校正所述第一输出信号;至少一第二像素电路;一第二感测电路,耦接于所述至少一第二像素电路中一第二像素电路,用来输出一第二输出信号,所述第二感测电路包括一第二积分电路,具有一第二积分输入端;一第二校正电路,耦接于所述第二积分输入端;以及一第三校正电路,耦接于所述第二积分输入端,其中所述第二校正电路及所述第三校正电路用来校正所述第二输出信号;以及一差分放大电路,耦接于所述第一感测电路及所述第二感测电路,用来将所述第一输出信号与所述第二输出信号的一相差值放大,以产生一放大输出信号。
本申请另提供了一种本申请提供的指纹辨识系统及电子装置,其利用虚设像素电路产生虚设输出信号,进而消除寄生电容的效应,以提升电容感测或指纹辨识的精准度及效能。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请实施例一指纹辨识系统的示意图。
图2为本申请实施例一正常感测电路及一虚设感测电路的示意图。
图3为本申请实施例一指纹辨识系统的俯视示意图。
图4为本申请实施例一电子装置的示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
于传统指纹辨识系统中,像素电路的输出信号受到像素电路及感测电路内部寄生电容的影响,使得像素电路的输出信号中相关于接触电容变化量的信号成份并不显着,像素电路的输出信号亦受到温度和噪声的影响,而使指纹辨识的精准度下降。因此,本申请除了正常的像素电路之外,另包含虚设像素电路,利用虚设像素电路产生虚设输出信号,来抵消复数个正常像素电路的输出信号中受到寄生电容、温度及噪声影响的信号成份,并针对复数个正常像素电路的输出信号中的指纹信号成份进行放大以及后续信号处理,以判断纹蜂(FingerRidge)或纹谷(FingerValley),增加指纹辨识精准度。
另外,由于正常像素电路中的驱动电路与虚设像素电路中的驱动电路在电路实作上很难完全一致,而导致虚设输出信号进入饱和(Saturation)状态,或是导致(耦接于正常像素电路以及虚设像素电路的)差分放大器进入饱和状态。因此,本申请利用包含于一虚设感测电路的二校正电路,来校正虚设输出信号,使得虚设输出信号位于一范围内,以避免虚设输出信号或差分放大器进 入饱和状态。
具体来说,请参考图1及图2,图1为本申请实施例一指纹辨识系统10的示意图,图2为本申请实施例一正常感测电路115、一虚设感测电路125的示意图。为了方便说明,图1绘示指纹辨识系统10中复数个正常像素电路的一正常像素电路以及一虚设像素电路的示意图,如图1所示,指纹辨识系统10包含一正常像素电路11、一虚设像素电路12、正常感测电路115、虚设感测电路125以及一差分放大电路DAmp。正常感测电路115耦接于正常像素电路11,用来输出一正常输出信号Vo1至差分放大电路DAmp,另外,虚设感测电路125耦接于虚设像素电路12,用来输出一虚设输出信号Vo2至差分放大电路DAmp。差分放大电路DAmp用来将正常输出信号Vo1与虚设输出信号Vo2的一相差值(Vo1-Vo2)放大,以产生一放大输出信号Vo。
另外,正常像素电路11及虚设像素电路12皆可接受一手指FG的接触,并与手指FG分别形成一接触电容Cf_1及一接触电容Cf_2。正常感测电路115可感测接触电容Cf_1并输出正常输出信号Vo1,另外,第二感测电路125耦接于虚设像素电路12,用来输出虚设输出信号Vo2。其中,正常输出信号Vo1包含一大信号分量
Figure PCTCN2017072527-appb-000001
以及一小信号分量ΔVo1(即正常输出信号Vo1可表示为
Figure PCTCN2017072527-appb-000002
),其中大信号分量
Figure PCTCN2017072527-appb-000003
可为正常输出信号Vo1的一平均值,而小信号分量ΔVo1相关于接触电容Cf_1的一变化量ΔCf_1,其为用来进行指纹辨识的指纹信号。需注意的是,虚设像素电路12可经适当设计,使得虚设输出信号Vo2与正常输出信号Vo1的大信号分量
Figure PCTCN2017072527-appb-000004
相等(即虚设输出信号Vo2可表示为
Figure PCTCN2017072527-appb-000005
)。于一实施例中,差分放大电路DAmp可为一程控增益放大器(Programmable Gain Amplifier,PGA)。差分放大电路DAmp可耦接至 一模拟数字转换器(Analog-to-Digital Converter,ADC)以及一后端电路(未绘示于图1),以对放大输出信号Vo进行后续信号处理,并判断正常像素电路11对应于手指FG的一纹蜂或一纹谷。
换句话说,对应于正常像素电路11的正常输出信号Vo1相关于正常像素电路11所对应的接触电容Cf_1,即正常输出信号Vo1包含指纹信号(即小信号分量ΔVo1)。另一方面,对应于虚设像素电路12的虚设输出信号Vo2用来抵消正常输出信号Vo1中受到寄生电容、温度及噪声影响的信号成份,而虚设输出信号Vo2并未包含指纹信号(即虚设像素电路12所对应的接触电容Cf_2并不会对虚设输出信号Vo2造成影响)。指纹辨识系统10利用差分放大电路DAmp将正常输出信号Vo1与虚设输出信号Vo2之间的相差值(Vo1-Vo2)放大,即将指纹信号放大,以进行后续信号处理。
另外,如图2所示,正常感测电路115包含一积分电路1150以及一校正电路1152,积分电路1150包含一放大器Amp1以及一积分电容CI1,积分电容CI1耦接于放大器Amp1的一负输入端(标示有「-」号)与一输出端之间(其中放大器Amp1的负输入端即为积分电路1150的积分输入端),而放大器Amp1的一正输入端(标示有「+」号)接收一电压Vref。校正电路1152包括一校正电容C1以及校正开关S1、S2,校正开关S1、S2的一第一端耦接于校正电容C1,校正开关S1的一第二端接收一正电压VDD,校正开关S2的一第二端接收一第一校正电压VDAC
虚设感测电路125包含一积分电路1250以及校正电路1252、1254。同样地,积分电路1250包含一放大器Amp2以及一积分电容CI2,积分电容CI2耦接于放大器Amp2的一负输入端(标示有「-」号)与一输出端之间(其中 放大器Amp2的负输入端即为积分电路1250的积分输入端),而放大器Amp2的一正输入端(标示有「+」号)接收电压Vref。校正电路1252、1254与校正电路1152类似,校正电路1252包括一校正电容C2以及校正开关S3、S4,校正电路1254包括一校正电容C3以及校正开关S5、S6,校正开关S3、S4的第一端耦接于校正电容C2,校正开关S5、S6的第一端耦接于校正电容C3,校正开关S3、S5的第二端接收正电压VDD,校正开关S4的一第二端接收第一校正电压VDAC,校正开关S6的一第二端接收一第二校正电压VDAC’。其中,校正开关S1、S3、S5可受控一信号CK1,而校正开关S2、S4、S6可受控一信号CK2。
另外,指纹辨识系统10还包含一校正电压产生电路14,耦接于差分放大电路DAmp与正常感测电路115及虚设感测电路125之间,用来根据放大输出信号Vo产生第一校正电压VDAC以及第二校正电压VDAC’。为了避免放大器Amp1、Amp2或差分放大电路DAmp进如饱和状态,校正电路1152、1252、1254可用来校正正常输出信号Vo1及虚设输出信号Vo2,使得正常输出信号Vo1维持于一特定范围RG1中且虚设输出信号Vo2维持于一特定范围RG2。
于一实施例中,校正电压产生电路14可先决定第一校正电压VDAC,以确保正常输出信号Vo1的电压位于特定范围RG1中,再视情况决定第二校正电压VDAC’,使得虚设输出信号Vo2的电压位于特定范围RG2中。换句话说,当校正电压产生电路14产生第一校正电压VDAC后,校正电路1152的一输出信号施加于积分电路1150的积分输入端,使得正常输出信号Vo1的电压向上抬升一校正值ΔV1,使得正常输出信号Vo1的电压位于特定范围RG1中,同时,校正电路1252的一输出信号施加于积分电路1250的积分输入端,使得虚设输 出信号Vo2的电压亦向上抬升一校正值ΔV2,若虚设输出信号Vo2的电压仍于特定范围RG2之外,校正电压产生电路14还可产生第二校正电压VDAC’,而校正电路1254根据正电压VDD及第二校正电压VDAC’所产生的一输出信号施加于积分电路1250的积分输入端,使得虚设输出信号Vo2的电压再次向上抬升一校正值ΔV3,以至于虚设输出信号Vo2的电压为特定范围RG2之内。换句话说,指纹辨识系统10利用校正电路1252对虚设输出信号Vo2进行一粗校正(Coarse Tune Calibration),而利用校正电路1254对虚设输出信号Vo2进行一细校正(Fine Tune Calibration),也就是说,校正值ΔV2大于校正值ΔV3。为了使校正值ΔV2大于校正值ΔV3,于一实施例中,可选定校正电容C2的电容值大于校正电容C3的电容值,举例来说,校正电容C2可大于校正电容C3的8倍,例如,校正电容C2可为校正电容C3的25倍。
除此之外,正常像素电路11及虚设像素电路12的电路结构并未有所限,举例来说,如图1所示,正常像素电路11可包含一接触层110、一屏蔽层112以及一驱动电路113,接触层110及屏蔽层112皆为集成电路布局中的金属层,接触层110为一顶层金属层(Top Metal),用来接受手指FG的接触,接触层110与手指FG形成接触电容Cf_1,而屏蔽层112可为顶层金属层的下一层金属层,即屏蔽层112布局于接触层100的正下方,用来对屏蔽层112以下的电路产生屏蔽效应,以避免屏蔽层112以下的电路对接触层110产生干扰,屏蔽层112与接触层110形成寄生电容Cp_1。另外,接触层110耦接于正常感测电路115正常输出信号Vo1与接触电容Cf_1及寄生电容Cp_1相关,正常输出信号Vo1可表示为
Figure PCTCN2017072527-appb-000006
其中A、B、D为相关于正电压VDD或是驱动电路及其所产生电压的参数,
Figure PCTCN2017072527-appb-000007
可代表复数个像素 电路所形成的复数个接触电容的一平均值。另外,参数A、B、D会受到温度或噪声的影响而随之变化。
另一方面,虚设像素电路12可包含一接触层120、一屏蔽层122、金属层124、126、一驱动电路121以及一驱动电路123,接触层120、屏蔽层122及金属层124、126皆为集成电路布局中的金属层,其中接触层120为一顶层金属层,用来接受手指FG的接触,接触层120与手指FG形成接触电容Cf_2,而屏蔽层122可为顶层金属层的下一层金属层,即屏蔽层122布局于接触层120的正下方,用来对屏蔽层122以下的电路产生屏蔽效应,以避免屏蔽层122以下的电路对接触层120产生干扰,屏蔽层122与接触层120形成一寄生电容Cp_2。另外,金属层124可为屏蔽层122的下一层金属层(即金属层124可布局/设置于屏蔽层122下方),而金属层126可为金属层124的下一层金属层(即金属层126可布局/设置于金属层124下方),金属层124与金属层126之间形成有一寄生电容Cp_3。接触层120耦接于驱动电路121;金属层124耦接于驱动电路123;屏蔽层122及金属层126耦接于驱动电路123。另外,虚设感测电路125耦接于金属层124。
需注意的是,第二感测电路125并未连接于接触层120,因此,接触电容Cf_2(及寄生电容Cp_2)并不会对虚设输出信号Vo2造成影响。虚设输出信号Vo2可表示为Vo2=E*Cp_3+F,其中E、F为相关于正电压VDD或驱动电路的参数,参数E、F也会受到温度或噪声的影响而随之变化。
另外,虚设像素电路12可经适当设计,使得
Figure PCTCN2017072527-appb-000008
Figure PCTCN2017072527-appb-000009
即虚设输出信号Vo2与正常输出信号Vo1的大信号分量
Figure PCTCN2017072527-appb-000010
相等
Figure PCTCN2017072527-appb-000011
如此一来,差分放大电路Amp可仅针对指纹信号(即小信号 分量ΔVo1,其中ΔVo1=Vo1-Vo2=A*ΔCf_1)放大,也就是说,放大输出信号VO可表示为VO=Av*(Vo1-Vo2)=Av*ΔVo1,其中Av代表差分放大电路Amp的一增益。如此一来,指纹辨识系统10的后端电路即可根据放大输出信号VO,判断正常像素电路11对应于手指FG的纹蜂或纹谷。
需注意的是,于正常输出信号Vo1中,参数A、B、D会受到温度或噪声的影响而随之变化,然而于虚设输出信号Vo2中,参数E、F也会受到温度或噪声的影响而随之变化。也就是说,利用差分放大电路Amp,正常输出信号Vo1中受到温度或噪声的影响的信号成份可被消除(正常输出信号Vo1减去虚设输出信号Vo2),而差分放大电路Amp仅针对相关于接触电容变化量ΔCf_1的指纹信号进行放大,以增加指纹辨识系统10的指纹辨识精准度。
由上述可知,指纹辨识系统10除了正常像素电路11之外,另包含虚设像素电路12,利用虚设像素电路12产生虚设输出信号Vo2,来抵消复数个正常像素电路的输出信号中受到寄生电容、温度及噪声影响的信号成份,并针对复数个正常像素电路的输出信号中的指纹信号成份(小信号分量ΔVo1,ΔVo1=A*ΔCf_1)进行放大以及后续信号处理,以判断手指FG的纹蜂或纹谷。另外,指纹辨识系统10利用校正电路1252及校正电路1254分别对虚设输出信号Vo2进行粗校正及细校正,使得虚设输出信号Vo2的电压位于特定范围RG2之内。
另外,本申请的指纹辨识系统中于正常像素电路及虚设像素电路并未有所限,请参考图3,图3为本申请实施例一指纹辨识系统30的俯视示意图,指纹辨识系统30包含排列成一阵列的复数个正常像素电路31以及复数个虚设像素电路32,如图3所示,而复数个虚设像素电路32可以随机的方式排列于所 述数组。需注意的是,图3所绘示复数个正常像素电路31以及复数个虚设像素电路32的排列方式仅为一实施方式,复数个虚设像素电路可排列于所述阵列的周围,或排列于所述阵列的一行或一列,而不在此限。
另外,本申请的指纹辨识系统可应用于一电子装置中。请参考图4,图4为本申请实施例一电子装置40的示意图,电子装置40可为一平板电脑或一智能手机,如图4所示,电子装置40包含一运作电路42以及一指纹辨识系统44,指纹辨识系统44耦接于运作电路42,其可由指纹辨识系统10来实现,另外,运作电路42可包含一处理器(Processor)及一储存装置,储存装置可为只读内存(Read-Only Memory,ROM)、随机存取存储(Random-Access Memory,RAM)、非挥发性内存(Non-Volatile Memory,例如,一电子抹除式可复写只读内存器(Electrically Erasable Programmable Read Only Memory,EEPROM)或一快闪存储(Flash Memory))。
综上所述,本申请利用虚设像素电路产生虚设输出信号,来抵消正常像素电路的输出信号中受到寄生电容、温度及噪声影响的信号成份,并针对正常像素电路的输出信号中的指纹信号进行放大以及后续信号处理,以增加指纹辨识精准度。另外,本申请利用二个校正电路,分别对虚设输出信号进行粗校正及细校正,使得虚设输出信号的电压位于特定范围之内。
以上所述仅为本申请的部分实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种指纹辨识系统,所述指纹辨识系统包括:
    复数个第一像素电路,所述复数个第一像素电路中一第一像素电路与一手指形成一接触电容;
    一第一感测电路,耦接于所述第一像素电路,用来感测所述接触电容并输出一第一输出信号,所述第一感测电路包括:
    一第一积分电路,具有一第一积分输入端;以及
    一第一校正电路,耦接于所述第一积分输入端,用来校正所述第一输出信号;
    至少一第二像素电路;
    一第二感测电路,耦接于所述至少一第二像素电路中一第二像素电路,用来输出一第二输出信号,所述第二感测电路包括:
    一第二积分电路,具有一第二积分输入端;
    一第二校正电路,耦接于所述第二积分输入端;以及
    一第三校正电路,耦接于所述第二积分输入端,其中所述第二校正电路及所述第三校正电路用来校正所述第二输出信号;以及
    一差分放大电路,耦接于所述第一感测电路及所述第二感测电路,用来将所述第一输出信号与所述第二输出信号的一相差值放大,以产生一放大输出信号。
  2. 如权利要求1所述的指纹辨识系统,其中,所述第一校正电路包括:
    一第一校正电容,耦接于所述第一积分输入端;
    一第一校正开关,其一端耦接于所述第一校正电容,另一端耦接于一正电压;以及
    一第二校正开关,其一端耦接于所述第一校正电容,另一端接收一第一校正电压。
  3. 如权利要求2所述的指纹辨识系统,其中,所述第二校正电路包括:
    一第二校正电容,耦接于所述第二积分输入端;
    一第三校正开关,其一端耦接于所述第二校正电容,另一端耦接于所述正电压;以及
    一第四校正开关,其一端耦接于所述第二校正电容,另一端接收所述第一校正电压。
  4. 如权利要求2所述的指纹辨识系统,其中,所述第三校正电路包括:
    一第三校正电容,耦接于所述第二积分输入端;
    一第五校正开关,其一端耦接于所述第三校正电容,另一端耦接于所述正电压;以及
    一第六校正开关,其一端耦接于所述第三校正电容,另一端接收一第二校正电压。
  5. 如权利要求4所述的指纹辨识系统,其中,所述第二校正电容大于所述第三校正电容。
  6. 如权利要求4所述的指纹辨识系统,其中,所述第二校正电容为所述第三校正电容的25倍。
  7. 如权利要求4所述的指纹辨识系统,其中,另包含一校正电压产生电路,耦接于所述差分放大电路与所述第一感测电路及所述第二感测电路,用来根据所述放大输出信号,产生所述第一校正电压以及所述第二校正电压。
  8. 如权利要求1所述的指纹辨识系统,其中,所述第一积分电路包括:
    一第一放大器,耦接于所述第一积分输入端;以及
    一第一积分电容,耦接于所述第一积分输入端与所述第一放大器的一第一输出端之间。
  9. 如权利要求1所述的指纹辨识系统,其中,所述第二积分电路包括:
    一第二放大器,耦接于所述第二积分输入端;以及
    一第二积分电容,耦接于所述第二积分输入端与所述第二放大器的一第二输出端之间。
  10. 如权利要求1所述的指纹辨识系统,其中,所述第一校正电路导致所述第一输出信号具有一第一校正量,所述第二校正电路导致所述第二输出信号具有一第二校正量,所述第三校正电路导致所述第二输出信号具有一第三校正量,所述第二校正量大于所述第三校正量。
  11. 一种电子装置,所述电子装置包括:
    一运作电路;以及
    一指纹辨识系统,所述指纹辨识系统为权利要求1-10中任意一项所述的指纹辨识系统。
PCT/CN2017/072527 2017-01-24 2017-01-24 指纹辨识系统及电子装置 WO2018137167A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780000068.1A CN107077256B (zh) 2017-01-24 2017-01-24 指纹辨识系统及电子装置
PCT/CN2017/072527 WO2018137167A1 (zh) 2017-01-24 2017-01-24 指纹辨识系统及电子装置
EP17894615.8A EP3416030B1 (en) 2017-01-24 2017-01-24 Fingerprint recognition system and electronic device
US16/130,665 US10853615B2 (en) 2017-01-24 2018-09-13 Fingerprint identification system and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072527 WO2018137167A1 (zh) 2017-01-24 2017-01-24 指纹辨识系统及电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/130,665 Continuation US10853615B2 (en) 2017-01-24 2018-09-13 Fingerprint identification system and electronic device

Publications (1)

Publication Number Publication Date
WO2018137167A1 true WO2018137167A1 (zh) 2018-08-02

Family

ID=59613811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072527 WO2018137167A1 (zh) 2017-01-24 2017-01-24 指纹辨识系统及电子装置

Country Status (4)

Country Link
US (1) US10853615B2 (zh)
EP (1) EP3416030B1 (zh)
CN (1) CN107077256B (zh)
WO (1) WO2018137167A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113568204A (zh) * 2020-04-28 2021-10-29 奇景光电股份有限公司 具备检测物体的功能的显示面板和检测物体的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019153319A1 (zh) 2018-02-12 2019-08-15 深圳市汇顶科技股份有限公司 指纹检测电路、指纹识别装置以及终端设备
CN108391447B (zh) * 2018-03-01 2022-04-01 深圳市汇顶科技股份有限公司 电容指纹芯片、失配调整方法和终端设备
CN110944069B (zh) * 2018-09-21 2021-07-13 北京小米移动软件有限公司 终端屏幕及其控制方法、装置和终端
KR20210101977A (ko) * 2020-02-11 2021-08-19 삼성전자주식회사 지문 감지 장치 및 그 방법
CN113705319A (zh) * 2020-05-21 2021-11-26 联詠科技股份有限公司 光学指纹感测装置以及光学指纹感测方法
US11412169B2 (en) * 2020-06-03 2022-08-09 Pixart Imaging Inc. Pixel circuit outputting over exposure information and method of calculating real intensity thereof, pixel array having the same
CN113763870B (zh) * 2020-06-03 2024-06-04 原相科技股份有限公司 像素电路及像素阵列
CN113837165B (zh) * 2021-11-30 2022-04-15 广州粤芯半导体技术有限公司 电容式指纹传感器及电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080317300A1 (en) * 2007-06-22 2008-12-25 Mstar Semiconductor, Inc. Fingerprint Sensing Circuit
CN102004903A (zh) * 2010-11-17 2011-04-06 深圳市中控生物识别技术有限公司 一种防伪指纹识别装置及其指纹识别方法
CN105335715A (zh) * 2015-10-28 2016-02-17 深圳市汇顶科技股份有限公司 指纹识别系统
CN106203366A (zh) * 2016-07-14 2016-12-07 浙江赢视科技有限公司 电容式指纹识别装置及其识别方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000213908A (ja) * 1998-11-16 2000-08-04 Sony Corp 静電容量検出装置およびその検査方法並びに指紋照合装置
JP2003028607A (ja) * 2001-07-12 2003-01-29 Sony Corp 静電容量検出装置およびこれを用いた指紋照合装置
JP2005326167A (ja) * 2004-05-12 2005-11-24 Alps Electric Co Ltd 容量検出型センサ
US20080122454A1 (en) * 2006-11-29 2008-05-29 Aisin Seiki Kabushiki Kaisha Capacitance detecting apparatus
TWI420826B (zh) * 2010-04-09 2013-12-21 Memsor Corp 具有校正機制之電容式感測器及電容偵測方法
KR101202745B1 (ko) * 2011-04-21 2012-11-19 주식회사 실리콘웍스 터치감지회로
US9390307B2 (en) 2012-05-04 2016-07-12 Apple Inc. Finger biometric sensing device including error compensation circuitry and related methods
EP3087349A4 (en) * 2013-12-27 2017-08-30 BYD Company Limited Capacitance detecting device for fingerprint identification and fingerprint identification apparatus comprising the same
KR101580381B1 (ko) * 2014-01-03 2015-12-28 삼성전기주식회사 터치 스크린 장치 및 그 제어 방법
KR101881682B1 (ko) * 2014-10-13 2018-07-24 선전 구딕스 테크놀로지 컴퍼니, 리미티드 지문 인식용 센서 픽셀 회로
CN105740756A (zh) * 2014-12-26 2016-07-06 义隆电子股份有限公司 指纹感测装置及其指纹感测方法
US9721140B2 (en) * 2015-02-16 2017-08-01 Elan Microelectronics Corporation Sensing method of fingerprint sensor and related sensing circuit
TWI605392B (zh) * 2015-03-20 2017-11-11 茂丞科技股份有限公司 懸浮電容式指紋感測器及其製造方法
CN106716444B (zh) * 2015-04-23 2021-03-19 深圳市汇顶科技股份有限公司 多功能指纹传感器
CN106462734B (zh) * 2015-04-24 2019-09-27 深圳市汇顶科技股份有限公司 用于指纹识别的像素感测电路、系统和电子设备
CN105046247B (zh) * 2015-08-31 2018-06-22 京东方科技集团股份有限公司 表面结构识别单元、电路及识别方法和电子设备
CN105426865B (zh) * 2015-12-07 2019-10-25 湖南融创微电子有限公司 指纹检测电路、指纹传感器以及指纹检测方法
CN205862342U (zh) * 2016-06-20 2017-01-04 康达生命科学有限公司 电容式指纹传感器
CN106156741B (zh) * 2016-07-04 2019-07-19 信利(惠州)智能显示有限公司 指纹识别单元电路及其控制方法以及指纹识别装置
TWI622935B (zh) * 2016-07-20 2018-05-01 速博思股份有限公司 免除干擾的指紋辨識裝置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080317300A1 (en) * 2007-06-22 2008-12-25 Mstar Semiconductor, Inc. Fingerprint Sensing Circuit
CN102004903A (zh) * 2010-11-17 2011-04-06 深圳市中控生物识别技术有限公司 一种防伪指纹识别装置及其指纹识别方法
CN105335715A (zh) * 2015-10-28 2016-02-17 深圳市汇顶科技股份有限公司 指纹识别系统
CN106203366A (zh) * 2016-07-14 2016-12-07 浙江赢视科技有限公司 电容式指纹识别装置及其识别方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3416030A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113568204A (zh) * 2020-04-28 2021-10-29 奇景光电股份有限公司 具备检测物体的功能的显示面板和检测物体的方法

Also Published As

Publication number Publication date
EP3416030A1 (en) 2018-12-19
EP3416030A4 (en) 2019-03-20
CN107077256A (zh) 2017-08-18
EP3416030B1 (en) 2020-06-10
US10853615B2 (en) 2020-12-01
CN107077256B (zh) 2020-09-08
US20190012506A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
WO2018137167A1 (zh) 指纹辨识系统及电子装置
KR102052151B1 (ko) 지문인식 시스템 및 전자장치
JP6750059B2 (ja) 改良された感知素子を備えた容量指紋センサ
WO2017016102A1 (zh) 指纹检测电路及指纹辨识系统
JP6810739B2 (ja) コモンモード抑圧の指紋感知装置
US9898639B2 (en) Fingerprint sensor, electronic device having the same, and method of operating fingerprint sensor
US9916490B2 (en) Fingerprint sensors and electronic devices having the same
WO2018035759A1 (zh) 电容判读电路及指纹辨识系统
WO2017067524A1 (en) Capacitance detecting sensors and related devices and systems
US10282578B2 (en) Array sensor and sensing method thereof
US20170068837A1 (en) Active baseline signal cancellation in fingerprint sensors
WO2017001993A1 (zh) 降低寄生电容的指纹辨识传感器
US20160313847A1 (en) Sensing device
US20200125816A1 (en) Fingerprint authentication system and method providing for reduced latency
WO2017071130A1 (zh) 像素模块及指纹识别系统
TWI831017B (zh) 電容式指紋採集模組、指紋辨識裝置及資訊處理裝置
TWI812959B (zh) 指紋採集電路、晶片及電子設備
Tiao et al. A CMOS readout circuit for LTPS-TFT capacitive fingerprint sensor
WO2020102934A1 (zh) 信号产生电路以及相关方法
US20180039816A1 (en) Reading device and reading method for fingerprint sensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017894615

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017894615

Country of ref document: EP

Effective date: 20180914

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE