WO2018135432A1 - Film, resin composition, and production method for polyamide-imide resin - Google Patents

Film, resin composition, and production method for polyamide-imide resin Download PDF

Info

Publication number
WO2018135432A1
WO2018135432A1 PCT/JP2018/000805 JP2018000805W WO2018135432A1 WO 2018135432 A1 WO2018135432 A1 WO 2018135432A1 JP 2018000805 W JP2018000805 W JP 2018000805W WO 2018135432 A1 WO2018135432 A1 WO 2018135432A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
film
resin
polyamideimide
structural unit
Prior art date
Application number
PCT/JP2018/000805
Other languages
French (fr)
Japanese (ja)
Inventor
皓史 宮本
希望 増井
将 金坂
池内 淳一
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62909127&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018135432(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020207009594A priority Critical patent/KR20200038329A/en
Priority to KR1020187035605A priority patent/KR20180133564A/en
Priority to CN201880007375.7A priority patent/CN110191909B/en
Priority to KR1020187009234A priority patent/KR101952823B1/en
Publication of WO2018135432A1 publication Critical patent/WO2018135432A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a film containing a polyamideimide resin, a resin composition containing a polyamideimide resin, and a method for producing a polyamideimide resin.
  • the image display apparatus includes a display element such as a liquid crystal display element or an organic EL display element, and other constituent members such as a polarizing plate, a retardation plate, and a front plate. In order to achieve a flexible display, all these components need to be flexible.
  • Glass has been used as the front plate. Glass is highly transparent and can exhibit high hardness depending on the type of glass, but it is very rigid and easily broken, making it difficult to use as a front plate material for flexible displays.
  • polymer materials as a substitute for glass is being studied. Since the front plate made of a polymer material is easy to exhibit flexible characteristics, it can be expected to be used for various applications.
  • Various resins can be used as the flexible resin, and one of them is a polyamideimide resin.
  • Polyamideimide resins are used in various applications from the viewpoints of transparency and heat resistance, and various methods for their production have been studied.
  • Patent Document 1 discloses a unit structure derived from TFDB (2,2′-bistrifluoromethyl-4,4′-biphenyldiamine), 6FDA (4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride. And a copolymerized polyamideimide film comprising a resin in which a unit structure derived from TPC (tetrephthaloyl chloride; 1,4-benzenedicarbonyl chloride) is copolymerized.
  • Patent Document 2 describes a copolymerized polyamide film having excellent mechanical properties such as pencil hardness.
  • Patent Document 1 has an average transmittance of 89% or more at a wavelength of 380 to 780 nm, but it is not clear whether the film has a sufficiently high surface hardness. Moreover, there is no suggestion about a form suitable for the expression of high surface hardness. Patent Document 2 describes that the film has a surface pencil hardness of 3H or more, but when the pencil hardness is evaluated, the result may vary depending on the illuminance conditions used.
  • an object of the present invention is to provide a film having a high surface hardness, including a polyamideimide resin having a high imidization ratio, which is particularly suitably used as a front plate for a flexible display or the like.
  • the present inventors diligently studied various characteristics of the polyamideimide resin by paying attention to the imidization ratio of the polyamideimide resin and the surface hardness of the obtained film. As a result, it was found that the surface hardness of the film can be increased by using a polyamideimide resin satisfying specific requirements, and the present invention has been completed.
  • the present invention includes the following preferred embodiments.
  • It has at least a structural unit derived from diamine, a structural unit derived from dicarboxylic acid, and a structural unit derived from tetracarboxylic dianhydride, and an imidation ratio of 95% or more as measured by two-dimensional NMR A film comprising polyamideimide resin A having [2]
  • the diamine has the formula (3): [In Formula (3), X is Formula (3e '): [In the formula (3e ′), R 10 to R 17 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and are included in R 10 to R 17.
  • the dicarboxylic acid has the formula (2): [In Formula (2), Z represents Formula (2a) or (2b): Wherein (2a) and Formula (2b), U 1 represents a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3 ) 2 -, - Ar -, - SO 2 -, - CO -, - O-Ar-O -, - Ar-O-Ar -, - Ar-CH 2 -Ar-, —Ar—C (CH 3 ) 2 —Ar— or Ar—SO 2 —Ar— is represented, and * represents a bond.
  • B 1 and B 2 each independently represent OH or a halogen atom.
  • the tetracarboxylic dianhydride has the formula (4): [In Formula (4), Y represents Formula (4g): [In Formula (4g), W 1 represents a single bond, —C (CH 3 ) 2 — or C (CF 3 ) 2 —, and * represents a bond. ] Is represented.
  • It has a structural unit derived from diamine, a structural unit derived from dicarboxylic acid, and a structural unit derived from tetracarboxylic dianhydride, and has an imidization ratio of 60% or more as measured by two-dimensional NMR.
  • a resin composition comprising at least a polyamideimide resin B and a solvent.
  • the diamine has the formula (3): [In Formula (3), X is Formula (3e '): [In the formula (3e ′), R 10 to R 17 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and are included in R 10 to R 17. Each hydrogen atom may be independently substituted with a halogen atom, and * represents a bond. ] Is represented.
  • the dicarboxylic acid has the formula (2): [In the formula (2), Z represents the following formula (2a) or formula (2b): Wherein (2a) and Formula (2b), U 1 represents a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3 ) 2 -, - Ar -, - SO 2 -, - CO -, - O-Ar-O -, - Ar-O-Ar -, - Ar-CH 2 -Ar-, —Ar—C (CH 3 ) 2 —Ar— or Ar—SO 2 —Ar— is represented, and * represents a bond.
  • B 1 and B 2 each independently represent OH or a halogen atom.
  • the tetracarboxylic dianhydride has the formula (4): [In formula (4), Y represents the following formula (4g): [In Formula (4g), W 1 represents a single bond, —C (CH 3 ) 2 — or C (CF 3 ) 2 —, and * represents a bond. ] Is represented.
  • [14] A step of copolymerizing diamine, dicarboxylic acid, and tetracarboxylic dianhydride in a solvent to obtain a polyamideimide resin precursor, and (2) A method for producing a polyamideimide resin, comprising at least a step of adding a dehydrating agent and a tertiary amine to a solution containing at least a polyamideimide resin precursor and heating at a temperature of 70 to 120 ° C.
  • w and t are the following formulas: Satisfying the manufacturing method.
  • a film having a high surface hardness which includes a polyamideimide resin having a high imidization ratio and is preferably used as a front plate or the like in an image display device or the like.
  • the film of the present invention contains a polyamideimide resin A having an imidization ratio of 95% or more as measured by two-dimensional NMR.
  • the imidization ratio of the polyamide-imide resin A is lower than 95%, the surface hardness of the film containing the polyamide-imide resin cannot be sufficiently increased because the polyamide-imide resin A tends to be an excessively flexible primary structure.
  • the imidization ratio of the polyamideimide resin A is preferably 97% or more, more preferably 98% or more, and even more preferably 99% or more. The higher the imidization rate, the better.
  • the upper limit is not particularly limited, and it may be 100% or less.
  • the imidation ratio of the polyamideimide resin A is the ratio of the number of moles of imide bonds in the polyamideimide resin A to the value twice the number of moles of the structural unit derived from the tetracarboxylic dianhydride in the polyamideimide resin A.
  • it is measured by two-dimensional NMR.
  • the measurement of the imidization ratio of a polyamide-imide resin has often been performed using an infrared spectrum. In this method, a resin containing an imide is heated as described in JP-A-2004-338160. However, it is necessary to measure a fully imidized resin.
  • the imidization ratio of the polyamideimide resin A can be measured using two-dimensional NMR using a predetermined solution obtained by dissolving the film in deuterated dimethyl sulfoxide (DMSO-d6).
  • DMSO-d6 deuterated dimethyl sulfoxide
  • the pencil hardness (surface hardness) of the film of the present invention is preferably 3B or more, more preferably 2B or more, still more preferably B or more, particularly preferably HB or more, as measured according to ASTM D 3363 under an illumination condition of 4000 lux. Very preferably H or higher, most preferably 2H or higher.
  • the film of the present invention has a pencil hardness equal to or higher than the above lower limit, when used as a front plate (window film) of an image display device, it is easy to suppress scratches on the surface of the image display device, and the film shrinks and expands. It is preferable because it is easy to prevent.
  • the upper limit of the pencil hardness of the film of the present invention is not particularly limited.
  • the pencil hardness is measured according to JIS K5600-5-4: 1999. Specifically, measurement is performed at a load of 100 g and a scanning speed of 60 mm / min, and evaluation is performed under an illuminance condition of a light amount of 4000 lux. In addition, when evaluating pencil hardness, a result may change with the illumination intensity conditions to be used. Specifically, compared with the pencil hardness measured and evaluated under the illuminance condition of 4000 lux, the pencil hardness measured and measured under the lower illuminance condition is As a result of making it difficult to see scratches on the film, there is a high possibility that a higher pencil hardness than actual will be obtained. Therefore, the pencil hardness in the present specification is a value obtained by evaluating under an illuminance condition of a light amount of 4000 lux.
  • the YI value of the film of the present invention is preferably 3.5 or less, more preferably 3.0 or less, and even more preferably 2.5 or less. When the YI value is not more than the above upper limit, the visibility of the film can be further increased. Note that the lower limit of the YI value is not particularly limited, and may be usually 0 or more.
  • the YI value represents the yellowness of the film (Yellow Index: YI value). According to JIS K 7373: 2006, the spectrophotometer (UV-Vis near-infrared spectrophotometer V-670 manufactured by JASCO Corporation) was used. ).
  • the tristimulus values (X, Y, Z) obtained by measuring the transmittance with respect to light of 300 to 800 nm are calculated based on the following formula.
  • a film having a thickness of 50 to 55 ⁇ m can be used.
  • the thickness of the film of the present invention is not particularly limited as long as the YI value is in the above range, but is preferably within the above range in the thickness range described below.
  • the thickness of the film of the present invention is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, and still more preferably 40 ⁇ m or more, from the viewpoint that the pencil hardness also affects the film thickness.
  • the thickness of the film of the present invention is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and still more preferably 100 ⁇ m or less from the viewpoint of bending resistance. The thickness is measured using a contact-type digimatic indicator.
  • the total light transmittance (Tt) of the film of the present invention is preferably 70% or more, more preferably 80% or more, still more preferably 85% or more, particularly preferably 90, as measured in accordance with JIS K 7105: 1981. % Or more.
  • the total light transmittance is not less than the above lower limit, the visibility when the film of the present invention is incorporated in an image display device can be easily improved.
  • the upper limit of the total light transmittance of the film of the present invention is usually 100% or less.
  • the total light transmittance is measured using, for example, a fully automatic direct reading haze computer HGM-2DP manufactured by Suga Test Instruments Co., Ltd. according to JIS K 7105: 1981.
  • a film having a thickness of 50 to 55 ⁇ m can be used.
  • the thickness of a film will not be specifically limited, However, It is preferable to exist in the said range in the said thickness range.
  • the elastic modulus of the film of the present invention is preferably 5.9 GPa or less, more preferably 5.5 GPa or less, still more preferably 5.2 GPa or less, particularly preferably 5.0 GPa or less, most preferably, from the viewpoint of film flexibility. Is 4.5 GPa or less.
  • the elastic modulus is not more than the above upper limit, when the flexible display is bent, it is easy to suppress damage to other members due to the film.
  • the minimum of the elasticity modulus of the film of this invention is not specifically limited, Usually, it is 2.0 GPa or more.
  • the elastic modulus was measured from the slope of an SS curve measured using an autograph AG-IS manufactured by Shimadzu Corporation with a 10 mm wide test piece at a distance between chucks of 500 mm and a tensile speed of 20 mm / min. Can be measured.
  • the upper limit of the number of reciprocal folds of the film of the present invention is not particularly limited, but it is sufficiently practical as long as the film can be normally bent about 1,000,000 times or less.
  • the number of reciprocal bendings can be obtained by using, for example, a test piece cut out from a film having a thickness of 50 ⁇ m and a width of 10 mm using a MIT folding fatigue tester (model 0530) manufactured by Toyo Seiki Seisakusho.
  • the polyamideimide resin A contained in the film of the present invention has at least a structural unit derived from diamine, a structural unit derived from dicarboxylic acid, and a structural unit derived from tetracarboxylic dianhydride.
  • the polyamideimide resin A contained in the film of the present invention has a structural unit derived from diamine.
  • the diamine include a compound represented by the formula (3).
  • Polyamideimide resin A may have a structural unit derived from one kind of diamine, or may have a structural unit derived from two or more kinds of diamines.
  • X represents a divalent organic group.
  • the amount of the constitutional unit is the total constitution contained in the polyamideimide resin A. Based on the unit, it is preferably 47.5 mol% or more, more preferably 49.0 mol% or more, and further preferably 49.5 mol% or more.
  • the amount of the structural unit derived from the diamine represented by the formula (3) is not less than the above lower limit, it is easy to obtain a high molecular weight polyamideimide resin and easily develop high surface hardness.
  • the amount of the structural unit derived from the diamine represented by the formula (3) is preferably 50.5 mol% or less, more preferably 50.0 mol, based on all the structural units contained in the polyamideimide resin A. % Or less, more preferably 49.99 mol% or less.
  • the amount of the structural unit derived from the diamine represented by the formula (3) is not more than the above upper limit, high transparency and low yellowness are likely to be exhibited.
  • X in the formula (3) represents a divalent organic group, and preferably represents an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • the divalent organic group include groups represented by formulas (3a) to (3i); a hydrogen atom in the groups represented by formulas (3a) to (3i) is a methyl group, a fluoro group, or a chloro group. Or a group substituted with a trifluoromethyl group; and a divalent chain hydrocarbon group having 6 or less carbon atoms.
  • V 1 ⁇ V 3 are each independently a single bond, -O -, - S -, - CH 2 -, - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2- , -C (CF 3 ) 2- , -SO 2 -or CO- is represented.
  • V 1 and V 3 are a single bond, —O— or S—
  • V 2 is —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —.
  • SO 2 — is preferably in the meta position or the para position with respect to each ring, respectively. More preferably.
  • V 1 to V 3 are each independently preferably a single bond, —O— or S— from the viewpoint of the surface hardness and flexibility of the film of the present invention, and preferably a single bond or O—. It is more preferable.
  • the diamine represented by the formula (3) include aliphatic diamines, aromatic diamines, and mixtures thereof.
  • the “aromatic diamine” represents a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group or other substituent may be included in a part of the structure.
  • the aromatic ring may be a single ring or a condensed ring, and examples thereof include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, and a fluorene ring. Among these, a benzene ring is preferable.
  • the “aliphatic diamine” refers to a diamine in which an amino group is directly bonded to an aliphatic group, and an aromatic ring or other substituent may be included in a part of the structure.
  • aliphatic diamine examples include acyclic aliphatic diamines such as hexamethylene diamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, norbornane diamine, and 4,4 ′.
  • -Cyclic aliphatic diamines such as diaminodicyclohexylmethane. These can be used alone or in combination of two or more.
  • aromatic diamines examples include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene, and 2,6-diamino.
  • An aromatic diamine having one aromatic ring such as naphthalene; 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether (ODA), 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 3,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfone, 1,4-bis (4-aminophenoxy) benzene, 1, 3-bis (4-aminophenoxy) benzene, 4,4 ' Diaminodiphenylsulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone
  • aromatic diamine preferably 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenylsulfone, 1,4-bis (4-aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2′-dimethylbenzidine, 2,2′-bis (Trifluoromethyl) benzidine, 4,4'-bis (4-aminophenoxy)
  • one or more selected from the group consisting of aromatic diamines having a biphenyl structure may be used from the viewpoints of surface hardness, flexibility, bending resistance, transparency and yellowness of the film of the present invention.
  • aromatic diamines having a biphenyl structure selected from the group consisting of 2,2′-dimethylbenzidine, 2,2′-bis (trifluoromethyl) benzidine, 4,4′-bis (4-aminophenoxy) biphenyl, and 4,4′-diaminodiphenyl ether It is more preferable to use one or more, and it is even more preferable to use 2,2′-bis (trifluoromethyl) benzidine.
  • the polyamideimide resin A has at least a structural unit derived from a diamine in which X in the formula (3) is represented by the formula (3e ′).
  • X in the formula (3) is represented by the formula (3e ′).
  • R 10 to R 17 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and are included in R 10 to R 17.
  • Each hydrogen atom may be independently substituted with a halogen atom, and * represents a bond.
  • R 10 to R 17 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, preferably a hydrogen atom or 1 to 6 represents an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, wherein the hydrogen atoms contained in R 10 to R 17 are each independently substituted with a halogen atom. Also good. From the viewpoint of the surface hardness, flexibility and transparency of the film of the present invention, R 10 to R 17 are each independently more preferably a hydrogen atom, a methyl group, a fluoro group, a chloro group or a trifluoromethyl group. Particularly preferred are a hydrogen atom or a trifluoromethyl group.
  • the polyamideimide resin A is a diamine (2,2′-bis (trifluoromethyl) benzidine, also referred to as TFMB) in which X in the formula (3) is represented by the formula (3e ′′). It is more preferable to have at least the derived structural unit.
  • the film of the present invention has high transparency, and at the same time, the polyamideimide resin A has a skeleton containing a fluorine element, so that the solubility of the polyamideimide resin in the solvent is improved, and the film of the present invention is Since the viscosity of the polyamidoimide varnish used when producing can be suppressed low, it becomes easy to manufacture the film of this invention. [In the formula (3e ′′), * represents a bond. ]
  • X in the formula (3) is derived from the diamine represented by the formula (3e ′), preferably the formula (3e ′′).
  • the amount of the unit is preferably 30 mol% or more based on the entire constitutional unit derived from the diamine contained in the polyamideimide resin A, from the viewpoint of improving the transparency of the film of the present invention and the ease of production.
  • it is 50 mol% or more, More preferably, it is 70 mol% or more.
  • the upper limit of the amount of the structural unit derived from the diamine in which X in the formula (3) is represented by the formula (3e ′), preferably the formula (3e ′′) is not particularly limited, and the diamine contained in the polyamideimide resin A 100 mol% or less should just be based on the whole structural unit derived from.
  • the ratio of the structural unit derived from the diamine in which X in the formula (3) is represented by the formula (3e ′) or (3e ′′) can be measured using, for example, two-dimensional NMR, or charged with raw materials It can also be calculated from the ratio.
  • the polyamideimide resin A contained in the film of the present invention has a structural unit derived from dicarboxylic acid.
  • the polyamideimide resin A contained in the film of the present invention has a structural unit derived from a dicarboxylic acid, it is replaced with a structural unit derived from a trivalent or higher carboxylic acid such as 1,3,5-benzenetricarboxylic acid.
  • the solubility in the solvent tends to be less likely to decrease.
  • the structural unit derived from dicarboxylic acid is preferably a structural unit derived from dicarboxylic acid dichloride. Examples of the dicarboxylic acid include a compound represented by the formula (2).
  • Polyamideimide resin A may have a structural unit derived from one type of dicarboxylic acid, or may have a structural unit derived from two or more types of dicarboxylic acid.
  • Z represents a divalent organic group
  • B 1 and B 2 each independently represent OH or a halogen atom, preferably a chlorine atom.
  • the amount of the structural unit derived from the dicarboxylic acid represented by the formula (2) is preferably 5 mol% or more, more preferably 15 based on the total structural units contained in the polyamideimide resin A.
  • the mol% or more more preferably 20 mol% or more.
  • the amount of the structural unit derived from the dicarboxylic acid represented by the formula (2) is not less than the above lower limit, high surface hardness is likely to be exhibited.
  • the amount of the structural unit derived from the dicarboxylic acid represented by the formula (2) is preferably 45 mol% or less, more preferably 40 mol% or less, based on all the structural units contained in the polyamideimide resin A.
  • the film tends to exhibit high flexibility, and thus its bending resistance is easily improved.
  • Z in the formula (2) represents a divalent organic group, and preferably represents an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • the divalent organic group include groups represented by formula (2a) and formula (2b); a hydrogen atom in the group represented by formula (2a) and formula (2b) is a methyl group, a fluoro group, or a chloro group. Or a group substituted with a trifluoromethyl group; and a divalent chain hydrocarbon group having 6 or less carbon atoms.
  • R 9 represents a hydrocarbon group having 1 to 12 carbon atoms which may be substituted with
  • the dicarboxylic acid represented by the formula (2) preferably contains at least one selected from terephthalic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-oxybisbenzoic acid, and acid chloride compounds thereof. Is more preferable, and includes at least one selected from the group consisting of terephthaloyl chloride (TPC), 4,4′-biphenyldicarbonyl chloride (BPDOC), and 4,4′-oxybis (benzoyl chloride) (OBBC). More preferably, it contains 4,4′-oxybis (benzoyl chloride) (OBBC).
  • TPC terephthaloyl chloride
  • BPDOC 4,4′-biphenyldicarbonyl chloride
  • OBBC 4,4′-oxybis (benzoyl chloride)
  • OBBC 4,4′-oxybis (benzoyl chloride)
  • the polyamideimide resin A preferably has at least a structural unit in which Z in the formula (2) is represented by the formula (1) from the viewpoint of easily increasing the surface hardness and transparency of the film of the present invention.
  • R 1 to R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and hydrogen contained in R 1 to R 8 Each atom may be independently substituted with a halogen atom,
  • Each A independently represents —O—, —S—, —CO— or NR 9 —, wherein R 9 represents a hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom; m is an integer from 1 to 4, * Represents a bond.
  • A each independently represents —O—, —S—, —CO— or NR 9 —, wherein R 9 represents a hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom.
  • A preferably represents each independently -O- or S-, more preferably -O-.
  • R 1 to R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • R 1 to R 8 each independently preferably represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or carbon number. It represents 1 to 3 alkyl groups, and more preferably represents a hydrogen atom.
  • each hydrogen atom contained in R 1 to R 8 may be independently substituted with a halogen atom.
  • m is an integer in the range of 1 to 4, and is preferably an integer in the range of 1 to 3, more preferably 1 or 2, and even more preferably 1 from the viewpoint of availability of raw materials. When m is within the above range, the availability of the raw materials is good, and the flexibility of the film of the present invention is easily increased.
  • the formula (1) is a structural unit represented by the formula (1 ′).
  • the film of the present invention exhibits high surface hardness, and at the same time has a low elastic modulus and tends to have high flexibility.
  • the amount of the structural unit is included in the polyamideimide resin A. Based on the total structural units, it is preferably at least 3 mol%, more preferably at least 5 mol%, even more preferably at least 10 mol%, particularly preferably at least 20 mol%.
  • the amount of the structural unit represented by the formula (1) or the formula (1 ′) is equal to or more than the above lower limit, the resin film tends to exhibit high flexibility, and thus its flex resistance is easily improved.
  • the amount of the structural unit represented by the formula (1) or the formula (1 ′) is preferably 45 mol% or less, more preferably 40 mol% or less, based on all the structural units contained in the polyamideimide resin A. More preferably, it is 30 mol% or less.
  • the amount of the structural unit represented by the formula (1) or the formula (1 ′) is not more than the above upper limit, the glass transition temperature of the resin film is likely to be improved.
  • Z in the formula (2) is a structural unit derived from a dicarboxylic acid represented by the formula (1). It is preferable to have at least.
  • the amount of the structural unit derived from dicarboxylic acid in which Z in formula (2) is represented by formula (1) is the surface hardness of the film.
  • the modulus of elasticity and flexibility is preferably 5 mol% or more, more preferably 7 mol% or more, and even more preferably 9 mol%, based on the entire structural unit derived from the dicarboxylic acid contained in the polyamideimide resin A. Above, especially preferably 11 mol% or more.
  • the upper limit of the amount of the structural unit derived from dicarboxylic acid in which Z in formula (2) is represented by formula (1) is not particularly limited, and is based on the entire structural unit derived from dicarboxylic acid contained in polyamideimide resin A. And 100 mol% or less.
  • the ratio of the structural units derived from the dicarboxylic acid in which Z in formula (2) is represented by formula (1) can be measured using, for example, two-dimensional NMR, or can be calculated from the raw material charge ratio. it can.
  • Polyamideimide resin A contained in the film of the present invention has a structural unit derived from tetracarboxylic dianhydride.
  • examples of the tetracarboxylic dianhydride include compounds represented by the formula (4).
  • Polyamideimide resin A may have a structural unit derived from one type of tetracarboxylic dianhydride, or may have a structural unit derived from two or more types of tetracarboxylic dianhydride. Good.
  • Y represents a tetravalent organic group.
  • the amount of the structural unit derived from the tetracarboxylic dianhydride represented by the formula (4) is based on all the structural units contained in the polyamideimide resin A. Preferably it is 5 mol% or more, More preferably, it is 10 mol% or more, More preferably, it is 20 mol% or more.
  • the amount of the structural unit derived from the tetracarboxylic dianhydride represented by the formula (4) is not less than the above lower limit, the proportion of the structural unit derived from the dicarboxylic acid can be suppressed, and Tg is 370 ° C. or lower. It is easy to obtain a polyamideimide resin.
  • the amount of the structural unit derived from the tetracarboxylic dianhydride represented by the formula (4) is preferably 45 mol% or less, more preferably 40 based on the total structural units contained in the polyamideimide resin A.
  • the mol% or less more preferably 30 mol% or less.
  • Y in Formula (4) represents a tetravalent organic group, and preferably represents an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • the organic group is preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • the organic group is preferably a tetravalent organic group having 4 to 40 carbon atoms.
  • the hydrocarbon group and the fluorine-substituted hydrocarbon group preferably have 1 to 8 carbon atoms.
  • Examples of the tetravalent organic group include groups represented by formulas (4a) to (4j); a hydrogen atom in the groups represented by formulas (4a) to (4j) is a methyl group, a fluoro group, or a chloro group. Or a group substituted with a trifluoromethyl group; and a tetravalent chain hydrocarbon group having 6 or less carbon atoms.
  • W 1 represents a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, -Ar -, - SO 2 -, - CO -, - O-Ar-O -, - Ar-O-Ar -, - Ar-CH 2 -Ar -, - Ar-C (CH 3) 2 -Ar- Or represents Ar—SO 2 —Ar—.
  • Ar represents an arylene group having 6 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom, and specific examples thereof include a phenylene group.
  • W 1 from the viewpoint of surface hardness and flexibility of the film of the present invention, a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C It is preferably (CH 3 ) 2 — or C (CF 3 ) 2 —, and is a single bond, —O—, —CH 2 —, —CH (CH 3 ) —, —C (CH 3 ) 2 — or C More preferably, it is (CF 3 ) 2 —, more preferably a single bond, —C (CH 3 ) 2 — or C (CF 3 ) 2 —, and a single bond, or C (CF 3 ) 2 —. It is particularly preferred that
  • tetracarboxylic dianhydride represented by the formula (4) examples include aromatic tetracarboxylic dianhydrides and aliphatic tetracarboxylic dianhydrides.
  • One type of tetracarboxylic dianhydride may be used, or two or more types may be used in combination.
  • aromatic tetracarboxylic dianhydride examples include non-condensed polycyclic aromatic tetracarboxylic dianhydride, monocyclic aromatic tetracarboxylic dianhydride, and condensed polycyclic aromatic tetra Carboxylic dianhydrides are mentioned.
  • Non-condensed polycyclic aromatic tetracarboxylic dianhydrides include 4,4′-oxydiphthalic dianhydride (OPDA), 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2 , 2 ′, 3,3′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 2,2 ′, 3,3′-biphenyltetra Carboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis ( 2,3-dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenoxyphenyl) propane dianhydride, 4,4 '-(hexafluorois
  • Examples of the monocyclic aromatic tetracarboxylic dianhydride include 1,2,4,5-benzenetetracarboxylic dianhydride.
  • Examples of the condensed polycyclic aromatic tetracarboxylic dianhydride include 2,3,6,7-naphthalene tetracarboxylic dianhydride. These can be used alone or in combination of two or more.
  • 4,4′-oxydiphthalic dianhydride 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride
  • Anhydride 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-diphenyl Sulfonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 2,2- Bis (3,4-dicarboxyphenoxyphenyl) propane dianhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA), 1,2-bis (2,
  • Examples of the aliphatic tetracarboxylic dianhydride include cyclic or acyclic aliphatic tetracarboxylic dianhydrides.
  • the cycloaliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples thereof include 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
  • acyclic aliphatic tetracarboxylic dianhydride examples include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride, etc. These may be used alone or in combination of two or more. Moreover, you may use combining a cycloaliphatic tetracarboxylic dianhydride and an acyclic aliphatic tetracarboxylic dianhydride.
  • 4,4′-oxydiphthalic dianhydride, 3, 3 from the viewpoint of easily increasing the surface hardness, flexibility, bending resistance, transparency of the film, and easily reducing the yellowness.
  • the polyamideimide resin A preferably has at least a structural unit derived from tetracarboxylic dianhydride in which Y in the formula (4) is represented by the formula (4g ′).
  • Y in the formula (4) is represented by the formula (4g ′).
  • the solubility of the polyamideimide resin in the solvent is improved, and the film of the present invention is produced. Since the viscosity of the polyamideimide varnish used at the time can be suppressed low, the film of the present invention can be easily produced.
  • R 18 to R 25 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and are included in R 18 to R 25.
  • Each hydrogen atom may be independently substituted with a halogen atom, and * represents a bond.
  • R 18 to R 25 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, preferably a hydrogen atom or 1 to 6 represents an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, wherein the hydrogen atoms contained in R 18 to R 25 are each independently substituted with a halogen atom. Also good. From the viewpoint of the surface hardness and flexibility of the film of the present invention, R 18 to R 25 are each independently more preferably a hydrogen atom, a methyl group, a fluoro group, a chloro group or a trifluoromethyl group, particularly preferably. Is a hydrogen atom or a trifluoromethyl group.
  • the polyamideimide resin A preferably has at least a structural unit derived from tetracarboxylic dianhydride in which Y in the formula (4) is represented by the formula (4g ′′).
  • the film of the present invention has high transparency, and at the same time, the polyamideimide resin A has a skeleton containing a fluorine element, so that the solubility of the polyamideimide resin in the solvent is improved, and the film of the present invention is Since the viscosity of the polyamidoimide varnish used when producing can be suppressed low, it becomes easy to manufacture the film of this invention.
  • * represents a bond.
  • Y in the formula (4) is represented by the formula (4g ′), preferably the formula (4g ′′).
  • the amount of the structural unit derived from the tetracarboxylic dianhydride is the entire structural unit derived from the tetracarboxylic dianhydride contained in the polyamideimide resin A from the viewpoint of improving the transparency of the film and the ease of production. Is preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more.
  • the upper limit of the amount of the structural unit derived from tetracarboxylic dianhydride in which Y in Formula (4) is represented by Formula (4g ′), preferably Formula (4g ′′) is not particularly limited, and polyamideimide resin It may be 100 mol% or less based on the entire structural unit derived from tetracarboxylic dianhydride contained in the carboxylic acid.
  • the ratio of the structural unit derived from the diamine in which X in Formula (4) is represented by Formula (4g ′) or Formula (4g ′′) can be measured using, for example, two-dimensional NMR, It can also be calculated from the charging ratio.
  • the polyamide-imide resin A contained in the film of the present invention may further have a structural unit derived from tricarboxylic acid.
  • tricarboxylic acid examples include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, and acid chloride compounds, acid anhydrides and the like that are analogs thereof.
  • One type of tricarboxylic acid may be used, or two or more types may be used in combination.
  • 1,2,4-benzenetricarboxylic acid anhydride 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride
  • phthalic acid anhydride and benzoic acid are a single bond, —O— , —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO 2 —, or a compound connected by a phenylene group.
  • the polyamideimide resin A contained in the film of the present invention comprises dicarboxylic acid (dicarboxylic acid analog such as acid chloride), diamine and tetracarboxylic acid (acid chloride, tetracarboxylic dianhydride). And a tetracarboxylic acid analog such as tricarboxylic acid (an analog of a tricarboxylic acid compound such as an acid chloride compound or a tricarboxylic acid anhydride).
  • the polyamideimide resin A has a structural unit represented by the formula (5) and a structural unit represented by the following formula (6). [In formula (5), X and Y are as defined above.
  • X, Y, and Z in Formula (5) and Formula (6) are synonymous with X in Formula (3), Y in Formula (4), and Z in Formula (2), respectively. 2) to the above-mentioned preferable descriptions regarding X, Y and Z in the formula (4) are similarly applied to X, Y and Z in the formula (5) and the formula (6).
  • the structural unit represented by the formula (5) is usually a structural unit derived from diamine and tetracarboxylic acid
  • the structural unit represented by the formula (6) is usually structural unit derived from diamine and dicarboxylic acid. It is.
  • the polyamideimide resin A contained in the film of the present invention further comprises a structural unit represented by the formula (7) and / or a structural unit represented by the following formula (8).
  • Y 1 is each independently a tetravalent organic group, and preferably a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • Examples of Y 1 include groups represented by formulas (4a) to (4j), and tetravalent chain hydrocarbon groups having 6 or less carbon atoms.
  • the polyamideimide resin A may have a structural unit represented by one type of formula (7), or may be represented by two or more types of formula (7) that are different from each other in Y 1 and / or X 1 . You may have a structural unit.
  • Y 2 is each independently a trivalent organic group, and preferably a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • Examples of Y 2 include a group in which any one of the bonds of the groups represented by formulas (4a) to (4j) is replaced with a hydrogen atom, and a trivalent chain hydrocarbon group having 6 or less carbon atoms. Is done.
  • the polyamide-imide resin A may have a structural unit represented by one type of formula (8), or may be represented by two or more types of formula (7) that are different from each other in Y 2 and / or X 2 . You may have a structural unit.
  • X 1 and X 2 are each independently a divalent organic group, preferably a hydrocarbon group or a fluorine-substituted hydrocarbon in which a hydrogen atom in the organic group is substituted An organic group which may be substituted with a group.
  • X 1 and X 2 are groups represented by formulas (3a) to (3i); a hydrogen atom in the groups represented by formulas (3a) to (3i) is a methyl group, a fluoro group, or a chloro group Or a group substituted with a trifluoromethyl group; and a chain hydrocarbon group having 6 or less carbon atoms.
  • the polyamideimide resin A contained in the film of the present invention comprises the structural unit represented by the formula (5) and the formula (6), and optionally the formula (7) and / or the formula ( 8).
  • the amount of the structural unit represented by the formula (5) and the formula (6) contained in the polyamideimide resin A is expressed by the formula (5) and the formula ( 6), and in some cases, based on all the structural units represented by formula (7) and formula (8), it is preferably at least 80%, more preferably at least 90%, and even more preferably at least 95%.
  • the upper limit of the amount of the structural unit represented by the formula (5) and the formula (6) included in the polyamideimide resin A is the formula (5) and the formula (6), and optionally the formula (7) and Based on all the structural units represented by Formula (8), it is usually 100% or less.
  • the said ratio can be measured, for example using two-dimensional NMR, or can also be computed from the preparation ratio of a raw material.
  • the glass transition temperature Tg calculated by tan ⁇ in dynamic viscoelasticity measurement (DMA measurement) of the polyamideimide resin A contained in the film of the present invention is preferably less than 380 ° C., more preferably 379 ° C. or less, and further preferably It is 378 degrees C or less, for example, 370 degrees C or less.
  • the glass transition temperature Tg of the polyamide-imide resin A is less than the above upper limit or below the above upper limit, the film of the present invention is likely to exhibit high surface hardness, and at the same time, the elastic modulus is easily lowered and the flexibility is easily increased.
  • the minimum of glass transition temperature Tg is not specifically limited, Usually, it is 300 degreeC or more.
  • the method for calculating the glass transition temperature by tan ⁇ in the dynamic viscoelasticity measurement (DMA measurement) can be specifically performed as in the examples.
  • the weight average molecular weight (Mw) of the polyamideimide resin A contained in the film of the present invention is preferably 5,000 or more, more preferably 10,000 or more, still more preferably 50,000 or more, and particularly preferably 70,000 or more. It is preferably 800,000 or less, more preferably 600,000 or less, further preferably 500,000 or less, and particularly preferably 450,000 or less.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) of the polyamide-imide resin A is not more than the above upper limit, the solubility of the polyamide-imide resin in the solvent is improved, and the viscosity of the polyamide-imide varnish used when producing the film of the present invention is increased. Since it can suppress low, it becomes easy to manufacture the film of this invention. Further, since the film can be easily stretched, the processability is good.
  • the weight average molecular weight (Mw) can be determined by, for example, GPC measurement and standard polystyrene conversion, and can be specifically determined by the method described in the examples.
  • the polyamideimide resin A contained in the film of the present invention preferably contains a halogen atom, and more preferably contains a fluorine atom.
  • the fluorine-containing substituent include a fluoro group and a trifluoromethyl group.
  • the halogen atom is preferably a fluorine atom.
  • the polyamideimide resin A preferably has at least a structural unit derived from a fluorine atom-containing diamine and / or a fluorine atom-containing tetracarboxylic dianhydride.
  • the content of the halogen atom in the polyamide-imide resin A is the mass of the polyamide-imide resin A contained in the film of the present invention from the viewpoints of reducing yellowness (improving transparency), reducing water absorption, and suppressing film deformation. Is preferably 1% by mass to 40% by mass, more preferably 3% by mass to 35% by mass, and still more preferably 5% by mass to 32% by mass.
  • the film of the present invention may contain an additive having a light absorption function in addition to the polyamideimide resin from the viewpoint of improving the visibility and quality of the film of the present invention.
  • the additive having a light absorbing function include an ultraviolet absorber and a bluing agent.
  • the additive having a light absorbing function is preferably selected from the group consisting of an ultraviolet absorber and a bluing agent because the visibility and quality of the film of the present invention are easily improved.
  • the film of the present invention may contain one kind of additive having a light absorbing function, or may contain two or more kinds of additives having a light absorbing function.
  • the imidation ratio of the polyamideimide resin contained in the resin composition is increased in advance. I can keep it. Therefore, even when a film is produced under relatively low-temperature heating conditions, the imidization rate can be increased and sufficiently high surface hardness can be achieved. Therefore, even when an additive having a light absorption function is added to the same layer as the layer containing the polyamideimide resin, decomposition and the like of these additives can be suppressed, and deterioration in film quality can be suppressed.
  • the ultraviolet absorber may be appropriately selected from those normally used as an ultraviolet absorber in the field of resin materials.
  • the ultraviolet absorber may contain a compound that absorbs light having a wavelength of 400 nm or less.
  • Examples of the ultraviolet absorber include at least one compound selected from the group consisting of benzophenone compounds, salicylate compounds, benzotriazole compounds, and triazine compounds.
  • system compound refers to a derivative of a compound to which the “system compound” is attached.
  • a “benzophenone compound” refers to a compound having benzophenone as a host skeleton and a substituent bonded to benzophenone.
  • the addition amount of the ultraviolet absorber may be appropriately selected depending on the type of the ultraviolet absorber to be used, but as a guideline, preferably 1 mass based on the total mass of the film. % Or more, more preferably 2% by mass or more, further preferably 3% by mass or more, preferably 10% by mass or less, more preferably 8% by mass or less, and further preferably 6% by mass or less.
  • the preferred amount of addition varies depending on the ultraviolet absorber used, but adjusting the amount of addition so that the light transmittance at 400 nm is about 20 to 60% makes it easy to improve the light resistance of the film of the present invention, as well as transparency. It is preferable because it is easy to obtain a high film.
  • the bluing agent may be appropriately selected from those normally used as a bluing agent in the field of resin materials.
  • the bluing agent is an additive (dye, pigment) that adjusts the hue by absorbing light in a wavelength region such as orange to yellow in the visible light region. For example, ultramarine, bitumen, cobalt blue, etc.
  • inorganic dyes and pigments such as organic dyes and pigments such as phthalocyanine blueing agents and condensed polycyclic blueing agents.
  • the bluing agent is not particularly limited, but from the viewpoint of heat resistance, light resistance, and solubility, a condensed polycyclic bluing agent is preferable, and an anthraquinone bluing agent is more preferable.
  • the bluing agent preferably has a thermal decomposition temperature of 200 ° C. or higher.
  • the condensed polycyclic bluing agent include anthraquinone bluing agents, indigo bluing agents, and phthalocyanine bluing agents.
  • the amount of bluing agent added may be appropriately selected depending on the type of bluing agent to be used, but as a guideline, it is preferably based on the total mass of the film. 01% by mass or more, more preferably 0.02% by mass or more, further preferably 0.03% by mass or more, preferably 1.0% by mass or less, more preferably 0.5% by mass or less, and further preferably 0%. .2% by mass or less.
  • the film of the present invention may further contain an inorganic material such as inorganic particles in addition to the polyamideimide resin.
  • the inorganic material include inorganic particles such as titania particles, alumina particles, zirconia particles, and silica particles, and silicon compounds such as quaternary alkoxysilanes such as tetraethyl orthosilicate.
  • the inorganic material is preferably inorganic particles, particularly silica particles.
  • the inorganic particles may be bonded by molecules having a siloxane bond.
  • the average primary particle diameter of the inorganic particles is preferably 10 to 100 nm, more preferably 20 to 80 nm, from the viewpoints of transparency of the film, mechanical properties, and suppression of aggregation of the inorganic particles.
  • the average primary particle diameter can be determined by measuring 10 constant-direction diameters with a transmission electron microscope (TEM) and calculating an average value thereof.
  • TEM transmission electron microscope
  • the content of the inorganic material in the film is preferably 0 to 90% by mass, more preferably 0 to 60% by mass, and still more preferably 0, based on the total mass of the film. ⁇ 40% by weight. If the content of the inorganic material is within the above range, the transparency and mechanical properties of the film tend to be compatible.
  • the film of the present invention may contain other additives.
  • other additives include antioxidants, mold release agents, stabilizers, flame retardants, pH adjusters, silica dispersants, lubricants, thickeners, and leveling agents.
  • the content of the other additives is preferably 0% by mass or more and 20% by mass or less, more preferably 0% by mass based on the mass of the film of the present invention. It is 10 mass% or less.
  • the layer structure of the film of the present invention is not particularly limited, and may be a single layer or a multilayer of two or more layers.
  • the film of the present invention further contains an additive such as an additive having a light absorption function, the additive and the polyamideimide resin are combined into one layer from the viewpoint of thinning the image display device and economy. It is preferable to contain.
  • the film of the present invention is more preferably a single layer containing the additive and the polyamideimide resin, or a laminate having at least a layer containing the additive and the polyamideimide resin. From the viewpoint of impact resistance, the film of the present invention preferably has a multilayer structure of two or more layers including at least a layer containing a polyamideimide resin.
  • the film of the present invention further contains an additive such as an additive having a light absorption function
  • an additive such as an additive having a light absorption function
  • it is a laminate having at least a layer containing the additive and a polyamideimide resin, or a layer containing the additive, It may be a laminate having at least a layer containing a polyamideimide resin.
  • the film of the present invention may be a polyamideimide laminate in which one or more functional layers are further laminated on the above layer.
  • the functional layer include layers having various functions such as a hard coat layer, an ultraviolet absorbing layer, an adhesive layer, a refractive index adjusting layer, and a primer layer.
  • the film of the present invention may include one or more functional layers.
  • One functional layer may have a plurality of functions.
  • the functional layer may be formed on a film containing a polyamideimide resin to obtain a multilayer film.
  • the present invention has a structural unit derived from a diamine, a structural unit derived from a dicarboxylic acid, and a structural unit derived from a tetracarboxylic dianhydride and has an imidization ratio of 60% or more as measured by two-dimensional NMR.
  • a resin composition containing at least a polyamideimide resin B having a solvent and a solvent is also provided.
  • the film of this invention containing the said polyamideimide resin A is manufactured using the resin composition of this invention containing the polyamideimide resin B and a solvent at least, for example.
  • the resin composition of the present invention contains a polyamideimide resin B having an imidization ratio of 60% or more as measured by two-dimensional NMR.
  • the resin composition of the present invention is a composition used for producing a film containing a polyamideimide resin, and since it contains a polyamideimide resin B having a high imidization ratio as described above, the film finally obtained It is possible to sufficiently increase the imidization ratio of the polyamideimide resin contained in the resin, and as a result, it is possible to obtain a polyamideimide film having a sufficiently high surface hardness.
  • the imidization ratio of the polyamide-imide resin contained in the resin composition is lower than 60%, there is a tendency to become a polyamideimide having an excessively flexible primary structure. Can not be increased.
  • the imidation ratio of the polyamideimide resin B is preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more.
  • the upper limit is not particularly limited, and it may be 100% or less.
  • the imidation ratio of the polyamide-imide resin B is the ratio of the number of moles of imide bonds in the polyamide-imide resin B to the value twice the number of moles of structural units derived from the tetracarboxylic dianhydride in the polyamide-imide resin B. In this specification, it is measured by two-dimensional NMR.
  • the imidation ratio of the polyamideimide resin B was obtained by dissolving the polyamideimide resin B, which was precipitated and dried by a reprecipitation method by adding a poor solvent to the resin composition (varnish), in a dehydrated solvent which is a good solvent. Measurement can be performed using two-dimensional NMR using a predetermined solution as a measurement sample.
  • Examples of the poor solvent include alcohol solvents, water, saturated hydrocarbon solvents, and aromatic solvents, and preferably alcohol solvents and water.
  • Alcohol solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-isobutanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-hexanol, 2-hexanol , 3-hexanol, ethylene glycol, glycerin and the like, preferably methanol, ethanol, 1-propanol and 2-propanol, more preferably methanol and ethanol.
  • two or more of these poor solvents may be mixed.
  • Examples of the deuterated solvent that is a good solvent include deuterated dimethyl sulfoxide (DMSO-d6).
  • DMSO-d6 deuterated dimethyl sulfoxide
  • the imidization rate is represented by the following formula (9).
  • Imidation rate (%) [1- (number of moles of repeating unit having an amic acid) / (number of moles of repeating unit having an imide bond)] ⁇ 100 Formula (9)
  • a polyimide resin or a polyimide film obtains a molar ratio by appropriately integrating a signal derived from a repeating unit having an amic acid on a 1 H-NMR spectrum and a signal derived from a repeating unit having an imide bond.
  • the imidation ratio can be obtained by applying to the above formula (9).
  • the amic acid includes an amide bond and a carboxyl group, which are precursors of an imide bond.
  • Polyamideimide resin or polyamideimide film for example, appropriately receives signals derived from repeating units having an amic acid and repeating units having an imide bond on a two-dimensional NMR spectrum measured with deuterated dimethyl sulfoxide (DMSO-d6).
  • DMSO-d6 deuterated dimethyl sulfoxide
  • the S / N ratio is the ratio of signal to noise
  • the S / N ratio is preferably 6 or more.
  • Examples of the method for increasing the S / N ratio include increasing the sample concentration, increasing the number of integrations, and using a highly sensitive NMR measuring apparatus.
  • Examples of the highly sensitive NMR measuring apparatus include an NMR apparatus having a stronger magnetic field and an NMR apparatus using a cryoprobe.
  • Examples of a method for accurately integrating a two-dimensional NMR spectrum include performing phase correction and performing baseline correction.
  • the glass transition temperature Tg calculated by tan ⁇ in the dynamic viscoelasticity measurement (DMA measurement) of the polyamideimide resin B is preferably less than 380 ° C., more preferably 379 ° C. or less, further preferably 378 ° C. or less, for example 370 ° C. It is as follows. When the glass transition temperature Tg of the polyamide-imide resin B is less than the above upper limit or less than the above upper limit, the film obtained using the resin composition of the present invention is likely to exhibit high surface hardness and at the same time has an elastic modulus. It is easy to decrease and it is easy to increase flexibility. Although the minimum of glass transition temperature Tg is not specifically limited, Usually, it is 300 degreeC or more. The method for calculating the glass transition temperature by tan ⁇ in the dynamic viscoelasticity measurement (DMA measurement) can be specifically performed as in the examples.
  • the weight average molecular weight (Mw) of the polyamideimide resin B contained in the film of the present invention is preferably 5,000 or more, more preferably 10,000 or more, still more preferably 50,000 or more, and particularly preferably 70,000 or more. It is preferably 800,000 or less, more preferably 600,000 or less, further preferably 500,000 or less, and particularly preferably 450,000 or less.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) of the polyamideimide resin B is not more than the above upper limit, the solubility of the polyamideimide resin in the solvent is improved, and the viscosity of the resin composition of the present invention can be suppressed low. It becomes easy to manufacture a film. Further, since the film can be easily stretched, the processability is good.
  • the weight average molecular weight (Mw) can be determined by, for example, GPC measurement and standard polystyrene conversion, and can be specifically determined by the method described in the examples.
  • the polyamideimide resin B contained in the resin composition of the present invention has a structural unit derived from diamine, a structural unit derived from dicarboxylic acid, and a structural unit derived from tetracarboxylic dianhydride.
  • diamine dicarboxylic acid
  • tetracarboxylic dianhydride a structural unit derived from tetracarboxylic dianhydride.
  • the polyamideimide resin A similarly applies.
  • the polyamideimide resin B contained in the resin composition of the present invention may further have a structural unit derived from tricarboxylic acid. As the tricarboxylic acid, the above description regarding the polyamide-imide resin A is similarly applied.
  • the polyamideimide resin B contained in the resin composition of the present invention contains dicarboxylic acid (dicarboxylic acid analog such as acid chloride), diamine and tetracarboxylic acid (acid chloride, tetracarboxylic acid dicarboxylic acid).
  • dicarboxylic acid dicarboxylic acid analog such as acid chloride
  • diamine diamine
  • tetracarboxylic acid acid chloride, tetracarboxylic acid dicarboxylic acid
  • a polycondensation polymer that is a polycondensation product with a tricarboxylic acid (an acid chloride compound, a tricarboxylic acid compound analog such as a tricarboxylic acid anhydride) in some cases and a tetracarboxylic acid analog such as an anhydride).
  • the polyamideimide resin B like the polyamideimide resin A, has a structural unit represented by the formula (5) and a structural unit represented by the formula (6).
  • [In formula (5), X and Y are as defined above.
  • [In formula (6), X and Z are as defined above.
  • X, Y, and Z in Formula (5) and Formula (6) are synonymous with X in Formula (3), Y in Formula (4), and Z in Formula (2), respectively. 2) to the above-mentioned preferable descriptions regarding X, Y and Z in the formula (4) are similarly applied to X, Y and Z in the formula (5) and the formula (6).
  • the structural unit represented by the formula (5) is usually a structural unit derived from diamine and tetracarboxylic acid
  • the structural unit represented by the formula (6) is usually structural unit derived from diamine and dicarboxylic acid. It is.
  • the polyamideimide resin B contained in the resin composition of the present invention is a structural unit represented by the following formula (7) and / or a structure represented by the following formula (8). You may have a unit.
  • X 1 represents a divalent organic group
  • Y 1 represents a tetravalent organic group.
  • X 2 represents a divalent organic group
  • Y 2 represents a trivalent organic group.
  • Y 1 is each independently a tetravalent organic group, and preferably a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • Examples of Y 1 include groups represented by formulas (4a) to (4j), and tetravalent chain hydrocarbon groups having 6 or less carbon atoms.
  • the polyamideimide resin B may have a structural unit represented by one type of formula (7), or may be represented by two or more types of formula (7) that are different from each other in Y 1 and / or X 1 . You may have a structural unit.
  • Y 2 is each independently a trivalent organic group, and preferably a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • the organic group is preferably a trivalent organic group having 4 to 40 carbon atoms.
  • the hydrocarbon group and the fluorine-substituted hydrocarbon group preferably have 1 to 8 carbon atoms.
  • the organic group preferably has 4 to 40 carbon atoms.
  • Y 2 represents a group in which any one of the bonds in the groups represented by the above formulas (4a) to (4j) is replaced with a hydrogen atom, and a trivalent chain hydrocarbon group having 6 or less carbon atoms Is exemplified.
  • the polyamideimide resin B may have a structural unit represented by one type of formula (8), or may be represented by two or more types of formula (7) that are different from each other in Y 2 and / or X 2 . You may have a structural unit.
  • the example of W 1 in the formula is the same as the example of W 1 in the description relating to Y 1 .
  • X 1 and X 2 are each independently a divalent organic group, preferably a hydrocarbon group or a fluorine-substituted hydrocarbon in which a hydrogen atom in the organic group is substituted
  • the organic group is preferably a divalent organic group having 4 to 40 carbon atoms.
  • the hydrocarbon group and the fluorine-substituted hydrocarbon group preferably have 1 to 8 carbon atoms.
  • the organic group preferably has 4 to 40 carbon atoms.
  • X 1 and X 2 are groups represented by formulas (3a) to (3i); a hydrogen atom in the groups represented by formulas (3a) to (3i) is a methyl group, a fluoro group, or a chloro group Or a group substituted with a trifluoromethyl group; and a chain hydrocarbon group having 6 or less carbon atoms.
  • the polyamideimide resin B contained in the resin composition of the present invention comprises the structural units represented by the formulas (5) and (6), and optionally the formula (7) and / or It consists of a structural unit represented by Formula (8).
  • the amount of the structural unit represented by the formula (5) and the formula (6) contained in the polyamideimide resin B is expressed by the formula (5) and the formula ( 6), and in some cases, based on all the structural units represented by formula (7) and formula (8), it is preferably at least 80%, more preferably at least 90%, and even more preferably at least 95%.
  • the upper limit of the amount of the structural unit represented by the formula (5) and the formula (6) included in the polyamideimide resin B is the formula (5) and the formula (6), and in some cases, the formula (7) and Based on all the structural units represented by Formula (8), it is usually 100% or less.
  • the said ratio can be measured, for example using two-dimensional NMR, or can also be computed from the preparation ratio of a raw material.
  • the polyamideimide resin B contained in the resin composition of the present invention also preferably contains a halogen atom, more preferably a fluorine atom, like the polyamideimide resin A.
  • a fluorine-containing substituent include a fluoro group and a trifluoromethyl group.
  • the polyamideimide resin B contains a halogen atom, it is easy to reduce the yellowness (YI value) of the film obtained using the resin composition of the present invention, and it is easy to achieve both high flexibility and bending resistance.
  • the halogen atom is preferably a fluorine atom.
  • the polyamideimide resin B preferably has at least a structural unit derived from a fluorine atom-containing diamine and / or a fluorine atom-containing tetracarboxylic dianhydride.
  • the content of halogen atoms in the polyamide-imide resin B is the polyamide-imide resin B contained in the resin composition of the present invention from the viewpoint of reducing yellowness (improving transparency), reducing water absorption, and suppressing film deformation. Is preferably 1 to 40% by mass, more preferably 3 to 35% by mass, and still more preferably 5 to 32% by mass.
  • the solvent contained in the resin composition of the present invention is not particularly limited as long as the polyamideimide resin B can be dissolved.
  • solvents include amide solvents such as N, N-dimethylacetamide (DMAc) and N, N-dimethylformamide; lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone; dimethylsulfone, dimethylsulfoxide, sulfolane and the like.
  • an amide solvent or a lactone solvent is preferable, and a solvent containing dimethylacetamide is more preferable.
  • the polyamideimide varnish may contain water, alcohol solvents, ketone solvents, acyclic ester solvents, ether solvents and the like.
  • the resin composition of the present invention may further contain an additive that can be included in the film of the present invention described above.
  • Polyamideimide resins A and B are prepared by, for example, copolymerizing (polycondensing) the above-mentioned dicarboxylic acid, diamine and tetracarboxylic acid as main raw materials and optionally further together with the tricarboxylic acid described above. Can be manufactured.
  • the method for producing the polyamide-imide resin A contained in the film of the present invention and the polyamide-imide resin B contained in the resin composition of the present invention is not particularly limited as long as the polyamide-imide resin having the above characteristics is obtained.
  • the present invention also provides (1) a step of copolymerizing diamine, dicarboxylic acid, and tetracarboxylic dianhydride in a solvent to obtain a polyamideimide resin precursor; and (2) At least a step of adding a dehydrating agent and a tertiary amine to a solution containing at least a polyamideimide resin precursor and heating at a temperature of 70 to 120 ° C., in a solvent at the start of step (1)
  • a method for producing a polyamide-imide resin is also provided in which w and t satisfy the following formula, where w is the water content of w (ppm) and t is the heating time in step (2).
  • the polyamide-imide resin obtained by the production method of the present invention may be, for example, polyamide-imide resin A or polyamide-imide resin B, and the description described above for polyamide-imide resin A and polyamide-imide resin B applies similarly.
  • the polyamideimide resin obtained by the production method of the present invention and the polyamideimide resin B contained in the resin composition of the present invention are the same resin.
  • polyamideimide resin B contained in the resin composition of the present invention and the polyamideimide resin A contained in the film of the present invention may be the same resin in terms of imidization rate, resin structural unit, and the like. Further, resins different from each other in imidation ratio may be used.
  • step (1) diamine, dicarboxylic acid and tetracarboxylic dianhydride are copolymerized in a solvent to obtain a polyamideimide resin precursor.
  • the reaction temperature for carrying out the copolymerization is not particularly limited, but is, for example, 50 to 350 ° C.
  • the reaction time is not particularly limited, but is, for example, about 30 minutes to 10 hours. If necessary, the reaction may be carried out under an inert atmosphere or under reduced pressure.
  • a solvent used at a process (1) the solvent contained in the resin composition of this invention described above is mentioned, for example.
  • an imidization catalyst may be used.
  • imidation catalysts include aliphatic amines such as tripropylamine, dibutylpropylamine, and ethyldibutylamine; N-ethylpiperidine, N-propylpiperidine, N-butylpyrrolidine, N-butylpiperidine, and N-propylhexahydro Alicyclic amines (monocyclic) such as azepine; azabicyclo [2.2.1] heptane, azabicyclo [3.2.1] octane, azabicyclo [2.2.2] octane, and azabicyclo [3.2.
  • Cycloaliphatic amines such as nonane; and pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2, 4-dimethylpyridine, 2,4,6-trimethylpyridine, 3,4-cyclopentenopyridine, 5, 7,8 tetrahydroisoquinoline, and aromatic amines isoquinoline.
  • step (2) a dehydrating agent and a tertiary amine are added to a solution containing at least the polyamideimide resin precursor, and heated at a temperature of 70 to 120 ° C.
  • imidization of the polyamideimide resin precursor proceeds.
  • the heating time in this step may be appropriately selected according to the reaction scale and the type and amount of the reagent used, but is usually 1 to 48 hours.
  • the imidation ratio of the polyamideimide resin contained in the polyamideimide resin composition is preferably 60% or more in this step. More preferably, step (2) may be performed until 80% or more, and even more preferably 95% or more.
  • the dehydrating agent used in the step (2) is a substance that can promote copolymerization in a solvent with diamine, dicarboxylic acid, and tetracarboxylic dianhydride, which are polycondensation reactions involving dehydration.
  • the dehydrating agent include acetic anhydride, propionic anhydride, isobutyric anhydride, pivalic anhydride, butyric anhydride, and isovaleric anhydride.
  • the dehydrating agent is preferably selected from the group consisting of acetic anhydride and propionic anhydride, more preferably acetic anhydride.
  • the tertiary amine used in step (2) is a substance that acts as an imidization catalyst.
  • Examples of the tertiary amine include the above-mentioned aromatic amine and aliphatic amine.
  • the tertiary amine is preferably selected from the group consisting of triethylamine, tripropylamine, N-ethylpiperidine, N-propylpiperidine, pyridine, methylpyridine, ethylpyridine, dimethylpyridine and isoquinoline.
  • 1 / t (w + 167) is preferably 5.0 or less, more preferably 4.0 or less, and even more preferably 3.0 or less.
  • Copolymerization of a diamine, dicarboxylic acid, and tetracarboxylic dianhydride for producing a polyamideimide resin in a solvent is a polycondensation reaction involving dehydration. Therefore, by reducing the amount of water present in the reaction system or adjusting the heating time, the polycondensation reaction (especially imidization reaction) can be efficiently advanced, and as a result, obtained.
  • the imidation ratio in the polyamideimide resin can be increased. Therefore, according to the said manufacturing method of this invention, the polyamide imide resin which has a higher imidation ratio than before can be manufactured.
  • the process which produces a film using the polyamide-imide varnish containing the polyamidoimide resin which has a comparatively low imidation rate heats this film on high temperature conditions, and advances imidation is performed.
  • a sufficiently high imidization rate cannot be achieved, sufficient surface hardness cannot be obtained, and depending on the heating conditions Has a problem that the imidization rate of the polyamideimide resin varies and the imidization rate is not stable.
  • the imidation ratio of the polyamideimide resin can be easily increased sufficiently at the synthesis stage before being processed into a film, and the above problems are solved.
  • the production method of the present invention is not particularly limited as long as it includes at least step (1) and step (2).
  • a method for producing a resin composition containing a polyamideimide resin obtained by the production method of the present invention for example, a mixed solution containing the polyamideimide resin obtained in the step (1) and the step (2), further a solvent and necessary
  • the resin composition containing at least a polyamide-imide resin and a solvent (hereinafter, also referred to as “polyamide-imide varnish”) may be produced by adding an additive and stirring according to step (1) and A poor solvent is added to the mixed solution containing the polyamideimide resin obtained in the step (2), the polyamideimide resin is precipitated by a reprecipitation method, dried and taken out as a precipitate, and the taken polyamideimide resin precipitate is dissolved in the solvent.
  • a resin composition containing at least a polyamideimide resin and a solvent may be obtained.
  • the film of the present invention is, for example, (1) a step of applying a polyamideimide resin composition obtained as described above to a support, and (2-1) A step of peeling the coating film of the composition from the support after drying, or (2-2) It can be produced by a production method including at least a step of peeling the coating film of the composition from the support after drying and a step of heating the peeled film.
  • the film of the present invention is obtained by drying the coating film of the polyamideimide resin composition obtained as described above.
  • a polyamide-imide varnish coating is formed by applying a polyamide-imide varnish on a support such as a resin substrate, a SUS belt, or a glass substrate by a known roll-to-roll or batch method.
  • a support such as a resin substrate, a SUS belt, or a glass substrate by a known roll-to-roll or batch method.
  • the support include a PET film, a PEN film, a polyimide film, and a polyamideimide film.
  • a PET film, a PEN film, a polyimide film, and other polyamideimide films are preferable. From the viewpoint of adhesion to the film of the present invention and cost, a PET film is more preferable.
  • step (2-1) or step (2-2) the polyamide-imide varnish coating is dried, and after drying, peeled off from the support.
  • the coating film can be dried at a temperature of preferably 50 to 240 ° C, more preferably 200 to 240 ° C. If necessary, the coating film may be dried under an inert atmosphere or under reduced pressure.
  • the film of the present invention can be obtained by peeling the coating film from the support after drying.
  • a step of further heating the peeled film may be performed.
  • the heating temperature is preferably 240 ° C. or lower.
  • a surface treatment step of performing a surface treatment on at least one surface of the film produced as described above may be performed.
  • the surface treatment include UV ozone treatment, plasma treatment, and corona discharge treatment.
  • the film of the present invention contains an additive such as an additive having a light absorption function
  • the film of the present invention contains a polyamide-imide resin and the additive in the same layer.
  • the layer can be produced in the same manner as described above by using a polyamideimide varnish obtained by further adding the additive to a composition (polyamideimide varnish) containing at least a polyamideimide resin and a solvent.
  • an additive such as an additive having a light absorption function and a polyamideimide resin are contained in one layer, it is preferable to use an additive having a thermal decomposition temperature of at least 200 ° C. or more.
  • the film of the present invention may further include a functional layer.
  • the functional layer include layers having various functions such as a hard coat layer, an ultraviolet absorbing layer, an adhesive layer, a refractive index adjusting layer, and a primer layer.
  • the film of the present invention may include one or more functional layers.
  • One functional layer may have a plurality of functions.
  • the hard coat layer is preferably disposed on the surface on the viewing side of the film.
  • the hard coat layer may have a single layer structure or a multilayer structure.
  • the hard coat layer comprises a hard coat layer resin, and examples of the hard coat layer resin include acrylic resins, epoxy resins, urethane resins, benzyl chloride resins, vinyl resins, silicone resins, or a mixture thereof. Examples thereof include ultraviolet curable resins such as resins, electron beam curable resins, and thermosetting resins.
  • the hard coat layer preferably contains an acrylic resin from the viewpoint of mechanical properties such as surface hardness and from an industrial viewpoint.
  • the film of the present invention since the film of the present invention has a high surface hardness, the film has a sufficient surface hardness for use in an image display device or the like without a hard coat layer. For this reason, when the film of the present invention further has a hard coat layer, the surface hardness of the film can be further increased.
  • the ultraviolet absorbing layer is a layer having an ultraviolet absorbing function.
  • a main material selected from an ultraviolet curable transparent resin, an electron beam curable transparent resin, and a thermosetting transparent resin It is composed of dispersed UV absorbers.
  • the adhesive layer is a layer having an adhesive function, and has a function of bonding the film of the present invention to another member.
  • a conventionally known material can be used.
  • a thermosetting resin composition or a photocurable resin composition can be used.
  • the adhesive layer may be composed of a resin composition containing a component having a polymerizable functional group. In this case, strong adhesion can be realized by further polymerizing the resin composition constituting the adhesive layer after the film is brought into close contact with another member.
  • the adhesive strength between the film of the present invention and the pressure-sensitive adhesive layer may be 0.1 N / cm or more, or 0.5 N / cm or more.
  • the adhesive layer may contain a thermosetting resin composition or a photocurable resin composition as a material.
  • the resin composition can be polymerized and cured by supplying energy afterwards.
  • the pressure-sensitive adhesive layer may be a layer composed of an adhesive called pressure-sensitive adhesive (Pressure Sensitive Adhesive, PSA) that is attached to an object by pressing.
  • PSA Pressure Sensitive Adhesive
  • the pressure-sensitive adhesive may be a pressure-sensitive adhesive that is “a substance that is sticky at normal temperature and adheres to an adherend with light pressure” (JIS K6800). And an adhesive that can maintain stability until the coating is broken by appropriate means (pressure, heat, etc.) (JIS K6800).
  • the hue adjusting layer is a layer having a hue adjusting function, and is a layer capable of adjusting the film of the present invention to a target hue.
  • a hue adjustment layer is a layer containing resin and a coloring agent, for example.
  • the colorant include inorganic pigments such as titanium oxide, zinc oxide, dial, titanium oxide-based fired pigment, ultramarine, cobalt aluminate, and carbon black; azo-based compounds, quinacridone-based compounds, anthraquinone-based compounds, Organic pigments such as perylene compounds, isoindolinone compounds, phthalocyanine compounds, quinophthalone compounds, selenium compounds, and diketopyrrolopyrrole compounds; extender pigments such as barium sulfate and calcium carbonate; and basic dyes, Examples include acid dyes and mordant dyes.
  • the refractive index adjusting layer is a layer having a function of adjusting the refractive index, has a refractive index different from the layer containing the polyamideimide resin A in the film of the present invention, and gives a predetermined refractive index to the film of the present invention. It is a layer that can.
  • the refractive index adjustment layer may be, for example, an appropriately selected resin, and optionally a resin layer further containing a pigment, or may be a metal thin film.
  • Examples of the pigment for adjusting the refractive index include silicon oxide, aluminum oxide, antimony oxide, tin oxide, titanium oxide, zirconium oxide and tantalum oxide.
  • the average primary particle diameter of the pigment may be 0.1 ⁇ m or less. By setting the average primary particle diameter of the pigment to 0.1 ⁇ m or less, irregular reflection of light transmitted through the refractive index adjusting layer can be prevented, and a decrease in transparency can be prevented.
  • metal used for the refractive index adjustment layer examples include metals such as titanium oxide, tantalum oxide, zirconium oxide, zinc oxide, tin oxide, silicon oxide, indium oxide, titanium oxynitride, titanium nitride, silicon oxynitride, and silicon nitride. Oxides or metal nitrides may be mentioned.
  • the film of the present invention is an optical film useful as, for example, a front plate of an image display device, particularly a front plate (window film) of a flexible display.
  • the film of this invention can be arrange
  • the front plate has a function of protecting the image display element in the flexible display.
  • Examples of the image display device include wearable devices such as a television, a smartphone, a mobile phone, a car navigation system, a tablet PC, a portable game machine, electronic paper, an indicator, a bulletin board, a clock, and a smart watch.
  • Examples of the flexible display include the above-described image display device having flexible characteristics.
  • the weight average molecular weight (Mw) of the polyamideimide resin was determined by standard polystyrene conversion by gel permeation chromatography (GPC) measurement. Specific measurement conditions were as follows. (1) Pretreatment method A DMF eluent (10 mM lithium bromide solution) is added to the obtained polyamideimide resin so as to have a concentration of 2 mg / mL, and the mixture is heated at 80 ° C. with stirring for 30 minutes. A solution obtained by filtration using an open 0.45 ⁇ m membrane filter was used as a measurement solution.
  • Tg glass transition temperature
  • Polyamideimide resin A A film containing the resin was dissolved in deuterated dimethyl sulfoxide (DMSO-d6) to give a 2% by mass solution, which was used as a measurement sample.
  • DMSO-d6 deuterated dimethyl sulfoxide
  • Measuring apparatus 600 MHz NMR apparatus AVANCE600 manufactured by Bruker Sample temperature: 303K Measuring method: 1H-NMR, HSQC (Calculation method of imidization ratio of polyimide resin)
  • the integral value of the signal derived from the proton (A) in the formula (10) is represented by Int A and the integral of the signal derived from the proton (B). The value was Int B.
  • the imidization ratio (%) was determined by the following formula (NMR-1). (Calculation method of imidization ratio of polyamide-imide resin) In the HSQC spectrum obtained using a solution containing a polyimide resin as a measurement sample, the integral value of the signal derived from the proton (C) in the formula (10XXX) is the signal derived from Int C , proton (D), and proton (E). The average value of the integrated values of was defined as Int DE . From these values, the ⁇ value was determined by the following formula (NMR-2).
  • the ⁇ value according to the formula (NMR-2) and the imidization ratio (%) according to the formula (NMR-1) were obtained, and the following correlation formula (NMR-3) was obtained from the results.
  • the ⁇ value was determined by the formula (NMR-2) in the same manner as described above. By substituting this ⁇ value into the above correlation equation (NMR-3), the imidization ratio (%) of the polyamideimide resin was obtained.
  • Tt total light transmittance
  • YI value yellowness (Yellow Index: YI value) of the obtained polyamideimide film is measured using an ultraviolet-visible near-infrared spectrophotometer V-670 manufactured by JASCO Corporation in accordance with JIS K 7373: 2006. did. After performing background measurement in the absence of a sample, the sample was set in a sample holder, and the transmittance for light of 300 to 800 nm was measured to obtain tristimulus values (X, Y, Z). The YI value was calculated based on the following formula.
  • the pencil hardness of the sample surface was measured according to JIS K5600-5-4: 1999. Measurement was performed under the conditions of a load of 100 g and a scanning speed of 60 mm / min, and under the illuminance condition of a light amount of 4000 lux, the presence or absence of scratches was evaluated, and the pencil hardness was determined.
  • the elastic modulus of the obtained polyamideimide film was measured using an autograph AG-IS manufactured by Shimadzu Corporation. Using a film cut into a width of 10 mm as a test piece, an SS curve was measured under the conditions of a distance between chucks of 500 mm and a tensile speed of 20 mm / min, and the elastic modulus was calculated from the slope.
  • Example 1 In a 1 L separable flask equipped with a stirring blade under a nitrogen atmosphere, N, N-dimethylacetamide with 52 g (162.38 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and a water content adjusted to 500 ppm (DMAc) 693.8 g was added, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 28.90 g (65.05 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride were added to the flask.
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • DMAc 2,2′-bis (trifluoromethyl) benzidine
  • DMAc 2,2′-bis (trifluoromethyl) benzidine
  • DMAc 2,2
  • the obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of a thread, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamideimide resin. DMAc was added to the obtained polyamideimide resin so that the concentration was 15% by mass to prepare a polyamideimide varnish.
  • the obtained polyamideimide varnish was coated on a smooth surface of a polyester base material (trade name “A4100”, manufactured by Toyobo Co., Ltd.) using an applicator so that the film thickness of the self-supporting film became 55 ⁇ m, and the temperature was 50 ° C.
  • the self-supporting film was fixed to a metal frame, and further dried at 300 ° C. for 30 minutes in the air to obtain a polyamideimide film having a film thickness of 50 ⁇ m.
  • Example 2 Except for changing the moisture content of DMAc of Example 1 to 100 ppm and changing the heating time after heating at 70 ° C. to 1 hour to obtain a polyamideimide resin, in the same manner as in Example 1, A polyamideimide film was obtained.
  • Example 3 In a 1 L separable flask equipped with a stirring blade under a nitrogen atmosphere, 52 g (162.38 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and N, N-dimethylacetamide having a water content adjusted to 500 ppm (DMAc) 657.63 g was added, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 21.67 g (48.79 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride were added to the flask.
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • N N-dimethylacetamide having a water content adjusted to 500 ppm (DMAc) 657.63 g was added, and TFMB was dissolved in DMA
  • the obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of a thread, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamideimide resin. DMAc was added to the obtained polyamideimide resin so that the concentration was 15% by mass to prepare a polyamideimide varnish.
  • the obtained polyamideimide varnish was coated on a smooth surface of a polyester base material (trade name “A4100”, manufactured by Toyobo Co., Ltd.) using an applicator so that the film thickness of the self-supporting film became 55 ⁇ m, and the temperature was 50 ° C.
  • the self-supporting film was fixed to a metal frame, and further dried at 300 ° C. for 30 minutes in the air to obtain a polyamideimide film having a film thickness of 50 ⁇ m.
  • Example 4 In a 1 L separable flask equipped with a stirring blade under a nitrogen atmosphere, 52 g (162.38 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and N, N-dimethylacetamide having a water content adjusted to 500 ppm (DMAc) 673.93 g was added, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 28.90 g (65.05 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) was added to the flask and stirred at room temperature for 3 hours.
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • N N-dimethylacetamide having a water content adjusted to 500 ppm (DMAc) 673.93 g was added, and TFMB was dissolved in DMAc while stirring at room temperature.
  • 6FDA 4,4 ′-
  • TPC terephthaloyl chloride
  • 7.49 g (94.65 mmol) of pyridine and 14.61 g (143.11 mmol) of acetic anhydride were added to the flask, stirred for 30 minutes at room temperature, then heated to 70 ° C. using an oil bath, Stir for hours to obtain a reaction solution.
  • the obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of a thread, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol.
  • the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamideimide resin.
  • DMAc was added to the obtained polyamideimide resin so that the concentration was 15% by mass to prepare a polyamideimide varnish.
  • the obtained polyamideimide varnish was coated on a smooth surface of a polyester base material (trade name “A4100”, manufactured by Toyobo Co., Ltd.) using an applicator so that the film thickness of the self-supporting film became 55 ⁇ m, and the temperature was 50 ° C. And then dried at 140 ° C. for 15 minutes to obtain a self-supporting film.
  • the self-supporting film was fixed to a metal frame and further dried at 230 ° C. for 30 minutes in the air to obtain a polyamideimide film having a thickness of 50 ⁇ m.
  • Example 5 In a 1 L separable flask equipped with a stirring blade under a nitrogen atmosphere, 52 g (162.38 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and N, N-dimethylacetamide having a water content adjusted to 500 ppm (DMAc) 734.10 g was added, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 28.90 g (65.05 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) was added to the flask and stirred at room temperature for 3 hours.
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • N N-dimethylacetamide having a water content adjusted to 500 ppm (DMAc) 734.10 g was added, and TFMB was dissolved in DMAc while stirring at room temperature.
  • 6FDA 4,4 ′-
  • the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamideimide resin.
  • DMAc was added to the obtained polyamideimide resin so that the concentration was 15% by mass to prepare a polyamideimide varnish.
  • the obtained polyamideimide varnish was coated on a smooth surface of a polyester base material (trade name “A4100”, manufactured by Toyobo Co., Ltd.) using an applicator so that the film thickness of the self-supporting film became 55 ⁇ m, and the temperature was 50 ° C. And then dried at 140 ° C. for 15 minutes to obtain a self-supporting film.
  • the self-supporting film was fixed to a metal frame, and further dried at 300 ° C. for 30 minutes in the air to obtain a polyamideimide film having a film thickness of 50 ⁇ m.
  • Example 6 In a 1 L separable flask equipped with a stirring blade under a nitrogen atmosphere, 52 g (162.38 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and N, N-dimethylacetamide having a water content adjusted to 500 ppm (DMAc) 734.10 g was added, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 28.90 g (65.05 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) was added to the flask and stirred at room temperature for 3 hours.
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • N N-dimethylacetamide having a water content adjusted to 500 ppm (DMAc) 734.10 g was added, and TFMB was dissolved in DMAc while stirring at room temperature.
  • 6FDA 4,4 ′-
  • the obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of a thread, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamideimide resin. DMAc was added to the obtained polyamideimide resin so that the concentration was 15% by mass to prepare a polyamideimide varnish.
  • the obtained polyamideimide varnish was coated on a smooth surface of a polyester base material (trade name “A4100”, manufactured by Toyobo Co., Ltd.) using an applicator so that the film thickness of the self-supporting film became 55 ⁇ m, and the temperature was 50 ° C.
  • the self-supporting film was fixed to a metal frame, and further dried at 300 ° C. for 30 minutes in the air to obtain a polyamideimide film having a film thickness of 50 ⁇ m.
  • Example 7 In a 1 L separable flask equipped with a stirring blade under a nitrogen atmosphere, 52 g (162.38 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and N, N-dimethylacetamide having a water content adjusted to 500 ppm (DMAc) 667.75 g was added, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 21.67 g (48.79 mmol) of terephthaloyl chloride (TPC) 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) was added to the flask and stirred at room temperature for 3 hours.
  • TPC terephthaloyl chloride
  • 6FDA terephthaloyl chloride
  • the obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of a thread, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamideimide resin. DMAc was added to the obtained polyamideimide resin so that the concentration was 15% by mass to prepare a polyamideimide varnish.
  • the obtained polyamideimide varnish was coated on a smooth surface of a polyester base material (trade name “A4100”, manufactured by Toyobo Co., Ltd.) using an applicator so that the film thickness of the self-supporting film became 55 ⁇ m, and the temperature was 50 ° C.
  • the self-supporting film was fixed to a metal frame, and further dried at 300 ° C. for 30 minutes in the air to obtain a polyamideimide film having a film thickness of 50 ⁇ m.
  • Example 1 A polyamideimide film was obtained in the same manner as in Example 1 except that the polyamideimide resin was obtained by changing the stirring time after heating at 70 ° C. to 1 hour in Example 1.
  • Example 2 A polyamideimide film was obtained in the same manner as in Example 3 except that the polyamideimide resin was obtained by changing the stirring time after heating at 70 ° C. to 1 hour in Example 3.
  • DMAc was added to the obtained polyimide resin so that a density
  • the obtained polyimide varnish was applied on a smooth surface of a polyester base material (trade name “A4100” manufactured by Toyobo Co., Ltd.) using an applicator so that the film thickness of the free-standing film was 55 ⁇ m, and 50 ° C. for 30 minutes. Then, it was dried at 140 ° C. for 15 minutes to obtain a self-supporting film.
  • the self-supporting film was fixed to a metal frame, and further dried at 300 ° C. for 30 minutes in the air to obtain a polyimide film having a thickness of 50 ⁇ m.
  • the obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of a thread, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyimide resin. DMAc was added to the obtained polyimide resin so that a density
  • a polyester base material trade name “A4100” manufactured by Toyobo Co., Ltd.
  • the self-supporting film was fixed to a metal frame, and further dried at 300 ° C. for 30 minutes in the air to obtain a polyimide film having a thickness of 50 ⁇ m.
  • Example 5 A polyamideimide film was obtained in the same manner as in Example 1 except that in Example 1, the moisture content of DMAc was changed to 1000 ppm to obtain a polyamideimide resin.
  • Example 6 A polyamideimide film was obtained in the same manner as in Example 1 except that the moisture content of DMAc was changed to 1700 ppm and the stirring time after heating at 70 ° C. was changed to 5 hours to obtain a polyamideimide resin. .
  • Example 7 a polyamideimide film was obtained in the same manner as in Example 5 except that the stirring time after heating at 70 ° C. was changed to 30 minutes to obtain a polyamideimide resin.
  • Example 7 the stirring time after heating at 70 ° C. was changed to 30 minutes, and a polyamideimide film was obtained in the same manner as in Example 7 except that a polyamideimide resin was obtained.
  • Example 8 In a 1 L separable flask equipped with a stirring blade under a nitrogen gas atmosphere, 45 g (140.5 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and N, N-dimethyl prepared with a water content of 200 ppm were prepared. 600.9 g of acetamide (DMAc) was added, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 4.14 g (14.1 mmol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) was added to the flask, and the mixture was stirred at room temperature for 2.5 hours.
  • DMAc acetamide
  • BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • DMAc was added to the obtained polyamideimide resin so that the concentration was 15% by mass to prepare a polyamideimide varnish.
  • the obtained polyamideimide varnish was coated on a smooth surface of a polyester base material (trade name “A4100”, manufactured by Toyobo Co., Ltd.) using an applicator so that the film thickness of the self-supporting film became 55 ⁇ m, and the temperature was 50 ° C. And then dried at 140 ° C. for 15 minutes to obtain a self-supporting film.
  • the self-supporting film was fixed to a metal frame, and further dried at 300 ° C. for 30 minutes in the air to obtain a polyamideimide film having a film thickness of 50 ⁇ m.
  • Example 9 In a 1 L separable flask equipped with a stirring blade under a nitrogen gas atmosphere, 14.67 g (45.8 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and a water content adjusted to 200 ppm were obtained. -233.3 g of dimethylacetamide (DMAc) was added and TFMB was dissolved in DMAc while stirring at room temperature. Next, 4.283 g (13.8 mmol) of 4,4′-oxydiphthalic dianhydride (OPDA) was added to the flask, and the mixture was stirred at room temperature for 16.5 hours.
  • DMAc dimethylacetamide
  • OPDA 4,4′-oxydiphthalic dianhydride
  • Example 10 Instead of 4.283 g of 4,4′-oxydiphthalic dianhydride (OPDA), 6.140 g of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) was converted into 2,2′-bis ( Trifluoromethyl) benzidine (TFMB) was changed to 14.67 g (45.8 mmol), but TFMB 8.809 g (27.5 mmol) and 2,2′-dimethylbenzidine (MB) 3.889 g (18.3 mmol) were used. Obtained a polyamideimide resin in the same manner as in Example 9. The molar ratio of each component is as shown in Table 1. In the same manner as in Example 8, a polyamideimide film having a thickness of 50 ⁇ m was obtained from the polyamideimide resin obtained in Example 10.
  • Example 11 Polyamideimide was prepared in the same manner as in Example 9 except that 3.670 g (18.3 mmol) of 4,4′-diaminodiphenyl ether (ODA) was used instead of 3.889 g of 2,2′-dimethylbenzidine (MB). A resin was obtained. The molar ratio of each component is as shown in Table 1. In the same manner as in Example 8, a polyamideimide film having a thickness of 50 ⁇ m was obtained from the polyamideimide resin obtained in Example 11.
  • ODA 4,4′-diaminodiphenyl ether
  • Table 1 The ratio of each structural unit and the synthesis conditions in the polyamideimide resin (B) contained in the polyamideimide varnish obtained in the above examples and the resin (B) contained in the varnish obtained in the comparative example are shown in Table 1 below. Table 1 also shows the results obtained by measuring the imidization ratio of the polyamideimide resin (B) and the resin (B) according to the measurement method. In Table 1, the imidization rate of the polyamideimide resin (B) and the resin (B) is “imidation rate B”, and the water content in the solvent at the start of the step (1) is “w [ppm]”.
  • the heating time in the step (2) is “t [min]”, and the ratio of the molar amount of the dehydrating agent added in the step (2) to the molar amount of the tetracarboxylic dianhydride added in the step (1) is “ “Dehydrating agent addition amount”.
  • a polyimide resin B was prepared in the same manner as the polyamideimide resin B except that the resin was changed.
  • the results obtained by measuring the imidization rate of the polyamideimide resin (A) contained in the polyamideimide film obtained in the above examples and the resin (A) contained in the film obtained in the above comparative example according to the above measurement method 2 shows as “imidization ratio A”.
  • a polyimide resin A was prepared in the same manner as the polyamideimide resin A except that the resin was changed.
  • pencil hardness, yellowness (YI), total light transmittance (Tt), elastic modulus, and bending resistance number of times of reciprocal bending
  • Example 10 the ratio of the ratio of each structural unit in the polyamideimide resin (A) contained in the polyamideimide film and the resin (A) contained in the film obtained in the above comparative example corresponds to the polyamideimide shown in Table 1, respectively. It is the same as the ratio of the structural unit in resin (B) and resin (B). Moreover, in Example 10 and 11, it confirmed that the signal derived from the structure different from the repeating unit which has an amic acid, and the repeating unit which has an imide bond overlaps. For this reason, in the signal, the intensity of the non-overlapping part was integrated to obtain the original signal intensity from the area ratio of the part, and the imidization ratios A and B were calculated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention addresses the problem of providing a film that is suitable for use as a front surface plate for a flexible display or the like, includes a polyamide-imide resin that is highly imidized, and has high surface hardness. The present invention provides a film that includes a polyamide-imide resin A that: has at least a structural unit derived from a diamine, a structural unit derived from a dicarboxylic acid, and a structural unit derived from a tetracarboxylic acid dianhydride; and, as measured by two-dimensional NMR, is at least 95% imidized.

Description

フィルム、樹脂組成物及びポリアミドイミド樹脂の製造方法Film, resin composition and method for producing polyamideimide resin
 本発明は、ポリアミドイミド樹脂を含むフィルム、ポリアミドイミド樹脂を含む樹脂組成物及びポリアミドイミド樹脂の製造方法に関する。 The present invention relates to a film containing a polyamideimide resin, a resin composition containing a polyamideimide resin, and a method for producing a polyamideimide resin.
 現在、液晶表示装置や有機EL表示装置等の画像表示装置は、テレビのみならず、携帯電話やスマートウォッチといった種々の用途で広く活用されている。こうした用途の拡大に伴い、フレキシブル特性を有する画像表示装置(フレキシブルディスプレイ)が求められている。画像表示装置は、液晶表示素子又は有機EL表示素子等の表示素子の他、偏光板や位相差板及び前面板等の構成部材から構成される。フレキシブルディスプレイを達成するためには、これら全ての構成部材が柔軟性を有する必要がある。 Currently, image display devices such as liquid crystal display devices and organic EL display devices are widely used not only for televisions but also for various applications such as mobile phones and smart watches. With the expansion of such applications, an image display device (flexible display) having flexible characteristics is required. The image display apparatus includes a display element such as a liquid crystal display element or an organic EL display element, and other constituent members such as a polarizing plate, a retardation plate, and a front plate. In order to achieve a flexible display, all these components need to be flexible.
 これまで前面板としてはガラスが用いられている。ガラスは、透明度が高く、ガラスの種類によっては高硬度を発現できる反面、非常に剛直であり、割れやすいため、フレキシブルディスプレイの前面板材料としての利用は難しい。 Until now, glass has been used as the front plate. Glass is highly transparent and can exhibit high hardness depending on the type of glass, but it is very rigid and easily broken, making it difficult to use as a front plate material for flexible displays.
 そのため、ガラスに代わる材料として高分子材料の活用が検討されている。高分子材料からなる前面板はフレキシブル特性を発現し易いため、種々の用途に用いることが期待できる。柔軟性を有する樹脂としては種々のものが挙げられるが、その一つにポリアミドイミド樹脂がある。ポリアミドイミド樹脂は、透明性や耐熱性の観点から、種々の用途で使用され、その製造方法も種々検討されている。 Therefore, the use of polymer materials as a substitute for glass is being studied. Since the front plate made of a polymer material is easy to exhibit flexible characteristics, it can be expected to be used for various applications. Various resins can be used as the flexible resin, and one of them is a polyamideimide resin. Polyamideimide resins are used in various applications from the viewpoints of transparency and heat resistance, and various methods for their production have been studied.
 例えば特許文献1には、TFDB(2,2’-ビストリフルオロメチル-4,4’-ビフェニルジアミン)に由来する単位構造、6FDA(4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物に由来する単位構造、及び、TPC(テトレフタロイルクロリド;1,4-ベンゼンジカルボニルクロリド)に由来する単位構造が共重合された樹脂を含む、共重合ポリアミドイミドフィルムが記載されている。
 また、特許文献2には、鉛筆硬度などの機械的特性に優れる共重合ポリアミドフィルムが記載されている。
For example, Patent Document 1 discloses a unit structure derived from TFDB (2,2′-bistrifluoromethyl-4,4′-biphenyldiamine), 6FDA (4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride. And a copolymerized polyamideimide film comprising a resin in which a unit structure derived from TPC (tetrephthaloyl chloride; 1,4-benzenedicarbonyl chloride) is copolymerized.
Patent Document 2 describes a copolymerized polyamide film having excellent mechanical properties such as pencil hardness.
特表2015-521686号公報Special table 2015-521686 gazette 特表2014-528490号公報Special table 2014-528490 gazette
 従来、前面板として使用されるようなポリアミドイミド樹脂を含むフィルムでは、高い透明性と共にフィルムの高い表面硬度を発現することが求められるが、フィルム製造方法やフィルムの測定条件によって表面硬度の評価結果が大きく異なるなどの問題があった。 Conventionally, in a film containing a polyamide-imide resin used as a front plate, it is required to express a high surface hardness of the film with high transparency, but the evaluation result of the surface hardness depending on the film production method and the measurement conditions of the film There were problems such as greatly different.
 例えば特許文献1に記載されるフィルムは、波長380~780nmの平均透過度が89%以上であるが、そのフィルムが十分高い表面硬度を有するかどうかは明らかにされていない。また、高い表面硬度の発現に好適な形態についての示唆もない。特許文献2には、フィルムが3H以上の表面鉛筆硬度を有することが記載されてはいるが、鉛筆硬度の評価を行う場合、使用する照度条件によって結果が異なる場合がある。 For example, the film described in Patent Document 1 has an average transmittance of 89% or more at a wavelength of 380 to 780 nm, but it is not clear whether the film has a sufficiently high surface hardness. Moreover, there is no suggestion about a form suitable for the expression of high surface hardness. Patent Document 2 describes that the film has a surface pencil hardness of 3H or more, but when the pencil hardness is evaluated, the result may vary depending on the illuminance conditions used.
 そこで本発明は、特にフレキシブルディスプレイ等の前面板として好適に使用される、高いイミド化率を有するポリアミドイミド樹脂を含む、高い表面硬度を有するフィルムを提供することを目的とする。 Therefore, an object of the present invention is to provide a film having a high surface hardness, including a polyamideimide resin having a high imidization ratio, which is particularly suitably used as a front plate for a flexible display or the like.
 本発明者らは、上記課題を解決すべく、ポリアミドイミド樹脂の種々の特性について、ポリアミドイミド樹脂のイミド化率と得られるフィルムの表面硬度に着目して鋭意検討を行った。その結果、特定の要件を満たすポリアミドイミド樹脂を用いれば、フィルムの表面硬度を高めることができることを見出し、本発明を完成させるに至った。 In order to solve the above-mentioned problems, the present inventors diligently studied various characteristics of the polyamideimide resin by paying attention to the imidization ratio of the polyamideimide resin and the surface hardness of the obtained film. As a result, it was found that the surface hardness of the film can be increased by using a polyamideimide resin satisfying specific requirements, and the present invention has been completed.
 すなわち、本発明は、以下の好適な態様を包含する。
[1]ジアミンに由来する構成単位、ジカルボン酸に由来する構成単位、及び、テトラカルボン酸二無水物に由来する構成単位を少なくとも有し、2次元NMRにより測定して95%以上のイミド化率を有するポリアミドイミド樹脂Aを含むフィルム。
[2]ジアミンは、式(3):
Figure JPOXMLDOC01-appb-C000014
[式(3)中、Xは式(3e’):
Figure JPOXMLDOC01-appb-C000015
〔式(3e’)中、R10~R17は、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、R10~R17に含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよく、*は結合手を表す。〕を表す。]
で表される少なくとも1種の化合物を含む、前記[1]に記載のフィルム。
[3]ジカルボン酸は、式(2):
Figure JPOXMLDOC01-appb-C000016
[式(2)中、Zは式(2a)又は(2b):
Figure JPOXMLDOC01-appb-C000017
〔式(2a)及び式(2b)中、Uは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-Ar-、-SO-、-CO-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又はAr-SO-Ar-を表し、*は結合手を表す。〕で表される基を表し、B及びBは、それぞれ独立して、OH又はハロゲン原子を表す。]
で表される少なくとも1種の化合物を含む、前記[1]又は[2]に記載のフィルム。
[4]テトラカルボン酸二無水物は、式(4):
Figure JPOXMLDOC01-appb-C000018
[式(4)中、Yは、式(4g):
Figure JPOXMLDOC01-appb-C000019
〔式(4g)中、Wは、単結合、-C(CH-又はC(CF-を表し、*は結合手を表す。〕を表す。]
で表される少なくとも1種の化合物を含む、前記[1]~[3]のいずれかに記載のフィルム。
[5]ポリアミドイミド樹脂Aはフッ素原子を含む、前記[1]~[4]のいずれかに記載のフィルム。
[6]3以下のYIを有する、前記[1]~[5]のいずれかに記載のフィルム。
[7]4000ルクスの照度条件下でASTM D 3363に従い測定して3B以上の鉛筆硬度を有する、前記[1]~[6]のいずれかに記載のフィルム。
[8]ジアミンに由来する構成単位、ジカルボン酸に由来する構成単位、及び、テトラカルボン酸二無水物に由来する構成単位を有し、2次元NMRにより測定して60%以上のイミド化率を有するポリアミドイミド樹脂B、及び、溶剤を少なくとも含む、樹脂組成物。
[9]ジアミンは、式(3):
Figure JPOXMLDOC01-appb-C000020
[式(3)中、Xは式(3e’):
Figure JPOXMLDOC01-appb-C000021
〔式(3e’)中、R10~R17は、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、R10~R17に含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよく、*は結合手を表す。〕を表す。]
で表される少なくとも1種の化合物を含む、前記[8]に記載の樹脂組成物。
[10]ジカルボン酸は、式(2):
Figure JPOXMLDOC01-appb-C000022
[式(2)中、Zは次の式(2a)又は式(2b):
Figure JPOXMLDOC01-appb-C000023
〔式(2a)及び式(2b)中、Uは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-Ar-、-SO-、-CO-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又はAr-SO-Ar-を表し、*は結合手を表す。〕で表される基を表し、B及びBは、それぞれ独立して、OH又はハロゲン原子を表す。]
で表される少なくとも1種の化合物を含む、前記[8]又は[9]に記載の樹脂組成物。
[11]テトラカルボン酸二無水物は、式(4):
Figure JPOXMLDOC01-appb-C000024
[式(4)中、Yは、次の式(4g):
Figure JPOXMLDOC01-appb-C000025
〔式(4g)中、Wは、単結合、-C(CH-又はC(CF-を表し、*は結合手を表す。〕を表す。]
で表される少なくとも1種の化合物を含む、前記[8]~[10]のいずれかに記載の樹脂組成物。
[12]ポリアミドイミド樹脂Bはフッ素原子を含む、前記[8]~[11]のいずれかに記載の樹脂組成物。
[13]前記[8]~[12]のいずれかに記載の樹脂組成物の塗膜を乾燥させてなるフィルム。
[14](1)ジアミン、ジカルボン酸、及び、テトラカルボン酸二無水物を溶剤中で共重合しポリアミドイミド樹脂前駆体を得る工程、及び、
 (2)ポリアミドイミド樹脂前駆体を少なくとも含む溶液に、脱水剤及び第三級アミンを添加し、70~120℃の温度で加熱する工程
を少なくとも含む、ポリアミドイミド樹脂の製造方法であって、工程(1)を開始する際の溶剤中の水分量をw(ppm)とし、工程(2)における加熱時間をt(分)とすると、w及びtが次の式:
Figure JPOXMLDOC01-appb-M000026
を満たす、製造方法。
[15]工程(2)において添加される脱水剤のモル量は、工程(1)において添加されるテトラカルボン酸二無水物のモル量の2倍以上である、前記[14]に記載の製造方法。
That is, the present invention includes the following preferred embodiments.
[1] It has at least a structural unit derived from diamine, a structural unit derived from dicarboxylic acid, and a structural unit derived from tetracarboxylic dianhydride, and an imidation ratio of 95% or more as measured by two-dimensional NMR A film comprising polyamideimide resin A having
[2] The diamine has the formula (3):
Figure JPOXMLDOC01-appb-C000014
[In Formula (3), X is Formula (3e '):
Figure JPOXMLDOC01-appb-C000015
[In the formula (3e ′), R 10 to R 17 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and are included in R 10 to R 17. Each hydrogen atom may be independently substituted with a halogen atom, and * represents a bond. ] Is represented. ]
The film according to [1] above, comprising at least one compound represented by the formula:
[3] The dicarboxylic acid has the formula (2):
Figure JPOXMLDOC01-appb-C000016
[In Formula (2), Z represents Formula (2a) or (2b):
Figure JPOXMLDOC01-appb-C000017
Wherein (2a) and Formula (2b), U 1 represents a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3 ) 2 -, - Ar -, - SO 2 -, - CO -, - O-Ar-O -, - Ar-O-Ar -, - Ar-CH 2 -Ar-, —Ar—C (CH 3 ) 2 —Ar— or Ar—SO 2 —Ar— is represented, and * represents a bond. And B 1 and B 2 each independently represent OH or a halogen atom. ]
The film according to the above [1] or [2], comprising at least one compound represented by:
[4] The tetracarboxylic dianhydride has the formula (4):
Figure JPOXMLDOC01-appb-C000018
[In Formula (4), Y represents Formula (4g):
Figure JPOXMLDOC01-appb-C000019
[In Formula (4g), W 1 represents a single bond, —C (CH 3 ) 2 — or C (CF 3 ) 2 —, and * represents a bond. ] Is represented. ]
The film according to any one of [1] to [3], comprising at least one compound represented by the formula:
[5] The film according to any one of [1] to [4], wherein the polyamideimide resin A contains a fluorine atom.
[6] The film according to any one of [1] to [5], having a YI of 3 or less.
[7] The film according to any one of [1] to [6], which has a pencil hardness of 3B or more as measured in accordance with ASTM D 3363 under an illumination condition of 4000 lux.
[8] It has a structural unit derived from diamine, a structural unit derived from dicarboxylic acid, and a structural unit derived from tetracarboxylic dianhydride, and has an imidization ratio of 60% or more as measured by two-dimensional NMR. A resin composition comprising at least a polyamideimide resin B and a solvent.
[9] The diamine has the formula (3):
Figure JPOXMLDOC01-appb-C000020
[In Formula (3), X is Formula (3e '):
Figure JPOXMLDOC01-appb-C000021
[In the formula (3e ′), R 10 to R 17 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and are included in R 10 to R 17. Each hydrogen atom may be independently substituted with a halogen atom, and * represents a bond. ] Is represented. ]
The resin composition as described in [8] above, comprising at least one compound represented by the formula:
[10] The dicarboxylic acid has the formula (2):
Figure JPOXMLDOC01-appb-C000022
[In the formula (2), Z represents the following formula (2a) or formula (2b):
Figure JPOXMLDOC01-appb-C000023
Wherein (2a) and Formula (2b), U 1 represents a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3 ) 2 -, - Ar -, - SO 2 -, - CO -, - O-Ar-O -, - Ar-O-Ar -, - Ar-CH 2 -Ar-, —Ar—C (CH 3 ) 2 —Ar— or Ar—SO 2 —Ar— is represented, and * represents a bond. And B 1 and B 2 each independently represent OH or a halogen atom. ]
The resin composition according to the above [8] or [9], comprising at least one compound represented by:
[11] The tetracarboxylic dianhydride has the formula (4):
Figure JPOXMLDOC01-appb-C000024
[In formula (4), Y represents the following formula (4g):
Figure JPOXMLDOC01-appb-C000025
[In Formula (4g), W 1 represents a single bond, —C (CH 3 ) 2 — or C (CF 3 ) 2 —, and * represents a bond. ] Is represented. ]
The resin composition according to any one of [8] to [10], comprising at least one compound represented by the formula:
[12] The resin composition according to any one of [8] to [11], wherein the polyamideimide resin B contains a fluorine atom.
[13] A film obtained by drying a coating film of the resin composition according to any one of [8] to [12].
[14] (1) A step of copolymerizing diamine, dicarboxylic acid, and tetracarboxylic dianhydride in a solvent to obtain a polyamideimide resin precursor, and
(2) A method for producing a polyamideimide resin, comprising at least a step of adding a dehydrating agent and a tertiary amine to a solution containing at least a polyamideimide resin precursor and heating at a temperature of 70 to 120 ° C. When the amount of water in the solvent at the start of (1) is w (ppm) and the heating time in step (2) is t (minutes), w and t are the following formulas:
Figure JPOXMLDOC01-appb-M000026
Satisfying the manufacturing method.
[15] The production according to [14], wherein the molar amount of the dehydrating agent added in the step (2) is at least twice the molar amount of the tetracarboxylic dianhydride added in the step (1). Method.
 本発明によれば、高いイミド化率を有するポリアミドイミド樹脂を含み、画像表示装置等における前面板等として好ましく使用される、高い表面硬度を有するフィルムが得られる。 According to the present invention, it is possible to obtain a film having a high surface hardness, which includes a polyamideimide resin having a high imidization ratio and is preferably used as a front plate or the like in an image display device or the like.
 以下、本発明の実施の形態について詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更をすることができる。 Hereinafter, embodiments of the present invention will be described in detail. The scope of the present invention is not limited to the embodiment described here, and various modifications can be made without departing from the spirit of the present invention.
 本発明のフィルムは、2次元NMRにより測定して95%以上のイミド化率を有するポリアミドイミド樹脂Aを含む。ポリアミドイミド樹脂Aのイミド化率が95%より低い場合、過度に柔軟な一次構造のポリアミドイミドとなる傾向があるために、該ポリアミドイミド樹脂を含むフィルムの表面硬度を十分に高めることができない。ポリアミドイミドワニスの安定性の観点から、ポリアミドイミド樹脂Aのイミド化率は、好ましくは97%以上、より好ましくは98%以上、さらにより好ましくは99%以上である。該イミド化率は高ければ高いほどよく、その上限は特に限定されず、100%以下であればよい。ポリアミドイミド樹脂Aのイミド化率を上記の範囲に調整する方法としては、例えば後述するポリアミド樹脂組成物を用いてフィルムを製造した後、イミド化を行って製造する方法、後述する製造方法により製造したポリアミドイミド樹脂を含む組成物を用いてフィルムを製造する方法などが挙げられる。 The film of the present invention contains a polyamideimide resin A having an imidization ratio of 95% or more as measured by two-dimensional NMR. When the imidization ratio of the polyamide-imide resin A is lower than 95%, the surface hardness of the film containing the polyamide-imide resin cannot be sufficiently increased because the polyamide-imide resin A tends to be an excessively flexible primary structure. From the viewpoint of the stability of the polyamideimide varnish, the imidization ratio of the polyamideimide resin A is preferably 97% or more, more preferably 98% or more, and even more preferably 99% or more. The higher the imidization rate, the better. The upper limit is not particularly limited, and it may be 100% or less. As a method for adjusting the imidation ratio of the polyamide-imide resin A to the above range, for example, after producing a film using a polyamide resin composition described later, the method for producing by imidization, the production method described later The method etc. which manufacture a film using the composition containing the prepared polyamide imide resin are mentioned.
 ポリアミドイミド樹脂Aのイミド化率は、ポリアミドイミド樹脂A中のテトラカルボン酸二無水物に由来する構成単位のモル数の2倍の値に対する、ポリアミドイミド樹脂A中のイミド結合のモル数の割合を表し、本明細書においては2次元NMRにより測定される。従来、ポリアミドイミド樹脂のイミド化率の測定は、赤外スペクトルを用いて行われることが多かったが、該方法では、特開2004-338160号公報に記載されるようにイミドを含む樹脂を加熱し、充分にイミド化した樹脂の測定が必要である。しかしながら、充分にイミド化させるためには高い温度で加熱する必要があり、加熱過程において同時に樹脂の分解反応が起きる場合があるために誤差があり、イミド化率を正確に測定することができていなかった。本発明者らは、2次元NMRを用いて高い精度でポリアミドイミド樹脂のイミド化率を測定することを検討し、その結果、2次元NMRを用いて測定される所定のイミド化率を有するポリアミドイミド樹脂Aを含むフィルムが、高い表面硬度を達成することを見出した。ポリアミドイミド樹脂Aのイミド化率は、フィルムを重水素化ジメチルスルホキシド(DMSO-d6)に溶解させて得た所定溶液を測定試料として、2次元NMRを用いて測定することができる。なお、2次元NMRの測定条件の詳細は、実施例に示す通りである。 The imidation ratio of the polyamideimide resin A is the ratio of the number of moles of imide bonds in the polyamideimide resin A to the value twice the number of moles of the structural unit derived from the tetracarboxylic dianhydride in the polyamideimide resin A. In this specification, it is measured by two-dimensional NMR. Conventionally, the measurement of the imidization ratio of a polyamide-imide resin has often been performed using an infrared spectrum. In this method, a resin containing an imide is heated as described in JP-A-2004-338160. However, it is necessary to measure a fully imidized resin. However, in order to sufficiently imidize, it is necessary to heat at a high temperature, and there may be an error because a decomposition reaction of the resin may occur simultaneously in the heating process, and the imidation rate can be accurately measured. There wasn't. The present inventors have studied to measure the imidization ratio of the polyamide-imide resin with high accuracy using two-dimensional NMR, and as a result, a polyamide having a predetermined imidization ratio measured using two-dimensional NMR. It has been found that a film containing imide resin A achieves a high surface hardness. The imidization ratio of the polyamideimide resin A can be measured using two-dimensional NMR using a predetermined solution obtained by dissolving the film in deuterated dimethyl sulfoxide (DMSO-d6). The details of the two-dimensional NMR measurement conditions are as shown in the examples.
 本発明のフィルムの鉛筆硬度(表面硬度)は4000ルクスの照度条件下でASTM D 3363に従い測定して、好ましくは3B以上、より好ましくは2B以上、さらに好ましくはB以上、特に好ましくはHB以上、極めて好ましくはH以上、最も好ましくは2H以上である。本発明のフィルムの鉛筆硬度が上記の下限以上であることが、画像表示装置の前面板(ウィンドウフィルム)として使用した場合に画像表示装置表面の傷つきを抑制しやすく、また、フィルムの収縮及び膨張を防止しやすいため好ましい。本発明のフィルムの鉛筆硬度の上限は特に限定されない。鉛筆硬度は、JIS K5600-5-4:1999に準拠して測定される。具体的には、荷重100g、走査速度60mm/分にて測定を行い、光量4000ルクスの照度条件下で評価を行う。なお、鉛筆硬度の評価を行う場合、使用する照度条件によって結果が異なる場合がある。具体的には、光量4000ルクスの照度条件下で評価を行って測定した鉛筆硬度と比較して、より低い光量の照度条件下で評価を行って測定した鉛筆硬度は、より低い光量のためにフィルム上の傷が見えにくくなる結果、実際よりも高い鉛筆硬度が得られる可能性が高い。そのため、本明細書における鉛筆硬度は、光量4000ルクスの照度条件下で評価して得た値とする。 The pencil hardness (surface hardness) of the film of the present invention is preferably 3B or more, more preferably 2B or more, still more preferably B or more, particularly preferably HB or more, as measured according to ASTM D 3363 under an illumination condition of 4000 lux. Very preferably H or higher, most preferably 2H or higher. When the film of the present invention has a pencil hardness equal to or higher than the above lower limit, when used as a front plate (window film) of an image display device, it is easy to suppress scratches on the surface of the image display device, and the film shrinks and expands. It is preferable because it is easy to prevent. The upper limit of the pencil hardness of the film of the present invention is not particularly limited. The pencil hardness is measured according to JIS K5600-5-4: 1999. Specifically, measurement is performed at a load of 100 g and a scanning speed of 60 mm / min, and evaluation is performed under an illuminance condition of a light amount of 4000 lux. In addition, when evaluating pencil hardness, a result may change with the illumination intensity conditions to be used. Specifically, compared with the pencil hardness measured and evaluated under the illuminance condition of 4000 lux, the pencil hardness measured and measured under the lower illuminance condition is As a result of making it difficult to see scratches on the film, there is a high possibility that a higher pencil hardness than actual will be obtained. Therefore, the pencil hardness in the present specification is a value obtained by evaluating under an illuminance condition of a light amount of 4000 lux.
 本発明のフィルムのYI値は、好ましくは3.5以下、より好ましくは3.0以下、さらに好ましくは2.5以下である。YI値が上記の上限以下であると、フィルムの視認性をより高くすることができる。なお、YI値の下限は特に限定されず、通常0以上であればよい。YI値は、フィルムの黄色度(Yellow Index:YI値)を表し、JIS K 7373:2006に準拠して、分光光度計(日本分光(株)製の紫外可視近赤外分光光度計V-670)を用いて測定される。具体的には、300~800nmの光に対する透過率測定を行い求めた3刺激値(X、Y、Z)から、下記の式に基づいて算出する。測定には、例えば、厚さ50~55μmのフィルムを用いることができる。なお、本発明のフィルムは、YI値が上記範囲であればフィルムの厚さは特に限定されないが、以下に記載の厚さの範囲において上記範囲内であることが好ましい。
Figure JPOXMLDOC01-appb-M000027
The YI value of the film of the present invention is preferably 3.5 or less, more preferably 3.0 or less, and even more preferably 2.5 or less. When the YI value is not more than the above upper limit, the visibility of the film can be further increased. Note that the lower limit of the YI value is not particularly limited, and may be usually 0 or more. The YI value represents the yellowness of the film (Yellow Index: YI value). According to JIS K 7373: 2006, the spectrophotometer (UV-Vis near-infrared spectrophotometer V-670 manufactured by JASCO Corporation) was used. ). Specifically, the tristimulus values (X, Y, Z) obtained by measuring the transmittance with respect to light of 300 to 800 nm are calculated based on the following formula. For the measurement, for example, a film having a thickness of 50 to 55 μm can be used. The thickness of the film of the present invention is not particularly limited as long as the YI value is in the above range, but is preferably within the above range in the thickness range described below.
Figure JPOXMLDOC01-appb-M000027
 本発明のフィルムの厚みは、鉛筆硬度がフィルム厚みにも影響する観点から、好ましくは20μm以上、より好ましくは30μm以上、さらに好ましくは40μm以上である。
本発明のフィルムの厚みは、屈曲耐性の観点から、好ましくは300μm以下、より好ましくは200μm以下、さらに好ましくは100μm以下である。上記厚みは、接触式のデジマチックインジケーターを用いて測定される。
The thickness of the film of the present invention is preferably 20 μm or more, more preferably 30 μm or more, and still more preferably 40 μm or more, from the viewpoint that the pencil hardness also affects the film thickness.
The thickness of the film of the present invention is preferably 300 μm or less, more preferably 200 μm or less, and still more preferably 100 μm or less from the viewpoint of bending resistance. The thickness is measured using a contact-type digimatic indicator.
 本発明のフィルムの全光線透過率(Tt)は、JIS K 7105:1981に準拠し測定して、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは85%以上、特に好ましくは90%以上である。全光線透過率が上記の下限以上であると、本発明のフィルムを画像表示装置に組み込んだ際の視認性を高めやすい。なお、本発明のフィルムの全光線透過率の上限は通常100%以下である。全光線透過率は、JIS K 7105:1981に準拠し、例えばスガ試験機(株)製の全自動直読ヘーズコンピューターHGM-2DPを用いて測定される。測定には、例えば、厚さ50~55μmのフィルムを用いることができる。なお、本発明のフィルムは、全光線透過率が上記範囲であればフィルムの厚さは特に限定されないが、上記厚さの範囲において上記範囲内であることが好ましい。 The total light transmittance (Tt) of the film of the present invention is preferably 70% or more, more preferably 80% or more, still more preferably 85% or more, particularly preferably 90, as measured in accordance with JIS K 7105: 1981. % Or more. When the total light transmittance is not less than the above lower limit, the visibility when the film of the present invention is incorporated in an image display device can be easily improved. In addition, the upper limit of the total light transmittance of the film of the present invention is usually 100% or less. The total light transmittance is measured using, for example, a fully automatic direct reading haze computer HGM-2DP manufactured by Suga Test Instruments Co., Ltd. according to JIS K 7105: 1981. For the measurement, for example, a film having a thickness of 50 to 55 μm can be used. In addition, if the film of this invention has a total light transmittance in the said range, the thickness of a film will not be specifically limited, However, It is preferable to exist in the said range in the said thickness range.
 本発明のフィルムの弾性率は、フィルムの柔軟性の観点から、好ましくは5.9GPa以下、より好ましくは5.5GPa以下、さらに好ましくは5.2GPa以下、特に好ましくは5.0GPa以下、最も好ましくは4.5GPa以下である。弾性率が上記の上限以下であると、フレキシブルディスプレイが屈曲する際に、フィルムによる他の部材の損傷を抑制しやすい。なお、本発明のフィルムの弾性率の下限は特に限定されないが、通常2.0GPa以上である。弾性率は、例えば(株)島津製作所製オートグラフAG-ISを用いて、10mm幅の試験片をチャック間距離500mm、引張速度20mm/minの条件でS-S曲線を測定し、その傾きから測定することができる。 The elastic modulus of the film of the present invention is preferably 5.9 GPa or less, more preferably 5.5 GPa or less, still more preferably 5.2 GPa or less, particularly preferably 5.0 GPa or less, most preferably, from the viewpoint of film flexibility. Is 4.5 GPa or less. When the elastic modulus is not more than the above upper limit, when the flexible display is bent, it is easy to suppress damage to other members due to the film. In addition, although the minimum of the elasticity modulus of the film of this invention is not specifically limited, Usually, it is 2.0 GPa or more. For example, the elastic modulus was measured from the slope of an SS curve measured using an autograph AG-IS manufactured by Shimadzu Corporation with a 10 mm wide test piece at a distance between chucks of 500 mm and a tensile speed of 20 mm / min. Can be measured.
 本発明のフィルムの往復折り曲げ回数は、フィルムの屈曲耐性の観点から、R=1mm、135°、加重0.75kgf、速度175cpmの条件でフィルムが破断するまで測定して、好ましくは10,000回以上、より好ましくは20,000回以上、さらに好ましくは30,000回以上、特に好ましくは40,000回以上、最も好ましくは50,000回以上である。本発明のフィルムの往復折り曲げ回数が上記の下限以上であると、フィルムを屈曲した際に生じ得る織り皺を抑制しやすい。なお、本発明のフィルムの往復折り曲げ回数の上限は特に限定されないが、通常1,000,000回以下程度の折り曲げが可能であれば十分実用的である。往復折り曲げ回数は、例えば(株)東洋精機製作所製MIT耐折疲労試験機(型式0530)を用いて、厚さ50μm、幅10mmのフィルムから切り出した試験片を測定試料として求めることができる。 The number of reciprocal folding of the film of the present invention is preferably measured 10,000 times from the viewpoint of bending resistance of the film until the film breaks under the conditions of R = 1 mm, 135 °, load 0.75 kgf, and speed 175 cpm. More preferably, it is 20,000 times or more, more preferably 30,000 times or more, particularly preferably 40,000 times or more, and most preferably 50,000 times or more. When the number of reciprocal folding of the film of the present invention is equal to or more than the above lower limit, weaving that may occur when the film is bent is easily suppressed. The upper limit of the number of reciprocal folds of the film of the present invention is not particularly limited, but it is sufficiently practical as long as the film can be normally bent about 1,000,000 times or less. The number of reciprocal bendings can be obtained by using, for example, a test piece cut out from a film having a thickness of 50 μm and a width of 10 mm using a MIT folding fatigue tester (model 0530) manufactured by Toyo Seiki Seisakusho.
 本発明のフィルムに含まれるポリアミドイミド樹脂Aは、ジアミンに由来する構成単位、ジカルボン酸に由来する構成単位、及び、テトラカルボン酸二無水物に由来する構成単位を少なくとも有する。 The polyamideimide resin A contained in the film of the present invention has at least a structural unit derived from diamine, a structural unit derived from dicarboxylic acid, and a structural unit derived from tetracarboxylic dianhydride.
 本発明のフィルムに含まれるポリアミドイミド樹脂Aは、ジアミンに由来する構成単位を有する。ジアミンとしては、式(3)で表される化合物が挙げられる。ポリアミドイミド樹脂Aは、1種類のジアミンに由来する構成単位を有していてもよいし、2種以上のジアミンに由来する構成単位を有していてもよい。
Figure JPOXMLDOC01-appb-C000028
[式(3)中、Xは2価の有機基を表す。]
The polyamideimide resin A contained in the film of the present invention has a structural unit derived from diamine. Examples of the diamine include a compound represented by the formula (3). Polyamideimide resin A may have a structural unit derived from one kind of diamine, or may have a structural unit derived from two or more kinds of diamines.
Figure JPOXMLDOC01-appb-C000028
[In formula (3), X represents a divalent organic group. ]
 本発明のフィルムに含まれるポリアミドイミド樹脂Aが式(3)で表されるジアミンに由来する構成単位を有する好ましい一実施態様において、該構成単位の量は、ポリアミドイミド樹脂Aに含まれる全構成単位に基づいて、好ましくは47.5モル%以上、より好ましくは49.0モル%以上、さらに好ましくは49.5モル%以上である。式(3)で表されるジアミンに由来する構成単位の量が上記の下限以上であると、高分子量のポリアミドイミド樹脂を得やすく、高い表面硬度を発現しやすい。また、式(3)で表されるジアミンに由来する構成単位の量は、ポリアミドイミド樹脂Aに含まれる全構成単位に基づいて、好ましくは50.5モル%以下、より好ましくは50.0モル%以下、さらに好ましくは49.99モル%以下である。式(3)で表されるジアミンに由来する構成単位の量が上記の上限以下であると、高い透明性及び低い黄色度を発現しやすい。 In a preferred embodiment in which the polyamideimide resin A contained in the film of the present invention has a constitutional unit derived from the diamine represented by the formula (3), the amount of the constitutional unit is the total constitution contained in the polyamideimide resin A. Based on the unit, it is preferably 47.5 mol% or more, more preferably 49.0 mol% or more, and further preferably 49.5 mol% or more. When the amount of the structural unit derived from the diamine represented by the formula (3) is not less than the above lower limit, it is easy to obtain a high molecular weight polyamideimide resin and easily develop high surface hardness. Further, the amount of the structural unit derived from the diamine represented by the formula (3) is preferably 50.5 mol% or less, more preferably 50.0 mol, based on all the structural units contained in the polyamideimide resin A. % Or less, more preferably 49.99 mol% or less. When the amount of the structural unit derived from the diamine represented by the formula (3) is not more than the above upper limit, high transparency and low yellowness are likely to be exhibited.
 式(3)中のXは2価の有機基を表し、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基を表す。2価の有機基としては、式(3a)~式(3i)で表される基;式(3a)~式(3i)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに炭素数6以下の2価の鎖式炭化水素基が例示される。
Figure JPOXMLDOC01-appb-C000029
X in the formula (3) represents a divalent organic group, and preferably represents an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. Examples of the divalent organic group include groups represented by formulas (3a) to (3i); a hydrogen atom in the groups represented by formulas (3a) to (3i) is a methyl group, a fluoro group, or a chloro group. Or a group substituted with a trifluoromethyl group; and a divalent chain hydrocarbon group having 6 or less carbon atoms.
Figure JPOXMLDOC01-appb-C000029
[式(3a)~式(3i)中、
 *は結合手を表し、
 V~Vは、それぞれ独立して、単結合、-O-、-S-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-又はCO-を表す。]
 1つの例は、V及びVが単結合、-O-又はS-であり、かつ、Vが-CH-、-C(CH-、-C(CF-又はSO-である。VとVとの各環に対する結合位置、及び、VとVとの各環に対する結合位置は、それぞれ、各環に対してメタ位又はパラ位であることが好ましく、パラ位であることがより好ましい。
[In the formulas (3a) to (3i),
* Represents a bond,
V 1 ~ V 3 are each independently a single bond, -O -, - S -, - CH 2 -, - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2- , -C (CF 3 ) 2- , -SO 2 -or CO- is represented. ]
In one example, V 1 and V 3 are a single bond, —O— or S—, and V 2 is —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —. Or SO 2 —. The bonding position of V 1 and V 2 with respect to each ring and the bonding position of V 2 and V 3 with respect to each ring are preferably in the meta position or the para position with respect to each ring, respectively. More preferably.
 式(3a)~式(3i)で表される基の中でも、本発明のフィルムの表面硬度及び柔軟性の観点から、式(3d)~式(3h)で表される基が好ましく、式(3e)~式(3g)で表される基がより好ましい。また、V~Vは、本発明のフィルムの表面硬度及び柔軟性の観点から、それぞれ独立して、単結合、-O-又はS-であることが好ましく、単結合又はO-であることがより好ましい。 Among the groups represented by the formulas (3a) to (3i), groups represented by the formulas (3d) to (3h) are preferable from the viewpoint of the surface hardness and flexibility of the film of the present invention. The groups represented by 3e) to formula (3g) are more preferable. V 1 to V 3 are each independently preferably a single bond, —O— or S— from the viewpoint of the surface hardness and flexibility of the film of the present invention, and preferably a single bond or O—. It is more preferable.
 式(3)で表されるジアミンとしては、具体的には、脂肪族ジアミン、芳香族ジアミン及びこれらの混合物が挙げられる。なお、本実施形態において「芳香族ジアミン」とは、アミノ基が芳香環に直接結合しているジアミンを表し、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。この芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環及びフルオレン環等が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環である。また「脂肪族ジアミン」とは、アミノ基が脂肪族基に直接結合しているジアミンを表し、その構造の一部に芳香環やその他の置換基を含んでいてもよい。 Specific examples of the diamine represented by the formula (3) include aliphatic diamines, aromatic diamines, and mixtures thereof. In the present embodiment, the “aromatic diamine” represents a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group or other substituent may be included in a part of the structure. The aromatic ring may be a single ring or a condensed ring, and examples thereof include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, and a fluorene ring. Among these, a benzene ring is preferable. The “aliphatic diamine” refers to a diamine in which an amino group is directly bonded to an aliphatic group, and an aromatic ring or other substituent may be included in a part of the structure.
 脂肪族ジアミンとしては、例えば、ヘキサメチレンジアミン等の非環式脂肪族ジアミン、並びに1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ノルボルナンジアミン及び4,4’-ジアミノジシクロヘキシルメタン等の環式脂肪族ジアミン等が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 Examples of the aliphatic diamine include acyclic aliphatic diamines such as hexamethylene diamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, norbornane diamine, and 4,4 ′. -Cyclic aliphatic diamines such as diaminodicyclohexylmethane. These can be used alone or in combination of two or more.
 芳香族ジアミンとしては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、2,4-トルエンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,5-ジアミノナフタレン、及び2,6-ジアミノナフタレン等の、芳香環を1つ有する芳香族ジアミン;4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル(ODA)、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ジアミノジフェニルスルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン(MB)、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、及び9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン等の、芳香環を2つ以上有する芳香族ジアミンが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 Examples of aromatic diamines include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene, and 2,6-diamino. An aromatic diamine having one aromatic ring, such as naphthalene; 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether (ODA), 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 3,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfone, 1,4-bis (4-aminophenoxy) benzene, 1, 3-bis (4-aminophenoxy) benzene, 4,4 ' Diaminodiphenylsulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2′-dimethylbenzidine (MB), 2,2′-bis (trifluoromethyl) benzidine (TFMB), 4,4′- Bis (4-aminophenoxy) biphenyl, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4-amino-3-methylphenyl) fluorene, 9,9-bis (4-amino-3) Fragrance having two or more aromatic rings, such as -chlorophenyl) fluorene and 9,9-bis (4-amino-3-fluorophenyl) fluorene Diamine and the like. These can be used alone or in combination of two or more.
 芳香族ジアミンとしては、好ましくは4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4’-ビス(4-アミノフェノキシ)ビフェニルであり、より好ましくは4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4’-ビス(4-アミノフェノキシ)ビフェニルが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 As the aromatic diamine, preferably 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenylsulfone, 1,4-bis (4-aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2′-dimethylbenzidine, 2,2′-bis (Trifluoromethyl) benzidine, 4,4'-bis (4-aminophenoxy) biphenyl More preferably 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylsulfone, 1,4-bis (4-aminophenoxy) Benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-dimethylbenzidine, 2,2′-bis (tri Fluoromethyl) benzidine, 4,4′-bis (4-aminophenoxy) biphenyl. These can be used alone or in combination of two or more.
 上記ジアミン化合物の中でも、本発明のフィルムの表面硬度、柔軟性、屈曲耐性、透明性及び黄色度の観点からは、ビフェニル構造を有する芳香族ジアミンからなる群から選ばれる1種以上を用いることが好ましく、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4’-ビス(4-アミノフェノキシ)ビフェニル及び4,4’-ジアミノジフェニルエーテルからなる群から選ばれる1種以上を用いることがより好ましく、2,2’-ビス(トリフルオロメチル)ベンジジンを用いることがよりさらに好ましい。 Among the diamine compounds, one or more selected from the group consisting of aromatic diamines having a biphenyl structure may be used from the viewpoints of surface hardness, flexibility, bending resistance, transparency and yellowness of the film of the present invention. Preferably, selected from the group consisting of 2,2′-dimethylbenzidine, 2,2′-bis (trifluoromethyl) benzidine, 4,4′-bis (4-aminophenoxy) biphenyl, and 4,4′-diaminodiphenyl ether It is more preferable to use one or more, and it is even more preferable to use 2,2′-bis (trifluoromethyl) benzidine.
 ポリアミドイミド樹脂Aは、本発明のフィルムの表面硬度及び透明性を高めやすい観点から、式(3)中のXが式(3e’)で表されるジアミンに由来する構成単位を少なくとも有することが好ましい。
Figure JPOXMLDOC01-appb-C000030
[式(3e’)中、R10~R17は、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、R10~R17に含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよく、*は結合手を表す。]
From the viewpoint of easily increasing the surface hardness and transparency of the film of the present invention, the polyamideimide resin A has at least a structural unit derived from a diamine in which X in the formula (3) is represented by the formula (3e ′). preferable.
Figure JPOXMLDOC01-appb-C000030
[In the formula (3e ′), R 10 to R 17 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and are included in R 10 to R 17. Each hydrogen atom may be independently substituted with a halogen atom, and * represents a bond. ]
 式(3e’)において、R10~R17は、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、好ましくは水素原子又は炭素数1~6のアルキル基を表し、より好ましくは水素原子又は炭素数1~3のアルキル基を表し、ここで、R10~R17に含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよい。本発明のフィルムの表面硬度、柔軟性及び透明性の観点からは、R10~R17は、それぞれ独立に、さらに好ましくは水素原子、メチル基、フルオロ基、クロロ基又はトリフルオロメチル基であり、特に好ましくは水素原子又はトリフルオロメチル基である。 In the formula (3e ′), R 10 to R 17 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, preferably a hydrogen atom or 1 to 6 represents an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, wherein the hydrogen atoms contained in R 10 to R 17 are each independently substituted with a halogen atom. Also good. From the viewpoint of the surface hardness, flexibility and transparency of the film of the present invention, R 10 to R 17 are each independently more preferably a hydrogen atom, a methyl group, a fluoro group, a chloro group or a trifluoromethyl group. Particularly preferred are a hydrogen atom or a trifluoromethyl group.
 この態様において、ポリアミドイミド樹脂Aは、式(3)中のXが式(3e'’)で表されるジアミン(2,2'-ビス(トリフルオロメチル)ベンジジン、TFMBとも称される)に由来する構成単位を少なくとも有することがより好ましい。この場合、本発明のフィルムが高い透明性を有すると同時に、ポリアミドイミド樹脂Aがフッ素元素を含有する骨格を有することにより、ポリアミドイミド樹脂の溶剤への溶解性が向上し、本発明のフィルムを作製する際に使用するポリアミドイミドワニスの粘度を低く抑制することができるため、本発明のフィルムを製造しやすくなる。
Figure JPOXMLDOC01-appb-C000031
[式(3e'’)中、*は結合手を表す。]
In this embodiment, the polyamideimide resin A is a diamine (2,2′-bis (trifluoromethyl) benzidine, also referred to as TFMB) in which X in the formula (3) is represented by the formula (3e ″). It is more preferable to have at least the derived structural unit. In this case, the film of the present invention has high transparency, and at the same time, the polyamideimide resin A has a skeleton containing a fluorine element, so that the solubility of the polyamideimide resin in the solvent is improved, and the film of the present invention is Since the viscosity of the polyamidoimide varnish used when producing can be suppressed low, it becomes easy to manufacture the film of this invention.
Figure JPOXMLDOC01-appb-C000031
[In the formula (3e ″), * represents a bond. ]
 ポリアミドイミド樹脂Aが2種以上のジアミンに由来する構成単位を有する場合、式(3)中のXが式(3e’)、好ましくは式(3e'’)で表されるジアミンに由来する構成単位の量は、本発明のフィルムの透明性及び製造のしやすさを向上する観点から、ポリアミドイミド樹脂Aに含まれるジアミンに由来する構成単位全体に基づいて、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは70モル%以上である。式(3)中のXが式(3e’)、好ましくは式(3e'’)で表されるジアミンに由来する構成単位の量の上限は特に限定されず、ポリアミドイミド樹脂Aに含まれるジアミンに由来する構成単位全体に基づいて100モル%以下であればよい。式(3)中のXが式(3e’)又は(3e'’)で表されるジアミンに由来する構成単位の比率は、例えば2次元NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 When the polyamideimide resin A has a structural unit derived from two or more kinds of diamines, X in the formula (3) is derived from the diamine represented by the formula (3e ′), preferably the formula (3e ″). The amount of the unit is preferably 30 mol% or more based on the entire constitutional unit derived from the diamine contained in the polyamideimide resin A, from the viewpoint of improving the transparency of the film of the present invention and the ease of production. Preferably it is 50 mol% or more, More preferably, it is 70 mol% or more. The upper limit of the amount of the structural unit derived from the diamine in which X in the formula (3) is represented by the formula (3e ′), preferably the formula (3e ″) is not particularly limited, and the diamine contained in the polyamideimide resin A 100 mol% or less should just be based on the whole structural unit derived from. The ratio of the structural unit derived from the diamine in which X in the formula (3) is represented by the formula (3e ′) or (3e ″) can be measured using, for example, two-dimensional NMR, or charged with raw materials It can also be calculated from the ratio.
 本発明のフィルムに含まれるポリアミドイミド樹脂Aは、ジカルボン酸に由来する構成単位を有する。本発明のフィルムに含まれるポリアミドイミド樹脂Aがジカルボン酸に由来する構成単位を有することにより、1,3,5-ベンゼントリカルボン酸などの3価以上のカルボン酸に由来する構成単位に置き換えた場合よりも、溶剤への溶解度が低下しにくい傾向がある。ジカルボン酸に由来する構成単位は、ジカルボン酸ジクロライドに由来する構成単位であることが好ましい。ジカルボン酸としては、式(2)で表される化合物が挙げられる。ポリアミドイミド樹脂Aは、1種類のジカルボン酸に由来する構成単位を有していてもよいし、2種以上のジカルボン酸に由来する構成単位を有していてもよい。
Figure JPOXMLDOC01-appb-C000032
[式(2)中、Zは2価の有機基を表し、B及びBは、それぞれ独立して、OH又はハロゲン原子、好ましくは塩素原子を表す。]
The polyamideimide resin A contained in the film of the present invention has a structural unit derived from dicarboxylic acid. When the polyamideimide resin A contained in the film of the present invention has a structural unit derived from a dicarboxylic acid, it is replaced with a structural unit derived from a trivalent or higher carboxylic acid such as 1,3,5-benzenetricarboxylic acid. The solubility in the solvent tends to be less likely to decrease. The structural unit derived from dicarboxylic acid is preferably a structural unit derived from dicarboxylic acid dichloride. Examples of the dicarboxylic acid include a compound represented by the formula (2). Polyamideimide resin A may have a structural unit derived from one type of dicarboxylic acid, or may have a structural unit derived from two or more types of dicarboxylic acid.
Figure JPOXMLDOC01-appb-C000032
[In the formula (2), Z represents a divalent organic group, and B 1 and B 2 each independently represent OH or a halogen atom, preferably a chlorine atom. ]
 ポリアミドイミド樹脂Aにおいて、式(2)で表されるジカルボン酸に由来する構成単位の量は、ポリアミドイミド樹脂Aに含まれる全構成単位に基づいて、好ましくは5モル%以上、より好ましくは15モル%以上、さらに好ましくは20モル%以上である。式(2)で表されるジカルボン酸に由来する構成単位の量が上記の下限以上であると、高い表面硬度を発現しやすい。また、式(2)で表されるジカルボン酸に由来する構成単位の量は、ポリアミドイミド樹脂Aに含まれる全構成単位に基づいて、好ましくは45モル%以下、より好ましくは40モル%以下、さらに好ましくは30モル%以下である。式(2)で表されるジカルボン酸に由来する構成単位の量が上記の上限以下であると、フィルムは高い柔軟性を示す傾向があるため、その耐屈曲性が向上しやすい。 In the polyamideimide resin A, the amount of the structural unit derived from the dicarboxylic acid represented by the formula (2) is preferably 5 mol% or more, more preferably 15 based on the total structural units contained in the polyamideimide resin A. The mol% or more, more preferably 20 mol% or more. When the amount of the structural unit derived from the dicarboxylic acid represented by the formula (2) is not less than the above lower limit, high surface hardness is likely to be exhibited. Further, the amount of the structural unit derived from the dicarboxylic acid represented by the formula (2) is preferably 45 mol% or less, more preferably 40 mol% or less, based on all the structural units contained in the polyamideimide resin A. More preferably, it is 30 mol% or less. When the amount of the structural unit derived from the dicarboxylic acid represented by the formula (2) is less than or equal to the above upper limit, the film tends to exhibit high flexibility, and thus its bending resistance is easily improved.
 式(2)中のZは2価の有機基を表し、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基を表す。2価の有機基としては、式(2a)及び式(2b)で表される基;式(2a)及び式(2b)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに炭素数6以下の2価の鎖式炭化水素基が例示される。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Z in the formula (2) represents a divalent organic group, and preferably represents an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. Examples of the divalent organic group include groups represented by formula (2a) and formula (2b); a hydrogen atom in the group represented by formula (2a) and formula (2b) is a methyl group, a fluoro group, or a chloro group. Or a group substituted with a trifluoromethyl group; and a divalent chain hydrocarbon group having 6 or less carbon atoms.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
[式(2a)及び式(2b)中、
 *は結合手を表し、
 Uは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-Ar-、-SO-、-CO-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又はAr-SO-Ar-を表し、好ましくは単結合、-O-、又は、-Ar-O-Ar-を表す。Arは、水素原子がフッ素原子で置換されていてもよい炭素数6~20のアリーレン基を表し、具体例としてはフェニレン基が挙げられる。]
[In Formula (2a) and Formula (2b),
* Represents a bond,
U 1 represents a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, -Ar -, - SO 2 -, - CO -, - O-Ar-O -, - Ar-O-Ar -, - Ar-CH 2 -Ar -, - Ar-C (CH 3) 2 -Ar- Or Ar—SO 2 —Ar—, preferably a single bond, —O— or —Ar—O—Ar—. Ar represents an arylene group having 6 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom, and specific examples thereof include a phenylene group. ]
 式(2)で表されるジカルボン酸としては、具体的には、芳香族ジカルボン酸、脂肪族ジカルボン酸及びそれらの類縁の酸クロライド化合物、酸無水物等が挙げられ、これら2種以上を併用してもよい。具体例としては、テレフタル酸;イソフタル酸;ナフタレンジカルボン酸;4,4’-ビフェニルジカルボン酸;3,3’-ビフェニルジカルボン酸;炭素数8以下である鎖式炭化水素、のジカルボン酸化合物;2つの安息香酸が単結合、-CH-、-C(CH-、-C(CF-、-SO-、-O-、-S-、-NR-、-C(=O)-若しくはフェニレン基で連結された化合物;及びそれらの酸クロライド化合物が挙げられる。ここで、Rは、ハロゲン原子で置換されていてもよい炭素数1~12の炭化水素基を表す。 Specific examples of the dicarboxylic acid represented by the formula (2) include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and related acid chloride compounds, acid anhydrides, and the like. May be. Specific examples include dicarboxylic acid compounds of terephthalic acid; isophthalic acid; naphthalene dicarboxylic acid; 4,4′-biphenyldicarboxylic acid; 3,3′-biphenyldicarboxylic acid; chain hydrocarbon having 8 or less carbon atoms; One benzoic acid is a single bond, —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO 2 —, —O—, —S—, —NR 9 —, —C (= O)-or a compound linked by a phenylene group; and acid chloride compounds thereof. Here, R 9 represents a hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom.
 式(2)で表されるジカルボン酸は、好ましくはテレフタル酸、4,4’-ビフェニルジカルボン酸、4,4’-オキシビス安息香酸、及びそれらの酸クロライド化合物から選ばれる少なくとも1種を含むことがより好ましく、テレフタロイルクロリド(TPC)、4,4’-ビフェニルジカルボニルクロリド(BPDOC)及び4,4’-オキシビス(ベンゾイルクロリド)(OBBC)からなる群から選択される少なくとも1種を含むことがさらに好ましく、4,4’-オキシビス(ベンゾイルクロリド)(OBBC)を含むことがことさら好ましい。 The dicarboxylic acid represented by the formula (2) preferably contains at least one selected from terephthalic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-oxybisbenzoic acid, and acid chloride compounds thereof. Is more preferable, and includes at least one selected from the group consisting of terephthaloyl chloride (TPC), 4,4′-biphenyldicarbonyl chloride (BPDOC), and 4,4′-oxybis (benzoyl chloride) (OBBC). More preferably, it contains 4,4′-oxybis (benzoyl chloride) (OBBC).
 ポリアミドイミド樹脂Aは、本発明のフィルムの表面硬度及び透明性を高めやすい観点から、式(2)中のZが式(1)で表される構成単位を少なくとも有することが好ましい。
Figure JPOXMLDOC01-appb-C000035
[式(1)中、R~Rは、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、R~Rに含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよく、
Aは、それぞれ独立に、-O-、-S-、-CO-又はNR-を表し、Rはハロゲン原子で置換されていてもよい炭素数1~12の炭化水素基を表し、
mは1~4の整数であり、
*は結合手を表す。]
The polyamideimide resin A preferably has at least a structural unit in which Z in the formula (2) is represented by the formula (1) from the viewpoint of easily increasing the surface hardness and transparency of the film of the present invention.
Figure JPOXMLDOC01-appb-C000035
[In Formula (1), R 1 to R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and hydrogen contained in R 1 to R 8 Each atom may be independently substituted with a halogen atom,
Each A independently represents —O—, —S—, —CO— or NR 9 —, wherein R 9 represents a hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom;
m is an integer from 1 to 4,
* Represents a bond. ]
 式(1)中の記号について、以下に説明する。
 Aは、それぞれ独立に、-O-、-S-、-CO-又はNR-を表し、ここで、Rはハロゲン原子で置換されていてもよい炭素数1~12の炭化水素基を表す。本発明のフィルムの柔軟性の観点からは、Aは、好ましくはそれぞれ独立に-O-又はS-を表し、より好ましくは-O-を表す。
 R~Rは、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表す。本発明のフィルムの柔軟性及び表面硬度の観点からは、R~Rは、それぞれ独立に、好ましくは水素原子又は炭素数1~6のアルキル基を表し、より好ましくは水素原子又は炭素数1~3のアルキル基を表し、さらに好ましくは水素原子を表す。ここで、R~Rに含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよい。
 mは、1~4の範囲の整数であり、原料の入手性の観点から 好ましくは1~3の範囲の整数、より好ましくは1又は2、さらに好ましくは1である。mが上記範囲内であると、原料の入手性が良好であり、また本発明のフィルムの柔軟性を高めやすい。
The symbols in formula (1) will be described below.
A each independently represents —O—, —S—, —CO— or NR 9 —, wherein R 9 represents a hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom. To express. From the viewpoint of the flexibility of the film of the present invention, A preferably represents each independently -O- or S-, more preferably -O-.
R 1 to R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. From the viewpoint of flexibility and surface hardness of the film of the present invention, R 1 to R 8 each independently preferably represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or carbon number. It represents 1 to 3 alkyl groups, and more preferably represents a hydrogen atom. Here, each hydrogen atom contained in R 1 to R 8 may be independently substituted with a halogen atom.
m is an integer in the range of 1 to 4, and is preferably an integer in the range of 1 to 3, more preferably 1 or 2, and even more preferably 1 from the viewpoint of availability of raw materials. When m is within the above range, the availability of the raw materials is good, and the flexibility of the film of the present invention is easily increased.
 本発明の好ましい一実施態様において、式(1)は式(1’)で表される構成単位である。この場合、本発明のフィルムは、高い表面硬度を発揮すると同時に、弾性率が低く、高い柔軟性を有しやすい。
Figure JPOXMLDOC01-appb-C000036
In a preferred embodiment of the present invention, the formula (1) is a structural unit represented by the formula (1 ′). In this case, the film of the present invention exhibits high surface hardness, and at the same time has a low elastic modulus and tends to have high flexibility.
Figure JPOXMLDOC01-appb-C000036
 本発明のフィルムに含まれるポリアミドイミド樹脂Aが式(1)又は式(1’)で表される構成単位を有する好ましい一実施態様において、該構成単位の量は、ポリアミドイミド樹脂Aに含まれる全構成単位に基づいて、好ましくは3モル%以上、より好ましくは5モル%以上、さらに好ましくは10モル%以上、特に好ましくは20モル%以上である。式(1)又は式(1’)で表される構成単位の量が上記の下限以上であると、樹脂フィルムは高い柔軟性を示す傾向があるため、その耐屈曲性が向上しやすい。また、式(1)又は式(1’)で表される構成単位の量は、ポリアミドイミド樹脂Aに含まれる全構成単位に基づいて、好ましくは45モル%以下、より好ましくは40モル%以下、さらに好ましくは30モル%以下である。式(1)又は式(1’)で表される構成単位の量が上記の上限以下であると、樹脂フィルムのガラス転移温度が向上しやすい。 In a preferred embodiment in which the polyamideimide resin A included in the film of the present invention has a structural unit represented by the formula (1) or the formula (1 ′), the amount of the structural unit is included in the polyamideimide resin A. Based on the total structural units, it is preferably at least 3 mol%, more preferably at least 5 mol%, even more preferably at least 10 mol%, particularly preferably at least 20 mol%. When the amount of the structural unit represented by the formula (1) or the formula (1 ′) is equal to or more than the above lower limit, the resin film tends to exhibit high flexibility, and thus its flex resistance is easily improved. Further, the amount of the structural unit represented by the formula (1) or the formula (1 ′) is preferably 45 mol% or less, more preferably 40 mol% or less, based on all the structural units contained in the polyamideimide resin A. More preferably, it is 30 mol% or less. When the amount of the structural unit represented by the formula (1) or the formula (1 ′) is not more than the above upper limit, the glass transition temperature of the resin film is likely to be improved.
 ポリアミドイミド樹脂Aとしては、本発明のフィルムの表面硬度、弾性率及び柔軟性を高めやすい観点から、式(2)中のZが式(1)で表されるジカルボン酸に由来する構成単位を少なくとも有することが好ましい。ポリアミドイミド樹脂が2種以上のジカルボン酸に由来する構成単位を有する場合、式(2)中のZが式(1)で表されるジカルボン酸に由来する構成単位の量は、フィルムの表面硬度、弾性率及び柔軟性の観点から、ポリアミドイミド樹脂Aに含まれるジカルボン酸に由来する構成単位全体に基づいて、好ましくは5モル%以上、より好ましくは7モル%以上、さらに好ましくは9モル%以上、特に好ましくは11モル%以上である。式(2)中のZが式(1)で表されるジカルボン酸に由来する構成単位の量の上限は特に限定されず、ポリアミドイミド樹脂Aに含まれるジカルボン酸に由来する構成単位全体に基づいて100モル%以下であればよい。式(2)中のZが式(1)で表されるジカルボン酸に由来する構成単位の比率は、例えば2次元NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 As the polyamide-imide resin A, from the viewpoint of easily increasing the surface hardness, elastic modulus and flexibility of the film of the present invention, Z in the formula (2) is a structural unit derived from a dicarboxylic acid represented by the formula (1). It is preferable to have at least. When the polyamideimide resin has a structural unit derived from two or more kinds of dicarboxylic acids, the amount of the structural unit derived from dicarboxylic acid in which Z in formula (2) is represented by formula (1) is the surface hardness of the film. From the viewpoint of the modulus of elasticity and flexibility, it is preferably 5 mol% or more, more preferably 7 mol% or more, and even more preferably 9 mol%, based on the entire structural unit derived from the dicarboxylic acid contained in the polyamideimide resin A. Above, especially preferably 11 mol% or more. The upper limit of the amount of the structural unit derived from dicarboxylic acid in which Z in formula (2) is represented by formula (1) is not particularly limited, and is based on the entire structural unit derived from dicarboxylic acid contained in polyamideimide resin A. And 100 mol% or less. The ratio of the structural units derived from the dicarboxylic acid in which Z in formula (2) is represented by formula (1) can be measured using, for example, two-dimensional NMR, or can be calculated from the raw material charge ratio. it can.
 本発明のフィルムに含まれるポリアミドイミド樹脂Aは、テトラカルボン酸二無水物に由来する構成単位を有する。テトラカルボン酸二無水物としては、式(4)で表される化合物が挙げられる。ポリアミドイミド樹脂Aは、1種類のテトラカルボン酸二無水物に由来する構成単位を有していてもよいし、2種以上のテトラカルボン酸二無水物に由来する構成単位を有していてもよい。
Figure JPOXMLDOC01-appb-C000037
[式(4)中、Yは、4価の有機基を表す。]
Polyamideimide resin A contained in the film of the present invention has a structural unit derived from tetracarboxylic dianhydride. Examples of the tetracarboxylic dianhydride include compounds represented by the formula (4). Polyamideimide resin A may have a structural unit derived from one type of tetracarboxylic dianhydride, or may have a structural unit derived from two or more types of tetracarboxylic dianhydride. Good.
Figure JPOXMLDOC01-appb-C000037
[In formula (4), Y represents a tetravalent organic group. ]
 本発明のフィルムに含まれるポリアミドイミド樹脂Aにおいて、式(4)で表されるテトラカルボン酸二無水物に由来する構成単位の量は、ポリアミドイミド樹脂Aに含まれる全構成単位に基づいて、好ましくは5モル%以上、より好ましくは10モル%以上、さらに好ましくは20モル%以上である。式(4)で表されるテトラカルボン酸二無水物に由来する構成単位の量が上記の下限以上であると、ジカルボン酸由来の構造単位の割合を抑制することができ、Tgが370℃以下のポリアミドイミド樹脂が得られやすい。また、式(4)で表されるテトラカルボン酸二無水物に由来する構成単位の量は、ポリアミドイミド樹脂Aに含まれる全構成単位に基づいて、好ましくは45モル%以下、より好ましくは40モル%以下、さらに好ましくは30モル%以下である。式(4)で表されるテトラカルボン酸二無水物に由来する構成単位の量が上記の上限以下であると、ジカルボン酸由来の構成単位の割合を増やすことができ、高い表面硬度を発現しやすい。 In the polyamideimide resin A contained in the film of the present invention, the amount of the structural unit derived from the tetracarboxylic dianhydride represented by the formula (4) is based on all the structural units contained in the polyamideimide resin A. Preferably it is 5 mol% or more, More preferably, it is 10 mol% or more, More preferably, it is 20 mol% or more. When the amount of the structural unit derived from the tetracarboxylic dianhydride represented by the formula (4) is not less than the above lower limit, the proportion of the structural unit derived from the dicarboxylic acid can be suppressed, and Tg is 370 ° C. or lower. It is easy to obtain a polyamideimide resin. Further, the amount of the structural unit derived from the tetracarboxylic dianhydride represented by the formula (4) is preferably 45 mol% or less, more preferably 40 based on the total structural units contained in the polyamideimide resin A. The mol% or less, more preferably 30 mol% or less. When the amount of the structural unit derived from the tetracarboxylic dianhydride represented by the formula (4) is not more than the above upper limit, the proportion of the structural unit derived from the dicarboxylic acid can be increased, and high surface hardness is expressed. Cheap.
 式(4)中のYは4価の有機基を表し、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基を表す。有機基は、好ましくは炭化水素基又はフッ素置換された炭化水素基で置換されてもよい有機基である。有機基は、好ましくは炭素数4~40の4価の有機基である。炭化水素基及びフッ素置換された炭化水素基は、好ましくはその炭素数が1~8である。4価の有機基としては、式(4a)~式(4j)で表される基;式(4a)~式(4j)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに炭素数6以下の4価の鎖式炭化水素基が例示される。
Figure JPOXMLDOC01-appb-C000038
Y in Formula (4) represents a tetravalent organic group, and preferably represents an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. The organic group is preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. The organic group is preferably a tetravalent organic group having 4 to 40 carbon atoms. The hydrocarbon group and the fluorine-substituted hydrocarbon group preferably have 1 to 8 carbon atoms. Examples of the tetravalent organic group include groups represented by formulas (4a) to (4j); a hydrogen atom in the groups represented by formulas (4a) to (4j) is a methyl group, a fluoro group, or a chloro group. Or a group substituted with a trifluoromethyl group; and a tetravalent chain hydrocarbon group having 6 or less carbon atoms.
Figure JPOXMLDOC01-appb-C000038
[式(4a)~式(4j)中、
 *は結合手を表し、
 Wは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-Ar-、-SO-、-CO-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又はAr-SO-Ar-を表す。Arは、水素原子がフッ素原子で置換されていてもよい炭素数6~20のアリーレン基を表し、具体例としてはフェニレン基が挙げられる。]
[In the formulas (4a) to (4j),
* Represents a bond,
W 1 represents a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, -Ar -, - SO 2 -, - CO -, - O-Ar-O -, - Ar-O-Ar -, - Ar-CH 2 -Ar -, - Ar-C (CH 3) 2 -Ar- Or represents Ar—SO 2 —Ar—. Ar represents an arylene group having 6 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom, and specific examples thereof include a phenylene group. ]
 式(4a)~式(4j)で表される基の中でも、本発明のフィルムの表面硬度及び柔軟性の観点から、式(4g)、式(4i)及び式(4j)で表される基が好ましく、式(4g)で表される基がより好ましい。また、Wは、本発明のフィルムの表面硬度及び柔軟性の観点から、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-又はC(CF-であることが好ましく、単結合、-O-、-CH-、-CH(CH)-、-C(CH-又はC(CF-であることがより好ましく、単結合、-C(CH-又はC(CF-であることがさらに好ましく、単結合、又はC(CF-であることが特に好ましい。 Among the groups represented by formula (4a) to formula (4j), groups represented by formula (4g), formula (4i) and formula (4j) from the viewpoint of the surface hardness and flexibility of the film of the present invention. Is preferable, and the group represented by the formula (4g) is more preferable. Further, W 1, from the viewpoint of surface hardness and flexibility of the film of the present invention, a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C It is preferably (CH 3 ) 2 — or C (CF 3 ) 2 —, and is a single bond, —O—, —CH 2 —, —CH (CH 3 ) —, —C (CH 3 ) 2 — or C More preferably, it is (CF 3 ) 2 —, more preferably a single bond, —C (CH 3 ) 2 — or C (CF 3 ) 2 —, and a single bond, or C (CF 3 ) 2 —. It is particularly preferred that
 式(4)で表されるテトラカルボン酸二無水物としては、具体的には、芳香族テトラカルボン酸二無水物及び脂肪族テトラカルボン酸二無水物等が挙げられる。1種類のテトラカルボン酸二無水物を用いてもよいし、2種以上を併用してもよい。 Specific examples of the tetracarboxylic dianhydride represented by the formula (4) include aromatic tetracarboxylic dianhydrides and aliphatic tetracarboxylic dianhydrides. One type of tetracarboxylic dianhydride may be used, or two or more types may be used in combination.
 芳香族テトラカルボン酸二無水物の具体例としては、非縮合多環式の芳香族テトラカルボン酸二無水物、単環式の芳香族テトラカルボン酸二無水物及び縮合多環式の芳香族テトラカルボン酸二無水物が挙げられる。非縮合多環式の芳香族テトラカルボン酸二無水物としては、4,4’-オキシジフタル酸二無水物(OPDA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。また、単環式の芳香族テトラカルボン酸二無水物としては、1,2,4,5-ベンゼンテトラカルボン酸二無水物が挙げられる。縮合多環式の芳香族テトラカルボン酸二無水物としては、2,3,6,7-ナフタレンテトラカルボン酸二無水物が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 Specific examples of the aromatic tetracarboxylic dianhydride include non-condensed polycyclic aromatic tetracarboxylic dianhydride, monocyclic aromatic tetracarboxylic dianhydride, and condensed polycyclic aromatic tetra Carboxylic dianhydrides are mentioned. Non-condensed polycyclic aromatic tetracarboxylic dianhydrides include 4,4′-oxydiphthalic dianhydride (OPDA), 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2 , 2 ′, 3,3′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 2,2 ′, 3,3′-biphenyltetra Carboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis ( 2,3-dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenoxyphenyl) propane dianhydride, 4,4 '-(hexafluoroisopropylidene) diphthalic dianhydride 1,2-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,2-bis (3,4-di Carboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2,3-dicarboxy Phenyl) methane dianhydride, 4,4 ′-(p-phenylenedioxy) diphthalic dianhydride, 4,4 ′-(m-phenylenedioxy) diphthalic dianhydride. Examples of the monocyclic aromatic tetracarboxylic dianhydride include 1,2,4,5-benzenetetracarboxylic dianhydride. Examples of the condensed polycyclic aromatic tetracarboxylic dianhydride include 2,3,6,7-naphthalene tetracarboxylic dianhydride. These can be used alone or in combination of two or more.
 これらの中でも、好ましくは4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物及び4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。より好ましくは4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、ビス(3,4-ジカルボキシフェニル)メタン二無水物及び4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 Among these, preferably 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride Anhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-diphenyl Sulfonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 2,2- Bis (3,4-dicarboxyphenoxyphenyl) propane dianhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA), 1,2-bis (2,3-dicarboxy) Enyl) ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,2-bis (3,4-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, 4,4 ′-( and p-phenylenedioxy) diphthalic dianhydride and 4,4 ′-(m-phenylenedioxy) diphthalic dianhydride. More preferably 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 4,4 ′-(Hexafluoroisopropylidene) diphthalic dianhydride (6FDA), bis (3,4-dicarboxyphenyl) methane dianhydride and 4,4 ′-(p-phenylenedioxy) diphthalic acid Anhydrides are mentioned. These can be used alone or in combination of two or more.
 脂肪族テトラカルボン酸二無水物としては、環式又は非環式の脂肪族テトラカルボン酸二無水物が挙げられる。環式脂肪族テトラカルボン酸二無水物とは、脂環式炭化水素構造を有するテトラカルボン酸二無水物であり、その具体例としては、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物等のシクロアルカンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジシクロヘキシル3,3’-4,4’-テトラカルボン酸二無水物及びこれらの位置異性体が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。非環式脂肪族テトラカルボン酸二無水物の具体例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、及び1,2,3,4-ペンタンテトラカルボン酸二無水物等が挙げられ、これらは単独で又は2種以上を組み合わせて用いることができる。また、環式脂肪族テトラカルボン酸二無水物及び非環式脂肪族テトラカルボン酸二無水物を組み合わせて用いてもよい。 Examples of the aliphatic tetracarboxylic dianhydride include cyclic or acyclic aliphatic tetracarboxylic dianhydrides. The cycloaliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples thereof include 1,2,4,5-cyclohexanetetracarboxylic dianhydride. 1, 2,3,4-cyclobutanetetracarboxylic dianhydride, cycloalkanetetracarboxylic dianhydride such as 1,2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo [2.2 .2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyl 3,3′-4,4′-tetracarboxylic dianhydride and their positional isomers . These can be used alone or in combination of two or more. Specific examples of the acyclic aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride, etc. These may be used alone or in combination of two or more. Moreover, you may use combining a cycloaliphatic tetracarboxylic dianhydride and an acyclic aliphatic tetracarboxylic dianhydride.
 上記テトラカルボン酸二無水物の中でも、フィルムの表面硬度、柔軟性、屈曲耐性、透明性を高めやすく、黄色度を低下させやすい観点から、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、並びにこれらの混合物が好ましく、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、並びにこれらの混合物がより好ましく、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物がさらに好ましい。 Among the above tetracarboxylic dianhydrides, 4,4′-oxydiphthalic dianhydride, 3, 3 from the viewpoint of easily increasing the surface hardness, flexibility, bending resistance, transparency of the film, and easily reducing the yellowness. ', 4,4'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 4,4 ′-(hexafluoroisopropylidene) Diphthalic dianhydride and mixtures thereof are preferred, and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) and 4,4 ′-(hexafluoroisopropylate) Den) diphthalic acid dianhydride (6FDA), and more preferably mixtures thereof, 4,4 '- (hexafluoro isopropylidene) diphthalic anhydride are more preferred.
 ポリアミドイミド樹脂Aは、式(4)中のYが式(4g’)で表されるテトラカルボン酸二無水物に由来する構成単位を少なくとも有することが好ましい。この場合、本発明のフィルムが高い透明性を有すると同時に、ポリアミドイミド樹脂Aが高い屈曲性骨格を有することにより、ポリアミドイミド樹脂の溶剤への溶解性が向上し、本発明のフィルムを作製する際に使用するポリアミドイミドワニスの粘度を低く抑制することができるため、本発明のフィルムを製造しやすくなる。
Figure JPOXMLDOC01-appb-C000039
[式(4g’)中、R18~R25は、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、R18~R25に含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよく、*は結合手を表す。]
The polyamideimide resin A preferably has at least a structural unit derived from tetracarboxylic dianhydride in which Y in the formula (4) is represented by the formula (4g ′). In this case, since the film of the present invention has high transparency and the polyamideimide resin A has a high flexibility skeleton, the solubility of the polyamideimide resin in the solvent is improved, and the film of the present invention is produced. Since the viscosity of the polyamideimide varnish used at the time can be suppressed low, the film of the present invention can be easily produced.
Figure JPOXMLDOC01-appb-C000039
[In the formula (4g ′), R 18 to R 25 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and are included in R 18 to R 25. Each hydrogen atom may be independently substituted with a halogen atom, and * represents a bond. ]
 式(4g’)において、R18~R25は、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、好ましくは水素原子又は炭素数1~6のアルキル基を表し、より好ましくは水素原子又は炭素数1~3のアルキル基を表し、ここで、R18~R25に含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよい。本発明のフィルムの表面硬度及び柔軟性の観点からは、R18~R25は、それぞれ独立に、さらに好ましくは水素原子、メチル基、フルオロ基、クロロ基又はトリフルオロメチル基であり、特に好ましくは水素原子又はトリフルオロメチル基である。 In the formula (4g ′), R 18 to R 25 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, preferably a hydrogen atom or 1 to 6 represents an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, wherein the hydrogen atoms contained in R 18 to R 25 are each independently substituted with a halogen atom. Also good. From the viewpoint of the surface hardness and flexibility of the film of the present invention, R 18 to R 25 are each independently more preferably a hydrogen atom, a methyl group, a fluoro group, a chloro group or a trifluoromethyl group, particularly preferably. Is a hydrogen atom or a trifluoromethyl group.
 上記の好ましい一実施態様において、ポリアミドイミド樹脂Aは、式(4)中のYが式(4g'’)で表されるテトラカルボン酸二無水物に由来する構成単位を少なくとも有することが好ましい。この場合、本発明のフィルムが高い透明性を有すると同時に、ポリアミドイミド樹脂Aがフッ素元素を含有する骨格を有することにより、ポリアミドイミド樹脂の溶剤への溶解性が向上し、本発明のフィルムを作製する際に使用するポリアミドイミドワニスの粘度を低く抑制することができるため、本発明のフィルムを製造しやすくなる。
Figure JPOXMLDOC01-appb-C000040
[式(4g'’)中、*は結合手を表す。]
In one preferable embodiment described above, the polyamideimide resin A preferably has at least a structural unit derived from tetracarboxylic dianhydride in which Y in the formula (4) is represented by the formula (4g ″). In this case, the film of the present invention has high transparency, and at the same time, the polyamideimide resin A has a skeleton containing a fluorine element, so that the solubility of the polyamideimide resin in the solvent is improved, and the film of the present invention is Since the viscosity of the polyamidoimide varnish used when producing can be suppressed low, it becomes easy to manufacture the film of this invention.
Figure JPOXMLDOC01-appb-C000040
[In the formula (4g ″), * represents a bond. ]
 ポリアミドイミド樹脂Aが2種以上のテトラカルボン酸二無水物に由来する構成単位を有する場合、式(4)中のYが式(4g’)、好ましくは式(4g'’)で表されるテトラカルボン酸二無水物に由来する構成単位の量は、フィルムの透明性及び製造のしやすさを向上する観点から、ポリアミドイミド樹脂Aに含まれるテトラカルボン酸二無水物に由来する構成単位全体に基づいて、好ましくは50モル%以上、より好ましくは60モル%以上、さらに好ましくは70モル%以上である。式(4)中のYが式(4g’)、好ましくは式(4g'’)で表されるテトラカルボン酸二無水物に由来する構成単位の量の上限は特に限定されず、ポリアミドイミド樹脂に含まれるテトラカルボン酸二無水物に由来する構成単位全体に基づいて100モル%以下であればよい。式(4)中のXが式(4g’)又は式(4g'’)で表されるジアミンに由来する構成単位の比率は、例えば2次元NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 When the polyamideimide resin A has a structural unit derived from two or more kinds of tetracarboxylic dianhydrides, Y in the formula (4) is represented by the formula (4g ′), preferably the formula (4g ″). The amount of the structural unit derived from the tetracarboxylic dianhydride is the entire structural unit derived from the tetracarboxylic dianhydride contained in the polyamideimide resin A from the viewpoint of improving the transparency of the film and the ease of production. Is preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more. The upper limit of the amount of the structural unit derived from tetracarboxylic dianhydride in which Y in Formula (4) is represented by Formula (4g ′), preferably Formula (4g ″) is not particularly limited, and polyamideimide resin It may be 100 mol% or less based on the entire structural unit derived from tetracarboxylic dianhydride contained in the carboxylic acid. The ratio of the structural unit derived from the diamine in which X in Formula (4) is represented by Formula (4g ′) or Formula (4g ″) can be measured using, for example, two-dimensional NMR, It can also be calculated from the charging ratio.
 本発明のフィルムに含まれるポリアミドイミド樹脂Aは、さらに、トリカルボン酸に由来する構成単位を有していてもよい。トリカルボン酸としては、芳香族トリカルボン酸、脂肪族トリカルボン酸及びそれらの類縁体である酸クロライド化合物、酸無水物等が挙げられる。1種類のトリカルボン酸を使用してもよいし、2種以上を併用してもよい。具体例としては、1,2,4-ベンゼントリカルボン酸の無水物;2,3,6-ナフタレントリカルボン酸-2,3-無水物;フタル酸無水物と安息香酸とが単結合、-O-、-CH-、-C(CH-、-C(CF-、-SO-若しくはフェニレン基で連結された化合物が挙げられる。 The polyamide-imide resin A contained in the film of the present invention may further have a structural unit derived from tricarboxylic acid. Examples of the tricarboxylic acid include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, and acid chloride compounds, acid anhydrides and the like that are analogs thereof. One type of tricarboxylic acid may be used, or two or more types may be used in combination. Specific examples include 1,2,4-benzenetricarboxylic acid anhydride; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; phthalic acid anhydride and benzoic acid are a single bond, —O— , —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO 2 —, or a compound connected by a phenylene group.
 本発明の好ましい一実施態様において、本発明のフィルムに含まれるポリアミドイミド樹脂Aは、ジカルボン酸(酸クロライド等のジカルボン酸類縁体)、ジアミン及びテトラカルボン酸(酸クロライド、テトラカルボン酸二無水物等のテトラカルボン酸類縁体)との、場合によりさらにトリカルボン酸(酸クロライド化合物、トリカルボン酸無水物等のトリカルボン酸化合物類縁体)との、重縮合生成物である縮合型高分子である。この態様において、ポリアミドイミド樹脂Aは、式(5)で表される構成単位、及び以下の式(6)で表される構成単位を有する。
Figure JPOXMLDOC01-appb-C000041
[式(5)中、X及びYは前記と同義である。]
Figure JPOXMLDOC01-appb-C000042
[式(6)中、X及びZは前記と同義である。]
 式(5)及び式(6)中のX、Y及びZは、それぞれ、式(3)中のX、式(4)中のY及び式(2)中のZと同義であり、式(2)~式(4)中のX、Y及びZに関して上記に述べた好ましい記載が、式(5)及び式(6)中のX、Y及びZについても同様にあてはまる。式(5)で表される構成単位は、通常、ジアミン及びテトラカルボン酸に由来する構成単位であり、式(6)で表される構成単位は、通常、ジアミン及びジカルボン酸に由来する構成単位である。
In a preferred embodiment of the present invention, the polyamideimide resin A contained in the film of the present invention comprises dicarboxylic acid (dicarboxylic acid analog such as acid chloride), diamine and tetracarboxylic acid (acid chloride, tetracarboxylic dianhydride). And a tetracarboxylic acid analog such as tricarboxylic acid (an analog of a tricarboxylic acid compound such as an acid chloride compound or a tricarboxylic acid anhydride). In this embodiment, the polyamideimide resin A has a structural unit represented by the formula (5) and a structural unit represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000041
[In formula (5), X and Y are as defined above. ]
Figure JPOXMLDOC01-appb-C000042
[In formula (6), X and Z are as defined above. ]
X, Y, and Z in Formula (5) and Formula (6) are synonymous with X in Formula (3), Y in Formula (4), and Z in Formula (2), respectively. 2) to the above-mentioned preferable descriptions regarding X, Y and Z in the formula (4) are similarly applied to X, Y and Z in the formula (5) and the formula (6). The structural unit represented by the formula (5) is usually a structural unit derived from diamine and tetracarboxylic acid, and the structural unit represented by the formula (6) is usually structural unit derived from diamine and dicarboxylic acid. It is.
 本発明の好ましい一実施態様において、本発明のフィルムに含まれるポリアミドイミド樹脂Aは、さらに式(7)で表される構成単位、及び/又は以下の式(8)で表される構成単位を有してもよい。
Figure JPOXMLDOC01-appb-C000043
[式(7)中、Xは2価の有機基を表し、Yは4価の有機基を表す。]
Figure JPOXMLDOC01-appb-C000044
[式(8)中、Xは2価の有機基を表し、Yは3価の有機基を表す。]
In a preferred embodiment of the present invention, the polyamideimide resin A contained in the film of the present invention further comprises a structural unit represented by the formula (7) and / or a structural unit represented by the following formula (8). You may have.
Figure JPOXMLDOC01-appb-C000043
[In Formula (7), X 1 represents a divalent organic group, and Y 1 represents a tetravalent organic group. ]
Figure JPOXMLDOC01-appb-C000044
[In Formula (8), X 2 represents a divalent organic group, and Y 2 represents a trivalent organic group. ]
 式(7)において、Yは、それぞれ独立して、4価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、式(4a)~式(4j)で表される基、並びに4価の炭素数6以下の鎖式炭化水素基が例示される。ポリアミドイミド樹脂Aは、1種の式(7)で表される構成単位を有してもよいし、Y及び/又はXにおいて互いに異なる、2種以上の式(7)で表される構成単位を有してもよい。 In Formula (7), Y 1 is each independently a tetravalent organic group, and preferably a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. Organic group. Examples of Y 1 include groups represented by formulas (4a) to (4j), and tetravalent chain hydrocarbon groups having 6 or less carbon atoms. The polyamideimide resin A may have a structural unit represented by one type of formula (7), or may be represented by two or more types of formula (7) that are different from each other in Y 1 and / or X 1 . You may have a structural unit.
 式(8)において、Yは、それぞれ独立して、3価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、式(4a)~式(4j)で表される基の結合手のいずれか1つが水素原子に置き換わった基、及び3価の炭素数6以下の鎖式炭化水素基が例示される。ポリアミドイミド樹脂Aは、1種の式(8)で表される構成単位を有してもよいし、Y及び/又はXにおいて互いに異なる、2種以上の式(7)で表される構成単位を有してもよい。 In Formula (8), Y 2 is each independently a trivalent organic group, and preferably a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. Organic group. Examples of Y 2 include a group in which any one of the bonds of the groups represented by formulas (4a) to (4j) is replaced with a hydrogen atom, and a trivalent chain hydrocarbon group having 6 or less carbon atoms. Is done. The polyamide-imide resin A may have a structural unit represented by one type of formula (8), or may be represented by two or more types of formula (7) that are different from each other in Y 2 and / or X 2 . You may have a structural unit.
 式(7)及び式(8)において、X及びXは、それぞれ独立して、2価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。X及びXとしては、式(3a)~式(3i)で表される基;式(3a)~式(3i)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに炭素数6以下の鎖式炭化水素基が例示される。 In the formulas (7) and (8), X 1 and X 2 are each independently a divalent organic group, preferably a hydrocarbon group or a fluorine-substituted hydrocarbon in which a hydrogen atom in the organic group is substituted An organic group which may be substituted with a group. X 1 and X 2 are groups represented by formulas (3a) to (3i); a hydrogen atom in the groups represented by formulas (3a) to (3i) is a methyl group, a fluoro group, or a chloro group Or a group substituted with a trifluoromethyl group; and a chain hydrocarbon group having 6 or less carbon atoms.
 本発明の好ましい一実施態様において、本発明のフィルムに含まれるポリアミドイミド樹脂Aは、式(5)及び式(6)で表される構成単位、並びに場合により式(7)及び/又は式(8)で表される構成単位からなる。この態様において、フィルムの柔軟性及び表面硬度を高めやすい観点から、ポリアミドイミド樹脂Aに含まれる式(5)及び式(6)で表される構成単位の量は、式(5)及び式(6)、並びに、場合により式(7)及び式(8)で表される全構成単位に基づいて、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上である。なお、上記ポリアミドイミド樹脂Aに含まれる式(5)及び式(6)で表される構成単位の量の上限は、式(5)及び式(6)、並びに、場合により式(7)及び式(8)で表される全構成単位に基づいて、通常100%以下である。なお、上記割合は、例えば、2次元NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 In a preferred embodiment of the present invention, the polyamideimide resin A contained in the film of the present invention comprises the structural unit represented by the formula (5) and the formula (6), and optionally the formula (7) and / or the formula ( 8). In this embodiment, from the viewpoint of easily increasing the flexibility and surface hardness of the film, the amount of the structural unit represented by the formula (5) and the formula (6) contained in the polyamideimide resin A is expressed by the formula (5) and the formula ( 6), and in some cases, based on all the structural units represented by formula (7) and formula (8), it is preferably at least 80%, more preferably at least 90%, and even more preferably at least 95%. In addition, the upper limit of the amount of the structural unit represented by the formula (5) and the formula (6) included in the polyamideimide resin A is the formula (5) and the formula (6), and optionally the formula (7) and Based on all the structural units represented by Formula (8), it is usually 100% or less. In addition, the said ratio can be measured, for example using two-dimensional NMR, or can also be computed from the preparation ratio of a raw material.
  本発明のフィルムに含まれるポリアミドイミド樹脂Aの、動的粘弾性測定(DMA測定)におけるtanδにより算出されたガラス転移温度Tgは、好ましくは380℃未満、より好ましくは379℃以下、さらに好ましくは378℃以下、例えば370℃以下である。ポリアミドイミド樹脂Aのガラス転移温度Tgが上記の上限未満又は上記の上限以下であると、本発明のフィルムの高い表面硬度を発現しやすいと同時に、弾性率を低下しやすく、柔軟性を高めやすい。ガラス転移温度Tgの下限は特に限定されないが、通常は300℃以上である。動的粘弾性測定(DMA測定)におけるtanδによりガラス転移温度を算出する方法は、具体的には実施例の通りに行うことができる。 The glass transition temperature Tg calculated by tan δ in dynamic viscoelasticity measurement (DMA measurement) of the polyamideimide resin A contained in the film of the present invention is preferably less than 380 ° C., more preferably 379 ° C. or less, and further preferably It is 378 degrees C or less, for example, 370 degrees C or less. When the glass transition temperature Tg of the polyamide-imide resin A is less than the above upper limit or below the above upper limit, the film of the present invention is likely to exhibit high surface hardness, and at the same time, the elastic modulus is easily lowered and the flexibility is easily increased. . Although the minimum of glass transition temperature Tg is not specifically limited, Usually, it is 300 degreeC or more. The method for calculating the glass transition temperature by tan δ in the dynamic viscoelasticity measurement (DMA measurement) can be specifically performed as in the examples.
 本発明のフィルムに含まれるポリアミドイミド樹脂Aの重量平均分子量(Mw)は、好ましくは5,000以上、より好ましくは10,000以上、さらに好ましくは50,000以上、特に好ましくは70,000以上であり、好ましくは800,000以下、より好ましくは600,000以下、さらに好ましくは500,000以下、特に好ましくは450,000以下である。ポリアミドイミド樹脂Aの重量平均分子量(Mw)が上記の下限以上であると、本発明のフィルムの屈曲耐性を高めやすい。ポリアミドイミド樹脂Aの重量平均分子量(Mw)が上記の上限以下であると、ポリアミドイミド樹脂の溶剤への溶解性が向上し、本発明のフィルムを作製する際に使用するポリアミドイミドワニスの粘度を低く抑制することができるため、本発明のフィルムを製造しやすくなる。また、フィルムの延伸が容易となるため、加工性が良好である。重量平均分子量(Mw)は、例えば、GPC測定を行い、標準ポリスチレン換算によって求めることができ、具体的には実施例に記載の方法により求めることができる。 The weight average molecular weight (Mw) of the polyamideimide resin A contained in the film of the present invention is preferably 5,000 or more, more preferably 10,000 or more, still more preferably 50,000 or more, and particularly preferably 70,000 or more. It is preferably 800,000 or less, more preferably 600,000 or less, further preferably 500,000 or less, and particularly preferably 450,000 or less. When the weight average molecular weight (Mw) of the polyamideimide resin A is not less than the above lower limit, the bending resistance of the film of the present invention can be easily increased. When the weight average molecular weight (Mw) of the polyamide-imide resin A is not more than the above upper limit, the solubility of the polyamide-imide resin in the solvent is improved, and the viscosity of the polyamide-imide varnish used when producing the film of the present invention is increased. Since it can suppress low, it becomes easy to manufacture the film of this invention. Further, since the film can be easily stretched, the processability is good. The weight average molecular weight (Mw) can be determined by, for example, GPC measurement and standard polystyrene conversion, and can be specifically determined by the method described in the examples.
 本発明のフィルムに含まれるポリアミドイミド樹脂Aは、ハロゲン原子を含むことが好ましく、フッ素原子を含むことがより好ましい。含フッ素置換基の具体例としては、フルオロ基及びトリフルオロメチル基が挙げられる。ポリアミドイミド樹脂Aがハロゲン原子を含むことにより、本発明のフィルムの黄色度(YI値)を低減させやすく、さらに高い柔軟性及び屈曲耐性を両立させやすい。本発明のフィルムの黄色度の低減(透明性の向上)、吸水率の低減、及び耐屈曲性の観点からは、ハロゲン原子は好ましくはフッ素原子である。上記観点から、ポリアミドイミド樹脂Aは、フッ素原子含有ジアミン及び/又はフッ素原子含有テトラカルボン酸二無水物に由来する構成単位を少なくとも有することが好ましい。 The polyamideimide resin A contained in the film of the present invention preferably contains a halogen atom, and more preferably contains a fluorine atom. Specific examples of the fluorine-containing substituent include a fluoro group and a trifluoromethyl group. When the polyamideimide resin A contains a halogen atom, it is easy to reduce the yellowness (YI value) of the film of the present invention, and it is easy to achieve both high flexibility and bending resistance. From the viewpoints of reducing the yellowness (improving transparency), reducing the water absorption rate, and bending resistance of the film of the present invention, the halogen atom is preferably a fluorine atom. From the above viewpoint, the polyamideimide resin A preferably has at least a structural unit derived from a fluorine atom-containing diamine and / or a fluorine atom-containing tetracarboxylic dianhydride.
 ポリアミドイミド樹脂Aにおけるハロゲン原子の含有量は、黄色度の低減(透明性の向上)、吸水率の低減、及びフィルムの変形抑制の観点から、本発明のフィルムに含まれるポリアミドイミド樹脂Aの質量に基づいて、好ましくは1質量%~40質量%、より好ましくは3質量%~35質量%、さらに好ましくは5質量%~32質量%である。 The content of the halogen atom in the polyamide-imide resin A is the mass of the polyamide-imide resin A contained in the film of the present invention from the viewpoints of reducing yellowness (improving transparency), reducing water absorption, and suppressing film deformation. Is preferably 1% by mass to 40% by mass, more preferably 3% by mass to 35% by mass, and still more preferably 5% by mass to 32% by mass.
 本発明のフィルムは、本発明のフィルムの視認性及び品質を向上する観点から、上記ポリアミドイミド樹脂の他に光吸収機能を有する添加剤してもよい。光吸収機能を有する添加剤としては、例えば、紫外線吸収剤、ブルーイング剤等が挙げられる。光吸収機能を有する添加剤は、紫外線吸収剤及びブルーイング剤からなる群から選択されることが本発明のフィルムの視認性及び品質を向上しやすいため好ましい。本発明のフィルムは、光吸収機能を有する1種類の添加剤を含有してもよいし、光吸収機能を有する2種以上の添加剤を含有してもよい。ここで、従来のポリアミドイミド樹脂を含むフィルムに、紫外線吸収剤及びブルーイング剤等の光吸収機能を有する添加剤を添加する場合、これらの添加剤は耐熱性が低いために、ポリアミドイミド樹脂を含むフィルムを高温条件下で加熱する工程において分解等を生じ、フィルムの品質を悪化させるという問題があった。そのため、例えばポリアミドイミド樹脂を含む層とは別の層にこれらの添加剤を添加して、ポリアミドイミドフィルムと貼り合わせるなどの対応が必要であった。例えば、本発明の樹脂組成物又は本発明の製造方法で得たポリアミドイミド樹脂を含む組成物を用いてフィルムを製造する場合、樹脂組成物中に含まれるポリアミドイミド樹脂のイミド化率をあらかじめ高めておくことができる。そのため、比較的低温の加熱条件でフィルムを製造する場合であっても、イミド化率を高めることができ、十分に高い表面硬度を達成することができる。そのため、ポリアミドイミド樹脂を含む層と同一の層に光吸収機能を有する添加剤を添加する場合であっても、これら添加剤の分解等を抑制し、フィルム品質の低下を抑制することができる。 The film of the present invention may contain an additive having a light absorption function in addition to the polyamideimide resin from the viewpoint of improving the visibility and quality of the film of the present invention. Examples of the additive having a light absorbing function include an ultraviolet absorber and a bluing agent. The additive having a light absorbing function is preferably selected from the group consisting of an ultraviolet absorber and a bluing agent because the visibility and quality of the film of the present invention are easily improved. The film of the present invention may contain one kind of additive having a light absorbing function, or may contain two or more kinds of additives having a light absorbing function. Here, when an additive having a light absorbing function such as an ultraviolet absorber and a bluing agent is added to a film containing a conventional polyamideimide resin, since these additives have low heat resistance, a polyamideimide resin is used. In the process of heating the containing film under high-temperature conditions, there was a problem that degradation or the like occurred and the quality of the film deteriorated. Therefore, for example, it has been necessary to take measures such as adding these additives to a layer different from the layer containing the polyamideimide resin and bonding the additive to the polyamideimide film. For example, when a film is produced using the resin composition of the present invention or the composition containing the polyamideimide resin obtained by the production method of the present invention, the imidation ratio of the polyamideimide resin contained in the resin composition is increased in advance. I can keep it. Therefore, even when a film is produced under relatively low-temperature heating conditions, the imidization rate can be increased and sufficiently high surface hardness can be achieved. Therefore, even when an additive having a light absorption function is added to the same layer as the layer containing the polyamideimide resin, decomposition and the like of these additives can be suppressed, and deterioration in film quality can be suppressed.
 紫外線吸収剤としては、樹脂材料の分野で紫外線吸収剤として通常用いられているものから適宜選択して使用してよい。紫外線吸収剤は、400nm以下の波長の光を吸収する化合物を含んでいてもよい。紫外線吸収剤としては、例えば、ベンゾフェノン系化合物、サリシレート系化合物、ベンゾトリアゾール系化合物、及びトリアジン系化合物からなる群より選ばれる少なくとも1種の化合物が挙げられる。本発明のフィルムが紫外線吸収剤を含有する場合、ポリアミドイミド樹脂の劣化が抑制されるため、フィルムの視認性を高めることができる。なお、本明細書において、「系化合物」とは、当該「系化合物」が付される化合物の誘導体を指す。例えば、「ベンゾフェノン系化合物」とは、母体骨格としてのベンゾフェノンと、ベンゾフェノンに結合している置換基とを有する化合物を指す。 The ultraviolet absorber may be appropriately selected from those normally used as an ultraviolet absorber in the field of resin materials. The ultraviolet absorber may contain a compound that absorbs light having a wavelength of 400 nm or less. Examples of the ultraviolet absorber include at least one compound selected from the group consisting of benzophenone compounds, salicylate compounds, benzotriazole compounds, and triazine compounds. When the film of the present invention contains an ultraviolet absorber, the deterioration of the polyamideimide resin is suppressed, so that the visibility of the film can be enhanced. In the present specification, “system compound” refers to a derivative of a compound to which the “system compound” is attached. For example, a “benzophenone compound” refers to a compound having benzophenone as a host skeleton and a substituent bonded to benzophenone.
 本発明のフィルムが紫外線吸収剤を含有する場合、紫外線吸収剤の添加量は用いる紫外線吸収剤の種類によって適宜選択してよいが、目安としては、フィルムの全質量に基づいて、好ましくは1質量%以上、より好ましくは2質量%以上、さらに好ましくは3質量%以上であり、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは6質量%以下である。好適な添加量は用いる紫外線吸収剤により異なるが、400nmの光線透過率が20~60%程度になるように添加量を調節することが、本発明のフィルムの耐光性を高めやすいと共に、透明性の高いフィルムを得やすいため好ましい。 When the film of the present invention contains an ultraviolet absorber, the addition amount of the ultraviolet absorber may be appropriately selected depending on the type of the ultraviolet absorber to be used, but as a guideline, preferably 1 mass based on the total mass of the film. % Or more, more preferably 2% by mass or more, further preferably 3% by mass or more, preferably 10% by mass or less, more preferably 8% by mass or less, and further preferably 6% by mass or less. The preferred amount of addition varies depending on the ultraviolet absorber used, but adjusting the amount of addition so that the light transmittance at 400 nm is about 20 to 60% makes it easy to improve the light resistance of the film of the present invention, as well as transparency. It is preferable because it is easy to obtain a high film.
 ブルーイング剤としては、樹脂材料の分野でブルーイング剤として通常用いられているものから適宜選択して使用してよい。ブルーイング剤は、可視光領域のうち、例えば、橙色から黄色などの波長領域の光を吸収し、色相を調整する添加剤(染料、顔料)であって、例えば、群青、紺青、コバルトブルーなどの無機系の染料や顔料、例えば、フタロシアニン系ブルーイング剤、縮合多環系ブルーイング剤などの有機系の染料や顔料などが挙げられる。ブルーイング剤は、特に限定されないが、耐熱性、耐光性、溶解性の観点からは、縮合多環系ブルーイング剤が好ましく、アントラキノン系ブルーイング剤がより好ましい。耐熱性の観点から、ブルーイング剤は、200℃以上の熱分解温度を有することが好ましい。縮合多環系ブルーイング剤としては、例えばアントラキノン系ブルーイング剤、インジゴ系ブルーイング剤、フタロシアニン系ブルーイング剤が挙げられる。 The bluing agent may be appropriately selected from those normally used as a bluing agent in the field of resin materials. The bluing agent is an additive (dye, pigment) that adjusts the hue by absorbing light in a wavelength region such as orange to yellow in the visible light region. For example, ultramarine, bitumen, cobalt blue, etc. And inorganic dyes and pigments such as organic dyes and pigments such as phthalocyanine blueing agents and condensed polycyclic blueing agents. The bluing agent is not particularly limited, but from the viewpoint of heat resistance, light resistance, and solubility, a condensed polycyclic bluing agent is preferable, and an anthraquinone bluing agent is more preferable. From the viewpoint of heat resistance, the bluing agent preferably has a thermal decomposition temperature of 200 ° C. or higher. Examples of the condensed polycyclic bluing agent include anthraquinone bluing agents, indigo bluing agents, and phthalocyanine bluing agents.
 本発明のフィルムがブルーイング剤を含有する場合、ブルーイング剤の添加量は用いるブルーイング剤の種類によって適宜選択してよいが、目安としては、フィルムの全質量に基づいて、好ましくは0.01質量%以上、より好ましくは0.02質量%以上、さらに好ましくは0.03質量%以上であり、好ましくは1.0質量%以下、より好ましくは0.5質量%以下、さらに好ましくは0.2質量%以下である。 When the film of the present invention contains a bluing agent, the amount of bluing agent added may be appropriately selected depending on the type of bluing agent to be used, but as a guideline, it is preferably based on the total mass of the film. 01% by mass or more, more preferably 0.02% by mass or more, further preferably 0.03% by mass or more, preferably 1.0% by mass or less, more preferably 0.5% by mass or less, and further preferably 0%. .2% by mass or less.
 本発明のフィルムは、ポリアミドイミド樹脂の他に無機粒子等の無機材料をさらに含有してもよい。無機材料としては、例えば、チタニア粒子、アルミナ粒子、ジルコニア粒子、シリカ粒子等の無機粒子、及びオルトケイ酸テトラエチル等の4級アルコキシシラン等のケイ素化合物等が挙げられる。ポリアミドイミドワニスの安定性の観点から、無機材料は無機粒子、特にシリカ粒子であることが好ましい。無機粒子同士は、シロキサン結合を有する分子により結合されていてもよい。 The film of the present invention may further contain an inorganic material such as inorganic particles in addition to the polyamideimide resin. Examples of the inorganic material include inorganic particles such as titania particles, alumina particles, zirconia particles, and silica particles, and silicon compounds such as quaternary alkoxysilanes such as tetraethyl orthosilicate. From the viewpoint of the stability of the polyamideimide varnish, the inorganic material is preferably inorganic particles, particularly silica particles. The inorganic particles may be bonded by molecules having a siloxane bond.
 無機粒子の平均一次粒子径は、フィルムの透明性、機械物性、及び無機粒子の凝集抑制の観点から、好ましくは10~100nmであり、より好ましくは20~80nmである。本発明において、平均一次粒子径は、透過型電子顕微鏡(TEM)による定方向径の10点を測定し、それらの平均値を算出することにより決定することができる。 The average primary particle diameter of the inorganic particles is preferably 10 to 100 nm, more preferably 20 to 80 nm, from the viewpoints of transparency of the film, mechanical properties, and suppression of aggregation of the inorganic particles. In the present invention, the average primary particle diameter can be determined by measuring 10 constant-direction diameters with a transmission electron microscope (TEM) and calculating an average value thereof.
 本発明のフィルムが無機材料を含む場合、フィルム中の無機材料の含有量は、フィルムの全質量に基づいて、好ましくは0~90質量%、より好ましくは0~60質量%、さらに好ましくは0~40質量%である。無機材料の含有量が上記範囲内であると、フィルムの透明性及び機械物性を両立させやすい傾向がある。 When the film of the present invention contains an inorganic material, the content of the inorganic material in the film is preferably 0 to 90% by mass, more preferably 0 to 60% by mass, and still more preferably 0, based on the total mass of the film. ~ 40% by weight. If the content of the inorganic material is within the above range, the transparency and mechanical properties of the film tend to be compatible.
 本発明のフィルムは、他の添加剤を含有していてもよい。他の添加剤としては、例えば、酸化防止剤、離型剤、安定剤、難燃剤、pH調整剤、シリカ分散剤、滑剤、増粘剤及びレベリング剤等が挙げられる。本発明のフィルムが他の添加剤を含有する場合、他の添加剤の含有量は、本発明のフィルムの質量に基づいて、好ましくは0質量%以上20質量%以下、より好ましくは0質量%以上10質量%以下である。 The film of the present invention may contain other additives. Examples of other additives include antioxidants, mold release agents, stabilizers, flame retardants, pH adjusters, silica dispersants, lubricants, thickeners, and leveling agents. When the film of the present invention contains other additives, the content of the other additives is preferably 0% by mass or more and 20% by mass or less, more preferably 0% by mass based on the mass of the film of the present invention. It is 10 mass% or less.
(層構成)
 本発明のフィルムの層構成は特に限定されず、単層であってもよいし、2層以上の多層であってもよい。本発明のフィルムが光吸収機能を有する添加剤等の添加剤をさらに含有する場合、画像表示装置の薄膜化や、経済性の観点からは、該添加剤とポリアミドイミド樹脂とを1つの層に含有することが好ましい。この場合、本発明のフィルムが、該添加剤とポリアミドイミド樹脂を含有する単層であるか、該添加剤とポリアミドイミド樹脂を含有する層を少なくとも有する積層体であることがより好ましい。耐衝撃特性の観点からは、本発明のフィルムは、ポリアミドイミド樹脂を含む層を少なくとも含む2層以上の多層構造を有することが好ましい。本発明のフィルムが光吸収機能を有する添加剤等の添加剤をさらに含有する場合、該添加剤とポリアミドイミド樹脂を含有する層を少なくとも有する積層体であるか、該添加剤を含む層と、ポリアミドイミド樹脂を含む層とを少なくとも有する積層体であってよい。
(Layer structure)
The layer structure of the film of the present invention is not particularly limited, and may be a single layer or a multilayer of two or more layers. When the film of the present invention further contains an additive such as an additive having a light absorption function, the additive and the polyamideimide resin are combined into one layer from the viewpoint of thinning the image display device and economy. It is preferable to contain. In this case, the film of the present invention is more preferably a single layer containing the additive and the polyamideimide resin, or a laminate having at least a layer containing the additive and the polyamideimide resin. From the viewpoint of impact resistance, the film of the present invention preferably has a multilayer structure of two or more layers including at least a layer containing a polyamideimide resin. When the film of the present invention further contains an additive such as an additive having a light absorption function, it is a laminate having at least a layer containing the additive and a polyamideimide resin, or a layer containing the additive, It may be a laminate having at least a layer containing a polyamideimide resin.
 本発明のフィルムは、上記層にさらに1以上の機能層を積層させた、ポリアミドイミド積層体であってもよい。機能層としては、ハードコート層、紫外線吸収層、粘着層、屈折率調整層、プライマー層等の種々の機能を有する層が挙げられる。本発明のフィルムは、単数又は複数の機能層を備えていてもよい。また、1つの機能層が複数の機能を有してもよい。例えば、ポリアミドイミド樹脂を含むフィルムに上記機能層を形成させて、多層構成のフィルムを得てよい。 The film of the present invention may be a polyamideimide laminate in which one or more functional layers are further laminated on the above layer. Examples of the functional layer include layers having various functions such as a hard coat layer, an ultraviolet absorbing layer, an adhesive layer, a refractive index adjusting layer, and a primer layer. The film of the present invention may include one or more functional layers. One functional layer may have a plurality of functions. For example, the functional layer may be formed on a film containing a polyamideimide resin to obtain a multilayer film.
 本発明は、ジアミンに由来する構成単位、ジカルボン酸に由来する構成単位、及び、テトラカルボン酸二無水物に由来する構成単位を有し、2次元NMRにより測定して60%以上のイミド化率を有するポリアミドイミド樹脂B、及び、溶剤を少なくとも含む、樹脂組成物も提供する。なお、上記ポリアミドイミド樹脂Aを含む本発明のフィルムは、例えば、ポリアミドイミド樹脂B及び溶剤を少なくとも含む、本発明の樹脂組成物を用いて製造される。 The present invention has a structural unit derived from a diamine, a structural unit derived from a dicarboxylic acid, and a structural unit derived from a tetracarboxylic dianhydride and has an imidization ratio of 60% or more as measured by two-dimensional NMR. There is also provided a resin composition containing at least a polyamideimide resin B having a solvent and a solvent. In addition, the film of this invention containing the said polyamideimide resin A is manufactured using the resin composition of this invention containing the polyamideimide resin B and a solvent at least, for example.
 本発明の樹脂組成物は、2次元NMRにより測定して60%以上のイミド化率を有するポリアミドイミド樹脂Bを含む。本発明の樹脂組成物はポリアミドイミド樹脂を含むフィルムを製造するために使用される組成物であり、上記のように高いイミド化率を有するポリアミドイミド樹脂Bを含むため、最終的に得られるフィルムに含まれるポリアミドイミド樹脂のイミド化率を十分に高めることができ、その結果、十分に高い表面硬度を有するポリアミドイミドフィルムを得ることができる。樹脂組成物に含まれるポリアミドイミド樹脂のイミド化率が60%より低い場合、過度に柔軟な一次構造のポリアミドイミドとなる傾向があるために、最終的に得られるポリアミドイミドフィルムの表面硬度を十分に高めることができない。表面硬度の観点から、ポリアミドイミド樹脂Bのイミド化率は、好ましくは80%以上、より好ましくは90%以上、さらにより好ましくは95%以上である。該イミド化率は高ければ高いほどよく、その上限は特に限定されず、100%以下であればよい。 The resin composition of the present invention contains a polyamideimide resin B having an imidization ratio of 60% or more as measured by two-dimensional NMR. The resin composition of the present invention is a composition used for producing a film containing a polyamideimide resin, and since it contains a polyamideimide resin B having a high imidization ratio as described above, the film finally obtained It is possible to sufficiently increase the imidization ratio of the polyamideimide resin contained in the resin, and as a result, it is possible to obtain a polyamideimide film having a sufficiently high surface hardness. When the imidization ratio of the polyamide-imide resin contained in the resin composition is lower than 60%, there is a tendency to become a polyamideimide having an excessively flexible primary structure. Can not be increased. From the viewpoint of surface hardness, the imidation ratio of the polyamideimide resin B is preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more. The higher the imidization rate, the better. The upper limit is not particularly limited, and it may be 100% or less.
 ポリアミドイミド樹脂Bのイミド化率は、ポリアミドイミド樹脂B中のテトラカルボン酸二無水物に由来する構成単位のモル数の2倍の値に対する、ポリアミドイミド樹脂B中のイミド結合のモル数の割合を表し、本明細書においては2次元NMRにより測定される。ポリアミドイミド樹脂Bのイミド化率は、樹脂組成物(ワニス)に貧溶媒を加えて再沈殿法により析出・乾燥させたポリアミドイミド樹脂Bを、良溶媒である重水化溶媒に溶解させて得た所定溶液を測定試料として、2次元NMRを用いて測定することができる。
貧溶媒としては、例えばアルコール系溶媒、水、飽和炭化水素系溶媒及び芳香族溶媒などが挙げられ、好ましくはアルコール系溶媒及び水が挙げられる。アルコール系溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、1-イソブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、エチレングリコール、グリセリンなどが挙げられ、好ましくはメタノール、エタノール、1-プロパノール、2-プロパノールが挙げられ、より好ましくはメタノール、エタノールが挙げられ。また、これら貧溶媒は2種類以上を混合してもよい。
 良溶媒である重水素化溶媒としては、例えば重水素化ジメチルスルホキシド(DMSO-d6)が挙げられる。
 イミド化率は、下記の式(9)で表される。
The imidation ratio of the polyamide-imide resin B is the ratio of the number of moles of imide bonds in the polyamide-imide resin B to the value twice the number of moles of structural units derived from the tetracarboxylic dianhydride in the polyamide-imide resin B. In this specification, it is measured by two-dimensional NMR. The imidation ratio of the polyamideimide resin B was obtained by dissolving the polyamideimide resin B, which was precipitated and dried by a reprecipitation method by adding a poor solvent to the resin composition (varnish), in a dehydrated solvent which is a good solvent. Measurement can be performed using two-dimensional NMR using a predetermined solution as a measurement sample.
Examples of the poor solvent include alcohol solvents, water, saturated hydrocarbon solvents, and aromatic solvents, and preferably alcohol solvents and water. Alcohol solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-isobutanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-hexanol, 2-hexanol , 3-hexanol, ethylene glycol, glycerin and the like, preferably methanol, ethanol, 1-propanol and 2-propanol, more preferably methanol and ethanol. Moreover, two or more of these poor solvents may be mixed.
Examples of the deuterated solvent that is a good solvent include deuterated dimethyl sulfoxide (DMSO-d6).
The imidization rate is represented by the following formula (9).
 イミド化率(%)=[1-(アミック酸を有する繰り返し単位のモル数)/(イミド結合を有する繰り返し単位のモル数)]×100    式(9) Imidation rate (%) = [1- (number of moles of repeating unit having an amic acid) / (number of moles of repeating unit having an imide bond)] × 100 Formula (9)
 ポリイミド樹脂又はポリイミドフィルムは、H-NMRスペクトル上のアミック酸を有する繰り返し単位に由来するシグナル及びイミド結合を有する繰り返し単位に由来するシグナルを適切に積分することで、モル数の比率を得ることができ、上記式(9)に適用することでイミド化率が得られる。ここで、アミック酸は、イミド結合の前駆体である、アミド結合及びカルボキシル基を含む。
ポリアミドイミド樹脂又はポリアミドイミドフィルムは、例えば、重水素化ジメチルスルホキシド(DMSO-d6)で測定した2次元NMRスペクトル上のアミック酸を有する繰り返し単位及びイミド結合を有する繰り返し単位に由来するシグナルを適切に積分して得た値を換算することで、イミド化率を得ることができる。換算方法としては、H-NMRスペクトルで得たイミド化率に対する該値の相関式を適用すること等が挙げられる。
A polyimide resin or a polyimide film obtains a molar ratio by appropriately integrating a signal derived from a repeating unit having an amic acid on a 1 H-NMR spectrum and a signal derived from a repeating unit having an imide bond. The imidation ratio can be obtained by applying to the above formula (9). Here, the amic acid includes an amide bond and a carboxyl group, which are precursors of an imide bond.
Polyamideimide resin or polyamideimide film, for example, appropriately receives signals derived from repeating units having an amic acid and repeating units having an imide bond on a two-dimensional NMR spectrum measured with deuterated dimethyl sulfoxide (DMSO-d6). By converting the value obtained by integration, the imidization rate can be obtained. Examples of the conversion method include applying a correlation formula of the value to the imidization ratio obtained by the 1 H-NMR spectrum.
 精度良くイミド化率を得るためには、従来既知又は慣用された手法が適用される。そのような手法としては、たとえば、信号とノイズの比率であるS/N比を高くすること、及び得られた2次元NMRスペクトルを精度良く積分することが挙げられる。イミド化率をより精度よく得るためには、S/N比が6以上であることが好ましい。S/N比を高くするための方法としては、たとえば、試料濃度を高くすること、積算回数を増やすこと、及び高感度なNMR測定装置を用いること等が挙げられる。高感度なNMR測定装置としては、たとえば、より強い磁場を有するNMR装置、及びクライオプローブを用いたNMR装置が挙げられる。また、2次元NMRスペクトルを精度よく積分する方法としては、たとえば、位相補正を行うこと、及びベースライン補正を行うことが挙げられる。さらに、アミック酸を有する繰り返し単位及びイミド結合を有する繰り返し単位とは別の構造に由来する2次元NMRスペクトル上のシグナルが重なる場合には、そのシグナルの強度を含めないで積分することによって精度よくイミド化率を得ることができる。 In order to obtain an imidization rate with high accuracy, conventionally known or commonly used methods are applied. Examples of such a method include increasing the S / N ratio, which is the ratio of signal to noise, and integrating the obtained two-dimensional NMR spectrum with high accuracy. In order to obtain the imidization ratio with higher accuracy, the S / N ratio is preferably 6 or more. Examples of the method for increasing the S / N ratio include increasing the sample concentration, increasing the number of integrations, and using a highly sensitive NMR measuring apparatus. Examples of the highly sensitive NMR measuring apparatus include an NMR apparatus having a stronger magnetic field and an NMR apparatus using a cryoprobe. Examples of a method for accurately integrating a two-dimensional NMR spectrum include performing phase correction and performing baseline correction. Furthermore, when signals on a two-dimensional NMR spectrum derived from a structure different from the repeating unit having an amic acid and the repeating unit having an imide bond overlap, it is accurately integrated by not including the intensity of the signal. An imidation ratio can be obtained.
 ポリアミドイミド樹脂Bの、動的粘弾性測定(DMA測定)におけるtanδにより算出されたガラス転移温度Tgは、好ましくは380℃未満、より好ましくは379℃以下、さらに好ましくは378℃以下、例えば370℃以下である。ポリアミドイミド樹脂Bのガラス転移温度Tgが上記の上限未満又は上記の上限以下であると、本発明の樹脂組成物を用いて得られるフィルムにおいて、高い表面硬度を発現しやすいと同時に、弾性率を低下しやすく、柔軟性を高めやすい。ガラス転移温度Tgの下限は特に限定されないが、通常は300℃以上である。動的粘弾性測定(DMA測定)におけるtanδによりガラス転移温度を算出する方法は、具体的には実施例の通りに行うことができる。 The glass transition temperature Tg calculated by tan δ in the dynamic viscoelasticity measurement (DMA measurement) of the polyamideimide resin B is preferably less than 380 ° C., more preferably 379 ° C. or less, further preferably 378 ° C. or less, for example 370 ° C. It is as follows. When the glass transition temperature Tg of the polyamide-imide resin B is less than the above upper limit or less than the above upper limit, the film obtained using the resin composition of the present invention is likely to exhibit high surface hardness and at the same time has an elastic modulus. It is easy to decrease and it is easy to increase flexibility. Although the minimum of glass transition temperature Tg is not specifically limited, Usually, it is 300 degreeC or more. The method for calculating the glass transition temperature by tan δ in the dynamic viscoelasticity measurement (DMA measurement) can be specifically performed as in the examples.
 本発明のフィルムに含まれるポリアミドイミド樹脂Bの重量平均分子量(Mw)は、好ましくは5,000以上、より好ましくは10,000以上、さらに好ましくは50,000以上、特に好ましくは70,000以上であり、好ましくは800,000以下、より好ましくは600,000以下、さらに好ましくは500,000以下、特に好ましくは450,000以下である。ポリアミドイミド樹脂Bの重量平均分子量(Mw)が上記の下限以上であると、本発明の樹脂組成物を用いて得られるフィルムの屈曲耐性を高めやすい。ポリアミドイミド樹脂Bの重量平均分子量(Mw)が上記の上限以下であると、ポリアミドイミド樹脂の溶剤への溶解性が向上し、本発明の樹脂組成物の粘度を低く抑制することができるため、フィルムを製造しやすくなる。また、フィルムの延伸が容易となるため、加工性が良好である。重量平均分子量(Mw)は、例えば、GPC測定を行い、標準ポリスチレン換算によって求めることができ、具体的には実施例に記載の方法により求めることができる。 The weight average molecular weight (Mw) of the polyamideimide resin B contained in the film of the present invention is preferably 5,000 or more, more preferably 10,000 or more, still more preferably 50,000 or more, and particularly preferably 70,000 or more. It is preferably 800,000 or less, more preferably 600,000 or less, further preferably 500,000 or less, and particularly preferably 450,000 or less. When the weight average molecular weight (Mw) of the polyamideimide resin B is not less than the above lower limit, the bending resistance of a film obtained using the resin composition of the present invention can be easily increased. When the weight average molecular weight (Mw) of the polyamideimide resin B is not more than the above upper limit, the solubility of the polyamideimide resin in the solvent is improved, and the viscosity of the resin composition of the present invention can be suppressed low. It becomes easy to manufacture a film. Further, since the film can be easily stretched, the processability is good. The weight average molecular weight (Mw) can be determined by, for example, GPC measurement and standard polystyrene conversion, and can be specifically determined by the method described in the examples.
 本発明の樹脂組成物に含まれるポリアミドイミド樹脂Bは、ジアミンに由来する構成単位、ジカルボン酸に由来する構成単位、及び、テトラカルボン酸二無水物に由来する構成単位を有する。ジアミン、ジカルボン酸及びテトラカルボン酸二無水物の具体例及び好ましい態様について、ポリアミドイミド樹脂Aに関する上記記載が同様にあてはまる。本発明の樹脂組成物に含まれるポリアミドイミド樹脂Bも、ポリアミドイミド樹脂Aと同様に、さらにトリカルボン酸に由来する構成単位を有していてもよい。トリカルボン酸としては、ポリアミドイミド樹脂Aに関する上記記載が同様にあてはまる。 The polyamideimide resin B contained in the resin composition of the present invention has a structural unit derived from diamine, a structural unit derived from dicarboxylic acid, and a structural unit derived from tetracarboxylic dianhydride. Regarding the specific examples and preferred embodiments of the diamine, dicarboxylic acid and tetracarboxylic dianhydride, the above description regarding the polyamideimide resin A similarly applies. Similarly to the polyamideimide resin A, the polyamideimide resin B contained in the resin composition of the present invention may further have a structural unit derived from tricarboxylic acid. As the tricarboxylic acid, the above description regarding the polyamide-imide resin A is similarly applied.
 本発明の好ましい一実施態様において、本発明の樹脂組成物に含まれるポリアミドイミド樹脂Bは、ジカルボン酸(酸クロライド等のジカルボン酸類縁体)、ジアミン及びテトラカルボン酸(酸クロライド、テトラカルボン酸二無水物等のテトラカルボン酸類縁体)との、場合によりさらにトリカルボン酸(酸クロライド化合物、トリカルボン酸無水物等のトリカルボン酸化合物類縁体)との、重縮合生成物である縮合型高分子である。この態様において、ポリアミドイミド樹脂Bは、ポリアミドイミド樹脂Aと同様に、式(5)で表される構成単位、及び式(6)で表される構成単位を有する。
Figure JPOXMLDOC01-appb-C000045
[式(5)中、X及びYは前記と同義である。]
Figure JPOXMLDOC01-appb-C000046
[式(6)中、X及びZは前記と同義である。]
 式(5)及び式(6)中のX、Y及びZは、それぞれ、式(3)中のX、式(4)中のY及び式(2)中のZと同義であり、式(2)~式(4)中のX、Y及びZに関して上記に述べた好ましい記載が、式(5)及び式(6)中のX、Y及びZについても同様にあてはまる。式(5)で表される構成単位は、通常、ジアミン及びテトラカルボン酸に由来する構成単位であり、式(6)で表される構成単位は、通常、ジアミン及びジカルボン酸に由来する構成単位である。
In a preferred embodiment of the present invention, the polyamideimide resin B contained in the resin composition of the present invention contains dicarboxylic acid (dicarboxylic acid analog such as acid chloride), diamine and tetracarboxylic acid (acid chloride, tetracarboxylic acid dicarboxylic acid). A polycondensation polymer that is a polycondensation product with a tricarboxylic acid (an acid chloride compound, a tricarboxylic acid compound analog such as a tricarboxylic acid anhydride) in some cases and a tetracarboxylic acid analog such as an anhydride). . In this embodiment, the polyamideimide resin B, like the polyamideimide resin A, has a structural unit represented by the formula (5) and a structural unit represented by the formula (6).
Figure JPOXMLDOC01-appb-C000045
[In formula (5), X and Y are as defined above. ]
Figure JPOXMLDOC01-appb-C000046
[In formula (6), X and Z are as defined above. ]
X, Y, and Z in Formula (5) and Formula (6) are synonymous with X in Formula (3), Y in Formula (4), and Z in Formula (2), respectively. 2) to the above-mentioned preferable descriptions regarding X, Y and Z in the formula (4) are similarly applied to X, Y and Z in the formula (5) and the formula (6). The structural unit represented by the formula (5) is usually a structural unit derived from diamine and tetracarboxylic acid, and the structural unit represented by the formula (6) is usually structural unit derived from diamine and dicarboxylic acid. It is.
 本発明の好ましい一実施態様において、本発明の樹脂組成物に含まれるポリアミドイミド樹脂Bは、さらに式(7)で表される構成単位、及び/又は以下の式(8)で表される構成単位を有してもよい。
Figure JPOXMLDOC01-appb-C000047
[式(7)中、Xは2価の有機基を表し、Yは4価の有機基を表す。]
Figure JPOXMLDOC01-appb-C000048
[式(8)中、Xは2価の有機基を表し、Yは3価の有機基を表す。]
In a preferred embodiment of the present invention, the polyamideimide resin B contained in the resin composition of the present invention is a structural unit represented by the following formula (7) and / or a structure represented by the following formula (8). You may have a unit.
Figure JPOXMLDOC01-appb-C000047
[In Formula (7), X 1 represents a divalent organic group, and Y 1 represents a tetravalent organic group. ]
Figure JPOXMLDOC01-appb-C000048
[In Formula (8), X 2 represents a divalent organic group, and Y 2 represents a trivalent organic group. ]
 式(7)において、Yは、それぞれ独立して、4価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、式(4a)~式(4j)で表される基、並びに4価の炭素数6以下の鎖式炭化水素基が例示される。ポリアミドイミド樹脂Bは、1種の式(7)で表される構成単位を有してもよいし、Y及び/又はXにおいて互いに異なる、2種以上の式(7)で表される構成単位を有してもよい。 In Formula (7), Y 1 is each independently a tetravalent organic group, and preferably a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. Organic group. Examples of Y 1 include groups represented by formulas (4a) to (4j), and tetravalent chain hydrocarbon groups having 6 or less carbon atoms. The polyamideimide resin B may have a structural unit represented by one type of formula (7), or may be represented by two or more types of formula (7) that are different from each other in Y 1 and / or X 1 . You may have a structural unit.
 式(8)において、Yは、それぞれ独立して、3価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。前記有機基は、好ましくは炭素数4~40の3価の有機基である。炭化水素基及びフッ素置換された炭化水素基の炭素数は好ましくは1~8である。また、前記有機基の炭素数は好ましくは4~40である。Yとしては、上記の式(4a)~式(4j)で表される基の結合手のいずれか1つが水素原子に置き換わった基、及び3価の炭素数6以下の鎖式炭化水素基が例示される。ポリアミドイミド樹脂Bは、1種の式(8)で表される構成単位を有してもよいし、Y及び/又はXにおいて互いに異なる、2種以上の式(7)で表される構成単位を有してもよい。式中のWの例は、Yに関する記述におけるWの例と同じである。 In Formula (8), Y 2 is each independently a trivalent organic group, and preferably a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. Organic group. The organic group is preferably a trivalent organic group having 4 to 40 carbon atoms. The hydrocarbon group and the fluorine-substituted hydrocarbon group preferably have 1 to 8 carbon atoms. The organic group preferably has 4 to 40 carbon atoms. Y 2 represents a group in which any one of the bonds in the groups represented by the above formulas (4a) to (4j) is replaced with a hydrogen atom, and a trivalent chain hydrocarbon group having 6 or less carbon atoms Is exemplified. The polyamideimide resin B may have a structural unit represented by one type of formula (8), or may be represented by two or more types of formula (7) that are different from each other in Y 2 and / or X 2 . You may have a structural unit. The example of W 1 in the formula is the same as the example of W 1 in the description relating to Y 1 .
 式(7)及び式(8)において、X及びXは、それぞれ独立して、2価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。前記有機基は、好ましくは炭素数4~40の2価の有機基である。炭化水素基及びフッ素置換された炭化水素基の炭素数は好ましくは1~8である。また、前記有機基の炭素数は好ましくは4~40である。X及びXとしては、式(3a)~式(3i)で表される基;式(3a)~式(3i)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに炭素数6以下の鎖式炭化水素基が例示される。 In the formulas (7) and (8), X 1 and X 2 are each independently a divalent organic group, preferably a hydrocarbon group or a fluorine-substituted hydrocarbon in which a hydrogen atom in the organic group is substituted An organic group which may be substituted with a group. The organic group is preferably a divalent organic group having 4 to 40 carbon atoms. The hydrocarbon group and the fluorine-substituted hydrocarbon group preferably have 1 to 8 carbon atoms. The organic group preferably has 4 to 40 carbon atoms. X 1 and X 2 are groups represented by formulas (3a) to (3i); a hydrogen atom in the groups represented by formulas (3a) to (3i) is a methyl group, a fluoro group, or a chloro group Or a group substituted with a trifluoromethyl group; and a chain hydrocarbon group having 6 or less carbon atoms.
 本発明の好ましい一実施態様において、本発明の樹脂組成物に含まれるポリアミドイミド樹脂Bは、式(5)及び式(6)で表される構成単位、並びに場合により式(7)及び/又は式(8)で表される構成単位からなる。この態様において、フィルムの柔軟性及び表面硬度を高めやすい観点から、ポリアミドイミド樹脂Bに含まれる式(5)及び式(6)で表される構成単位の量は、式(5)及び式(6)、並びに、場合により式(7)及び式(8)で表される全構成単位に基づいて、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上である。なお、上記ポリアミドイミド樹脂Bに含まれる式(5)及び式(6)で表される構成単位の量の上限は、式(5)及び式(6)、並びに、場合により式(7)及び式(8)で表される全構成単位に基づいて、通常100%以下である。なお、上記割合は、例えば、2次元NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 In a preferred embodiment of the present invention, the polyamideimide resin B contained in the resin composition of the present invention comprises the structural units represented by the formulas (5) and (6), and optionally the formula (7) and / or It consists of a structural unit represented by Formula (8). In this embodiment, from the viewpoint of easily increasing the flexibility and surface hardness of the film, the amount of the structural unit represented by the formula (5) and the formula (6) contained in the polyamideimide resin B is expressed by the formula (5) and the formula ( 6), and in some cases, based on all the structural units represented by formula (7) and formula (8), it is preferably at least 80%, more preferably at least 90%, and even more preferably at least 95%. In addition, the upper limit of the amount of the structural unit represented by the formula (5) and the formula (6) included in the polyamideimide resin B is the formula (5) and the formula (6), and in some cases, the formula (7) and Based on all the structural units represented by Formula (8), it is usually 100% or less. In addition, the said ratio can be measured, for example using two-dimensional NMR, or can also be computed from the preparation ratio of a raw material.
 本発明の樹脂組成物に含まれるポリアミドイミド樹脂Bも、ポリアミドイミド樹脂Aと同様にハロゲン原子を含むことが好ましく、フッ素原子を含むことがより好ましい。含フッ素置換基の具体例としては、フルオロ基及びトリフルオロメチル基が挙げられる。ポリアミドイミド樹脂Bがハロゲン原子を含むことにより、本発明の樹脂組成物を用いて得られるフィルムの黄色度(YI値)を低減させやすく、さらに高い柔軟性及び屈曲耐性を両立させやすい。フィルムの黄色度の低減(透明性の向上)、吸水率の低減、及び耐屈曲性の観点からは、ハロゲン原子は好ましくはフッ素原子である。上記観点から、ポリアミドイミド樹脂Bは、フッ素原子含有ジアミン及び/又はフッ素原子含有テトラカルボン酸二無水物に由来する構成単位を少なくとも有することが好ましい。 The polyamideimide resin B contained in the resin composition of the present invention also preferably contains a halogen atom, more preferably a fluorine atom, like the polyamideimide resin A. Specific examples of the fluorine-containing substituent include a fluoro group and a trifluoromethyl group. When the polyamideimide resin B contains a halogen atom, it is easy to reduce the yellowness (YI value) of the film obtained using the resin composition of the present invention, and it is easy to achieve both high flexibility and bending resistance. From the viewpoints of reducing the yellowness of the film (improving transparency), reducing the water absorption rate, and bending resistance, the halogen atom is preferably a fluorine atom. From the above viewpoint, the polyamideimide resin B preferably has at least a structural unit derived from a fluorine atom-containing diamine and / or a fluorine atom-containing tetracarboxylic dianhydride.
 ポリアミドイミド樹脂Bにおけるハロゲン原子の含有量は、黄色度の低減(透明性の向上)、吸水率の低減、及びフィルムの変形抑制の観点から、本発明の樹脂組成物に含まれるポリアミドイミド樹脂Bの質量に基づいて、好ましくは1~40質量%、より好ましくは3~35質量%、さらに好ましくは5~32質量%である。 The content of halogen atoms in the polyamide-imide resin B is the polyamide-imide resin B contained in the resin composition of the present invention from the viewpoint of reducing yellowness (improving transparency), reducing water absorption, and suppressing film deformation. Is preferably 1 to 40% by mass, more preferably 3 to 35% by mass, and still more preferably 5 to 32% by mass.
 本発明の樹脂組成物に含まれる溶剤は、ポリアミドイミド樹脂Bを溶解可能であれば特に限定されない。かかる溶剤としては、例えばN,N-ジメチルアセトアミド(DMAc)、N,N-ジメチルホルムアミド等のアミド系溶剤;γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶剤;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶剤;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶剤;及びそれらの組み合わせ(混合溶剤)が挙げられる。これらの溶剤の中でも、アミド系溶剤又はラクトン系溶剤が好ましく、ジメチルアセトアミドを含む溶剤がより好ましい。また、ポリアミドイミドワニスには水、アルコール系溶剤、ケトン系溶剤、非環状エステル系溶剤、エーテル系溶剤などが含まれてもよい。本発明の樹脂組成物は、さらに、上記に述べた本発明のフィルムが含み得る添加剤を含有してもよい。 The solvent contained in the resin composition of the present invention is not particularly limited as long as the polyamideimide resin B can be dissolved. Examples of such solvents include amide solvents such as N, N-dimethylacetamide (DMAc) and N, N-dimethylformamide; lactone solvents such as γ-butyrolactone and γ-valerolactone; dimethylsulfone, dimethylsulfoxide, sulfolane and the like. Sulfur-containing solvents of: carbonate solvents such as ethylene carbonate and propylene carbonate; and combinations thereof (mixed solvents). Among these solvents, an amide solvent or a lactone solvent is preferable, and a solvent containing dimethylacetamide is more preferable. The polyamideimide varnish may contain water, alcohol solvents, ketone solvents, acyclic ester solvents, ether solvents and the like. The resin composition of the present invention may further contain an additive that can be included in the film of the present invention described above.
 次に、本発明のフィルムに含まれるポリアミドイミド樹脂A、及び、本発明の樹脂組成物に含まれるポリアミドイミド樹脂本発明の樹脂組成物Bの製造方法について次に説明する。ポリアミドイミド樹脂A及びBは、例えば、上記に述べたジカルボン酸、ジアミン及びテトラカルボン酸を主な原料として、これらを、場合によりさらに上記に述べたトリカルボン酸と共に共重合(重縮合)することにより製造することができる。 Next, a method for producing the polyamideimide resin A contained in the film of the present invention and the polyamideimide resin contained in the resin composition of the present invention will be described below. Polyamideimide resins A and B are prepared by, for example, copolymerizing (polycondensing) the above-mentioned dicarboxylic acid, diamine and tetracarboxylic acid as main raw materials and optionally further together with the tricarboxylic acid described above. Can be manufactured.
 本発明のフィルムに含まれるポリアミドイミド樹脂A及び本発明の樹脂組成物に含まれるポリアミドイミド樹脂Bの製造方法は、上記特性を有するポリアミドイミド樹脂が得られる限り特に限定されないが、例えば、
 (1)ジアミン、ジカルボン酸、及び、テトラカルボン酸二無水物を溶剤中で共重合しポリアミドイミド樹脂前駆体を得る工程、及び、
 (2)ポリアミドイミド樹脂前駆体を少なくとも含む溶液に、脱水剤及び第三級アミンを添加し、70~120℃の温度で加熱する工程
を少なくとも含む方法により製造することができる。
The method for producing the polyamide-imide resin A contained in the film of the present invention and the polyamide-imide resin B contained in the resin composition of the present invention is not particularly limited as long as the polyamide-imide resin having the above characteristics is obtained.
(1) a step of copolymerizing diamine, dicarboxylic acid, and tetracarboxylic dianhydride in a solvent to obtain a polyamideimide resin precursor; and
(2) It can be produced by a method including at least a step of adding a dehydrating agent and a tertiary amine to a solution containing at least a polyamideimide resin precursor and heating at a temperature of 70 to 120 ° C.
 本発明は、また、
 (1)ジアミン、ジカルボン酸、及び、テトラカルボン酸二無水物を溶剤中で共重合しポリアミドイミド樹脂前駆体を得る工程、及び、
 (2)ポリアミドイミド樹脂前駆体を少なくとも含む溶液に、脱水剤及び第三級アミンを添加し、70~120℃の温度で加熱する工程
を少なくとも含み、工程(1)を開始する際の溶剤中の水分量をw(ppm)とし、工程(2)における加熱時間をt(分)とすると、w及びtが次の式を満たす、ポリアミドイミド樹脂の製造方法も提供する。
Figure JPOXMLDOC01-appb-M000049
The present invention also provides
(1) a step of copolymerizing diamine, dicarboxylic acid, and tetracarboxylic dianhydride in a solvent to obtain a polyamideimide resin precursor; and
(2) At least a step of adding a dehydrating agent and a tertiary amine to a solution containing at least a polyamideimide resin precursor and heating at a temperature of 70 to 120 ° C., in a solvent at the start of step (1) A method for producing a polyamide-imide resin is also provided in which w and t satisfy the following formula, where w is the water content of w (ppm) and t is the heating time in step (2).
Figure JPOXMLDOC01-appb-M000049
 本発明の製造方法によって得られるポリアミドイミド樹脂は、例えば、ポリアミドイミド樹脂A又はポリアミドイミド樹脂Bであってよく、ポリアミドイミド樹脂A及びポリアミドイミド樹脂Bについて上記に述べた記載が同様にあてはまる。なお、本発明の製造方法によって本発明の樹脂組成物を得て、該樹脂組成物を用いて本発明のフィルムを製造することも可能である。
 この態様において、本発明の製造方法によって得られるポリアミドイミド樹脂と、本発明の樹脂組成物に含まれるポリアミドイミド樹脂Bとは同一の樹脂である。また、本発明の樹脂組成物に含まれるポリアミドイミド樹脂Bと、本発明のフィルムに含まれるポリアミドイミド樹脂Aとは、イミド化率及び樹脂の構成単位等において同一の樹脂であってもよいし、イミド化率において互いに異なる樹脂であってもよい。
The polyamide-imide resin obtained by the production method of the present invention may be, for example, polyamide-imide resin A or polyamide-imide resin B, and the description described above for polyamide-imide resin A and polyamide-imide resin B applies similarly. In addition, it is also possible to obtain the resin composition of the present invention by the production method of the present invention, and to produce the film of the present invention using the resin composition.
In this embodiment, the polyamideimide resin obtained by the production method of the present invention and the polyamideimide resin B contained in the resin composition of the present invention are the same resin. Further, the polyamideimide resin B contained in the resin composition of the present invention and the polyamideimide resin A contained in the film of the present invention may be the same resin in terms of imidization rate, resin structural unit, and the like. Further, resins different from each other in imidation ratio may be used.
 上記工程(1)において、ジアミン、ジカルボン酸、及び、テトラカルボン酸二無水物を溶剤中で共重合し、ポリアミドイミド樹脂前駆体を得る。共重合を行う際の反応温度は、特に限定されないが、例えば50~350℃である。反応時間も特に限定されないが、例えば30分~10時間程度である。必要に応じて、不活性雰囲気又は減圧の条件下において反応を行ってよい。工程(1)で使用する溶剤としては、例えば上記に述べた本発明の樹脂組成物に含まれる溶剤が挙げられる。 In step (1), diamine, dicarboxylic acid and tetracarboxylic dianhydride are copolymerized in a solvent to obtain a polyamideimide resin precursor. The reaction temperature for carrying out the copolymerization is not particularly limited, but is, for example, 50 to 350 ° C. The reaction time is not particularly limited, but is, for example, about 30 minutes to 10 hours. If necessary, the reaction may be carried out under an inert atmosphere or under reduced pressure. As a solvent used at a process (1), the solvent contained in the resin composition of this invention described above is mentioned, for example.
 工程(1)において、イミド化触媒を使用してもよい。イミド化触媒としては、例えばトリプロピルアミン、ジブチルプロピルアミン、エチルジブチルアミン等の脂肪族アミン;N-エチルピペリジン、N-プロピルピペリジン、N-ブチルピロリジン、N-ブチルピペリジン、及びN-プロピルヘキサヒドロアゼピン等の脂環式アミン(単環式);アザビシクロ[2.2.1]ヘプタン、アザビシクロ[3.2.1]オクタン、アザビシクロ[2.2.2]オクタン、及びアザビシクロ[3.2.2]ノナン等の脂環式アミン(多環式);並びにピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、2,4-ジメチルピリジン、2,4,6-トリメチルピリジン、3,4-シクロペンテノピリジン、5,6,7,8-テトラヒドロイソキノリン、及びイソキノリン等の芳香族アミンが挙げられる。 In step (1), an imidization catalyst may be used. Examples of imidation catalysts include aliphatic amines such as tripropylamine, dibutylpropylamine, and ethyldibutylamine; N-ethylpiperidine, N-propylpiperidine, N-butylpyrrolidine, N-butylpiperidine, and N-propylhexahydro Alicyclic amines (monocyclic) such as azepine; azabicyclo [2.2.1] heptane, azabicyclo [3.2.1] octane, azabicyclo [2.2.2] octane, and azabicyclo [3.2. 2] Cycloaliphatic amines (polycyclic) such as nonane; and pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2, 4-dimethylpyridine, 2,4,6-trimethylpyridine, 3,4-cyclopentenopyridine, 5, 7,8 tetrahydroisoquinoline, and aromatic amines isoquinoline.
 次に、工程(2)において、ポリアミドイミド樹脂前駆体を少なくとも含む溶液に、脱水剤及び第三級アミンを添加し、70~120℃の温度で加熱する。この工程においてポリアミドイミド樹脂前駆体のイミド化が進行する。当該工程の加熱時間は、反応スケールや使用する試薬等の種類や量に応じて適宜選択してよいが、通常は1~48時間である。最終的に黄色度が低減され、高い表面硬度を有するポリアミドイミドフィルムを得やすい観点からは、当該工程において、ポリアミドイミド樹脂組成物中に含まれるポリアミドイミド樹脂のイミド化率が好ましくは60%以上、より好ましくは80%以上、さらにより好ましくは95%以上となるまで工程(2)を行ってよい。 Next, in step (2), a dehydrating agent and a tertiary amine are added to a solution containing at least the polyamideimide resin precursor, and heated at a temperature of 70 to 120 ° C. In this step, imidization of the polyamideimide resin precursor proceeds. The heating time in this step may be appropriately selected according to the reaction scale and the type and amount of the reagent used, but is usually 1 to 48 hours. From the viewpoint of finally obtaining a polyamideimide film having a reduced yellowness and a high surface hardness, the imidation ratio of the polyamideimide resin contained in the polyamideimide resin composition is preferably 60% or more in this step. More preferably, step (2) may be performed until 80% or more, and even more preferably 95% or more.
 工程(2)で使用する脱水剤は、脱水を伴う重縮合反応であるジアミン、ジカルボン酸、及び、テトラカルボン酸二無水物を溶剤中で共重合を促進することができる物質である。脱水剤としては、例えば無水酢酸やプロピオン酸無水物、イソ酪酸無水物、ピバル酸無水物、酪酸無水物、イソ吉草酸無水物などが挙げられる。脱水剤は、無水酢酸及びプロピオン酸無水物からなる群から選択されることが好ましく、無水酢酸であることがより好ましい。 The dehydrating agent used in the step (2) is a substance that can promote copolymerization in a solvent with diamine, dicarboxylic acid, and tetracarboxylic dianhydride, which are polycondensation reactions involving dehydration. Examples of the dehydrating agent include acetic anhydride, propionic anhydride, isobutyric anhydride, pivalic anhydride, butyric anhydride, and isovaleric anhydride. The dehydrating agent is preferably selected from the group consisting of acetic anhydride and propionic anhydride, more preferably acetic anhydride.
 工程(2)で使用する第三級アミンは、イミド化触媒として作用する物質である。第三級アミンの例としては、例えば前述の芳香族アミンや脂肪族アミンなどが挙げられる。第三級アミンは、トリエチルアミン、トリプロピルアミン、N-エチルピペリジン、N-プロピルピペリジン、ピリジン、メチルピリジン、エチルピリジン、ジメチルピリジン及びイソキノリンからなる群から選択されることが好ましい。 The tertiary amine used in step (2) is a substance that acts as an imidization catalyst. Examples of the tertiary amine include the above-mentioned aromatic amine and aliphatic amine. The tertiary amine is preferably selected from the group consisting of triethylamine, tripropylamine, N-ethylpiperidine, N-propylpiperidine, pyridine, methylpyridine, ethylpyridine, dimethylpyridine and isoquinoline.
 本発明の製造方法において、工程(1)を開始する際の溶剤中の水分量をw(ppm)とし、工程(2)における加熱時間をt(分)とすると、w及びtが次の式を満たす。
Figure JPOXMLDOC01-appb-M000050
In the production method of the present invention, assuming that the amount of water in the solvent at the start of step (1) is w (ppm) and the heating time in step (2) is t (minutes), w and t are the following formulas: Meet.
Figure JPOXMLDOC01-appb-M000050
 1/t(w+167)は、好ましくは5.0以下、より好ましくは4.0以下、さらに好ましくは3.0以下である。ポリアミドイミド樹脂を製造するためのジアミン、ジカルボン酸、及び、テトラカルボン酸二無水物を溶剤中で共重合は、脱水を伴う重縮合反応である。そのため、反応系中に存在する水の量を少なくしたり、加熱時間を調整したりすることによって、効率的に重縮合反応(特にイミド化反応)を進行させることができ、その結果、得られるポリアミドイミド樹脂におけるイミド化率を高めることができる。したがって、本発明の上記製造方法によれば、従来よりも高いイミド化率を有するポリアミドイミド樹脂を製造することができる。なお、従来知られている製造方法では、ポリアミドイミド樹脂のイミド化率を十分に高くすることは困難である。そのため、比較的低いイミド化率を有するポリアミドイミド樹脂を含むポリアミドイミドワニスを用いてフィルムを作製し、このフィルムを高温条件下で加熱してイミド化を進行させる工程が行われている。しかし、上記に述べたように、フィルムの状態で加熱を行いイミド化率を高める場合には、十分に高いイミド化率が達成できず、十分な表面硬度が得られず、また、加熱条件によってはポリアミドイミド樹脂のイミド化率のばらつきが生じ、イミド化率が安定しないなどの問題があった。本発明の製造方法によれば、ポリアミドイミド樹脂のイミド化率を、フィルムに加工する前の合成段階で十分に高めやすく、上記のような問題が解決される。 1 / t (w + 167) is preferably 5.0 or less, more preferably 4.0 or less, and even more preferably 3.0 or less. Copolymerization of a diamine, dicarboxylic acid, and tetracarboxylic dianhydride for producing a polyamideimide resin in a solvent is a polycondensation reaction involving dehydration. Therefore, by reducing the amount of water present in the reaction system or adjusting the heating time, the polycondensation reaction (especially imidization reaction) can be efficiently advanced, and as a result, obtained. The imidation ratio in the polyamideimide resin can be increased. Therefore, according to the said manufacturing method of this invention, the polyamide imide resin which has a higher imidation ratio than before can be manufactured. In addition, it is difficult to raise the imidation ratio of a polyamideimide resin sufficiently by a conventionally known production method. Therefore, the process which produces a film using the polyamide-imide varnish containing the polyamidoimide resin which has a comparatively low imidation rate, heats this film on high temperature conditions, and advances imidation is performed. However, as described above, when heating is performed in a film state to increase the imidization rate, a sufficiently high imidization rate cannot be achieved, sufficient surface hardness cannot be obtained, and depending on the heating conditions Has a problem that the imidization rate of the polyamideimide resin varies and the imidization rate is not stable. According to the production method of the present invention, the imidation ratio of the polyamideimide resin can be easily increased sufficiently at the synthesis stage before being processed into a film, and the above problems are solved.
 本発明の製造方法は、工程(1)及び工程(2)を少なくとも含む限り特に限定されない。本発明の製造方法で得たポリアミドイミド樹脂を含む樹脂組成物を製造する方法としては、例えば、工程(1)及び工程(2)で得たポリアミドイミド樹脂を含む混合液に、さらに溶剤及び必要に応じて添加剤を添加し、撹拌することにより、ポリアミドイミド樹脂及び溶剤を少なくとも含む樹脂組成物(以下において、「ポリアミドイミドワニス」とも称する)を製造してもよいし、工程(1)及び工程(2)で得たポリアミドイミド樹脂を含む混合液に貧溶媒を加えて再沈殿法によりポリアミドイミド樹脂を析出させ、乾燥し沈殿物として取り出し、取り出したポリアミドイミド樹脂沈殿物を溶剤に溶解させて、ポリアミドイミド樹脂及び溶剤を少なくとも含む樹脂組成物を得てもよい。 The production method of the present invention is not particularly limited as long as it includes at least step (1) and step (2). As a method for producing a resin composition containing a polyamideimide resin obtained by the production method of the present invention, for example, a mixed solution containing the polyamideimide resin obtained in the step (1) and the step (2), further a solvent and necessary The resin composition containing at least a polyamide-imide resin and a solvent (hereinafter, also referred to as “polyamide-imide varnish”) may be produced by adding an additive and stirring according to step (1) and A poor solvent is added to the mixed solution containing the polyamideimide resin obtained in the step (2), the polyamideimide resin is precipitated by a reprecipitation method, dried and taken out as a precipitate, and the taken polyamideimide resin precipitate is dissolved in the solvent. Thus, a resin composition containing at least a polyamideimide resin and a solvent may be obtained.
 本発明のフィルムは、例えば
(1)上記のようにして得たポリアミドイミド樹脂組成物を支持体に塗付する工程、並びに、
 (2-1)該組成物の塗膜を乾燥後に支持体から剥離する工程、又は、
 (2-2)該組成物の塗膜を乾燥後に支持体から剥離する工程、及び、剥離したフィルムを加熱する工程
を少なくとも含む製造方法によって製造することができる。このように、本発明のフィルムは、上記のようにして得たポリアミドイミド樹脂組成物の塗膜を乾燥させてなる。
The film of the present invention is, for example, (1) a step of applying a polyamideimide resin composition obtained as described above to a support, and
(2-1) A step of peeling the coating film of the composition from the support after drying, or
(2-2) It can be produced by a production method including at least a step of peeling the coating film of the composition from the support after drying and a step of heating the peeled film. Thus, the film of the present invention is obtained by drying the coating film of the polyamideimide resin composition obtained as described above.
 例えば公知のロール・ツー・ロールやバッチ方式により、樹脂基材、SUSベルト、又はガラス基材等の支持体上に、ポリアミドイミドワニスを塗付することによってポリアミドイミドワニスの塗膜を形成することができる。支持体の例としては、PETフィルム、PENフィルム、ポリイミドフィルム、及びポリアミドイミドフィルム等が挙げられる。中でも、耐熱性に優れる観点から、PETフィルム、PENフィルム、ポリイミドフィルム、及び他のポリアミドイミドフィルムが好ましい。本発明のフィルムとの密着性及びコストの観点から、PETフィルムがより好ましい。 For example, a polyamide-imide varnish coating is formed by applying a polyamide-imide varnish on a support such as a resin substrate, a SUS belt, or a glass substrate by a known roll-to-roll or batch method. Can do. Examples of the support include a PET film, a PEN film, a polyimide film, and a polyamideimide film. Among these, from the viewpoint of excellent heat resistance, a PET film, a PEN film, a polyimide film, and other polyamideimide films are preferable. From the viewpoint of adhesion to the film of the present invention and cost, a PET film is more preferable.
 次に、工程(2-1)又は工程(2-2)においてポリアミドイミドワニスの塗膜を乾燥し、乾燥後に支持体から剥離する。塗膜の乾燥は、好ましくは50~240℃、より好ましくは200~240℃の温度にて行うことができる。必要に応じて、不活性雰囲気又は減圧の条件下において塗膜の乾燥を行ってよい。乾燥後に塗膜を支持体から剥離することによって、本発明のフィルムを得ることができる。なお、工程(2-2)に記載されるように、例えば本発明のフィルムの表面硬度(鉛筆硬度)をさらに高める目的で、剥離したフィルムをさらに加熱する工程を行ってもよい。該加熱温度は240℃以下であることが好ましい。 Next, in step (2-1) or step (2-2), the polyamide-imide varnish coating is dried, and after drying, peeled off from the support. The coating film can be dried at a temperature of preferably 50 to 240 ° C, more preferably 200 to 240 ° C. If necessary, the coating film may be dried under an inert atmosphere or under reduced pressure. The film of the present invention can be obtained by peeling the coating film from the support after drying. As described in the step (2-2), for example, for the purpose of further increasing the surface hardness (pencil hardness) of the film of the present invention, a step of further heating the peeled film may be performed. The heating temperature is preferably 240 ° C. or lower.
 上記のようにして製造したフィルムの少なくとも一方の表面に、表面処理を施す表面処理工程を行ってもよい。表面処理としては、例えばUVオゾン処理、プラズマ処理、及びコロナ放電処理が挙げられる。 A surface treatment step of performing a surface treatment on at least one surface of the film produced as described above may be performed. Examples of the surface treatment include UV ozone treatment, plasma treatment, and corona discharge treatment.
 本発明のフィルムが光吸収機能を有する添加剤等の添加剤を含む本発明の好ましい一実施態様において、本発明のフィルムがポリアミドイミド樹脂及び該添加剤を同一の層中に含有する場合、かかる層は、ポリアミドイミド樹脂及び溶剤を少なくとも含む組成物(ポリアミドイミドワニス)にさらに該添加剤を添加して得たポリアミドイミドワニスを用いることにより、上記と同様にして製造することができる。1つの層に光吸収機能を有する添加剤等の添加剤及びポリアミドイミド樹脂を含有させる本発明の好ましい一実施態様においては、少なくとも200℃以上の熱分解温度を有する添加剤を用いることが好ましい。 In a preferred embodiment of the present invention in which the film of the present invention contains an additive such as an additive having a light absorption function, the film of the present invention contains a polyamide-imide resin and the additive in the same layer. The layer can be produced in the same manner as described above by using a polyamideimide varnish obtained by further adding the additive to a composition (polyamideimide varnish) containing at least a polyamideimide resin and a solvent. In a preferred embodiment of the present invention in which an additive such as an additive having a light absorption function and a polyamideimide resin are contained in one layer, it is preferable to use an additive having a thermal decomposition temperature of at least 200 ° C. or more.
 本発明のフィルムは、さらに機能層を備えてもよい。機能層としては、ハードコート層、紫外線吸収層、粘着層、屈折率調整層、プライマー層等の種々の機能を有する層が挙げられる。本発明のフィルムは、単数又は複数の機能層を備えていてもよい。また、1つの機能層が複数の機能を有してもよい。 The film of the present invention may further include a functional layer. Examples of the functional layer include layers having various functions such as a hard coat layer, an ultraviolet absorbing layer, an adhesive layer, a refractive index adjusting layer, and a primer layer. The film of the present invention may include one or more functional layers. One functional layer may have a plurality of functions.
 ハードコート層は、フィルムの視認側表面に配置されることが好ましい。ハードコート層は、単層構造であってもよく、多層構造であってもよい。ハードコート層はハードコート層樹脂を含んでなり、ハードコート層樹脂としては、例えば、アクリル系樹脂、エポキシ系樹脂、ウレタン系樹脂、ベンジルクロライド系樹脂、ビニル系樹脂若しくはシリコーン系樹脂又はこれらの混合樹脂等の紫外線硬化型、電子線硬化型、又は熱硬化型の樹脂が挙げられる。特に、ハードコート層は、表面硬度等の機械物性及び工業上な観点から、アクリル系樹脂を含んでなることが好ましい。なお、本発明の好ましい一実施態様において、本発明のフィルムは高い表面硬度を有するため、ハードコート層を備えなくても画像表示装置等において使用するに十分な表面硬度を有する。このため、本発明のフィルムがハードコート層をさらに有する場合には、フィルムの表面硬度をさらに一層高めることも可能である。 The hard coat layer is preferably disposed on the surface on the viewing side of the film. The hard coat layer may have a single layer structure or a multilayer structure. The hard coat layer comprises a hard coat layer resin, and examples of the hard coat layer resin include acrylic resins, epoxy resins, urethane resins, benzyl chloride resins, vinyl resins, silicone resins, or a mixture thereof. Examples thereof include ultraviolet curable resins such as resins, electron beam curable resins, and thermosetting resins. In particular, the hard coat layer preferably contains an acrylic resin from the viewpoint of mechanical properties such as surface hardness and from an industrial viewpoint. In one preferred embodiment of the present invention, since the film of the present invention has a high surface hardness, the film has a sufficient surface hardness for use in an image display device or the like without a hard coat layer. For this reason, when the film of the present invention further has a hard coat layer, the surface hardness of the film can be further increased.
 紫外線吸収層は、紫外線吸収の機能を有する層であり、例えば、紫外線硬化型の透明樹脂、電子線硬化型の透明樹脂、及び熱硬化型の透明樹脂から選ばれる主材と、この主材に分散した紫外線吸収剤とから構成される。機能層として紫外線吸収層を設けることにより、光照射による黄色度の変化を容易に抑制することができる。 The ultraviolet absorbing layer is a layer having an ultraviolet absorbing function. For example, a main material selected from an ultraviolet curable transparent resin, an electron beam curable transparent resin, and a thermosetting transparent resin, It is composed of dispersed UV absorbers. By providing the ultraviolet absorbing layer as the functional layer, a change in yellowness due to light irradiation can be easily suppressed.
 粘着層は、粘着性の機能を有する層であり、本発明のフィルムを他の部材に接着させる機能を有する。粘着層の形成材料としては、通常知られたものを用いることができる。例えば、熱硬化性樹脂組成物又は光硬化性樹脂組成物を用いることができる。 The adhesive layer is a layer having an adhesive function, and has a function of bonding the film of the present invention to another member. As the material for forming the adhesive layer, a conventionally known material can be used. For example, a thermosetting resin composition or a photocurable resin composition can be used.
 粘着層は、重合性官能基を有する成分を含む樹脂組成物から構成されていてもよい。この場合、フィルムを他の部材に密着させた後に粘着層を構成する樹脂組成物をさらに重合させることにより、強固な接着を実現することができる。本発明のフィルムと粘着層との接着強度は、0.1N/cm以上、又は0.5N/cm以上であってもよい。 The adhesive layer may be composed of a resin composition containing a component having a polymerizable functional group. In this case, strong adhesion can be realized by further polymerizing the resin composition constituting the adhesive layer after the film is brought into close contact with another member. The adhesive strength between the film of the present invention and the pressure-sensitive adhesive layer may be 0.1 N / cm or more, or 0.5 N / cm or more.
 粘着層は、熱硬化性樹脂組成物又は光硬化性樹脂組成物を材料として含んでいてもよい。この場合、事後的にエネルギーを供給することで樹脂組成物を高分子化し硬化させることができる。 The adhesive layer may contain a thermosetting resin composition or a photocurable resin composition as a material. In this case, the resin composition can be polymerized and cured by supplying energy afterwards.
 粘着層は、感圧型接着剤(Pressure Sensitive Adhesive、PSA)と呼ばれる、押圧により対象物に貼着される接着剤から構成される層であってもよい。感圧型接着剤は、「常温で粘着性を有し、軽い圧力で被着材に接着する物質」(JIS K6800)である粘着剤であってもよく、「特定成分を保護被膜(マイクロカプセル)に内容し、適当な手段(圧力、熱等)によって被膜を破壊するまでは安定性を保持できる接着剤」(JIS K6800)であるカプセル型接着剤であってもよい。 The pressure-sensitive adhesive layer may be a layer composed of an adhesive called pressure-sensitive adhesive (Pressure Sensitive Adhesive, PSA) that is attached to an object by pressing. The pressure-sensitive adhesive may be a pressure-sensitive adhesive that is “a substance that is sticky at normal temperature and adheres to an adherend with light pressure” (JIS K6800). And an adhesive that can maintain stability until the coating is broken by appropriate means (pressure, heat, etc.) (JIS K6800).
 色相調整層は、色相調整の機能を有する層であり、本発明のフィルムを目的の色相に調整することができる層である。色相調整層は、例えば、樹脂及び着色剤を含有する層である。この着色剤としては、例えば、酸化チタン、酸化亜鉛、弁柄、チタニウムオキサイド系焼成顔料、群青、アルミン酸コバルト、及びカーボンブラック等の無機顔料;アゾ系化合物、キナクリドン系化合物、アンスラキノン系化合物、ペリレン系化合物、イソインドリノン系化合物、フタロシアニン系化合物、キノフタロン系化合物、スレン系化合物、及びジケトピロロピロール系化合物等の有機顔料;硫酸バリウム、及び炭酸カルシウム等の体質顔料;並びに塩基性染料、酸性染料、及び媒染染料等の染料を挙げることができる。 The hue adjusting layer is a layer having a hue adjusting function, and is a layer capable of adjusting the film of the present invention to a target hue. A hue adjustment layer is a layer containing resin and a coloring agent, for example. Examples of the colorant include inorganic pigments such as titanium oxide, zinc oxide, dial, titanium oxide-based fired pigment, ultramarine, cobalt aluminate, and carbon black; azo-based compounds, quinacridone-based compounds, anthraquinone-based compounds, Organic pigments such as perylene compounds, isoindolinone compounds, phthalocyanine compounds, quinophthalone compounds, selenium compounds, and diketopyrrolopyrrole compounds; extender pigments such as barium sulfate and calcium carbonate; and basic dyes, Examples include acid dyes and mordant dyes.
 屈折率調整層は、屈折率調整の機能を有する層であり、本発明のフィルムにおけるポリアミドイミド樹脂Aを含む層とは異なる屈折率を有し、本発明のフィルムに所定の屈折率を付与することができる層である。屈折率調整層は、例えば、適宜選択された樹脂、及び場合によりさらに顔料を含有する樹脂層であってもよいし、金属の薄膜であってもよい。 The refractive index adjusting layer is a layer having a function of adjusting the refractive index, has a refractive index different from the layer containing the polyamideimide resin A in the film of the present invention, and gives a predetermined refractive index to the film of the present invention. It is a layer that can. The refractive index adjustment layer may be, for example, an appropriately selected resin, and optionally a resin layer further containing a pigment, or may be a metal thin film.
 屈折率を調整する顔料としては、例えば、酸化珪素、酸化アルミニウム、酸化アンチモン、酸化錫、酸化チタン、酸化ジルコニウム及び酸化タンタルが挙げられる。顔料の平均一次粒子径は、0.1μm以下であってもよい。顔料の平均一次粒子径を0.1μm以下とすることにより、屈折率調整層を透過する光の乱反射を防止し、透明度の低下を防止することができる。 Examples of the pigment for adjusting the refractive index include silicon oxide, aluminum oxide, antimony oxide, tin oxide, titanium oxide, zirconium oxide and tantalum oxide. The average primary particle diameter of the pigment may be 0.1 μm or less. By setting the average primary particle diameter of the pigment to 0.1 μm or less, irregular reflection of light transmitted through the refractive index adjusting layer can be prevented, and a decrease in transparency can be prevented.
 屈折率調整層に用いられる金属としては、例えば、酸化チタン、酸化タンタル、酸化ジルコニウム、酸化亜鉛、酸化錫、酸化ケイ素、酸化インジウム、酸窒化チタン、窒化チタン、酸窒化ケイ素、窒化ケイ素等の金属酸化物又は金属窒化物が挙げられる。 Examples of the metal used for the refractive index adjustment layer include metals such as titanium oxide, tantalum oxide, zirconium oxide, zinc oxide, tin oxide, silicon oxide, indium oxide, titanium oxynitride, titanium nitride, silicon oxynitride, and silicon nitride. Oxides or metal nitrides may be mentioned.
 本発明のフィルムは、例えば、画像表示装置の前面板、特にフレキシブルディスプレイの前面板(ウィンドウフィルム)として有用な光学フィルムである。本発明のフィルムは、画像表示装置、特にフレキシブルディスプレイの視認側表面に前面板として配置することができる。この前面板は、フレキシブルディスプレイ内の画像表示素子を保護する機能を有する。 The film of the present invention is an optical film useful as, for example, a front plate of an image display device, particularly a front plate (window film) of a flexible display. The film of this invention can be arrange | positioned as a front plate on the visual recognition side surface of an image display apparatus, especially a flexible display. The front plate has a function of protecting the image display element in the flexible display.
 画像表示装置としては、テレビ、スマートフォン、携帯電話、カーナビゲーション、タブレットPC、携帯ゲーム機、電子ペーパー、インジケーター、掲示板、時計、及びスマートウォッチ等のウェアラブルデバイス等が挙げられる。フレキシブルディスプレイとしては、フレキシブル特性を有する、上記のような画像表示装置が挙げられる。 Examples of the image display device include wearable devices such as a television, a smartphone, a mobile phone, a car navigation system, a tablet PC, a portable game machine, electronic paper, an indicator, a bulletin board, a clock, and a smart watch. Examples of the flexible display include the above-described image display device having flexible characteristics.
 以下、実施例により本発明をさらに詳細に説明する。例中の「%」及び「部」は、特記ない限り、質量%及び質量部を意味する。まず評価方法について説明する。 Hereinafter, the present invention will be described in more detail with reference to examples. Unless otherwise specified, “%” and “part” in the examples mean mass% and part by mass. First, the evaluation method will be described.
<重量平均分子量(Mw)の測定>
 ポリアミドイミド樹脂の重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(GPC)測定により、標準ポリスチレン換算によって求めた。具体的な測定条件は以下のとおりであった。
(1)前処理方法
 得られたポリアミドイミド樹脂にDMF溶離液(10mM臭化リチウム溶液)を濃度2mg/mLとなるように加え、80℃にて30分間撹拌しながら加熱し、冷却後、目開き0.45μmのメンブランフィルターを用いてろ過して得られた溶液を測定溶液とした。
(2)測定条件
 カラム:TSKgel SuperAWM-H×2+SuperAW2500×1(6.0mm I.D.×150mm×3本)
 (いずれも東ソー(株)製)
 溶離液:DMF(10mMの臭化リチウム添加)
 流量:1.0mL/min.
 検出器:RI検出器
 カラム温度:40℃
 注入量:100μL
 分子量標準:標準ポリスチレン
<Measurement of weight average molecular weight (Mw)>
The weight average molecular weight (Mw) of the polyamideimide resin was determined by standard polystyrene conversion by gel permeation chromatography (GPC) measurement. Specific measurement conditions were as follows.
(1) Pretreatment method A DMF eluent (10 mM lithium bromide solution) is added to the obtained polyamideimide resin so as to have a concentration of 2 mg / mL, and the mixture is heated at 80 ° C. with stirring for 30 minutes. A solution obtained by filtration using an open 0.45 μm membrane filter was used as a measurement solution.
(2) Measurement conditions Column: TSKgel SuperAWM-H × 2 + SuperAW2500 × 1 (6.0mm ID × 150mm × 3)
(Both manufactured by Tosoh Corporation)
Eluent: DMF (10 mM lithium bromide added)
Flow rate: 1.0 mL / min.
Detector: RI detector Column temperature: 40 ° C
Injection volume: 100 μL
Molecular weight standard: Standard polystyrene
<ガラス転移温度(Tg)の測定>
 TA Instrument社製DMA Q800を用い、次のような試料及び条件下で測定して、損失弾性率と保存弾性率の値の比であるtanδ曲線を得た。tanδ曲線のピークの最頂点から、ポリアミドイミド樹脂のTgを算出した。
 試料(フィルム):長さ5-15mm、幅5mm
 実験モード:DMA Multi-Frequency-Strain
 実験モード詳細条件:
(1)Clamp:Tension:Film
(2)Amplitude:5μm
(3)Frequncy:10Hz(全温度区間で変動なし)
(4)Preload Force:0.01N
(5)Force Track:125N
 温度条件:(1)昇温範囲:常温~400℃、(2)昇温速度:5℃/分
 主要収集データ:(1)保存弾性率(Storage modulus、E')、(2)損失弾性率(Loss modulus、E")、(3)tanδ(E"/E')
<Measurement of glass transition temperature (Tg)>
Using a TA Instrument DMA Q800, measurement was performed under the following samples and conditions to obtain a tan δ curve, which is the ratio of the loss elastic modulus to the storage elastic modulus. The Tg of the polyamideimide resin was calculated from the peak of the tan δ curve.
Sample (film): length 5-15mm, width 5mm
Experiment mode: DMA Multi-Frequency-Strain
Detailed experimental mode conditions:
(1) Clamp: Tension: Film
(2) Amplitude: 5 μm
(3) Frequency: 10 Hz (no fluctuation in all temperature sections)
(4) Preload Force: 0.01N
(5) Force Track: 125N
Temperature conditions: (1) Temperature rise range: normal temperature to 400 ° C, (2) Temperature rise rate: 5 ° C / min Main data collected: (1) Storage modulus (E '), (2) Loss modulus (Loss modulus, E "), (3) tan δ (E" / E ')
<イミド化率の測定>
 実施例及び比較例で使用したポリイミド樹脂及びポリアミドイミド樹脂のイミド化率は、NMRにより測定し、式(10)に示した部分構造に由来するシグナルを用いて算出した。測定条件及び得られた結果からイミド化率を算出する方法は次の通りである。
Figure JPOXMLDOC01-appb-C000051
(測定試料の調製方法)
ポリアミドイミド樹脂B:
 溶剤を少なくとも含む樹脂組成物(ワニス)に大過剰量のメタノールを加えて再沈殿法により析出・乾燥させて得た樹脂を、重水素化ジメチルスルホキシド(DMSO-d6)に溶解させて2質量%溶液としたものを測定試料とした。
ポリアミドイミド樹脂A:
 樹脂を含むフィルムを重水素化ジメチルスルホキシド(DMSO-d6)に溶解させて2質量%溶液としたものを測定試料とした。
(NMRの測定条件)
測定装置:Bruker社製600MHzNMR装置AVANCE600
試料温度:303K
測定手法:1H-NMR,HSQC
(ポリイミド樹脂のイミド化率の算出方法)
 ポリイミド樹脂を含む溶液を測定試料として得られたH-NMRスペクトルにおいて、式(10)中のプロトン(A)に由来するシグナルの積分値をInt、プロトン(B)に由来するシグナルの積分値をIntとした。これらの値から、以下の式(NMR-1)によりイミド化率(%)を求めた。
Figure JPOXMLDOC01-appb-M000052
(ポリアミドイミド樹脂のイミド化率の算出方法)
 ポリイミド樹脂を含む溶液を測定試料として得られたHSQCスペクトルにおいて、式(10XXX)中のプロトン(C)に由来するシグナルの積分値をInt、プロトン(D)及びプロトン(E)に由来するシグナルの積分値の平均値をIntDEとした。これらの値から、以下の式(NMR-2)によりβ値を求めた。
Figure JPOXMLDOC01-appb-M000053
 次に、複数のポリイミド樹脂について、式(NMR-2)によるβ値及び式(NMR-1)によるイミド化率(%)を求め、この結果から以下の相関式(NMR-3)を得た。
Figure JPOXMLDOC01-appb-M000054
 そして、ポリアミドイミド樹脂を含む溶液を測定試料として得られたHSQCスペクトルにおいて、上記と同様にして式(NMR-2)によりβ値を求めた。このβ値を上記の相関式(NMR-3)へ代入することにより、ポリアミドイミド樹脂のイミド化率(%)を得た。
<Measurement of imidization ratio>
The imidization ratios of the polyimide resin and polyamideimide resin used in Examples and Comparative Examples were measured by NMR and calculated using signals derived from the partial structure shown in Formula (10). The method for calculating the imidization rate from the measurement conditions and the obtained results is as follows.
Figure JPOXMLDOC01-appb-C000051
(Measurement sample preparation method)
Polyamideimide resin B:
A resin composition obtained by adding a large excess amount of methanol to a resin composition (varnish) containing at least a solvent and precipitating and drying by reprecipitation is dissolved in deuterated dimethyl sulfoxide (DMSO-d6) to obtain 2% by mass. A solution was used as a measurement sample.
Polyamideimide resin A:
A film containing the resin was dissolved in deuterated dimethyl sulfoxide (DMSO-d6) to give a 2% by mass solution, which was used as a measurement sample.
(NMR measurement conditions)
Measuring apparatus: 600 MHz NMR apparatus AVANCE600 manufactured by Bruker
Sample temperature: 303K
Measuring method: 1H-NMR, HSQC
(Calculation method of imidization ratio of polyimide resin)
In the 1 H-NMR spectrum obtained using the solution containing the polyimide resin as the measurement sample, the integral value of the signal derived from the proton (A) in the formula (10) is represented by Int A and the integral of the signal derived from the proton (B). The value was Int B. From these values, the imidization ratio (%) was determined by the following formula (NMR-1).
Figure JPOXMLDOC01-appb-M000052
(Calculation method of imidization ratio of polyamide-imide resin)
In the HSQC spectrum obtained using a solution containing a polyimide resin as a measurement sample, the integral value of the signal derived from the proton (C) in the formula (10XXX) is the signal derived from Int C , proton (D), and proton (E). The average value of the integrated values of was defined as Int DE . From these values, the β value was determined by the following formula (NMR-2).
Figure JPOXMLDOC01-appb-M000053
Next, for a plurality of polyimide resins, the β value according to the formula (NMR-2) and the imidization ratio (%) according to the formula (NMR-1) were obtained, and the following correlation formula (NMR-3) was obtained from the results. .
Figure JPOXMLDOC01-appb-M000054
Then, in the HSQC spectrum obtained using the solution containing the polyamideimide resin as a measurement sample, the β value was determined by the formula (NMR-2) in the same manner as described above. By substituting this β value into the above correlation equation (NMR-3), the imidization ratio (%) of the polyamideimide resin was obtained.
<全光線透過率(Tt)の測定>
 得られたポリアミドイミドフィルムの全光線透過率Ttは、JIS K7105:1981に準拠して、スガ試験機(株)製の全自動直読ヘーズコンピューターHGM-2DPにより測定した。
<Measurement of total light transmittance (Tt)>
The total light transmittance Tt of the obtained polyamideimide film was measured by a fully automatic direct reading haze computer HGM-2DP manufactured by Suga Test Instruments Co., Ltd. according to JIS K7105: 1981.
<黄色度(YI値)の測定>
 得られたポリアミドイミドフィルムの黄色度(Yellow Index:YI値)は、JIS K 7373:2006に準拠して、日本分光(株)製の紫外可視近赤外分光光度計V-670を用いて測定した。サンプルがない状態でバックグランド測定を行った後、サンプルをサンプルホルダーにセットして、300~800nmの光に対する透過率測定を行い、3刺激値(X、Y、Z)を求めた。YI値は、下記の式に基づいて算出した。
Figure JPOXMLDOC01-appb-M000055
<Measurement of yellowness (YI value)>
The yellowness (Yellow Index: YI value) of the obtained polyamideimide film is measured using an ultraviolet-visible near-infrared spectrophotometer V-670 manufactured by JASCO Corporation in accordance with JIS K 7373: 2006. did. After performing background measurement in the absence of a sample, the sample was set in a sample holder, and the transmittance for light of 300 to 800 nm was measured to obtain tristimulus values (X, Y, Z). The YI value was calculated based on the following formula.
Figure JPOXMLDOC01-appb-M000055
<表面硬度の測定>
 得られたポリアミドイミドフィルムの表面硬度として、JIS K5600-5-4:1999に準拠して、サンプル表面の鉛筆硬度を測定した。荷重100g、走査速度60mm/分の条件で測定を行い、光量4000ルクスの照度条件下で行い傷の有無の評価を行い、鉛筆硬度を決定した。
<Measurement of surface hardness>
As the surface hardness of the obtained polyamideimide film, the pencil hardness of the sample surface was measured according to JIS K5600-5-4: 1999. Measurement was performed under the conditions of a load of 100 g and a scanning speed of 60 mm / min, and under the illuminance condition of a light amount of 4000 lux, the presence or absence of scratches was evaluated, and the pencil hardness was determined.
<弾性率の測定>
 得られたポリアミドイミドフィルムの弾性率は、(株)島津製作所製オートグラフAG-ISを用いて測定した。10mm幅に切り出したフィルムを試験片とし、チャック間距離500mm、引張速度20mm/minの条件でS-S曲線を測定し、その傾きから弾性率を算出した。
<Measurement of elastic modulus>
The elastic modulus of the obtained polyamideimide film was measured using an autograph AG-IS manufactured by Shimadzu Corporation. Using a film cut into a width of 10 mm as a test piece, an SS curve was measured under the conditions of a distance between chucks of 500 mm and a tensile speed of 20 mm / min, and the elastic modulus was calculated from the slope.
<屈曲耐性の測定>
 得られたポリアミドイミドフィルムの屈曲耐性として、(株)東洋精機製作所製MIT耐折疲労試験機(型式0530)を用いて往復折り曲げ回数を測定した。厚み50μm、10mm幅に切り出したフィルムを試験片とし、R=1mm、135°、加重0.75kgf、速度175cpmの条件でフィルムが破断するまでの往復折り曲げ回数を測定した。
<Measurement of bending resistance>
As the bending resistance of the obtained polyamideimide film, the number of reciprocal bendings was measured using an MIT folding fatigue tester (model 0530) manufactured by Toyo Seiki Seisakusho. A film cut out to a thickness of 50 μm and a width of 10 mm was used as a test piece, and the number of reciprocal bendings until the film was broken was measured under the conditions of R = 1 mm, 135 °, load 0.75 kgf, and speed 175 cpm.
[実施例1]
 窒素雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)52g(162.38mmol)及び水分量を500ppmに調整したN,N-ジメチルアセトアミド(DMAc)693.8gを加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)28.90g(65.05mmol)と3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)9.57g(32.52mmol)を添加し、室温で3時間撹拌した。その後、テレフタロイルクロリド(TPC)13.21g(63.10mmol)をフラスコに加え、室温で1時間撹拌した。次いで、フラスコにピリジン4.99g(63.10mmol)と無水酢酸21.91g(214.66mmol)とを加え、室温で30分間撹拌した後、オイルバスを用いて70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂を得た。
 得られたポリアミドイミド樹脂に、濃度が15質量%となるようにDMAcを加え、ポリアミドイミドワニスを作製した。得られたポリアミドイミドワニスをポリエステル基材(東洋紡(株)製、商品名「A4100」)の平滑面上に自立膜の膜厚が55μmとなるようにアプリケーターを用いて塗工し、50℃30分間、次いで140℃15分間で乾燥し、自立膜を得た。自立膜を金枠に固定し、さらに大気下で300℃30分間乾燥し、膜厚50μmのポリアミドイミドフィルムを得た。
[Example 1]
In a 1 L separable flask equipped with a stirring blade under a nitrogen atmosphere, N, N-dimethylacetamide with 52 g (162.38 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and a water content adjusted to 500 ppm (DMAc) 693.8 g was added, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 28.90 g (65.05 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride were added to the flask. (BPDA) 9.57g (32.52mmol) was added, and it stirred at room temperature for 3 hours. Thereafter, 13.21 g (63.10 mmol) of terephthaloyl chloride (TPC) was added to the flask and stirred at room temperature for 1 hour. Next, 4.99 g (63.10 mmol) of pyridine and 21.91 g (214.66 mmol) of acetic anhydride were added to the flask, and the mixture was stirred at room temperature for 30 minutes, and then heated to 70 ° C. using an oil bath. Stir for hours to obtain a reaction solution.
The obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of a thread, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamideimide resin.
DMAc was added to the obtained polyamideimide resin so that the concentration was 15% by mass to prepare a polyamideimide varnish. The obtained polyamideimide varnish was coated on a smooth surface of a polyester base material (trade name “A4100”, manufactured by Toyobo Co., Ltd.) using an applicator so that the film thickness of the self-supporting film became 55 μm, and the temperature was 50 ° C. And then dried at 140 ° C. for 15 minutes to obtain a self-supporting film. The self-supporting film was fixed to a metal frame, and further dried at 300 ° C. for 30 minutes in the air to obtain a polyamideimide film having a film thickness of 50 μm.
[実施例2]
 実施例1のDMAcの水分量を100ppmに調整したものへ変更し、70℃昇温後の加熱時間を1時間に変更してポリアミドイミド樹脂を得たこと以外は実施例1と同様にして、ポリアミドイミドフィルムを得た。
[Example 2]
Except for changing the moisture content of DMAc of Example 1 to 100 ppm and changing the heating time after heating at 70 ° C. to 1 hour to obtain a polyamideimide resin, in the same manner as in Example 1, A polyamideimide film was obtained.
[実施例3]
 窒素雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)52g(162.38mmol)及び水分量を500ppmに調整したN,N-ジメチルアセトアミド(DMAc)657.63gを加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)21.67g(48.79mmol)と3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)4.78g(16.26mmol)を添加し、室温で3時間撹拌した。その後、テレフタロイルクロリド(TPC)19.81g(97.57mmol)をフラスコに加え、室温で1時間撹拌した。次いで、フラスコにピリジン7.49g(94.65mmol)と無水酢酸14.61g(143.11mmol)とを加え、室温で30分間撹拌した後、オイルバスを用いて70℃に昇温し、さらに5時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂を得た。
 得られたポリアミドイミド樹脂に、濃度が15質量%となるようにDMAcを加え、ポリアミドイミドワニスを作製した。得られたポリアミドイミドワニスをポリエステル基材(東洋紡(株)製、商品名「A4100」)の平滑面上に自立膜の膜厚が55μmとなるようにアプリケーターを用いて塗工し、50℃30分間、次いで140℃15分間で乾燥し、自立膜を得た。自立膜を金枠に固定し、さらに大気下で300℃30分間乾燥し、膜厚50μmのポリアミドイミドフィルムを得た。
[Example 3]
In a 1 L separable flask equipped with a stirring blade under a nitrogen atmosphere, 52 g (162.38 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and N, N-dimethylacetamide having a water content adjusted to 500 ppm (DMAc) 657.63 g was added, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 21.67 g (48.79 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride were added to the flask. (BPDA) 4.78 g (16.26 mmol) was added, and the mixture was stirred at room temperature for 3 hours. Thereafter, 19.81 g (97.57 mmol) of terephthaloyl chloride (TPC) was added to the flask and stirred at room temperature for 1 hour. Next, 7.49 g (94.65 mmol) of pyridine and 14.61 g (143.11 mmol) of acetic anhydride were added to the flask, stirred for 30 minutes at room temperature, then heated to 70 ° C. using an oil bath, Stir for hours to obtain a reaction solution.
The obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of a thread, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamideimide resin.
DMAc was added to the obtained polyamideimide resin so that the concentration was 15% by mass to prepare a polyamideimide varnish. The obtained polyamideimide varnish was coated on a smooth surface of a polyester base material (trade name “A4100”, manufactured by Toyobo Co., Ltd.) using an applicator so that the film thickness of the self-supporting film became 55 μm, and the temperature was 50 ° C. And then dried at 140 ° C. for 15 minutes to obtain a self-supporting film. The self-supporting film was fixed to a metal frame, and further dried at 300 ° C. for 30 minutes in the air to obtain a polyamideimide film having a film thickness of 50 μm.
[実施例4]
 窒素雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)52g(162.38mmol)及び水分量を500ppmに調整したN,N-ジメチルアセトアミド(DMAc)673.93gを加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)28.90g(65.05mmol)を添加し、室温で3時間撹拌した。その後、テレフタロイルクロリド(TPC)19.81g(97.57mmol)をフラスコに加え、室温で1時間撹拌した。次いで、フラスコにピリジン7.49g(94.65mmol)と無水酢酸14.61g(143.11mmol)とを加え、室温で30分間撹拌した後、オイルバスを用いて70℃に昇温し、さらに5時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂を得た。
 得られたポリアミドイミド樹脂に、濃度が15質量%となるようにDMAcを加え、ポリアミドイミドワニスを作製した。得られたポリアミドイミドワニスをポリエステル基材(東洋紡(株)製、商品名「A4100」)の平滑面上に自立膜の膜厚が55μmとなるようにアプリケーターを用いて塗工し、50℃30分間、次いで140℃15分間で乾燥し、自立膜を得た。自立膜を金枠に固定し、さらに大気下で230℃30分間乾燥し、膜厚50μmのポリアミドイミドフィルムを得た。
[Example 4]
In a 1 L separable flask equipped with a stirring blade under a nitrogen atmosphere, 52 g (162.38 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and N, N-dimethylacetamide having a water content adjusted to 500 ppm (DMAc) 673.93 g was added, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 28.90 g (65.05 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) was added to the flask and stirred at room temperature for 3 hours. Thereafter, 19.81 g (97.57 mmol) of terephthaloyl chloride (TPC) was added to the flask and stirred at room temperature for 1 hour. Next, 7.49 g (94.65 mmol) of pyridine and 14.61 g (143.11 mmol) of acetic anhydride were added to the flask, stirred for 30 minutes at room temperature, then heated to 70 ° C. using an oil bath, Stir for hours to obtain a reaction solution.
The obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of a thread, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamideimide resin.
DMAc was added to the obtained polyamideimide resin so that the concentration was 15% by mass to prepare a polyamideimide varnish. The obtained polyamideimide varnish was coated on a smooth surface of a polyester base material (trade name “A4100”, manufactured by Toyobo Co., Ltd.) using an applicator so that the film thickness of the self-supporting film became 55 μm, and the temperature was 50 ° C. And then dried at 140 ° C. for 15 minutes to obtain a self-supporting film. The self-supporting film was fixed to a metal frame and further dried at 230 ° C. for 30 minutes in the air to obtain a polyamideimide film having a thickness of 50 μm.
[実施例5]
 窒素雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)52g(162.38mmol)及び水分量を500ppmに調整したN,N-ジメチルアセトアミド(DMAc)734.10gを加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)28.90g(65.05mmol)を添加し、室温で3時間撹拌した。その後、4,4‘-オキシビス(ベンゾイルクロリド)(OBBC)28.80g(97.57mmol)をフラスコに加え、室温で1時間撹拌した。次いで、フラスコにピリジン7.49g(94.65mmol)と無水酢酸14.61g(143.11mmol)とを加え、室温で30分間撹拌した後、オイルバスを用いて70℃に昇温し、さらに5時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂を得た。
 得られたポリアミドイミド樹脂に、濃度が15質量%となるようにDMAcを加え、ポリアミドイミドワニスを作製した。得られたポリアミドイミドワニスをポリエステル基材(東洋紡(株)製、商品名「A4100」)の平滑面上に自立膜の膜厚が55μmとなるようにアプリケーターを用いて塗工し、50℃30分間、次いで140℃15分間で乾燥し、自立膜を得た。自立膜を金枠に固定し、さらに大気下で300℃30分間乾燥し、膜厚50μmのポリアミドイミドフィルムを得た。
[Example 5]
In a 1 L separable flask equipped with a stirring blade under a nitrogen atmosphere, 52 g (162.38 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and N, N-dimethylacetamide having a water content adjusted to 500 ppm (DMAc) 734.10 g was added, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 28.90 g (65.05 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) was added to the flask and stirred at room temperature for 3 hours. Thereafter, 28.80 g (97.57 mmol) of 4,4′-oxybis (benzoyl chloride) (OBBC) was added to the flask and stirred at room temperature for 1 hour. Next, 7.49 g (94.65 mmol) of pyridine and 14.61 g (143.11 mmol) of acetic anhydride were added to the flask, stirred for 30 minutes at room temperature, then heated to 70 ° C. using an oil bath, Stir for hours to obtain a reaction solution.
The obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of a thread, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamideimide resin.
DMAc was added to the obtained polyamideimide resin so that the concentration was 15% by mass to prepare a polyamideimide varnish. The obtained polyamideimide varnish was coated on a smooth surface of a polyester base material (trade name “A4100”, manufactured by Toyobo Co., Ltd.) using an applicator so that the film thickness of the self-supporting film became 55 μm, and the temperature was 50 ° C. And then dried at 140 ° C. for 15 minutes to obtain a self-supporting film. The self-supporting film was fixed to a metal frame, and further dried at 300 ° C. for 30 minutes in the air to obtain a polyamideimide film having a film thickness of 50 μm.
[実施例6]
 窒素雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)52g(162.38mmol)及び水分量を500ppmに調整したN,N-ジメチルアセトアミド(DMAc)734.10gを加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)28.90g(65.05mmol)を添加し、室温で3時間撹拌した。その後、4,4‘-オキシビス(ベンゾイルクロリド)(OBBC)28.80g(97.57mmol)をフラスコに加え、室温で1時間撹拌した。次いで、フラスコにピリジン7.49g(94.65mmol)と無水酢酸26.56g(260.2mmol)とを加え、室温で30分間撹拌した後、オイルバスを用いて70℃に昇温し、さらに5時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂を得た。
得られたポリアミドイミド樹脂に、濃度が15質量%となるようにDMAcを加え、ポリアミドイミドワニスを作製した。得られたポリアミドイミドワニスをポリエステル基材(東洋紡(株)製、商品名「A4100」)の平滑面上に自立膜の膜厚が55μmとなるようにアプリケーターを用いて塗工し、50℃30分間、次いで140℃15分間で乾燥し、自立膜を得た。自立膜を金枠に固定し、さらに大気下で300℃30分間乾燥し、膜厚50μmのポリアミドイミドフィルムを得た。
[Example 6]
In a 1 L separable flask equipped with a stirring blade under a nitrogen atmosphere, 52 g (162.38 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and N, N-dimethylacetamide having a water content adjusted to 500 ppm (DMAc) 734.10 g was added, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 28.90 g (65.05 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) was added to the flask and stirred at room temperature for 3 hours. Thereafter, 28.80 g (97.57 mmol) of 4,4′-oxybis (benzoyl chloride) (OBBC) was added to the flask and stirred at room temperature for 1 hour. Next, 7.49 g (94.65 mmol) of pyridine and 26.56 g (260.2 mmol) of acetic anhydride were added to the flask, and the mixture was stirred at room temperature for 30 minutes, and then heated to 70 ° C. using an oil bath. Stir for hours to obtain a reaction solution.
The obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of a thread, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamideimide resin.
DMAc was added to the obtained polyamideimide resin so that the concentration was 15% by mass to prepare a polyamideimide varnish. The obtained polyamideimide varnish was coated on a smooth surface of a polyester base material (trade name “A4100”, manufactured by Toyobo Co., Ltd.) using an applicator so that the film thickness of the self-supporting film became 55 μm, and the temperature was 50 ° C. And then dried at 140 ° C. for 15 minutes to obtain a self-supporting film. The self-supporting film was fixed to a metal frame, and further dried at 300 ° C. for 30 minutes in the air to obtain a polyamideimide film having a film thickness of 50 μm.
[実施例7]
 窒素雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)52g(162.38mmol)及び水分量を500ppmに調整したN,N-ジメチルアセトアミド(DMAc)667.75gを加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコにテレフタロイルクロリド(TPC)4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)21.67g(48.79mmol)を添加し、室温で3時間撹拌した。その後、4,4‘-オキシビス(ベンゾイルクロリド)(OBBC)9.60g(32.52mmol)とテレフタロイルクロリド(TPC)16.51g(81.31mmol)をフラスコに加え、室温で1時間撹拌した。次いで、フラスコにピリジン8.73g(110.42mmol)と無水酢酸10.96g(107.33mmol)とを加え、室温で30分間撹拌した後、オイルバスを用いて70℃に昇温し、さらに5時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂を得た。
 得られたポリアミドイミド樹脂に、濃度が15質量%となるようにDMAcを加え、ポリアミドイミドワニスを作製した。得られたポリアミドイミドワニスをポリエステル基材(東洋紡(株)製、商品名「A4100」)の平滑面上に自立膜の膜厚が55μmとなるようにアプリケーターを用いて塗工し、50℃30分間、次いで140℃15分間で乾燥し、自立膜を得た。自立膜を金枠に固定し、さらに大気下で300℃30分間乾燥し、膜厚50μmのポリアミドイミドフィルムを得た。
[Example 7]
In a 1 L separable flask equipped with a stirring blade under a nitrogen atmosphere, 52 g (162.38 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and N, N-dimethylacetamide having a water content adjusted to 500 ppm (DMAc) 667.75 g was added, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 21.67 g (48.79 mmol) of terephthaloyl chloride (TPC) 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) was added to the flask and stirred at room temperature for 3 hours. Thereafter, 9.60 g (32.52 mmol) of 4,4′-oxybis (benzoyl chloride) (OBBC) and 16.51 g (81.31 mmol) of terephthaloyl chloride (TPC) were added to the flask and stirred at room temperature for 1 hour. . Next, 8.73 g (110.42 mmol) of pyridine and 10.96 g (107.33 mmol) of acetic anhydride were added to the flask. After stirring for 30 minutes at room temperature, the temperature was raised to 70 ° C. using an oil bath. Stir for hours to obtain a reaction solution.
The obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of a thread, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamideimide resin.
DMAc was added to the obtained polyamideimide resin so that the concentration was 15% by mass to prepare a polyamideimide varnish. The obtained polyamideimide varnish was coated on a smooth surface of a polyester base material (trade name “A4100”, manufactured by Toyobo Co., Ltd.) using an applicator so that the film thickness of the self-supporting film became 55 μm, and the temperature was 50 ° C. And then dried at 140 ° C. for 15 minutes to obtain a self-supporting film. The self-supporting film was fixed to a metal frame, and further dried at 300 ° C. for 30 minutes in the air to obtain a polyamideimide film having a film thickness of 50 μm.
[比較例1]
 実施例1において70℃昇温後の攪拌時間を1時間に変更してポリアミドイミド樹脂を得たこと以外は実施例1と同様にして、ポリアミドイミドフィルムを得た。
[Comparative Example 1]
A polyamideimide film was obtained in the same manner as in Example 1 except that the polyamideimide resin was obtained by changing the stirring time after heating at 70 ° C. to 1 hour in Example 1.
[比較例2]
 実施例3において70℃昇温後の攪拌時間を1時間に変更してポリアミドイミド樹脂を得たこと以外は実施例3と同様にして、ポリアミドイミドフィルムを得た。
[Comparative Example 2]
A polyamideimide film was obtained in the same manner as in Example 3 except that the polyamideimide resin was obtained by changing the stirring time after heating at 70 ° C. to 1 hour in Example 3.
[比較例3]
 窒素雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)52g(162.38mmol)及び水分量を500ppmに調整したN,N-ジメチルアセトアミド(DMAc)831.46gを加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)72.24g(162.62mmol)を添加し、室温で3時間撹拌した。次いで、フラスコにピリジン6.43g(81.31mmol)と無水酢酸36.52g(357.77mmol)とを加え、室温で30分間撹拌した後、オイルバスを用いて70℃に昇温し、さらに1時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリイミド樹脂を得た。
 得られたポリイミド樹脂に、濃度が15質量%となるようにDMAcを加え、ポリイミドワニスを作製した。得られたポリイミドワニスをポリエステル基材(東洋紡(株)製、商品名「A4100」)の平滑面上に自立膜の膜厚が55μmとなるようにアプリケーターを用いて塗工し、50℃30分間、次いで140℃15分間で乾燥し、自立膜を得た。自立膜を金枠に固定し、さらに大気下で300℃30分間乾燥し、膜厚50μmのポリイミドフィルムを得た。
[Comparative Example 3]
In a 1 L separable flask equipped with a stirring blade under a nitrogen atmosphere, 52 g (162.38 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and N, N-dimethylacetamide having a water content adjusted to 500 ppm (DMAc) 831.46 g was added, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 72.24 g (162.62 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) was added to the flask and stirred at room temperature for 3 hours. Next, 6.43 g (81.31 mmol) of pyridine and 36.52 g (357.77 mmol) of acetic anhydride were added to the flask, stirred for 30 minutes at room temperature, then heated to 70 ° C. using an oil bath, Stir for hours to obtain a reaction solution.
The obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of a thread, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyimide resin.
DMAc was added to the obtained polyimide resin so that a density | concentration might be 15 mass%, and the polyimide varnish was produced. The obtained polyimide varnish was applied on a smooth surface of a polyester base material (trade name “A4100” manufactured by Toyobo Co., Ltd.) using an applicator so that the film thickness of the free-standing film was 55 μm, and 50 ° C. for 30 minutes. Then, it was dried at 140 ° C. for 15 minutes to obtain a self-supporting film. The self-supporting film was fixed to a metal frame, and further dried at 300 ° C. for 30 minutes in the air to obtain a polyimide film having a thickness of 50 μm.
[比較例4]
 窒素雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)52g(162.38mmol)及び水分量を500ppmに調整したN,N-ジメチルアセトアミド(DMAc)733.51gを加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)28.90g(65.05mmol)と3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)28.71g(97.57mmol)を添加し、室温で3時間撹拌した。次いで、フラスコにピリジン6.43g(81.31mmol)と無水酢酸36.52g(357.77mmol)とを加え、室温で30分間撹拌した後、オイルバスを用いて70℃に昇温し、さらに1時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリイミド樹脂を得た。
 得られたポリイミド樹脂に、濃度が15質量%となるようにDMAcを加え、ポリイミドワニスを作製した。得られたポリイミドワニスをポリエステル基材(東洋紡(株)製、商品名「A4100」)の平滑面上に自立膜の膜厚が55μmとなるようにアプリケーターを用いて塗工し、50℃30分間、次いで140℃15分間で乾燥し、自立膜を得た。自立膜を金枠に固定し、さらに大気下で300℃30分間乾燥し、膜厚50μmのポリイミドフィルムを得た。
[Comparative Example 4]
In a 1 L separable flask equipped with a stirring blade under a nitrogen atmosphere, 52 g (162.38 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and N, N-dimethylacetamide having a water content adjusted to 500 ppm (DMAc) 733.51 g was added, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 28.90 g (65.05 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride were added to the flask. (BPDA) 28.71g (97.57mmol) was added, and it stirred at room temperature for 3 hours. Next, 6.43 g (81.31 mmol) of pyridine and 36.52 g (357.77 mmol) of acetic anhydride were added to the flask, stirred for 30 minutes at room temperature, then heated to 70 ° C. using an oil bath, Stir for hours to obtain a reaction solution.
The obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of a thread, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyimide resin.
DMAc was added to the obtained polyimide resin so that a density | concentration might be 15 mass%, and the polyimide varnish was produced. The obtained polyimide varnish was applied on a smooth surface of a polyester base material (trade name “A4100” manufactured by Toyobo Co., Ltd.) using an applicator so that the film thickness of the free-standing film was 55 μm, and 50 ° C. for 30 minutes. Then, it was dried at 140 ° C. for 15 minutes to obtain a self-supporting film. The self-supporting film was fixed to a metal frame, and further dried at 300 ° C. for 30 minutes in the air to obtain a polyimide film having a thickness of 50 μm.
[比較例5]
 実施例1においてDMAcの水分量を1000ppmに変更してポリアミドイミド樹脂を得たこと以外は実施例1と同様にして、ポリアミドイミドフィルムを得た。
[Comparative Example 5]
A polyamideimide film was obtained in the same manner as in Example 1 except that in Example 1, the moisture content of DMAc was changed to 1000 ppm to obtain a polyamideimide resin.
[比較例6]
 実施例1においてDMAcの水分量を1700ppmに、70℃昇温後の攪拌時間を5時間に変更してポリアミドイミド樹脂を得たこと以外は実施例1と同様にして、ポリアミドイミドフィルムを得た。
[Comparative Example 6]
A polyamideimide film was obtained in the same manner as in Example 1 except that the moisture content of DMAc was changed to 1700 ppm and the stirring time after heating at 70 ° C. was changed to 5 hours to obtain a polyamideimide resin. .
[比較例7]
 実施例5において70℃昇温後の攪拌時間を30分に変更し、ポリアミドイミド樹脂を得たこと以外は実施例5と同様にして、ポリアミドイミドフィルムを得た。
[Comparative Example 7]
In Example 5, a polyamideimide film was obtained in the same manner as in Example 5 except that the stirring time after heating at 70 ° C. was changed to 30 minutes to obtain a polyamideimide resin.
[比較例8]
 実施例7において70℃昇温後の攪拌時間を30分に変更し、ポリアミドイミド樹脂を得たこと以外は実施例7と同様にして、ポリアミドイミドフィルムを得た。
[Comparative Example 8]
In Example 7, the stirring time after heating at 70 ° C. was changed to 30 minutes, and a polyamideimide film was obtained in the same manner as in Example 7 except that a polyamideimide resin was obtained.
[実施例8]
 窒素ガス雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)45g(140.5mmol)及び水分量を200ppmに調製したN,N-ジメチルアセトアミド(DMAc)600.9gを加え、室温で撹拌しながらTFMBをDMAcに溶解させた。次に、フラスコに3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)4.14g(14.1mmol)を加え、室温で2.5時間撹拌した後、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)25.01g(56.3mmol)を加え、室温で15時間撹拌した。さらに、4,4‘-オキシビス(ベンゾイルクロリド)(OBBC)4.15g(14.1mmol)及びテレフタロイルクロリド(TPC)11.43g(56.3mmol)をフラスコに加え、室温で1時間撹拌した。次いで、フラスコに無水酢酸21.55g(211.1mmol)と4-ピコリン3.28g(35.2mmol)とを加え、室温で30分間撹拌後、オイルバスを用いて70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却した後、メタノール647g及びイオン交換水180gを加えてポリアミドイミドの沈殿を得た。それをメタノール中に12時間浸漬し、濾過で回収してメタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂を得た。なお、各成分のモル比は表1の通りである。
 得られたポリアミドイミド樹脂に、濃度が15質量%となるようにDMAcを加え、ポリアミドイミドワニスを作製した。得られたポリアミドイミドワニスをポリエステル基材(東洋紡(株)製、商品名「A4100」)の平滑面上に自立膜の膜厚が55μmとなるようにアプリケーターを用いて塗工し、50℃30分間、次いで140℃15分間で乾燥し、自立膜を得た。自立膜を金枠に固定し、さらに大気下で300℃30分間乾燥し、膜厚50μmのポリアミドイミドフィルムを得た。
[Example 8]
In a 1 L separable flask equipped with a stirring blade under a nitrogen gas atmosphere, 45 g (140.5 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and N, N-dimethyl prepared with a water content of 200 ppm were prepared. 600.9 g of acetamide (DMAc) was added, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 4.14 g (14.1 mmol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) was added to the flask, and the mixture was stirred at room temperature for 2.5 hours. -(Hexafluoroisopropylidene) diphthalic dianhydride (6FDA) (25.01 g, 56.3 mmol) was added, and the mixture was stirred at room temperature for 15 hours. Further, 4.15 g (14.1 mmol) of 4,4′-oxybis (benzoyl chloride) (OBBC) and 11.43 g (56.3 mmol) of terephthaloyl chloride (TPC) were added to the flask and stirred at room temperature for 1 hour. . Next, 21.55 g (211.1 mmol) of acetic anhydride and 3.28 g (35.2 mmol) of 4-picoline were added to the flask, stirred at room temperature for 30 minutes, then heated to 70 ° C. using an oil bath, The mixture was stirred for 3 hours to obtain a reaction solution.
After cooling the obtained reaction liquid to room temperature, 647 g of methanol and 180 g of ion-exchanged water were added to obtain a polyamideimide precipitate. It was immersed in methanol for 12 hours, recovered by filtration and washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamideimide resin. The molar ratio of each component is as shown in Table 1.
DMAc was added to the obtained polyamideimide resin so that the concentration was 15% by mass to prepare a polyamideimide varnish. The obtained polyamideimide varnish was coated on a smooth surface of a polyester base material (trade name “A4100”, manufactured by Toyobo Co., Ltd.) using an applicator so that the film thickness of the self-supporting film became 55 μm, and the temperature was 50 ° C. And then dried at 140 ° C. for 15 minutes to obtain a self-supporting film. The self-supporting film was fixed to a metal frame, and further dried at 300 ° C. for 30 minutes in the air to obtain a polyamideimide film having a film thickness of 50 μm.
[実施例9]
 窒素ガス雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)14.67g(45.8mmol)及び水分量を200ppmに調製したN,N-ジメチルアセトアミド(DMAc)233.3gを加え、室温で撹拌しながらTFMBをDMAcに溶解させた。次に、フラスコに4,4’-オキシジフタル酸二無水物(OPDA)4.283g(13.8mmol)を加え、室温で16.5時間撹拌した。その後、4,4‘-オキシビス(ベンゾイルクロリド)(OBBC)1.359g(4.61mmol)及びテレフタロイルクロリド(TPC)5.609g(27.6mmol)をフラスコに加え、室温で1時間撹拌した。次いで、フラスコに無水酢酸4.937g(48.35mmol)と4-ピコリン1.501g(16.12mmol)とを加え、室温で30分間撹拌後、オイルバスを用いて70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却した後、メタノール360g及びイオン交換水170gを加えてポリアミドイミドの沈殿を得た。それをメタノール中に12時間浸漬し、濾過で回収してメタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂を得た。なお、各成分のモル比は表1の通りである。
 実施例8と同様にして、実施例9で得られたポリアミドイミド樹脂から、膜厚50μmのポリアミドイミドフィルムを得た。
[Example 9]
In a 1 L separable flask equipped with a stirring blade under a nitrogen gas atmosphere, 14.67 g (45.8 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and a water content adjusted to 200 ppm were obtained. -233.3 g of dimethylacetamide (DMAc) was added and TFMB was dissolved in DMAc while stirring at room temperature. Next, 4.283 g (13.8 mmol) of 4,4′-oxydiphthalic dianhydride (OPDA) was added to the flask, and the mixture was stirred at room temperature for 16.5 hours. Thereafter, 1.359 g (4.61 mmol) of 4,4′-oxybis (benzoyl chloride) (OBBC) and 5.609 g (27.6 mmol) of terephthaloyl chloride (TPC) were added to the flask and stirred at room temperature for 1 hour. . Next, 4.937 g (48.35 mmol) of acetic anhydride and 1.501 g (16.12 mmol) of 4-picoline were added to the flask, stirred at room temperature for 30 minutes, heated to 70 ° C. using an oil bath, The mixture was stirred for 3 hours to obtain a reaction solution.
After cooling the obtained reaction liquid to room temperature, 360 g of methanol and 170 g of ion-exchanged water were added to obtain a polyamideimide precipitate. It was immersed in methanol for 12 hours, recovered by filtration and washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamideimide resin. The molar ratio of each component is as shown in Table 1.
In the same manner as in Example 8, a polyamideimide film having a thickness of 50 μm was obtained from the polyamideimide resin obtained in Example 9.
[実施例10]
 4,4’-オキシジフタル酸二無水物(OPDA)4.283gに変えて4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)6.140gを、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)14.67g(45.8mmol)に変えてTFMB8.809g(27.5mmol)及び2,2’-ジメチルベンジジン(MB)3.889g(18.3mmol)を用いた以外は、実施例9と同様にして、ポリアミドイミド樹脂を得た。なお、各成分のモル比は表1の通りである。
 実施例8と同様にして、実施例10で得られたポリアミドイミド樹脂から、膜厚50μmのポリアミドイミドフィルムを得た。
[Example 10]
Instead of 4.283 g of 4,4′-oxydiphthalic dianhydride (OPDA), 6.140 g of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) was converted into 2,2′-bis ( Trifluoromethyl) benzidine (TFMB) was changed to 14.67 g (45.8 mmol), but TFMB 8.809 g (27.5 mmol) and 2,2′-dimethylbenzidine (MB) 3.889 g (18.3 mmol) were used. Obtained a polyamideimide resin in the same manner as in Example 9. The molar ratio of each component is as shown in Table 1.
In the same manner as in Example 8, a polyamideimide film having a thickness of 50 μm was obtained from the polyamideimide resin obtained in Example 10.
[実施例11]
 2,2’-ジメチルベンジジン(MB)3.889gに変えて4,4’-ジアミノジフェニルエーテル(ODA)3.670g(18.3mmol)を用いた以外は、実施例9と同様にして、ポリアミドイミド樹脂を得た。なお、各成分のモル比は表1の通りである。
 実施例8と同様にして、実施例11で得られたポリアミドイミド樹脂から、膜厚50μmのポリアミドイミドフィルムを得た。
[Example 11]
Polyamideimide was prepared in the same manner as in Example 9 except that 3.670 g (18.3 mmol) of 4,4′-diaminodiphenyl ether (ODA) was used instead of 3.889 g of 2,2′-dimethylbenzidine (MB). A resin was obtained. The molar ratio of each component is as shown in Table 1.
In the same manner as in Example 8, a polyamideimide film having a thickness of 50 μm was obtained from the polyamideimide resin obtained in Example 11.
 上記の実施例で得たポリアミドイミドワニスに含まれるポリアミドイミド樹脂(B)及び比較例で得たワニスに含まれる樹脂(B)における各構成単位の割合及び合成条件を次の表1に示す。また、ポリアミドイミド樹脂(B)及び樹脂(B)のイミド化率を上記測定方法に従い測定した結果も表1に示す。なお表1中、ポリアミドイミド樹脂(B)及び樹脂(B)のイミド化率を「イミド化率B」、工程(1)を開始する際の溶剤中の水分量を「w[ppm]」、工程(2)における加熱時間を「t[分]」、工程(1)において添加されるテトラカルボン酸二無水物のモル量に対する工程(2)において添加される脱水剤のモル量の割合を「脱水剤添加量」と記載する。ここで、比較例3及び4で得られたポリイミド樹脂Bのイミド化率Bの測定において、樹脂を変更した以外はポリアミドイミド樹脂Bと同様にして、ポリイミド樹脂Bを調製した。 The ratio of each structural unit and the synthesis conditions in the polyamideimide resin (B) contained in the polyamideimide varnish obtained in the above examples and the resin (B) contained in the varnish obtained in the comparative example are shown in Table 1 below. Table 1 also shows the results obtained by measuring the imidization ratio of the polyamideimide resin (B) and the resin (B) according to the measurement method. In Table 1, the imidization rate of the polyamideimide resin (B) and the resin (B) is “imidation rate B”, and the water content in the solvent at the start of the step (1) is “w [ppm]”. The heating time in the step (2) is “t [min]”, and the ratio of the molar amount of the dehydrating agent added in the step (2) to the molar amount of the tetracarboxylic dianhydride added in the step (1) is “ "Dehydrating agent addition amount". Here, in the measurement of the imidization ratio B of the polyimide resin B obtained in Comparative Examples 3 and 4, a polyimide resin B was prepared in the same manner as the polyamideimide resin B except that the resin was changed.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
 上記の実施例で得たポリアミドイミドフィルムに含まれるポリアミドイミド樹脂(A)及び上記の比較例で得たフィルムに含まれる樹脂(A)のイミド化率を上記測定方法に従い測定した結果を、表2に「イミド化率A」として示す。ここで、比較例3及び4で得られたポリイミドフィルムに含まれるポリイミド樹脂Aのイミド化率の測定において、樹脂を変更した以外はポリアミドイミド樹脂Aと同様にして、ポリイミド樹脂Aを調製した。さらに、実施例及び比較例で得たフィルムについて、上記測定方法に従い、鉛筆硬度、黄色度(YI)、全光線透過率(Tt)、弾性率及び屈曲耐性(往復折り曲げ回数)を測定した。得られた結果を表1に示す。なお、ポリアミドイミドフィルムに含まれるポリアミドイミド樹脂(A)及び上記の比較例で得たフィルムに含まれる樹脂(A)における各構成単位の割合の割合は、それぞれ対応する、表1に示すポリアミドイミド樹脂(B)及び樹脂(B)における構成単位の割合と同じである。また、実施例10及び11では、アミック酸を有する繰り返し単位及びイミド結合を有する繰り返し単位とは別の構造に由来するシグナルが重なることを確認した。このため、そのシグナルにおいて、重なりのない部分の強度を積分しその部分の面積比から本来のシグナル強度を求め、イミド化率A及びBを算出した。 The results obtained by measuring the imidization rate of the polyamideimide resin (A) contained in the polyamideimide film obtained in the above examples and the resin (A) contained in the film obtained in the above comparative example according to the above measurement method 2 shows as “imidization ratio A”. Here, in the measurement of the imidization ratio of the polyimide resin A contained in the polyimide films obtained in Comparative Examples 3 and 4, a polyimide resin A was prepared in the same manner as the polyamideimide resin A except that the resin was changed. Furthermore, about the film obtained by the Example and the comparative example, according to the said measuring method, pencil hardness, yellowness (YI), total light transmittance (Tt), elastic modulus, and bending resistance (number of times of reciprocal bending) were measured. The obtained results are shown in Table 1. In addition, the ratio of the ratio of each structural unit in the polyamideimide resin (A) contained in the polyamideimide film and the resin (A) contained in the film obtained in the above comparative example corresponds to the polyamideimide shown in Table 1, respectively. It is the same as the ratio of the structural unit in resin (B) and resin (B). Moreover, in Example 10 and 11, it confirmed that the signal derived from the structure different from the repeating unit which has an amic acid, and the repeating unit which has an imide bond overlaps. For this reason, in the signal, the intensity of the non-overlapping part was integrated to obtain the original signal intensity from the area ratio of the part, and the imidization ratios A and B were calculated.
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057

Claims (15)

  1.  ジアミンに由来する構成単位、ジカルボン酸に由来する構成単位、及び、テトラカルボン酸二無水物に由来する構成単位を少なくとも有し、2次元NMRにより測定して95%以上のイミド化率を有するポリアミドイミド樹脂Aを含むフィルム。 A polyamide having at least a structural unit derived from diamine, a structural unit derived from dicarboxylic acid, and a structural unit derived from tetracarboxylic dianhydride and having an imidization ratio of 95% or more as measured by two-dimensional NMR A film containing imide resin A.
  2.  ジアミンは、式(3):
    Figure JPOXMLDOC01-appb-C000001
    [式(3)中、Xは式(3e’):
    Figure JPOXMLDOC01-appb-C000002
    〔式(3e’)中、R10~R17は、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、R10~R17に含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよく、*は結合手を表す。〕を表す。]
    で表される少なくとも1種の化合物を含む、請求項1に記載のフィルム。
    The diamine has the formula (3):
    Figure JPOXMLDOC01-appb-C000001
    [In Formula (3), X is Formula (3e '):
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (3e ′), R 10 to R 17 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and are included in R 10 to R 17. Each hydrogen atom may be independently substituted with a halogen atom, and * represents a bond. ] Is represented. ]
    The film of Claim 1 containing the at least 1 sort (s) of compound represented by these.
  3.  ジカルボン酸は、式(2):
    Figure JPOXMLDOC01-appb-C000003
    [式(2)中、Zは式(2a)又は式(2b)
    Figure JPOXMLDOC01-appb-C000004
    〔式(2a)及び式(2b)中、Uは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-Ar-、-SO-、-CO-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又はAr-SO-Ar-を表し、*は結合手を表す。〕で表される基を表し、B及びBは、それぞれ独立して、OH又はハロゲン原子を表す。]
    で表される少なくとも1種の化合物を含む、請求項1又は2に記載のフィルム。
    The dicarboxylic acid has the formula (2):
    Figure JPOXMLDOC01-appb-C000003
    [In Formula (2), Z represents Formula (2a) or Formula (2b)
    Figure JPOXMLDOC01-appb-C000004
    Wherein (2a) and Formula (2b), U 1 represents a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3 ) 2 -, - Ar -, - SO 2 -, - CO -, - O-Ar-O -, - Ar-O-Ar -, - Ar-CH 2 -Ar-, —Ar—C (CH 3 ) 2 —Ar— or Ar—SO 2 —Ar— is represented, and * represents a bond. And B 1 and B 2 each independently represent OH or a halogen atom. ]
    The film of Claim 1 or 2 containing the at least 1 sort (s) of compound represented by these.
  4.  テトラカルボン酸二無水物は、式(4):
    Figure JPOXMLDOC01-appb-C000005
    [式中、Yは、式(4g):
    Figure JPOXMLDOC01-appb-C000006
    〔式(4g)中、Wは、単結合、-C(CH-又はC(CF-を表し、*は結合手を表す。〕を表す。]
    で表される少なくとも1種の化合物を含む、請求項1~3のいずれかに記載のフィルム。
    Tetracarboxylic dianhydride has the formula (4):
    Figure JPOXMLDOC01-appb-C000005
    [Wherein Y represents the formula (4g):
    Figure JPOXMLDOC01-appb-C000006
    [In Formula (4g), W 1 represents a single bond, —C (CH 3 ) 2 — or C (CF 3 ) 2 —, and * represents a bond. ] Is represented. ]
    The film according to any one of claims 1 to 3, comprising at least one compound represented by the formula:
  5.  ポリアミドイミド樹脂Aはフッ素原子を含む、請求項1~4のいずれかに記載のフィルム。 The film according to claim 1, wherein the polyamideimide resin A contains a fluorine atom.
  6.  3以下のYIを有する、請求項1~5のいずれかに記載のフィルム。 6. The film according to claim 1, which has a YI of 3 or less.
  7.  4000ルクスの照度条件下でASTM D 3363に従い測定して3B以上の鉛筆硬度を有する、請求項1~6のいずれかに記載のフィルム。 The film according to any one of claims 1 to 6, which has a pencil hardness of 3B or more as measured according to ASTM D 3363 under an illumination condition of 4000 lux.
  8.  ジアミンに由来する構成単位、ジカルボン酸に由来する構成単位、及び、テトラカルボン酸二無水物に由来する構成単位を有し、2次元NMRにより測定して60%以上のイミド化率を有するポリアミドイミド樹脂B、及び、溶剤を少なくとも含む、樹脂組成物。 Polyamideimide having a structural unit derived from diamine, a structural unit derived from dicarboxylic acid, and a structural unit derived from tetracarboxylic dianhydride and having an imidization ratio of 60% or more as measured by two-dimensional NMR A resin composition comprising at least a resin B and a solvent.
  9.  ジアミンは、式(3):
    Figure JPOXMLDOC01-appb-C000007
    [式(3)中、Xは式(3e’):
    Figure JPOXMLDOC01-appb-C000008
    〔式(3e’)中、R10~R17は、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、R10~R17に含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよく、*は結合手を表す。〕を表す。]
    で表される少なくとも1種の化合物を含む、請求項8に記載の樹脂組成物。
    The diamine has the formula (3):
    Figure JPOXMLDOC01-appb-C000007
    [In Formula (3), X is Formula (3e '):
    Figure JPOXMLDOC01-appb-C000008
    [In the formula (3e ′), R 10 to R 17 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and are included in R 10 to R 17. Each hydrogen atom may be independently substituted with a halogen atom, and * represents a bond. ] Is represented. ]
    The resin composition of Claim 8 containing the at least 1 sort (s) of compound represented by these.
  10.  ジカルボン酸は、式(2):
    Figure JPOXMLDOC01-appb-C000009
    [式(2)中、Zは式(2a)又は式(2b):
    Figure JPOXMLDOC01-appb-C000010
    〔式(2a)及び式(2b)中、Uは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-Ar-、-SO-、-CO-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又はAr-SO-Ar-を表し、*は結合手を表す。〕で表される基を表し、B及びBは、それぞれ独立して、OH又はハロゲン原子を表す。]
    で表される少なくとも1種の化合物を含む、請求項8又は9に記載の樹脂組成物。
    The dicarboxylic acid has the formula (2):
    Figure JPOXMLDOC01-appb-C000009
    [In Formula (2), Z represents Formula (2a) or Formula (2b):
    Figure JPOXMLDOC01-appb-C000010
    Wherein (2a) and Formula (2b), U 1 represents a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3 ) 2 -, - Ar -, - SO 2 -, - CO -, - O-Ar-O -, - Ar-O-Ar -, - Ar-CH 2 -Ar-, —Ar—C (CH 3 ) 2 —Ar— or Ar—SO 2 —Ar— is represented, and * represents a bond. And B 1 and B 2 each independently represent OH or a halogen atom. ]
    The resin composition of Claim 8 or 9 containing the at least 1 sort (s) of compound represented by these.
  11.  テトラカルボン酸二無水物は、式(4):
    Figure JPOXMLDOC01-appb-C000011
    [式(4)中、Yは、式(4g):
    Figure JPOXMLDOC01-appb-C000012
    〔式(4g)中、Wは、単結合、-C(CH-又はC(CF-を表し、*は結合手を表す。〕を表す。]
    で表される少なくとも1種の化合物を含む、請求項8~10のいずれかに記載の樹脂組成物。
    Tetracarboxylic dianhydride has the formula (4):
    Figure JPOXMLDOC01-appb-C000011
    [In Formula (4), Y represents Formula (4g):
    Figure JPOXMLDOC01-appb-C000012
    [In Formula (4g), W 1 represents a single bond, —C (CH 3 ) 2 — or C (CF 3 ) 2 —, and * represents a bond. ] Is represented. ]
    The resin composition according to any one of claims 8 to 10, comprising at least one compound represented by the formula:
  12.  ポリアミドイミド樹脂Bはフッ素原子を含む、請求項8~11のいずれかに記載の樹脂組成物。 The resin composition according to claim 8, wherein the polyamideimide resin B contains a fluorine atom.
  13.  請求項8~12のいずれかに記載の樹脂組成物の塗膜を乾燥させてなるフィルム。 A film obtained by drying a coating film of the resin composition according to any one of claims 8 to 12.
  14.  (1)ジアミン、ジカルボン酸、及び、テトラカルボン酸二無水物を溶剤中で共重合しポリアミドイミド樹脂前駆体を得る工程、及び、
     (2)ポリアミドイミド樹脂前駆体を少なくとも含む溶液に、脱水剤及び第三級アミンを添加し、70~120℃の温度で加熱する工程
    を少なくとも含む、ポリアミドイミド樹脂の製造方法であって、工程(1)を開始する際の溶剤中の水分量をw(ppm)とし、工程(2)における加熱時間をt(分)とすると、w及びtが次の式:
    Figure JPOXMLDOC01-appb-M000013
    を満たす、製造方法。
    (1) a step of copolymerizing diamine, dicarboxylic acid, and tetracarboxylic dianhydride in a solvent to obtain a polyamideimide resin precursor; and
    (2) A method for producing a polyamideimide resin, comprising at least a step of adding a dehydrating agent and a tertiary amine to a solution containing at least a polyamideimide resin precursor and heating at a temperature of 70 to 120 ° C. When the amount of water in the solvent at the start of (1) is w (ppm) and the heating time in step (2) is t (minutes), w and t are the following formulas:
    Figure JPOXMLDOC01-appb-M000013
    Satisfying the manufacturing method.
  15.  工程(2)において添加される脱水剤のモル量は、工程(1)において添加されるテトラカルボン酸二無水物のモル量の2倍以上である、請求項14に記載の製造方法。 The manufacturing method according to claim 14, wherein the molar amount of the dehydrating agent added in the step (2) is at least twice the molar amount of the tetracarboxylic dianhydride added in the step (1).
PCT/JP2018/000805 2017-01-20 2018-01-15 Film, resin composition, and production method for polyamide-imide resin WO2018135432A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207009594A KR20200038329A (en) 2017-01-20 2018-01-15 Film, resin composition, and production method for polyamide-imide resin
KR1020187035605A KR20180133564A (en) 2017-01-20 2018-01-15 Film, resin composition, and production method for polyamide-imide resin
CN201880007375.7A CN110191909B (en) 2017-01-20 2018-01-15 Film, resin composition, and method for producing polyamide-imide resin
KR1020187009234A KR101952823B1 (en) 2017-01-20 2018-01-15 Film, resin composition and method for producing polyamide-imide resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-008828 2017-01-20
JP2017008828 2017-01-20

Publications (1)

Publication Number Publication Date
WO2018135432A1 true WO2018135432A1 (en) 2018-07-26

Family

ID=62909127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000805 WO2018135432A1 (en) 2017-01-20 2018-01-15 Film, resin composition, and production method for polyamide-imide resin

Country Status (5)

Country Link
JP (2) JP7118651B2 (en)
KR (3) KR101952823B1 (en)
CN (1) CN110191909B (en)
TW (1) TW201831565A (en)
WO (1) WO2018135432A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111378129A (en) * 2018-12-28 2020-07-07 住友化学株式会社 Polyamide-imide resin, polyamide-imide resin varnish, optical film, and flexible display device
CN112778522A (en) * 2019-11-07 2021-05-11 住友化学株式会社 Polyamide-imide resin, optical film, and flexible display device
CN113227205A (en) * 2018-12-26 2021-08-06 住友化学株式会社 Polyimide resin and method for producing same
CN113227211A (en) * 2018-12-28 2021-08-06 住友化学株式会社 Polyamide resin, optical film, and flexible display device
CN113227222A (en) * 2018-12-28 2021-08-06 住友化学株式会社 Optical film, flexible display device, and polyamide-imide resin
CN113227210A (en) * 2018-12-28 2021-08-06 住友化学株式会社 Optical film and flexible display device
CN113348201A (en) * 2019-01-31 2021-09-03 住友化学株式会社 Polyimide resin powder and method for producing polyimide resin powder
EP3907249A1 (en) * 2020-05-04 2021-11-10 SK Innovation Co., Ltd. Polyimide film and flexible display panel including the same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7084710B2 (en) * 2017-01-20 2022-06-15 住友化学株式会社 Polyamide-imide resin and an optical member containing the polyamide-imide resin.
JP6872023B2 (en) * 2017-02-08 2021-05-19 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Method for manufacturing polyamide-imide film
US10927218B2 (en) * 2017-09-08 2021-02-23 Samsung Electronics Co., Ltd. Poly(amide-imide) copolymer, composition for preparing poly(amide-imide) copolymer, article including poly(amide-imide) copolymer, and display device including the article
KR102430056B1 (en) 2017-09-08 2022-08-05 삼성전자주식회사 Poly(amide-imide) copolymer, composition for preparing poly(amide-imide) copolymer, article including poly(amide-imide) copolymer, and display device including the article
US20210317269A1 (en) * 2018-08-07 2021-10-14 Zymergen Inc. Optically transparent polyimides
JP2020037675A (en) * 2018-08-29 2020-03-12 住友化学株式会社 Optical film
WO2020137870A1 (en) * 2018-12-26 2020-07-02 住友化学株式会社 Method for producing polyimide resin
JP2020105496A (en) * 2018-12-26 2020-07-09 住友化学株式会社 Manufacturing method of polyimide resin
CN113227212A (en) * 2018-12-28 2021-08-06 住友化学株式会社 Optical film
WO2020138044A1 (en) * 2018-12-28 2020-07-02 住友化学株式会社 Polyamide-based resin, optical film, and flexible display device
JP7365211B2 (en) * 2019-12-02 2023-10-19 住友化学株式会社 optical film
CN111381295A (en) * 2018-12-28 2020-07-07 住友化学株式会社 Optical film
WO2020138046A1 (en) * 2018-12-28 2020-07-02 住友化学株式会社 Optical film
JP7382810B2 (en) * 2018-12-28 2023-11-17 住友化学株式会社 optical film
CN111378279A (en) * 2018-12-28 2020-07-07 住友化学株式会社 Optical film
TWI730820B (en) * 2019-06-28 2021-06-11 南韓商Skc股份有限公司 Polymer film
CN112646371A (en) * 2019-10-11 2021-04-13 住友化学株式会社 Optical film and flexible display device
WO2021085284A1 (en) * 2019-10-31 2021-05-06 住友化学株式会社 Optical film and flexible display device
CN115210681A (en) * 2020-03-05 2022-10-18 住友化学株式会社 Optical laminate and display device
KR20230075391A (en) * 2020-09-30 2023-05-31 다이요 홀딩스 가부시키가이샤 Polyamideimide copolymer and film using the same
TWI740758B (en) * 2020-12-25 2021-09-21 律勝科技股份有限公司 Polyamide-imide copolymer and film containing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045054A (en) * 2006-08-18 2008-02-28 New Japan Chem Co Ltd Alicyclic polyimide copolymer and method for producing the same
JP2009013165A (en) * 2007-06-06 2009-01-22 Chisso Corp Acid dianhydride, liquid crystal alignment film, and liquid crystal display device
WO2009063742A1 (en) * 2007-11-12 2009-05-22 Toyo Boseki Kabushiki Kaisha Metal laminate
WO2013147083A1 (en) * 2012-03-30 2013-10-03 日産化学工業株式会社 Polyimide-based liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2016162403A (en) * 2015-03-05 2016-09-05 旭化成株式会社 Optical member comprising polyimide as laminating adhesion layer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265371A (en) 2005-03-24 2006-10-05 Teijin Ltd Method for producing polyimide film
WO2009116500A1 (en) 2008-03-19 2009-09-24 Jsr株式会社 Polyimide material, polyimide film, method for producing the polyimide material and method for producing the polyimide film
KR101459178B1 (en) 2011-09-30 2014-11-07 코오롱인더스트리 주식회사 Co-polymerized polyamide-imide film and method of producing the co-polmerized polyamide-imide
KR20130071650A (en) * 2011-12-21 2013-07-01 코오롱인더스트리 주식회사 Colorless polyamide-imide film
JP5908657B2 (en) 2012-06-25 2016-04-26 コーロン インダストリーズ インク Method for producing copolymerized polyamideimide
JP6582988B2 (en) 2013-10-23 2019-10-02 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal alignment element
WO2015125895A1 (en) 2014-02-21 2015-08-27 三菱化学株式会社 Polyimide precursor and/or polyimide-containing composition, and polyimide film
KR20160083738A (en) 2015-01-02 2016-07-12 삼성전자주식회사 Windows for display device and display device including the same
CN105237767A (en) * 2015-07-25 2016-01-13 常州大学 Liquid-crystal polyamide imide and preparation method therefor
KR101984171B1 (en) * 2016-06-01 2019-05-30 주식회사 엘지화학 High strength transparent polyamide-imide and process for preparing same
CN106117556B (en) * 2016-07-12 2020-08-14 苏州优瑞德新材料有限公司 Soluble polyamideimide resin, and flexible metal-clad plate and flexible printed circuit board obtained from the resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045054A (en) * 2006-08-18 2008-02-28 New Japan Chem Co Ltd Alicyclic polyimide copolymer and method for producing the same
JP2009013165A (en) * 2007-06-06 2009-01-22 Chisso Corp Acid dianhydride, liquid crystal alignment film, and liquid crystal display device
WO2009063742A1 (en) * 2007-11-12 2009-05-22 Toyo Boseki Kabushiki Kaisha Metal laminate
WO2013147083A1 (en) * 2012-03-30 2013-10-03 日産化学工業株式会社 Polyimide-based liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2016162403A (en) * 2015-03-05 2016-09-05 旭化成株式会社 Optical member comprising polyimide as laminating adhesion layer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113227205A (en) * 2018-12-26 2021-08-06 住友化学株式会社 Polyimide resin and method for producing same
CN113227205B (en) * 2018-12-26 2023-10-03 住友化学株式会社 Polyimide resin and method for producing same
CN111378129A (en) * 2018-12-28 2020-07-07 住友化学株式会社 Polyamide-imide resin, polyamide-imide resin varnish, optical film, and flexible display device
CN113227211A (en) * 2018-12-28 2021-08-06 住友化学株式会社 Polyamide resin, optical film, and flexible display device
CN113227208A (en) * 2018-12-28 2021-08-06 住友化学株式会社 Optical film, flexible display device, and polyamide-imide resin
CN113227222A (en) * 2018-12-28 2021-08-06 住友化学株式会社 Optical film, flexible display device, and polyamide-imide resin
CN113227210A (en) * 2018-12-28 2021-08-06 住友化学株式会社 Optical film and flexible display device
CN113348201A (en) * 2019-01-31 2021-09-03 住友化学株式会社 Polyimide resin powder and method for producing polyimide resin powder
CN112778522A (en) * 2019-11-07 2021-05-11 住友化学株式会社 Polyamide-imide resin, optical film, and flexible display device
EP3907249A1 (en) * 2020-05-04 2021-11-10 SK Innovation Co., Ltd. Polyimide film and flexible display panel including the same
US11921546B2 (en) 2020-05-04 2024-03-05 Sk Innovation Co., Ltd. Polyimide film and flexible display panel including the same

Also Published As

Publication number Publication date
TW201831565A (en) 2018-09-01
KR20180094840A (en) 2018-08-24
JP2019104939A (en) 2019-06-27
JP6675509B2 (en) 2020-04-01
JP7118651B2 (en) 2022-08-16
KR101952823B1 (en) 2019-02-27
JP2018119141A (en) 2018-08-02
KR20180133564A (en) 2018-12-14
KR20200038329A (en) 2020-04-10
CN110191909B (en) 2021-10-22
CN110191909A (en) 2019-08-30

Similar Documents

Publication Publication Date Title
JP6675509B2 (en) Film, resin composition and method for producing polyamideimide resin
JP7084710B2 (en) Polyamide-imide resin and an optical member containing the polyamide-imide resin.
KR102461806B1 (en) Optical film and method of manufacturing optical film
JP7005680B2 (en) Polyimide film
CN110199210B (en) Optical film and method for producing optical film
US11274206B2 (en) Polyamideimide resin and optical member including polyamideimide resin
WO2018139392A1 (en) Polyimide-based film and laminate
JP6554599B1 (en) Optical film
JP2020019938A (en) Polyamide-imide resin
TW202020021A (en) Optical film having small variations in local thickness and excellent flatness of the film surface
KR20190053105A (en) Optical film
KR102103496B1 (en) Polyamideimide resin and optical film
JP7083272B2 (en) Optical film
JP5386797B2 (en) Flexible polyimide film and manufacturing method thereof
JP2020019935A (en) Manufacturing method of polyamide resin powder and polyamide resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187009234

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18742244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18742244

Country of ref document: EP

Kind code of ref document: A1