WO2009116500A1 - Polyimide material, polyimide film, method for producing the polyimide material and method for producing the polyimide film - Google Patents

Polyimide material, polyimide film, method for producing the polyimide material and method for producing the polyimide film Download PDF

Info

Publication number
WO2009116500A1
WO2009116500A1 PCT/JP2009/055082 JP2009055082W WO2009116500A1 WO 2009116500 A1 WO2009116500 A1 WO 2009116500A1 JP 2009055082 W JP2009055082 W JP 2009055082W WO 2009116500 A1 WO2009116500 A1 WO 2009116500A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
film
group
polyamic acid
compound
Prior art date
Application number
PCT/JP2009/055082
Other languages
French (fr)
Japanese (ja)
Inventor
敬 岡田
利充 菊池
高明 宇野
イーゴリ ロジャンスキー
幸平 後藤
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008280604A external-priority patent/JP2009256589A/en
Priority claimed from JP2008280605A external-priority patent/JP2009256590A/en
Priority claimed from JP2008290392A external-priority patent/JP2010116476A/en
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2009116500A1 publication Critical patent/WO2009116500A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Definitions

  • the present invention relates to a polyimide material, a polyimide film, and a method for producing them.
  • wholly aromatic polyimide obtained from aromatic tetracarboxylic dianhydride and aromatic diamine is due to the rigidity of the molecule, the fact that the molecule is resonance-stabilized, the strong chemical bond, etc.
  • Excellent heat resistance, mechanical properties, electrical properties, oxidation resistance and hydrolysis resistance Widely used as film, coating agent, molded part, insulation material in fields such as electricity, battery, automobile and aerospace industry. in use.
  • materials used for optical members are required to be excellent in colorless transparency, easy moldability (molding), and optical characteristics in addition to excellent heat resistance and mechanical characteristics.
  • the wholly aromatic polyimide film represented by Kapton (manufactured by Toray DuPont) has excellent heat resistance as described above, and is suitable for the fields of machinery, electricity, etc.
  • use as an optical material is limited because of high and low moldability. That is, there is a problem that the film is colored from yellow to brown due to absorption in the visible light region derived from intermolecular or intramolecular charge transfer interaction.
  • the film has a problem that the process load is high and the moldability is low, for example, heat treatment at a high temperature is required to form the film.
  • the polyimide forming the film has low solubility in an organic solvent, and the film cannot be formed using the polyimide as it is. Therefore, using a solution of polyamic acid that is a precursor of the polyimide, and forming a film-like coating film by coating on a substrate, the coating film is heat-treated at a high temperature of about 400 ° C. It is necessary to imidize polyamic acid to obtain a film made of polyimide.
  • Patent Document 1 a polyimide obtained from cyclobutanetetracarboxylic dianhydride and 1,2,4,5-cyclohexanetetracarboxylic dianhydride and an aromatic diamine such as 4,4′-diaminodiphenyl ether has been proposed (non- Patent Document 1).
  • This polyimide is a semi-aromatic polyimide obtained by using an aromatic and an aliphatic dianhydride in combination. And at least one acyl-containing compound selected from the group consisting of 1,2,4,5-cyclohexanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, and reactive derivatives thereof;
  • a polyimide resin obtained by reacting an aromatic diamine represented by a specific formula has been proposed (Patent Documents 2 and 3).
  • Patent Documents 2 and 3 Japanese Patent No. 3131940 JP 2006-199945 A JP 2007-326962 A High Performance Polymer 19, P175-193 (2007)
  • the polyimide copolymer described in Patent Document 1 has excellent heat resistance and improved transparency and solubility in organic solvents, but has problems of low light resistance and high cost.
  • the polyimide described in Non-Patent Document 1 is excellent in heat resistance and has improved transparency as compared with conventional polyimides, but is still insufficient in transparency for use as an optical material. There is.
  • heat treatment thermal imidation
  • a polyamic acid as a precursor is necessary to form it into a film. The problem that the load is large and the moldability is poor remains.
  • any film made of a polyimide resin or the like described in the above document has a problem that the non-coloring property is insufficient for use as an optical member.
  • a common problem in the case of using polyimide as the material of the optical member is that the film is colored initially or over time due to oxidation of the diamine monomer used.
  • the film made of the polyimide resin or the like described in each of the above documents is insufficient in non-coloring properties for use as an optical member.
  • polyarylate and polycarbonate are listed as materials with excellent optical properties.
  • the glass transfer point of these materials is 200 ° C or less, the heat resistance is limited, and solder resistance is not expected. It does not have sufficient performance as a material for a substrate.
  • Polyacrylic acid resins, epoxy resins, and silicon resins have been proposed as materials for optical members other than aromatic polymers, all of which satisfy all of the characteristics required for optical members. It wasn't. Polyacrylic acid resins and epoxy resins have excellent transparency and optical properties, but have a problem of low heat resistance.
  • the present invention has been made in view of the above-described problems, and is heat resistant, colorless and transparent (non-coloring and transparency), and moldability (ease when forming into a film and small process load).
  • An object of the present invention is to provide a polyimide material having excellent optical properties and low cost, a composition containing the polyimide material, a polyimide film comprising the polyimide material, and a method for producing the polyimide material and the film. To do.
  • the present inventor obtained a polyamic acid and / or polyimide obtained from a specific acyl compound and a specific aromatic imino-forming compound (diamine and / or diisocyanate). It has been found that the above object of the present invention can be achieved by the polyimide film to be included, and the present invention has been completed.
  • the polyamic acid and / or polyimide has a molar ratio of (A) acyl compound to (B) aromatic imino formation ((A) acyl compound: (B) aromatic imino formation) is 1.000:
  • the polyamic acid and / or the polyimide is an aromatic imino-forming compound, and further the total ⁇ of substituent constants obtained by Hammett's rule (where the total ⁇ is based on the amino group and the substituent constant of the amino group itself) In any one of [1] to [4] above, which is obtained by reacting with an aromatic diamine compound having a value exceeding ⁇ 0.11 and not more than 2.0.
  • Polyimide material [6] A polyimide resin composition comprising the polyimide material according to any one of [1] to [5] above and an organic solvent.
  • a polyimide film comprising the polyimide material according to any one of [1] to [5].
  • At least one dehydrating agent selected from the group consisting of acetic anhydride, propionic anhydride, benzoic anhydride, acid chlorides corresponding to these anhydrides, and carbodiimide compounds
  • the polyimide material comprising the polyamic acid and / or polyimide (hereinafter also referred to as “polyimide etc.”) of the present invention is composed of a polyamic acid and / or polyimide obtained from a specific acyl compound and an aromatic imino forming compound. Excellent heat resistance and transparency, little coloring (yellowing) and low cost.
  • the polyimide obtained from the specific component has excellent solubility in an organic solvent, it can be dissolved in an organic solvent as it is to form a film.
  • it after applying a solution containing the polyimide or the like and an organic solvent to a substrate or the like to form a coating film, it may be heated at a temperature at which the solvent in the coating film evaporates.
  • the polyimide material of the present invention and the polyimide film containing the polyimide material can be used for light emitting diode peripheral materials, solar cell peripheral materials, flat display peripheral materials, and electronic circuit peripheral materials. Specifically, it can be used as an optical member such as a heat-resistant transparent film and a conductive transparent film.
  • the flat display peripheral material include substrates for transparent flexible displays such as liquid crystal displays, plasma displays, organic electroluminescence displays, and electronic paper.
  • the electronic circuit peripheral material include a printed wiring board forming material and a printed wiring board. Specifically, the flexible printed wiring board, the rigid printed wiring board, the optoelectronic printed wiring board, the COF (Chip on Film) substrate, TAB (Tape Automated Bonding) substrate and the like.
  • FIG. 1 is a diagram showing an IR spectrum of a polymer obtained in Example 1.
  • FIG. 2 is a graph showing an IR spectrum of the polymer obtained in Example 2.
  • FIG. 4 is a diagram showing an IR spectrum of the polymer obtained in Example 3.
  • FIG. 6 is a graph showing an IR spectrum of the polymer obtained in Example 4.
  • FIG. 6 is a graph showing an IR spectrum of the polymer obtained in Example 6.
  • 6 is a graph showing an IR spectrum of the polymer obtained in Example 7.
  • FIG. 6 is a diagram showing an IR spectrum of the polymer obtained in Example 8.
  • FIG. 6 is a graph showing an IR spectrum of the polymer obtained in Example 9.
  • 6 is a diagram showing an IR spectrum of the polymer obtained in Example 10.
  • FIG. 6 is a graph showing an IR spectrum of the polymer obtained in Example 11.
  • 6 is a graph showing an IR spectrum of the polymer obtained in Example 12.
  • FIG. 2 is a graph showing an IR spectrum of the polymer obtained in Comparative Example 1.
  • FIG. 6 is a diagram showing an IR spectrum of a polymer obtained in Comparative Example 2.
  • the polyimide material of the present invention comprises a polyamic acid and / or polyimide obtained from (A) a specific acyl compound and (B) a specific imino forming compound.
  • (A) component and (B) component are demonstrated.
  • Component (A) includes 2,3,5-tricarboxycyclopentylacetic acid represented by the following formula (1), 2,3,5-tricarboxycyclopentyl represented by the following formula (2) It is at least one acyl compound selected from the group consisting of acetic dianhydride and reactive derivatives thereof.
  • Examples of the reactive derivative include 2,3,5-tricarboxycyclopentylacetic acid monomethyl ester, 2,3,5-tricarboxycyclopentylacetic acid dimethyl ester, 2,3,5-tricarboxycyclopentylacetic acid trimethyl ester, 5-tricarboxycyclopentyl acetic acid tetramethyl ester, 2,3,5-tricarboxycyclopentyl acetic acid monoethyl ester, 2,3,5-tricarboxycyclopentyl acetic acid diethyl ester, 2,3,5-tricarboxycyclopentyl acetic acid triethyl ester, Examples include 2,3,5-tricarboxycyclopentylacetic acid tetraethyl ester, and esterified products in which the above alkyl ester is replaced with unsubstituted phenyl ester or various para-substituted phenyl esters.Other reactive derivatives include acid chlorides such as 2,3,5-tricarbox
  • 2,3,5-tricarboxycyclopentylacetic acid dianhydride is preferably used.
  • 2,3,5-tricarboxycyclopentylacetic acid dianhydride which is an anhydride
  • a polyamic acid can be synthesized at a lower temperature than when a non-anhydride is used.
  • These acyl compounds can be used alone or in combination of two or more.
  • the component (B) includes an aromatic imino forming compound represented by the following formula (3) as the component (B-1).
  • Y is a direct bond (single bond), - CH 2 - , —O—, —S—, —C (CH 3 ) 2 —
  • Z is a direct bond, —CH 2 —, —O—, —S—, —C (CH 3 ).
  • R 1 to R 16 are each independently a group selected from a hydrogen atom, an alkyl group, a vinyl group, an aryl group, and a halogen.
  • R 25 to R 27 are each independently an alkyl group having 1 to 15 carbon atoms.
  • An aromatic imino-forming compound having four benzene rings represented by such a specific formula By using it, a film with little coloring can be obtained.
  • the “imino forming compound” refers to a compound for reacting with the component (A) to form imino.
  • aromatic imino-forming compound examples include bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, and bis [4- (3-aminophenoxy) phenyl] ketone.
  • bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4 ′ -Bis (4-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-Amino- ⁇ , ⁇ -dimethylbenzyl) phenyl] propane and 2,2-bis [4- (4-amino- ⁇ , ⁇ -dimethylbenzyl) phenyl] propane are preferably used.
  • an aromatic imino-forming compound in which the bonding groups represented by X, Y, and Z in the above formula (3) are bonded at the para position that is, the following formula (4) Aromatic imino-forming compounds represented by By using such a compound, a film having higher heat resistance and less coloring can be obtained.
  • imino forming compounds can be used alone or in combination of two or more.
  • the polyimide-based material of the present invention has a total ⁇ of substituent constants obtained by Hammett's rule (where, The total ⁇ is based on the amino group and does not include the substituent constant of the amino group itself.
  • the aromatic diamine compound ((B -2) Component) can be used.
  • the aromatic diamine compound is preferably an aromatic diamine compound having ⁇ exceeding ⁇ 0.11 and not more than 1.6, more preferably ⁇ exceeding ⁇ 0.11 and 0 It is an aromatic diamine compound within the range of .8 or less.
  • the total ⁇ of substituent constants obtained by Hammett's rule (however, the total ⁇ is based on the amino group and does not include the substituent constant of the amino group itself). ) Is in the range of ⁇ 0.70 or more and ⁇ 0.11 or less.
  • the difference in total ⁇ between the component (B-1) and the component (B-2) is preferably 0.1 or more, more preferably 0.2 or more.
  • Preferable examples of the component (B-2) include aromatic diamine compounds represented by the following formula (5).
  • X represents —NH 2
  • Y represents a direct bond,> C ⁇ O, —SO 2 —
  • R 17 to R 24 is each independently a group selected from a hydrogen atom, an alkyl group, a fluorinated alkyl group, an alkoxy group, a vinyl group, an aryl group, and a halogen.
  • Preferred examples of the component (B-2) include 2,2′-bis (trifluoromethyl) benzidine, 2,2′-dimethoxybenzidine, 2,2′-dimethylbenzidine, 3,3′-diaminodiphenylsulfone, Selected from the group consisting of 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, and 1,1,1,3,3,3-hexafluoroisopropylidenebisaniline
  • the at least 1 type of aromatic diamine compound is mentioned.
  • Particularly preferred examples include 2,2'-bis (trifluoromethyl) benzidine, 2,2'-dimethylbenzidine, 3,3'-diaminodiphenylsulfone, and 4,4'-diaminodiphenylsulfone.
  • Component (B-2) can be used alone or in combination of two or more.
  • the method for producing a polyimide-based material of the present invention comprises (a) a step of reacting the (A) acyl compound and the (B) aromatic imino forming compound in an organic solvent to obtain a polyamic acid, and (b) And imidating at least a part of the polyamic acid.
  • Step (a) is a step of obtaining a polyamic acid by reacting the component (A) and the component (B) in an organic solvent.
  • a specific method for reacting the component (A) and the component (B) at least one (B) aromatic imino-forming compound is dissolved in an organic solvent, and then at least 1 is added to the resulting solution.
  • Examples include a method in which a seed (A) acyl compound is added and stirred at a temperature of 0 to 100 ° C. for 1 to 60 hours.
  • organic solvent examples include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, ⁇ -butyrolactone, N, N′-dimethylimidazolidinone, and tetramethyl.
  • Aprotic polar solvents such as urea; phenolic solvents such as cresol, xylenol, and halogenated phenol; Of these, N-methyl-2-pyrrolidone and N, N-dimethylacetamide are preferable. These solvents can be used alone or in combination of two or more.
  • the total amount of the aromatic imino forming compound and the acyl compound in the reaction solution is preferably 5 to 30% by mass of the total amount of the reaction solution.
  • the ratio of (A) acyl compound to (B) aromatic imino-forming compound is such that 1 equivalent of the amino group or isocyanate group of component (B) and 0.8 to 1.1 of the acid anhydride group of component (A).
  • a ratio of 2 equivalents is preferable, and a ratio of 1.0 to 1.1 equivalents is more preferable.
  • the reaction can be performed such that the molar ratio of (A) acyl compound to (B) aromatic imino forming compound is 1.000: 0.960 to 1.000: 0.995.
  • the reaction is preferably performed to be 1.000: 0.970 to 1.000: 0.990.
  • the molar ratio of the (A) acyl compound and the (B) aromatic imino forming compound is within the above range, the polymer formed is particularly excellent in film formability, mechanical properties, and transparency.
  • the molar ratio of the component (B-1) to the component (B-2) is (B- It is preferable that 1) / (B-2)> 1.
  • the molar ratio of (B-1) :( B-2) is more preferably 0.60: 0.40 to 0.999: 0.001, more preferably 0.62 when the total is 1.
  • the polyamic acid refers to an acid having a structure containing —CO—NH— and —CO—OH, which is generated by a reaction between an acid anhydride group and an amino group, or a derivative thereof (specifically, For example, CO—NH— and —CO—OR (where R is an alkyl group or the like) are used.
  • the polyamic acid becomes a polyimide having a cyclic chemical structure (—CO—N—CO—) by dehydration of —CO—NH—H and —CO—OH OH by heating or the like.
  • Step (b) is a step of obtaining a solution containing polyimide and an organic solvent by imidizing at least a part of the polyamic acid obtained in the step (a) by dehydration ring closure. is there.
  • Specific imidization methods include a method using a dehydrating agent (chemical imidization), and a heat treatment method at 160 ° C. to 350 ° C. (about 160 to 220 ° C. for a solution, generally 300 ° C. or more for a cast film). (Thermal imidization).
  • Examples of the dehydrating agent in chemical imidization include acid anhydrides such as acetic anhydride, propionic anhydride and benzoic anhydride, or corresponding acid chlorides, carbodiimide compounds such as dicyclohexylcarbodiimide, and the like.
  • the addition amount of the dehydrating agent can be appropriately changed according to the target imidization rate, but is usually in the range of 1 to 10 mol and in the range of 2 to 10 mol with respect to 1 mol of the acyl compound. Is preferred.
  • the chemical imidization can be performed at a temperature of 10 ° C. to 120 ° C., and is preferably performed at a temperature of 25 ° C. to 90 ° C.
  • a base catalyst such as pyridine, isoquinoline, trimethylamine, triethylamine, N, N-dimethylaminopyridine, imidazole or alicyclic tertiary monoamine can be used as necessary.
  • alicyclic tertiary monoamines are preferably used.
  • an alicyclic tertiary monoamine compound is used for imidization, the imidization reaction is promoted because the lone pair of electrons on the nitrogen atom of the alicyclic tertiary monoamine has high nucleophilicity. It is done.
  • the compound represented by following formula (6) is used suitably.
  • R is an alkyl group having 1 to 4 carbon atoms
  • X is an oxygen atom or sulfur atom
  • l is 0 or 1
  • m and n are each independently an integer of 0 to 2.
  • R is preferably a methyl group or an ethyl group, and particularly preferably a methyl group.
  • M and n are preferably 0 or 1.
  • m + n is preferably 1 to 3.
  • Preferable examples of the compound represented by the above formula (6) include N-methylpiperidine, N-methylpyrrolidine, N-methylmorpholine and the like.
  • an alicyclic tertiary monoamine as an imidization catalyst, even if an aliphatic compound is used as the component (A), it can be imidized with high reactivity (imidation reaction rate), and at a lower temperature. Imidization and shortening of the time required for imidization can be achieved. As a result, it is possible to reduce the coloring of the resulting polyimide.
  • a compound having a particularly difficult imidization such as a compound having a 6-membered ring anhydride skeleton or a compound in which at least two carbons constituting a crosslinked ring structure form an anhydride skeleton, is used as the component (A).
  • the base catalyst is preferably used in an amount of 0.01 to 10 mol, particularly preferably 0.1 to 5 mol, per mol of the acyl compound.
  • the imidization is performed so as to imidize at least a part of the polyamic acid, preferably 75 mol% or more, more preferably 85 mol% or more, and particularly preferably 90 mol% or more.
  • the obtained polyamic acid and / or a solution containing polyimide and an organic solvent can be used as it is, but after isolating polyimide or the like as a solid component, it can also be used by re-dissolving in an organic solvent.
  • the obtained polyamic acid and / or polyimide has a polystyrene-equivalent weight average molecular weight of 50,000 to 500,000, preferably 100,000 to 400,000.
  • the ratio of polyimide in the total 100 mol% of polyamic acid and polyimide is 75 mol% or more, preferably 85 mol% or more, particularly preferably 90 mol% or more. If the proportion of polyimide is less than 75 mol%, the water absorption rate of the film may increase or the durability may decrease.
  • the method for producing a film of the present invention comprises a solution containing a polyamic acid and / or polyimide obtained by reacting the (A) acyl compound and the (B) aromatic imino-forming compound and an organic solvent on a substrate.
  • Step (c) is a step of forming a coating film by applying a solution containing the polyimide and the like and an organic solvent onto a substrate.
  • the substrate examples include a polyethylene terephthalate (PET) film, a SUS plate, and a copper foil.
  • PET polyethylene terephthalate
  • a method for applying a solution containing polyimide or the like and an organic solvent on the substrate a roll coating method, a gravure coating method, a spin coating method, a method using a doctor blade, or the like can be used.
  • the thickness of the coating film is not particularly limited, but is, for example, 1 to 250 ⁇ m.
  • Step (d) is a step of removing the organic solvent from the coating film by evaporation to obtain a film.
  • the organic solvent in the coating film is evaporated and removed by heating the coating film.
  • the heating conditions are not particularly limited as long as the organic solvent evaporates.
  • the heating conditions are 60 to 250 ° C. for 1 to 5 hours. Heating may be performed in two stages. For example, after heating at 100 ° C. for 30 minutes, heating at 150 ° C. for 1 hour. Further, if necessary, drying may be performed under a nitrogen atmosphere or under reduced pressure. In this step, it is sufficient if the organic solvent can be removed, and it is not necessary to perform imidization.
  • a film can be obtained at a lower temperature than in the conventional technique. Therefore, even if other members forming the optical member have low heat resistance, the film is removed by directly applying a solution containing the polyimide or the like and an organic solvent to the member and evaporating and removing the organic solvent. Can be formed. The obtained film can be used as it is without being peeled off from the support substrate.
  • the film of the present invention mainly comprises a polyimide obtained by reacting the component (A) and the component (B).
  • the polyamic acid formed by reacting the component (A) and the component (B) has, for example, at least one repeating unit represented by the following formulas (7) to (10).
  • R 1 to R 16 , X, Y and Z are the same as in the above formula (3), and R 17 to R 24 are each independently a hydrogen atom. Or represents an alkyl group.
  • the polyimide formed by the reaction of the component (A) and the component (B) has, for example, a repeating unit represented by the following formula (11) or (12).
  • the thickness is 1 to 250 ⁇ m, preferably 5 to 200 ⁇ m. Further, when the film of the present invention is used as a substrate, it is particularly preferably 10 to 150 ⁇ m.
  • the film of the present invention has a total light transmittance of preferably 80% or more, more preferably 85% or more, and further preferably 89% or more when the thickness is 20 ⁇ m.
  • the YI value (yellow index) is preferably 2.5 or less, and more preferably 1.4 or less.
  • the film of the present invention preferably has a refractive index of 1.58 to 1.66, more preferably 1.60 to 1.64 with respect to light having a wavelength of 633 nm.
  • the film of the present invention has a glass transition temperature (Tg) of preferably 250 ° C. or higher, and more preferably 280 ° C. or higher. By having such a glass transition temperature, excellent heat resistance can be obtained.
  • Tg glass transition temperature
  • the film of the present invention preferably has a tensile strength of 80 MPa to 300 MPa, more preferably 100 MPa to 300 MPa.
  • the film of the present invention preferably has a tensile elongation of 10% to 200%, more preferably 20% to 150%.
  • the film of the present invention preferably has a tensile elastic modulus of 2.2 GPa or more, more preferably 2.5 GPa or more.
  • the film of the present invention can be used for light emitting diode peripheral materials, solar cell peripheral materials, flat display peripheral materials, and electronic circuit peripheral materials. Specifically, it can be used for optical members such as heat-resistant transparent films and conductive transparent films.
  • the flat display peripheral material include substrates for transparent flexible displays such as liquid crystal displays, plasma displays, organic electroluminescence displays, and electronic paper.
  • an electronic circuit peripheral material it can also be used as a printed wiring board substrate, a flexible printed wiring board, a rigid printed wiring board, an optoelectronic printed wiring board, a COF (Chip on Film) board, a TAB ( A substrate for Tape Automated Bonding) can be given.
  • a copper layer for wiring When used as a printed wiring board, for example, a copper layer for wiring can be provided.
  • the method for producing a printed wiring board in which a copper layer is provided on a film include a casting method, a laminating method, and a metalizing method.
  • the casting method can be achieved, for example, by using a copper foil as the substrate used in the step (b). Specifically, after a solution containing polyimide and an organic solvent is applied on a copper foil to form a coating film, the organic solvent is removed from the coating film to provide a copper layer on the film.
  • a wiring board can be manufactured.
  • a laminating method for example, a printed wiring provided with a copper layer by hot pressing a copper foil on the film of the present invention obtained by the laminating method. Substrates can be manufactured.
  • a laminating method for example, a printed wiring board provided with a copper layer can be produced by hot pressing a copper foil on the film of the present invention.
  • the metalizing method for example, after the surface modification is performed in order to develop the affinity of the film of the present invention with the metal, the Ni-based metal layer bonded to the polyimide by vapor deposition or sputtering is used. A seed layer necessary for wet electroplating is formed.
  • substrate for printed wiring with which the copper layer was provided can be manufactured by providing the copper layer of a predetermined film thickness with a wet-plating method.
  • the polyimide-type solution containing the polyimide etc. and organic solvent obtained by process (a), (b) is a light emitting diode peripheral material, a solar cell peripheral material, a flat display peripheral material, an electron as a polyimide-type resin composition. It can also be used as a circuit peripheral material. Specifically, it can be used as a sealant, a lens material, a printed wiring board forming material, and the like. For example, when used as a printed wiring board forming material, a printed wiring board can be manufactured by a casting method. Specifically, a printed wiring board provided with a copper layer can be produced by applying a heat treatment after applying the polyimide resin composition on a copper foil.
  • the said polyimide resin composition can use the organic solvent whose boiling point is 150 degrees C or less as a cosolvent.
  • the organic solvent include methanol, ethanol, isopropanol, tetrahydrofuran, 1,3-dioxane, 1,4-dioxane and the like. These solvents can be used alone or in combination of two or more.
  • the concentration of polyamic acid and / or polyimide in the polyimide resin composition is preferably 5 to 30% by mass of the total amount of the reaction solution.
  • Example 1 First, 9.88 g (22.8 mmol) of bis [4- (3-aminophenoxy) phenyl] sulfone was added to a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube, and a cooling tube. ) was added. Next, after the atmosphere in the flask was replaced with nitrogen, N-methyl-2-pyrrolidone (hereinafter referred to as NMP) (60 ml) was added and stirred until uniform.
  • NMP N-methyl-2-pyrrolidone
  • the obtained polymer was vacuum-dried overnight at 60 ° C. to obtain a white powder (yield 13.4 g, yield 94.5%). Subsequently, the obtained polymer was redissolved in N, N-dimethylacetamide (DMAc) to obtain a 20% by mass resin solution.
  • the resin solution is applied onto a substrate made of polyethylene terephthalate (PET) using a doctor blade (100 ⁇ m gap), dried at 100 ° C. for 30 minutes, and then dried at 150 ° C. for 60 minutes to form a film. It peeled. Thereafter, the film was further dried at 150 ° C. under reduced pressure for 3 hours to obtain a film having a thickness of 20 ⁇ m.
  • the structural analysis, the weight average molecular weight, and the imidation ratio were measured by the following method.
  • the characteristic absorption of the carbonyl group was 1739 cm ⁇ 1 and 1698 cm ⁇ 1 (see FIG. 1), and the weight average molecular weight was 174,000.
  • the imidization ratio of the polymer obtained was 93%.
  • the solubility with respect to the organic solvent of a polymer, the total light transmittance of a film, YI value, a refractive index, a glass transition point, and the YI value after a heat test were evaluated by the following method. The results are shown in Table 1.
  • the ring closure rate was calculated from the ratio of the peak integral value of the amide in the amic acid part (9.8 to 10.3 ppm) and the peak integral value of the aromatic diamine (6.5 to 7.5 ppm).
  • Solubility in Organic Solvent The polymer was dissolved in N, N-dimethylacetamide and adjusted to a 20% by mass solution, and the solubility at room temperature was evaluated. The case where it was completely dissolved was indicated as “ ⁇ ”, and the case where there was a swollen or insoluble polymer was indicated as “x”.
  • Total light transmittance measured according to YI JIS K7105 transparency test method.
  • the total light transmittance and YI value (yellow index) of the film were measured using an SC-3H haze meter manufactured by Suga Test Instruments Co., Ltd.
  • the refractive index of the obtained film at a wavelength of 633 nm was measured using a 2010 type prism coupler manufactured by Metricon. The measurement was performed using a silicon wafer substrate at 23 ° C. and 50% RH.
  • Glass transition temperature (Tg) The glass transition temperature (Tg) was measured using a Rigaku 8230 type DSC measuring apparatus at a rate of temperature rise of 20 ° C / min.
  • Example 2 A white powder was obtained in the same manner as in Example 1 except that bis [4- (4-aminophenoxy) phenyl] sulfone was used instead of bis [4- (3-aminophenoxy) phenyl] sulfone.
  • Polymer Yield 13.8 g, yield 97.3%) and a film were obtained.
  • structural analysis, weight average molecular weight, and imidation rate were measured in the same manner as in Example 1.
  • the characteristic absorption of the carbonyl group was 1739 cm ⁇ 1 and 1696 cm ⁇ 1 (see FIG. 2), and the weight average molecular weight was 339,000.
  • the imidation ratio of the obtained polymer was 94%.
  • various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 Instead of bis [4- (3-aminophenoxy) phenyl] sulfone, 9.33 g (25.3 mmol) of bis (4-aminophenoxy) biphenyl was used, and 2,3,5-tricarboxycyclopentylacetic acid was used. A white powder was obtained in the same manner as in Example 1 except that the amounts of dianhydride, pyridine, and acetic anhydride were changed to 5.67 g, (25.3 mmol), 8.2 ml, and 7.2 ml, respectively. Polymer (yield 13.2 g, yield 94.0%) and a film were obtained.
  • Example 1 With respect to the obtained polymer, structural analysis, weight average molecular weight, and imidation rate were measured in the same manner as in Example 1. As a result, the characteristic absorption of the carbonyl group was 1738 cm ⁇ 1 and 1695 cm ⁇ 1 (see FIG. 3), and the weight average molecular weight was 292,000. The imidation ratio of the obtained polymer was 93%. Further, various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 In place of bis [4- (3-aminophenoxy) phenyl] sulfone, 9.70 g (23.6 mmol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane was used. Except that the blending amounts of 2,3,5-tricarboxycyclopentylacetic acid dianhydride, pyridine, and acetic anhydride were changed to 5.30 g (23.6 mmol), 7.5 ml, and 6.7 ml, respectively. In the same manner as in Example 1, a white powder polymer (yield 13.5 g, yield 95.3%) and a film were obtained.
  • Example 1 With respect to the obtained polymer, structural analysis, weight average molecular weight, and imidation rate were measured in the same manner as in Example 1. As a result, the characteristic absorption of the carbonyl group was 1735 cm ⁇ 1 and 1682 cm ⁇ 1 (see FIG. 4), and the weight average molecular weight was 320,000. The imidation ratio of the obtained polymer was 93%. Further, various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 After preparing polyamic acid in the same manner as in Example 4, NMP (75 ml) was added to dilute, xylene (12 ml) and isoquinoline (1 drop; 7 ml) were added, and the mixture was stirred at 180 ° C for 6 hours. Then, imidization was performed to obtain a polymer. Thereafter, the polymer was isolated in the same manner as in Example 1 to obtain a white powder (yield 13.2 g, yield 93.3%). Using the obtained polymer, a film was obtained in the same manner as in Example 1. For the obtained polymer, the weight average molecular weight and the imidization ratio were measured in the same manner as in Example 1. As a result, the weight average molecular weight was 190,000 and the imidization ratio was 89%. Further, various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • the resulting polymer was vacuum dried at 60 ° C. overnight to give a white powder (13.4 g, 95.0%). Subsequently, the obtained polymer was redissolved in N, N-dimethylacetamide (DMAc) to obtain a 20% by mass resin solution.
  • the resin solution is applied onto a substrate made of polyethylene terephthalate (PET) using a doctor blade (100 ⁇ m gap), dried at 100 ° C. for 30 minutes, and then dried at 150 ° C. for 60 minutes to form a film. It peeled. Thereafter, the film was further dried at 150 ° C. under reduced pressure for 3 hours to obtain a film having a thickness of 20 ⁇ m.
  • PET polyethylene terephthalate
  • Example 9 First, in a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube, and a cooling tube, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (9. 24 g, 22.5 mmol; (B-1) component) and 2,2′-bis (trifluoromethyl) benzidine (0.38 g, 1.2 mmol; (B-2) component) were added. Next, after the atmosphere in the flask was replaced with nitrogen, N-methyl-2-pyrrolidone (hereinafter referred to as NMP) (135 g) was added and stirred until uniform.
  • NMP N-methyl-2-pyrrolidone
  • 2,3,5-tricarboxycyclopentyl acetic acid dianhydride (5.38 g, 24.0 mmol; component (A)) was added to the resulting solution at room temperature, and the reaction was continued for 24 hours at the same temperature.
  • a solution containing polyamic acid was obtained.
  • N-methylpiperidine (2.7 ml) and acetic anhydride (6.7 ml) were added to the resulting solution containing polyamic acid, and the mixture was stirred at 75 ° C. for 3 hours for imidization. After cooling to room temperature, it was poured into a large amount of methanol, and the polymer was isolated by filtration. The obtained polymer was vacuum-dried overnight at 60 ° C.
  • the obtained polymer was redissolved in N, N-dimethylacetamide (DMAc) to obtain a 20% by mass resin solution.
  • the resin solution is applied onto a substrate made of polyethylene terephthalate (PET) using a doctor blade (100 ⁇ m gap), dried at 100 ° C. for 30 minutes, and then dried at 150 ° C. for 60 minutes to form a film. It peeled. Thereafter, the film was further dried at 150 ° C. under reduced pressure for 3 hours to obtain a film having a thickness of 20 ⁇ m.
  • the weight average molecular weight of the obtained polymer was 104,000, and the imidization ratio (ratio of the amic acid that was dehydrated and cyclized among all amic acids) was 95%.
  • the obtained film was subjected to structural analysis by IR (ATR method: film). The results show that the characteristic absorption of the carbonyl group is 1735 cm ⁇ 1 and 1684 cm ⁇ 1 (see FIG. 8), the solubility of the polymer in the organic solvent, the total light transmittance of the film, the YI value, and the glass transition point. Evaluation was performed in the same manner as in 1.
  • the obtained film (5 cm square) was placed in a hot air drier held at 175 ° C. for 12 hours to conduct a heat resistance acceleration test, and the YI value of the film after the heat test was calculated. It measured by the method similar to said (5). The results are shown in Table 1.
  • Example 10 9.36 g (22.8 mmol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane as the component (B-1) and 2,2 ′ as the component (B-2) -Example 9 except that 0.26 g (1.2 mmol) of dimethylbenzidine and 5.38 g (24.0 mmol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride were used as the component (A). Similarly, a polymer composed of white powder (yield 13.2 g, yield 94%) and a film were obtained. The obtained polymer was subjected to structural analysis, weight average molecular weight and imidization rate measurement in the same manner as in Example 9.
  • Example 11 9.32 g (22.7 mmol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane as the component (B-1) and 2,2 ′ as the component (B-2) -Example 9 except that 0.25 g (1.2 mmol) of dimethylbenzidine and 5.43 g (24.2 mmol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride were used as component (A). Similarly, a polymer composed of white powder (yield 13.2 g, yield 94%) and a film were obtained. The obtained polymer was subjected to structural analysis, weight average molecular weight and imidization rate measurement in the same manner as in Example 1.
  • the characteristic absorption of the carbonyl group was 1735 cm ⁇ 1 and 1683 cm ⁇ 1 (see FIG. 10), the weight average molecular weight was 138,000, and the imidization ratio was 93%. Further, various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 9. The results are shown in Table 1.
  • Example 12 9.19 g (22.4 mmol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane as the component (B-1) and 2,2 ′ as the component (B-2) -Example 9 except that 0.25 g (1.2 mmol) of dimethylbenzidine and 5.56 g (24.8 mmol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride were used as component (A). Similarly, a polymer composed of white powder (yield 12.8 g, yield 91%) and a film were obtained. The obtained polymer was subjected to structural analysis, weight average molecular weight and imidization rate measurement in the same manner as in Example 1.
  • the characteristic absorption of the carbonyl group was 1735 cm ⁇ 1 and 1684 cm ⁇ 1 (see FIG. 11), the weight average molecular weight was 52,000, and the imidization ratio was 95%. Further, various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 9. The results are shown in Table 1.
  • Example 13 2,2-bis [4- (4-aminophenoxy) phenyl] propane (6.47 g, 15.8 mmol) was added to a 300 mL four-necked flask equipped with a thermometer, stirrer, nitrogen inlet tube, and condenser. Next, after the atmosphere in the flask was replaced with nitrogen, N-methyl-2-pyrrolidone (hereinafter referred to as NMP) (90.0 g) was added and stirred until uniform. 2,3,5-Tricarboxycyclopentylacetic acid dianhydride (3.53 g, 15.8 mmol) was added to the resulting solution at room temperature, and stirring was continued at that temperature for 24 hours to obtain a polyamic acid solution.
  • NMP N-methyl-2-pyrrolidone
  • N-methylpiperidine (1.9 ml) and acetic anhydride (4.5 ml) were added to the obtained polyamic acid solution, and the mixture was stirred at 75 ° C. for 4 hours for imidization. After cooling to room temperature, it was poured into a large amount of methanol, and the polymer was isolated by filtration. The obtained polymer was vacuum-dried overnight at 60 ° C. to obtain a white powder (yield 9.20 g, yield 97.5% by mass). Subsequently, the obtained polymer was redissolved in N, N-dimethylacetamide (DMAc) to obtain a 20% by mass resin solution.
  • DMAc N, N-dimethylacetamide
  • the resin solution was applied onto a substrate made of polyethylene terephthalate (PET) using a doctor blade (100 ⁇ m gap), dried at 100 ° C. for 30 minutes and further at 150 ° C. for 60 minutes, and then peeled off from the PET substrate. Thereafter, the film was further dried at 180 ° C. under reduced pressure for 8 hours to obtain a film having a thickness of 20 ⁇ m.
  • the ring closure rate (imidation rate) of the polymer and the weight average molecular weight of the polyamic acid and the polymer (polymer after imidization) were evaluated in the same manner as in Example 1. The imidation ratio of the obtained polymer was 98%.
  • the weight average molecular weight of the polyamic acid was 4.0 ⁇ 10 5
  • the weight average molecular weight of the obtained polymer was 5.2 ⁇ 10 5
  • the total light transmittance and YI value (initial) of the film were evaluated by the same method as in Example 1. Further, the YI value (after UV resistance test) and water absorption were evaluated by the following methods.
  • the YI value after the heat test the obtained film (5 cm square) was put in a hot air drier held at 150 ° C. for 100 hours to conduct a heat resistance acceleration test, and the YI value of the film after the heat test was calculated. It measured by the method similar to said (5). The results are shown in Table 1.
  • Example 14 A polymer composed of a white powder (yield 9.20 g, yield 97.5 mass%) and a film were obtained in the same manner as in Example 1 except that the temperature of the imidization reaction was 40 ° C. and the reaction time was 48 hours. .
  • the ring closure rate (imidation rate) and weight average molecular weight of the obtained polymer were evaluated in the same manner as in Example 1.
  • the imidation ratio of the obtained polymer was 95%.
  • the weight average molecular weight of the polyamic acid was 4.0 ⁇ 10 5
  • the total light transmittance, YI value initial, after heat resistance test, after UV resistance test
  • water absorption of the film were evaluated in the same manner as in Example 13. The results are shown in Table 1.
  • the characteristic absorption of the carbonyl group was 1781 cm ⁇ 1 and 1705 cm ⁇ 1 (see FIG. 13), and the weight average molecular weight was 120,000.
  • the imidation ratio of the obtained polymer was 96%.
  • the imidization ratio was calculated from the ratio of amic acid NH signal and aromatic ring hydrogen signal ratio in 1H-NMR. Further, various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • polyimide since polyimide has excellent solubility in organic solvents, a film can be formed without heat treatment at a high temperature (for example, about 400 ° C.) (excellent moldability). In addition, the obtained film has a high total light transmittance (transparency), a low YI value (yellowness) even after a heat test, a high refractive index, a high Tg and a high heat resistance. It turns out that it is excellent. From Examples 6 to 8 in Table 1, according to the present invention, polyimides and the like synthesized with specific monomers at specific molar ratios have high total light transmittance (transparency), high Tg, and excellent heat resistance.
  • the obtained polyimide since the obtained polyimide has the outstanding solubility with respect to the organic solvent, it can form a film, without heat-processing at high temperature (for example, about 400 degreeC). Further, from Table 1, the films of the present invention (Examples 1 to 4) have high transparency (total light transmittance), and there is little yellowing immediately after film formation and after UV resistance test, Furthermore, it turns out that a water absorption is low. Furthermore, it can be seen that the YI value (yellowness) is low and the non-coloring property is very excellent even after the heat resistance test for a longer time than in Examples 1 to 8.
  • Comparative Example 1 using 4,4'-diaminodiphenyl ether instead of the component (B) has a high YI value both immediately after film formation and after the heat resistance test, and is not suitable for an optical member.
  • Comparative Example 3 using cyclobutanetetracarboxylic dianhydride instead of component (A) the solubility of polyimide in an organic solvent is low, and polyimide cannot be deposited in the solvent to form a film. I understand.

Abstract

Disclosed is a low-cost polyimide film having excellent heat resistance, colorless transparency, formability and optical characteristics. The film contains a polyamic acid and/or a polyimide which is obtained by reacting (A) at least one acyl compound selected from the group consisting of 2,3,5-tricarboxycyclopentylacetic acid, 2,3,5-tricarboxycyclopentylacetic acid dianhydride and reactive derivatives of those, and (B) a specific aromatic imino-forming compound in such a manner that the molar ratio between (A) the acyl compound and (B) the aromatic imino-forming compound is within the range from 1.000:0.960 to 1.000:0.995.

Description

ポリイミド系材料、ポリイミドフィルム及びそれらの製造方法POLYIMIDE MATERIAL, POLYIMIDE FILM AND METHOD FOR PRODUCING THEM
 本発明は、ポリイミド系材料、ポリイミドフィルム及びそれらの製造方法に関する。 The present invention relates to a polyimide material, a polyimide film, and a method for producing them.
 一般に、芳香族テトラカルボン酸二無水物と芳香族ジアミンから得られる全芳香族ポリイミドは、分子の剛直性や、分子が共鳴安定化していること、強い化学結合を有すること等に起因して、優れた耐熱性、機械的特性、電気特性、耐酸化・加水分解性を有しており、電気、電池、自動車および航空宇宙産業などの分野において、フィルム、コーティング剤、成型部品、絶縁材料として幅広く使用されている。 一方、光学部材に使用される材料には、優れた耐熱性、機械的特性等に加えて、無色透明性、易成形(成型)性、光学特性に優れることが必要とされる。 ここで、例えば、Kapton(東レ・デュポン社製)に代表される全芳香族ポリイミドフィルムは、上述のとおり、優れた耐熱性等を有し、機械、電気等の分野には適するものの、着色性が高く、また、成形性が低いことから、光学材料としての使用には制限があるという問題がある。 すなわち、上記フィルムは、分子間あるいは分子内の電荷移動相互作用に由来する可視光領域の吸収により、黄色から褐色に着色しているという問題がある。また、上記フィルムは、フィルム状に成形するのに、高温での熱処理を要するなど、プロセス負荷が高く成形性が低いという問題がある。具体的には、上記フィルムを形成するポリイミドは有機溶媒に対する溶解性が低く、ポリイミドをそのまま用いてフィルムを形成することができない。そのため、前記ポリイミドの前駆体であるポリアミック酸の溶液を用い、基板への塗布などによりフィルム状の塗膜とした後、該塗膜を400℃程度の高温で熱処理することにより、塗膜中のポリアミック酸をイミド化し、ポリイミドからなるフィルムを得る必要がある。 In general, wholly aromatic polyimide obtained from aromatic tetracarboxylic dianhydride and aromatic diamine is due to the rigidity of the molecule, the fact that the molecule is resonance-stabilized, the strong chemical bond, etc. Excellent heat resistance, mechanical properties, electrical properties, oxidation resistance and hydrolysis resistance. Widely used as film, coating agent, molded part, insulation material in fields such as electricity, battery, automobile and aerospace industry. in use. On the other hand, materials used for optical members are required to be excellent in colorless transparency, easy moldability (molding), and optical characteristics in addition to excellent heat resistance and mechanical characteristics. Here, for example, the wholly aromatic polyimide film represented by Kapton (manufactured by Toray DuPont) has excellent heat resistance as described above, and is suitable for the fields of machinery, electricity, etc. In addition, there is a problem in that use as an optical material is limited because of high and low moldability. That is, there is a problem that the film is colored from yellow to brown due to absorption in the visible light region derived from intermolecular or intramolecular charge transfer interaction. In addition, the film has a problem that the process load is high and the moldability is low, for example, heat treatment at a high temperature is required to form the film. Specifically, the polyimide forming the film has low solubility in an organic solvent, and the film cannot be formed using the polyimide as it is. Therefore, using a solution of polyamic acid that is a precursor of the polyimide, and forming a film-like coating film by coating on a substrate, the coating film is heat-treated at a high temperature of about 400 ° C. It is necessary to imidize polyamic acid to obtain a film made of polyimide.
 このような問題を解決するために、非着色性や透明性を向上させたり、有機溶媒に対する可溶性を付与して成形性を向上させてなるポリイミドが種々提案されている。 例えば、パーフルオロアルキル基を有する特定の繰り返し構造からなる(全芳香族)ポリイミド共重合体が提案されている(特許文献1)。 また、シクロブタンテトラカルボン酸二無水物及び1,2,4,5-シクロヘキサンテトラカルボン酸二無水物と4,4’-ジアミノジフェニルエーテル等の芳香族ジアミンとから得られるポリイミドが提案されている(非特許文献1)。このポリイミドは、芳香族と脂肪族の二無水物を併用してなる、半芳香族のポリイミドである。 さらに、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物およびこれらの反応性誘導体からなる群より選ばれる少なくとも1種のアシル含有化合物と、特定の式で表される芳香族ジアミンとを反応させてなるポリイミド樹脂が提案されている(特許文献2、3)。  
特許3131940号公報 特開2006-199945号公報 特開2007-326962号公報 High Performance Polymer 19、P175-193 (2007)
In order to solve such problems, various types of polyimides have been proposed in which non-coloring properties and transparency are improved, and solubility in an organic solvent is imparted to improve moldability. For example, a (fully aromatic) polyimide copolymer having a specific repeating structure having a perfluoroalkyl group has been proposed (Patent Document 1). In addition, a polyimide obtained from cyclobutanetetracarboxylic dianhydride and 1,2,4,5-cyclohexanetetracarboxylic dianhydride and an aromatic diamine such as 4,4′-diaminodiphenyl ether has been proposed (non- Patent Document 1). This polyimide is a semi-aromatic polyimide obtained by using an aromatic and an aliphatic dianhydride in combination. And at least one acyl-containing compound selected from the group consisting of 1,2,4,5-cyclohexanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, and reactive derivatives thereof; A polyimide resin obtained by reacting an aromatic diamine represented by a specific formula has been proposed (Patent Documents 2 and 3).
Japanese Patent No. 3131940 JP 2006-199945 A JP 2007-326962 A High Performance Polymer 19, P175-193 (2007)
 特許文献1に記載のポリイミド共重合体は、耐熱性に優れ、透明性や有機溶媒に対する溶解性は改良されているものの、耐光性が低く、またコストが高いという問題がある。 非特許文献1に記載のポリイミドは、耐熱性に優れており、従来のポリイミドに比して透明性が改良されているものの、光学材料として用いるには、未だ透明性が不十分であるという問題がある。また、このポリイミドは、有機溶媒に対する溶解性が低いままであるため、フィルム状に成形するには、前駆体であるポリアミック酸を用いた高温での熱処理(熱イミド化)が必要であり、プロセス負荷が大きく成形性が悪いという課題は残されたままである。 特許文献2、3に記載のポリイミド樹脂は、透明性が改良されているものの、使用するジアミンモノマーの酸化に起因して、フィルムが初期または経時的に着色するという問題がある。この点、上記文献に記載されたポリイミド樹脂等からなるフィルムは、いずれも、光学部材として使用するには非着色性が不十分であるという問題がある。 さらに、光学部材の材料としてポリイミドを使用する場合における共通の課題としては、使用するジアミンモノマーの酸化に起因して、フィルムが初期または経時的に着色するという問題がある。この点、上記の各文献に記載のポリイミド樹脂等からなるフィルムは、光学部材として使用するには非着色性が不十分である。 一方、光学特性に優れた素材として、ポリアリレート、ポリカーボネートが挙げられるが、これらの素材のガラス移転点は200℃以下であり、耐熱性に限界があり、半田耐性などは期待できず、プリント配線基板用の材料としては十分な性能を有していない。 なお、芳香族ポリマー以外の光学部材用の材料としては、ポリアクリル酸系樹脂、エポキシ系樹脂や、シリコン系樹脂が提案されているが、いずれも光学部材に要求される上記特性をすべて満たすものではなかった。 ポリアクリル酸系樹脂やエポキシ系樹脂では、透明性、光学特性に優れるものの、耐熱性が低いという問題がある。特に近年、発光ダイオード、太陽電池、フラットディスプレー等の開発に伴い、高輝度化や発光デバイスの短波長化が進んでおり、光学部材はより高温度、高エネルギーにさらされる。これらの樹脂では、このような要求に応えることができない。 一方、シリコン系樹脂は、耐熱性には優れるものの、他部材との密着性が低く、基板等から剥離することによりデバイスの信頼性を低下させることがあり、また、屈折率が低いことに起因して、光の取り出し効率が低いという問題がある。 本発明は、上述の問題に鑑みてなされたものであり、耐熱性、無色透明性(非着色性、透明性)、成形性(フィルム状に成形する際の容易さ、プロセス負荷の小ささ)、光学特性に優れ、低コストであるポリイミド系材料、該ポリイミド系材料を含む組成物、該ポリイミド系材料からなるポリイミドフィルム、並びに該ポリイミド系材料及び該フィルムの製造方法を提供することを目的とする。 The polyimide copolymer described in Patent Document 1 has excellent heat resistance and improved transparency and solubility in organic solvents, but has problems of low light resistance and high cost. The polyimide described in Non-Patent Document 1 is excellent in heat resistance and has improved transparency as compared with conventional polyimides, but is still insufficient in transparency for use as an optical material. There is. In addition, since this polyimide remains low in solubility in organic solvents, heat treatment (thermal imidation) at a high temperature using a polyamic acid as a precursor is necessary to form it into a film. The problem that the load is large and the moldability is poor remains. Although the polyimide resins described in Patent Documents 2 and 3 have improved transparency, there is a problem that the film is colored initially or over time due to oxidation of the diamine monomer used. In this respect, any film made of a polyimide resin or the like described in the above document has a problem that the non-coloring property is insufficient for use as an optical member. Furthermore, a common problem in the case of using polyimide as the material of the optical member is that the film is colored initially or over time due to oxidation of the diamine monomer used. In this respect, the film made of the polyimide resin or the like described in each of the above documents is insufficient in non-coloring properties for use as an optical member. On the other hand, polyarylate and polycarbonate are listed as materials with excellent optical properties. However, the glass transfer point of these materials is 200 ° C or less, the heat resistance is limited, and solder resistance is not expected. It does not have sufficient performance as a material for a substrate. Polyacrylic acid resins, epoxy resins, and silicon resins have been proposed as materials for optical members other than aromatic polymers, all of which satisfy all of the characteristics required for optical members. It wasn't. Polyacrylic acid resins and epoxy resins have excellent transparency and optical properties, but have a problem of low heat resistance. Particularly in recent years, with the development of light-emitting diodes, solar cells, flat displays, etc., higher brightness and shorter wavelengths of light-emitting devices are progressing, and optical members are exposed to higher temperatures and higher energy. These resins cannot meet such requirements. On the other hand, although silicon resin is excellent in heat resistance, it has low adhesion to other members, and may deteriorate device reliability by peeling from the substrate, etc. Thus, there is a problem that the light extraction efficiency is low. The present invention has been made in view of the above-described problems, and is heat resistant, colorless and transparent (non-coloring and transparency), and moldability (ease when forming into a film and small process load). An object of the present invention is to provide a polyimide material having excellent optical properties and low cost, a composition containing the polyimide material, a polyimide film comprising the polyimide material, and a method for producing the polyimide material and the film. To do.
 本発明者は、上記課題を解決するために鋭意検討した結果、特定のアシル化合物と、特定の芳香族イミノ形成化合物(ジアミン及び/又はジイソシアナート)とから得られるポリアミック酸及び/又はポリイミドを含むポリイミドフィルムによると、本発明の上記目的を達成することができることを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventor obtained a polyamic acid and / or polyimide obtained from a specific acyl compound and a specific aromatic imino-forming compound (diamine and / or diisocyanate). It has been found that the above object of the present invention can be achieved by the polyimide film to be included, and the present invention has been completed.
 すなわち、本発明は、以下の[1]~[14]を提供するものである。
[1] (A)下記式(1)で表される2,3,5-トリカルボキシシクロペンチル酢酸、下記式(2)で表される2,3,5-トリカルボキシシクロペンチル酢酸二無水物、及びこれらの反応性誘導体からなる群より選ばれる少なくとも1種のアシル化合物と、(B)下記式(3)で表される芳香族イミノ形成化合物と、を反応させて得られるポリアミック酸及び/又はポリイミドからなることを特徴とするポリイミド系材料。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(式(3)中、Xは-NHまたは-N=C=O、-NHSi(R25)(R26)(R27)であり、Yは直接結合、-CH-、-O-、-S-、-C(CH-から選ばれる1つの基であり、Zは直接結合、-CH-、-O-、-S-、-C(CH-、>C=O、-SO-から選ばれる1つの基であり、R~R16は、各々独立して、水素、アルキル基、ビニル基、アリール基、ハロゲンから選ばれる基であり、R25~R27は、各々独立して、炭素数1~15のアルキル基である。)
[2] 上記(B)芳香族イミノ形成化合物は、上記式(3)において、結合基X、Y、及びZがすべてパラ位で結合してなる化合物である上記[1]に記載のポリイミド系材料。
[3] ポリアミック酸及び/又はポリイミドのポリスチレン換算の重量平均分子量が50,000~500,000である上記[1]又は[2]に記載のポリイミド系材料。
[4] ポリアミック酸及び/又はポリイミドは、(A)アシル化合物と(B)芳香族イミノ形成物とのモル比((A)アシル化合物:(B)芳香族イミノ形成物)が1.000:0.960~1.000:0.995となるように反応させて得られる、上記[1]~[3]のいずれかに記載のポリイミド系材料。
[5] ポリアミック酸及び/又はポリイミドは、芳香族イミノ形成化合物として、さらにハメット則により得られる置換基定数の合計σ(ただし、該合計σはアミノ基を基準とし、アミノ基自身の置換基定数は含まないものとする。)が、-0.11を超え、2.0以下の範囲内である芳香族ジアミン化合物と反応させて得られる、上記[1]~[4]のいずれかに記載のポリイミド系材料。
[6] 上記[1]~[5]のいずれかに記載のポリイミド系材料、及び有機溶媒を含有するポリイミド系樹脂組成物。
[7] 上記[1]~[5]のいずれかに記載のポリイミド系材料を含むポリイミドフィルム。
[8] 光学部材用である上記[7]に記載のポリイミドフィルム。
[9] プリント配線用基板用である上記[7]に記載のポリイミドフィルム。
[10] (A)下記式(1)で表される2,3,5-トリカルボキシシクロペンチル酢酸、下記式(2)で表される2,3,5-トリカルボキシシクロペンチル酢酸二無水物、及びこれらの反応性誘導体からなる群より選ばれる少なくとも1種のアシル化合物と、(B)下記式(3)で表される芳香族イミノ形成化合物と、を有機溶媒中で反応させて、ポリアミック酸を得る工程と、該ポリアミック酸の少なくとも一部をイミド化する工程を含むことを特徴とするポリイミド系材料の製造方法。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
(式(3)中、Xは-NHまたは-N=C=O、-NHSi(R25)(R26)(R27)であり、Yは直接結合、-CH-、-O-、-S-、-C(CH-から選ばれる1つの基であり、Zは直接結合、-CH-、-O-、-S-、-C(CH-、>C=O、-SO-から選ばれる1つの基であり、R~R16は、各々独立して、水素、アルキル基、ビニル基、アリール基、ハロゲンから選ばれる基であり、R25~R27は、各々独立して、炭素数1~15のアルキル基である。)
[11] ポリアミック酸の少なくとも一部を脂環族三級モノアミンの存在下でイミド化する上記[10]記載のポリイミド系材料の製造方法。
[12] 上記脂環族三級モノアミンが下記式(6)で表される化合物である上記[11]に記載のポリイミド系材料の製造方法。
Figure JPOXMLDOC01-appb-C000014
(式(6)中、Rは、炭素数1~4のアルキル基、Xは酸素原子又は硫黄原子、lは0又は1、m及びnは、各々独立して、0~2の整数である。)
[13] さらに、無水酢酸、無水プロピオン酸、無水安息香酸のいずれかの酸無水物、これらの酸無水物に相当する酸クロライド類、及びカルボジイミド化合物からなる群より選ばれる少なくとも1種の脱水剤を用いる上記[11]または[12]に記載のポリイミド系材料の製造方法。
[14] 上記[10]~[13]のいずれか1項に記載の方法で得られたポリイミド系材料及び有機溶媒を含む溶液を基板上に塗布して塗膜を形成する工程と、該塗膜から前記有機溶媒を蒸発除去させることにより除去してフィルムを得る工程とを含む、ポリイミドフィルムの製造方法。
That is, the present invention provides the following [1] to [14].
[1] (A) 2,3,5-tricarboxycyclopentylacetic acid represented by the following formula (1), 2,3,5-tricarboxycyclopentylacetic acid dianhydride represented by the following formula (2), and Polyamic acid and / or polyimide obtained by reacting at least one acyl compound selected from the group consisting of these reactive derivatives and (B) an aromatic imino-forming compound represented by the following formula (3) A polyimide material characterized by comprising:
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(In the formula (3), X is —NH 2 or —N═C═O, —NHSi (R 25 ) (R 26 ) (R 27 ), Y is a direct bond, —CH 2 —, —O— , —S—, —C (CH 3 ) 2 —, wherein Z is a direct bond, —CH 2 —, —O—, —S—, —C (CH 3 ) 2 —,> C = O, -SO 2 - is one group selected from, R 1 ~ R 16 are each independently hydrogen, an alkyl group, a vinyl group, an aryl group, a group selected from halogen, R 25 R 27 is each independently an alkyl group having 1 to 15 carbon atoms.)
[2] The polyimide system according to [1], wherein the aromatic imino-forming compound (B) is a compound formed by bonding all of the bonding groups X, Y, and Z at the para position in the formula (3). material.
[3] The polyimide material according to the above [1] or [2], wherein the polyamic acid and / or the polyimide has a polystyrene equivalent weight average molecular weight of 50,000 to 500,000.
[4] The polyamic acid and / or polyimide has a molar ratio of (A) acyl compound to (B) aromatic imino formation ((A) acyl compound: (B) aromatic imino formation) is 1.000: The polyimide material according to any one of the above [1] to [3], which is obtained by reacting such that 0.960 to 1.000: 0.995.
[5] The polyamic acid and / or the polyimide is an aromatic imino-forming compound, and further the total σ of substituent constants obtained by Hammett's rule (where the total σ is based on the amino group and the substituent constant of the amino group itself) In any one of [1] to [4] above, which is obtained by reacting with an aromatic diamine compound having a value exceeding −0.11 and not more than 2.0. Polyimide material.
[6] A polyimide resin composition comprising the polyimide material according to any one of [1] to [5] above and an organic solvent.
[7] A polyimide film comprising the polyimide material according to any one of [1] to [5].
[8] The polyimide film according to [7], which is for an optical member.
[9] The polyimide film according to [7], which is for a printed wiring board.
[10] (A) 2,3,5-tricarboxycyclopentylacetic acid represented by the following formula (1), 2,3,5-tricarboxycyclopentylacetic acid dianhydride represented by the following formula (2), and At least one acyl compound selected from the group consisting of these reactive derivatives and (B) an aromatic imino-forming compound represented by the following formula (3) are reacted in an organic solvent to give a polyamic acid. A method for producing a polyimide-based material, comprising a step of obtaining and imidizing at least a part of the polyamic acid.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
(In the formula (3), X is —NH 2 or —N═C═O, —NHSi (R 25 ) (R 26 ) (R 27 ), Y is a direct bond, —CH 2 —, —O— , —S—, —C (CH 3 ) 2 —, wherein Z is a direct bond, —CH 2 —, —O—, —S—, —C (CH 3 ) 2 —,> C = O, -SO 2 - is one group selected from, R 1 ~ R 16 are each independently hydrogen, an alkyl group, a vinyl group, an aryl group, a group selected from halogen, R 25 ~ R 27 are each independently an alkyl group having 1 to 15 carbon atoms.)
[11] The method for producing a polyimide material according to [10], wherein at least a part of the polyamic acid is imidized in the presence of an alicyclic tertiary monoamine.
[12] The method for producing a polyimide material according to [11], wherein the alicyclic tertiary monoamine is a compound represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000014
(In the formula (6), R is an alkyl group having 1 to 4 carbon atoms, X is an oxygen atom or sulfur atom, l is 0 or 1, and m and n are each independently an integer of 0 to 2. .)
[13] Furthermore, at least one dehydrating agent selected from the group consisting of acetic anhydride, propionic anhydride, benzoic anhydride, acid chlorides corresponding to these anhydrides, and carbodiimide compounds The method for producing a polyimide material according to the above [11] or [12], wherein
[14] A step of applying a solution containing the polyimide material obtained by the method according to any one of [10] to [13] above and an organic solvent on a substrate to form a coating film; And a step of removing the organic solvent by evaporating and removing the film from the film to obtain a film.
 本発明のポリアミック酸及び/又はポリイミド(以下、「ポリイミド等」ともいう。)からなるポリイミド系材料は、特定のアシル化合物と芳香族イミノ形成化合物とから得られるポリアミック酸及び/又はポリイミドからなるため、耐熱性、透明性に優れ、着色(黄変)が少なく、低コストである。 また、本発明では、上記特定の成分から得られるポリイミド等が有機溶媒に対して優れた溶解性を有するため、そのまま有機溶媒に溶解させて、フィルムを形成することができる。この場合、前記ポリイミド等及び有機溶媒を含む溶液を基板等に塗布して塗膜を形成した後、塗膜中の溶媒が蒸発する程度の温度で加熱すればよく、例えばポリアミック酸及び有機溶媒を含む溶液を用いて熱イミド化する場合のように400℃を超える高温で熱処理する必要がないため、プロセス負荷の低減を達成することができる。 本発明のポリイミド系材料、及びそれを含むポリイミドフィルムは、発光ダイオード周辺材料、太陽電池周辺材料、フラットディスプレー周辺材料、電子回路周辺材料に使用することができる。具体的には、耐熱透明フィルム、導電性透明フィルム等の光学部材として使用することができる。また、フラットディスプレー周辺材料としては、液晶ディスプレイ、プラズマディスプレイ、有機エレクトロルミネッセンスディスプレイ、電子ペーパーなどの透明フレキシブルディスプレイ用基板が挙げられる。また、電子回路周辺材料としては、プリント配線基板形成用材料およびプリント配線用基板を挙げることができ、具体的には、フレキシブルプリント配線用基板、リジットプリント配線用基板、光電子プリント配線用基板、COF(Chip on Film)用基板、TAB(Tape Automated Bonding)用基板等に使用することができる。 The polyimide material comprising the polyamic acid and / or polyimide (hereinafter also referred to as “polyimide etc.”) of the present invention is composed of a polyamic acid and / or polyimide obtained from a specific acyl compound and an aromatic imino forming compound. Excellent heat resistance and transparency, little coloring (yellowing) and low cost. In the present invention, since the polyimide obtained from the specific component has excellent solubility in an organic solvent, it can be dissolved in an organic solvent as it is to form a film. In this case, after applying a solution containing the polyimide or the like and an organic solvent to a substrate or the like to form a coating film, it may be heated at a temperature at which the solvent in the coating film evaporates. Since it is not necessary to perform heat treatment at a high temperature exceeding 400 ° C. as in the case of thermal imidization using a solution containing the same, a reduction in process load can be achieved. The polyimide material of the present invention and the polyimide film containing the polyimide material can be used for light emitting diode peripheral materials, solar cell peripheral materials, flat display peripheral materials, and electronic circuit peripheral materials. Specifically, it can be used as an optical member such as a heat-resistant transparent film and a conductive transparent film. Examples of the flat display peripheral material include substrates for transparent flexible displays such as liquid crystal displays, plasma displays, organic electroluminescence displays, and electronic paper. Examples of the electronic circuit peripheral material include a printed wiring board forming material and a printed wiring board. Specifically, the flexible printed wiring board, the rigid printed wiring board, the optoelectronic printed wiring board, the COF (Chip on Film) substrate, TAB (Tape Automated Bonding) substrate and the like.
実施例1で得られたポリマーのIRスペクトルを示す図である。1 is a diagram showing an IR spectrum of a polymer obtained in Example 1. FIG. 実施例2で得られたポリマーのIRスペクトルを示す図である。2 is a graph showing an IR spectrum of the polymer obtained in Example 2. FIG. 実施例3で得られたポリマーのIRスペクトルを示す図である。FIG. 4 is a diagram showing an IR spectrum of the polymer obtained in Example 3. 実施例4で得られたポリマーのIRスペクトルを示す図である。FIG. 6 is a graph showing an IR spectrum of the polymer obtained in Example 4. 実施例6で得られたポリマーのIRスペクトルを示す図である。FIG. 6 is a graph showing an IR spectrum of the polymer obtained in Example 6. 実施例7で得られたポリマーのIRスペクトルを示す図である。6 is a graph showing an IR spectrum of the polymer obtained in Example 7. FIG. 実施例8で得られたポリマーのIRスペクトルを示す図である。6 is a diagram showing an IR spectrum of the polymer obtained in Example 8. FIG. 実施例9で得られたポリマーのIRスペクトルを示す図である。FIG. 6 is a graph showing an IR spectrum of the polymer obtained in Example 9. 実施例10で得られたポリマーのIRスペクトルを示す図である。6 is a diagram showing an IR spectrum of the polymer obtained in Example 10. FIG. 実施例11で得られたポリマーのIRスペクトルを示す図である。FIG. 6 is a graph showing an IR spectrum of the polymer obtained in Example 11. 実施例12で得られたポリマーのIRスペクトルを示す図である。6 is a graph showing an IR spectrum of the polymer obtained in Example 12. FIG. 比較例1で得られたポリマーのIRスペクトルを示す図である。2 is a graph showing an IR spectrum of the polymer obtained in Comparative Example 1. FIG. 比較例2で得られたポリマーのIRスペクトルを示す図である。6 is a diagram showing an IR spectrum of a polymer obtained in Comparative Example 2. FIG.
 本発明のポリイミド系材料は、(A)特定のアシル化合物と、(B)特定のイミノ形成化合物とから得られるポリアミック酸及び/又はポリイミドからなるものである。 まず、(A)成分及び(B)成分について説明する。[(A)成分] (A)成分は、下記式(1)で表される2,3,5-トリカルボキシシクロペンチル酢酸、下記式(2)で表される2,3,5-トリカルボキシシクロペンチル酢酸二無水物、及びこれらの反応性誘導体からなる群より選ばれる少なくとも1種のアシル化合物である。 このようなアシル化合物を用いることにより、有機溶媒に対する可溶性に優れたポリイミド等を得ることができ、さらに耐熱性が高く、着色の少ないフィルムを得ることができる。  
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
The polyimide material of the present invention comprises a polyamic acid and / or polyimide obtained from (A) a specific acyl compound and (B) a specific imino forming compound. First, (A) component and (B) component are demonstrated. [Component (A)] The component (A) includes 2,3,5-tricarboxycyclopentylacetic acid represented by the following formula (1), 2,3,5-tricarboxycyclopentyl represented by the following formula (2) It is at least one acyl compound selected from the group consisting of acetic dianhydride and reactive derivatives thereof. By using such an acyl compound, a polyimide having excellent solubility in an organic solvent can be obtained, and a film having high heat resistance and little coloring can be obtained.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 上記反応性誘導体としては、2,3,5-トリカルボキシシクロペンチル酢酸モノメチルエステル、2,3,5-トリカルボキシシクロペンチル酢酸ジメチルエステル、2,3,5-トリカルボキシシクロペンチル酢酸トリメチルエステル、2,3,5-トリカルボキシシクロペンチル酢酸テトラメチルエステル、2,3,5-トリカルボキシシクロペンチル酢酸モノエチルエステル、2,3,5-トリカルボキシシクロペンチル酢酸ジエチルエステル、2,3,5-トリカルボキシシクロペンチル酢酸トリエチルエステル、2,3,5-トリカルボキシシクロペンチル酢酸テトラエチルエステル、また上記アルキルエステルが無置換フェニルエステルもしくは各種パラ置換フェニルエステルに置き換わったエステル化物などが挙げられる。その他の反応性誘導体としては、2,3,5-トリカルボキシシクロペンチル酢酸テトラクロライド、2,3,5-トリカルボキシシクロペンチル酢酸ジクロライドジエステル(エステルのアルコールまたはフェノール成分は上記と同じ)などの酸クロライドが挙げられる。 (A)成分としては、2,3,5-トリカルボキシシクロペンチル酢酸二無水物が好ましく用いられる。無水物である2,3,5-トリカルボキシシクロペンチル酢酸二無水物を(A)成分として用いると、無水物ではないものを用いる場合に比して、低温でポリアミック酸を合成することができる。 なお、これらアシル化合物は、単独であるいは2種以上混合して用いることができる。 Examples of the reactive derivative include 2,3,5-tricarboxycyclopentylacetic acid monomethyl ester, 2,3,5-tricarboxycyclopentylacetic acid dimethyl ester, 2,3,5-tricarboxycyclopentylacetic acid trimethyl ester, 5-tricarboxycyclopentyl acetic acid tetramethyl ester, 2,3,5-tricarboxycyclopentyl acetic acid monoethyl ester, 2,3,5-tricarboxycyclopentyl acetic acid diethyl ester, 2,3,5-tricarboxycyclopentyl acetic acid triethyl ester, Examples include 2,3,5-tricarboxycyclopentylacetic acid tetraethyl ester, and esterified products in which the above alkyl ester is replaced with unsubstituted phenyl ester or various para-substituted phenyl esters.Other reactive derivatives include acid chlorides such as 2,3,5-tricarboxycyclopentylacetic acid tetrachloride and 2,3,5-tricarboxycyclopentylacetic acid dichloride diester (the alcohol or phenol component of the ester is the same as above). Can be mentioned. As the component (A), 2,3,5-tricarboxycyclopentylacetic acid dianhydride is preferably used. When 2,3,5-tricarboxycyclopentylacetic acid dianhydride, which is an anhydride, is used as component (A), a polyamic acid can be synthesized at a lower temperature than when a non-anhydride is used. These acyl compounds can be used alone or in combination of two or more.
[(B)成分] (B)成分は、(B-1)成分として、下記式(3)で表される芳香族イミノ形成化合物を含む。  
Figure JPOXMLDOC01-appb-C000017
(式(3)中、Xは-NHまたは-N=C=O、-NHSi(R25)(R26)(R27)であり、Yは直接結合(単結合)、-CH-、-O-、-S-、-C(CH-から選ばれる1つの基であり、Zは直接結合、-CH-、-O-、-S-、-C(CH-、>C=O、-SO-から選ばれる1つの基であり、R~R16は、各々独立して、水素原子、アルキル基、ビニル基、アリール基、ハロゲンから選ばれる基であり、R25~R27は、各々独立して、炭素数1~15のアルキル基である。) このような特定の式で表される、ベンゼン環を4個有する芳香族イミノ形成化合物を用いることにより、着色の少ないフィルムを得ることができる。ここで、「イミノ形成化合物」とは、(A)成分と反応してイミノを形成するための化合物をいう。
[Component (B)] The component (B) includes an aromatic imino forming compound represented by the following formula (3) as the component (B-1).
Figure JPOXMLDOC01-appb-C000017
(In the formula (3), X is -NH 2 or -N = C = O, -NHSi ( R 25) (R 26) (R 27), Y is a direct bond (single bond), - CH 2 - , —O—, —S—, —C (CH 3 ) 2 —, wherein Z is a direct bond, —CH 2 —, —O—, —S—, —C (CH 3 ). 2 —,> C═O, —SO 2 —, wherein R 1 to R 16 are each independently a group selected from a hydrogen atom, an alkyl group, a vinyl group, an aryl group, and a halogen. R 25 to R 27 are each independently an alkyl group having 1 to 15 carbon atoms.) An aromatic imino-forming compound having four benzene rings represented by such a specific formula By using it, a film with little coloring can be obtained. Here, the “imino forming compound” refers to a compound for reacting with the component (A) to form imino.
 上記芳香族イミノ形成化合物としては、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(3-アミノ-α,α-ジメチルベンジル)フェニル]プロパン、2,2-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェニル]プロパン、2,2-ビス[4-(3-イソシアナト-α,α-ジメチルベンジル)フェニル]プロパン、2,2-ビス[4-(4-イソシアナト-α,α-ジメチルベンジル)フェニル]プロパン、2,2-ビス[4-(3-トリメチルシリルアミノ-α,α-ジメチルベンジル)フェニル]プロパン、2,2-ビス[4-(4-トリメチルシリルアミノ-α,α-ジメチルベンジル)フェニル]プロパン等が挙げられる。これらのうち、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノ-α,α-ジメチルベンジル)フェニル]プロパン、2,2-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェニル]プロパンが好ましく用いられる。 Examples of the aromatic imino-forming compound include bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, and bis [4- (3-aminophenoxy) phenyl] ketone. Bis [4- (4-aminophenoxy) phenyl] ketone, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4′-bis (4-aminophenoxy) biphenyl, bis [4- (3- Aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] propane, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, 2 , 2-bis [4- (3-amino-α, α-dimethylbenzyl) phenyl] propane, 2,2-bis [4- (4- Amino-α, α-dimethylbenzyl) phenyl] propane, 2,2-bis [4- (3-isocyanato-α, α-dimethylbenzyl) phenyl] propane, 2,2-bis [4- (4-isocyanato-) α, α-dimethylbenzyl) phenyl] propane, 2,2-bis [4- (3-trimethylsilylamino-α, α-dimethylbenzyl) phenyl] propane, 2,2-bis [4- (4-trimethylsilylamino-) α, α-dimethylbenzyl) phenyl] propane and the like. Of these, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4 ′ -Bis (4-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-Amino-α, α-dimethylbenzyl) phenyl] propane and 2,2-bis [4- (4-amino-α, α-dimethylbenzyl) phenyl] propane are preferably used.
 なお、(B-1)成分としては、上記式(3)において、X、Y、及びZで表される結合基がパラ位で結合してなる芳香族イミノ形成化合物、すなわち、下記式(4)で表される芳香族イミノ形成化合物が好適である。このような化合物を用いることにより、より耐熱性が高く着色の少ないフィルムを得ることができる。上述の芳香族イミノ形成化合物のうち、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェニル]プロパンがより好ましく用いられる。  
Figure JPOXMLDOC01-appb-C000018
(式(4)中、R~R16、X、Y、及びZは、上記式(3)中と同様である。)
As the component (B-1), an aromatic imino-forming compound in which the bonding groups represented by X, Y, and Z in the above formula (3) are bonded at the para position, that is, the following formula (4) Aromatic imino-forming compounds represented by By using such a compound, a film having higher heat resistance and less coloring can be obtained. Among the above-mentioned aromatic imino forming compounds, bis [4- (4-aminophenoxy) phenyl] sulfone, 4,4′-bis (4-aminophenoxy) biphenyl, 2,2-bis [4- (4-amino) Phenoxy) phenyl] propane and 2,2-bis [4- (4-amino-α, α-dimethylbenzyl) phenyl] propane are more preferably used.
Figure JPOXMLDOC01-appb-C000018
(In the formula (4), R 1 ~ R 16, X, Y, and Z are the same as in the formula (3).)
 なお、これらイミノ形成化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。 These imino forming compounds can be used alone or in combination of two or more.
 本発明のポリイミド系材料は、芳香族イミノ形成化合物として上記式(3)で表される化合物((B-1)成分)に加えて、ハメット則により得られる置換基定数の合計σ(ただし、該合計σは、アミノ基を基準とし、アミノ基自身の置換基定数は含まないものとする。)が-0.11を超え、2.0以下の範囲内にある芳香族ジアミン化合物((B-2)成分)を用いることができる。該芳香族ジアミン化合物としては、好ましくは、σが-0.11を超え、1.6以下の範囲内にある芳香族ジアミン化合物であり、より好ましくは、σが-0.11を超え、0.8以下の範囲内にある芳香族ジアミン化合物である。
 この場合、(B-1)成分としては、ハメット則により得られる置換基定数の合計σ(ただし、該合計σはアミノ基を基準とし、アミノ基自身の置換基定数は含まないものとする。)が-0.70以上、-0.11以下の範囲内にある芳香族ジアミン化合物が用いられる。
 (B-1)成分と(B-2)成分との前記の合計σの差は、好ましくは0.1以上、より好ましくは0.2以上である。 (B-2)成分の好適な例としては下記式(5)で表される芳香族ジアミン化合物が挙げられる。  
Figure JPOXMLDOC01-appb-C000019
(式(5)中、Xは-NHであり、Yは直接結合、>C=O、-SO-、-C(CF-から選ばれる1つの基であり、R17~R24は、各々独立して、水素原子、アルキル基、フッ素化アルキル基、アルコキシ基、ビニル基、アリール基、ハロゲンから選ばれる基である。)
In addition to the compound represented by the above formula (3) (component (B-1)) as an aromatic imino-forming compound, the polyimide-based material of the present invention has a total σ of substituent constants obtained by Hammett's rule (where, The total σ is based on the amino group and does not include the substituent constant of the amino group itself. The aromatic diamine compound ((B -2) Component) can be used. The aromatic diamine compound is preferably an aromatic diamine compound having σ exceeding −0.11 and not more than 1.6, more preferably σ exceeding −0.11 and 0 It is an aromatic diamine compound within the range of .8 or less.
In this case, as the component (B-1), the total σ of substituent constants obtained by Hammett's rule (however, the total σ is based on the amino group and does not include the substituent constant of the amino group itself). ) Is in the range of −0.70 or more and −0.11 or less.
The difference in total σ between the component (B-1) and the component (B-2) is preferably 0.1 or more, more preferably 0.2 or more. Preferable examples of the component (B-2) include aromatic diamine compounds represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000019
(In the formula (5), X represents —NH 2 , Y represents a direct bond,> C═O, —SO 2 —, one group selected from —C (CF 3 ) 2 —, and R 17 to R 24 is each independently a group selected from a hydrogen atom, an alkyl group, a fluorinated alkyl group, an alkoxy group, a vinyl group, an aryl group, and a halogen.)
 (B-2)成分の好ましい例としては、2,2’-ビス(トリフルオロメチル)ベンジジン、2,2’-ジメトキシベンジジン、2,2’-ジメチルベンジジン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、及び1,1,1,3,3,3-ヘキサフルオロイソプロピリデンビスアニリンからなる群より選ばれる少なくとも一種の芳香族ジアミン化合物が挙げられる。特に好ましい例としては、2,2’-ビス(トリフルオロメチル)ベンジジン、2,2’-ジメチルベンジジン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホンが挙げられる。 (B-2)成分は、1種単独で、あるいは2種以上混合して用いることができる。 Preferred examples of the component (B-2) include 2,2′-bis (trifluoromethyl) benzidine, 2,2′-dimethoxybenzidine, 2,2′-dimethylbenzidine, 3,3′-diaminodiphenylsulfone, Selected from the group consisting of 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, and 1,1,1,3,3,3-hexafluoroisopropylidenebisaniline The at least 1 type of aromatic diamine compound is mentioned. Particularly preferred examples include 2,2'-bis (trifluoromethyl) benzidine, 2,2'-dimethylbenzidine, 3,3'-diaminodiphenylsulfone, and 4,4'-diaminodiphenylsulfone. Component (B-2) can be used alone or in combination of two or more.
 次に、本発明のポリイミドの製造方法について説明する。 本発明のポリイミド系材料の製造方法は、(a)上記(A)アシル化合物と上記(B)芳香族イミノ形成化合物とを有機溶媒中で反応させて、ポリアミック酸を得る工程と、(b)該ポリアミック酸の少なくとも一部をイミド化する工程、を含むものである。 Next, a method for producing the polyimide of the present invention will be described. The method for producing a polyimide-based material of the present invention comprises (a) a step of reacting the (A) acyl compound and the (B) aromatic imino forming compound in an organic solvent to obtain a polyamic acid, and (b) And imidating at least a part of the polyamic acid.
[工程(a)] 工程(a)は、上記(A)成分と上記(B)成分を有機溶媒中で反応させて、ポリアミック酸を得る工程である。 (A)成分と(B)成分とを反応させる際の具体的な方法としては、少なくとも1種の(B)芳香族イミノ形成化合物を有機溶媒に溶解した後、得られた溶液に、少なくとも1種の(A)アシル化合物を添加し、0~100℃の温度で、1~60時間撹拌する方法が挙げられる。 上記有機溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルフォルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、N,N’-ジメチルイミダゾリジノン、テトラメチル尿素等の非プロトン系極性溶媒;クレゾール、キシレノール、ハロゲン化フェノール等のフェノール系溶媒;等が挙げられる。中でも、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミドが好ましい。 これらの溶媒は一種単独で、あるいは2種以上混合して使用することができる。 なお、反応液中の芳香族イミノ形成化合物とアシル化合物の合計量は、反応液全量の5~30質量%であることが好ましい。 (A)アシル化合物と(B)芳香族イミノ形成化合物との割合は、成分(B)のアミノ基又はイソシアナート基1当量に、成分(A)の酸無水物基が0.8~1.2当量となる割合が好ましく、1.0~1.1当量となる割合がより好ましい。 より具体的には、(A)アシル化合物と(B)芳香族イミノ形成化合物とのモル比が、1.000:0.960~1.000:0.995となるように反応させることができ、好ましくは1.000:0.970~1.000:0.990となるように反応させる。(A)アシル化合物と(B)芳香族イミノ形成化合物とのモル比が上記範囲内である場合には、生成するポリマーの成膜性、力学的特性、透明性に特に優れる。 (B)芳香族イミノ形成化合物として(B-1)成分と(B-2)成分とを用いる場合には、(B-1)成分と(B-2)成分のモル比が、(B-1)/(B-2)>1となるように配合されることが好ましい。(B-1):(B-2)のモル比は、合計を1とした場合、より好ましくは0.60:0.40~0.999:0.001であり、さらに好ましくは0.62:0.38~0.99:0.01であり、特に好ましくは0.65:0.35~0.96:0.04である。 (B-1)成分と(B-2)成分の合計1モルに対して、(B-2)成分の量が上記の範囲内である場合には、生成するフィルムの成膜性、力学的特性、透明性に特に優れる。 なお、ポリアミック酸とは、酸無水物基とアミノ基とが反応して生じる、-CO-NH-、及び、-CO-OHを含む構造を有する酸、または、その誘導体(具体的には、例えば、CO-NH-、及び、-CO-OR(ただし、Rはアルキル基等である。)を含む構造を有するもの)をいう。ポリアミック酸は、加熱等によって、-CO-NH-のHと、-CO-OHのOHとが脱水して、環状の化学構造(-CO-N-CO-)を有するポリイミドとなる。 [Step (a)] Step (a) is a step of obtaining a polyamic acid by reacting the component (A) and the component (B) in an organic solvent. As a specific method for reacting the component (A) and the component (B), at least one (B) aromatic imino-forming compound is dissolved in an organic solvent, and then at least 1 is added to the resulting solution. Examples include a method in which a seed (A) acyl compound is added and stirred at a temperature of 0 to 100 ° C. for 1 to 60 hours. Examples of the organic solvent include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, γ-butyrolactone, N, N′-dimethylimidazolidinone, and tetramethyl. Aprotic polar solvents such as urea; phenolic solvents such as cresol, xylenol, and halogenated phenol; Of these, N-methyl-2-pyrrolidone and N, N-dimethylacetamide are preferable. These solvents can be used alone or in combination of two or more. The total amount of the aromatic imino forming compound and the acyl compound in the reaction solution is preferably 5 to 30% by mass of the total amount of the reaction solution. The ratio of (A) acyl compound to (B) aromatic imino-forming compound is such that 1 equivalent of the amino group or isocyanate group of component (B) and 0.8 to 1.1 of the acid anhydride group of component (A). A ratio of 2 equivalents is preferable, and a ratio of 1.0 to 1.1 equivalents is more preferable. More specifically, the reaction can be performed such that the molar ratio of (A) acyl compound to (B) aromatic imino forming compound is 1.000: 0.960 to 1.000: 0.995. The reaction is preferably performed to be 1.000: 0.970 to 1.000: 0.990. When the molar ratio of the (A) acyl compound and the (B) aromatic imino forming compound is within the above range, the polymer formed is particularly excellent in film formability, mechanical properties, and transparency. When the component (B-1) and the component (B-2) are used as the aromatic imino-forming compound (B), the molar ratio of the component (B-1) to the component (B-2) is (B- It is preferable that 1) / (B-2)> 1. The molar ratio of (B-1) :( B-2) is more preferably 0.60: 0.40 to 0.999: 0.001, more preferably 0.62 when the total is 1. : 0.38 to 0.99: 0.01, particularly preferably 0.65: 0.35 to 0.96: 0.04. When the amount of the component (B-2) is within the above range with respect to 1 mol of the total of the component (B-1) and the component (B-2), the film formability and mechanical properties of the resulting film Excellent properties and transparency. The polyamic acid refers to an acid having a structure containing —CO—NH— and —CO—OH, which is generated by a reaction between an acid anhydride group and an amino group, or a derivative thereof (specifically, For example, CO—NH— and —CO—OR (where R is an alkyl group or the like) are used. The polyamic acid becomes a polyimide having a cyclic chemical structure (—CO—N—CO—) by dehydration of —CO—NH—H and —CO—OH OH by heating or the like.
[工程(b)] 工程(b)は、前記工程(a)で得られたポリアミック酸の少なくとも一部を、脱水閉環することによりイミド化して、ポリイミドと有機溶媒とを含む溶液を得る工程である。 具体的なイミド化の方法としては、脱水剤を用いる方法(化学イミド化)や、160℃~350℃(溶液では160~220℃程度、キャストフィルムでは一般的に300℃以上)で熱処理する方法(熱イミド化)が挙げられる。 化学イミド化における脱水剤としては、無水酢酸、無水プロピオン酸、無水安息香酸等の酸無水物、もしくは相当する酸クロライド類、ジシクロヘキシルカルボジイミド等のカルボジイミド化合物等が挙げられる。脱水剤の添加量は、目的とするイミド化率に応じて適宜変えることができるが、通常アシル化合物1モルに対して、1~10モルの範囲であり、2~10モルの範囲であることが好ましい。
 なお、、化学イミド化は、10℃~120℃の温度で行うことができ、25℃~90℃の温度で行うことが好ましい。温度が120℃を超えると、着色が抑制できない場合があり、温度が10℃よりも低い場合には、反応速度が低く、イミド化に時間がかかることがある。
 熱イミド化の場合には、脱水反応で生じる水を系外に除去しながら行うことが好ましい。この際、ベンゼン、トルエン、キシレン等を用いて水を共沸除去することができる。
 イミド化の方法としては、より低温での加熱によってイミド化を行うことができることなどから、化学イミド化が好ましい。
 また、イミド化の際には、必要に応じて、ピリジン、イソキノリン、トリメチルアミン、トリエチルアミン、N,N-ジメチルアミノピリジン、イミダゾール、脂環族三級モノアミン等の塩基触媒を用いることができる。 これらの中でも、脂環族三級モノアミンが好適に用いられる。脂環族三級モノアミン化合物をイミド化の際に用いるとイミド化反応が促進されるのは、脂環族三級モノアミンが有する窒素原子上の孤立電子対が高い求核性を有するためと考えられる。
 上記脂環族三級モノアミンとしては、下記式(6)で表される化合物が好適に用いられる。
Figure JPOXMLDOC01-appb-C000020
(一般式(6)中、Rは炭素数1~4のアルキル基、Xは酸素原子又は硫黄原子、lは0又は1、m及びnは、各々独立して、0~2の整数である。)
 式(6)中、Rは、メチル基又はエチル基であることが好ましく、メチル基であることが特に好ましい。また、m、nは、好ましくは0又は1である。さらに、m+nは1~3であることが好ましい。
 上記式(6)で表される化合物の好適な例としては、N-メチルピペリジン、N-メチルピロリジン、N-メチルモルフォリンなどが挙げられる。
[Step (b)] Step (b) is a step of obtaining a solution containing polyimide and an organic solvent by imidizing at least a part of the polyamic acid obtained in the step (a) by dehydration ring closure. is there. Specific imidization methods include a method using a dehydrating agent (chemical imidization), and a heat treatment method at 160 ° C. to 350 ° C. (about 160 to 220 ° C. for a solution, generally 300 ° C. or more for a cast film). (Thermal imidization). Examples of the dehydrating agent in chemical imidization include acid anhydrides such as acetic anhydride, propionic anhydride and benzoic anhydride, or corresponding acid chlorides, carbodiimide compounds such as dicyclohexylcarbodiimide, and the like. The addition amount of the dehydrating agent can be appropriately changed according to the target imidization rate, but is usually in the range of 1 to 10 mol and in the range of 2 to 10 mol with respect to 1 mol of the acyl compound. Is preferred.
The chemical imidization can be performed at a temperature of 10 ° C. to 120 ° C., and is preferably performed at a temperature of 25 ° C. to 90 ° C. When the temperature exceeds 120 ° C., coloring may not be suppressed. When the temperature is lower than 10 ° C., the reaction rate is low and imidization may take time.
In the case of thermal imidization, it is preferable to carry out while removing water generated by the dehydration reaction out of the system. At this time, water can be removed azeotropically using benzene, toluene, xylene or the like.
As the imidization method, chemical imidization is preferable because imidization can be performed by heating at a lower temperature.
In the imidization, a base catalyst such as pyridine, isoquinoline, trimethylamine, triethylamine, N, N-dimethylaminopyridine, imidazole or alicyclic tertiary monoamine can be used as necessary. Among these, alicyclic tertiary monoamines are preferably used. When an alicyclic tertiary monoamine compound is used for imidization, the imidization reaction is promoted because the lone pair of electrons on the nitrogen atom of the alicyclic tertiary monoamine has high nucleophilicity. It is done.
As said alicyclic tertiary monoamine, the compound represented by following formula (6) is used suitably.
Figure JPOXMLDOC01-appb-C000020
(In general formula (6), R is an alkyl group having 1 to 4 carbon atoms, X is an oxygen atom or sulfur atom, l is 0 or 1, and m and n are each independently an integer of 0 to 2. .)
In formula (6), R is preferably a methyl group or an ethyl group, and particularly preferably a methyl group. M and n are preferably 0 or 1. Further, m + n is preferably 1 to 3.
Preferable examples of the compound represented by the above formula (6) include N-methylpiperidine, N-methylpyrrolidine, N-methylmorpholine and the like.
 イミド化触媒として脂環族三級モノアミンを用いることにより、脂肪族化合物を(A)成分として用いても、高い反応性(イミド化の反応速度)でイミド化することができ、より低温でのイミド化や、イミド化に要する時間の短縮などを達成することができる。そして、その結果、得られるポリイミドの着色を低減することが可能となる。また、6員環無水物骨格を有する化合物、あるいは架橋環構造を構成する少なくとも二つの炭素が無水物骨格を形成する化合物といった特にイミド化が進みにくい化合物を(A)成分として用いた場合には、低温条件下においても従来達成できなかったような高いイミド化率を達成することができる。
 上記塩基触媒は、アシル化合物1モルに対し、それぞれ0.01~10モルの範囲で用いることが好ましく、0.1~5モルの範囲で用いることが特に好ましい。 なお、イミド化は、ポリアミック酸の少なくとも一部、好ましくは75モル%以上、より好ましくは85モル%以上、特に好ましくは90モル%以上をイミド化するように行われる。 得られたポリアミック酸及び/又はポリイミドと有機溶媒とを含む溶液は、そのまま使用することもできるが、ポリイミド等を固体分として単離した後、有機溶媒に再溶解して用いることもできる。なお、再溶解する有機溶媒としては、上記有機溶媒と同様のものが挙げられる。ポリイミド等を単離する方法としては、ポリイミド等及び有機溶媒を含む溶液を、メタノール等のポリイミドに対する貧溶媒に投じてポリイミド等を沈殿させ、濾過・洗浄・乾燥等によりポリイミド等を固体分として分離する方法が挙げられる。このような操作をすることにより、イミド化の際に使用した脱水触媒(イミド化触媒)の除去も図ることができる。
By using an alicyclic tertiary monoamine as an imidization catalyst, even if an aliphatic compound is used as the component (A), it can be imidized with high reactivity (imidation reaction rate), and at a lower temperature. Imidization and shortening of the time required for imidization can be achieved. As a result, it is possible to reduce the coloring of the resulting polyimide. In addition, when a compound having a particularly difficult imidization, such as a compound having a 6-membered ring anhydride skeleton or a compound in which at least two carbons constituting a crosslinked ring structure form an anhydride skeleton, is used as the component (A). It is possible to achieve a high imidization rate that could not be achieved conventionally even under low temperature conditions.
The base catalyst is preferably used in an amount of 0.01 to 10 mol, particularly preferably 0.1 to 5 mol, per mol of the acyl compound. The imidization is performed so as to imidize at least a part of the polyamic acid, preferably 75 mol% or more, more preferably 85 mol% or more, and particularly preferably 90 mol% or more. The obtained polyamic acid and / or a solution containing polyimide and an organic solvent can be used as it is, but after isolating polyimide or the like as a solid component, it can also be used by re-dissolving in an organic solvent. In addition, as an organic solvent which redissolves, the thing similar to the said organic solvent is mentioned. As a method for isolating polyimide and the like, a solution containing polyimide and an organic solvent is poured into a poor solvent for polyimide such as methanol to precipitate the polyimide and the like, and the polyimide and the like are separated as a solid content by filtration, washing, drying, and the like. The method of doing is mentioned. By performing such an operation, it is possible to remove the dehydration catalyst (imidization catalyst) used in the imidization.
 得られたポリアミック酸及び/又はポリイミドは、ポリスチレン換算の重量平均分子量が50,000~500,000、好ましくは100,000~400,000である。 本発明においては、ポリアミック酸とポリイミドの合計100モル%中、ポリイミドの割合は、75モル%以上、好ましくは85モル%以上、特に好ましくは90モル%以上である。ポリイミドの割合が75モル%未満であると、フィルムの吸水率が高くなったり、耐久性が低下することがある。 The obtained polyamic acid and / or polyimide has a polystyrene-equivalent weight average molecular weight of 50,000 to 500,000, preferably 100,000 to 400,000. In the present invention, the ratio of polyimide in the total 100 mol% of polyamic acid and polyimide is 75 mol% or more, preferably 85 mol% or more, particularly preferably 90 mol% or more. If the proportion of polyimide is less than 75 mol%, the water absorption rate of the film may increase or the durability may decrease.
 次に本発明のフィルムの製造方法について説明する。 本発明のフィルムの製造方法は、上記(A)アシル化合物と上記(B)芳香族イミノ形成化合物とを反応させて得られるポリアミック酸及び/又はポリイミドと、有機溶媒とを含む溶液を、基板上に塗布して塗膜を形成する工程(c)と、該塗膜から前記有機溶媒を蒸発させることにより除去してフィルムを得る工程(d)とを含むものである。[工程(c)] 工程(c)は、上記ポリイミド等及び有機溶媒を含む溶液を基板上に塗布して塗膜を形成する工程である。 上記基板としては、ポリエチレンテレフタレート(PET)フィルム、SUS板、銅箔等が挙げられる。 ポリイミド等及び有機溶媒を含む溶液を基板上に塗布する方法としては、ロールコート法、グラビアコート法、スピンコート法、ドクターブレードを用いる方法等を使用することができる。 塗膜の厚さは、特に限定されないが、例えば1~250μmである。 Next, the method for producing the film of the present invention will be described. The method for producing a film of the present invention comprises a solution containing a polyamic acid and / or polyimide obtained by reacting the (A) acyl compound and the (B) aromatic imino-forming compound and an organic solvent on a substrate. A step (c) of forming a coating film by applying to the layer and a step (d) of obtaining a film by removing the organic solvent from the coating layer by evaporating. [Step (c)] Step (c) is a step of forming a coating film by applying a solution containing the polyimide and the like and an organic solvent onto a substrate. Examples of the substrate include a polyethylene terephthalate (PET) film, a SUS plate, and a copper foil. As a method for applying a solution containing polyimide or the like and an organic solvent on the substrate, a roll coating method, a gravure coating method, a spin coating method, a method using a doctor blade, or the like can be used. The thickness of the coating film is not particularly limited, but is, for example, 1 to 250 μm.
[工程(d)] 工程(d)は、上記塗膜から前記有機溶媒を蒸発させることにより除去し、フィルムを得る工程である。 具体的には、塗膜を加熱することにより、該塗膜中の有機溶媒を蒸発させて除去する。 上記加熱の条件は、有機溶媒が蒸発すればよく特に限定されないが、例えば60~250℃で1~5時間である。なお、加熱は二段階で行ってもよい。例えば、100℃で30分加熱した後、150℃で1時間加熱するなどである。また、必要に応じて、窒素雰囲気下、もしくは減圧下にて乾燥を行ってもよい。 本工程では、有機溶媒を除去することができればよく、イミド化を行う必要がないため、従来技術に比して低温でフィルムを得ることができる。そのため、光学部材を形成する他の部材が耐熱性の低いものであっても、該部材に直接上記ポリイミド等及び有機溶媒を含む溶液を塗布して、有機溶媒を蒸発除去することにより、フィルムを形成することができる。 得られたフィルムは、支持基板から剥離して、あるいは剥離せずにそのまま用いることができる。 [Step (d)] Step (d) is a step of removing the organic solvent from the coating film by evaporation to obtain a film. Specifically, the organic solvent in the coating film is evaporated and removed by heating the coating film. The heating conditions are not particularly limited as long as the organic solvent evaporates. For example, the heating conditions are 60 to 250 ° C. for 1 to 5 hours. Heating may be performed in two stages. For example, after heating at 100 ° C. for 30 minutes, heating at 150 ° C. for 1 hour. Further, if necessary, drying may be performed under a nitrogen atmosphere or under reduced pressure. In this step, it is sufficient if the organic solvent can be removed, and it is not necessary to perform imidization. Therefore, a film can be obtained at a lower temperature than in the conventional technique. Therefore, even if other members forming the optical member have low heat resistance, the film is removed by directly applying a solution containing the polyimide or the like and an organic solvent to the member and evaporating and removing the organic solvent. Can be formed. The obtained film can be used as it is without being peeled off from the support substrate.
 本発明のフィルムは、上記(A)成分と(B)成分とを反応させて得られるポリイミド等を主体とする。 ここで、成分(A)と成分(B)とが反応してなるポリアミック酸は、例えば下記式(7)~式(10)で表される繰り返し単位の少なくとも1つを有するものである。  
Figure JPOXMLDOC01-appb-C000021
(式(7)~(10)中、R~R16、X、Y、及びZは、上記式(3)中と同様であり、R17~R24は、各々独立して、水素原子、又はアルキル基を表す。) さらに、成分(A)と成分(B)とが反応してなるポリイミドは、例えば下記式(11)又は(12)で表される繰り返し単位を有するものである。  
Figure JPOXMLDOC01-appb-C000022
(式(11)中、R~R16、X、Y、及びZは、上記式(3)中と同様である。)  
Figure JPOXMLDOC01-appb-C000023
(式(12)中、R~R16、X、Y、及びZは、上記式(3)中と同様である。)
The film of the present invention mainly comprises a polyimide obtained by reacting the component (A) and the component (B). Here, the polyamic acid formed by reacting the component (A) and the component (B) has, for example, at least one repeating unit represented by the following formulas (7) to (10).
Figure JPOXMLDOC01-appb-C000021
(In the formulas (7) to (10), R 1 to R 16 , X, Y and Z are the same as in the above formula (3), and R 17 to R 24 are each independently a hydrogen atom. Or represents an alkyl group. Furthermore, the polyimide formed by the reaction of the component (A) and the component (B) has, for example, a repeating unit represented by the following formula (11) or (12).
Figure JPOXMLDOC01-appb-C000022
(In the formula (11), R 1 to R 16 , X, Y, and Z are the same as in the above formula (3).)
Figure JPOXMLDOC01-appb-C000023
(In the formula (12), R 1 to R 16 , X, Y, and Z are the same as those in the above formula (3).)
 本発明のフィルムにおいては、厚みが1~250μm、好ましくは5~200μmである。また、本発明のフィルムを基材として使用する場合には10~150μmであることが特に好ましい。 本発明のフィルムは、厚さが20μmである場合に、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは89%以上の全光線透過率を有する。 本発明のフィルムは、厚さが20μmである場合に、YI値(イエローインデックス)が、2.5以下であることが好ましく、1.4以下であることがより好ましい。 本発明のフィルムは、波長633nmの光に対して、好ましくは1.58~1.66、より好ましくは1.60~1.64の屈折率を有する。 本発明のフィルムは、ガラス転移温度(Tg)が、250℃以上であることが好ましく、280℃以上であることがより好ましい。このようなガラス転移温度を有することにより、優れた耐熱性を得ることができる。 本発明のフィルムは、引張強度が80MPa~300MPaであることが好ましく、100MPa~300MPaであることがより好ましい。 本発明のフィルムは、引張伸びが10%~200%であることが好ましく、20%~150%であることがより好ましい。 本発明のフィルムは、引張弾性率が2.2GPa以上であることが好ましく、2.5GPa以上であることがより好ましい。 In the film of the present invention, the thickness is 1 to 250 μm, preferably 5 to 200 μm. Further, when the film of the present invention is used as a substrate, it is particularly preferably 10 to 150 μm. The film of the present invention has a total light transmittance of preferably 80% or more, more preferably 85% or more, and further preferably 89% or more when the thickness is 20 μm. When the film of the present invention has a thickness of 20 μm, the YI value (yellow index) is preferably 2.5 or less, and more preferably 1.4 or less. The film of the present invention preferably has a refractive index of 1.58 to 1.66, more preferably 1.60 to 1.64 with respect to light having a wavelength of 633 nm. The film of the present invention has a glass transition temperature (Tg) of preferably 250 ° C. or higher, and more preferably 280 ° C. or higher. By having such a glass transition temperature, excellent heat resistance can be obtained. The film of the present invention preferably has a tensile strength of 80 MPa to 300 MPa, more preferably 100 MPa to 300 MPa. The film of the present invention preferably has a tensile elongation of 10% to 200%, more preferably 20% to 150%. The film of the present invention preferably has a tensile elastic modulus of 2.2 GPa or more, more preferably 2.5 GPa or more.
 本発明のフィルムは、発光ダイオード周辺材料、太陽電池周辺材料、フラットディスプレー周辺材料、電子回路周辺材料に使用することができる。具体的には、耐熱透明フィルム、導電性透明フィルム等の光学部材に使用することができる。また、フラットディスプレー周辺材料としては、液晶ディスプレイ、プラズマディスプレイ、有機エレクトロルミネッセンスディスプレイ、電子ペーパーなどの透明フレキシブルディスプレイ用基板が挙げられる。また、電子回路周辺材料としては、プリント配線基板用基板として使用することもでき、フレキシブルプリント配線用基板、リジットプリント配線用基板、光電子プリント配線用基板、COF(Chip on Film)用基板、TAB(Tape Automated Bonding)用基板を挙げることができる。プリント配線用基板として用いる場合には、例えば、配線用の銅層を設けることもできる。フィルム上に銅層が設けられたプリント配線用基板の製造方法としては、キャスティング法、ラミネート法、メタライジング法等を挙げることができる。キャスティング法としては、例えば、上記工程(b)において使用する基板を銅箔とすることで達成できる。具体的には、ポリイミド等及び有機溶媒を含む溶液を銅箔上に塗布して塗膜を形成した後、前記塗膜から前記有機溶媒を除去することでフィルム上に銅層が設けられたプリント配線用基板を製造することができる。本発明のフィルムに銅層を設ける方法としては、ラミネート法の場合には、例えば、ラミネート法で得られた本発明のフィルムに銅箔を熱プレスすることで、銅層が設けられたプリント配線用基板を製造することができる。ラミネート法の場合には、例えば、本発明のフィルムに銅箔を熱プレスすることで銅層が設けられたプリント配線用基板を製造することができる。メタライジング法の場合には、例えば、本発明のフィルムの金属との親和性を発現させるために表面改質を行った後に、蒸着法またはスパッタリング法によって、ポリイミドと結合するNi系の金属層と湿式電気めっきに必要なシード層を形成する。そして、湿式めっき法により所定の膜厚の銅層を設けることで、銅層が設けられたプリント配線用基板を製造することができる。 The film of the present invention can be used for light emitting diode peripheral materials, solar cell peripheral materials, flat display peripheral materials, and electronic circuit peripheral materials. Specifically, it can be used for optical members such as heat-resistant transparent films and conductive transparent films. Examples of the flat display peripheral material include substrates for transparent flexible displays such as liquid crystal displays, plasma displays, organic electroluminescence displays, and electronic paper. Moreover, as an electronic circuit peripheral material, it can also be used as a printed wiring board substrate, a flexible printed wiring board, a rigid printed wiring board, an optoelectronic printed wiring board, a COF (Chip on Film) board, a TAB ( A substrate for Tape Automated Bonding) can be given. When used as a printed wiring board, for example, a copper layer for wiring can be provided. Examples of the method for producing a printed wiring board in which a copper layer is provided on a film include a casting method, a laminating method, and a metalizing method. The casting method can be achieved, for example, by using a copper foil as the substrate used in the step (b). Specifically, after a solution containing polyimide and an organic solvent is applied on a copper foil to form a coating film, the organic solvent is removed from the coating film to provide a copper layer on the film. A wiring board can be manufactured. As a method of providing a copper layer on the film of the present invention, in the case of a laminating method, for example, a printed wiring provided with a copper layer by hot pressing a copper foil on the film of the present invention obtained by the laminating method. Substrates can be manufactured. In the case of the laminating method, for example, a printed wiring board provided with a copper layer can be produced by hot pressing a copper foil on the film of the present invention. In the case of the metalizing method, for example, after the surface modification is performed in order to develop the affinity of the film of the present invention with the metal, the Ni-based metal layer bonded to the polyimide by vapor deposition or sputtering is used. A seed layer necessary for wet electroplating is formed. And the board | substrate for printed wiring with which the copper layer was provided can be manufactured by providing the copper layer of a predetermined film thickness with a wet-plating method.
 また、工程(a)、(b)により得られた、ポリイミド等及び有機溶媒を含むポリイミド系溶液は、ポリイミド系樹脂組成物として、発光ダイオード周辺材料、太陽電池周辺材料、フラットディスプレー周辺材料、電子回路周辺材料等に用いることもできる。具体的には、封止剤、レンズ材、プリント配線基板形成用材料等に用いることができる。例えば、プリント配線基板形成用材料として用いる場合には、キャスティング法によりプリント配線用基板を製造することができる。具体的には、銅箔の上に前記ポリイミド系樹脂組成物を塗布した後に、熱処理することで、銅層が設けられたプリント配線用基板を製造することができる。
 なお、前記ポリイミド系樹脂組成物には、共溶媒として、沸点が150℃以下の有機溶媒を使用することができる。該有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール、テトラヒドロフラン、1,3-ジオキサン、1,4-ジオキサン等が挙げられる。
 これらの溶媒は一種単独で、あるいは2種以上混合して使用することができる。
 なお、ポリイミド系樹脂組成物中のポリアミック酸及び/又はポリイミドの濃度は、反応液全量の5~30質量%であることが好ましい。
Moreover, the polyimide-type solution containing the polyimide etc. and organic solvent obtained by process (a), (b) is a light emitting diode peripheral material, a solar cell peripheral material, a flat display peripheral material, an electron as a polyimide-type resin composition. It can also be used as a circuit peripheral material. Specifically, it can be used as a sealant, a lens material, a printed wiring board forming material, and the like. For example, when used as a printed wiring board forming material, a printed wiring board can be manufactured by a casting method. Specifically, a printed wiring board provided with a copper layer can be produced by applying a heat treatment after applying the polyimide resin composition on a copper foil.
In addition, the said polyimide resin composition can use the organic solvent whose boiling point is 150 degrees C or less as a cosolvent. Examples of the organic solvent include methanol, ethanol, isopropanol, tetrahydrofuran, 1,3-dioxane, 1,4-dioxane and the like.
These solvents can be used alone or in combination of two or more.
The concentration of polyamic acid and / or polyimide in the polyimide resin composition is preferably 5 to 30% by mass of the total amount of the reaction solution.
 以下、本発明を実施例により具体的に説明する。[実施例1] まず、温度計、攪拌機、窒素導入管、及び冷却管を取り付けた300mLの4つ口フラスコに、ビス[4-(3-アミノフェノキシ)フェニル]スルホン9.88g(22.8mmol)を添加した。次いで、フラスコ内を窒素置換した後、N-メチル-2-ピロリドン(以下、NMPという。)(60ml)を加え均一になるまで攪拌した。得られた溶液に2,3,5-トリカルボキシシクロペンチル酢酸二無水物5.12g(22.8mmol)を室温で加え、そのままの温度で12時間攪拌を続けて反応させ、ポリアミック酸を含む溶液を得た。 得られたポリアミック酸を含む溶液にNMP(75ml)を加えて希釈した後、ピリジン(7.4ml)、無水酢酸(6.5ml)を加え、110℃で6時間攪拌してイミド化を行い、ポリマーを得た。その後、室温まで冷却した後、大量のメタノールに投じ、ろ別によりポリマーを単離した。得られたポリマーは60℃で一晩真空乾燥し、白色粉末とした(収量13.4g、収率94.5%)。 次いで、得られたポリマーをN,N-ジメチルアセトアミド(DMAc)に再溶解し、20質量%の樹脂溶液を得た。該樹脂溶液を、ポリエチレンテレフタレート(PET)からなる基板上にドクターブレード(100μmギャップ)を用いて塗布し、100℃で30分、ついで150℃で60分乾燥してフィルムとした後、PET基板より剥離した。その後、フィルムをさらに150℃、減圧下で3時間乾燥して、膜厚20μmのフィルムを得た。 上記ポリマーについて、下記の方法により構造分析、重量平均分子量、及びイミド化率の測定を行った。結果は、カルボニル基の特性吸収が、1739cm-1および1698cm-1(図1参照)、重量平均分子量は、174,000であった。 得られたポリマーのイミド化率(全アミック酸の中で脱水閉環したアミック酸の割合)は、93%であった。 また、ポリマーの有機溶媒に対する溶解性、フィルムの全光線透過率、YI値、屈折率、ガラス転移点、耐熱試験後のYI値を、下記の方法により評価した。結果を表1に示す。(1)構造分析 IR(KBr法)により行った。(2)重量平均分子量 重量平均分子量は、TOSOH製HLC-8020型GPC装置を使用して測定した。溶媒には、臭化リチウムおよび燐酸を添加したN-メチル-2-ピロリドン(NMP)を用い、測定温度40℃にて、ポリスチレン換算の分子量を求めた。(3)閉環率(イミド化率) ポリイミドの閉環率は、1H-NMRを使用して測定した。溶媒にはd-DMSOを用いた。アミック酸部のアミドのピーク積分値(9.8~10.3ppm)と芳香族ジアミンのピーク積分値(6.5~7.5ppm)の比率から閉環率を算出した。(4)有機溶媒に対する溶解性 ポリマーを、N,N-ジメチルアセトアミドに溶解し、20質量%溶液になるように調整し、室温での溶解性を評価した。完全に溶解した場合を「○」、膨潤もしくは不溶ポリマーがある場合を「×」とした。(5)全光線透過率、YI JIS K7105透明度試験法に準じて測定した。具体的には、フィルムの全光線透過率、YI値(イエローインデックス)を、スガ試験機株式会社製SC-3H型ヘイズメーターを用いて測定した。(6)屈折率 得られたフィルムの波長633nmにおける屈折率を、Metricon社製2010型プリズムカップラーを用いて測定した。なお、測定は、23℃、50%RHで、シリコンウエハ基板を用いて行った。(7)ガラス転移温度(Tg) Rigaku社製8230型DSC測定装置を用いて、昇温速度を20℃/minとして測定した。(8)耐熱試験後のYI値 得られたフィルム(50cm角)を、150℃に保持した熱風式乾燥機中に24時間入れて、耐熱加速試験を行った。該試験後のフィルムのYI値を上記(5)と同様の方法により測定した。(9)引張特性 得られたフィルムの力学強度を、JIS K7127に準じて室温の引張強度、引張のび、引張弾性率を測定した。 Hereinafter, the present invention will be specifically described by way of examples. Example 1 First, 9.88 g (22.8 mmol) of bis [4- (3-aminophenoxy) phenyl] sulfone was added to a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube, and a cooling tube. ) Was added. Next, after the atmosphere in the flask was replaced with nitrogen, N-methyl-2-pyrrolidone (hereinafter referred to as NMP) (60 ml) was added and stirred until uniform. To the resulting solution, 5.12 g (22.8 mmol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride was added at room temperature, and the reaction was continued for 12 hours at the same temperature to give a solution containing polyamic acid. Obtained. NMP (75 ml) was added to the resulting polyamic acid-containing solution for dilution, pyridine (7.4 ml) and acetic anhydride (6.5 ml) were added, and the mixture was stirred at 110 ° C. for 6 hours for imidization. A polymer was obtained. Then, after cooling to room temperature, it poured into a lot of methanol, and the polymer was isolated by filtration. The obtained polymer was vacuum-dried overnight at 60 ° C. to obtain a white powder (yield 13.4 g, yield 94.5%). Subsequently, the obtained polymer was redissolved in N, N-dimethylacetamide (DMAc) to obtain a 20% by mass resin solution. The resin solution is applied onto a substrate made of polyethylene terephthalate (PET) using a doctor blade (100 μm gap), dried at 100 ° C. for 30 minutes, and then dried at 150 ° C. for 60 minutes to form a film. It peeled. Thereafter, the film was further dried at 150 ° C. under reduced pressure for 3 hours to obtain a film having a thickness of 20 μm. About the said polymer, the structural analysis, the weight average molecular weight, and the imidation ratio were measured by the following method. As a result, the characteristic absorption of the carbonyl group was 1739 cm −1 and 1698 cm −1 (see FIG. 1), and the weight average molecular weight was 174,000. The imidization ratio of the polymer obtained (the ratio of the amic acid that was dehydrated and cyclized among all the amic acid) was 93%. Moreover, the solubility with respect to the organic solvent of a polymer, the total light transmittance of a film, YI value, a refractive index, a glass transition point, and the YI value after a heat test were evaluated by the following method. The results are shown in Table 1. (1) Structural analysis It was performed by IR (KBr method). (2) Weight average molecular weight The weight average molecular weight was measured using an HLC-8020 GPC apparatus manufactured by TOSOH. As the solvent, N-methyl-2-pyrrolidone (NMP) to which lithium bromide and phosphoric acid were added was used, and the molecular weight in terms of polystyrene was determined at a measurement temperature of 40 ° C. (3) Ring closure rate (imidization rate) The ring closure rate of polyimide was measured using 1H-NMR. D-DMSO was used as a solvent. The ring closure rate was calculated from the ratio of the peak integral value of the amide in the amic acid part (9.8 to 10.3 ppm) and the peak integral value of the aromatic diamine (6.5 to 7.5 ppm). (4) Solubility in Organic Solvent The polymer was dissolved in N, N-dimethylacetamide and adjusted to a 20% by mass solution, and the solubility at room temperature was evaluated. The case where it was completely dissolved was indicated as “◯”, and the case where there was a swollen or insoluble polymer was indicated as “x”. (5) Total light transmittance, measured according to YI JIS K7105 transparency test method. Specifically, the total light transmittance and YI value (yellow index) of the film were measured using an SC-3H haze meter manufactured by Suga Test Instruments Co., Ltd. (6) Refractive index The refractive index of the obtained film at a wavelength of 633 nm was measured using a 2010 type prism coupler manufactured by Metricon. The measurement was performed using a silicon wafer substrate at 23 ° C. and 50% RH. (7) Glass transition temperature (Tg) The glass transition temperature (Tg) was measured using a Rigaku 8230 type DSC measuring apparatus at a rate of temperature rise of 20 ° C / min. (8) YI value after heat resistance test The obtained film (50 cm square) was placed in a hot air drier maintained at 150 ° C. for 24 hours, and a heat resistance acceleration test was performed. The YI value of the film after the test was measured by the same method as in (5) above. (9) Tensile properties The mechanical strength of the obtained film was measured in accordance with JIS K7127 for room temperature tensile strength, tensile elongation, and tensile modulus.
[実施例2] ビス[4-(3-アミノフェノキシ)フェニル]スルホンの代わりにビス[4-(4-アミノフェノキシ)フェニル]スルホンを使用した以外は、実施例1と同様にして、白色粉末のポリマー(収量13.8g、収率97.3%)、及びフィルムを得た。 得られたポリマーについて、構造分析、重量平均分子量、及びイミド化率の測定を実施例1と同様の方法にて行った。結果は、カルボニル基の特性吸収が、1739cm-1および1696cm-1(図2参照)、重量平均分子量は、339,000であった。 得られたポリマーのイミド化率は、94%であった。 また、得られたポリマー及びフィルムの各種物性を、実施例1と同様に評価した。結果を表1に示す。 Example 2 A white powder was obtained in the same manner as in Example 1 except that bis [4- (4-aminophenoxy) phenyl] sulfone was used instead of bis [4- (3-aminophenoxy) phenyl] sulfone. Polymer (yield 13.8 g, yield 97.3%) and a film were obtained. With respect to the obtained polymer, structural analysis, weight average molecular weight, and imidation rate were measured in the same manner as in Example 1. As a result, the characteristic absorption of the carbonyl group was 1739 cm −1 and 1696 cm −1 (see FIG. 2), and the weight average molecular weight was 339,000. The imidation ratio of the obtained polymer was 94%. Further, various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[実施例3] ビス[4-(3-アミノフェノキシ)フェニル]スルホンの代わりにビス(4-アミノフェノキシ)ビフェニル9.33g(25.3mmol)を用い、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、ピリジン、及び無水酢酸の配合量を、各々、5.67g、(25.3mmol)、8.2ml、7.2mlに変更したこと以外は、実施例1と同様にして、白色粉末のポリマー(収量13.2g、収率94.0%)、及びフィルムを得た。 得られたポリマーについて、構造分析、重量平均分子量、及びイミド化率の測定を実施例1と同様の方法にて行った。結果は、カルボニル基の特性吸収が、1738cm-1および1695cm-1(図3参照)、重量平均分子量は、292,000であった。 得られたポリマーのイミド化率は、93%であった。 また、得られたポリマー及びフィルムの各種物性を、実施例1と同様に評価した。結果を表1に示す。 [Example 3] Instead of bis [4- (3-aminophenoxy) phenyl] sulfone, 9.33 g (25.3 mmol) of bis (4-aminophenoxy) biphenyl was used, and 2,3,5-tricarboxycyclopentylacetic acid was used. A white powder was obtained in the same manner as in Example 1 except that the amounts of dianhydride, pyridine, and acetic anhydride were changed to 5.67 g, (25.3 mmol), 8.2 ml, and 7.2 ml, respectively. Polymer (yield 13.2 g, yield 94.0%) and a film were obtained. With respect to the obtained polymer, structural analysis, weight average molecular weight, and imidation rate were measured in the same manner as in Example 1. As a result, the characteristic absorption of the carbonyl group was 1738 cm −1 and 1695 cm −1 (see FIG. 3), and the weight average molecular weight was 292,000. The imidation ratio of the obtained polymer was 93%. Further, various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[実施例4] ビス[4-(3-アミノフェノキシ)フェニル]スルホンの代わりに、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン9.70g(23.6mmol)を用い、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、ピリジン、及び無水酢酸の配合量を、各々、5.30g(23.6mmol)、7.5ml、6.7mlに変更したこと以外は、実施例1と同様にして、白色粉末のポリマー(収量13.5g、収率95.3%)、及びフィルムを得た。 得られたポリマーについて、構造分析、重量平均分子量、及びイミド化率の測定を実施例1と同様の方法にて行った。結果は、カルボニル基の特性吸収が、1735cm-1および1682cm-1あり(図4参照)、重量平均分子量は、320,000であった。 得られたポリマーのイミド化率は、93%であった。 また、得られたポリマー及びフィルムの各種物性を、実施例1と同様に評価した。結果を表1に示す。 [Example 4] In place of bis [4- (3-aminophenoxy) phenyl] sulfone, 9.70 g (23.6 mmol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane was used. Except that the blending amounts of 2,3,5-tricarboxycyclopentylacetic acid dianhydride, pyridine, and acetic anhydride were changed to 5.30 g (23.6 mmol), 7.5 ml, and 6.7 ml, respectively. In the same manner as in Example 1, a white powder polymer (yield 13.5 g, yield 95.3%) and a film were obtained. With respect to the obtained polymer, structural analysis, weight average molecular weight, and imidation rate were measured in the same manner as in Example 1. As a result, the characteristic absorption of the carbonyl group was 1735 cm −1 and 1682 cm −1 (see FIG. 4), and the weight average molecular weight was 320,000. The imidation ratio of the obtained polymer was 93%. Further, various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[実施例5] 実施例4と同様にしてポリアミック酸を調製した後、NMP(75ml)を加えて希釈し、キシレン(12ml)、イソキノリン(1滴;7ml)を加え、180℃で6時間攪拌してイミド化を行い、ポリマーを得た。その後、ポリマーを実施例1と同様にして単離し、白色粉末(収量13.2g、収率93.3%)を得た。 得られたポリマーを用いて、実施例1と同様にしてフィルムを得た。 得られたポリマーについて、重量平均分子量及びイミド化率の測定を実施例1と同様の方法にて行った。結果は、重量平均分子量が190,000、イミド化率が89%であった。 また、得られたポリマー及びフィルムの各種物性を、実施例1と同様に評価した。結果を表1に示す。 [Example 5] After preparing polyamic acid in the same manner as in Example 4, NMP (75 ml) was added to dilute, xylene (12 ml) and isoquinoline (1 drop; 7 ml) were added, and the mixture was stirred at 180 ° C for 6 hours. Then, imidization was performed to obtain a polymer. Thereafter, the polymer was isolated in the same manner as in Example 1 to obtain a white powder (yield 13.2 g, yield 93.3%). Using the obtained polymer, a film was obtained in the same manner as in Example 1. For the obtained polymer, the weight average molecular weight and the imidization ratio were measured in the same manner as in Example 1. As a result, the weight average molecular weight was 190,000 and the imidization ratio was 89%. Further, various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[実施例6]
 まず、温度計、攪拌機、窒素導入管、及び冷却管を取り付けた300mLの4つ口フラスコに、ビス[4-(4-アミノフェノキシ)フェニル]スルホン(9.75g、22.54mmol)を添加した。次いで、フラスコ内を窒素置換した後、N-メチル-2-ピロリドン(以下、NMPという。)(60ml)を加え均一になるまで攪拌した。得られた溶液に2,3,5-トリカルボキシシクロペンチル酢酸二無水物(5.12g、22.84mmol;無水物:アミン=1:0.987)を室温で加え、そのままの温度で12時間攪拌を続けて反応させ、ポリアミック酸を含む溶液を得た。 得られたポリアミック酸を含む溶液にNMP(75ml)を加えて希釈した後、ピリジン(7.4ml)、無水酢酸(6.5ml)を加え、110℃で6時間攪拌してイミド化を行い、ポリマーを得た。その後、室温まで冷却した後、大量のメタノールに投じ、ろ別によりポリマーを単離した。得られたポリマーは60℃で一晩真空乾燥し、白色粉末とした(13.4g、95.0%)。 次いで、得られたポリマーをN,N-ジメチルアセトアミド(DMAc)に再溶解し、20質量%の樹脂溶液を得た。該樹脂溶液を、ポリエチレンテレフタレート(PET)からなる基板上にドクターブレード(100μmギャップ)を用いて塗布し、100℃で30分、ついで150℃で60分乾燥してフィルムとした後、PET基板より剥離した。その後、フィルムをさらに150℃、減圧下で3時間乾燥して、膜厚20μmのフィルムを得た。
 得られたポリマーについて、構造分析、重量平均分子量、及びイミド化率の測定を実施例1と同様の方法にて行った。結果は、カルボニル基の特性吸収が、1740cm-1および1695cm-1(イミド基)、1892cm-1(末端基)(図5参照)、重量平均分子量が、149,000であった。
 得られたポリマーのイミド化率(全アミック酸の中で脱水閉環したアミック酸の割合)は、94%であった。
 また、得られたポリマー及びフィルムの各種物性を、実施例1と同様に評価した。結果を表1に示す。
[Example 6]
First, bis [4- (4-aminophenoxy) phenyl] sulfone (9.75 g, 22.54 mmol) was added to a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube, and a cooling tube. . Next, after the atmosphere in the flask was replaced with nitrogen, N-methyl-2-pyrrolidone (hereinafter referred to as NMP) (60 ml) was added and stirred until uniform. To the resulting solution was added 2,3,5-tricarboxycyclopentylacetic acid dianhydride (5.12 g, 22.84 mmol; anhydride: amine = 1: 0.987) at room temperature and stirred at that temperature for 12 hours. Were reacted to obtain a solution containing polyamic acid. NMP (75 ml) was added to the resulting polyamic acid-containing solution for dilution, pyridine (7.4 ml) and acetic anhydride (6.5 ml) were added, and the mixture was stirred at 110 ° C. for 6 hours for imidization. A polymer was obtained. Then, after cooling to room temperature, it poured into a lot of methanol, and the polymer was isolated by filtration. The resulting polymer was vacuum dried at 60 ° C. overnight to give a white powder (13.4 g, 95.0%). Subsequently, the obtained polymer was redissolved in N, N-dimethylacetamide (DMAc) to obtain a 20% by mass resin solution. The resin solution is applied onto a substrate made of polyethylene terephthalate (PET) using a doctor blade (100 μm gap), dried at 100 ° C. for 30 minutes, and then dried at 150 ° C. for 60 minutes to form a film. It peeled. Thereafter, the film was further dried at 150 ° C. under reduced pressure for 3 hours to obtain a film having a thickness of 20 μm.
With respect to the obtained polymer, structural analysis, weight average molecular weight, and imidation rate were measured in the same manner as in Example 1. Results, characteristic absorption of carbonyl group, 1740 cm -1 and 1,695 cm -1 (imide group), 1892cm -1 (end group) (see FIG. 5), the weight average molecular weight was 149,000.
The imidation ratio of the obtained polymer (ratio of the amic acid subjected to dehydration and ring closure in the total amic acid) was 94%.
Further, various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[実施例7]
 ビス[4-(4-アミノフェノキシ)フェニル]スルホンの量を9.51g(21.99mmol;無水物:アミン=1:0.963)に変更したこと以外は、実施例6と同様にして、白色粉末のポリマー(収量13.1g、収率94.6%)、及びフィルムを得た。
 得られたポリマーについて、構造分析、重量平均分子量、及びイミド化率の測定を実施例1と同様の方法にて行った。結果は、カルボニル基の特性吸収が、1740cm-1および1695cm-1(イミド基)、1892cm-1(末端基)(図6参照)、繰り返し単位数は55、重量平均分子量が、66,000であった。
 得られたポリマーのイミド化率は、93%であった。
 また、得られたポリマー及びフィルムの各種物性を、実施例1と同様に評価した。結果を表1に示す。
[Example 7]
Except that the amount of bis [4- (4-aminophenoxy) phenyl] sulfone was changed to 9.51 g (21.99 mmol; anhydride: amine = 1: 0.963), the same as in Example 6, A white powder polymer (yield 13.1 g, yield 94.6%) and a film were obtained.
With respect to the obtained polymer, structural analysis, weight average molecular weight, and imidation rate were measured in the same manner as in Example 1. Results, characteristic absorption of carbonyl group, 1740 cm -1 and 1,695 cm -1 (imide group), 1892cm -1 (end group) (see FIG. 6), the number of repeating units is 55, the weight average molecular weight of at 66,000 there were.
The imidation ratio of the obtained polymer was 93%.
Further, various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[実施例8]
 ビス[4-(4-アミノフェノキシ)フェニル]スルホンの代わりに、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン9.58g(23.34mmol;無水物:アミン=1:0.987)を使用したこと以外は、実施例1と同様にして、白色粉末のポリマー(収量13.3g、収率95.0%)、及びフィルムを得た。
 得られたポリマーについて、構造分析、重量平均分子量、及びイミド化率の測定を実施例1と同様の方法にて行った。結果は、カルボニル基の特性吸収が、1737cm-1および1680cm-1(イミド基)、1892cm-1(末端基)(図7参照)、繰り返し単位数は160、重量平均分子量が、183,000であった。
 得られたポリマーのイミド化率は、95%であった。
 また、得られたポリマー及びフィルムの各種物性を、実施例1と同様に評価した。結果を表1に示す。
[Example 8]
Instead of bis [4- (4-aminophenoxy) phenyl] sulfone, 9.58 g (23.34 mmol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane; anhydride: amine = 1: 0 .987) was used in the same manner as in Example 1 to obtain a white powder polymer (13.3 g, yield 95.0%) and a film.
With respect to the obtained polymer, structural analysis, weight average molecular weight, and imidation rate were measured in the same manner as in Example 1. Results, characteristic absorption of carbonyl group, 1737cm -1 and 1680 cm -1 (imide group), 1892cm -1 (end group) (see FIG. 7), the number of repeating units 160, weight average molecular weight, in 183,000 there were.
The imidation ratio of the obtained polymer was 95%.
Further, various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[実施例9] まず、温度計、攪拌機、窒素導入管、及び冷却管を取り付けた300mLの4つ口フラスコに、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(9.24g、22.5mmol;(B-1)成分)、2,2’-ビス(トリフルオロメチル)ベンジジン(0.38g、1.2mmol;(B-2)成分)を添加した。次いで、フラスコ内を窒素置換した後、N-メチル-2-ピロリドン(以下、NMPという。)(135g)を加え均一になるまで攪拌した。得られた溶液に2,3,5-トリカルボキシシクロペンチル酢酸二無水物(5.38g、24.0mmol;(A)成分)を室温で加え、そのままの温度で24時間攪拌を続けて反応させ、ポリアミック酸を含む溶液を得た。 得られたポリアミック酸を含む溶液に、N-メチルピペリジン(2.7ml)、無水酢酸(6.7ml)を加え、75℃で3時間攪拌してイミド化を行った。室温まで冷却した後、大量のメタノールに投じ、ろ別によりポリマーを単離した。得られたポリマーは60℃で一晩真空乾燥し、白色粉末とした(収量13.1g、収率93%)。 次いで、得られたポリマーをN,N-ジメチルアセトアミド(DMAc)に再溶解し、20質量%の樹脂溶液を得た。該樹脂溶液を、ポリエチレンテレフタレート(PET)からなる基板上にドクターブレード(100μmギャップ)を用いて塗布し、100℃で30分、ついで150℃で60分乾燥してフィルムとした後、PET基板より剥離した。その後、フィルムをさらに150℃、減圧下で3時間乾燥して、膜厚20μmのフィルムを得た。
 得られたポリマーについて、重量平均分子量、及びイミド化率の測定を実施例1と同様の方法にて行った。得られたポリマーの重量平均分子量が、104,000、イミド化率(全アミック酸の中で脱水閉環したアミック酸の割合)は、95%であった。
 得られたフィルムについて、構造分析をIR(ATR法:フィルム)により行った。結果は、カルボニル基の特性吸収が、1735cm-1および1684cm-1(図8参照)、 また、ポリマーの有機溶媒に対する溶解性、フィルムの全光線透過率、YI値、ガラス転移点を、実施例1と同様に評価した。耐熱試験後のYI値については、得られたフィルム(5cm角)を175℃に保持した熱風式乾燥機中に12時間入れて、耐熱加速試験を行い、該耐熱試験後のフィルムのYI値を上記(5)と同様の方法により測定した。結果を表1に示す。
[Example 9] First, in a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube, and a cooling tube, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (9. 24 g, 22.5 mmol; (B-1) component) and 2,2′-bis (trifluoromethyl) benzidine (0.38 g, 1.2 mmol; (B-2) component) were added. Next, after the atmosphere in the flask was replaced with nitrogen, N-methyl-2-pyrrolidone (hereinafter referred to as NMP) (135 g) was added and stirred until uniform. 2,3,5-tricarboxycyclopentyl acetic acid dianhydride (5.38 g, 24.0 mmol; component (A)) was added to the resulting solution at room temperature, and the reaction was continued for 24 hours at the same temperature. A solution containing polyamic acid was obtained. N-methylpiperidine (2.7 ml) and acetic anhydride (6.7 ml) were added to the resulting solution containing polyamic acid, and the mixture was stirred at 75 ° C. for 3 hours for imidization. After cooling to room temperature, it was poured into a large amount of methanol, and the polymer was isolated by filtration. The obtained polymer was vacuum-dried overnight at 60 ° C. to obtain a white powder (yield 13.1 g, yield 93%). Subsequently, the obtained polymer was redissolved in N, N-dimethylacetamide (DMAc) to obtain a 20% by mass resin solution. The resin solution is applied onto a substrate made of polyethylene terephthalate (PET) using a doctor blade (100 μm gap), dried at 100 ° C. for 30 minutes, and then dried at 150 ° C. for 60 minutes to form a film. It peeled. Thereafter, the film was further dried at 150 ° C. under reduced pressure for 3 hours to obtain a film having a thickness of 20 μm.
About the obtained polymer, the measurement of the weight average molecular weight and imidation ratio was performed by the method similar to Example 1. FIG. The weight average molecular weight of the obtained polymer was 104,000, and the imidization ratio (ratio of the amic acid that was dehydrated and cyclized among all amic acids) was 95%.
The obtained film was subjected to structural analysis by IR (ATR method: film). The results show that the characteristic absorption of the carbonyl group is 1735 cm −1 and 1684 cm −1 (see FIG. 8), the solubility of the polymer in the organic solvent, the total light transmittance of the film, the YI value, and the glass transition point. Evaluation was performed in the same manner as in 1. As for the YI value after the heat test, the obtained film (5 cm square) was placed in a hot air drier held at 175 ° C. for 12 hours to conduct a heat resistance acceleration test, and the YI value of the film after the heat test was calculated. It measured by the method similar to said (5). The results are shown in Table 1.
[実施例10] (B-1)成分として2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを9.36g(22.8mmol)、(B-2)成分として2,2’-ジメチルベンジジンを0.26g(1.2mmol)、(A)成分として2,3,5-トリカルボキシシクロペンチル酢酸二無水物を5.38g(24.0mmol)用いたこと以外は、実施例9と同様にして、白色粉末からなるポリマー(収量13.2g、収率94%)、及びフィルムを得た。 得られたポリマーについて、構造分析、重量平均分子量及びイミド化率の測定を実施例9と同様の方法にて行った。結果は、カルボニル基の特性吸収が、1736cm-1および1683cm-1(図9参照)であり、重量平均分子量が183,000、イミド化率は97%であった。 また、得られたポリマー及びフィルムの各種物性を、実施例9と同様に評価した。結果を表1に示す。 Example 10 9.36 g (22.8 mmol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane as the component (B-1) and 2,2 ′ as the component (B-2) -Example 9 except that 0.26 g (1.2 mmol) of dimethylbenzidine and 5.38 g (24.0 mmol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride were used as the component (A). Similarly, a polymer composed of white powder (yield 13.2 g, yield 94%) and a film were obtained. The obtained polymer was subjected to structural analysis, weight average molecular weight and imidization rate measurement in the same manner as in Example 9. Results, characteristic absorption of carbonyl group, a 1736 cm -1 and 1683cm -1 (see FIG. 9), the weight average molecular weight of 183,000, the imidization ratio was 97%. Further, various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 9. The results are shown in Table 1.
[実施例11] (B-1)成分として2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを9.32g(22.7mmol)、(B-2)成分として2,2’-ジメチルベンジジンを0.25g(1.2mmol)、(A)成分として2,3,5-トリカルボキシシクロペンチル酢酸二無水物を5.43g(24.2mmol)用いたこと以外は、実施例9と同様にして、白色粉末からなるポリマー(収量13.2g、収率94%)、及びフィルムを得た。 得られたポリマーについて、構造分析、重量平均分子量及びイミド化率の測定を実施例1と同様の方法にて行った。結果は、カルボニル基の特性吸収が、1735cm-1および1683cm-1(図10参照)であり、重量平均分子量が138,000、イミド化率は93%であった。 また、得られたポリマー及びフィルムの各種物性を、実施例9と同様に評価した。結果を表1に示す。 [Example 11] 9.32 g (22.7 mmol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane as the component (B-1) and 2,2 ′ as the component (B-2) -Example 9 except that 0.25 g (1.2 mmol) of dimethylbenzidine and 5.43 g (24.2 mmol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride were used as component (A). Similarly, a polymer composed of white powder (yield 13.2 g, yield 94%) and a film were obtained. The obtained polymer was subjected to structural analysis, weight average molecular weight and imidization rate measurement in the same manner as in Example 1. As a result, the characteristic absorption of the carbonyl group was 1735 cm −1 and 1683 cm −1 (see FIG. 10), the weight average molecular weight was 138,000, and the imidization ratio was 93%. Further, various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 9. The results are shown in Table 1.
[実施例12] (B-1)成分として2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを9.19g(22.4mmol)、(B-2)成分として2,2’-ジメチルベンジジンを0.25g(1.2mmol)、(A)成分として2,3,5-トリカルボキシシクロペンチル酢酸二無水物を5.56g(24.8mmol)用いたこと以外は、実施例9と同様にして、白色粉末からなるポリマー(収量12.8g、収率91%)、及びフィルムを得た。 得られたポリマーについて、構造分析、重量平均分子量及びイミド化率の測定を実施例1と同様の方法にて行った。結果は、カルボニル基の特性吸収が、1735cm-1および1684cm-1(図11参照)であり、重量平均分子量が52,000、イミド化率は95%であった。 また、得られたポリマー及びフィルムの各種物性を、実施例9と同様に評価した。結果を表1に示す。 Example 12 9.19 g (22.4 mmol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane as the component (B-1) and 2,2 ′ as the component (B-2) -Example 9 except that 0.25 g (1.2 mmol) of dimethylbenzidine and 5.56 g (24.8 mmol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride were used as component (A). Similarly, a polymer composed of white powder (yield 12.8 g, yield 91%) and a film were obtained. The obtained polymer was subjected to structural analysis, weight average molecular weight and imidization rate measurement in the same manner as in Example 1. As a result, the characteristic absorption of the carbonyl group was 1735 cm −1 and 1684 cm −1 (see FIG. 11), the weight average molecular weight was 52,000, and the imidization ratio was 95%. Further, various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 9. The results are shown in Table 1.
[実施例13]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン(6.47g、15.8mmol)添加した。次いで、フラスコ内を窒素置換した後、N-メチル-2-ピロリドン(以下、NMPという。)(90.0g)を加え均一になるまで攪拌した。得られた溶液に2,3,5-トリカルボキシシクロペンチル酢酸二無水物(3.53g、15.8mmol)を室温で加え、そのままの温度で24時間攪拌を続けポリアミック酸溶液を得た。
 次に、得られたポリアミック酸溶液に対し、N-メチルピペリジン(1.9ml)、無水酢酸(4.5ml)を加え、75℃で4時間攪拌しイミド化を行った。室温まで冷却後、大量のメタノールに投じ、ろ別によりポリマーを単離した。得られたポリマーは60℃で一晩真空乾燥し、白色粉末を得た(収量9.20g、収率97.5質量%)。
 次いで、得られたポリマーをN,N-ジメチルアセトアミド(DMAc)に再溶解し、20質量%の樹脂溶液を得た。そして、ポリエチレンテレフタレート(PET)からなる基板上にドクターブレード(100μmギャップ)を用いて該樹脂溶液を塗布し、100℃で30分間、さらに150℃で60分間乾燥後、PET基板より剥離した。その後、さらに180℃減圧下で8時間乾燥して、膜厚20μmのフィルムを得た。
 上記ポリマーの閉環率(イミド化率)およびポリアミック酸と上記ポリマー(イミド化後のポリマー)の重量平均分子量を実施例1と同様の方法により評価した。得られたポリマーのイミド化率は、98%であった。また、ポリアミック酸の重量平均分子量は4.0×10であり、得られたポリマー(イミド化後のポリマー)の重量平均分子量は5.2×10であった。
 フィルムの全光線透過率、YI値(初期)は、実施例1と同様の方法により評価した。また、YI値(耐UV試験後)、及び吸水性を、下記の方法により評価した。耐熱試験後のYI値については、得られたフィルム(5cm角)を150℃に保持した熱風式乾燥機中に100時間入れて、耐熱加速試験を行い、該耐熱試験後のフィルムのYI値を上記(5)と同様の方法により測定した。結果を表1に示す。
(10)耐UV試験後のYI値
 得られたフィルム(5cm角)を、紫外線蛍光ランプUVA-351を光源とするQUV試験機(促進耐候性試験機)に1週間入れて、耐UV加速試験を行った。該試験後のフィルムのYI値を上記(5)と同様の方法により測定した。
(11)吸水試験
 得られたフィルムを3cm×4cmの大きさに3枚切り出し、減圧乾燥下180℃で8時間乾燥させた。フィルムの質量を測定した後、蒸留水に25℃で24時間フィルムを浸漬させた。浸漬後フィルム表面の水滴をふき取り、浸漬前後の質量変化から吸水率(質量%)を算出した。
 吸水率の算出式は、次のとおりである。
 吸水率(%)={[(浸漬後の質量)÷(浸漬前の質量)]-1}×100
[Example 13]
2,2-bis [4- (4-aminophenoxy) phenyl] propane (6.47 g, 15.8 mmol) was added to a 300 mL four-necked flask equipped with a thermometer, stirrer, nitrogen inlet tube, and condenser. Next, after the atmosphere in the flask was replaced with nitrogen, N-methyl-2-pyrrolidone (hereinafter referred to as NMP) (90.0 g) was added and stirred until uniform. 2,3,5-Tricarboxycyclopentylacetic acid dianhydride (3.53 g, 15.8 mmol) was added to the resulting solution at room temperature, and stirring was continued at that temperature for 24 hours to obtain a polyamic acid solution.
Next, N-methylpiperidine (1.9 ml) and acetic anhydride (4.5 ml) were added to the obtained polyamic acid solution, and the mixture was stirred at 75 ° C. for 4 hours for imidization. After cooling to room temperature, it was poured into a large amount of methanol, and the polymer was isolated by filtration. The obtained polymer was vacuum-dried overnight at 60 ° C. to obtain a white powder (yield 9.20 g, yield 97.5% by mass).
Subsequently, the obtained polymer was redissolved in N, N-dimethylacetamide (DMAc) to obtain a 20% by mass resin solution. Then, the resin solution was applied onto a substrate made of polyethylene terephthalate (PET) using a doctor blade (100 μm gap), dried at 100 ° C. for 30 minutes and further at 150 ° C. for 60 minutes, and then peeled off from the PET substrate. Thereafter, the film was further dried at 180 ° C. under reduced pressure for 8 hours to obtain a film having a thickness of 20 μm.
The ring closure rate (imidation rate) of the polymer and the weight average molecular weight of the polyamic acid and the polymer (polymer after imidization) were evaluated in the same manner as in Example 1. The imidation ratio of the obtained polymer was 98%. Moreover, the weight average molecular weight of the polyamic acid was 4.0 × 10 5 , and the weight average molecular weight of the obtained polymer (polymer after imidization) was 5.2 × 10 5 .
The total light transmittance and YI value (initial) of the film were evaluated by the same method as in Example 1. Further, the YI value (after UV resistance test) and water absorption were evaluated by the following methods. As for the YI value after the heat test, the obtained film (5 cm square) was put in a hot air drier held at 150 ° C. for 100 hours to conduct a heat resistance acceleration test, and the YI value of the film after the heat test was calculated. It measured by the method similar to said (5). The results are shown in Table 1.
(10) YI value after UV resistance test The obtained film (5 cm square) is placed in a QUV tester (accelerated weather resistance tester) using UV fluorescent lamp UVA-351 as a light source for one week, and UV accelerated test Went. The YI value of the film after the test was measured by the same method as in (5) above.
(11) Water absorption test Three pieces of the obtained film were cut into a size of 3 cm × 4 cm and dried at 180 ° C. for 8 hours under reduced pressure drying. After measuring the mass of the film, the film was immersed in distilled water at 25 ° C. for 24 hours. After immersion, water droplets on the film surface were wiped off, and the water absorption (mass%) was calculated from the mass change before and after immersion.
The calculation formula of the water absorption rate is as follows.
Water absorption rate (%) = {[(mass after soaking) ÷ (mass before soaking)]-1} × 100
[実施例14]
 イミド化反応の温度を40℃、反応時間を48時間とした以外は実施例1と同様にして白色粉末からなるポリマー(収量9.20g、収率97.5質量%)、及びフィルムを得た。
 得られたポリマーの閉環率(イミド化率)、重量平均分子量を実施例1と同様の方法により評価した。得られたポリマーのイミド化率は、95%であった。また、ポリアミック酸の重量平均分子量は4.0×10であり、得られたポリマー(イミド化後のポリマー)の重量平均分子量は5.6×10であった。
 また、フィルムの全光線透過率、YI値(初期、耐熱試験後、耐UV試験後)、及び吸水性を実施例13と同様に評価した。結果を表1に示す。
[Example 14]
A polymer composed of a white powder (yield 9.20 g, yield 97.5 mass%) and a film were obtained in the same manner as in Example 1 except that the temperature of the imidization reaction was 40 ° C. and the reaction time was 48 hours. .
The ring closure rate (imidation rate) and weight average molecular weight of the obtained polymer were evaluated in the same manner as in Example 1. The imidation ratio of the obtained polymer was 95%. Moreover, the weight average molecular weight of the polyamic acid was 4.0 × 10 5 , and the weight average molecular weight of the obtained polymer (polymer after imidization) was 5.6 × 10 5 .
Further, the total light transmittance, YI value (initial, after heat resistance test, after UV resistance test), and water absorption of the film were evaluated in the same manner as in Example 13. The results are shown in Table 1.
[比較例1] ビス[4-(3-アミノフェノキシ)フェニル]スルホンの代わりに4,4’-ジアミノジフェニルエーテル7.08g(35.3mmol)を用い、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、ピリジン、及び無水酢酸の配合量を、各々、7.92g(35.3mmol)、11.4ml、10.0mlに変更したこと以外は、実施例1と同様にして、薄褐色粉末のポリマー(収量12.7g、収率92.7%)、及びフィルムを得た。 得られたポリマーについて、構造分析及び重量平均分子量の測定を実施例1と同様の方法にて行った。結果は、カルボニル基の特性吸収が、1739cm-1および1689cm-1あり(図12参照)、重量平均分子量は、295,000であった。 得られたポリマーのイミド化率は、92%であった。なお、イミド化率は1H-NMRのアミド酸N-Hシグナルと芳香環水素シグナル比より算出した。 また、得られたポリマー及びフィルムの各種物性を、実施例1と同様に評価した。結果を表1に示す。 [Comparative Example 1] Instead of bis [4- (3-aminophenoxy) phenyl] sulfone, 7.08 g (35.3 mmol) of 4,4'-diaminodiphenyl ether was used, and 2,3,5-tricarboxycyclopentyl acetate A light brown powder was prepared in the same manner as in Example 1 except that the amounts of anhydride, pyridine, and acetic anhydride were changed to 7.92 g (35.3 mmol), 11.4 ml, and 10.0 ml, respectively. A polymer (yield 12.7 g, yield 92.7%) and a film were obtained. The obtained polymer was subjected to structural analysis and weight average molecular weight measurement in the same manner as in Example 1. Results, characteristic absorption of carbonyl group, 1739Cm there -1 and 1689cm -1 (see FIG. 12), the weight average molecular weight was 295,000. The imidation ratio of the obtained polymer was 92%. The imidization ratio was calculated from the ratio of amic acid NH signal and aromatic ring hydrogen signal ratio in 1H-NMR. Further, various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[比較例2] 実施例4で使用した、2,3,5-トリカルボキシシクロペンチル酢酸二無水物の代わりにブタンテトラカルボン酸二無水物4.88g(24.6mmol)を用い、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ピリジン、及び無水酢酸の配合量を、各々、10.12g(24.6mmol)、8.0ml、7.0mlに変更したこと以外は、実施例4と同様にして、白色粉末のポリマー(収量13.3g、収率94.0%)、及びフィルムを得た。 得られたポリマーについて、構造分析及び重量平均分子量の測定を実施例1と同様の方法にて行った。結果は、カルボニル基の特性吸収が、1781cm-1および1705cm-1であり(図13参照)、重量平均分子量は、120,000であった。 得られたポリマーのイミド化率は、96%であった。なお、イミド化率は1H-NMRのアミド酸N-Hシグナルと芳香環水素シグナル比より算出した。 また、得られたポリマー及びフィルムの各種物性を、実施例1と同様に評価した。結果を表1に示す。 [Comparative Example 2] Instead of 2,3,5-tricarboxycyclopentylacetic acid dianhydride used in Example 4, 4.88 g (24.6 mmol) of butanetetracarboxylic dianhydride was used. Except that the amounts of bis [4- (4-aminophenoxy) phenyl] propane, pyridine, and acetic anhydride were changed to 10.12 g (24.6 mmol), 8.0 ml, and 7.0 ml, respectively. In the same manner as in Example 4, a white powder polymer (yield 13.3 g, yield 94.0%) and a film were obtained. The obtained polymer was subjected to structural analysis and weight average molecular weight measurement in the same manner as in Example 1. As a result, the characteristic absorption of the carbonyl group was 1781 cm −1 and 1705 cm −1 (see FIG. 13), and the weight average molecular weight was 120,000. The imidation ratio of the obtained polymer was 96%. The imidization ratio was calculated from the ratio of amic acid NH signal and aromatic ring hydrogen signal ratio in 1H-NMR. Further, various physical properties of the obtained polymer and film were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[比較例3] 実施例4で使用した、2,3,5-トリカルボキシシクロペンチル酢酸二無水物の代わりにシクロブタンテトラカルボン酸二無水物4.85g(24.7mmol)を用い、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ピリジン、及び無水酢酸の配合量を、各々、10.15g(24.7mmol)、8.0ml、7.0mlに変更したこと以外は、実施例4と同様にしてポリマーを調製したが、イミド化中にポリマーが析出したため、これ以上の構造解析を行わなかった。 [Comparative Example 3] Instead of 2,3,5-tricarboxycyclopentylacetic acid dianhydride used in Example 4, 4.85 g (24.7 mmol) of cyclobutanetetracarboxylic dianhydride was used. Except that the amounts of bis [4- (4-aminophenoxy) phenyl] propane, pyridine, and acetic anhydride were changed to 10.15 g (24.7 mmol), 8.0 ml, and 7.0 ml, respectively. A polymer was prepared in the same manner as in Example 4, but no further structural analysis was performed because the polymer precipitated during imidization.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 表1から、本発明によると、ポリイミドが有機溶媒に対して優れた溶解性を有するため、高温(例えば、400℃程度)で熱処理をすることなくフィルムを形成することができ(優れた成形性を有し)、また、得られたフィルムは、全光線透過率(透明性)が高く、YI値(黄色度)が耐熱試験後も低く、高い屈折率を有し、Tgが高く耐熱性に優れることがわかる。 表1の実施例6~8から、本発明によると、特定のモノマーを特定のモル比で合成されたポリイミド等は、全光線透過率(透明性)が高く、Tgが高く耐熱性に優れており、耐熱試験後においてもYI値(黄色度)が低く非着色性に非常に優れることがわかる。 また、表1の実施例9~12から、本発明によると、(A)特定のアシル化合物と、(B)特定の芳香族ジアミン化合物(反応性の異なる2種の芳香族ジアミン化合物)とを反応させてなるポリイミド等が有機溶媒に対して優れた溶解性を有するため、高温(例えば、400℃程度)で熱処理をすることなくフィルムを形成することができ(優れた成形性を有し)、また、得られたフィルムは、全光線透過率(透明性)が高く、Tgが高く耐熱性に優れており、実施例1~8よりも高温の耐熱試験を行った後においても、YI値(黄色度)が低く非着色性に非常に優れることがわかる。特に、(A)成分と(B)成分とを特定のモル比で反応させてなるポリイミド等(さらには、(B-1)成分と(B-2)成分とのモル比が特定範囲内であるポリイミド等)では、耐熱性や耐熱試験後のYIにおいて、優れた結果が得られている。 また、表1の実施例13、14から、本発明によると、特定の触媒を用いているので従来に比して低温でイミド化しうることがわかる。また、得られたポリイミドは、有機溶媒に対して優れた溶解性を有するため、高温(例えば、400℃程度)で熱処理をすることなく、フィルムを形成することができる。さらに、表1から、本発明のフィルム(実施例1~4)は、透明性(全光線透過率)が高く、また、フィルム形成直後、及び耐UV試験後のいずれにおいても黄変が少なく、さらには吸水率が低いことがわかる。さらに、実施例1~8より長時間の耐熱試験を行った後においても、YI値(黄色度)が低く非着色性に非常に優れることがわかる。 一方、(B)成分のかわりに4,4’-ジアミノジフェニルエーテルを用いた比較例1では、フィルム形成直後、及び耐熱試験後のいずれにおいてもYI値が高く、光学部材に適さないことがわかる。(A)成分の代わりに、シクロブタンテトラカルボン酸二無水物を用いた比較例3では、ポリイミドの有機溶媒に対する溶解性が低く、溶媒中にポリイミドが析出して、フィルムを形成することができないことがわかる。比較例2では、フィルムを形成することはできるものの、得られたフィルムのTgが低く、耐熱性に劣ることがわかる。 From Table 1, according to the present invention, since polyimide has excellent solubility in organic solvents, a film can be formed without heat treatment at a high temperature (for example, about 400 ° C.) (excellent moldability). In addition, the obtained film has a high total light transmittance (transparency), a low YI value (yellowness) even after a heat test, a high refractive index, a high Tg and a high heat resistance. It turns out that it is excellent. From Examples 6 to 8 in Table 1, according to the present invention, polyimides and the like synthesized with specific monomers at specific molar ratios have high total light transmittance (transparency), high Tg, and excellent heat resistance. It can be seen that even after the heat resistance test, the YI value (yellowness) is low and the coloration is very excellent. Further, from Examples 9 to 12 in Table 1, according to the present invention, (A) a specific acyl compound and (B) a specific aromatic diamine compound (two types of aromatic diamine compounds having different reactivities) Since the polyimide and the like that are reacted have excellent solubility in an organic solvent, a film can be formed without heat treatment at a high temperature (for example, about 400 ° C.) (with excellent moldability) In addition, the obtained film has a high total light transmittance (transparency), a high Tg and excellent heat resistance, and the YI value even after the heat resistance test at a temperature higher than those of Examples 1 to 8. It can be seen that (yellowness) is low and the non-coloring property is very excellent. In particular, polyimide or the like obtained by reacting the component (A) and the component (B) at a specific molar ratio (and the molar ratio of the component (B-1) to the component (B-2) is within a specific range. In some polyimides and the like, excellent results are obtained in heat resistance and YI after a heat test. Also, from Examples 13 and 14 in Table 1, it can be seen that according to the present invention, since a specific catalyst is used, imidization can be performed at a lower temperature than in the prior art. Moreover, since the obtained polyimide has the outstanding solubility with respect to the organic solvent, it can form a film, without heat-processing at high temperature (for example, about 400 degreeC). Further, from Table 1, the films of the present invention (Examples 1 to 4) have high transparency (total light transmittance), and there is little yellowing immediately after film formation and after UV resistance test, Furthermore, it turns out that a water absorption is low. Furthermore, it can be seen that the YI value (yellowness) is low and the non-coloring property is very excellent even after the heat resistance test for a longer time than in Examples 1 to 8. On the other hand, it can be seen that Comparative Example 1 using 4,4'-diaminodiphenyl ether instead of the component (B) has a high YI value both immediately after film formation and after the heat resistance test, and is not suitable for an optical member. In Comparative Example 3 using cyclobutanetetracarboxylic dianhydride instead of component (A), the solubility of polyimide in an organic solvent is low, and polyimide cannot be deposited in the solvent to form a film. I understand. In Comparative Example 2, although a film can be formed, it can be seen that the obtained film has a low Tg and is inferior in heat resistance.

Claims (14)

  1. (A)下記式(1)で表される2,3,5-トリカルボキシシクロペンチル酢酸、下記式(2)で表される2,3,5-トリカルボキシシクロペンチル酢酸二無水物、及びこれらの反応性誘導体からなる群より選ばれる少なくとも1種のアシル化合物と、
    (B)下記式(3)で表される芳香族イミノ形成化合物と、
    を反応させて得られるポリアミック酸及び/又はポリイミドからなることを特徴とするポリイミド系材料。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、Xは-NHまたは-N=C=O、-NHSi(R25)(R26)(R27)であり、Yは直接結合、-CH-、-O-、-S-、-C(CH-から選ばれる1つの基であり、Zは直接結合、-CH-、-O-、-S-、-C(CH-、>C=O、-SO-から選ばれる1つの基であり、R~R16は、各々独立して、水素、アルキル基、ビニル基、アリール基、ハロゲンから選ばれる基であり、R25~R27は、各々独立して、炭素数1~15のアルキル基である。)
    (A) 2,3,5-tricarboxycyclopentylacetic acid represented by the following formula (1), 2,3,5-tricarboxycyclopentylacetic acid dianhydride represented by the following formula (2), and reaction thereof At least one acyl compound selected from the group consisting of functional derivatives;
    (B) an aromatic imino-forming compound represented by the following formula (3);
    A polyimide-based material comprising a polyamic acid and / or a polyimide obtained by reacting.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (3), X is —NH 2 or —N═C═O, —NHSi (R 25 ) (R 26 ) (R 27 ), Y is a direct bond, —CH 2 —, —O— , —S—, —C (CH 3 ) 2 —, wherein Z is a direct bond, —CH 2 —, —O—, —S—, —C (CH 3 ) 2 —,> C = O, -SO 2 - is one group selected from, R 1 ~ R 16 are each independently hydrogen, an alkyl group, a vinyl group, an aryl group, a group selected from halogen, R 25 R 27 is each independently an alkyl group having 1 to 15 carbon atoms.)
  2.  上記(B)芳香族イミノ形成化合物は、上記式(3)において、結合基X、Y、及びZがすべてパラ位で結合してなる化合物である請求項1に記載のポリイミド系材料。 The polyimide-based material according to claim 1, wherein the (B) aromatic imino-forming compound is a compound in which the bonding groups X, Y, and Z are all bonded at the para position in the above formula (3).
  3.  ポリアミック酸及び/又はポリイミドのポリスチレン換算の重量平均分子量が50,000~500,000である請求項1又は2に記載のポリイミド系材料。 The polyimide material according to claim 1 or 2, wherein the polyamic acid and / or the polyimide has a polystyrene equivalent weight average molecular weight of 50,000 to 500,000.
  4.  ポリアミック酸及び/又はポリイミドは、(A)アシル化合物と(B)芳香族イミノ形成物とのモル比((A)アシル化合物:(B)芳香族イミノ形成物)が1.000:0.960~1.000:0.995となるように反応させて得られる、請求項1~3のいずれか1項に記載のポリイミド系材料。 The polyamic acid and / or polyimide has a molar ratio of (A) acyl compound to (B) aromatic imino formation ((A) acyl compound: (B) aromatic imino formation) is 1.000: 0.960. The polyimide-based material according to any one of claims 1 to 3, which is obtained by reacting so as to have a ratio of -1.000: 0.995.
  5.  ポリアミック酸及び/又はポリイミドは、芳香族イミノ形成化合物として、さらにハメット則により得られる置換基定数の合計σ(ただし、該合計σはアミノ基を基準とし、アミノ基自身の置換基定数は含まないものとする。)が、-0.11を超え、2.0以下の範囲内である芳香族ジアミン化合物と反応させて得られる、請求項1~4のいずれか1項に記載のポリイミド系材料。 Polyamic acid and / or polyimide, as an aromatic imino-forming compound, is further the total σ of substituent constants obtained by Hammett's rule (however, the total σ is based on the amino group and does not include the substituent constant of the amino group itself) The polyimide-based material according to any one of claims 1 to 4, wherein the polyimide-based material is obtained by reacting with an aromatic diamine compound that exceeds -0.11 and is not more than 2.0. .
  6.  請求項1~5のいずれか1項に記載のポリイミド系材料、及び有機溶媒を含有するポリイミド系樹脂組成物。 A polyimide resin composition comprising the polyimide material according to any one of claims 1 to 5 and an organic solvent.
  7.  請求項1~5のいずれか1項に記載のポリイミド系材料を含むポリイミドフィルム。 A polyimide film comprising the polyimide material according to any one of claims 1 to 5.
  8.  光学部材用である請求項7に記載のポリイミドフィルム。 The polyimide film according to claim 7, which is used for an optical member.
  9.  プリント配線用基板用である請求項7に記載のポリイミドフィルム。 The polyimide film according to claim 7, which is for a printed wiring board.
  10. (A)下記式(1)で表される2,3,5-トリカルボキシシクロペンチル酢酸、下記式(2)で表される2,3,5-トリカルボキシシクロペンチル酢酸二無水物、及びこれらの反応性誘導体からなる群より選ばれる少なくとも1種のアシル化合物と、
    (B)下記式(3)で表される芳香族イミノ形成化合物と、
    を有機溶媒中で反応させて、ポリアミック酸を得る工程と、該ポリアミック酸の少なくとも一部をイミド化する工程を含むことを特徴とするポリイミド系材料の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000006
    (式(3)中、Xは-NHまたは-N=C=O、-NHSi(R25)(R26)(R27)であり、Yは直接結合、-CH-、-O-、-S-、-C(CH-から選ばれる1つの基であり、Zは直接結合、-CH-、-O-、-S-、-C(CH-、>C=O、-SO-から選ばれる1つの基であり、R~R16は、各々独立して、水素、アルキル基、ビニル基、アリール基、ハロゲンから選ばれる基であり、R25~R27は、各々独立して、炭素数1~15のアルキル基である。)
    (A) 2,3,5-tricarboxycyclopentylacetic acid represented by the following formula (1), 2,3,5-tricarboxycyclopentylacetic acid dianhydride represented by the following formula (2), and reaction thereof At least one acyl compound selected from the group consisting of functional derivatives;
    (B) an aromatic imino-forming compound represented by the following formula (3);
    A process for obtaining a polyamic acid by reacting in an organic solvent, and a process for imidizing at least a part of the polyamic acid.
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000006
    (In the formula (3), X is —NH 2 or —N═C═O, —NHSi (R 25 ) (R 26 ) (R 27 ), Y is a direct bond, —CH 2 —, —O— , —S—, —C (CH 3 ) 2 —, wherein Z is a direct bond, —CH 2 —, —O—, —S—, —C (CH 3 ) 2 —,> C = O, -SO 2 - is one group selected from, R 1 ~ R 16 are each independently hydrogen, an alkyl group, a vinyl group, an aryl group, a group selected from halogen, R 25 R 27 is each independently an alkyl group having 1 to 15 carbon atoms.)
  11.  ポリアミック酸の少なくとも一部を脂環族三級モノアミンの存在下でイミド化する請求項10に記載のポリイミド系材料の製造方法。 The method for producing a polyimide-based material according to claim 10, wherein at least a part of the polyamic acid is imidized in the presence of an alicyclic tertiary monoamine.
  12.  上記脂環族三級モノアミンが下記式(6)で表される化合物である請求項11に記載のポリイミド系材料の製造方法。
    Figure JPOXMLDOC01-appb-C000007
    (式(6)中、Rは、炭素数1~4のアルキル基、Xは酸素原子又は硫黄原子、lは0又は1、m及びnは、各々独立して、0~2の整数である。)
    The method for producing a polyimide-based material according to claim 11, wherein the alicyclic tertiary monoamine is a compound represented by the following formula (6).
    Figure JPOXMLDOC01-appb-C000007
    (In the formula (6), R is an alkyl group having 1 to 4 carbon atoms, X is an oxygen atom or sulfur atom, l is 0 or 1, and m and n are each independently an integer of 0 to 2. .)
  13.  さらに、無水酢酸、無水プロピオン酸、無水安息香酸のいずれかの酸無水物、これらの酸無水物に相当する酸クロライド類、及びカルボジイミド化合物からなる群より選ばれる少なくとも1種の脱水剤を用いる請求項11又は12に記載のポリイミド系材料の製造方法。 Further, claim using at least one dehydrating agent selected from the group consisting of acetic anhydride, propionic anhydride, benzoic anhydride, acid chlorides corresponding to these anhydrides, and carbodiimide compounds Item 13. The method for producing a polyimide material according to Item 11 or 12.
  14.  請求項10~13のいずれか1項に記載の方法で得られたポリイミド系材料及び有機溶媒を含む溶液を基板上に塗布して塗膜を形成する工程と、該塗膜から前記有機溶媒を蒸発除去させることにより除去してポリイミドフィルムを得る工程とを含む、ポリイミドフィルムの製造方法。 A step of applying a solution containing the polyimide-based material obtained by the method according to any one of claims 10 to 13 and an organic solvent on a substrate to form a coating film, and the organic solvent is removed from the coating film. A method for producing a polyimide film, comprising: removing by evaporation to obtain a polyimide film.
PCT/JP2009/055082 2008-03-19 2009-03-16 Polyimide material, polyimide film, method for producing the polyimide material and method for producing the polyimide film WO2009116500A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2008-072510 2008-03-19
JP2008072510 2008-03-19
JP2008-080339 2008-03-26
JP2008080339 2008-03-26
JP2008-093918 2008-03-31
JP2008093918 2008-03-31
JP2008280604A JP2009256589A (en) 2008-03-26 2008-10-30 Polyimide material, composition, film and method for producing the same
JP2008-280604 2008-10-30
JP2008-280605 2008-10-30
JP2008280605A JP2009256590A (en) 2008-03-19 2008-10-30 Film and method for producing the same
JP2008290392A JP2010116476A (en) 2008-11-12 2008-11-12 Polyimide material, polyimide film and method for producing the same
JP2008-290392 2008-11-12

Publications (1)

Publication Number Publication Date
WO2009116500A1 true WO2009116500A1 (en) 2009-09-24

Family

ID=41090901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055082 WO2009116500A1 (en) 2008-03-19 2009-03-16 Polyimide material, polyimide film, method for producing the polyimide material and method for producing the polyimide film

Country Status (1)

Country Link
WO (1) WO2009116500A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116885A (en) * 2015-12-25 2017-06-29 大日本印刷株式会社 LED display device
CN107400236A (en) * 2016-05-20 2017-11-28 Sk新技术株式会社 Polyamic acid composition, its polyamidoimide film and the method for preparing polyamidoimide film
JP2018031018A (en) * 2014-02-14 2018-03-01 旭化成株式会社 Polyimide precursor and resin composition containing the same
JP2018119141A (en) * 2017-01-20 2018-08-02 住友化学株式会社 Film, resin composition, and production method for polyamide-imide resin
CN109503617A (en) * 2019-01-22 2019-03-22 青岛科技大学 A kind of preparation method of 3- carboxymethyl -1,2,4- pentamethylene tricarboxylic acids -1,4:2,3- dianhydride
WO2020203264A1 (en) * 2019-03-29 2020-10-08 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish, and polyimide film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136120A (en) * 1992-10-27 1994-05-17 Japan Synthetic Rubber Co Ltd Production of soluble polyimide
JP2001296525A (en) * 2000-04-12 2001-10-26 Jsr Corp Liquid crystal aligning agent and liquid crystal display device
JP2005191255A (en) * 2003-12-25 2005-07-14 Jsr Corp Circuit board and method of manufacturing the same
JP2006065224A (en) * 2004-08-30 2006-03-09 Jsr Corp Optical film, polarizing plate and liquid crystal display
JP2007084818A (en) * 2005-09-16 2007-04-05 E I Du Pont De Nemours & Co Polycyclic polyimide and composition and method relating thereto

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136120A (en) * 1992-10-27 1994-05-17 Japan Synthetic Rubber Co Ltd Production of soluble polyimide
JP2001296525A (en) * 2000-04-12 2001-10-26 Jsr Corp Liquid crystal aligning agent and liquid crystal display device
JP2005191255A (en) * 2003-12-25 2005-07-14 Jsr Corp Circuit board and method of manufacturing the same
JP2006065224A (en) * 2004-08-30 2006-03-09 Jsr Corp Optical film, polarizing plate and liquid crystal display
JP2007084818A (en) * 2005-09-16 2007-04-05 E I Du Pont De Nemours & Co Polycyclic polyimide and composition and method relating thereto

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031018A (en) * 2014-02-14 2018-03-01 旭化成株式会社 Polyimide precursor and resin composition containing the same
JP2017116885A (en) * 2015-12-25 2017-06-29 大日本印刷株式会社 LED display device
CN107400236A (en) * 2016-05-20 2017-11-28 Sk新技术株式会社 Polyamic acid composition, its polyamidoimide film and the method for preparing polyamidoimide film
JP2018119141A (en) * 2017-01-20 2018-08-02 住友化学株式会社 Film, resin composition, and production method for polyamide-imide resin
JP7118651B2 (en) 2017-01-20 2022-08-16 住友化学株式会社 Method for producing film, resin composition and polyamideimide resin
CN109503617A (en) * 2019-01-22 2019-03-22 青岛科技大学 A kind of preparation method of 3- carboxymethyl -1,2,4- pentamethylene tricarboxylic acids -1,4:2,3- dianhydride
WO2020203264A1 (en) * 2019-03-29 2020-10-08 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish, and polyimide film
CN113557260A (en) * 2019-03-29 2021-10-26 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish, and polyimide film

Similar Documents

Publication Publication Date Title
JP5491735B2 (en) Novel ester group-containing tetracarboxylic dianhydrides, novel polyesterimide precursors and polyesterimides derived therefrom
KR101848522B1 (en) Process for production of element substrate and composition to be used therein
JP5845911B2 (en) Polyimide precursor aqueous solution composition and method for producing polyimide precursor aqueous solution composition
CN113227206B (en) Imide-amic acid copolymer, process for producing the same, varnish, and polyimide film
JP2010180292A (en) Aromatic diamine compound, polyimide material, film, and method for producing the same
JP2008297360A (en) Solvent-soluble polyimide resin
KR20070093071A (en) Low water-absorptive polyimide resin and method for producing same
JP2006199945A (en) Low water absorbable polyimide resin and process for its production
JP7367699B2 (en) Polyimide resin, polyimide varnish and polyimide film
WO2009116500A1 (en) Polyimide material, polyimide film, method for producing the polyimide material and method for producing the polyimide film
WO2009145339A1 (en) Linear polyimide precursor, linear polyimide, thermally cured product of the linear polyimide, and method for producing the linear polyimide
JP4699321B2 (en) Ester group-containing polyimide, precursor thereof, and production method thereof
JP5244303B2 (en) Polyesterimide and method for producing the same
US20100273976A1 (en) Polyimide-based material, composition and film, and manufacturing method thereof
TW202222910A (en) Polymer composition, varnish, and polyimide film
JP2009263654A (en) Polyimide, polyimide film, and methods for producing the same
JP2008255252A (en) Polyesterimide precursor and polyesterimide
TW202120634A (en) Polyimide resin composition, polyimide varnish, and polyimide film
JP7359602B2 (en) Diamine compound and its manufacturing method
JP2010116476A (en) Polyimide material, polyimide film and method for producing the same
JP2011148901A (en) Phosphorus-containing diamine and phosphorus-containing polyimide obtained therefrom
JP4957077B2 (en) Tetracarboxylic acids or polyesterimides derived therefrom and method for producing the same
TW201930257A (en) Dimer diamine composition, method for producing the same and resin film having high transparency and low degree of coloring while using dimer diamine
JP2010235859A (en) Polyimide material, film and composition, and method for producing the same
JP5418114B2 (en) Polyimide material, polyimide resin composition, film and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09721420

Country of ref document: EP

Kind code of ref document: A1