WO2018139392A1 - Polyimide-based film and laminate - Google Patents

Polyimide-based film and laminate Download PDF

Info

Publication number
WO2018139392A1
WO2018139392A1 PCT/JP2018/001716 JP2018001716W WO2018139392A1 WO 2018139392 A1 WO2018139392 A1 WO 2018139392A1 JP 2018001716 W JP2018001716 W JP 2018001716W WO 2018139392 A1 WO2018139392 A1 WO 2018139392A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
film
polyimide film
hard coat
laminate
Prior art date
Application number
PCT/JP2018/001716
Other languages
French (fr)
Japanese (ja)
Inventor
真義 唐澤
未央 安井
桜井 孝至
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020197024732A priority Critical patent/KR102475756B1/en
Priority to CN201880007965.XA priority patent/CN110234687B/en
Publication of WO2018139392A1 publication Critical patent/WO2018139392A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B38/1825Handling of layers or the laminate characterised by the control or constructional features of devices for tensioning, stretching or registration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide film and a laminate comprising the polyimide film and a hard coat layer.
  • image display devices such as liquid crystal display devices and organic EL display devices are widely used not only for televisions but also for various applications such as mobile phones and smart watches. With the expansion of such applications, image display devices (flexible displays) having flexible characteristics are demanded, and it is necessary to make each member flexible.
  • the image display device includes a display element such as a liquid crystal display element or an organic EL display element, a polarizing plate, a retardation plate, a front plate, and the like.
  • a display element such as a liquid crystal display element or an organic EL display element
  • a polarizing plate such as a polarizing plate
  • a retardation plate such as a front plate
  • all these members need to have flexible properties.
  • the member of the image display device is made of a polymer material having flexible characteristics (for example, Patent Document 1)
  • the member is easy to bend, so that it is relatively easy to apply to a flexible display.
  • glass that has been used as a front plate material for image display devices so far has high transparency and can exhibit high hardness depending on the type of glass, but it is very stiff and easy to break. Use as a material is difficult.
  • the use of polymer materials as a material to replace glass is being studied. Since the front plate made of a polymer material is easy to exhibit flexible characteristics, it can be used for various applications. For example, when used in a mobile phone, a smart watch, a car navigation system, etc., the image display device can be made not only in a flat shape but also in various shapes by utilizing the flexible characteristic of the front plate.
  • the front plate not only the flexible characteristics but also the visibility when incorporated in the image display device is important.
  • the user may wear polarized sunglasses and watch the image display device.
  • the image display device is viewed through the polarized sunglasses, the surface of the image display device may be colored.
  • the visibility decreases, and in the case of car navigation, for example, the driving of the car may be hindered.
  • an object of the present invention is to provide a front plate for an image display device, particularly a front plate for a flexible display, which can suppress coloring through polarized sunglasses.
  • the present invention provides the following preferred embodiments.
  • [1] A polyimide film having an in-plane retardation at a wavelength of 589.4 nm of 3,000 nm or more.
  • [2] The polyimide film according to [1], wherein the total light transmittance is 85% or more.
  • [3] The polyimide film according to [1] to [2], wherein the polyimide polymer contained in the polyimide film contains a fluorine atom in the molecule.
  • [4] The polyimide film according to any one of [1] to [3], wherein the yellowness (YI) is 5 or less.
  • a laminate comprising the polyimide film according to any one of [1] to [4] and a hard coat layer disposed on at least one surface of the polyimide film.
  • An optical member comprising the polyimide film according to any one of [1] to [4] or the laminate according to [5].
  • An image display device comprising the polyimide film according to [1] to [4], the laminate according to [5], or the optical member according to [6].
  • a step of applying a hard coat layer composition on a polyimide film to form a coating film a step of stretching the polyimide film uniaxially or biaxially, and irradiating the coating film with high energy rays,
  • the manufacturing method of the laminated body containing the polyimide-type film and hard coat layer including the process of hardening a coating film and forming a hard-coat layer.
  • a front plate for an image display device particularly a front plate for a flexible display, which can suppress coloring through polarized sunglasses.
  • a polyimide film having an in-plane retardation at a wavelength of 589.4 nm of 3,000 nm or more is provided.
  • the polyimide film is a film comprising a polyimide polymer. Since the polyimide polymer is excellent in heat resistance, flexibility and rigidity, it is suitable as a front plate material for an image display device, particularly as a front plate (window film) material for a flexible display.
  • the polyimide film may be a single layer or a multilayer. When a polyimide-type film is a multilayer, each layer may be the same composition and a different composition may be sufficient as it.
  • the polyimide film includes at least one selected from the group consisting of polyimide and polyamideimide. That is, the polyimide film can contain polyimide or polyamideimide, and may contain both polyimide and polyamideimide.
  • the polyimide polymer refers to polyimide and polyamideimide.
  • Polyamideimide is a polymer containing a repeating structural unit containing both an imide group and an amide group, or a polymer containing both a repeating structural unit containing an imide group and a repeating structural unit containing an amide group.
  • a polyimide is a polymer containing a repeating structural unit containing an imide group.
  • the polyimide polymer can be produced using, for example, a tetracarboxylic acid compound and a diamine compound described later as main raw materials.
  • the polyimide polymer has a repeating structural unit represented by the formula (10).
  • G is a tetravalent organic group
  • A is a divalent organic group.
  • a structure represented by two or more formulas (10) in which G and / or A are different may be included.
  • the polyimide polymer includes one or more selected from the group consisting of structures represented by formula (11), formula (12), and formula (13) as long as various physical properties of the polyimide film are not impaired. You may go out.
  • G and G 1 are each independently a tetravalent organic group, preferably an organic group that may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • the organic group is preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • the organic group is preferably a tetravalent organic group having 4 to 40 carbon atoms.
  • the hydrocarbon group and the fluorine-substituted hydrocarbon group preferably have 1 to 8 carbon atoms.
  • the G and G 1, equation (20), equation (21), equation (22), equation (23), equation (24), equation (25), equation (26), equation (27), formula (28 ) And a group represented by formula (29); a group in which a hydrogen atom in the groups represented by formula (20) to formula (29) is substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group And a tetravalent chain hydrocarbon group having 6 or less carbon atoms.
  • Z is a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, - Ar -, - SO 2 -, - CO -, - O-Ar-O -, - Ar-O-Ar -, - Ar-CH 2 -Ar -, - Ar-C (CH 3) 2 -Ar- , or —Ar—SO 2 —Ar— is represented.
  • Ar represents an arylene group having 6 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom, and specific examples thereof include a phenylene group.
  • G and G 1 among the groups represented by the formulas (20) to (29), from the viewpoint of the surface hardness and flexibility of the polyimide film comprising the polyimide polymer, the formula (26)
  • the groups represented by the formula (28) and the formula (29) are preferable, and the group represented by the formula (26) is more preferable because the yellowness of the obtained film is easily suppressed.
  • Z is, from the viewpoint of surface hardness and flexibility of the polyimide film comprising said polyimide polymer, independently, a single bond, -O -, - CH 2 - , - CH 2 -CH 2 —, —CH (CH 3 ) —, —C (CH 3 ) 2 — or —C (CF 3 ) 2 — is preferred, —O—, —CH 2 —, —CH (CH 3 ) —, -C (CH 3) 2 - or -C (CF 3) 2 -, more preferably, -C (CH 3) 2 - or -C (CF 3) 2 - is more preferably, -C (CF 3 ) 2 — is particularly preferred.
  • G 2 is a trivalent organic group, and is preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • the organic group is preferably a trivalent organic group having 4 to 40 carbon atoms.
  • the hydrocarbon group and the fluorine-substituted hydrocarbon group preferably have 1 to 8 carbon atoms.
  • the organic group preferably has 4 to 40 carbon atoms.
  • the G 2 equation (20), equation (21), equation (22), equation (23), equation (24), equation (25), equation (26), equation (27), equation (28) or Examples thereof include a group in which any one of the bonds of the group represented by formula (29) is replaced with a hydrogen atom, and a trivalent chain hydrocarbon group having 6 or less carbon atoms.
  • the example of Z in the formula is the same as the example of Z in the description about G.
  • G 3 is a divalent organic group, preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • the organic group is preferably a divalent organic group having 4 to 40 carbon atoms.
  • the hydrocarbon group and the fluorine-substituted hydrocarbon group preferably have 1 to 8 carbon atoms.
  • the organic group preferably has 4 to 40 carbon atoms.
  • Examples of the bond of the group represented by formula (29) include a group in which two that are not adjacent to each other are replaced with hydrogen atoms, and a chain hydrocarbon group having 6 or less carbon atoms.
  • the example of Z in the formula is the same as the example of Z in the description about G.
  • the G 2 attachment of the group in terms of surface hardness and flexibility of the polyimide film comprising said polyimide polymer, the above equation (26), of the formula (28) and (29) A group in which any one of the hands is replaced with a hydrogen atom is preferable, and a group in which any one of the bonding hands of the group represented by the formula (26) is replaced with a hydrogen atom is more preferable. Further, attachment of the group as a G 3, from the viewpoint of surface hardness and flexibility of the polyimide film comprising said polyimide polymer, represented by the formula (26), equation (28) and (29) Among the hands, a group in which two non-adjacent ones are replaced with hydrogen atoms is preferable, and it is easy to suppress the yellowness of the resulting film.
  • a group in which an atom is replaced is more preferable.
  • Z from the viewpoint of surface hardness and flexibility of the polyimide film comprising said polyimide polymer, independently, a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, —CH (CH 3 ) —, —C (CH 3 ) 2 — or —C (CF 3 ) 2 — is preferable, —O—, —CH 2 —, —CH (CH 3 ) —, —C More preferably, it is (CH 3 ) 2 — or —C (CF 3 ) 2 —, more preferably —C (CH 3 ) 2 — or —C (CF 3 ) 2 —, and —C (CF 3 ) 2 ⁇ is particularly preferred.
  • A, A 1 , A 2 and A 3 are each independently a divalent organic group, preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • the organic group preferably has 4 to 40 carbon atoms.
  • the number of carbon atoms of the hydrocarbon group or the fluorine-substituted hydrocarbon group is preferably 1-8.
  • Z 1, Z 2 and Z 3 are each independently a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 —, —C (CF 3 ) 2 —, —SO 2 — or —CO— is represented.
  • Z 1 and Z 3 are —O— and Z 2 is —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — or —SO 2 —. is there. It is preferable that the bonding position of each of Z 1 and Z 2 with respect to each ring and the bonding position of each of Z 2 and Z 3 with respect to each ring is a meta position or a para position with respect to each ring.
  • the groups represented by formula (33) to formula (37) are used.
  • the group represented by formula (34) to formula (36) is more preferred, and the group represented by formula (34) is more preferred.
  • Z 1 , Z 2 and Z 3 are preferably each independently a single bond or —O— from the viewpoint of the surface hardness and flexibility of the polyimide film comprising the polyimide polymer. More preferably, it is a single bond.
  • the polyimide film may contain polyamide.
  • Polyamide is a polymer containing repeating structural units containing amide groups.
  • the polyamide according to this embodiment is a polymer mainly composed of repeating structural units represented by the above formula (13).
  • Preferred examples and specific examples of G 3, and A 3 in the polyamides are respectively the same as G 3, and A 3 in the polyimide polymer.
  • G 3 and / or A 3 may contain different structures represented by two or more formulas (13).
  • the polyimide polymer can be obtained, for example, by polycondensation of a diamine and a tetracarboxylic acid compound (tetracarboxylic dianhydride or the like).
  • tetracarboxylic dianhydride tetracarboxylic dianhydride or the like.
  • JP 2006-199945 A or JP 2008-163107 A Can be synthesized according to the method described in 1.
  • Examples of commercially available polyimide products include Neoprim (registered trademark) manufactured by Mitsubishi Gas Chemical Co., Ltd., and KPI-MX300F manufactured by Kawamura Sangyo Co., Ltd.
  • tetracarboxylic acid compounds used for the synthesis of polyimide include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic dianhydrides; and aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic dianhydrides. It is done.
  • a tetracarboxylic acid compound may be used independently and may use 2 or more types together.
  • the tetracarboxylic acid compound may be a tetracarboxylic acid compound analog such as a tetracarboxylic acid chloride compound in addition to the tetracarboxylic acid dianhydride.
  • aromatic tetracarboxylic dianhydride examples include non-condensed polycyclic aromatic tetracarboxylic dianhydride, monocyclic aromatic tetracarboxylic dianhydride, and condensed polycyclic aromatic tetra Carboxylic dianhydrides are mentioned.
  • Non-condensed polycyclic aromatic tetracarboxylic dianhydrides include 4,4'-oxydiphthalic dianhydride, 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride, 2,2' , 3,3′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxy) Phenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenoxyphenyl) propane dianhydride, 4,4 ′-(hexafluoroisopropylidene)
  • Examples of the monocyclic aromatic tetracarboxylic dianhydride include 1,2,4,5-benzenetetracarboxylic dianhydride.
  • Examples of the condensed polycyclic aromatic tetracarboxylic dianhydride include 2,3,6,7-naphthalene tetracarboxylic dianhydride. These can be used alone or in combination of two or more.
  • 4,4′-oxydiphthalic dianhydride 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride
  • Anhydride 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-diphenyl Sulfonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 2,2- Bis (3,4-dicarboxyphenoxyphenyl) propane dianhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA), 1,2-bis (2,
  • Examples of the aliphatic tetracarboxylic dianhydride include cyclic or acyclic aliphatic tetracarboxylic dianhydrides.
  • the cycloaliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples thereof include 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
  • acyclic aliphatic tetracarboxylic dianhydride examples include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride, etc. These may be used alone or in combination of two or more. Further, a cycloaliphatic tetracarboxylic dianhydride and an acyclic aliphatic tetracarboxylic dianhydride may be used in combination.
  • 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride from the viewpoint of high transparency and low colorability, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic Preferred are acid dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride and mixtures thereof.
  • 4,4'-biphenyltetracarboxylic dianhydride and 4,4'-(hexafluoroisopropylidene) diphthalic dianhydride and mixtures thereof are more preferred, and 4,4 '-( Hexafluorobutene isopropylidene) diphthalic acid dianhydride is more preferred.
  • the polyimide-type polymer which concerns on this embodiment is a tetracarboxylic acid compound, a tricarboxylic acid compound, and dicarboxylic acid.
  • the acid compounds and their anhydrides and derivatives may be further reacted.
  • each acid chloride compound is given as a preferred example because of its high reaction activity.
  • tetracarboxylic acid examples include anhydrous water adducts of the above tetracarboxylic acid compounds.
  • tricarboxylic acid compound examples include aromatic tricarboxylic acid, aliphatic tricarboxylic acid and related acid chloride compounds, acid anhydrides, and the like, and two or more kinds may be used in combination. Specific examples include 1,2,4-benzenetricarboxylic acid anhydride; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; phthalic acid anhydride and benzoic acid are a single bond, —O— , —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO 2 — or a phenylene group; and acid chloride compounds thereof.
  • dicarboxylic acid compound examples include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and related acid chloride compounds, acid anhydrides, and the like, and two or more kinds may be used in combination.
  • One benzoic acid skeleton is a single bond, —O—, —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO 2 —, —S—, —NR 9 —, — Examples thereof include compounds linked by C ( ⁇ O) — or a phenylene group, and acid chloride compounds thereof.
  • R 9 is a hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen
  • the dicarboxylic acid compound preferably terephthalic acid; isophthalic acid; 4,4′-biphenyldicarboxylic acid; 3,3′-biphenyldicarboxylic acid; and the two benzoic acid skeletons are —CH 2 —, —C ( ⁇ O) Compounds linked by —, —O—, —NR 9 —, —SO 2 — or a phenylene group, and acid chloride compounds thereof, more preferably terephthalic acid; 4,4′-biphenyldicarboxylic acid; and 2 These are compounds in which two benzoic acid skeletons are linked by —O—, —NR 9 —, —C ( ⁇ O) — or —SO 2 — as well as their acid chloride compounds.
  • the acid chloride compound examples include 4,4′-oxybis (benzoyl chloride) (sometimes referred to as OBBC) and terephthaloyl chloride (sometimes referred to as TPC). These can be used alone or in combination of two or more.
  • OBBC 4,4′-oxybis (benzoyl chloride)
  • TPC terephthaloyl chloride
  • diamines used for the synthesis of polyimide polymers include aliphatic diamines, aromatic diamines, and mixtures thereof.
  • the “aromatic diamine” represents a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group or other substituent may be included in a part of the structure.
  • the aromatic ring may be a single ring or a condensed ring, and examples thereof include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, and a fluorene ring. Among these, a benzene ring is preferable.
  • the “aliphatic diamine” refers to a diamine in which an amino group is directly bonded to an aliphatic group, and an aromatic ring or other substituent may be included in a part of the structure.
  • aliphatic diamine examples include acyclic aliphatic diamines such as hexamethylene diamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, norbornane diamine, and 4,4 ′.
  • -Cyclic aliphatic diamines such as diaminodicyclohexylmethane. These can be used alone or in combination of two or more.
  • aromatic diamines examples include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene, and 2,6-diamino.
  • An aromatic diamine having one aromatic ring such as naphthalene; 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3 '-Diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-Aminophenoxy) benzene, 4,4'-diamino Phenylsulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone,
  • aromatic diamine preferably 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenylsulfone, 1,4-bis (4-aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2′-dimethylbenzidine, 2,2′-bis (Trifluoromethyl) benzidine, 4,4'-bis (4-aminophenoxy)
  • diamines from the viewpoint of high transparency and low colorability, it is preferable to use one or more selected from the group consisting of aromatic diamines having a biphenyl structure, specifically 2,2′-dimethylbenzidine. It is more preferable to use one or more selected from the group consisting of 2,2′-bis (trifluoromethyl) benzidine, 4,4′-bis (4-aminophenoxy) biphenyl, and 4,4′-diaminodiphenyl ether. More preferably, 2,2′-bis (trifluoromethyl) benzidine is used.
  • Polyimide polymers and polyamides which are polymers containing at least one selected from the group consisting of repeating structural units represented by formula (10), formula (11), formula (12) and formula (13), are diamines.
  • a tetracarboxylic acid compound (an acid chloride compound, an analog of a tetracarboxylic acid compound such as tetracarboxylic dianhydride), a tricarboxylic acid compound (an analog of a tricarboxylic acid compound such as an acid chloride compound or tricarboxylic acid anhydride), and a dicarboxylic acid It is a condensation polymer that is a polycondensation product with at least one compound selected from the group consisting of compounds (analogues of dicarboxylic acid compounds such as acid chloride compounds).
  • a dicarboxylic acid compound (including analogs such as an acid chloride compound) may be used as a starting material.
  • the repeating structural unit represented by the formula (11) is usually derived from diamines and tetracarboxylic acid compounds.
  • the repeating structural unit represented by the formula (12) is usually derived from a diamine and a tricarboxylic acid compound.
  • the repeating structural unit represented by the formula (13) is usually derived from a diamine and a dicarboxylic acid compound. Specific examples of the diamine and the tetracarboxylic acid compound are as described above. Further, a diisocyanate compound may be used in place of the diamine compound.
  • the molar ratio of the diamine to the carboxylic acid compound such as a tetracarboxylic acid compound can be appropriately adjusted within a range of 0.9 mol to 1.1 mol of the tetracarboxylic acid with respect to 1.00 mol of the diamine.
  • the obtained polyimide polymer has a high molecular weight, so that tetracarboxylic acid is 0.98 mol or more and 1.02 mol with respect to 1.00 mol of diamine. More preferably, they are 0.99 mol% or more and 1.01 mol% or less.
  • the proportion of amino groups in the resulting polymer terminal is low, and carboxylic acids such as tetracarboxylic acid compounds with respect to 1.00 mol of diamine
  • the compound is preferably 1.00 mol or more.
  • the fluorine content (fluorine atom content) in the resulting polyimide polymer is based on the mass of the polyimide polymer. 1 mass% or more, 5 mass% or more, 10 mass% or more, or 20 mass% or more. Since the raw material cost tends to increase as the proportion of fluorine increases, the upper limit of the amount of fluorine is preferably 40% by mass or less.
  • a fluorine-type substituent may exist in either diamine or a carboxylic acid compound, and may exist in both. By including a fluorine-based substituent, the YI value may be particularly reduced.
  • the weight average molecular weight (Mw) of the polyimide polymer and polyamide is preferably 10,000 to 800,000.
  • the lower limit of the weight average molecular weight is more preferably 50,000 or more, further preferably 70,000 or more, and particularly preferably 100,000 or more.
  • the upper limit of the weight average molecular weight is more preferably 750,000 or less, further preferably 600,000 or less, and particularly preferably 500,000 or less.
  • the weight average molecular weight of the polyimide-based polymer and polyamide may be smaller, for example, 480,000 or less, 450,000 or less, or 400,000 or less.
  • the preferred range of this weight average molecular weight is preferably 100,000 to 800,000, more preferably 150,000 to 750,000, still more preferably 200,000 to 600,000, particularly preferably.
  • a weight average molecular weight of the polyimide polymer and the polyamide can have high flexibility and can be stretched without breaking.
  • the weight average molecular weight of the polyimide polymer and polyamide is not more than the above upper limit, the viscosity of the polyimide varnish can be suppressed low, and the polyimide film can be easily stretched, so that the workability is good.
  • a weight average molecular weight can be calculated
  • the polyimide polymer and polyamide contained in the polyimide film may contain a fluorine atom that can be introduced by the above-described fluorine substituent or the like.
  • the fluorine-containing substituent include a fluoro group and a trifluoromethyl group. Since the polyimide polymer and polyamide contain fluorine atoms, the elasticity of the polyimide film can be improved and the yellowness (YI value) can be reduced at the same time. Preferably it contains atoms.
  • a polyimide-type polymer and polyamide when a polyimide-type polymer and polyamide contain a fluorine atom in a molecule
  • the polyimide polymer and polyamide when the polyimide polymer and polyamide contain fluorine atoms in the molecule, when the laminate film and the laminate described later are folded, the fold line is difficult to remain, and the flexible display is bent.
  • the polyimide-based film and the laminate can be particularly usefully used.
  • the fluorine atom content (fluorine atom content) in the polyimide polymer and polyamide is improved in hardness, improved elastic modulus, reduced yellowness (improved transparency), reduced water absorption, and polyimide film. From the viewpoint of suppressing deformation, it is preferably 1% by mass to 40% by mass, more preferably 3% by mass to 35% by mass, and further preferably 5% by mass to 32% by mass, based on the mass of the polyimide polymer.
  • the fluorine atom content is 1% by mass or more, there is a tendency that the elastic modulus when formed into a film is further improved, the water absorption is decreased, the YI value is further reduced, and the transparency is further improved. . If the fluorine atom content is 40% by mass or less, it is easy to increase the molecular weight of the polyimide.
  • the polyimide polymer can be produced by a polycondensation reaction between a diamine and a tetracarboxylic acid compound.
  • an imidization catalyst may be present.
  • imidation catalysts include aliphatic amines such as tripropylamine, dibutylpropylamine, and ethyldibutylamine; N-ethylpiperidine, N-propylpiperidine, N-butylpyrrolidine, N-butylpiperidine, and N-propylhexahydro Alicyclic amines (monocyclic) such as azepine; azabicyclo [2.2.1] heptane, azabicyclo [3.2.1] octane, azabicyclo [2.2.2] octane, and azabicyclo [3.2.
  • Cycloaliphatic amines such as nonane (polycyclic); and 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2,4- Dimethylpyridine, 2,4,6-trimethylpyridine, 3,4-cyclopentenopyridine, 5,6,7,8 Tetrahydroisoquinoline, and aromatic amines isoquinoline.
  • the reaction temperature of the diamine and tetracarboxylic acid compound is not particularly limited, but is, for example, 50 to 350 ° C.
  • the reaction time is not particularly limited, but is, for example, about 30 minutes to 24 hours, preferably about 30 minutes to 10 hours. If necessary, the reaction may be carried out under an inert atmosphere or under reduced pressure. Moreover, reaction may be performed in a solvent and the following solvent used for preparation of a polyimide varnish is mentioned as a solvent, for example.
  • the content of the polyimide polymer in the polyimide film is preferably 40% by mass or more, more preferably 50% by mass or more, and still more preferably based on the total mass of the polyimide film. 70% by mass or more.
  • content of the polyimide polymer is 40% by mass or more, the flexibility of the polyimide film is good.
  • content of the polyimide-type polymer in a polyimide-type film is 100 mass% or less normally on the basis of the total mass of a polyimide-type film.
  • the polyimide film may further contain an inorganic material such as inorganic particles in addition to the polyimide polymer from the viewpoint of increasing the strength.
  • the inorganic material include inorganic particles such as titania particles, alumina particles, zirconia particles, and silica particles, and silicon compounds such as quaternary alkoxysilanes such as tetraethyl orthosilicate.
  • the inorganic material is preferably inorganic particles, particularly silica particles.
  • the inorganic particles may be bonded by molecules having a siloxane bond.
  • the average primary particle diameter of the inorganic particles is preferably 10 to 100 nm, more preferably 20 to 80 nm, from the viewpoint of transparency of the polyimide film, mechanical properties, and suppression of inorganic particle aggregation.
  • the average primary particle diameter can be determined by measuring 10 points in a fixed direction diameter with a transmission electron microscope (TEM) and obtaining an average value thereof.
  • TEM transmission electron microscope
  • the content of the inorganic material in the polyimide film is preferably 0% by mass to 90% by mass, more preferably 0% by mass or more, based on the total mass of the polyimide film. It is 60 mass% or less, More preferably, it is 0 mass% or more and 40 mass% or less. If the content of the inorganic material is within the above range, the transparency and mechanical properties of the polyimide film tend to be compatible.
  • the polyimide film may contain one type or two or more types of ultraviolet absorbers.
  • the ultraviolet absorber can be appropriately selected from those usually used as an ultraviolet absorber in the field of resin materials.
  • the ultraviolet absorber may contain a compound that absorbs light having a wavelength of 400 nm or less.
  • Examples of the ultraviolet absorber include at least one compound selected from the group consisting of benzophenone compounds, salicylate compounds, benzotriazole compounds, and triazine compounds. Since the polyimide film contains an ultraviolet absorber, deterioration of the polyimide polymer is suppressed, so that the visibility of the polyimide film can be improved.
  • the “system compound” refers to a compound to which the “system compound” is attached and derivatives thereof.
  • a “benzophenone compound” refers to a compound having benzophenone as a host skeleton and a substituent bonded to benzophenone.
  • the content of the ultraviolet absorber is preferably 1% by mass or more, more preferably 2% by mass or more, and further preferably 3% by mass with respect to the total mass of the polyimide film. % Or more, preferably 10% by mass or less, more preferably 8% by mass or less, and further preferably 6% by mass or less.
  • the ultraviolet absorber is within the above range, the weather resistance of the polyimide film can be particularly effectively enhanced, and a highly transparent polyimide film can be obtained.
  • the polyimide film may further contain other additives as long as the transparency, flexibility and retardation are not impaired.
  • additives include antioxidants, mold release agents, stabilizers, bluing agents, flame retardants, pH adjusters, silica dispersants, lubricants, thickeners, and leveling agents.
  • the content of other additives is preferably 0% by mass or more and 20% by mass or less, and more preferably 0% by mass or more and 10% by mass or less with respect to the mass of the polyimide film.
  • the thickness of the polyimide film is appropriately adjusted depending on the application, but is usually 10 to 1000 ⁇ m, preferably 20 to 500 ⁇ m, more preferably 25 to 400 ⁇ m, and further preferably 30 to 300 ⁇ m. In the present invention, the thickness can be measured by a contact-type digimatic indicator.
  • the thickness of the polyimide film is equal to or more than the above lower limit, the surface hardness of the laminate (polyimide film on which the hard coat layer is laminated), which will be described later, is improved, and the handling properties of the polyimide film are improved. Hard to break when stretched.
  • the thickness of the polyimide film is equal to or less than the above upper limit, the bending resistance of the polyimide film (difficult to attach a broken line when folded) is improved.
  • the polyimide film has a total light transmittance Tt based on JIS K 7105: 1981 of preferably 85% or more, more preferably 90% or more, and further preferably 92% or more.
  • Tt total light transmittance
  • the upper limit of the total light transmittance Tt of the polyimide film is usually 100% or less.
  • the polyimide film has a yellowness YI based on JIS K 7373: 2006, preferably 5 or less, more preferably 4 or less, and even more preferably 3 or less.
  • the transparency of a polyimide film can be made high as YI of a polyimide film is below the said upper limit.
  • the lower limit of YI of a polyimide-type film is 0 or more normally.
  • the polyimide film has an in-plane retardation (retardation) at a wavelength of 589.4 nm of 3,000 nm or more, preferably more than 3,000 nm, more preferably 3,200 nm or more, still more preferably 3,500 nm or more, particularly preferably 4. It is not less than 30,000 nm, preferably not more than 30,000 nm, more preferably not more than 25,000 nm, still more preferably not more than 20,000 nm, and particularly preferably not more than 17,000 nm.
  • the in-plane retardation of the polyimide film at a wavelength of 589.4 nm is less than 3,000 nm, coloring through polarized sunglasses cannot be sufficiently suppressed, resulting in a problem in visibility.
  • the in-plane retardation of the polyimide film at a wavelength of 589.4 nm is equal to or greater than the lower limit, coloring through the polarized sunglasses is suppressed when the polyimide film is used as a front plate (window film) of an image display device. be able to.
  • the reason why the in-plane retardation at the wavelength of 589.4 nm is within the above range can suppress the coloring through the sunglasses is that the number of peaks in the transmission spectrum spectrum from the image display element increases, and the transmitted light is white light. Because it becomes.
  • polyimide film tends to exhibit in-plane retardation due to a low draw ratio, and there is little dimensional change even in high temperature environment of 100 ° C. or higher.
  • image display elements such as car navigation used in the environment is suitable.
  • the said polyimide-type film and the laminated body mentioned later have the in-plane phase difference of the said range, it can be used as a phase difference film. That is, it can be used as a front plate (window film) of an image display device, and at the same time, can exhibit a function as a retardation film. Therefore, the polyimide-based film and laminate according to an embodiment of the present invention can contribute to simplification of the image display device, which is advantageous in terms of cost of the image display device and contributes to thinning of the image display device. obtain.
  • the method for controlling the retardation of the polyimide film is not particularly limited. For example, the selection of the type of polyimide polymer contained in the polyimide film, the stretching process of the polyimide film, and / or the thickness of the polyimide film. Adjustment and the like. When the polyimide film is a stretched film, it is preferable because the retardation can be adjusted by selecting the stretching ratio, and the retardation can be easily adjusted. When selecting the thickness of the polyimide film, the thickness may be adjusted by laminating a plurality of polyimide films. By selecting a polyimide-based polymer that easily develops a phase difference, it is easy to produce a polyimide-based film having a phase difference within the above range.
  • the polyimide film may be a single layer or a multilayer.
  • a laminate (also referred to as “laminate of the present invention”) comprising the polyimide film and a hard coat layer disposed on at least one surface of the polyimide film.
  • the laminate includes a polyimide film containing a polyimide polymer, a hard coat layer disposed on at least one surface of the polyimide film, and a functional layer and / or a primer layer as necessary. .
  • the laminate is excellent in mechanical properties such as surface hardness and tear strength. In particular, when the polyimide film contained in the laminate is a stretched film, the ease with which the fold line remains is greatly different between when folded horizontally in the stretching direction and when folded vertically in the stretching direction. Absent. Therefore, the laminated body can be used for flexible displays having various shapes and flexible displays having deformed shapes.
  • the laminate (10) has a hard coat layer (2) laminated on one surface of a polyimide film (1).
  • Another hard coat layer (not shown) that is the same as or different from the hard coat layer (2) may be laminated on the other surface of the polyimide film (1).
  • a primer layer (not shown) described later is provided between the polyimide film (1) and the hard coat layer (2) and / or between the polyimide film (1) and another hard coat layer. Also good.
  • the laminated body may contain a functional layer (not shown) described later. The location where the functional layer is disposed is not limited, and the functional layer may be disposed on the polyimide film, may be disposed on the hard coat layer (2), or may be disposed on another hard coat layer. .
  • a hard coat layer is disposed on one or both surfaces of the polyimide film. In a preferred embodiment of the present invention, the hard coat layer is disposed at least on the viewing side surface of the polyimide film.
  • Each hard coat layer may have a single layer structure or a multilayer structure.
  • the surface hardness of the hard coat layer is preferably F or more, more preferably H or more, and further preferably 2H or more.
  • the surface hardness of the hard coat layer is usually 9H or less. In the present invention, the surface hardness can be measured according to JIS K5600-5-4: 1999.
  • the hard coat layer comprises a hard coat layer resin.
  • the hard coat layer resin include acrylic resins, epoxy resins, urethane resins, benzyl chloride resins, vinyl resins, silicone resins, or a mixture thereof.
  • examples thereof include ultraviolet curable resins such as resins, electron beam curable resins, and thermosetting resins.
  • the hard coat layer preferably contains an acrylic resin from the viewpoint of mechanical properties such as surface hardness and from an industrial viewpoint.
  • acrylic resin examples include urethane acrylate, urethane methacrylate (hereinafter, acrylate and / or methacrylate are described as (meth) acrylate), alkyl (meth) acrylate, ester (meth) acrylate, epoxy (meth) acrylate, and A polymer, a copolymer, etc. are mentioned.
  • the hard coat layer may contain a photopolymerization initiator and / or an organic solvent, and may contain inorganic oxides such as silica particles, alumina, and polyorganosiloxane.
  • the hard coat layer comprises an acrylic resin and silica particles from the viewpoint of mechanical properties such as surface hardness and an industrial viewpoint.
  • the thickness of the hard coat layer is appropriately adjusted according to the use of the image display device to which the laminate is applied, and may be, for example, 1 to 50 ⁇ m, particularly 2 to 30 ⁇ m.
  • the thickness of the hard coat layer can be calculated from the difference from the base material thickness using, for example, a contact-type digimatic indicator.
  • the hard coat layer may be a stretched film.
  • the hard coat layer which is a stretched film can be prepared by drying a coating film of the following hard coat layer composition, performing a stretching treatment, and irradiating with a high energy ray.
  • a primer layer may be disposed between the polyimide film and the hard coat layer.
  • a primer layer may be arranged only between the polyimide film and one hard coat layer, and the polyimide film and one hard coat layer A primer layer may be disposed both between and between the polyimide film and the other hard coat layer.
  • the primer layer is a layer formed from a primer agent, and can improve the adhesion between the polyimide film and the hard coat layer.
  • the compound contained in the primer layer may be chemically bonded to the polyimide polymer or the like contained in the polyimide film at the interface.
  • the primer agent examples include a primer agent of an epoxy compound of an ultraviolet curing type, a thermosetting type, or a two-component curing type.
  • the primer agent may be a polyamic acid. These are suitable for enhancing the adhesion between the polyimide film and the hard coat layer.
  • the primer agent may contain a silane coupling agent.
  • the silane coupling agent may be chemically bonded to a silicon compound that can be included in the polyimide film by a condensation reaction.
  • the silane coupling agent can be suitably used particularly when the compounding ratio of the silicon compound that can be contained in the polyimide film is high.
  • the silane coupling agent is a compound having an alkoxysilyl group having a silicon atom and 1 to 3 alkoxy groups covalently bonded to the silicon atom.
  • a compound having a structure in which two or more alkoxy groups are covalently bonded to a silicon atom is preferable, and a compound having a structure in which three alkoxy groups are covalently bonded to a silicon atom is more preferable.
  • the alkoxy group include a methoxy group, an ethoxy group, an isopropoxy group, an n-butoxy group, and a t-butoxy group. Of these, a methoxy group or an ethoxy group is preferable because of its high reactivity with silicon materials.
  • the silane coupling agent preferably has a substituent having high affinity with the polyimide film and the hard coat layer.
  • the substituent of the silane coupling agent is preferably an epoxy group, an amino group, a ureido group or an isocyanate group.
  • the affinity increases when the silane coupling agent that can be used in the primer layer has an epoxy group, a methacryl group, an acrylic group, an amino group, or a styryl group. Therefore, it is preferable.
  • a silane coupling agent having a substituent selected from a methacryl group, an acryl group, and an amino group is preferable because it tends to be excellent in affinity between the polyimide film and the hard coat layer.
  • the thickness of the primer layer is appropriately adjusted according to the hard coat layer, and is, for example, 0.01 nm to 20 ⁇ m.
  • the thickness of the primer layer 25 is preferably 0.01 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m.
  • the thickness of the primer layer is preferably 0.1 nm to 1 ⁇ m, more preferably 0.5 nm to 0.1 ⁇ m.
  • the laminate which is one embodiment of the present invention may further include a functional layer in addition to the polyimide film and the hard coat layer.
  • the functional layer include layers having various functions such as an ultraviolet absorbing layer, an adhesive layer, a hue adjusting layer, and a refractive index adjusting layer.
  • the laminate may include one or more functional layers.
  • One functional layer may have a plurality of functions.
  • the ultraviolet absorbing layer is a layer having an ultraviolet absorbing function.
  • a main material selected from an ultraviolet curable transparent resin, an electron beam curable transparent resin, and a thermosetting transparent resin It is composed of dispersed UV absorbers.
  • the adhesive layer is a layer having an adhesive function, and has a function of adhering a polyimide film or a laminate to other members.
  • a conventionally known material can be used.
  • a thermosetting resin composition or a photocurable resin composition can be used.
  • the adhesive layer may be composed of a resin composition containing a component having a polymerizable functional group. In this case, strong adhesion can be achieved by further polymerizing the resin composition constituting the adhesive layer after the polyimide-based film or laminate is adhered to another member.
  • the adhesive strength between the polyimide film or laminate and the adhesive layer may be 0.1 N / cm or more, or 0.5 N / cm or more.
  • the adhesive layer may contain a thermosetting resin composition or a photocurable resin composition as a material.
  • the resin composition can be polymerized and cured by supplying energy afterwards.
  • the pressure-sensitive adhesive layer may be a layer called pressure sensitive adhesive (Pressure Sensitive Adhesive, PSA) that is adhered to an object by pressing.
  • PSA Pressure Sensitive Adhesive
  • the pressure-sensitive adhesive may be a pressure-sensitive adhesive that is “a substance that is sticky at normal temperature and adheres to an adherend with light pressure” (JIS K6800). And an adhesive that can maintain stability until the coating is broken by appropriate means (pressure, heat, etc.) (JIS K6800).
  • the hue adjustment layer is a layer having a function of hue adjustment, and is a layer capable of adjusting the laminated body to a target hue.
  • a hue adjustment layer is a layer containing resin and a coloring agent, for example.
  • the colorant include inorganic pigments such as titanium oxide, zinc oxide, dial, titanium oxide-based fired pigment, ultramarine, cobalt aluminate, and carbon black; azo-based compounds, quinacridone-based compounds, anthraquinone-based compounds, Organic pigments such as perylene compounds, isoindolinone compounds, phthalocyanine compounds, quinophthalone compounds, selenium compounds, and diketopyrrolopyrrole compounds; extender pigments such as barium sulfate and calcium carbonate; and basic dyes, Examples include acid dyes and mordant dyes.
  • the refractive index adjusting layer is a layer having a function of adjusting the refractive index, has a refractive index different from that of the polyimide film, and can give a predetermined refractive index to the laminate.
  • the refractive index adjustment layer may be, for example, an appropriately selected resin, and optionally a resin layer further containing a pigment, or may be a metal thin film.
  • Examples of the pigment for adjusting the refractive index include silicon oxide, aluminum oxide, antimony oxide, tin oxide, titanium oxide, zirconium oxide and tantalum oxide.
  • the average primary particle diameter of the pigment may be 0.1 ⁇ m or less. By setting the average primary particle diameter of the pigment to 0.1 ⁇ m or less, irregular reflection of light transmitted through the refractive index adjusting layer can be prevented, and a decrease in transparency can be prevented.
  • metal used for the refractive index adjustment layer examples include metals such as titanium oxide, tantalum oxide, zirconium oxide, zinc oxide, tin oxide, silicon oxide, indium oxide, titanium oxynitride, titanium nitride, silicon oxynitride, and silicon nitride. Oxides or metal nitrides may be mentioned.
  • the primer layer may be disposed between the polyimide film and the functional layer.
  • the laminate preferably has an in-plane retardation at a wavelength of 589.4 nm of 3,000 nm or more, more preferably 3,500 nm or more, still more preferably 4,000 nm or more, preferably 30,000 nm or less, more preferably 25. 17,000 nm or less, more preferably 20,000 nm or less, and particularly preferably 17,000 nm or less.
  • the phase difference of the laminate is equal to or more than the lower limit, coloring through the polarized sunglasses can be suppressed when the laminate is used as a front plate of an image display device.
  • the retardation of the laminate is not more than the above upper limit value, the flexibility of the laminate can be increased and it is useful as a front plate of a flexible display.
  • the laminate has a total light transmittance Tt based on JIS K 7105: 1981 of preferably 85% or more, more preferably 90% or more, and still more preferably 92% or more.
  • Tt total light transmittance
  • the upper limit of the total light transmittance of a laminated body is 100% or less normally.
  • the laminate has a yellowness (YI) based on JIS K 7373: 2006, preferably 5 or less, more preferably 4 or less, and even more preferably 3 or less.
  • YI yellowness
  • the transparency of a laminated body can be made high as YI of a laminated body is below the said upper limit.
  • the lower limit of YI of a laminated body is 0 or more normally.
  • the thickness of the laminate is appropriately adjusted depending on the application, but is usually 10 to 1,000 ⁇ m, preferably 15 to 500 ⁇ m, more preferably 20 to 400 ⁇ m, and further preferably 25 to 300 ⁇ m.
  • the thickness of the laminate is within the above range, the flexibility is good, and at the same time, it can contribute to the thinning of the image display device.
  • the manufacturing method of a polyimide-type film and a laminated body is not specifically limited. Below, an example of the manufacturing method of a polyimide-type film and a laminated body is demonstrated.
  • the polyimide film for example, includes the following steps: (A) Applying a liquid (polyimide varnish) containing a polyimide-based polymer to a substrate to form a coating film (application process), and (b) drying the applied liquid (polyimide varnish) to obtain a polyimide system Process for forming a film (film forming process) It can manufacture with the manufacturing method containing. Steps (a) and (b) may usually be performed in this order.
  • a liquid containing a polyimide polymer (polyimide varnish) is prepared.
  • a polyimide varnish the tetracarboxylic acid compound, the diamine, and other components as necessary are mixed and reacted to prepare a polyimide mixed solution.
  • a solvent (polyimide varnish) containing a polyimide-based polymer is prepared by adding a solvent, and, if necessary, the ultraviolet absorber and other additives to the polyimide mixed solution and stirring.
  • a solution such as a purchased polyimide polymer or a solution such as a purchased solid polyimide polymer may be used.
  • the solvent used for preparing the polyimide varnish is not particularly limited as long as it can dissolve the polyimide polymer.
  • solvents include amide solvents such as N, N-dimethylacetamide and N, N-dimethylformamide; lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone; and sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide, and sulfolane.
  • Examples thereof include carbonate solvents such as ethylene carbonate and propylene carbonate; and combinations thereof (mixed solvents).
  • amide solvents or lactone solvents are preferable.
  • the polyimide varnish may contain water.
  • a coating film is formed on a substrate such as a resin substrate, a SUS belt, or a glass substrate by using a polyimide varnish by fluency molding or the like. Can do.
  • a polyimide film can be formed by drying the coating film and peeling it from the substrate. You may perform the drying process which dries a polyimide-type film further after peeling.
  • the coating film can be dried usually at a temperature of 50 to 350 ° C. If necessary, the coating film may be dried under an inert atmosphere or under reduced pressure.
  • a surface treatment step of performing a surface treatment on at least one surface of the polyimide film may be performed.
  • the surface treatment include UV ozone treatment, plasma treatment, and corona discharge treatment.
  • resin base materials examples include PET films, PEN films, and polyimide films.
  • a PET film, a PEN film, a polyimide film, and a polyamideimide film are preferable.
  • a PET film is more preferable as the resin base material from the viewpoint of adhesion to the polyimide film as the front plate and cost.
  • the thickness of the resin substrate is not particularly limited, and is, for example, 10 to 500 ⁇ m, preferably 50 to 300 ⁇ m.
  • the polyimide-type film as a resin base material is synonymous with the polyimide-type film of Paragraph 0014.
  • the method for producing a polyimide film may include (c) a step of stretching the polyimide film uniaxially or biaxially (film stretching step).
  • the stretching may be uniaxial stretching or biaxial stretching, but it is preferable to stretch the polyimide film by uniaxial stretching from the viewpoint of the in-plane retardation distribution uniformity.
  • the biaxial stretching may be simultaneous biaxial stretching or sequential biaxial stretching.
  • the draw ratio is not particularly limited, but is preferably 1.05 to 5.0 times, more preferably 1.1 to 4.0 times, and still more preferably 1.3 to 3.0 times. When the draw ratio is in the above range, there are few breaks due to the drawing process, and the desired phase difference can be obtained.
  • the film stretching step may be performed under heating, and the temperature (stretching temperature) is, for example, 150 to 350 ° C.
  • the stretching temperature is 150 to 350 ° C.
  • the polyimide and polyamideimide are easily stretched without causing breakage.
  • the polyimide film may be relaxed and heat-set.
  • a laminate comprising a polyimide film and a hard coat layer disposed on at least one surface of the polyimide film is, for example, The following steps: (D) A process of applying a hard coat layer composition on a polyimide film to form a coating film (coating film forming process), and (e) irradiating the coating film with high energy rays to cure the coating film. Step to form a hard coat layer (curing step) It can manufacture with the manufacturing method containing.
  • the order of the steps may be the order of steps (d) and (e). Normally, the steps (d) and (e) can be performed after the steps (a) and (b) and optionally (c).
  • a hard coat layer composition is first prepared.
  • the hard coat layer composition contains the above hard coat layer resin and, if necessary, a photopolymerization initiator, an organic solvent and / or an inorganic oxide, and can be prepared by mixing these components. it can.
  • the photopolymerization initiator include benzoin compounds, benzophenone compounds, alkylphenone compounds, acylphosphine oxide compounds, triazine compounds, iodonium salts, and sulfonium salts.
  • organic solvent examples include alcohol solvents such as ethanol, ethylene glycol, isopropyl alcohol, and propylene glycol; ester solvents such as ethyl acetate and ⁇ -butyrolactone; ketone solvents such as acetone, methyl ethyl ketone, and cyclopentanone; Aliphatic hydrocarbon solvents; and aromatic hydrocarbon solvents such as toluene and xylene.
  • a photoinitiator and / or an organic solvent may be individual, and may be used in combination of 2 or more type. Further, the hard coat layer composition may contain the other additives.
  • a hard coat layer composition is applied onto the polyimide film to form a coating film.
  • the formation order of the polyimide film and the coating film may be reversed.
  • the coating film of the polyimide film is formed on the coating film. Also good. Moreover, you may bond to a polyimide-type film using a well-known adhesive agent and / or an adhesive.
  • the coating film formed on the polyimide film may be dried.
  • the coating film can be dried by evaporating the solvent at a temperature of 50 to 350 ° C., and the drying time is usually 30 to 180 seconds. You may dry in air
  • the method for producing a laminate may include (f) a step of stretching a polyimide film including a coating film uniaxially or biaxially (laminate stretching step) after the coating film forming step.
  • the stretching may be uniaxial stretching or biaxial stretching, but from the viewpoint of in-plane retardation distribution uniformity, it is preferable to stretch the polyimide film including the coating film by uniaxial stretching.
  • the biaxial stretching may be simultaneous biaxial stretching or sequential biaxial stretching.
  • the draw ratio depends on the draw ratio in the film stretching step, but is preferably 1.05 to 5.0 times, more preferably 1.1 to 4.0 times, and still more preferably 1.3 to 3.0 times. .
  • the stretching step may be performed during drying of the coating film.
  • the stretching step may be performed under heating, and the temperature is, for example, 150 to 350 ° C.
  • the polyimide film may be relaxed and heat-set.
  • the laminate stretching step is performed after the coating film forming step, drying of the coating and stretching of the laminate can be performed at the same time, which is advantageous from the viewpoint of process design.
  • positioned on a polyimide-type film is also extended simultaneously with extending
  • the coating film (resin composition) is irradiated with high energy rays (active energy rays), and the coating film is cured to form a hard coat layer.
  • the irradiation intensity is appropriately determined depending on the composition of the hard coat layer composition and is not particularly limited, but irradiation in a wavelength region effective for activating the photopolymerization initiator is preferable.
  • the irradiation intensity is preferably 0.1 ⁇ 6,000mW / cm 2, more preferably 10 ⁇ 1,000mW / cm 2, more preferably 20 ⁇ 500mW / cm 2.
  • the irradiation time may be appropriately selected depending on the composition of the hard coat layer composition and is not particularly limited.
  • the integrated light amount expressed as the product of the irradiation intensity and the irradiation time is preferably 10 to 10,000 mJ. / Cm 2 , more preferably 50 to 1,000 mJ / cm 2 , still more preferably 80 to 500 mJ / cm 2 .
  • the integrated light quantity is within the above range, a sufficient amount of active species derived from the photopolymerization initiator can be generated, and the curing reaction can proceed more reliably, and the irradiation time is not too long, and the production is good. Can maintain sex. Moreover, it is useful because the hardness of the hard coat layer can be further increased by performing the irradiation step in this range.
  • an optical member comprising the above polyimide film or laminate.
  • the optical member include a front plate of an image display device, particularly a front plate (window film) of a flexible display.
  • an image display device including such an optical member, particularly a flexible display is also provided.
  • the flexible display according to the present embodiment includes, for example, a flexible functional layer and the optical member that is stacked on the flexible functional layer and functions as a front plate. That is, the front plate of the flexible display is arranged on the viewing side on the flexible functional layer. This front plate has a function of protecting the flexible functional layer.
  • an image display device including the optical member, particularly a flexible display does not have a retardation film.
  • the retardation film is an optical film exhibiting optical anisotropy.
  • the retardation film according to the purpose of use such as for the purpose of compensating for coloring or viewing angle due to birefringence of various wave plates and liquid crystal layers, etc. It is what you have.
  • Examples of the image display device include wearable devices such as a television, a smartphone, a mobile phone, a car navigation system, a tablet PC, a portable game machine, electronic paper, an indicator, a bulletin board, a clock, and a smart watch.
  • the flexible display is all image display devices having flexible characteristics.
  • FIG. 1 An example of a flexible display is shown in FIG.
  • This flexible display 100 has a configuration of front plate 110 / polarizing film 120 / touch sensor film 130 / organic EL element layer 140 / TFT substrate 150 in order from the surface side (viewing side).
  • a layer other than the front plate 110 in the flexible display 100 is the flexible functional layer 200.
  • An adhesive layer or the like may be included between the surface of each layer and each layer.
  • the optical member such as the laminate 10 according to an embodiment of the present invention can be used.
  • an organic EL element is exemplified as the light source
  • the light source is not limited to this in the present embodiment.
  • it may be a liquid crystal display device, a plasma display panel, an inorganic EL display, a cathode ray tube display device, a surface electric field display, or the like, and this embodiment can be suitably used as a front plate of these display elements.
  • Such an image display device is advantageously used as a wearable device such as a television, a smartphone, a mobile phone, a car navigation, a tablet PC, a portable game machine, electronic paper, an indicator, a bulletin board, a clock, and a smart watch. be able to.
  • An image display device including the polyimide film has flexible characteristics and can further suppress coloring through polarized sunglasses.
  • the image display device including the laminate has flexible characteristics, can suppress coloring through polarized sunglasses, and at the same time has high surface hardness, so that the surface is hardly damaged.
  • Total light transmittance measurement> The total light transmittance of the sample was measured by a fully automatic direct reading haze computer HGM-2DP manufactured by Suga Test Instruments Co., Ltd. according to JIS K7105: 1981.
  • In-plane retardation of the sample was measured using a phase difference measuring device KOBRA-WPR manufactured by Oji Scientific Instruments. A sample cut out at 4 cm ⁇ 5 cm was placed in the apparatus, the retardation at a wavelength of 589.6 nm at an incident angle of 0 ° was measured, and the measured value was taken as the in-plane retardation Re.
  • the sample used for the measurement cut out the center part of the width direction of a film, and made the film width direction the slow axis.
  • GPL38.31 g and N, N-dimethylacetamide (DMAc) 11.82 g were added to 200.00 g of the polyimide varnish to further dilute.
  • DMAc N, N-dimethylacetamide
  • a coating film was formed on a PET (polyethylene terephthalate) film by fluent casting. Then, the coating film was dried by heating at 50 ° C. for 30 minutes and at 140 ° C. for 10 minutes to obtain a polyimide film.
  • the resulting reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of a thread, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain polyamideimide.
  • the weight average molecular weight was 420,000.
  • the polyamideimide was added to the DMAc solvent and dissolved at a concentration of 10% to obtain a resin varnish. Using the diluted polyimide varnish, the coating film was dried in the same manner as in Synthesis Example 1 to obtain a polyimide film.
  • Example 1 The polyimide film obtained in Synthesis Example 1 was peeled from the PET film.
  • the obtained polyimide-based film was uniaxially stretched at a stretching temperature of 200 ° C. and a stretching ratio of 1.35 times to obtain a stretched polyimide-based film having a thickness of 60 ⁇ m.
  • the center part of the stretched polyimide film was cut out and the in-plane retardation was measured, it was 4,000 nm.
  • the laminated body (1) provided with a stretched polyimide-type film (thickness: 60 micrometers) and a hard-coat layer (thickness: 5 micrometers).
  • the pencil hardness was measured using the laminate (1), it was 3H.
  • total light transmittance measurement and yellowness measurement were performed. The results are shown in Table 1.
  • Example 2 The polyimide film obtained in Synthesis Example 1 was peeled from the PET film. On the obtained polyimide film, Z-624 manufactured by AICA was applied using a Mayer bar so that the thickness after drying was 6 ⁇ m, thereby forming a coating film. The obtained coating film was dried at 120 ° C. for 1 minute.
  • the polyimide film provided with the coating film was uniaxially stretched at a stretching temperature of 200 ° C. and a stretching ratio of 1.35 times to obtain a stretched polyimide film having a thickness of 65 ⁇ m. Thereafter, the coating film was cured by irradiating with ultraviolet rays at an ultraviolet irradiation amount of 500 mJ / cm 2 to form a hard coat layer.
  • the center part of the laminated body (2) was cut out and the in-plane retardation was measured, it was 4,100 nm.
  • the pencil hardness was measured using the laminate (2), it was 3H.
  • total light transmittance measurement and yellowness measurement were performed. The results are shown in Table 1.
  • Example 3 The polyimide film obtained in Synthesis Example 1 was peeled from the PET film. Then, after forming a coating film on the obtained polyimide film in the same manner as in Example 2, uniaxially stretching at a stretching temperature of 200 ° C. and a stretching ratio of 1.50, and then performing ultraviolet irradiation, A polyimide laminate (3) provided with a stretched polyimide film (thickness: 60 ⁇ m) and a hard coat layer (thickness: 5 ⁇ m) was obtained. When the center part of the laminated body (3) was cut out and the in-plane retardation was measured, it was 15,160 nm. Next, when the pencil hardness was measured using the laminate (3), it was 3H. Moreover, total light transmittance measurement and yellowness measurement were performed. The results are shown in Table 1.
  • Example 4 The polyimide film obtained in Synthesis Example 2 was peeled from the PET film. Then, after forming a coating film on the obtained laminated polyimide film in the same manner as in Example 2, the film was uniaxially stretched at a stretching temperature of 200 ° C. and a stretching ratio of 1.30, and then irradiated with ultraviolet rays. A laminate comprising a stretched polyimide film (thickness: 60 ⁇ m) and a hard coat layer (thickness: 5 ⁇ m) was obtained. When the center part of the laminate was cut out and the in-plane retardation was measured, it was 5,000 nm. Next, when the pencil hardness was measured using the laminate (3), it was 2H. Moreover, total light transmittance measurement and yellowness measurement were performed. The results are shown in Table 1.
  • Liquid crystal display elements were produced using the laminates (1) to (4) obtained in the respective examples and comparative examples.
  • a manufacturing method of the liquid crystal display element is as follows.
  • a polyvinyl alcohol film (trade name “Kuraray Vinylon VF-PS # 7500” manufactured by Kuraray Co., Ltd.) having an average polymerization degree of about 2400 and a saponification degree of 99.9 mol% and a thickness of 75 ⁇ m is immersed in pure water at 30 ° C. Then, the iodine dyeing process was performed by immersing at 30 ° C. in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.02 / 1.5 / 100.
  • the boric acid treatment step was performed by immersing the polyvinyl alcohol film in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 20/3/100 at 30 ° C. Subsequently, the polyvinyl alcohol film was washed with pure water and then dried to obtain a polarizing film in which iodine was adsorbed and oriented on polyvinyl alcohol. Stretching was mainly performed in the iodine staining and boric acid treatment steps, and the total stretching ratio was 5.9 times.
  • a polarizing plate (1) was obtained by laminating a cellulose triacetate resin (trade name “Fujitac TD40UZ” manufactured by Fuji Film Co., Ltd.) having a thickness of 40 ⁇ m on one side of the obtained polarizing film.
  • a cellulose triacetate resin trade name “Fujitac TD40UZ” manufactured by Fuji Film Co., Ltd.
  • the visibility of the liquid crystal displays (1) to (4) was confirmed as follows.
  • the produced liquid crystal displays (1) to (4) were each displayed in white, and an observer wore polarized sunglasses manufactured by FERRY, and evaluated the visibility through polarized sunglasses.
  • the observer observed the colored state of the display while changing the observation angle with respect to the image display element in the range of 45 ° to 135 °.
  • the results are shown in Table 1.
  • the evaluation criteria of visibility are as follows. ⁇ : Coloring is not visually recognized at all.
  • X Rainbow unevenness and coloring are confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention addresses the problem in which the surface of an image display device in some cases appears tinted when viewed through polarized sunglasses. The purpose of the present invention is to provide a front panel for an image display device, in particular a front panel for a flexible display, which can suppress the tinting that occurs when the display is viewed through polarized sunglasses. The present invention provides a polyimide-based film having an in-plane retardation of at least 3,000 nm at a wavelength of 589.4 nm.

Description

ポリイミド系フィルム及び積層体Polyimide film and laminate
 本発明は、ポリイミド系フィルム並びに該ポリイミド系フィルム及びハードコート層を含んでなる積層体に関する。 The present invention relates to a polyimide film and a laminate comprising the polyimide film and a hard coat layer.
 現在、液晶表示装置や有機EL表示装置等の画像表示装置は、テレビのみならず、携帯電話やスマートウォッチといった種々の用途で広く活用されている。こうした用途の拡大に伴い、フレキシブル特性を有する画像表示装置(フレキシブルディスプレイ)が求められており、その各部材のフレキシブル化も必要となっている。 Currently, image display devices such as liquid crystal display devices and organic EL display devices are widely used not only for televisions but also for various applications such as mobile phones and smart watches. With the expansion of such applications, image display devices (flexible displays) having flexible characteristics are demanded, and it is necessary to make each member flexible.
 画像表示装置は、液晶表示素子又は有機EL表示素子等の表示素子の他、偏光板や位相差板及び前面板等から構成される。フレキシブルディスプレイを達成するためには、これら全ての部材がフレキシブル特性を有する必要がある。画像表示装置の部材がフレキシブル特性を有する高分子材料からなる場合(例えば特許文献1)、その部材は屈曲し易いため、フレキシブルディスプレイへの適用が比較的実施し易い。しかし、これまで画像表示装置の前面板材料として用いられてきたガラスは、透明度が高く、ガラスの種類によっては高硬度を発現できる反面、非常に剛直であり、割れやすいため、フレキシブルディスプレイの前面板材料としての利用は難しい。 The image display device includes a display element such as a liquid crystal display element or an organic EL display element, a polarizing plate, a retardation plate, a front plate, and the like. In order to achieve a flexible display, all these members need to have flexible properties. When the member of the image display device is made of a polymer material having flexible characteristics (for example, Patent Document 1), the member is easy to bend, so that it is relatively easy to apply to a flexible display. However, glass that has been used as a front plate material for image display devices so far has high transparency and can exhibit high hardness depending on the type of glass, but it is very stiff and easy to break. Use as a material is difficult.
特開平8-327819号公報JP-A-8-327819
 そのため、ガラスに代わる材料として、高分子材料の活用が検討されている。高分子材料からなる前面板はフレキシブル特性を発現し易いため、種々の用途に用いることができる。例えば、携帯電話、スマートウォッチやカーナビゲーション等に用いた場合、前面板のフレキシブル特性を利用して、画像表示装置をフラット形状だけでなく様々な形状にすることができる。 Therefore, the use of polymer materials as a material to replace glass is being studied. Since the front plate made of a polymer material is easy to exhibit flexible characteristics, it can be used for various applications. For example, when used in a mobile phone, a smart watch, a car navigation system, etc., the image display device can be made not only in a flat shape but also in various shapes by utilizing the flexible characteristic of the front plate.
 また、前面板においては、フレキシブル特性だけでなく、画像表示装置に組み込んだ際の視認性も重要となる。光が強い場合や車内にいる場合には使用者が偏光サングラスを装着して画像表示装置を見ることがある。しかし、偏光サングラスを通して画像表示装置を見ると、画像表示装置の表面に着色が生じることがある。こうした現象が生じると、視認性が低下し、例えばカーナビゲーションの場合には、車の運転に支障が生じることがある。 Also, in the front plate, not only the flexible characteristics but also the visibility when incorporated in the image display device is important. When the light is strong or in the vehicle, the user may wear polarized sunglasses and watch the image display device. However, when the image display device is viewed through the polarized sunglasses, the surface of the image display device may be colored. When such a phenomenon occurs, the visibility decreases, and in the case of car navigation, for example, the driving of the car may be hindered.
 そこで本発明は、偏光サングラス越しの着色を抑制することができる画像表示装置用の前面板、特にフレキシブルディスプレイ用の前面板を提供することを目的とする。 Therefore, an object of the present invention is to provide a front plate for an image display device, particularly a front plate for a flexible display, which can suppress coloring through polarized sunglasses.
 本発明者等は、上記課題を解決するために鋭意検討した結果、本発明を完成するに至った。
 すなわち、本発明は、以下の好適な態様を提供するものである。
[1]波長589.4nmにおける面内位相差が3,000nm以上である、ポリイミド系フィルム。
[2]全光線透過率が85%以上である、前記[1]に記載のポリイミド系フィルム。
[3]ポリイミド系フィルムに含まれるポリイミド系高分子は分子内にフッ素原子を含む、前記[1]~[2]に記載のポリイミド系フィルム。
[4]黄色度(YI)が5以下である、前記[1]~[3]のいずれかに記載のポリイミド系フィルム。
[5]前記[1]~[4]のいずれかに記載のポリイミド系フィルムと、該ポリイミド系フィルムの少なくとも一方の表面に配置されたハードコート層とを備える、積層体。
[6]前記[1]~[4]のいずれかに記載のポリイミド系フィルム又は前記[5]に記載の積層体を備える光学部材。
[7]前記[1]~[4]に記載のポリイミド系フィルム又は前記[5]に記載の積層体、又は前記[6]に記載の光学部材を備える、画像表示装置。
[8]ポリイミド系フィルム上に、ハードコート層組成物を塗布して塗膜を形成する工程、ポリイミド系フィルムを1軸又は2軸で延伸する工程、及び
塗膜に高エネルギー線を照射し、塗膜を硬化させてハードコート層を形成する工程
を含む、ポリイミド系フィルム及びハードコート層を含む積層体の製造方法。
[9]ポリアミック酸をイミド化させたポリイミド系高分子を含む液を基材に塗布して塗膜を形成する工程、及び
塗布された液を乾燥させてポリイミド系フィルムを形成する工程
をさらに含有する、前記[8]に記載の製造方法。
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, the present invention provides the following preferred embodiments.
[1] A polyimide film having an in-plane retardation at a wavelength of 589.4 nm of 3,000 nm or more.
[2] The polyimide film according to [1], wherein the total light transmittance is 85% or more.
[3] The polyimide film according to [1] to [2], wherein the polyimide polymer contained in the polyimide film contains a fluorine atom in the molecule.
[4] The polyimide film according to any one of [1] to [3], wherein the yellowness (YI) is 5 or less.
[5] A laminate comprising the polyimide film according to any one of [1] to [4] and a hard coat layer disposed on at least one surface of the polyimide film.
[6] An optical member comprising the polyimide film according to any one of [1] to [4] or the laminate according to [5].
[7] An image display device comprising the polyimide film according to [1] to [4], the laminate according to [5], or the optical member according to [6].
[8] A step of applying a hard coat layer composition on a polyimide film to form a coating film, a step of stretching the polyimide film uniaxially or biaxially, and irradiating the coating film with high energy rays, The manufacturing method of the laminated body containing the polyimide-type film and hard coat layer including the process of hardening a coating film and forming a hard-coat layer.
[9] It further includes a step of applying a liquid containing a polyimide polymer imidized with polyamic acid to a substrate to form a coating film, and a step of drying the applied liquid to form a polyimide film. The manufacturing method according to [8] above.
 本発明によれば、偏光サングラス越しの着色を抑制できる画像表示装置用の前面板、特にフレキシブルディスプレイ用の前面板を提供することができる。 According to the present invention, it is possible to provide a front plate for an image display device, particularly a front plate for a flexible display, which can suppress coloring through polarized sunglasses.
本発明の一実施態様である積層体の構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the laminated body which is one embodiment of this invention. 本発明の一実施態様である積層体を備えるフレキシブルディスプレイの構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of a flexible display provided with the laminated body which is one embodiment of this invention.
 以下、本発明の実施の形態について、詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。 Hereinafter, embodiments of the present invention will be described in detail. Note that the scope of the present invention is not limited to the embodiment described here, and various modifications can be made without departing from the spirit of the present invention.
[ポリイミド系フィルム]
 本発明の一実施態様においては、波長589.4nmにおける面内位相差が3,000nm以上であるポリイミド系フィルムが提供される。上記ポリイミド系フィルムは、ポリイミド系高分子を含んでなるフィルムである。ポリイミド系高分子は、耐熱性、フレキシブル特性及び剛性に優れるため、画像表示装置の前面板材料、特にフレキシブルディスプレイの前面板(ウィンドウフィルム)材料として適当である。ポリイミド系フィルムは単層であってもよく、複層であってもよい。ポリイミド系フィルムが複層である場合、各層は同一の組成であってよく、異なる組成であってもよい。ポリイミド系フィルムは、ポリイミド及びポリアミドイミドからなる群から選択される少なくとも1種を含む。すなわち、ポリイミド系フィルムは、ポリイミド又はポリアミドイミドを含むことができ、ポリイミド及びポリアミドイミドの両方を混合して含んでもよい。
[Polyimide film]
In one embodiment of the present invention, a polyimide film having an in-plane retardation at a wavelength of 589.4 nm of 3,000 nm or more is provided. The polyimide film is a film comprising a polyimide polymer. Since the polyimide polymer is excellent in heat resistance, flexibility and rigidity, it is suitable as a front plate material for an image display device, particularly as a front plate (window film) material for a flexible display. The polyimide film may be a single layer or a multilayer. When a polyimide-type film is a multilayer, each layer may be the same composition and a different composition may be sufficient as it. The polyimide film includes at least one selected from the group consisting of polyimide and polyamideimide. That is, the polyimide film can contain polyimide or polyamideimide, and may contain both polyimide and polyamideimide.
(ポリイミド系高分子)
 ポリイミド系高分子とは、ポリイミド並びにポリアミドイミドを示す。ポリアミドイミドは、イミド基及びアミド基の両方を含む繰返し構造単位を含有する重合体、又はイミド基を含む繰返し構造単位とアミド基を含む繰返し構造単位との両方を含有する重合体である。ポリイミドとは、イミド基を含む繰返し構造単位を含有する重合体である。
(Polyimide polymer)
The polyimide polymer refers to polyimide and polyamideimide. Polyamideimide is a polymer containing a repeating structural unit containing both an imide group and an amide group, or a polymer containing both a repeating structural unit containing an imide group and a repeating structural unit containing an amide group. A polyimide is a polymer containing a repeating structural unit containing an imide group.
 ポリイミド系高分子は、例えば、後述するテトラカルボン酸化合物とジアミン化合物とを主な原料として製造することができる。本発明の一実施態様において、ポリイミド系高分子は、式(10)で表される繰返し構造単位を有する。ここで、Gは4価の有機基であり、Aは2価の有機基である。ポリイミド系高分子において、G及び/又はAが異なる、2種以上の式(10)で表される構造が含まれていてもよい。 The polyimide polymer can be produced using, for example, a tetracarboxylic acid compound and a diamine compound described later as main raw materials. In one embodiment of the present invention, the polyimide polymer has a repeating structural unit represented by the formula (10). Here, G is a tetravalent organic group, and A is a divalent organic group. In the polyimide polymer, a structure represented by two or more formulas (10) in which G and / or A are different may be included.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 また、ポリイミド系高分子は、ポリイミド系フィルムの各種物性を損なわない範囲で、式(11)、式(12)及び式(13)で表される構造からなる群から選択される1以上を含んでいてもよい。 The polyimide polymer includes one or more selected from the group consisting of structures represented by formula (11), formula (12), and formula (13) as long as various physical properties of the polyimide film are not impaired. You may go out.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 G及びGは、それぞれ独立して、4価の有機基であり、好ましくは炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。有機基は、好ましくは炭化水素基又はフッ素置換された炭化水素基で置換されてもよい有機基である。有機基は、好ましくは炭素数4~40の4価の有機基である。炭化水素基及びフッ素置換された炭化水素基は、好ましくはその炭素数が1~8である。G及びGとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基;それら式(20)~式(29)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに4価の炭素数6以下の鎖式炭化水素基が例示される。 G and G 1 are each independently a tetravalent organic group, preferably an organic group that may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. The organic group is preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. The organic group is preferably a tetravalent organic group having 4 to 40 carbon atoms. The hydrocarbon group and the fluorine-substituted hydrocarbon group preferably have 1 to 8 carbon atoms. The G and G 1, equation (20), equation (21), equation (22), equation (23), equation (24), equation (25), equation (26), equation (27), formula (28 ) And a group represented by formula (29); a group in which a hydrogen atom in the groups represented by formula (20) to formula (29) is substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group And a tetravalent chain hydrocarbon group having 6 or less carbon atoms.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(20)~式(29)中、
 *は結合手を表し、
 Zは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-Ar-、-SO-、-CO-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又は-Ar-SO-Ar-を表す。Arは、水素原子がフッ素原子で置換されていてもよい炭素数6~20のアリーレン基を表し、具体例としてはフェニレン基が挙げられる。
In formula (20) to formula (29),
* Represents a bond,
Z is a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, - Ar -, - SO 2 -, - CO -, - O-Ar-O -, - Ar-O-Ar -, - Ar-CH 2 -Ar -, - Ar-C (CH 3) 2 -Ar- , or —Ar—SO 2 —Ar— is represented. Ar represents an arylene group having 6 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom, and specific examples thereof include a phenylene group.
 G及びGとしては、式(20)~式(29)で表される基の中でも、該ポリイミド系高分子を含んでなるポリイミド系フィルムの表面硬度及び柔軟性の観点から、式(26)、式(28)及び式(29)で表される基が好ましく、得られるフィルムの黄色度を抑制しやすいことから、式(26)で表される基がより好ましい。また、Zは、該ポリイミド系高分子を含んでなるポリイミド系フィルムの表面硬度及び柔軟性の観点から、それぞれ独立して、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-又は-C(CF-であることが好ましく、-O-、-CH-、-CH(CH)-、-C(CH-又は-C(CF-であることがより好ましく、-C(CH-又は-C(CF-であることがさらに好ましく、-C(CF-であることが特に好ましい。 As G and G 1 , among the groups represented by the formulas (20) to (29), from the viewpoint of the surface hardness and flexibility of the polyimide film comprising the polyimide polymer, the formula (26) The groups represented by the formula (28) and the formula (29) are preferable, and the group represented by the formula (26) is more preferable because the yellowness of the obtained film is easily suppressed. Further, Z is, from the viewpoint of surface hardness and flexibility of the polyimide film comprising said polyimide polymer, independently, a single bond, -O -, - CH 2 - , - CH 2 -CH 2 —, —CH (CH 3 ) —, —C (CH 3 ) 2 — or —C (CF 3 ) 2 — is preferred, —O—, —CH 2 —, —CH (CH 3 ) —, -C (CH 3) 2 - or -C (CF 3) 2 -, more preferably, -C (CH 3) 2 - or -C (CF 3) 2 - is more preferably, -C (CF 3 ) 2 — is particularly preferred.
 Gは3価の有機基であり、好ましくは炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。前記有機基は、好ましくは炭素数4~40の3価の有機基である。炭化水素基及びフッ素置換された炭化水素基の炭素数は好ましくは1~8である。また、前記有機基の炭素数は好ましくは4~40である。Gとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)又は式(29)で表される基の結合手のいずれか1つが水素原子に置き換わった基、及び3価の炭素数6以下の鎖式炭化水素基が例示される。式中のZの例は、Gに関する記述におけるZの例と同じである。 G 2 is a trivalent organic group, and is preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. The organic group is preferably a trivalent organic group having 4 to 40 carbon atoms. The hydrocarbon group and the fluorine-substituted hydrocarbon group preferably have 1 to 8 carbon atoms. The organic group preferably has 4 to 40 carbon atoms. The G 2, equation (20), equation (21), equation (22), equation (23), equation (24), equation (25), equation (26), equation (27), equation (28) or Examples thereof include a group in which any one of the bonds of the group represented by formula (29) is replaced with a hydrogen atom, and a trivalent chain hydrocarbon group having 6 or less carbon atoms. The example of Z in the formula is the same as the example of Z in the description about G.
 Gは2価の有機基であり、好ましくは炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。前記有機基は、好ましくは炭素数4~40の2価の有機基である。炭化水素基及びフッ素置換された炭化水素基の炭素数は好ましくは1~8である。また、前記有機基の炭素数は好ましくは4~40である。Gとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)又は式(29)で表される基の結合手のうち、隣接しない2つが水素原子に置き換わった基、及び炭素数6以下の鎖式炭化水素基が例示される。式中のZの例は、Gに関する記述におけるZの例と同じである。 G 3 is a divalent organic group, preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. The organic group is preferably a divalent organic group having 4 to 40 carbon atoms. The hydrocarbon group and the fluorine-substituted hydrocarbon group preferably have 1 to 8 carbon atoms. The organic group preferably has 4 to 40 carbon atoms. The G 3, equation (20), equation (21), equation (22), equation (23), equation (24), equation (25), equation (26), equation (27), equation (28) or Examples of the bond of the group represented by formula (29) include a group in which two that are not adjacent to each other are replaced with hydrogen atoms, and a chain hydrocarbon group having 6 or less carbon atoms. The example of Z in the formula is the same as the example of Z in the description about G.
 Gとしては、該ポリイミド系高分子を含んでなるポリイミド系フィルムの表面硬度及び柔軟性の観点から、上記の式(26)、式(28)及び式(29)で表される基の結合手のいずれか1つが水素原子に置き換わった基が好ましく、式(26)で表される基の結合手のいずれか1つが水素原子に置き換わった基がより好ましい。また、Gとしては、該ポリイミド系高分子を含んでなるポリイミド系フィルムの表面硬度及び柔軟性の観点から、式(26)、式(28)及び式(29)で表される基の結合手のうち、隣接しない2つが水素原子に置き換わった基が好ましく、得られるフィルムの黄色度を抑制しやすいことから、式(26)で表される基の結合手のうち、隣接しない2つが水素原子に置き換わった基がより好ましい。Zは、該ポリイミド系高分子を含んでなるポリイミド系フィルムの表面硬度及び柔軟性の観点から、それぞれ独立して、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-又は-C(CF-であることが好ましく、-O-、-CH-、-CH(CH)-、-C(CH-又は-C(CF-であることがより好ましく、-C(CH-又は-C(CF-であることがさらに好ましく、-C(CF-であることが特に好ましい。 The G 2, attachment of the group in terms of surface hardness and flexibility of the polyimide film comprising said polyimide polymer, the above equation (26), of the formula (28) and (29) A group in which any one of the hands is replaced with a hydrogen atom is preferable, and a group in which any one of the bonding hands of the group represented by the formula (26) is replaced with a hydrogen atom is more preferable. Further, attachment of the group as a G 3, from the viewpoint of surface hardness and flexibility of the polyimide film comprising said polyimide polymer, represented by the formula (26), equation (28) and (29) Among the hands, a group in which two non-adjacent ones are replaced with hydrogen atoms is preferable, and it is easy to suppress the yellowness of the resulting film. Therefore, two non-adjacent hands in the group represented by formula (26) are hydrogen. A group in which an atom is replaced is more preferable. Z, from the viewpoint of surface hardness and flexibility of the polyimide film comprising said polyimide polymer, independently, a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, —CH (CH 3 ) —, —C (CH 3 ) 2 — or —C (CF 3 ) 2 — is preferable, —O—, —CH 2 —, —CH (CH 3 ) —, —C More preferably, it is (CH 3 ) 2 — or —C (CF 3 ) 2 —, more preferably —C (CH 3 ) 2 — or —C (CF 3 ) 2 —, and —C (CF 3 ) 2 − is particularly preferred.
 A、A、A及びAは、それぞれ独立して、2価の有機基であり、好ましくは炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。前記有機基の炭素数は好ましくは4~40である。炭化水素基又はフッ素置換された炭化水素基の炭素数は好ましくは1~8である。A、A、A及びAとしては、それぞれ式(30)、式(31)、式(32)、式(33)、式(34)、式(35)、式(36)、式(37)及び式(38)で表される基;それら式(30)~式(38)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに炭素数6以下の鎖式炭化水素基が例示される。 A, A 1 , A 2 and A 3 are each independently a divalent organic group, preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. The organic group preferably has 4 to 40 carbon atoms. The number of carbon atoms of the hydrocarbon group or the fluorine-substituted hydrocarbon group is preferably 1-8. As A, A 1 , A 2 and A 3 , Formula (30), Formula (31), Formula (32), Formula (33), Formula (34), Formula (35), Formula (36), Formula (37) and a group represented by formula (38); a hydrogen atom in the group represented by formula (30) to formula (38) is substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group. And a chain hydrocarbon group having 6 or less carbon atoms.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(30)~式(38)中、*は結合手を表し、
 Z、Z及びZは、それぞれ独立して、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-又は-CO-を表す。
 1つの例は、Z及びZが-O-であり、かつ、Zが-CH-、-C(CH-、-C(CF-又は-SO-である。ZとZとの各環に対する結合位置、及び、ZとZとの各環に対する結合位置は、それぞれ、各環に対してメタ位又はパラ位であることが好ましい。
In formula (30) to formula (38), * represents a bond,
Z 1, Z 2 and Z 3 are each independently a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 —, —C (CF 3 ) 2 —, —SO 2 — or —CO— is represented.
One example is when Z 1 and Z 3 are —O— and Z 2 is —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — or —SO 2 —. is there. It is preferable that the bonding position of each of Z 1 and Z 2 with respect to each ring and the bonding position of each of Z 2 and Z 3 with respect to each ring is a meta position or a para position with respect to each ring.
 式(30)~式(38)で表される基の中でも、該ポリイミド系高分子を含んでなるポリイミド系フィルムの表面硬度及び柔軟性の観点から、式(33)~式(37)で表される基が好ましく、式(34)~式(36)で表される基がより好ましく、式(34)で表される基がさらに好ましい。また、Z、Z及びZは、該ポリイミド系高分子を含んでなるポリイミド系フィルムの表面硬度及び柔軟性の観点から、それぞれ独立して、単結合又は-O-であることが好ましく、単結合であることがより好ましい。 Among the groups represented by formula (30) to formula (38), from the viewpoint of the surface hardness and flexibility of the polyimide film comprising the polyimide polymer, the groups represented by formula (33) to formula (37) are used. The group represented by formula (34) to formula (36) is more preferred, and the group represented by formula (34) is more preferred. Z 1 , Z 2 and Z 3 are preferably each independently a single bond or —O— from the viewpoint of the surface hardness and flexibility of the polyimide film comprising the polyimide polymer. More preferably, it is a single bond.
 上記ポリイミド系フィルムは、ポリアミドを含んでいてもよい。ポリアミドとは、アミド基を含む繰返し構造単位を含有する重合体である。本実施形態に係るポリアミドは、上記の式(13)で表される繰返し構造単位を主とする重合体である。ポリアミドにおけるG及びAの好ましい例及び具体例は、それぞれポリイミド系高分子におけるG及びAと同じである。G及び/又はAが異なる、2種以上の式(13)で表される構造を含んでいてもよい。 The polyimide film may contain polyamide. Polyamide is a polymer containing repeating structural units containing amide groups. The polyamide according to this embodiment is a polymer mainly composed of repeating structural units represented by the above formula (13). Preferred examples and specific examples of G 3, and A 3 in the polyamides are respectively the same as G 3, and A 3 in the polyimide polymer. G 3 and / or A 3 may contain different structures represented by two or more formulas (13).
 ポリイミド系高分子は、例えば、ジアミンとテトラカルボン酸化合物(テトラカルボン酸二無水物等)との重縮合によって得ることができ、例えば、特開2006-199945号公報又は特開2008-163107号公報に記載されている方法にしたがって合成することができる。ポリイミドの市販品としては、三菱瓦斯化学(株)製ネオプリム(登録商標)、河村産業(株)製KPI-MX300F等を挙げることができる。 The polyimide polymer can be obtained, for example, by polycondensation of a diamine and a tetracarboxylic acid compound (tetracarboxylic dianhydride or the like). For example, JP 2006-199945 A or JP 2008-163107 A Can be synthesized according to the method described in 1. Examples of commercially available polyimide products include Neoprim (registered trademark) manufactured by Mitsubishi Gas Chemical Co., Ltd., and KPI-MX300F manufactured by Kawamura Sangyo Co., Ltd.
 ポリイミドの合成に用いられるテトラカルボン酸化合物としては、芳香族テトラカルボン酸二無水物等の芳香族テトラカルボン酸化合物;及び脂肪族テトラカルボン酸二無水物等の脂肪族テトラカルボン酸化合物等が挙げられる。テトラカルボン酸化合物は、単独で用いてもよいし、2種以上を併用してもよい。テトラカルボン酸化合物は、テトラカルボン酸二無水物の他、テトラカルボン酸クロリド化合物等のテトラカルボン酸化合物類縁体であってもよい。 Examples of tetracarboxylic acid compounds used for the synthesis of polyimide include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic dianhydrides; and aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic dianhydrides. It is done. A tetracarboxylic acid compound may be used independently and may use 2 or more types together. The tetracarboxylic acid compound may be a tetracarboxylic acid compound analog such as a tetracarboxylic acid chloride compound in addition to the tetracarboxylic acid dianhydride.
 芳香族テトラカルボン酸二無水物の具体例としては、非縮合多環式の芳香族テトラカルボン酸二無水物、単環式の芳香族テトラカルボン酸二無水物及び縮合多環式の芳香族テトラカルボン酸二無水物が挙げられる。非縮合多環式の芳香族テトラカルボン酸二無水物としては、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDAと記載することがある)、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物、及び4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。また、単環式の芳香族テトラカルボン酸二無水物としては、1,2,4,5-ベンゼンテトラカルボン酸二無水物が挙げられる。縮合多環式の芳香族テトラカルボン酸二無水物としては、2,3,6,7-ナフタレンテトラカルボン酸二無水物が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。 Specific examples of the aromatic tetracarboxylic dianhydride include non-condensed polycyclic aromatic tetracarboxylic dianhydride, monocyclic aromatic tetracarboxylic dianhydride, and condensed polycyclic aromatic tetra Carboxylic dianhydrides are mentioned. Non-condensed polycyclic aromatic tetracarboxylic dianhydrides include 4,4'-oxydiphthalic dianhydride, 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride, 2,2' , 3,3′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxy) Phenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenoxyphenyl) propane dianhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (referred to as 6FDA) 1,2-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,2-bis (3, 4-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2,3 -Dicarboxyphenyl) methane dianhydride, 4,4 '-(p-phenylenedioxy) diphthalic dianhydride, and 4,4'-(m-phenylenedioxy) diphthalic dianhydride. Examples of the monocyclic aromatic tetracarboxylic dianhydride include 1,2,4,5-benzenetetracarboxylic dianhydride. Examples of the condensed polycyclic aromatic tetracarboxylic dianhydride include 2,3,6,7-naphthalene tetracarboxylic dianhydride. These can be used alone or in combination of two or more.
 これらの中でも、好ましくは4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物及び4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。より好ましくは4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、ビス(3,4-ジカルボキシフェニル)メタン二無水物及び4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 Among these, preferably 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride Anhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-diphenyl Sulfonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 2,2- Bis (3,4-dicarboxyphenoxyphenyl) propane dianhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA), 1,2-bis (2,3-dicarboxy) Enyl) ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,2-bis (3,4-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, 4,4 ′-( and p-phenylenedioxy) diphthalic dianhydride and 4,4 ′-(m-phenylenedioxy) diphthalic dianhydride. More preferably 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 4,4 ′-(Hexafluoroisopropylidene) diphthalic dianhydride (6FDA), bis (3,4-dicarboxyphenyl) methane dianhydride and 4,4 ′-(p-phenylenedioxy) diphthalic acid Anhydrides are mentioned. These can be used alone or in combination of two or more.
 脂肪族テトラカルボン酸二無水物としては、環式又は非環式の脂肪族テトラカルボン酸二無水物が挙げられる。環式脂肪族テトラカルボン酸二無水物とは、脂環式炭化水素構造を有するテトラカルボン酸二無水物であり、その具体例としては、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物等のシクロアルカンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジシクロヘキシル3,3’-4,4’-テトラカルボン酸二無水物及びこれらの位置異性体が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。非環式脂肪族テトラカルボン酸二無水物の具体例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、及び1,2,3,4-ペンタンテトラカルボン酸二無水物等が挙げられ、これらは単独で又は2種以上を組合せて用いることができる。また、環式脂肪族テトラカルボン酸二無水物及び非環式脂肪族テトラカルボン酸二無水物を組合せて用いてもよい。 Examples of the aliphatic tetracarboxylic dianhydride include cyclic or acyclic aliphatic tetracarboxylic dianhydrides. The cycloaliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples thereof include 1,2,4,5-cyclohexanetetracarboxylic dianhydride. 1, 2,3,4-cyclobutanetetracarboxylic dianhydride, cycloalkanetetracarboxylic dianhydride such as 1,2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo [2.2 .2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyl 3,3′-4,4′-tetracarboxylic dianhydride and their positional isomers . These can be used alone or in combination of two or more. Specific examples of the acyclic aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride, etc. These may be used alone or in combination of two or more. Further, a cycloaliphatic tetracarboxylic dianhydride and an acyclic aliphatic tetracarboxylic dianhydride may be used in combination.
 上記テトラカルボン酸二無水物の中でも、高透明性及び低着色性の観点から、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物並びにこれらの混合物が好ましく、3,3',4,4'-ビフェニルテトラカルボン酸二無水物及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物並びにこれらの混合物がより好ましく、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物がさらに好ましい。 Among the above tetracarboxylic dianhydrides, 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, from the viewpoint of high transparency and low colorability, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic Preferred are acid dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride and mixtures thereof. ', 4,4'-biphenyltetracarboxylic dianhydride and 4,4'-(hexafluoroisopropylidene) diphthalic dianhydride and mixtures thereof are more preferred, and 4,4 '-( Hexafluorobutene isopropylidene) diphthalic acid dianhydride is more preferred.
 なお、本実施形態に係るポリイミド系高分子は、ポリイミド系フィルムの各種物性を損なわない範囲で、上記のポリイミド合成に用いられるテトラカルボン酸化合物に加えて、テトラカルボン酸化合物、トリカルボン酸化合物及びジカルボン酸化合物並びにそれらの無水物及び誘導体を更に反応させたものであってもよい。反応させるテトラカルボン酸化合物、トリカルボン酸化合物及びジカルボン酸化合物の誘導体としては、反応活性が高いことから、それぞれの酸クロリド化合物が好ましい例として挙げられる。 In addition to the tetracarboxylic acid compound used for said polyimide synthesis | combination in the range which does not impair the various physical properties of a polyimide-type film, the polyimide-type polymer which concerns on this embodiment is a tetracarboxylic acid compound, a tricarboxylic acid compound, and dicarboxylic acid. The acid compounds and their anhydrides and derivatives may be further reacted. As a derivative of the tetracarboxylic acid compound, tricarboxylic acid compound and dicarboxylic acid compound to be reacted, each acid chloride compound is given as a preferred example because of its high reaction activity.
 テトラカルボン酸としては、上記テトラカルボン酸化合物の無水物の水付加体が挙げられる。 Examples of the tetracarboxylic acid include anhydrous water adducts of the above tetracarboxylic acid compounds.
 トリカルボン酸化合物としては、芳香族トリカルボン酸、脂肪族トリカルボン酸及びそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、2種以上を併用してもよい。具体例としては、1,2,4-ベンゼントリカルボン酸の無水物;2,3,6-ナフタレントリカルボン酸-2,3-無水物;フタル酸無水物と安息香酸とが単結合、-O-、-CH-、-C(CH-、-C(CF-、-SO-又はフェニレン基で連結された化合物;及びそれらの酸クロリド化合物が挙げられる。 Examples of the tricarboxylic acid compound include aromatic tricarboxylic acid, aliphatic tricarboxylic acid and related acid chloride compounds, acid anhydrides, and the like, and two or more kinds may be used in combination. Specific examples include 1,2,4-benzenetricarboxylic acid anhydride; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; phthalic acid anhydride and benzoic acid are a single bond, —O— , —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO 2 — or a phenylene group; and acid chloride compounds thereof.
 ジカルボン酸化合物としては、芳香族ジカルボン酸、脂肪族ジカルボン酸及びそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、2種以上を併用してもよい。具体例としては、テレフタル酸;イソフタル酸;ナフタレンジカルボン酸;4,4’-ビフェニルジカルボン酸;3,3’-ビフェニルジカルボン酸;炭素数8以下である鎖式炭化水素、のジカルボン酸化合物及び2つの安息香酸骨格が単結合、-O-、-CH-、-C(CH-、-C(CF-、-SO-、-S-、-NR-、-C(=O)-又はフェニレン基で連結された化合物並びにそれらの酸クロリド化合物が挙げられる。ここで、Rは、ハロゲン原子で置換されていてもよい炭素数1~12の炭化水素基である。 Examples of the dicarboxylic acid compound include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and related acid chloride compounds, acid anhydrides, and the like, and two or more kinds may be used in combination. Specific examples include dicarboxylic acid compounds of terephthalic acid; isophthalic acid; naphthalenedicarboxylic acid; 4,4′-biphenyldicarboxylic acid; 3,3′-biphenyldicarboxylic acid; One benzoic acid skeleton is a single bond, —O—, —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO 2 —, —S—, —NR 9 —, — Examples thereof include compounds linked by C (═O) — or a phenylene group, and acid chloride compounds thereof. Here, R 9 is a hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom.
 ジカルボン酸化合物としては、好ましくはテレフタル酸;イソフタル酸;4,4’-ビフェニルジカルボン酸;3,3’-ビフェニルジカルボン酸;及び2つの安息香酸骨格が-CH-、-C(=O)-、-O-、-NR-、-SO-又はフェニレン基で連結された化合物並びにそれらの酸クロリド化合物であり、より好ましくは、テレフタル酸;4,4’-ビフェニルジカルボン酸;及び2つの安息香酸骨格が-O-、-NR-、-C(=O)-又は-SO-で連結された化合物並びにそれらの酸クロリド化合物である。酸クロリド化合物として具体的には、4,4’-オキシビス(ベンゾイルクロリド)(OBBCと記載することがある)、及びテレフタロイルクロリド(TPCと記載することがある)が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 As the dicarboxylic acid compound, preferably terephthalic acid; isophthalic acid; 4,4′-biphenyldicarboxylic acid; 3,3′-biphenyldicarboxylic acid; and the two benzoic acid skeletons are —CH 2 —, —C (═O) Compounds linked by —, —O—, —NR 9 —, —SO 2 — or a phenylene group, and acid chloride compounds thereof, more preferably terephthalic acid; 4,4′-biphenyldicarboxylic acid; and 2 These are compounds in which two benzoic acid skeletons are linked by —O—, —NR 9 —, —C (═O) — or —SO 2 — as well as their acid chloride compounds. Specific examples of the acid chloride compound include 4,4′-oxybis (benzoyl chloride) (sometimes referred to as OBBC) and terephthaloyl chloride (sometimes referred to as TPC). These can be used alone or in combination of two or more.
 ポリイミド系高分子の合成に用いられるジアミンとしては、例えば、脂肪族ジアミン、芳香族ジアミン及びこれらの混合物が挙げられる。なお、本実施形態において「芳香族ジアミン」とは、アミノ基が芳香環に直接結合しているジアミンを表し、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。この芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環及びフルオレン環等が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環である。また「脂肪族ジアミン」とは、アミノ基が脂肪族基に直接結合しているジアミンを表し、その構造の一部に芳香環やその他の置換基を含んでいてもよい。 Examples of diamines used for the synthesis of polyimide polymers include aliphatic diamines, aromatic diamines, and mixtures thereof. In the present embodiment, the “aromatic diamine” represents a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group or other substituent may be included in a part of the structure. The aromatic ring may be a single ring or a condensed ring, and examples thereof include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, and a fluorene ring. Among these, a benzene ring is preferable. The “aliphatic diamine” refers to a diamine in which an amino group is directly bonded to an aliphatic group, and an aromatic ring or other substituent may be included in a part of the structure.
 脂肪族ジアミンとしては、例えば、ヘキサメチレンジアミン等の非環式脂肪族ジアミン、並びに1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ノルボルナンジアミン及び4,4’-ジアミノジシクロヘキシルメタン等の環式脂肪族ジアミン等が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。 Examples of the aliphatic diamine include acyclic aliphatic diamines such as hexamethylene diamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, norbornane diamine, and 4,4 ′. -Cyclic aliphatic diamines such as diaminodicyclohexylmethane. These can be used alone or in combination of two or more.
 芳香族ジアミンとしては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、2,4-トルエンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,5-ジアミノナフタレン、及び2,6-ジアミノナフタレン等の、芳香環を1つ有する芳香族ジアミン;4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ジアミノジフェニルスルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン(2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB)と記載することがある)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、及び9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン等の、芳香環を2つ以上有する芳香族ジアミンが挙げられる。これらは単独で又は2種以上を組合せて用いることができる。 Examples of aromatic diamines include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene, and 2,6-diamino. An aromatic diamine having one aromatic ring, such as naphthalene; 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3 '-Diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-Aminophenoxy) benzene, 4,4'-diamino Phenylsulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2 , 2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2′-dimethylbenzidine, 2,2′-bis (trifluoromethyl) benzidine (2,2′-bis (trifluoromethyl)- 4,4'-diaminodiphenyl (TFMB)), 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4, 4'-diaminodiphenylmethane, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4-amino- Fragrances having two or more aromatic rings such as -methylphenyl) fluorene, 9,9-bis (4-amino-3-chlorophenyl) fluorene, and 9,9-bis (4-amino-3-fluorophenyl) fluorene Group diamines. These can be used alone or in combination of two or more.
 芳香族ジアミンとしては、好ましくは4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4’-ビス(4-アミノフェノキシ)ビフェニルであり、より好ましくは4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4’-ビス(4-アミノフェノキシ)ビフェニルである。これらは単独で又は2種以上を組み合わせて用いることができる。 As the aromatic diamine, preferably 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenylsulfone, 1,4-bis (4-aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2′-dimethylbenzidine, 2,2′-bis (Trifluoromethyl) benzidine, 4,4'-bis (4-aminophenoxy) biphenyl More preferably 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylsulfone, 1,4-bis (4-aminophenoxy) Benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-dimethylbenzidine, 2,2′-bis (tri Fluoromethyl) benzidine, 4,4′-bis (4-aminophenoxy) biphenyl. These can be used alone or in combination of two or more.
 上記ジアミンの中でも、高透明性及び低着色性の観点からは、ビフェニル構造を有する芳香族ジアミンからなる群から選ばれる1種以上を用いることが好ましく、具体的には2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4’-ビス(4-アミノフェノキシ)ビフェニル及び4,4’-ジアミノジフェニルエーテルからなる群から選ばれる1種以上を用いることがより好ましく、2,2’-ビス(トリフルオロメチル)ベンジジンを用いることがよりさらに好ましい。 Among the diamines, from the viewpoint of high transparency and low colorability, it is preferable to use one or more selected from the group consisting of aromatic diamines having a biphenyl structure, specifically 2,2′-dimethylbenzidine. It is more preferable to use one or more selected from the group consisting of 2,2′-bis (trifluoromethyl) benzidine, 4,4′-bis (4-aminophenoxy) biphenyl, and 4,4′-diaminodiphenyl ether. More preferably, 2,2′-bis (trifluoromethyl) benzidine is used.
 式(10)、式(11)、式(12)及び式(13)で表される繰返し構造単位からなる群から選択される少なくとも1種含む重合体であるポリイミド系高分子及びポリアミドは、ジアミンと、テトラカルボン酸化合物(酸クロリド化合物、テトラカルボン酸二無水物等のテトラカルボン酸化合物類縁体)、トリカルボン酸化合物(酸クロリド化合物、トリカルボン酸無水物等のトリカルボン酸化合物類縁体)及びジカルボン酸化合物(酸クロリド化合物等のジカルボン酸化合物類縁体)からなる群から選択される少なくとも1種類の化合物との重縮合生成物である縮合型高分子である。出発原料としては、これらに加えて、さらにジカルボン酸化合物(酸クロリド化合物等の類縁体を含む)を用いることもある。式(11)で表される繰返し構造単位は、通常、ジアミン類及びテトラカルボン酸化合物から誘導される。式(12)で表される繰返し構造単位は、通常、ジアミン及びトリカルボン酸化合物から誘導される。式(13)で表される繰返し構造単位は、通常、ジアミン及びジカルボン酸化合物から誘導される。ジアミン及びテトラカルボン酸化合物の具体例は、上述のとおりである。また、ジアミン化合物に代えて、ジイソシアネート化合物を用いてもよい。 Polyimide polymers and polyamides, which are polymers containing at least one selected from the group consisting of repeating structural units represented by formula (10), formula (11), formula (12) and formula (13), are diamines. A tetracarboxylic acid compound (an acid chloride compound, an analog of a tetracarboxylic acid compound such as tetracarboxylic dianhydride), a tricarboxylic acid compound (an analog of a tricarboxylic acid compound such as an acid chloride compound or tricarboxylic acid anhydride), and a dicarboxylic acid It is a condensation polymer that is a polycondensation product with at least one compound selected from the group consisting of compounds (analogues of dicarboxylic acid compounds such as acid chloride compounds). In addition to these, a dicarboxylic acid compound (including analogs such as an acid chloride compound) may be used as a starting material. The repeating structural unit represented by the formula (11) is usually derived from diamines and tetracarboxylic acid compounds. The repeating structural unit represented by the formula (12) is usually derived from a diamine and a tricarboxylic acid compound. The repeating structural unit represented by the formula (13) is usually derived from a diamine and a dicarboxylic acid compound. Specific examples of the diamine and the tetracarboxylic acid compound are as described above. Further, a diisocyanate compound may be used in place of the diamine compound.
 ジアミンと、テトラカルボン酸化合物等のカルボン酸化合物とのモル比は、ジアミン1.00molに対して、好ましくはテトラカルボン酸0.9mol以上1.1mol以下の範囲で適宜調節できる。高い耐折性を発現するためには得られるポリイミド系高分子が高分子量であることが好ましいことから、ジアミン1.00molに対してテトラカルボン酸0.98mol以上1.02molであることがより好ましく、0.99mol%以上1.01mol%以下であることが更に好ましい。
 また、得られるポリイミド系高分子フィルムの黄色度を抑制する観点から、得られる高分子末端に占めるアミノ基の割合が低いことが好ましく、ジアミン1.00molに対してテトラカルボン酸化合物等のカルボン酸化合物は1.00mol以上であることが好ましい。
The molar ratio of the diamine to the carboxylic acid compound such as a tetracarboxylic acid compound can be appropriately adjusted within a range of 0.9 mol to 1.1 mol of the tetracarboxylic acid with respect to 1.00 mol of the diamine. In order to develop high folding resistance, it is preferable that the obtained polyimide polymer has a high molecular weight, so that tetracarboxylic acid is 0.98 mol or more and 1.02 mol with respect to 1.00 mol of diamine. More preferably, they are 0.99 mol% or more and 1.01 mol% or less.
Further, from the viewpoint of suppressing the yellowness of the obtained polyimide-based polymer film, it is preferable that the proportion of amino groups in the resulting polymer terminal is low, and carboxylic acids such as tetracarboxylic acid compounds with respect to 1.00 mol of diamine The compound is preferably 1.00 mol or more.
 ジアミン及びカルボン酸化合物(たとえば、テトラカルボン酸化合物)の分子中のフッ素数を調整して、得られるポリイミド系高分子中のフッ素量(フッ素原子含有量)を、ポリイミド系高分子の質量を基準として、1質量%以上、5質量%以上、10質量%以上、20質量%以上とすることができる。フッ素の割合が高いほど原料費が高くなる傾向があることから、フッ素量の上限は40質量%以下であることが好ましい。フッ素系置換基は、ジアミン又はカルボン酸化合物のいずれに存在してもよく、両方に存在してもよい。フッ素系置換基を含むことにより特にYI値が低減される場合がある。 Adjusting the number of fluorine in the molecule of diamine and carboxylic acid compound (for example, tetracarboxylic acid compound), the fluorine content (fluorine atom content) in the resulting polyimide polymer is based on the mass of the polyimide polymer. 1 mass% or more, 5 mass% or more, 10 mass% or more, or 20 mass% or more. Since the raw material cost tends to increase as the proportion of fluorine increases, the upper limit of the amount of fluorine is preferably 40% by mass or less. A fluorine-type substituent may exist in either diamine or a carboxylic acid compound, and may exist in both. By including a fluorine-based substituent, the YI value may be particularly reduced.
 ポリイミド系高分子及びポリアミドの重量平均分子量(Mw)は、好ましくは10,000~800,000である。この重量平均分子量の下限値は、より好ましくは50,000以上、さらに好ましくは70,000以上、特に好ましくは100,000以上である。この重量平均分子量の上限値は、より好ましくは750,000以下、さらに好ましくは600,000以下、特に好ましくは500,000以下である。ポリイミド系高分子及びポリアミドの重量平均分子量は、より小さいもの、例えば、480,000以下のもの、450,000以下のもの、400,000以下のものであってもよい。この重量平均分子量の好ましい範囲は、好ましくは100,000~800,000であり、より好ましくは150,000~750,000であり、さらに好ましくは200,000~600,000であり、特に好ましくは250,000~500,000である。ポリイミド系高分子及びポリアミドの重量平均分子量が上記下限値以上であると、ポリイミド系フィルムは高い屈曲性を得ることができ、破断を生じずに延伸させことができる。ポリイミド系高分子及びポリアミドの重量平均分子量が上記上限値以下であると、ポリイミドワニスの粘度を低く抑制することができ、またポリイミド系フィルムの延伸が容易であるため、加工性が良好である。なお、重量平均分子量は、GPC測定を行い、標準ポリスチレン換算により求めることができ、具体的には実施例に記載の方法により求めることができる。 The weight average molecular weight (Mw) of the polyimide polymer and polyamide is preferably 10,000 to 800,000. The lower limit of the weight average molecular weight is more preferably 50,000 or more, further preferably 70,000 or more, and particularly preferably 100,000 or more. The upper limit of the weight average molecular weight is more preferably 750,000 or less, further preferably 600,000 or less, and particularly preferably 500,000 or less. The weight average molecular weight of the polyimide-based polymer and polyamide may be smaller, for example, 480,000 or less, 450,000 or less, or 400,000 or less. The preferred range of this weight average molecular weight is preferably 100,000 to 800,000, more preferably 150,000 to 750,000, still more preferably 200,000 to 600,000, particularly preferably. 250,000-500,000. When the weight average molecular weight of the polyimide polymer and the polyamide is equal to or higher than the lower limit, the polyimide film can have high flexibility and can be stretched without breaking. When the weight average molecular weight of the polyimide polymer and polyamide is not more than the above upper limit, the viscosity of the polyimide varnish can be suppressed low, and the polyimide film can be easily stretched, so that the workability is good. In addition, a weight average molecular weight can be calculated | required by GPC measurement and standard polystyrene conversion, and can be specifically calculated | required by the method as described in an Example.
 本発明の好ましい実施態様において、ポリイミド系フィルムに含まれるポリイミド系高分子及びポリアミドは、上述のフッ素系置換基等によって導入できるフッ素原子を含んでよい。含フッ素置換基の具体例としては、フルオロ基及びトリフルオロメチル基が挙げられる。ポリイミド系高分子及びポリアミドがフッ素原子を含むことにより、ポリイミド系フィルムの弾性率を向上させ、同時に黄色度(YI値)を低減させることができるため、ポリイミド系高分子及びポリアミドが分子内にフッ素原子を含むことが好ましい。また、ポリイミド系高分子及びポリアミドが分子内にフッ素原子を含むと、ポリイミド系フィルムの吸水率が低減し、さらにポリイミド系フィルムの変形を抑制することができる。さらに、ポリイミド系高分子及びポリアミドが分子内にフッ素原子を含む場合、積層体フィルム及び後述する積層体を折り曲げた場合に折り曲げ線が残存し難く、フレキシブルディスプレイが折り曲がる等の変形を起こす場合に、上記ポリイミド系フィルム及び積層体を特に有用に用いることができる。 In a preferred embodiment of the present invention, the polyimide polymer and polyamide contained in the polyimide film may contain a fluorine atom that can be introduced by the above-described fluorine substituent or the like. Specific examples of the fluorine-containing substituent include a fluoro group and a trifluoromethyl group. Since the polyimide polymer and polyamide contain fluorine atoms, the elasticity of the polyimide film can be improved and the yellowness (YI value) can be reduced at the same time. Preferably it contains atoms. Moreover, when a polyimide-type polymer and polyamide contain a fluorine atom in a molecule | numerator, the water absorption rate of a polyimide-type film will reduce, and also the deformation | transformation of a polyimide-type film can be suppressed. In addition, when the polyimide polymer and polyamide contain fluorine atoms in the molecule, when the laminate film and the laminate described later are folded, the fold line is difficult to remain, and the flexible display is bent. The polyimide-based film and the laminate can be particularly usefully used.
 ポリイミド系高分子及びポリアミドにおけるフッ素原子の含有量(フッ素原子含有量)は、硬度の向上、弾性率の向上、黄色度の低減(透明性の向上)、吸水率の低減、及びポリイミド系フィルムの変形抑制の観点から、ポリイミド系高分子の質量を基準として、好ましくは1質量%~40質量%、より好ましくは3質量%~35質量%、さらに好ましくは5質量%~32質量%である。フッ素原子の含有量が1質量%以上であると、フィルム化した際の弾性率をより向上し、吸水率を下げ、YI値をより低減し、透明性をより向上することができる傾向がある。フッ素原子の含有量は、40質量%以下であると、ポリイミドの高分子量化が容易になる傾向がある。 The fluorine atom content (fluorine atom content) in the polyimide polymer and polyamide is improved in hardness, improved elastic modulus, reduced yellowness (improved transparency), reduced water absorption, and polyimide film. From the viewpoint of suppressing deformation, it is preferably 1% by mass to 40% by mass, more preferably 3% by mass to 35% by mass, and further preferably 5% by mass to 32% by mass, based on the mass of the polyimide polymer. When the fluorine atom content is 1% by mass or more, there is a tendency that the elastic modulus when formed into a film is further improved, the water absorption is decreased, the YI value is further reduced, and the transparency is further improved. . If the fluorine atom content is 40% by mass or less, it is easy to increase the molecular weight of the polyimide.
 本発明の一実施態様において、ポリイミド系高分子は、ジアミンとテトラカルボン酸化合物との重縮合反応によって生成させることができる。この重縮合反応において、イミド化触媒が存在してもよい。イミド化触媒としては、例えばトリプロピルアミン、ジブチルプロピルアミン、エチルジブチルアミン等の脂肪族アミン;N-エチルピペリジン、N-プロピルピペリジン、N-ブチルピロリジン、N-ブチルピペリジン、及びN-プロピルヘキサヒドロアゼピン等の脂環式アミン(単環式);アザビシクロ[2.2.1]ヘプタン、アザビシクロ[3.2.1]オクタン、アザビシクロ[2.2.2]オクタン、及びアザビシクロ[3.2.2]ノナン等の脂環式アミン(多環式);並びに2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、2,4-ジメチルピリジン、2,4,6-トリメチルピリジン、3,4-シクロペンテノピリジン、5,6,7,8-テトラヒドロイソキノリン、及びイソキノリン等の芳香族アミンが挙げられる。 In one embodiment of the present invention, the polyimide polymer can be produced by a polycondensation reaction between a diamine and a tetracarboxylic acid compound. In this polycondensation reaction, an imidization catalyst may be present. Examples of imidation catalysts include aliphatic amines such as tripropylamine, dibutylpropylamine, and ethyldibutylamine; N-ethylpiperidine, N-propylpiperidine, N-butylpyrrolidine, N-butylpiperidine, and N-propylhexahydro Alicyclic amines (monocyclic) such as azepine; azabicyclo [2.2.1] heptane, azabicyclo [3.2.1] octane, azabicyclo [2.2.2] octane, and azabicyclo [3.2. 2] Cycloaliphatic amines such as nonane (polycyclic); and 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2,4- Dimethylpyridine, 2,4,6-trimethylpyridine, 3,4-cyclopentenopyridine, 5,6,7,8 Tetrahydroisoquinoline, and aromatic amines isoquinoline.
 ジアミン及びテトラカルボン酸化合物の反応温度は、特に限定されないが、例えば50~350℃である。反応時間も特に限定されないが、例えば30分~24時間程度であり、好ましくは30分~10時間程度である。必要に応じて、不活性雰囲気又は減圧の条件下において反応を行ってよい。また、反応は溶剤中で行ってよく、溶剤としては例えば、ポリイミドワニスの調製に用いられる下記溶剤が挙げられる。 The reaction temperature of the diamine and tetracarboxylic acid compound is not particularly limited, but is, for example, 50 to 350 ° C. The reaction time is not particularly limited, but is, for example, about 30 minutes to 24 hours, preferably about 30 minutes to 10 hours. If necessary, the reaction may be carried out under an inert atmosphere or under reduced pressure. Moreover, reaction may be performed in a solvent and the following solvent used for preparation of a polyimide varnish is mentioned as a solvent, for example.
 本発明の一実施態様において、ポリイミド系フィルム中におけるポリイミド系高分子の含有量は、ポリイミド系フィルムの全質量を基準として、好ましくは40質量%以上、より好ましくは50質量%以上、さらに好ましくは70質量%以上である。ポリイミド系高分子の含有量が40質量%以上であると、ポリイミド系フィルムの屈曲性が良好である。なお、ポリイミド系フィルム中におけるポリイミド系高分子の含有量は、ポリイミド系フィルムの全質量を基準として、通常100質量%以下である。 In one embodiment of the present invention, the content of the polyimide polymer in the polyimide film is preferably 40% by mass or more, more preferably 50% by mass or more, and still more preferably based on the total mass of the polyimide film. 70% by mass or more. When the content of the polyimide polymer is 40% by mass or more, the flexibility of the polyimide film is good. In addition, content of the polyimide-type polymer in a polyimide-type film is 100 mass% or less normally on the basis of the total mass of a polyimide-type film.
(無機材料)
 ポリイミド系フィルムは、強度を高める観点から、ポリイミド系高分子の他に無機粒子等の無機材料を更に含有してもよい。無機材料として、例えば、チタニア粒子、アルミナ粒子、ジルコニア粒子、シリカ粒子等の無機粒子、及びオルトケイ酸テトラエチル等の4級アルコキシシラン等のケイ素化合物等が挙げられる。ポリイミド系フィルムを製造するためのポリイミドワニスの安定性の観点から、無機材料は無機粒子、特にシリカ粒子であることが好ましい。無機粒子同士は、シロキサン結合を有する分子により結合されていてもよい。
(Inorganic material)
The polyimide film may further contain an inorganic material such as inorganic particles in addition to the polyimide polymer from the viewpoint of increasing the strength. Examples of the inorganic material include inorganic particles such as titania particles, alumina particles, zirconia particles, and silica particles, and silicon compounds such as quaternary alkoxysilanes such as tetraethyl orthosilicate. From the viewpoint of the stability of the polyimide varnish for producing the polyimide film, the inorganic material is preferably inorganic particles, particularly silica particles. The inorganic particles may be bonded by molecules having a siloxane bond.
 無機粒子の平均一次粒子径は、ポリイミド系フィルムの透明性、機械物性、及び無機粒子の凝集抑制の観点から、好ましくは10~100nmであり、より好ましくは20~80nmである。本発明において、平均一次粒子径は、透過型電子顕微鏡(TEM)による定方向径の10点測定し、それらの平均値を求めることにより決定することができる。 The average primary particle diameter of the inorganic particles is preferably 10 to 100 nm, more preferably 20 to 80 nm, from the viewpoint of transparency of the polyimide film, mechanical properties, and suppression of inorganic particle aggregation. In the present invention, the average primary particle diameter can be determined by measuring 10 points in a fixed direction diameter with a transmission electron microscope (TEM) and obtaining an average value thereof.
 ポリイミド系フィルムが無機材料を含む場合、ポリイミド系フィルム中の無機材料の含有量は、ポリイミド系フィルムの全質量を基準として、好ましくは0質量%以上90質量%以下、より好ましくは0質量%以上60質量%以下、さらに好ましくは0質量%以上40質量%以下である。無機材料の含有量が上記範囲内であると、ポリイミド系フィルムの透明性及び機械物性を両立させやすい傾向がある。 When the polyimide film contains an inorganic material, the content of the inorganic material in the polyimide film is preferably 0% by mass to 90% by mass, more preferably 0% by mass or more, based on the total mass of the polyimide film. It is 60 mass% or less, More preferably, it is 0 mass% or more and 40 mass% or less. If the content of the inorganic material is within the above range, the transparency and mechanical properties of the polyimide film tend to be compatible.
 (紫外線吸収剤)
 ポリイミド系フィルムは、1種又は2種以上の紫外線吸収剤を含有していてもよい。紫外線吸収剤は、樹脂材料の分野で紫外線吸収剤として通常用いられているものから、適宜選択することができる。紫外線吸収剤は、400nm以下の波長の光を吸収する化合物を含んでいてもよい。紫外線吸収剤としては、例えば、ベンゾフェノン系化合物、サリシレート系化合物、ベンゾトリアゾール系化合物、及びトリアジン系化合物からなる群より選ばれる少なくとも1種の化合物が挙げられる。ポリイミド系フィルムが紫外線吸収剤を含有することにより、ポリイミド系高分子の劣化が抑制されるため、ポリイミド系フィルムの視認性を高めることができる。
 本明細書において、「系化合物」とは、当該「系化合物」が付される化合物及びその誘導体を指す。例えば、「ベンゾフェノン系化合物」とは、母体骨格としてのベンゾフェノンと、ベンゾフェノンに結合している置換基とを有する化合物を指す。
(UV absorber)
The polyimide film may contain one type or two or more types of ultraviolet absorbers. The ultraviolet absorber can be appropriately selected from those usually used as an ultraviolet absorber in the field of resin materials. The ultraviolet absorber may contain a compound that absorbs light having a wavelength of 400 nm or less. Examples of the ultraviolet absorber include at least one compound selected from the group consisting of benzophenone compounds, salicylate compounds, benzotriazole compounds, and triazine compounds. Since the polyimide film contains an ultraviolet absorber, deterioration of the polyimide polymer is suppressed, so that the visibility of the polyimide film can be improved.
In the present specification, the “system compound” refers to a compound to which the “system compound” is attached and derivatives thereof. For example, a “benzophenone compound” refers to a compound having benzophenone as a host skeleton and a substituent bonded to benzophenone.
 ポリイミド系フィルムが紫外線吸収剤を含有する場合、紫外線吸収剤の含有量は、ポリイミド系フィルムの全質量に対して、好ましくは1質量%以上、より好ましくは2質量%以上、さらに好ましくは3質量%以上であり、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは6質量%以下である。紫外線吸収剤が上記範囲内であると、ポリイミド系フィルムの耐候性を特に効果的に高めるとともに、透明性の高いポリイミド系フィルムを得ることができる。 When the polyimide film contains an ultraviolet absorber, the content of the ultraviolet absorber is preferably 1% by mass or more, more preferably 2% by mass or more, and further preferably 3% by mass with respect to the total mass of the polyimide film. % Or more, preferably 10% by mass or less, more preferably 8% by mass or less, and further preferably 6% by mass or less. When the ultraviolet absorber is within the above range, the weather resistance of the polyimide film can be particularly effectively enhanced, and a highly transparent polyimide film can be obtained.
 (他の添加剤)
 ポリイミド系フィルムは、透明性、屈曲性及び位相差性を損なわない範囲で、更に他の添加剤を含有していてもよい。他の成分としては、例えば、酸化防止剤、離型剤、安定剤、ブルーイング剤、難燃剤、pH調整剤、シリカ分散剤、滑剤、増粘剤、及びレベリング剤等が挙げられる。
(Other additives)
The polyimide film may further contain other additives as long as the transparency, flexibility and retardation are not impaired. Examples of other components include antioxidants, mold release agents, stabilizers, bluing agents, flame retardants, pH adjusters, silica dispersants, lubricants, thickeners, and leveling agents.
 他の添加剤の含有量は、ポリイミド系フィルムの質量に対して、好ましくは0質量%以上20質量%以下、より好ましくは0質量%以上10質量%以下である。 The content of other additives is preferably 0% by mass or more and 20% by mass or less, and more preferably 0% by mass or more and 10% by mass or less with respect to the mass of the polyimide film.
 ポリイミド系フィルムの厚さは、用途に応じて適宜調整されるが、通常10~1000μm、好ましくは20~500μm、より好ましくは25~400μm、さらに好ましくは30~300μmである。なお、本発明において、厚さは接触式のデジマチックインジケーターによって測定することができる。ポリイミド系フィルムの厚さが上記下限値以上であると、後述する積層体(ハードコート層が積層されたポリイミド系フィルム)の表面硬度が向上するとともに、ポリイミド系フィルムのハンドリング性が良好となり、さらに延伸時に破断しにくい。ポリイミド系フィルムの厚さが上記上限値以下であるとポリイミド系フィルムの屈曲耐性(折り曲げた際の折れ線の付き難さ)が向上する。 The thickness of the polyimide film is appropriately adjusted depending on the application, but is usually 10 to 1000 μm, preferably 20 to 500 μm, more preferably 25 to 400 μm, and further preferably 30 to 300 μm. In the present invention, the thickness can be measured by a contact-type digimatic indicator. When the thickness of the polyimide film is equal to or more than the above lower limit, the surface hardness of the laminate (polyimide film on which the hard coat layer is laminated), which will be described later, is improved, and the handling properties of the polyimide film are improved. Hard to break when stretched. When the thickness of the polyimide film is equal to or less than the above upper limit, the bending resistance of the polyimide film (difficult to attach a broken line when folded) is improved.
 ポリイミド系フィルムは、JIS K 7105:1981に準拠した全光線透過率Ttが好ましくは85%以上、より好ましくは90%以上、さらに好ましくは92%以上である。ポリイミド系フィルムの全光線透過率Ttが上記下限値以上であると、ポリイミド系フィルムを画像表示装置に組み込んだ際に、十分な視認性を確保することができる。なお、ポリイミド系フィルムの全光線透過率Ttの上限値は通常100%以下である。 The polyimide film has a total light transmittance Tt based on JIS K 7105: 1981 of preferably 85% or more, more preferably 90% or more, and further preferably 92% or more. When the total light transmittance Tt of the polyimide film is equal to or higher than the lower limit, sufficient visibility can be secured when the polyimide film is incorporated into an image display device. In addition, the upper limit of the total light transmittance Tt of the polyimide film is usually 100% or less.
 ポリイミド系フィルムは、JIS K 7373:2006に準拠した黄色度YIが、好ましくは5以下、より好ましくは4以下、さらに好ましくは3以下である。ポリイミド系フィルムのYIが上記上限値以下であると、ポリイミド系フィルムの透明性を高くすることができる。なお、ポリイミド系フィルムのYIの下限値は通常0以上である。 The polyimide film has a yellowness YI based on JIS K 7373: 2006, preferably 5 or less, more preferably 4 or less, and even more preferably 3 or less. The transparency of a polyimide film can be made high as YI of a polyimide film is below the said upper limit. In addition, the lower limit of YI of a polyimide-type film is 0 or more normally.
 ポリイミド系フィルムは、波長589.4nmにおける面内位相差(リタデーション)が3,000nm以上、好ましくは3,000nmを超えより好ましくは3,200nm以上、さらに好ましくは3,500nm以上、特に好ましくは4,000nm以上であり、好ましくは30,000nm以下、より好ましくは25,000nm以下、さらに好ましくは20,000nm以下、特に好ましくは17,000nm以下である。ポリイミド系フィルムの波長589.4nmにおける面内位相差が3,000nm未満であると、偏光サングラス越しの着色を十分に抑制できず、視認性に問題が生じる。ポリイミド系フィルムの波長589.4nmにおける面内位相差が上記下限値以上であると、ポリイミド系フィルムを画像表示装置の前面板(ウィンドウフィルム)として用いた場合に、偏光サングラス越しの着色を抑制することができる。ポリイミド系フィルムの波長589.4nmにおける面内位相差が上記上限値以下であると、ポリイミド系フィルムの着色を抑えることができ、また、ポリイミド系フィルムの屈曲性を高くすることができるため、フレキシブルディスプレイの前面板として有用である。 The polyimide film has an in-plane retardation (retardation) at a wavelength of 589.4 nm of 3,000 nm or more, preferably more than 3,000 nm, more preferably 3,200 nm or more, still more preferably 3,500 nm or more, particularly preferably 4. It is not less than 30,000 nm, preferably not more than 30,000 nm, more preferably not more than 25,000 nm, still more preferably not more than 20,000 nm, and particularly preferably not more than 17,000 nm. If the in-plane retardation of the polyimide film at a wavelength of 589.4 nm is less than 3,000 nm, coloring through polarized sunglasses cannot be sufficiently suppressed, resulting in a problem in visibility. When the in-plane retardation of the polyimide film at a wavelength of 589.4 nm is equal to or greater than the lower limit, coloring through the polarized sunglasses is suppressed when the polyimide film is used as a front plate (window film) of an image display device. be able to. When the in-plane retardation of the polyimide film at a wavelength of 589.4 nm is less than or equal to the above upper limit, coloring of the polyimide film can be suppressed, and the flexibility of the polyimide film can be increased. Useful as a display front plate.
 なお、波長589.4nmにおける面内位相差が上記範囲内にあることによりサングラス越しの着色が抑制できる理由は、画像表示素子からの透過分光スペクトルの山の数が多くなり、透過光が白色光になるためである。 The reason why the in-plane retardation at the wavelength of 589.4 nm is within the above range can suppress the coloring through the sunglasses is that the number of peaks in the transmission spectrum spectrum from the image display element increases, and the transmitted light is white light. Because it becomes.
 なお、ポリイミド系フィルムは、他の高分子材料であるPETフィルムなどと比較し、低い延伸倍率によって面内位相差が発現しやすく、また100℃以上の高温環境化でも寸法変化が少なく、例えば室外環境で使用されるカーナビゲーションなどの画像表示素子への適用が好適である。 In addition, compared with other polymer materials such as PET film, polyimide film tends to exhibit in-plane retardation due to a low draw ratio, and there is little dimensional change even in high temperature environment of 100 ° C. or higher. Application to image display elements such as car navigation used in the environment is suitable.
 なお、上記ポリイミド系フィルム及び後述する積層体は、上記範囲の面内位相差を有するため、位相差フィルムとして用いることができる。即ち、画像表示装置の前面板(ウィンドウフィルム)として用いることができると同時に、位相差フィルムとしての機能を発現することができる。そのため、本発明の一実施態様であるポリイミド系フィルム及び積層体は、画像表示装置の簡略化に寄与できるため、画像表示装置のコスト面で有利であり、また画像表示装置の薄型化に寄与し得る。 In addition, since the said polyimide-type film and the laminated body mentioned later have the in-plane phase difference of the said range, it can be used as a phase difference film. That is, it can be used as a front plate (window film) of an image display device, and at the same time, can exhibit a function as a retardation film. Therefore, the polyimide-based film and laminate according to an embodiment of the present invention can contribute to simplification of the image display device, which is advantageous in terms of cost of the image display device and contributes to thinning of the image display device. obtain.
 ポリイミド系フィルムの位相差を制御する方法は、特に限定されないが、例えばポリイミド系フィルムに含有されるポリイミド系高分子の種類の選択、ポリイミド系フィルムの延伸処理、及び/又はポリイミド系フィルムの厚さの調整等が挙げられる。ポリイミド系フィルムが延伸フィルムである場合、位相差の調整を延伸倍率の選択により行うことができるため、位相差の調整を行い易いため好ましい。ポリイミド系フィルムの厚さを選択する場合、複数のポリイミド系フィルムを積層することによって厚さを調整してもよい。位相差を発現し易いポリイミド系高分子を選択することにより、上記範囲内の位相差を有するポリイミド系フィルムを製造し易い。また、ポリイミド系フィルムを延伸する際にポリイミド系フィルムの破断を抑制するために、ポリイミド系フィルムの厚さを大きくしてもよい。ポリイミド系フィルムは単層であっても複層であってもよい。 The method for controlling the retardation of the polyimide film is not particularly limited. For example, the selection of the type of polyimide polymer contained in the polyimide film, the stretching process of the polyimide film, and / or the thickness of the polyimide film. Adjustment and the like. When the polyimide film is a stretched film, it is preferable because the retardation can be adjusted by selecting the stretching ratio, and the retardation can be easily adjusted. When selecting the thickness of the polyimide film, the thickness may be adjusted by laminating a plurality of polyimide films. By selecting a polyimide-based polymer that easily develops a phase difference, it is easy to produce a polyimide-based film having a phase difference within the above range. Moreover, in order to suppress the fracture | rupture of a polyimide-type film when extending | stretching a polyimide-type film, you may enlarge the thickness of a polyimide-type film. The polyimide film may be a single layer or a multilayer.
[積層体]
 本発明の一実施態様においては、上記ポリイミド系フィルムと、該ポリイミド系フィルムの少なくとも一方の表面に配置されたハードコート層とを備える、積層体(「本発明の積層体」ともいう)も提供される。上記積層体は、ポリイミド系高分子を含んでなるポリイミド系フィルムと、該ポリイミド系フィルムの少なくとも一方の表面に配置されたハードコート層と、必要に応じて、機能層及び/又はプライマー層を備える。上記積層体は、表面硬度や引き裂き強度等の機械物性に優れる。特に、積層体に含有されるポリイミド系フィルムが延伸フィルムである場合には、延伸方向に水平に折り曲げた場合と延伸方向に垂直に折り曲げた場合とで、折り線の残存し易さは大きく変わらない。そのため、上記積層体は様々な形状のフレキシブルディスプレイや形状が変形するフレキシブルディスプレイに用いることができる。
[Laminate]
In one embodiment of the present invention, there is also provided a laminate (also referred to as “laminate of the present invention”) comprising the polyimide film and a hard coat layer disposed on at least one surface of the polyimide film. Is done. The laminate includes a polyimide film containing a polyimide polymer, a hard coat layer disposed on at least one surface of the polyimide film, and a functional layer and / or a primer layer as necessary. . The laminate is excellent in mechanical properties such as surface hardness and tear strength. In particular, when the polyimide film contained in the laminate is a stretched film, the ease with which the fold line remains is greatly different between when folded horizontally in the stretching direction and when folded vertically in the stretching direction. Absent. Therefore, the laminated body can be used for flexible displays having various shapes and flexible displays having deformed shapes.
 本発明の積層体の一実施態様における構成を図1に基づいて説明すると、積層体(10)は、ポリイミド系フィルム(1)の一方の面にハードコート層(2)が積層されている。ポリイミド系フィルム(1)の他方の面に、ハードコート層(2)と同一又は異なる別のハードコート層(図示せず)が積層されていてよい。ポリイミド系フィルム(1)とハードコート層(2)との間及び/又はポリイミド系フィルム(1)と別のハードコート層との間に、後述するプライマー層(図示せず)が設けられていてもよい。さらに、上記積層体は、後述する機能層(図示せず)を含有してもよい。機能層が配置される箇所は限定されず、機能層は、ポリイミド系フィルム上に配置されてよく、ハードコート層(2)上に配置されてよく、別のハードコート層上に配置されてよい。 The structure in one embodiment of the laminate of the present invention will be described with reference to FIG. 1. The laminate (10) has a hard coat layer (2) laminated on one surface of a polyimide film (1). Another hard coat layer (not shown) that is the same as or different from the hard coat layer (2) may be laminated on the other surface of the polyimide film (1). A primer layer (not shown) described later is provided between the polyimide film (1) and the hard coat layer (2) and / or between the polyimide film (1) and another hard coat layer. Also good. Furthermore, the laminated body may contain a functional layer (not shown) described later. The location where the functional layer is disposed is not limited, and the functional layer may be disposed on the polyimide film, may be disposed on the hard coat layer (2), or may be disposed on another hard coat layer. .
[ハードコート層]
 本発明の一実施態様である積層体において、ポリイミド系フィルムの一方又は両方の表面にハードコート層が配置される。本発明の好ましい実施態様において、ハードコート層は、ポリイミド系フィルムの視認側表面に少なくとも配置される。各ハードコート層は、単層構造であってもよく、複層構造であってもよい。
[Hard coat layer]
In the laminate which is one embodiment of the present invention, a hard coat layer is disposed on one or both surfaces of the polyimide film. In a preferred embodiment of the present invention, the hard coat layer is disposed at least on the viewing side surface of the polyimide film. Each hard coat layer may have a single layer structure or a multilayer structure.
 ハードコート層の表面硬度は、好ましくはF以上、より好ましくはH以上、さらに好ましくは2H以上である。ハードコート層の表面硬度が上記下限値以上であると、上記積層体を画像表示装置の前面板(ウィンドウフィルム)として使用した場合に画像表示装置表面の傷つきを有利に抑制することができ、また、ポリイミド系フィルムの収縮及び膨張防止に寄与することができる。なお、ハードコート層の表面硬度は、通常9H以下である。なお、本発明において、表面硬度はJIS K5600-5-4:1999に従って測定することができる。 The surface hardness of the hard coat layer is preferably F or more, more preferably H or more, and further preferably 2H or more. When the surface hardness of the hard coat layer is not less than the above lower limit value, scratches on the surface of the image display device can be advantageously suppressed when the laminate is used as a front plate (window film) of the image display device. This can contribute to prevention of shrinkage and expansion of the polyimide film. The surface hardness of the hard coat layer is usually 9H or less. In the present invention, the surface hardness can be measured according to JIS K5600-5-4: 1999.
 ハードコート層はハードコート層樹脂を含んでなり、ハードコート層樹脂としては、例えば、アクリル系樹脂、エポキシ系樹脂、ウレタン系樹脂、ベンジルクロリド系樹脂、ビニル系樹脂若しくはシリコーン系樹脂又はこれらの混合樹脂等の紫外線硬化型、電子線硬化型、又は熱硬化型の樹脂が挙げられる。特に、ハードコート層は、表面硬度等の機械物性及び工業上な観点から、アクリル系樹脂を含んでなることが好ましい。 The hard coat layer comprises a hard coat layer resin. Examples of the hard coat layer resin include acrylic resins, epoxy resins, urethane resins, benzyl chloride resins, vinyl resins, silicone resins, or a mixture thereof. Examples thereof include ultraviolet curable resins such as resins, electron beam curable resins, and thermosetting resins. In particular, the hard coat layer preferably contains an acrylic resin from the viewpoint of mechanical properties such as surface hardness and from an industrial viewpoint.
 アクリル系樹脂としては、ウレタンアクリレート、ウレタンメタクリレート(以下、アクリレート及び/又はメタクリレートは(メタ)クリレートと記載する)、アルキル(メタ)クリレート、エステル(メタ)クリレート、及びエポキシ(メタ)クリレート、並びにその重合体及び共重合体等が挙げられる。具体的には、メチル(メタ)クリレート、ブチル(メタ)クリレート、メトキシエチル(メタ)クリレート、ブトキシエチル(メタ)クリレート、フェニル(メタ)クリレート、エチレングリコールジ(メタ)クリレート、プロピレングリコールジ(メタ)クリレート、ネオペンチルグリコールジ(メタ)クリレート、ジプロピレングリコールジ(メタ)クリレート、エチレングリコールジ(メタ)クリレート、プロピレングリコールジ(メタ)クリレート、及びペンタエリスリトールトリ(メタ)クリレート、並びにその重合体及び共重合体等が挙げられる。 Examples of the acrylic resin include urethane acrylate, urethane methacrylate (hereinafter, acrylate and / or methacrylate are described as (meth) acrylate), alkyl (meth) acrylate, ester (meth) acrylate, epoxy (meth) acrylate, and A polymer, a copolymer, etc. are mentioned. Specifically, methyl (meth) acrylate, butyl (meth) acrylate, methoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, phenyl (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) ) Acrylate, neopentyl glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, and polymers thereof And copolymers.
 ハードコート層は、光重合開始剤及び/又は有機溶剤を含んでもよく、また、シリカ粒子、アルミナ、及びポリオルガノシロキサン等の無機酸化物を含んでもよい。本発明の好ましい実施態様においては、ハードコート層は、表面硬度等の機械物性及び工業上な観点から、アクリル系樹脂及びシリカ粒子を含んでなる。 The hard coat layer may contain a photopolymerization initiator and / or an organic solvent, and may contain inorganic oxides such as silica particles, alumina, and polyorganosiloxane. In a preferred embodiment of the present invention, the hard coat layer comprises an acrylic resin and silica particles from the viewpoint of mechanical properties such as surface hardness and an industrial viewpoint.
 ハードコート層の厚さは、積層体が適用される画像表示装置等の用途に応じて適宜調整されるが、例えば1~50μm、特に2~30μmであってもよい。なお、本発明において、ハードコート層の厚さは例えば接触式のデジマチックインジケーターを用いて、基材厚さとの差から算出することができる。 The thickness of the hard coat layer is appropriately adjusted according to the use of the image display device to which the laminate is applied, and may be, for example, 1 to 50 μm, particularly 2 to 30 μm. In the present invention, the thickness of the hard coat layer can be calculated from the difference from the base material thickness using, for example, a contact-type digimatic indicator.
 本発明の好ましい実施態様において、ハードコート層は延伸フィルムであってもよい。延伸フィルムであるハードコート層は、下記ハードコート層組成物の塗膜を乾燥した後、延伸処理を行い、高エネルギー線を照射することによって調製することができる。 In a preferred embodiment of the present invention, the hard coat layer may be a stretched film. The hard coat layer which is a stretched film can be prepared by drying a coating film of the following hard coat layer composition, performing a stretching treatment, and irradiating with a high energy ray.
[プライマー層]
 本発明の一実施態様である積層体において、ポリイミド系フィルムとハードコート層との間に、プライマー層が配置されていてよい。ポリイミド系フィルムの両方の表面にハードコート層が配置される場合、ポリイミド系フィルムと一方のハードコート層との間のみにプライマー層が配置されてもよく、ポリイミド系フィルムと一方のハードコート層との間及びポリイミド系フィルムと他方のハードコート層との間の両方にプライマー層が配置されてもよい。
[Primer layer]
In the laminate which is an embodiment of the present invention, a primer layer may be disposed between the polyimide film and the hard coat layer. When hard coat layers are arranged on both surfaces of the polyimide film, a primer layer may be arranged only between the polyimide film and one hard coat layer, and the polyimide film and one hard coat layer A primer layer may be disposed both between and between the polyimide film and the other hard coat layer.
 プライマー層は、プライマー剤から形成された層であり、ポリイミド系フィルムとハードコート層との密着性を高めることができる。プライマー層に含まれる化合物が、ポリイミド系フィルムに含まれるポリイミド系高分子等と、界面において化学結合していてもよい。 The primer layer is a layer formed from a primer agent, and can improve the adhesion between the polyimide film and the hard coat layer. The compound contained in the primer layer may be chemically bonded to the polyimide polymer or the like contained in the polyimide film at the interface.
 プライマー剤として、例えば、紫外線硬化型、熱硬化型又は2液硬化型のエポキシ系化合物のプライマー剤がある。プライマー剤は、ポリアミック酸であってもよい。これらは、ポリイミド系フィルムとハードコート層との密着性を高めるために好適である。 Examples of the primer agent include a primer agent of an epoxy compound of an ultraviolet curing type, a thermosetting type, or a two-component curing type. The primer agent may be a polyamic acid. These are suitable for enhancing the adhesion between the polyimide film and the hard coat layer.
 プライマー剤は、シランカップリング剤を含んでいてもよい。シランカップリング剤は、縮合反応によりポリイミド系フィルムに含まれ得るケイ素化合物と化学結合してもよい。シランカップリング剤は、特にポリイミド系フィルムに含まれ得るケイ素化合物の配合比が高い場合に好適に用いることができる。 The primer agent may contain a silane coupling agent. The silane coupling agent may be chemically bonded to a silicon compound that can be included in the polyimide film by a condensation reaction. The silane coupling agent can be suitably used particularly when the compounding ratio of the silicon compound that can be contained in the polyimide film is high.
 シランカップリング剤は、ケイ素原子と、該ケイ素原子に共有結合した1~3個のアルコキシ基とを有するアルコキシシリル基を有する化合物である。ケイ素原子にアルコキシ基が2個以上共有結合している構造を含む化合物が好ましく、ケイ素原子にアルコキシ基が3個共有結合している構造を含む化合物がより好ましい。上記アルコキシ基として、例えば、メトキシ基、エトキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基等が挙げられる。なかでも、メトキシ基、エトキシ基である場合、ケイ素材料との反応性が高いため、好ましい。 The silane coupling agent is a compound having an alkoxysilyl group having a silicon atom and 1 to 3 alkoxy groups covalently bonded to the silicon atom. A compound having a structure in which two or more alkoxy groups are covalently bonded to a silicon atom is preferable, and a compound having a structure in which three alkoxy groups are covalently bonded to a silicon atom is more preferable. Examples of the alkoxy group include a methoxy group, an ethoxy group, an isopropoxy group, an n-butoxy group, and a t-butoxy group. Of these, a methoxy group or an ethoxy group is preferable because of its high reactivity with silicon materials.
 シランカップリング剤は、ポリイミド系フィルム及びハードコート層との親和性の高い置換基を有することが好ましい。ポリイミド系フィルムに含まれるポリイミド系高分子との親和性の観点から、シランカップリング剤の置換基は、エポキシ基、アミノ基、ウレイド基又はイソシアネート基であることが好ましい。ハードコート層が(メタ)アクリレート類を含む場合、プライマー層に用いられ得るシランカップリング剤が、エポキシ基、メタクリル基、アクリル基、アミノ基又はスチリル基を有していると、親和性が高まるので好ましい。これらのなかでも、メタクリル基、アクリル基及びアミノ基から選ばれる置換基を有するシランカップリング剤は、ポリイミド系フィルムとハードコート層との親和性に優れる傾向を示すため好ましい。 The silane coupling agent preferably has a substituent having high affinity with the polyimide film and the hard coat layer. From the viewpoint of affinity with the polyimide polymer contained in the polyimide film, the substituent of the silane coupling agent is preferably an epoxy group, an amino group, a ureido group or an isocyanate group. When the hard coat layer contains (meth) acrylates, the affinity increases when the silane coupling agent that can be used in the primer layer has an epoxy group, a methacryl group, an acrylic group, an amino group, or a styryl group. Therefore, it is preferable. Among these, a silane coupling agent having a substituent selected from a methacryl group, an acryl group, and an amino group is preferable because it tends to be excellent in affinity between the polyimide film and the hard coat layer.
 プライマー層の厚さは、ハードコート層に応じて適宜調整されるが、例えば0.01nm~20μmである。エポキシ系化合物のプライマー剤を用いる場合には、プライマー層25の厚さは、好ましくは0.01~20μm、より好ましくは0.1~10μmである。シランカップリング剤を用いる場合には、プライマー層の厚さは、好ましくは0.1nm~1μm、より好ましくは0.5nm~0.1μmである。 The thickness of the primer layer is appropriately adjusted according to the hard coat layer, and is, for example, 0.01 nm to 20 μm. When using an epoxy compound primer, the thickness of the primer layer 25 is preferably 0.01 to 20 μm, more preferably 0.1 to 10 μm. When a silane coupling agent is used, the thickness of the primer layer is preferably 0.1 nm to 1 μm, more preferably 0.5 nm to 0.1 μm.
[機能層]
 本発明の一実施態様である積層体は、ポリイミド系フィルム及びハードコート層の他に、さらに機能層を備えてもよい。機能層としては、紫外線吸収層、粘着層、色相調整層、屈折率調整層等の種々の機能を有する層が挙げられる。積層体は、単数又は複数の機能層を備えていてもよい。また、1つの機能層が複数の機能を有してもよい。
[Functional layer]
The laminate which is one embodiment of the present invention may further include a functional layer in addition to the polyimide film and the hard coat layer. Examples of the functional layer include layers having various functions such as an ultraviolet absorbing layer, an adhesive layer, a hue adjusting layer, and a refractive index adjusting layer. The laminate may include one or more functional layers. One functional layer may have a plurality of functions.
 紫外線吸収層は、紫外線吸収の機能を有する層であり、例えば、紫外線硬化型の透明樹脂、電子線硬化型の透明樹脂、及び熱硬化型の透明樹脂から選ばれる主材と、この主材に分散した紫外線吸収剤とから構成される。機能層として紫外線吸収層を設けることにより、光照射による黄色度の変化を容易に抑制することができる。 The ultraviolet absorbing layer is a layer having an ultraviolet absorbing function. For example, a main material selected from an ultraviolet curable transparent resin, an electron beam curable transparent resin, and a thermosetting transparent resin, It is composed of dispersed UV absorbers. By providing the ultraviolet absorbing layer as the functional layer, a change in yellowness due to light irradiation can be easily suppressed.
 粘着層は、粘着性の機能を有する層であり、ポリイミド系フィルムや積層体を他の部材に接着させる機能を有する。粘着層の形成材料としては、通常知られたものを用いることができる。例えば、熱硬化性樹脂組成物又は光硬化性樹脂組成物を用いることができる。 The adhesive layer is a layer having an adhesive function, and has a function of adhering a polyimide film or a laminate to other members. As the material for forming the adhesive layer, a conventionally known material can be used. For example, a thermosetting resin composition or a photocurable resin composition can be used.
 粘着層は、重合性官能基を有する成分を含む樹脂組成物から構成されていてもよい。この場合、ポリイミド系フィルム又は積層体を他の部材に密着させた後に粘着層を構成する樹脂組成物をさらに重合させることにより、強固な接着を実現することができる。ポリイミド系フィルム又は積層体と粘着層との接着強度は、0.1N/cm以上、又は0.5N/cm以上であってもよい。 The adhesive layer may be composed of a resin composition containing a component having a polymerizable functional group. In this case, strong adhesion can be achieved by further polymerizing the resin composition constituting the adhesive layer after the polyimide-based film or laminate is adhered to another member. The adhesive strength between the polyimide film or laminate and the adhesive layer may be 0.1 N / cm or more, or 0.5 N / cm or more.
 粘着層は、熱硬化性樹脂組成物又は光硬化性樹脂組成物を材料として含んでいてもよい。この場合、事後的にエネルギーを供給することで樹脂組成物を高分子化し硬化させることができる。 The adhesive layer may contain a thermosetting resin composition or a photocurable resin composition as a material. In this case, the resin composition can be polymerized and cured by supplying energy afterwards.
 粘着層は、感圧型接着剤(Pressure Sensitive Adhesive、PSA)と呼ばれる、押圧により対象物に貼着される層であってもよい。感圧型接着剤は、「常温で粘着性を有し、軽い圧力で被着材に接着する物質」(JIS K6800)である粘着剤であってもよく、「特定成分を保護被膜(マイクロカプセル)に内容し、適当な手段(圧力、熱等)によって被膜を破壊するまでは安定性を保持できる接着剤」(JIS K6800)であるカプセル型接着剤であってもよい。 The pressure-sensitive adhesive layer may be a layer called pressure sensitive adhesive (Pressure Sensitive Adhesive, PSA) that is adhered to an object by pressing. The pressure-sensitive adhesive may be a pressure-sensitive adhesive that is “a substance that is sticky at normal temperature and adheres to an adherend with light pressure” (JIS K6800). And an adhesive that can maintain stability until the coating is broken by appropriate means (pressure, heat, etc.) (JIS K6800).
 色相調整層は、色相調整の機能を有する層であり、積層体を目的の色相に調整することができる層である。色相調整層は、例えば、樹脂及び着色剤を含有する層である。この着色剤としては、例えば、酸化チタン、酸化亜鉛、弁柄、チタニウムオキサイド系焼成顔料、群青、アルミン酸コバルト、及びカーボンブラック等の無機顔料;アゾ系化合物、キナクリドン系化合物、アンスラキノン系化合物、ペリレン系化合物、イソインドリノン系化合物、フタロシアニン系化合物、キノフタロン系化合物、スレン系化合物、及びジケトピロロピロール系化合物等の有機顔料;硫酸バリウム、及び炭酸カルシウム等の体質顔料;並びに塩基性染料、酸性染料、及び媒染染料等の染料を挙げることができる。 The hue adjustment layer is a layer having a function of hue adjustment, and is a layer capable of adjusting the laminated body to a target hue. A hue adjustment layer is a layer containing resin and a coloring agent, for example. Examples of the colorant include inorganic pigments such as titanium oxide, zinc oxide, dial, titanium oxide-based fired pigment, ultramarine, cobalt aluminate, and carbon black; azo-based compounds, quinacridone-based compounds, anthraquinone-based compounds, Organic pigments such as perylene compounds, isoindolinone compounds, phthalocyanine compounds, quinophthalone compounds, selenium compounds, and diketopyrrolopyrrole compounds; extender pigments such as barium sulfate and calcium carbonate; and basic dyes, Examples include acid dyes and mordant dyes.
 屈折率調整層は、屈折率調整の機能を有する層であり、ポリイミド系フィルムとは異なる屈折率を有し、積層体に所定の屈折率を付与することができる層である。屈折率調整層は、例えば、適宜選択された樹脂、及び場合によりさらに顔料を含有する樹脂層であってもよいし、金属の薄膜であってもよい。 The refractive index adjusting layer is a layer having a function of adjusting the refractive index, has a refractive index different from that of the polyimide film, and can give a predetermined refractive index to the laminate. The refractive index adjustment layer may be, for example, an appropriately selected resin, and optionally a resin layer further containing a pigment, or may be a metal thin film.
 屈折率を調整する顔料としては、例えば、酸化珪素、酸化アルミニウム、酸化アンチモン、酸化錫、酸化チタン、酸化ジルコニウム及び酸化タンタルが挙げられる。顔料の平均一次粒子径は、0.1μm以下であってもよい。顔料の平均一次粒子径を0.1μm以下とすることにより、屈折率調整層を透過する光の乱反射を防止し、透明度の低下を防止することができる。 Examples of the pigment for adjusting the refractive index include silicon oxide, aluminum oxide, antimony oxide, tin oxide, titanium oxide, zirconium oxide and tantalum oxide. The average primary particle diameter of the pigment may be 0.1 μm or less. By setting the average primary particle diameter of the pigment to 0.1 μm or less, irregular reflection of light transmitted through the refractive index adjusting layer can be prevented, and a decrease in transparency can be prevented.
 屈折率調整層に用いられる金属としては、例えば、酸化チタン、酸化タンタル、酸化ジルコニウム、酸化亜鉛、酸化錫、酸化ケイ素、酸化インジウム、酸窒化チタン、窒化チタン、酸窒化ケイ素、窒化ケイ素等の金属酸化物又は金属窒化物が挙げられる。 Examples of the metal used for the refractive index adjustment layer include metals such as titanium oxide, tantalum oxide, zirconium oxide, zinc oxide, tin oxide, silicon oxide, indium oxide, titanium oxynitride, titanium nitride, silicon oxynitride, and silicon nitride. Oxides or metal nitrides may be mentioned.
 ポリイミド系フィルムと機能層との間には、上記プライマー層が配置されてもよい。 The primer layer may be disposed between the polyimide film and the functional layer.
 積層体は、波長589.4nmにおける面内位相差が好ましくは3,000nm以上、より好ましくは3,500nm以上、さらに好ましくは4,000nm以上であり、好ましくは30,000nm以下、より好ましくは25,000nm以下、さらに好ましくは20,000nm以下、特に好ましくは17,000nm以下である。積層体の上記位相差が上記下限値以上であると、上記積層体を画像表示装置の前面板として用いた場合に、偏光サングラス越しの着色を抑制することができる。積層体の上記位相差が上記上限値以下であると、積層体の屈曲性を高くすることができ、フレキシブルディスプレイの前面板として有用となる。 The laminate preferably has an in-plane retardation at a wavelength of 589.4 nm of 3,000 nm or more, more preferably 3,500 nm or more, still more preferably 4,000 nm or more, preferably 30,000 nm or less, more preferably 25. 17,000 nm or less, more preferably 20,000 nm or less, and particularly preferably 17,000 nm or less. When the phase difference of the laminate is equal to or more than the lower limit, coloring through the polarized sunglasses can be suppressed when the laminate is used as a front plate of an image display device. When the retardation of the laminate is not more than the above upper limit value, the flexibility of the laminate can be increased and it is useful as a front plate of a flexible display.
 積層体は、JIS K 7105:1981に準拠した全光線透過率Ttが好ましくは85%以上、より好ましくは90%以上、さらに好ましくは92%以上である。積層体の全光線透過率が上記下限値以上であると、積層体を画像表示装置に組み込んだ際に、十分な視認性を確保することができる。なお、積層体の全光線透過率の上限値は通常100%以下である。 The laminate has a total light transmittance Tt based on JIS K 7105: 1981 of preferably 85% or more, more preferably 90% or more, and still more preferably 92% or more. When the total light transmittance of the laminate is not less than the above lower limit, sufficient visibility can be secured when the laminate is incorporated in an image display device. In addition, the upper limit of the total light transmittance of a laminated body is 100% or less normally.
 積層体は、JIS K 7373:2006に準拠した黄色度(YI)が、好ましくは5以下、より好ましくは4以下、さらに好ましくは3以下である。積層体のYIが上記上限値以下であると、積層体の透明性を高くすることができる。なお、積層体のYIの下限値は通常0以上である。 The laminate has a yellowness (YI) based on JIS K 7373: 2006, preferably 5 or less, more preferably 4 or less, and even more preferably 3 or less. The transparency of a laminated body can be made high as YI of a laminated body is below the said upper limit. In addition, the lower limit of YI of a laminated body is 0 or more normally.
 積層体の厚さは、用途に応じて適宜調整されるが、通常10~1,000μm、好ましくは15~500μm、より好ましくは20~400μm、さらに好ましくは25~300μmである。積層体の厚さが上記範囲内であると、屈曲性が良好であり、同時に画像表示装置の薄型化に有利に寄与することができる。 The thickness of the laminate is appropriately adjusted depending on the application, but is usually 10 to 1,000 μm, preferably 15 to 500 μm, more preferably 20 to 400 μm, and further preferably 25 to 300 μm. When the thickness of the laminate is within the above range, the flexibility is good, and at the same time, it can contribute to the thinning of the image display device.
[製造方法]
 ポリイミド系フィルム及び積層体の製造方法は特に限定されない。以下にポリイミド系フィルム及び積層体の製造方法の一例について説明する。
[Production method]
The manufacturing method of a polyimide-type film and a laminated body is not specifically limited. Below, an example of the manufacturing method of a polyimide-type film and a laminated body is demonstrated.
(ポリイミド系フィルムの製造方法)
 本発明の一実施態様において、ポリイミド系フィルムは、例えば以下の工程:
(a)ポリイミド系高分子を含む液(ポリイミドワニス)を基材に塗布して塗膜を形成する工程(塗布工程)、及び
(b)塗布された液(ポリイミドワニス)を乾燥させてポリイミド系フィルムを形成する工程(フィルム形成工程)
を含む製造方法によって製造することができる。工程(a)及び(b)は、通常この順で行ってよい。
(Production method of polyimide film)
In one embodiment of the present invention, the polyimide film, for example, includes the following steps:
(A) Applying a liquid (polyimide varnish) containing a polyimide-based polymer to a substrate to form a coating film (application process), and (b) drying the applied liquid (polyimide varnish) to obtain a polyimide system Process for forming a film (film forming process)
It can manufacture with the manufacturing method containing. Steps (a) and (b) may usually be performed in this order.
 塗布工程においては、まずポリイミド系高分子を含む液(ポリイミドワニス)を調製する。ポリイミドワニスの調製のために、前記テトラカルボン酸化合物、前記ジアミン、及び必要に応じて他の成分を混合し、反応させてポリイミド混合液を調製する。このポリイミド混合液に、溶剤、必要に応じて上記紫外線吸収剤及び他の添加剤を添加し、撹拌することにより、ポリイミド系高分子を含む液(ポリイミドワニス)を調製する。ポリイミド混合液に代えて、購入したポリイミド系高分子等の溶液や、購入した固体のポリイミド系高分子等の溶液を用いてもよい。 In the coating process, first, a liquid containing a polyimide polymer (polyimide varnish) is prepared. In order to prepare a polyimide varnish, the tetracarboxylic acid compound, the diamine, and other components as necessary are mixed and reacted to prepare a polyimide mixed solution. A solvent (polyimide varnish) containing a polyimide-based polymer is prepared by adding a solvent, and, if necessary, the ultraviolet absorber and other additives to the polyimide mixed solution and stirring. Instead of the polyimide mixed solution, a solution such as a purchased polyimide polymer or a solution such as a purchased solid polyimide polymer may be used.
 ポリイミドワニスの調製に用いられる溶剤は、ポリイミド系高分子を溶解可能であれば特に限定されない。かかる溶剤としては、例えばN,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド系溶剤;γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶剤;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶剤;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶剤;及びそれらの組合せ(混合溶剤)が挙げられる。これらの溶剤の中でも、アミド系溶剤又はラクトン系溶剤が好ましい。また、ポリイミドワニスには水が含まれてもよい。 The solvent used for preparing the polyimide varnish is not particularly limited as long as it can dissolve the polyimide polymer. Examples of such solvents include amide solvents such as N, N-dimethylacetamide and N, N-dimethylformamide; lactone solvents such as γ-butyrolactone and γ-valerolactone; and sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide, and sulfolane. Examples thereof include carbonate solvents such as ethylene carbonate and propylene carbonate; and combinations thereof (mixed solvents). Among these solvents, amide solvents or lactone solvents are preferable. The polyimide varnish may contain water.
 次に、例えば公知のロール・ツー・ロールやバッチ方式により、樹脂基材、SUSベルト、又はガラス基材等の基材上に、ポリイミドワニスを用いて、流涎成形等によって塗膜を形成することができる。 Next, for example, by a known roll-to-roll or batch method, a coating film is formed on a substrate such as a resin substrate, a SUS belt, or a glass substrate by using a polyimide varnish by fluency molding or the like. Can do.
 フィルム形成工程において、塗膜を乾燥し、基材から剥離することによって、ポリイミド系フィルムを形成することができる。剥離後に更にポリイミド系フィルムを乾燥する乾燥工程を行ってもよい。塗膜の乾燥は、通常50~350℃の温度にて行うことができる。必要に応じて、不活性雰囲気又は減圧の条件下において塗膜の乾燥を行ってよい。 In the film forming step, a polyimide film can be formed by drying the coating film and peeling it from the substrate. You may perform the drying process which dries a polyimide-type film further after peeling. The coating film can be dried usually at a temperature of 50 to 350 ° C. If necessary, the coating film may be dried under an inert atmosphere or under reduced pressure.
 ポリイミド系フィルムの少なくとも一方の表面に、表面処理を施す表面処理工程を行ってもよい。表面処理としては、例えばUVオゾン処理、プラズマ処理、及びコロナ放電処理が挙げられる。 A surface treatment step of performing a surface treatment on at least one surface of the polyimide film may be performed. Examples of the surface treatment include UV ozone treatment, plasma treatment, and corona discharge treatment.
 樹脂基材の例としては、PETフィルム、PENフィルム、及びポリイミド系フィルム等が挙げられる。中でも、耐熱性に優れる観点から、PETフィルム、PENフィルム、ポリイミドフィルム、及びポリアミドイミドフィルムが好ましい。さらに、前面板としてのポリイミド系フィルムとの密着性及びコストの観点から、樹脂基材としてはPETフィルムがより好ましい。また、樹脂基材の厚みは、特に制限されず、例えば10~500μmであり、好ましくは50~300μmである。なお、樹脂基材としてのポリイミド系フィルムは、段落0014に記載のポリイミド系フィルムと同義である。 Examples of resin base materials include PET films, PEN films, and polyimide films. Among these, from the viewpoint of excellent heat resistance, a PET film, a PEN film, a polyimide film, and a polyamideimide film are preferable. Furthermore, a PET film is more preferable as the resin base material from the viewpoint of adhesion to the polyimide film as the front plate and cost. Further, the thickness of the resin substrate is not particularly limited, and is, for example, 10 to 500 μm, preferably 50 to 300 μm. In addition, the polyimide-type film as a resin base material is synonymous with the polyimide-type film of Paragraph 0014.
 上記ポリイミド系フィルムの製造方法は、(c)ポリイミド系フィルムを1軸又は2軸で延伸する工程(フィルム延伸工程)を含んでもよい。フィルム延伸工程において、延伸は一軸延伸であっても二軸延伸であってもよいが、面内位相差分布均一性の観点から、ポリイミド系フィルムの延伸を一軸延伸によって行うことが好ましい。二軸延伸を行う場合、二軸延伸は、同時の二軸延伸であってもよく、逐次の二軸延伸であってもよい。延伸倍率は特に制限されないが、好ましくは1.05~5.0倍、より好ましくは1.1~4.0倍、さらに好ましくは1.3~3.0倍である。延伸倍率が上記範囲内であると延伸加工による破断が少なく、目的の位相差を得ることができる。フィルム延伸工程は、塗膜の乾燥中に行ってもよい。フィルム延伸工程は加温下で行ってもよく、その温度(延伸温度)は例えば150~350℃である。延伸温度が150~350℃であると、ポリイミド及びポリアミドイミドに破断を生じさせずに延伸させ易い。延伸後、ポリイミド系フィルムに緩和及び熱固定を施してよい。なお、塗膜を乾燥しながらポリイミド系フィルムを延伸してもよい。 The method for producing a polyimide film may include (c) a step of stretching the polyimide film uniaxially or biaxially (film stretching step). In the film stretching step, the stretching may be uniaxial stretching or biaxial stretching, but it is preferable to stretch the polyimide film by uniaxial stretching from the viewpoint of the in-plane retardation distribution uniformity. In the case of performing biaxial stretching, the biaxial stretching may be simultaneous biaxial stretching or sequential biaxial stretching. The draw ratio is not particularly limited, but is preferably 1.05 to 5.0 times, more preferably 1.1 to 4.0 times, and still more preferably 1.3 to 3.0 times. When the draw ratio is in the above range, there are few breaks due to the drawing process, and the desired phase difference can be obtained. You may perform a film extending process during drying of a coating film. The film stretching step may be performed under heating, and the temperature (stretching temperature) is, for example, 150 to 350 ° C. When the stretching temperature is 150 to 350 ° C., the polyimide and polyamideimide are easily stretched without causing breakage. After stretching, the polyimide film may be relaxed and heat-set. In addition, you may extend | stretch a polyimide-type film, drying a coating film.
(積層体の製造方法)
 次に、積層体の製造について説明する。本発明の一実施態様において、ポリイミド系フィルムと、該ポリイミド系フィルムの少なくとも一方の表面に配置されたハードコート層とを備える積層体、すなわちポリイミド系フィルム及びハードコート層を備える積層体は、例えば、以下の工程:
(d)ポリイミド系フィルム上に、ハードコート層組成物を塗布して塗膜を形成する工程(塗膜形成工程)、及び
(e)塗膜に高エネルギー線を照射し、塗膜を硬化させてハードコート層を形成する工程(硬化工程)
を含む製造方法によって製造することができる。各工程の順は、工程(d)及び(e)の順であってよい。なお、通常、上記工程(a)、(b)、及び場合により(c)の後に上記工程(d)及び(e)を行うことができる。
(Laminate manufacturing method)
Next, manufacture of a laminated body is demonstrated. In one embodiment of the present invention, a laminate comprising a polyimide film and a hard coat layer disposed on at least one surface of the polyimide film, that is, a laminate comprising a polyimide film and a hard coat layer is, for example, The following steps:
(D) A process of applying a hard coat layer composition on a polyimide film to form a coating film (coating film forming process), and (e) irradiating the coating film with high energy rays to cure the coating film. Step to form a hard coat layer (curing step)
It can manufacture with the manufacturing method containing. The order of the steps may be the order of steps (d) and (e). Normally, the steps (d) and (e) can be performed after the steps (a) and (b) and optionally (c).
 塗膜形成工程において、まずハードコート層組成物を調製する。ハードコート層組成物は、上記ハードコート層樹脂、及び必要に応じて光重合開始剤、有機溶剤及び/又は無機酸化物を含有するものであり、これらの成分を混合することによって調製することができる。光重合開始剤としては、例えばベンゾイン系化合物、ベンゾフェノン系化合物、アルキルフェノン系化合物、アシルホスフィンオキサイド系化合物、トリアジン系化合物、ヨードニウム塩、及びスルホニウム塩等が挙げられる。有機溶剤としては、例えばエタノール、エチレングリコール、イソプロピルアルコール、及びプロピレングリコール等のアルコール溶剤;酢酸エチル、及びγ-ブチロラクトン等のエステル溶剤;アセトン、メチルエチルケトン、及びシクロペンタノン等のケトン溶剤;ペンタン等の脂肪族炭化水素溶剤;並びにトルエン、及びキシレン等の芳香族炭化水素溶剤が挙げられる。光重合開始剤及び/又は有機溶剤は、単独でもよいし、2種以上を組合せて用いてもよい。また、ハードコート層組成物は上記他の添加剤を含んでもよい。 In the coating film forming step, a hard coat layer composition is first prepared. The hard coat layer composition contains the above hard coat layer resin and, if necessary, a photopolymerization initiator, an organic solvent and / or an inorganic oxide, and can be prepared by mixing these components. it can. Examples of the photopolymerization initiator include benzoin compounds, benzophenone compounds, alkylphenone compounds, acylphosphine oxide compounds, triazine compounds, iodonium salts, and sulfonium salts. Examples of the organic solvent include alcohol solvents such as ethanol, ethylene glycol, isopropyl alcohol, and propylene glycol; ester solvents such as ethyl acetate and γ-butyrolactone; ketone solvents such as acetone, methyl ethyl ketone, and cyclopentanone; Aliphatic hydrocarbon solvents; and aromatic hydrocarbon solvents such as toluene and xylene. A photoinitiator and / or an organic solvent may be individual, and may be used in combination of 2 or more type. Further, the hard coat layer composition may contain the other additives.
 次に、ポリイミド系フィルム上にハードコート層組成物を塗布して塗膜を形成する。ポリイミド系フィルムと塗膜との形成順序は逆でもよく、基材上にハードコート層組成物を塗布して塗膜を形成した後、その塗膜上にポリイミド系フィルムの塗膜を形成してもよい。また、ポリイミド系フィルムに公知の接着剤及び/又は粘着剤を用いて貼り合せてもよい。 Next, a hard coat layer composition is applied onto the polyimide film to form a coating film. The formation order of the polyimide film and the coating film may be reversed. After forming the coating film by applying the hard coat layer composition on the substrate, the coating film of the polyimide film is formed on the coating film. Also good. Moreover, you may bond to a polyimide-type film using a well-known adhesive agent and / or an adhesive.
 ポリイミド系フィルム上に形成された塗膜の乾燥を行ってよい。塗膜の乾燥は、温度50~350℃にて溶剤を蒸発させることにより行うことができ、乾燥時間は通常30~180秒である。大気下、不活性雰囲気下、又は減圧の条件下で乾燥させてもよい。 The coating film formed on the polyimide film may be dried. The coating film can be dried by evaporating the solvent at a temperature of 50 to 350 ° C., and the drying time is usually 30 to 180 seconds. You may dry in air | atmosphere, inert atmosphere, or the conditions of pressure reduction.
 上記積層体の製造方法は、塗膜形成工程の後に、(f)塗膜を含むポリイミド系フィルムを1軸又は2軸で延伸する工程(積層体延伸工程)を含んでもよい。延伸は一軸延伸であっても二軸延伸であってもよいが、面内位相差分布均一性の観点から、塗膜を含むポリイミド系フィルムの延伸を一軸延伸によって行うことが好ましい。二軸延伸を行う場合、二軸延伸は、同時の二軸延伸であってもよく、逐次の二軸延伸であってもよい。延伸倍率は、フィルム延伸工程での延伸倍率によるが、好ましくは1.05~5.0倍、より好ましくは1.1~4.0倍、さらに好ましくは1.3~3.0倍である。延伸倍率が上記範囲内であると延伸加工による破断が少なく、目的の位相差を得ることができる。延伸工程は、塗膜の乾燥中に行ってもよい。延伸工程は加温下で行ってもよく、その温度は例えば150~350℃である。延伸後、ポリイミド系フィルムに緩和及び熱固定を施してよい。なお、塗膜を乾燥しながらポリイミド系フィルムを延伸してもよい。 The method for producing a laminate may include (f) a step of stretching a polyimide film including a coating film uniaxially or biaxially (laminate stretching step) after the coating film forming step. The stretching may be uniaxial stretching or biaxial stretching, but from the viewpoint of in-plane retardation distribution uniformity, it is preferable to stretch the polyimide film including the coating film by uniaxial stretching. In the case of performing biaxial stretching, the biaxial stretching may be simultaneous biaxial stretching or sequential biaxial stretching. The draw ratio depends on the draw ratio in the film stretching step, but is preferably 1.05 to 5.0 times, more preferably 1.1 to 4.0 times, and still more preferably 1.3 to 3.0 times. . When the draw ratio is in the above range, there are few breaks due to the drawing process, and the desired phase difference can be obtained. The stretching step may be performed during drying of the coating film. The stretching step may be performed under heating, and the temperature is, for example, 150 to 350 ° C. After stretching, the polyimide film may be relaxed and heat-set. In addition, you may extend | stretch a polyimide-type film, drying a coating film.
 積層体延伸工程を上記塗膜形成工程の後に行うと、塗膜の乾燥と積層体の延伸とを同時に実施することができるため、プロセス設計の観点から有利である。また、延伸工程を上記塗膜形成工程の後に行う場合、ポリイミド系フィルムの製造方法においてフィルム延伸工程を行う必要がない。なお、塗膜形成工程後に積層体延伸工程を行う場合、ポリイミド系フィルムの延伸と同時に、ポリイミド系フィルム上に配置される塗膜も延伸される。 When the laminate stretching step is performed after the coating film forming step, drying of the coating and stretching of the laminate can be performed at the same time, which is advantageous from the viewpoint of process design. Moreover, when performing a extending process after the said coating-film formation process, it is not necessary to perform a film extending process in the manufacturing method of a polyimide-type film. In addition, when performing a laminated body extending process after a coating-film formation process, the coating film arrange | positioned on a polyimide-type film is also extended simultaneously with extending | stretching of a polyimide-type film.
 硬化工程において、塗膜(樹脂組成物)に高エネルギー線(活性エネルギー線)を照射し、塗膜を硬化させてハードコート層を形成する。照射強度は、ハードコート層組成物の組成によって適宜決定され、特に限定されないが、光重合開始剤の活性化に有効な波長領域の照射が好ましい。照射強度は、好ましくは0.1~6,000mW/cm、より好ましくは10~1,000mW/cm、さらに好ましくは20~500mW/cmである。照射強度が前記範囲内であると、適当な反応時間を確保でき、光源から輻射される熱及び硬化反応時の発熱による樹脂の黄変や劣化を抑えることができる。照射時間は、ハードコート層組成物の組成によって適宜選択すればよく、特に制限されるものではないが、前記照射強度と照射時間との積として表される積算光量が好ましくは10~10,000mJ/cm、より好ましくは50~1,000mJ/cm、さらに好ましくは80~500mJ/cmとなるように設定される。積算光量が前記範囲内であると、光重合開始剤由来の活性種を十分量発生させて、硬化反応をより確実に進行させることができ、また、照射時間が長くなりすぎず、良好な生産性を維持できる。また、この範囲での照射工程を経ることで、ハードコート層の硬度をさらに高め得るため有用である。 In the curing step, the coating film (resin composition) is irradiated with high energy rays (active energy rays), and the coating film is cured to form a hard coat layer. The irradiation intensity is appropriately determined depending on the composition of the hard coat layer composition and is not particularly limited, but irradiation in a wavelength region effective for activating the photopolymerization initiator is preferable. The irradiation intensity is preferably 0.1 ~ 6,000mW / cm 2, more preferably 10 ~ 1,000mW / cm 2, more preferably 20 ~ 500mW / cm 2. When the irradiation intensity is within the above range, an appropriate reaction time can be secured, and yellowing and deterioration of the resin due to heat radiated from the light source and heat generated during the curing reaction can be suppressed. The irradiation time may be appropriately selected depending on the composition of the hard coat layer composition and is not particularly limited. However, the integrated light amount expressed as the product of the irradiation intensity and the irradiation time is preferably 10 to 10,000 mJ. / Cm 2 , more preferably 50 to 1,000 mJ / cm 2 , still more preferably 80 to 500 mJ / cm 2 . When the integrated light quantity is within the above range, a sufficient amount of active species derived from the photopolymerization initiator can be generated, and the curing reaction can proceed more reliably, and the irradiation time is not too long, and the production is good. Can maintain sex. Moreover, it is useful because the hardness of the hard coat layer can be further increased by performing the irradiation step in this range.
 なお、高エネルギー線の照射によって光硬化性接着剤を硬化させる場合、例えば、ポリイミド系フィルムの位相差や透明性等の光学機能が低下しない条件で硬化を行うことが好ましい。 In addition, when hardening a photocurable adhesive agent by irradiation of a high energy ray, it is preferable to harden | cure on conditions that optical functions, such as a phase difference and transparency of a polyimide-type film, for example are not reduced.
[光学部材及び画像表示装置]
 本発明の一実施態様においては、上記ポリイミド系フィルム又は積層体を備える光学部材が提供される。光学部材としては、例えば画像表示装置の前面板、特にフレキシブルディスプレイの前面板(ウィンドウフィルム)が挙げられる。また、本発明の別の実施態様においては、かかる光学部材を備える画像表示装置、特にフレキシブルディスプレイも提供される。本実施形態に係るフレキシブルディスプレイは、例えば、フレキシブル機能層と、フレキシブル機能層に重ねられて前面板として機能する上記光学部材を有する。すなわち、フレキシブルディスプレイの前面板は、フレキシブル機能層の上の視認側に配置される。この前面板は、フレキシブル機能層を保護する機能を有する。そして、この前面板は高い位相差を有するため、画像表示装置、特にフレキシブルディスプレイ内に位相差板を配置する必要がない。そのため、画像表示装置の構成要素を簡略化することができるため、製造面で有利であり、また画像表示装置の薄型に有利に寄与し得る。かかる観点から、本発明の好ましい実施態様においては、上記光学部材を備える画像表示装置、特にフレキシブルディスプレイは位相差フィルムを有しない。なお、位相差フィルムとは光学異方性を示す光学フィルムであり、例えば各種波長板や液晶層の複屈折による着色や視角等の補償を目的としたものなどの使用目的に応じた位相差を有するものである。
[Optical member and image display device]
In one embodiment of the present invention, an optical member comprising the above polyimide film or laminate is provided. Examples of the optical member include a front plate of an image display device, particularly a front plate (window film) of a flexible display. In another embodiment of the present invention, an image display device including such an optical member, particularly a flexible display is also provided. The flexible display according to the present embodiment includes, for example, a flexible functional layer and the optical member that is stacked on the flexible functional layer and functions as a front plate. That is, the front plate of the flexible display is arranged on the viewing side on the flexible functional layer. This front plate has a function of protecting the flexible functional layer. And since this front board has a high phase difference, it is not necessary to arrange | position a phase difference plate in an image display apparatus, especially a flexible display. Therefore, the components of the image display device can be simplified, which is advantageous in terms of manufacturing and can contribute to the thinness of the image display device. From such a viewpoint, in a preferred embodiment of the present invention, an image display device including the optical member, particularly a flexible display, does not have a retardation film. The retardation film is an optical film exhibiting optical anisotropy. For example, the retardation film according to the purpose of use, such as for the purpose of compensating for coloring or viewing angle due to birefringence of various wave plates and liquid crystal layers, etc. It is what you have.
 画像表示装置としては、テレビ、スマートフォン、携帯電話、カーナビゲーション、タブレットPC、携帯ゲーム機、電子ペーパー、インジケーター、掲示板、時計、及びスマートウォッチ等のウェアラブルデバイス等が挙げられる。フレキシブルディスプレイとしては、フレキシブル特性を有する画像表示装置全てである。 Examples of the image display device include wearable devices such as a television, a smartphone, a mobile phone, a car navigation system, a tablet PC, a portable game machine, electronic paper, an indicator, a bulletin board, a clock, and a smart watch. The flexible display is all image display devices having flexible characteristics.
 フレキシブルディスプレイの一例を図2に示す。このフレキシブルディスプレイ100は、表面側(視認側)から順に、前面板110/偏光フィルム120/タッチセンサーフィルム130/有機EL素子層140/TFT基板150という構成を有する。フレキシブルディスプレイ100における前面板110以外の層がフレキシブル機能層200である。各層の表面及び各層間に、粘着層等を含んでもよい。上記前面板110として、本発明の一実施態様である積層体10等の上記光学部材を用いることができる。 An example of a flexible display is shown in FIG. This flexible display 100 has a configuration of front plate 110 / polarizing film 120 / touch sensor film 130 / organic EL element layer 140 / TFT substrate 150 in order from the surface side (viewing side). A layer other than the front plate 110 in the flexible display 100 is the flexible functional layer 200. An adhesive layer or the like may be included between the surface of each layer and each layer. As the front plate 110, the optical member such as the laminate 10 according to an embodiment of the present invention can be used.
 また光源として有機EL素子を例示したが、本実施形態において、光源はこれに限定されない。例えば、液晶表示装置、プラズマディスプレイパネル、無機ELディスプレイや陰極管表示装置、表面電界ディスプレイ等であってよく、本実施形態はこれらの表示素子の前面板として好適に利用することができる。 Further, although an organic EL element is exemplified as the light source, the light source is not limited to this in the present embodiment. For example, it may be a liquid crystal display device, a plasma display panel, an inorganic EL display, a cathode ray tube display device, a surface electric field display, or the like, and this embodiment can be suitably used as a front plate of these display elements.
 このような画像表示装置、特にフレキシブルディスプレイは、テレビ、スマートフォン、携帯電話、カーナビゲーション、タブレットPC、携帯ゲーム機、電子ペーパー、インジケーター、掲示板、時計、及びスマートウォッチ等のウェアラブルデバイス等として有利に用いることができる。上記ポリイミド系フィルムを備える画像表示装置は、フレキシブル特性を有し、さらに偏光サングラス越しの着色を抑制することができる。また、上記積層体を備える画像表示装置は、フレキシブル特性を有し、偏光サングラス越しの着色を抑制できるのと同時に、高い表面硬度を有するため、表面に傷が生じ難い。 Such an image display device, particularly a flexible display, is advantageously used as a wearable device such as a television, a smartphone, a mobile phone, a car navigation, a tablet PC, a portable game machine, electronic paper, an indicator, a bulletin board, a clock, and a smart watch. be able to. An image display device including the polyimide film has flexible characteristics and can further suppress coloring through polarized sunglasses. In addition, the image display device including the laminate has flexible characteristics, can suppress coloring through polarized sunglasses, and at the same time has high surface hardness, so that the surface is hardly damaged.
 以下、実施例により本発明をさらに詳細に説明する。例中の「%」及び「部」は、特記ない限り、質量%及び質量部を意味する。まず評価方法について説明する。 Hereinafter, the present invention will be described in more detail with reference to examples. Unless otherwise specified, “%” and “part” in the examples mean mass% and part by mass. First, the evaluation method will be described.
<表面硬度測定>
 サンプルのハードコート層の表面硬度は、JIS K5600-5-4:1999に準拠して、サンプルのハードコート層表面の鉛筆硬度を採用した。荷重は750gとした。
<Surface hardness measurement>
As the surface hardness of the sample hard coat layer, the pencil hardness of the sample hard coat layer surface was adopted in accordance with JIS K5600-5-4: 1999. The load was 750 g.
<全光線透過率測定>
 サンプルの全光線透過率を、JIS K7105:1981に準拠して、スガ試験機社製の全自動直読ヘーズコンピューターHGM-2DPにより測定した。
<Total light transmittance measurement>
The total light transmittance of the sample was measured by a fully automatic direct reading haze computer HGM-2DP manufactured by Suga Test Instruments Co., Ltd. according to JIS K7105: 1981.
<黄色度(YI値)の測定>
 サンプルの黄色度(Yellow Index:YI値)を、JIS K 7373:2006に準拠して、日本分光社製の紫外可視近赤外分光光度計V-670を用いて測定
した。サンプルがない状態でバックグランド測定を行った後、サンプルをサンプルホルダーにセットして、300~800nmの光に対する透過率測定を行い、3刺激値(X、Y、Z)を求めた。YI値を、下記の式に基づいて算出した。
   YI=100×(1.2769X-1.0592Z)/Y
<Measurement of yellowness (YI value)>
The yellowness (Yellow Index: YI value) of the sample was measured using an ultraviolet-visible near-infrared spectrophotometer V-670 manufactured by JASCO Corporation in accordance with JIS K 7373: 2006. After performing background measurement in the absence of a sample, the sample was set in a sample holder, and the transmittance for light of 300 to 800 nm was measured to obtain tristimulus values (X, Y, Z). The YI value was calculated based on the following formula.
YI = 100 × (1.2769X−1.0592Z) / Y
<位相差(リタデーション)測定>
 王子計測機器(株)製 位相差測定装置 KOBRA-WPRを用いてサンプルの面内位相差を測定した。4cm×5cmで切り出したサンプルを装置に設置し、入射角0°における波長589.6nmのリタデーションを測定し、その測定値を面内位相差Reとした。また、測定に用いたサンプルは、フィルムの幅方向中央部を切り出し、フィルム幅方向を遅相軸とした。
<Phase difference (retardation) measurement>
In-plane retardation of the sample was measured using a phase difference measuring device KOBRA-WPR manufactured by Oji Scientific Instruments. A sample cut out at 4 cm × 5 cm was placed in the apparatus, the retardation at a wavelength of 589.6 nm at an incident angle of 0 ° was measured, and the measured value was taken as the in-plane retardation Re. Moreover, the sample used for the measurement cut out the center part of the width direction of a film, and made the film width direction the slow axis.
<重量平均分子量測定>
 ゲル浸透クロマトグラフィー(GPC)測定
(1)前処理方法
 試料をγ-ブチロラクトン(GBL)に溶解させて20質量%溶液とした後、DMF溶離液にて100倍に希釈し、0.45μmメンブランフィルターろ過したものを測定溶液とした。
(2)測定条件
カラム:TSKgel SuperAWM-H×2+SuperAW2500×1(6.0mm I.D.×150mm×3本)
溶離液:DMF(10mMの臭化リチウム添加)
流量:0.6mL/min.
検出器:RI検出器
カラム温度:40℃
注入量:20μL
分子量標準:標準ポリスチレン
<Weight average molecular weight measurement>
Gel Permeation Chromatography (GPC) Measurement (1) Pretreatment Method A sample was dissolved in γ-butyrolactone (GBL) to make a 20 mass% solution, then diluted 100 times with DMF eluent, and a 0.45 μm membrane filter The filtered solution was used as a measurement solution.
(2) Measurement condition column: TSKgel SuperAWM-H x 2 + SuperAW 2500 x 1 (6.0 mm ID x 150 mm x 3)
Eluent: DMF (10 mM lithium bromide added)
Flow rate: 0.6 mL / min.
Detector: RI detector Column temperature: 40 ° C
Injection volume: 20 μL
Molecular weight standard: Standard polystyrene
[合成例1]
[ポリイミド系フィルムの作製]
 窒素雰囲気下、溶媒トラップ及びフィルターを取り付けた真空ポンプが接続された反応容器に、1.25gのイソキノリンを投入した。次に、反応容器にγ-ブチロラクトン(GBL)375.00g、及び2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB)104.12gを投入し、混合物を撹拌して溶解させた。さらに、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)145.88gを反応容器に加えた後、混合物を撹拌しつつオイルバスで昇温を開始した。加えたTFMBと6FDAとのモル比は1.00:0.99であり、混合物中のモノマー濃度は40質量%であった。反応容器の内温が80℃に到達したところで650mmHgまで減圧し、続けて内温180℃まで昇温した。内温が180℃に到達した後、撹拌下でさらに4時間加熱を行った。その後、大気圧まで復圧し、内温を155℃まで冷却し、ポリイミド溶液を得た。155℃にてGBLを加えてポリイミドの固形分が24質量%である均一溶液を調製し、その後、反応容器から均一溶液であるポリイミドワニスを取り出した。得られたポリイミドワニス中のポリイミドについて、GPC測定を行ったところ、重量平均分子量は360000であった。また、ポリイミド系高分子のフッ素原子含有量は31.3質量%であった。
[Synthesis Example 1]
[Preparation of polyimide film]
Under a nitrogen atmosphere, 1.25 g of isoquinoline was charged into a reaction vessel connected to a vacuum pump equipped with a solvent trap and a filter. Next, 375.00 g of γ-butyrolactone (GBL) and 104.12 g of 2,2′-bis (trifluoromethyl) -4,4′-diaminodiphenyl (TFMB) are added to the reaction vessel, and the mixture is stirred. And dissolved. Further, 145.88 g of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) was added to the reaction vessel, and then the temperature was raised in an oil bath while stirring the mixture. The added TFMB to 6FDA molar ratio was 1.00: 0.99, and the monomer concentration in the mixture was 40% by weight. When the internal temperature of the reaction vessel reached 80 ° C., the pressure was reduced to 650 mmHg, and then the internal temperature was raised to 180 ° C. After the internal temperature reached 180 ° C., the mixture was further heated for 4 hours under stirring. Thereafter, the pressure was restored to atmospheric pressure, the internal temperature was cooled to 155 ° C., and a polyimide solution was obtained. GBL was added at 155 ° C. to prepare a uniform solution having a polyimide solid content of 24% by mass, and then the polyimide varnish, which was a uniform solution, was taken out of the reaction vessel. When the GPC measurement was performed about the polyimide in the obtained polyimide varnish, the weight average molecular weight was 360000. Moreover, the fluorine atom content of the polyimide polymer was 31.3% by mass.
 上記ポリイミドワニス200.00gに、GBL38.31g及びN,N-ジメチルアセトアミド(DMAc)11.82gを加えてさらに希釈した。希釈されたポリイミドワニスを用いて、PET(ポリエチレンテレフタラート)フィルム上において流涎成形により塗膜を成形した。その後、50℃で30分、140℃で10分加熱することによって塗膜を乾燥し、ポリイミド系フィルムを得た。 GPL38.31 g and N, N-dimethylacetamide (DMAc) 11.82 g were added to 200.00 g of the polyimide varnish to further dilute. Using the diluted polyimide varnish, a coating film was formed on a PET (polyethylene terephthalate) film by fluent casting. Then, the coating film was dried by heating at 50 ° C. for 30 minutes and at 140 ° C. for 10 minutes to obtain a polyimide film.
[合成例2]
[ポリイミド系フィルムの作製]
 窒素ガス雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、TFMB50g(156.13mmol)及びDMAc642.07gを加え、室温で撹拌しながらTFMBをDMAcに溶解させた。次に、フラスコに6FDA20.84g(46.91mmol)を添加し、室温で3時間撹拌した。その後、4,4’-オキシビス(ベンゾイルクロリド)(OBBC)9.23g(31.27mmol)、次いでテレフタロイルクロリド(TPC)15.87g(78.18mmol)をフラスコに加え、室温で1時間撹拌した。次いで、フラスコに4-メチルピリジン9.89g(106.17mmol)と無水酢酸14.37g(140.73mmol)とを加え、室温で30分間撹拌後、オイルバスを用いて70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノールで6時間浸漬後、メタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミドを得た。得られたポリアミドイミドについて、GPC測定を行ったところ、重量平均分子量は420,000であった。
[Synthesis Example 2]
[Preparation of polyimide film]
Under a nitrogen gas atmosphere, TFMB 50 g (156.13 mmol) and DMAc 642.07 g were added to a 1 L separable flask equipped with a stirring blade, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 20.84 g (46.91 mmol) of 6FDA was added to the flask and stirred at room temperature for 3 hours. Thereafter, 9.23 g (31.27 mmol) of 4,4′-oxybis (benzoyl chloride) (OBBC) and then 15.87 g (78.18 mmol) of terephthaloyl chloride (TPC) were added to the flask and stirred at room temperature for 1 hour. did. Next, 9.89 g (106.17 mmol) of 4-methylpyridine and 14.37 g (140.73 mmol) of acetic anhydride were added to the flask. After stirring for 30 minutes at room temperature, the temperature was raised to 70 ° C. using an oil bath, The mixture was further stirred for 3 hours to obtain a reaction solution.
The resulting reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of a thread, the deposited precipitate was taken out, immersed in methanol for 6 hours, and washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain polyamideimide. When the obtained polyamideimide was subjected to GPC measurement, the weight average molecular weight was 420,000.
DMAc溶媒中に上記ポリアミドイミドを加え、10%の濃度で溶解させて樹脂ワニスを得た。希釈されたポリイミドワニスを用いて、合成例1と同様方法にて、塗膜を乾燥させ、ポリイミド系フィルムを得た。 The polyamideimide was added to the DMAc solvent and dissolved at a concentration of 10% to obtain a resin varnish. Using the diluted polyimide varnish, the coating film was dried in the same manner as in Synthesis Example 1 to obtain a polyimide film.
[実施例1]
 合成例1で得られたポリイミド系フィルムをPETフィルムから剥離した。得られたポリイミド系フィルムを、延伸温度200℃、延伸倍率1.35倍で一軸延伸することで、厚さ60μmの延伸ポリイミド系フィルムを得た。延伸ポリイミド系フィルムのセンター部を切り出し、この面内位相差を測定したところ、4,000nmであった。
[Example 1]
The polyimide film obtained in Synthesis Example 1 was peeled from the PET film. The obtained polyimide-based film was uniaxially stretched at a stretching temperature of 200 ° C. and a stretching ratio of 1.35 times to obtain a stretched polyimide-based film having a thickness of 60 μm. When the center part of the stretched polyimide film was cut out and the in-plane retardation was measured, it was 4,000 nm.
 延伸ポリイミド系フィルム上に、AICA社製Z-624を、乾燥後の厚さが5μmとなるように、マイヤーバーを用いて塗布し、塗膜を形成した。得られた塗膜を120℃で1分間乾燥させた後、紫外線照射量500mJ/cmで、紫外線を照射して塗膜を硬化させ、厚さ5μmのハードコート層を形成した。これにより、延伸ポリイミド系フィルム(厚さ:60μm)及びハードコート層(厚さ:5μm)を備える積層体(1)を得た。次に、積層体(1)を用いて、鉛筆硬度を測定したところ、3Hであった。また、全光線透過率測定及び黄色度測定を行った。その結果を表1に示す。 On the stretched polyimide film, Z-624 manufactured by AICA was applied using a Mayer bar so that the thickness after drying was 5 μm, thereby forming a coating film. After drying the obtained coating film at 120 ° C. for 1 minute, the coating film was cured by irradiating with ultraviolet rays at an ultraviolet irradiation amount of 500 mJ / cm 2 to form a hard coat layer having a thickness of 5 μm. This obtained the laminated body (1) provided with a stretched polyimide-type film (thickness: 60 micrometers) and a hard-coat layer (thickness: 5 micrometers). Next, when the pencil hardness was measured using the laminate (1), it was 3H. Moreover, total light transmittance measurement and yellowness measurement were performed. The results are shown in Table 1.
[実施例2]
 合成例1で得られたポリイミド系フィルムをPETフィルムから剥離した。得られたポリイミド系フィルム上に、AICA社製Z-624を、乾燥後の厚さが6μmとなるように、マイヤーバーを用いて塗布し、塗膜を形成した。得られた塗膜を120℃で1分間乾燥させた。
[Example 2]
The polyimide film obtained in Synthesis Example 1 was peeled from the PET film. On the obtained polyimide film, Z-624 manufactured by AICA was applied using a Mayer bar so that the thickness after drying was 6 μm, thereby forming a coating film. The obtained coating film was dried at 120 ° C. for 1 minute.
 塗膜を備えたポリイミド系フィルムを、延伸温度200℃、延伸倍率1.35倍で、一軸延伸することで、厚さ65μmの延伸ポリイミド系フィルムを得た。その後、紫外線照射量500mJ/cmで、紫外線を照射して塗膜を硬化させハードコート層を形成した。これにより、ポリイミド系フィルム(厚さ:60μm)及びハードコート層(厚さ:5μm)を備える積層体(2)を得た。積層体(2)のセンター部を切り出し、この面内位相差を測定したところ、4,100nmであった。次に、積層体(2)を用いて、鉛筆硬度を測定したところ、3Hであった。また、全光線透過率測定及び黄色度測定を行った。その結果を表1に示す。 The polyimide film provided with the coating film was uniaxially stretched at a stretching temperature of 200 ° C. and a stretching ratio of 1.35 times to obtain a stretched polyimide film having a thickness of 65 μm. Thereafter, the coating film was cured by irradiating with ultraviolet rays at an ultraviolet irradiation amount of 500 mJ / cm 2 to form a hard coat layer. This obtained the laminated body (2) provided with a polyimide-type film (thickness: 60 micrometers) and a hard-coat layer (thickness: 5 micrometers). When the center part of the laminated body (2) was cut out and the in-plane retardation was measured, it was 4,100 nm. Next, when the pencil hardness was measured using the laminate (2), it was 3H. Moreover, total light transmittance measurement and yellowness measurement were performed. The results are shown in Table 1.
[実施例3]
 合成例1で得られたポリイミド系フィルムをPETフィルムから剥離した。その後、実施例2と同様の方法で、得られたポリイミド系フィルム上に塗膜を形成したのち、延伸温度200℃、延伸倍率1.50倍で一軸延伸し、その後紫外線照射を行うことによって、延伸ポリイミド系フィルム(厚さ:60μm)及びハードコート層(厚さ:5μm)を備えるポリイミド積層体(3)を得た。積層体(3)のセンター部を切り出し、この面内位相差を測定したところ、15,160nmであった。次に、積層体(3)を用いて、鉛筆硬度を測定したところ、3Hであった。また、全光線透過率測定及び黄色度測定を行った。その結果を表1に示す。
[Example 3]
The polyimide film obtained in Synthesis Example 1 was peeled from the PET film. Then, after forming a coating film on the obtained polyimide film in the same manner as in Example 2, uniaxially stretching at a stretching temperature of 200 ° C. and a stretching ratio of 1.50, and then performing ultraviolet irradiation, A polyimide laminate (3) provided with a stretched polyimide film (thickness: 60 μm) and a hard coat layer (thickness: 5 μm) was obtained. When the center part of the laminated body (3) was cut out and the in-plane retardation was measured, it was 15,160 nm. Next, when the pencil hardness was measured using the laminate (3), it was 3H. Moreover, total light transmittance measurement and yellowness measurement were performed. The results are shown in Table 1.
[実施例4]
合成例2で得られたポリイミド系フィルムをPETフィルムから剥離した。その後、実施例2と同様の方法で、得られた積層ポリイミド系フィルム上に塗膜を形成したのち、延伸温度200℃、延伸倍率1.30倍で一軸延伸し、その後紫外線照射を行うことによって、延伸ポリイミド系フィルム(厚さ:60μm)及びハードコート層(厚さ:5μm)を備える積層体を得た。積層体のセンター部を切り出し、この面内位相差を測定したところ、5,000nmであった。次に、積層体(3)を用いて、鉛筆硬度を測定したところ、2Hであった。また、全光線透過率測定及び黄色度測定を行った。その結果を表1に示す。
[Example 4]
The polyimide film obtained in Synthesis Example 2 was peeled from the PET film. Then, after forming a coating film on the obtained laminated polyimide film in the same manner as in Example 2, the film was uniaxially stretched at a stretching temperature of 200 ° C. and a stretching ratio of 1.30, and then irradiated with ultraviolet rays. A laminate comprising a stretched polyimide film (thickness: 60 μm) and a hard coat layer (thickness: 5 μm) was obtained. When the center part of the laminate was cut out and the in-plane retardation was measured, it was 5,000 nm. Next, when the pencil hardness was measured using the laminate (3), it was 2H. Moreover, total light transmittance measurement and yellowness measurement were performed. The results are shown in Table 1.
[比較例1]
 合成例1で得られたポリイミド系フィルムをPETフィルムから剥離し、延伸温度200℃、延伸倍率1.25倍で一軸延伸することで、厚さ60μmの延伸ポリイミド系フィルムを得た。延伸ポリイミド系フィルムのセンター部を切り出し、この面内位相差を測定したところ、2,010nmであった。
[Comparative Example 1]
The polyimide-based film obtained in Synthesis Example 1 was peeled from the PET film and uniaxially stretched at a stretching temperature of 200 ° C. and a stretching ratio of 1.25 times to obtain a stretched polyimide-based film having a thickness of 60 μm. When the center part of the stretched polyimide film was cut out and the in-plane retardation was measured, it was 2,010 nm.
 延伸ポリイミド系フィルム上に、AICA社製Z-624を、乾燥後の厚さが5μmとなるように、マイヤーバーを用いて塗布し、塗膜を形成した。得られた塗膜を120℃で1分間乾燥させた後、紫外線照射量500mJ/cmで、紫外線を照射して塗膜を硬化させ、厚さ5μmのハードコート層を形成した。これにより、ポリイミド系フィルム(厚さ:65μm)及びハードコート層(厚さ:5μm)を備える積層体(4)を得た。次に、積層体(4)を用いて、鉛筆硬度を測定したところ、3Hであった。また、全光線透過率測定及び黄色度測定を行った。その結果を表1に示す。 On the stretched polyimide film, Z-624 manufactured by AICA was applied using a Mayer bar so that the thickness after drying was 5 μm, thereby forming a coating film. After drying the obtained coating film at 120 ° C. for 1 minute, the coating film was cured by irradiating with ultraviolet rays at an ultraviolet irradiation amount of 500 mJ / cm 2 to form a hard coat layer having a thickness of 5 μm. This obtained the laminated body (4) provided with a polyimide-type film (thickness: 65 micrometers) and a hard-coat layer (thickness: 5 micrometers). Next, when the pencil hardness was measured using the laminate (4), it was 3H. Moreover, total light transmittance measurement and yellowness measurement were performed. The results are shown in Table 1.
[比較例2]
 合成例2で得られたポリイミド系フィルムをPETフィルムから剥離した。その後、フィルムを金枠に固定し、乾燥温度200℃で加熱することで、厚さ60μmの無延伸ポリイミド系フィルムを得た。無延伸ポリイミド系フィルムのセンター部を切り出し、この面内位相差を測定したところ、210nmであった
その後、実施例1と同様の方法にてハードコート層(厚さ:5μm)を備える積層体を得た。次に積層体を用いて、鉛筆硬度を測定したところ、2Hであった。また、全光線透過率測定及び黄色度測定を行った。その結果を表1に示す。
[Comparative Example 2]
The polyimide film obtained in Synthesis Example 2 was peeled from the PET film. Thereafter, the film was fixed to a metal frame and heated at a drying temperature of 200 ° C. to obtain an unstretched polyimide film having a thickness of 60 μm. The center part of the unstretched polyimide film was cut out, and when this in-plane retardation was measured, it was 210 nm, and then a laminate provided with a hard coat layer (thickness: 5 μm) in the same manner as in Example 1. Obtained. Next, when the pencil hardness was measured using the laminate, it was 2H. Moreover, total light transmittance measurement and yellowness measurement were performed. The results are shown in Table 1.
<視認性評価>
 各実施例及び比較例において得られた積層体(1)~(4)を用いて、液晶表示素子をそれぞれ作製した。液晶表示素子の作製方法は以下の通りである。
<Visibility evaluation>
Liquid crystal display elements were produced using the laminates (1) to (4) obtained in the respective examples and comparative examples. A manufacturing method of the liquid crystal display element is as follows.
 [偏光板(1)の作製方法]
 平均重合度約2400、ケン化度99.9モル%で厚さ75μmのポリビニルアルコールフィルム〔(株)クラレ製の商品名“クラレビニロンVF-PS#7500”〕を、30℃の純水に浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.02/1.5/100の水溶液に30℃で浸漬することによって、ヨウ素染色工程を行った。その後、ポリビニルアルコールフィルムを、ヨウ化カリウム/ホウ酸/水の重量比が20/3/100の水溶液に30℃で浸漬することによって、ホウ酸処理工程を行った。引き続き、ポリビニルアルコールフィルムを純水で洗浄した後、乾燥してポリビニルアルコールにヨウ素が吸着配向された偏光フィルムを得た。延伸は、主に、ヨウ素染色及びホウ酸処理の工程で行い、トータル延伸倍率は5.9倍であった。
[Production Method of Polarizing Plate (1)]
A polyvinyl alcohol film (trade name “Kuraray Vinylon VF-PS # 7500” manufactured by Kuraray Co., Ltd.) having an average polymerization degree of about 2400 and a saponification degree of 99.9 mol% and a thickness of 75 μm is immersed in pure water at 30 ° C. Then, the iodine dyeing process was performed by immersing at 30 ° C. in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.02 / 1.5 / 100. Thereafter, the boric acid treatment step was performed by immersing the polyvinyl alcohol film in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 20/3/100 at 30 ° C. Subsequently, the polyvinyl alcohol film was washed with pure water and then dried to obtain a polarizing film in which iodine was adsorbed and oriented on polyvinyl alcohol. Stretching was mainly performed in the iodine staining and boric acid treatment steps, and the total stretching ratio was 5.9 times.
 得られた偏光フィルムの片面に、厚さ40μmのセルローストリアセテート樹脂〔富士フイルム(株)製の商品名“フジタックTD40UZ”〕を貼合し、偏光板(1)を得た。 A polarizing plate (1) was obtained by laminating a cellulose triacetate resin (trade name “Fujitac TD40UZ” manufactured by Fuji Film Co., Ltd.) having a thickness of 40 μm on one side of the obtained polarizing film.
 [液晶ディスプレイの作製方法]
 三菱電機(株)製の液晶パネル(Diamondcrysta RDT196LM)の予め貼合されていた上面の偏光板を剥がし、上記の偏光板(1)を、液晶パネル下側(背面側)の偏光板の吸収軸と直行するように、貼合した。また、偏光板の吸収軸に対して延伸ポリイミド系フィルムの遅相軸とのなす角度が45°となるように、偏光板(1)と積層体とを貼合した。こうして、液晶ディスプレイ(1)~(4)をそれぞれ作製した。
[Method of manufacturing liquid crystal display]
The polarizing plate on the upper surface of the liquid crystal panel (Diamondcrysta RDT196LM) manufactured by Mitsubishi Electric Corporation is peeled off. And pasted together to go straight. In addition, the polarizing plate (1) and the laminate were bonded so that the angle formed by the slow axis of the stretched polyimide film with respect to the absorption axis of the polarizing plate was 45 °. In this way, liquid crystal displays (1) to (4) were produced.
 [視認性評価方法]
 以下の通り、液晶ディスプレイ(1)~(4)の視認性を確認した。
 作製した液晶ディスプレイ(1)~(4)をそれぞれ白色表示させ、観察者はFERRY社製 偏光サングラスを着用し、偏光サングラス越しでの視認性を評価した。観察者は画像表示素子に対し、仰角を45°~135°の範囲で観察角度を変化させながらディスプレイの着色状態を観察した。その結果を表1に示す。なお、視認性の評価基準は以下の通りである。
○:着色は全く視認されない。
×:虹ムラ・着色が確認される。
[Visibility evaluation method]
The visibility of the liquid crystal displays (1) to (4) was confirmed as follows.
The produced liquid crystal displays (1) to (4) were each displayed in white, and an observer wore polarized sunglasses manufactured by FERRY, and evaluated the visibility through polarized sunglasses. The observer observed the colored state of the display while changing the observation angle with respect to the image display element in the range of 45 ° to 135 °. The results are shown in Table 1. In addition, the evaluation criteria of visibility are as follows.
○: Coloring is not visually recognized at all.
X: Rainbow unevenness and coloring are confirmed.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記の通り、本発明に係る実施例1~4の積層体では、偏光サングラス越しでの視認性を改善することができた。一方、比較例1~2においては着色が発生し、視認性に問題が生じた。 As described above, in the laminates of Examples 1 to 4 according to the present invention, the visibility through polarized sunglasses could be improved. On the other hand, in Comparative Examples 1 and 2, coloring occurred, causing a problem in visibility.
  1 ポリイミド系フィルム
  2 ハードコート層
 10 積層体
110 前面板
120 偏光フィルム
130 タッチセンサーフィルム
140 有機EL素子
150 TFT基板
200 フレキシブル機能層
DESCRIPTION OF SYMBOLS 1 Polyimide-type film 2 Hard-coat layer 10 Laminated body 110 Front plate 120 Polarizing film 130 Touch sensor film 140 Organic EL element 150 TFT substrate 200 Flexible functional layer

Claims (9)

  1.  波長589.4nmにおける面内位相差が3,000nm以上である、ポリイミド系フィルム。 A polyimide film having an in-plane retardation at a wavelength of 589.4 nm of 3,000 nm or more.
  2.  全光線透過率が85%以上である、請求項1に記載のポリイミド系フィルム。 The polyimide film according to claim 1, wherein the total light transmittance is 85% or more.
  3.  ポリイミド系フィルムに含まれるポリイミド系高分子は分子内にフッ素原子を含む、請求項1または2に記載のポリイミド系フィルム。 The polyimide film according to claim 1 or 2, wherein the polyimide polymer contained in the polyimide film contains a fluorine atom in the molecule.
  4.  黄色度(YI)が5以下である、請求項1~3のいずれかに記載のポリイミド系フィルム。 The polyimide film according to any one of claims 1 to 3, having a yellowness index (YI) of 5 or less.
  5.  請求項1~4のいずれかに記載のポリイミド系フィルムと、該ポリイミド系フィルムの少なくとも一方の表面に配置されたハードコート層とを備える、積層体。 A laminate comprising the polyimide film according to any one of claims 1 to 4 and a hard coat layer disposed on at least one surface of the polyimide film.
  6.  請求項1~4のいずれかに記載のポリイミド系フィルムまたは請求項5に記載の積層体を備える光学部材。 An optical member comprising the polyimide film according to any one of claims 1 to 4 or the laminate according to claim 5.
  7. 請求項1~4に記載のポリイミド系フィルム又は請求項5に記載の積層体、または請求項6に記載の光学部材を備える、画像表示装置。 An image display device comprising the polyimide film according to claims 1 to 4, the laminate according to claim 5, or the optical member according to claim 6.
  8. ポリイミド系フィルム上に、ハードコート層組成物を塗布して塗膜を形成する工程、
    ポリイミド系フィルムを1軸又は2軸で延伸する工程、及び
    塗膜に高エネルギー線を照射し、塗膜を硬化させてハードコート層を形成する工程
    を含む、ポリイミド系フィルム及びハードコート層を含む積層体の製造方法。
    A process of forming a coating film by applying a hard coat layer composition on a polyimide film,
    Includes a polyimide film and a hard coat layer, including a step of stretching the polyimide film uniaxially or biaxially, and a step of irradiating the coating film with high energy rays to cure the coating film to form a hard coat layer A manufacturing method of a layered product.
  9.  ポリイミド系高分子を含む液を基材に塗布して塗膜を形成する工程、及び
    塗布された前記液を乾燥させてポリイミド系フィルムを形成する工程
    をさらに含有する、請求項8に記載の製造方法。
    The production according to claim 8, further comprising a step of applying a liquid containing a polyimide polymer to a substrate to form a coating film, and a step of drying the applied liquid to form a polyimide film. Method.
PCT/JP2018/001716 2017-01-25 2018-01-22 Polyimide-based film and laminate WO2018139392A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197024732A KR102475756B1 (en) 2017-01-25 2018-01-22 Polyimide-based films and laminates
CN201880007965.XA CN110234687B (en) 2017-01-25 2018-01-22 Polyimide film and laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017011564 2017-01-25
JP2017-011564 2017-01-25

Publications (1)

Publication Number Publication Date
WO2018139392A1 true WO2018139392A1 (en) 2018-08-02

Family

ID=62978927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001716 WO2018139392A1 (en) 2017-01-25 2018-01-22 Polyimide-based film and laminate

Country Status (5)

Country Link
JP (1) JP7164304B2 (en)
KR (1) KR102475756B1 (en)
CN (1) CN110234687B (en)
TW (1) TW201833184A (en)
WO (1) WO2018139392A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111381295A (en) * 2018-12-28 2020-07-07 住友化学株式会社 Optical film
CN113429610A (en) * 2020-03-18 2021-09-24 住友化学株式会社 Optical film and flexible display device
JP7503442B2 (en) 2019-07-25 2024-06-20 エスケー イノベーション カンパニー リミテッド Polyamide-imide film

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6878948B2 (en) * 2017-02-22 2021-06-02 三菱瓦斯化学株式会社 Polyimide film laminate
JP6670967B1 (en) * 2018-09-28 2020-03-25 住友化学株式会社 Optical film
US11550179B2 (en) 2018-09-28 2023-01-10 Sumitomo Chemical Company, Limited Optical film
JP6722325B2 (en) * 2018-09-28 2020-07-15 住友化学株式会社 Optical film
KR102093294B1 (en) * 2018-09-28 2020-03-26 스미또모 가가꾸 가부시키가이샤 Optical film
KR20200040137A (en) 2018-10-08 2020-04-17 삼성전자주식회사 Laminated film, and display device including same
JP6595080B1 (en) * 2018-12-19 2019-10-23 住友化学株式会社 Optical film, flexible display device, and resin composition
KR102430600B1 (en) * 2019-10-07 2022-08-08 삼성에스디아이 주식회사 Flexible window film and display apparatus comprising the same
WO2021085404A1 (en) * 2019-10-31 2021-05-06 住友化学株式会社 Optical laminate and flexible display device
CN113471256B (en) * 2021-06-16 2023-04-18 武汉华星光电技术有限公司 Display panel and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883515A (en) * 1994-09-13 1996-03-26 Fujimori Kogyo Kk Transparent conductive sheet
WO2006092917A1 (en) * 2005-03-02 2006-09-08 Nitto Denko Corporation Optical film and method for producing same, and image display employing such optical film
JP2008163107A (en) * 2006-12-27 2008-07-17 Mitsubishi Gas Chem Co Inc Optical member
JP2009139753A (en) * 2007-12-07 2009-06-25 Nitto Denko Corp Polarizing plate, optical film and image display device
WO2012056697A1 (en) * 2010-10-29 2012-05-03 三井化学株式会社 Inspection method for polyimide film, polyimide film manufacturing process using same, and polyimide film manufacturing equipment
WO2016088641A1 (en) * 2014-12-04 2016-06-09 コニカミノルタ株式会社 Polyimide film and method for manufacturing same, flexible printed wiring board, substrate for flexible display, front plate for flexible display, led illumination device, and organic electroluminescence display device
WO2016129329A1 (en) * 2015-02-09 2016-08-18 コニカミノルタ株式会社 Method for manufacturing transparent heat-resistant layered film, transparent heat-resistant layered film, flexible printed circuit board, substrate for flexible display, front plate for flexible display, led illumination device, and organic electroluminescence display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327819A (en) 1995-05-31 1996-12-13 Sekisui Chem Co Ltd Phase difference plate
EP2147766B1 (en) * 2007-05-24 2012-08-01 Mitsubishi Gas Chemical Company, Inc. Process and apparatus for production of colorless transparent resin film
JP6303266B2 (en) * 2013-02-15 2018-04-04 東洋紡株式会社 Image display device
WO2016152459A1 (en) * 2015-03-24 2016-09-29 コニカミノルタ株式会社 Polyimide-based optical film, process for producing same, and organic electroluminescent display
JP2017105069A (en) * 2015-12-10 2017-06-15 日東電工株式会社 Transparent conductive film laminate and touch panel including the same
KR102102679B1 (en) * 2016-07-01 2020-04-22 다이니폰 인사츠 가부시키가이샤 Optical layered body and display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883515A (en) * 1994-09-13 1996-03-26 Fujimori Kogyo Kk Transparent conductive sheet
WO2006092917A1 (en) * 2005-03-02 2006-09-08 Nitto Denko Corporation Optical film and method for producing same, and image display employing such optical film
JP2008163107A (en) * 2006-12-27 2008-07-17 Mitsubishi Gas Chem Co Inc Optical member
JP2009139753A (en) * 2007-12-07 2009-06-25 Nitto Denko Corp Polarizing plate, optical film and image display device
WO2012056697A1 (en) * 2010-10-29 2012-05-03 三井化学株式会社 Inspection method for polyimide film, polyimide film manufacturing process using same, and polyimide film manufacturing equipment
WO2016088641A1 (en) * 2014-12-04 2016-06-09 コニカミノルタ株式会社 Polyimide film and method for manufacturing same, flexible printed wiring board, substrate for flexible display, front plate for flexible display, led illumination device, and organic electroluminescence display device
WO2016129329A1 (en) * 2015-02-09 2016-08-18 コニカミノルタ株式会社 Method for manufacturing transparent heat-resistant layered film, transparent heat-resistant layered film, flexible printed circuit board, substrate for flexible display, front plate for flexible display, led illumination device, and organic electroluminescence display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111381295A (en) * 2018-12-28 2020-07-07 住友化学株式会社 Optical film
JP7503442B2 (en) 2019-07-25 2024-06-20 エスケー イノベーション カンパニー リミテッド Polyamide-imide film
CN113429610A (en) * 2020-03-18 2021-09-24 住友化学株式会社 Optical film and flexible display device

Also Published As

Publication number Publication date
JP2018119144A (en) 2018-08-02
CN110234687B (en) 2022-04-15
CN110234687A (en) 2019-09-13
KR20190109481A (en) 2019-09-25
TW201833184A (en) 2018-09-16
KR102475756B1 (en) 2022-12-08
JP7164304B2 (en) 2022-11-01

Similar Documents

Publication Publication Date Title
JP7164304B2 (en) Polyimide film and laminate
JP7005680B2 (en) Polyimide film
JP7118651B2 (en) Method for producing film, resin composition and polyamideimide resin
JP7084710B2 (en) Polyamide-imide resin and an optical member containing the polyamide-imide resin.
JP7249732B2 (en) Optical film and method for producing optical film
CN112041708B (en) Optical film, optical laminate, and flexible image display device
JP6738946B1 (en) Optical film
JP6722325B2 (en) Optical film
WO2019208610A1 (en) Optical film, optical laminate and flexible image display device
WO2018135431A1 (en) Polyamide-imide resin and optical member containing polyamide-imide resin
JP2019086769A (en) Optical laminate
JP2020019938A (en) Polyamide-imide resin
JP2020037675A (en) Optical film
JP6670967B1 (en) Optical film
WO2020230663A1 (en) Varnish, optical film, and method for manufacturing optical film
TW202330734A (en) Varnish, optical film and manufacturing method of optical film
JP2020019937A (en) Polyamide-imide resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197024732

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18744544

Country of ref document: EP

Kind code of ref document: A1