WO2012056697A1 - Inspection method for polyimide film, polyimide film manufacturing process using same, and polyimide film manufacturing equipment - Google Patents

Inspection method for polyimide film, polyimide film manufacturing process using same, and polyimide film manufacturing equipment Download PDF

Info

Publication number
WO2012056697A1
WO2012056697A1 PCT/JP2011/005987 JP2011005987W WO2012056697A1 WO 2012056697 A1 WO2012056697 A1 WO 2012056697A1 JP 2011005987 W JP2011005987 W JP 2011005987W WO 2012056697 A1 WO2012056697 A1 WO 2012056697A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide film
film
plane retardation
linear expansion
expansion coefficient
Prior art date
Application number
PCT/JP2011/005987
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 小野
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2012540683A priority Critical patent/JP5881610B2/en
Publication of WO2012056697A1 publication Critical patent/WO2012056697A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/16Investigating or analyzing materials by the use of thermal means by investigating thermal coefficient of expansion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod

Definitions

  • the present invention relates to a polyimide film inspection method, a polyimide film manufacturing method using the same, and a polyimide film manufacturing apparatus.
  • a polyimide metal laminate as a circuit board material As a polyimide metal laminate as a circuit board material, a flexible circuit board obtained by laminating a copper foil and a polyimide film is known (for example, see Patent Document 1). Such a polyimide metal laminate is obtained by laminating a metal foil on a polyimide film by a laminating method or the like.
  • the film in the film-forming process, the film is heated in a state where both ends of the film are sandwiched between clip tenters or pin tenters, and dried or imidized. For this reason, the film may be temporarily softened and stretched to cause orientation anisotropy. In particular, when a so-called bowing phenomenon or the like occurs in which the end portion of the film is strongly molecularly oriented, a remarkable orientation anisotropy may occur at the end portion of the obtained polyimide film.
  • Patent Document 5 a method for estimating the thermal expansion anisotropy by measuring the dichroic ratio of the polyimide film has been proposed. Furthermore, a method has also been proposed in which the retardation of a specific wavelength of a thermoplastic resin film is measured with monochromatic light and the production conditions of the thermoplastic resin film are adjusted (for example, Patent Document 6).
  • JP 2001-270037 A Japanese Patent No. 3006752 Japanese Patent No. 3202935 JP 2002-154168 A Japanese Patent Application Laid-Open No. 07-63611 JP-A-9-218307
  • Patent Documents 2 to 4 and the like an operation such as cutting a polyimide film to be measured into a predetermined size is required. For this reason, it was extremely difficult to inspect the anisotropy of the linear expansion coefficient of the polyimide film in-line during the production process of the polyimide film.
  • the linear expansion coefficient of the polyimide film is generally determined by a thermomechanical analysis (TMA) test at a temperature rising rate of 10 ° C./min or less (preferably 5 ° C./min or less) in a temperature range of 100 to 200 ° C. Measured in In order to measure the anisotropy of the linear expansion coefficient, it is necessary to perform a TMA test at at least two measurement points. Therefore, when the anisotropic distribution of the linear expansion coefficient is examined across the width direction and the flow direction of the film, it is necessary to measure the linear expansion coefficient a number of times. In order to solve such problems, it is required to develop a method for evaluating the orientation anisotropy of a polyimide film quickly and with high accuracy. Furthermore, it is required to produce a polyimide film in which the orientation anisotropy is evaluated in-line during the production process of the polyimide film and the distribution of molecular orientation is controlled.
  • TMA thermomechanical analysis
  • the present invention has been made in view of such problems of the prior art, and the problem is that the magnitude of anisotropy of the linear expansion coefficient of the polyimide film can be quickly and easily nondestructive.
  • An object of the present invention is to provide an inspection method that can be measured.
  • Another object of the present invention is to provide a method capable of producing a polyimide film while controlling the occurrence of anisotropy of the linear expansion coefficient, and further to provide a production apparatus therefor.
  • the present inventor has found that a high correlation exists between the in-plane retardation of the polyimide film and the magnitude of anisotropy of the linear expansion coefficient. And by measuring the in-plane retardation of the polyimide film optically with white light, it is possible to quickly and easily predict the anisotropy of the linear expansion coefficient of the polyimide film in a nondestructive manner. The present inventors have found that it is possible to achieve the problem and have completed the present invention.
  • the following polyimide film inspection method, polyimide film manufacturing method, and polyimide film manufacturing apparatus are provided.
  • a method for inspecting a polyimide film comprising comparing (Re) and determining whether the degree of anisotropy of the linear expansion coefficient of the polyimide film to be inspected is within a standard range.
  • Step (A) in which the in-plane retardation of the polyimide film test piece is measured spectroscopically with white light, and the anisotropy of the linear expansion coefficient of the polyimide film test piece a step of measuring the size S 1 (b), and step to grasp the correlation between the size S 1 of the in-plane retardation of the specimen anisotropy (c), a polyimide film to be inspected
  • a step of setting a threshold value of an in-plane retardation that is allowable for the polyimide film to be inspected based on the anisotropy size S 2 of the allowable linear expansion coefficient and the correlation grasped in the step (c) The inspection method of the polyimide film as described in [1] containing d).
  • a method for producing a film. [4] The method for producing a polyimide film according to [3], wherein the orientation angle of the polyimide film to be inspected is also calculated in the step (B). [5] The polyimide film according to [3] or [4], wherein in the step (B), the in-plane retardation Re is measured at a plurality of locations in the flow direction and the width direction of the roll film-like polyimide film. Production method.
  • the spectroscopic measurement in the step (B) includes the transmittance spectrum measurement of white light, the transmittance spectrum of the polyimide film to be inspected is measured in advance, and the transmittance measured in the step (B) is measured.
  • a storage mechanism for storing a threshold value of an in-plane retardation allowable for the polyimide film to be inspected, a transport mechanism for transporting the polyimide film in a certain direction, and a measurement for measuring the in-plane retardation Re of the polyimide film A polyimide film manufacturing apparatus having a mechanism.
  • the in-plane retardation Re measured by the measurement mechanism is compared with the threshold value stored in the storage mechanism, and the degree of anisotropy of the linear expansion coefficient of the polyimide film to be inspected is determined according to the standard.
  • the polyimide film manufacturing apparatus according to [10] further including a determination mechanism for determining whether the value is within the range of [10].
  • the polyimide film manufacturing apparatus which includes a control mechanism that controls manufacturing conditions of the polyimide film based on a result determined by the determination mechanism.
  • the manufacturing conditions controlled by the control mechanism are the tension applied to the polyimide film or its precursor, the draw ratio of the polyimide film or its precursor, the heating temperature of the polyimide film or its precursor, the polyimide [2], which is at least one selected from the group consisting of a heating speed of the film or its precursor, an air volume of dry air sprayed on the polyimide film or its precursor, and a transport speed of the polyimide film or its precursor.
  • the measurement mechanism includes a plurality of optical system phase difference measurement devices arranged in a direction perpendicular to a conveyance direction of the polyimide film by the conveyance mechanism.
  • Polyimide film manufacturing equipment [15] The polyimide according to any one of [10] to [13], wherein the measurement mechanism includes an optical phase difference measuring device capable of scanning in a direction perpendicular to a conveyance direction of the polyimide film by the conveyance mechanism. Film manufacturing equipment.
  • the anisotropy of the linear expansion coefficient of the polyimide film can be measured quickly and easily in a nondestructive manner. Since the anisotropic magnitude
  • FIG. 1 is a flowchart showing an example of a threshold value determining step of the polyimide film inspection method of the present invention.
  • Figure 2 is a schematic diagram showing in measuring the size S 1 of the anisotropy of the linear expansion coefficient of the polyimide film specimen, an example of a sample cut method.
  • FIG. 3 is a first diagram showing a linear expansion coefficient ellipsoid of the film test piece 1.
  • FIG. 4 is a second diagram showing a linear expansion coefficient ellipsoid of the film test piece 1.
  • FIG. 5 is a graph showing the relationship between an in-plane retardation Re measured by a spectroscopic method and ⁇ CTE calculated by linear expansion coefficient measurement for a polyimide film test piece.
  • FIG. 1 is a flowchart showing an example of a threshold value determining step of the polyimide film inspection method of the present invention.
  • Figure 2 is a schematic diagram showing in measuring the size S 1 of the anisotropy of the linear expansion coefficient of the polyimi
  • FIG. 6 is a graph showing the relationship between the orientation angle calculated by the spectroscopic method and the orientation angle calculated by measuring the linear expansion coefficient for the polyimide film test piece.
  • FIG. 7 is a schematic diagram showing an example of a method for measuring the in-plane retardation Re of the polyimide film.
  • FIG. 8 is a graph showing the waveform of the transmittance spectrum when the in-plane phase difference Re is 100 nm and the waveform of the transmittance spectrum when the in-plane phase difference Re is 700 nm.
  • 9A to 9C are process diagrams showing an example of a technique for measuring in-plane retardation Re of a polyimide film to be inspected in-line.
  • FIG. 10 is a schematic diagram illustrating another example of a method for measuring in-plane retardation Re of a polyimide film to be inspected in-line.
  • FIG. 11 is a schematic diagram showing another example of a method for measuring in-plane retardation Re of a polyimide film to be inspected in-line.
  • the method for inspecting a polyimide film of the present invention includes the step (A) of setting a threshold value of an in-plane retardation Re that is acceptable for the polyimide film to be inspected, and the polyimide to be inspected.
  • the step (B) of measuring the in-plane retardation Re of the film spectroscopically with white light, the threshold value, and the in-plane retardation Re measured in the step (B) are compared and inspected.
  • (C) which determines whether the magnitude
  • the above inspection method can be incorporated in the polyimide film manufacturing process, and in this case, the inspection object can be a polyimide film in the film forming process.
  • the said inspection method is performed at the time of the manufacturing condition setting of a polyimide film, for example, Various manufacturing conditions of a polyimide film with low anisotropy of a linear expansion coefficient can be determined by adjusting manufacturing conditions based on this result.
  • the polyimide film that can be inspected by the inspection method of the present invention is not particularly limited as long as the in-plane retardation can be measured spectroscopically with white light.
  • the kind of polyimide contained in the polyimide film is not particularly limited, and examples thereof include wholly aromatic polyimides, aliphatic polyimides, alicyclic polyimides, and blended, copolymerized, and block-based polyimides combining these. It is done.
  • amorphous polyimide is preferable from the viewpoint of measurement accuracy of in-plane retardation Re, and specifically, pyromellitic dianhydride and 4,4′-diaminodiphenyl ether known as DuPont Kapton are preferable.
  • a polyimide composed of 3,3,4,4-biphenyltetracarboxylic acid anhydride and p-phenylenediamine, which are known as Upilex of Ube Industries, Ltd. are preferred.
  • the fillers or additives that can be included in the polyimide film include wear resistance improvers such as graphite, carborundum, silica stone powder, molybdenum disulfide, and fluorine-based resins; antimony trioxide, magnesium carbonate, calcium carbonate, and the like.
  • Flammability improvers include Electrical property improvers such as clay and mica; Tracking resistance improvers such as asbestos, silica and graphite; Acid resistance improvers such as barium sulfate, silica and calcium metasilicate; Iron powder, zinc powder and aluminum Examples thereof include heat conductivity improvers such as powder and copper powder; glass beads, glass spheres, talc, diatomaceous earth, alumina, shirasu balun, hydrated alumina, metal oxides, colorants and pigments. These fillers or additives may be used alone or in combination of two or more.
  • the content of the filler or additive relative to 100 parts by weight of polyimide is preferably 10 parts by weight or less, more preferably 5 parts by weight or less.
  • the content of the filler or additive is excessive, the transparency of the film is lowered and light scattering occurs, which may make it difficult to measure the in-plane retardation Re spectroscopically.
  • the overall shape of the polyimide film to be inspected is not particularly limited. According to the inspection method of the present application, since a polyimide film can be measured nondestructively, a polyimide film having a product shape such as a roll film or a cut film can be used.
  • the thickness of the polyimide film to be inspected may be, for example, the thickness of a polyimide film used as a general FPC base film, and is preferably about 12.5 to 150 ⁇ m.
  • step (A) an in-plane retardation threshold allowable for the polyimide film to be inspected is set based on the relationship between the anisotropy of the linear expansion coefficient of the polyimide film and the in-plane retardation of the polyimide film. . As described above, there is a high correlation between the anisotropy of the linear expansion coefficient of the polyimide film and the in-plane retardation of the polyimide film.
  • an in-plane retardation threshold allowable for the polyimide film to be inspected is set. Since the in-plane phase difference has wavelength dependence, a threshold is set for the in-plane phase difference at a specific wavelength.
  • FIG. 1 shows a flowchart up to the setting of the in-plane phase difference threshold.
  • process (a)) which measures the in-plane phase difference of a polyimide film test piece previously, and the process of measuring the anisotropic magnitude
  • a calibration curve or the like is created from these measurement results, and the correlation between the in-plane phase difference and the anisotropy of the linear expansion coefficient is grasped (step (c)).
  • step (d) The calibration curve, and based on the size S 2 of the acceptable linear expansion coefficient inspected to calculate the threshold value of the in-plane retardation that is acceptable to the polyimide film to be inspected (step (d)). Note that either step (a) or step (b) may be performed first. That is, the order of step (a) ⁇ step (b) may be used, and the order of step (b) ⁇ step (a) may be used.
  • the number of test pieces for measuring the in-plane retardation and the anisotropy of the linear expansion coefficient is not particularly limited, but the correlation in the step (c)
  • the number is preferably a number that can be grasped, that is, a number that allows creation of a calibration curve or the like. Specifically, 2 or more is preferable, 5 or more is more preferable, and 10 or more is more preferable.
  • the in-plane retardation threshold that can make the anisotropy of the linear expansion coefficient anisotropy of the polyimide film to be inspected within an allowable range based on past measurement data or the like is known, the above process It is not always necessary to perform (a) to (d), and a known value may be set as the threshold value.
  • a polyimide film test piece having the same composition as the polyimide film to be inspected is prepared, and the in-plane retardation of the test piece is measured.
  • the same composition means that both of its constituent components and component ratios are the same.
  • the test piece is not particularly limited as long as it has a size and shape capable of measuring the in-plane retardation and the anisotropy of the linear expansion coefficient, and may be a cut film, for example.
  • the thickness of the test piece may be the same as or different from the polyimide film to be inspected.
  • the in-plane retardation is proportional to the thickness of the film.
  • the thickness is corrected in the step (d), and the threshold value of the in-plane retardation allowed for the polyimide film to be inspected is set. It is possible to calculate.
  • the in-plane retardation measurement of the test piece can be performed by an arbitrary method.
  • the in-plane retardation may be measured by a spectroscopic technique with white light in the same manner as the in-plane retardation Re of the polyimide film to be inspected.
  • the in-plane phase difference may be measured by a method of reading an interference color using a Belek type compensator or the like, or the Senarmon method. The method of measuring the in-plane phase difference spectroscopically with white light will be described in detail in the step (B) described later.
  • the temperature and humidity when measuring the in-plane retardation of the test piece may be different from the temperature and humidity when measuring the in-plane retardation Re of the polyimide film to be inspected. Since they may change depending on the temperature and humidity at the time of measurement, it is more preferable to make them equal.
  • FIG. 2 is a schematic diagram illustrating an example of a method of cutting a sample from a film test piece.
  • FIG. 2 shows a state in which six strip-shaped measurement samples 12 are cut out from the square test piece 14.
  • the MD direction axis of the test piece 14 is assumed to be 0 °, and the 0 ° sample 12 is cut into a strip shape.
  • the sample 12 is cut out at every angle inclined by 15 to 45 ° from the MD direction axis. At this time, it is preferable to cut out the sample 12 over a range of 90 ° to 180 °.
  • TMA test is performed on these measurement samples using a thermomechanical analysis (TMA) apparatus or the like, and a linear expansion coefficient (CTE) is measured.
  • TMA test can be performed, for example, under a nitrogen stream, under conditions of a temperature increase rate of 5 to 10 ° C./min and a temperature range of 25 to 300 ° C.
  • the linear expansion coefficient ellipsoids 20 and 30 as shown in FIGS. 3 and 4 are created by plotting the linear expansion coefficient (CTE) values (measurement points 25 and 35) measured for each measurement sample according to a standard method (plotting). ) Then, as shown in FIG. 4, the value of ⁇ CTE represented by the difference (ba) between the major axis radius b and the minor axis radius a of the linear expansion coefficient ellipsoid 30 is expressed as “difference in linear expansion coefficient of film test piece”. It can be calculated as the magnitude of isotropic S 1 (ppm / K).
  • the inclination ⁇ (that is, the inclination of the ellipse) of the short axis of the linear expansion coefficient ellipsoid 30 with respect to the MD direction axis can be calculated as “orientation angle (°) of film test piece”.
  • Steps (c) and (d) In step (c), to understand the process and the in-plane phase difference calculated in (a), the anisotropy of the calculated coefficient of linear expansion in step (b) the correlation between the size S 1. There is a high correlation between the in-plane retardation calculated in step (a) and the anisotropy magnitude S 1 ( ⁇ CTE) of the linear expansion coefficient calculated in step (b). A calibration curve showing the relationship between the phase difference and the anisotropy magnitude S 1 of the linear expansion coefficient can be created.
  • FIG. 5 is a graph in which ⁇ CTE calculated by measuring the linear expansion coefficient in the step (b) is plotted against the in-plane retardation measured spectroscopically in the step (a).
  • step (d) from a correlation grasped, it inspected and made anisotropic in linear expansion coefficient that is acceptable to the polyimide film size S 2 Metropolitan in step (c), the surface of the polyimide film to be inspected Sets a threshold value for the internal phase difference. That is, a calibration curve prepared in step (c), based on the size S 2 of the anisotropy of the linear expansion coefficient that is acceptable to the polyimide film to be inspected, acceptable plane polyimide film to be inspected The value of the phase difference can be calculated and the threshold value can be set.
  • FIG. 6 is a graph plotting the orientation angle of the test piece calculated by the spectroscopic technique in step (a) and the orientation angle calculated by measuring the linear expansion coefficient in step (b). As shown in FIG. 6, it can be seen that the orientation angle of the film measured and calculated by the spectroscopic technique and the orientation angle of the film calculated by measuring the linear expansion coefficient are almost the same. This indicates that the orientation angle can also be obtained by a spectroscopic technique at the same time when the in-plane retardation Re of the polyimide film to be inspected is measured in the step (B) described later.
  • the in-plane retardation Re of the polyimide film to be inspected is measured spectroscopically with white light.
  • the method for spectroscopically measuring the in-plane retardation Re of the polyimide film to be inspected with white light include a parallel Nicol rotation method and a crossed Nicol rotation method.
  • Examples of commercially available measuring devices for in-plane retardation Re employing these measurement methods include the product name “KOBRA” series manufactured by Oji Scientific Instruments, the product name “RETS” series manufactured by Otsuka Electronics Co., Ltd. Name “MCPD” series and the like.
  • the product name “KOBRA” series manufactured by Oji Scientific Instruments and the product name “RETS” series manufactured by Otsuka Electronics Co., Ltd. are in-line in the flow direction (length direction) and width direction (perpendicular to the flow direction) of the roll film. This is preferable because the apparatus can measure the in-plane retardation Re at a plurality of locations.
  • FIG. 7 is a schematic diagram showing a technique for measuring a transmittance spectrum by the orthogonal Nicol rotation method.
  • the polarizer 2 and the analyzer 8 are arranged in crossed Nicols, and a polyimide film 4 to be inspected and optionally a phase difference plate 6 are arranged therebetween.
  • the white light 10 is irradiated from the polarizer 2 side to the analyzer 8 side, and the transmittance spectrum is measured with a spectroscope (not shown) or the like installed on the analyzer 8 side.
  • a spectroscope not shown
  • the in-plane retardation Re of the polyimide film can be specified.
  • the in-plane retardation Re is often specified by measuring the transmitted light intensity of monochromatic light.
  • white light is irradiated and the in-plane retardation Re is spectroscopically specified. This is because the in-plane retardation Re of the polyimide film can take a relatively wide range.
  • the in-plane retardation Re is approximately 300 nm or more in a portion having a large linear expansion coefficient anisotropy of a polyimide film having a thickness of about 20 ⁇ m. Therefore, in the present invention, the in-plane phase difference Re is specified spectroscopically using white light that is not monochromatic light. If white light is used, the specific in-plane phase difference Re can be specified without being influenced by the order or the like. Especially for polyimide films that absorb light with a wavelength of 500 nm or less, such as films made of wholly aromatic polyimide (colored polyimide film), the in-plane retardation Re is measured by irradiating light in the wavelength range of 500 to 800 nm. It is preferable to do.
  • the type of the white light source is not particularly limited, and examples thereof include a halogen lamp, a xenon lamp, a deuterium lamp, a laser beam, and a combination thereof.
  • the retardation plate 6 is disposed between the polarizer 2 and the analyzer 8 so that the optical principal axis is inclined by 45 ° with respect to the transmission axes of the polarizer 2 and the analyzer 8.
  • FIG. 8 shows a transmittance spectrum of a polyimide film having an in-plane retardation Re of 100 nm at a wavelength of 600 nm and a transmittance spectrum of a polyimide film having an in-plane retardation Re of 700 nm at a wavelength of 600 nm.
  • the in-plane phase difference Re is small, there is little change in transmittance due to wavelength change, and it is difficult to analyze the in-plane phase difference Re from the spectrum waveform.
  • the observed in-plane phase difference Re shifts to the phase difference of the phase difference plate, the higher wavelength side, and wavelength analysis becomes easy.
  • the waveform of the transmittance spectrum is analyzed to obtain a temporary in-plane retardation Re, and then the retardation of the retardation plate is further calculated. To determine the true in-plane phase difference Re.
  • the retardation of the retardation plate is suitably 400 nm or more, but more preferably a retardation plate of 500 nm to 750 nm used as a sensitive color plate. Further, the measurement may be performed using a retardation plate of 750 nm or more in which both the minimum value and the maximum value of transmittance appear.
  • the transmittance spectrum can be measured by (i) rotating the polyimide film 4 to be inspected relative to the polarizer 2, the analyzer 8, and the phase difference plate 6, or (ii) the polarizer 2, the detector.
  • the photon 8 and the phase difference plate 6 are performed a plurality of times while being rotated relative to the polyimide film 4 to be inspected. That is, the transmittance spectrum is measured a plurality of times while changing the angle formed by the slow axis of the polyimide film 4 and the transmission axis of the polarizer 2.
  • the transmittance spectrum can be measured in the film forming process (in-line) of the polyimide film while rotating the set of the polarizer 2, the analyzer 8, and the phase difference plate 6. preferable.
  • the transmittance spectrum may be measured while rotating the polyimide film 4 to be inspected, and the set of the polarizer 2, the analyzer 8, and the retardation plate 6 is rotated.
  • the transmittance spectrum may be measured.
  • the transmission axis of the polarizer 2 is parallel to the transport direction of the polyimide film 4 (hereinafter also referred to as “MD direction”), and the transmission axis of the analyzer 8 is vertical.
  • MD direction transport direction of the polyimide film 4
  • the polarizer 2 and the analyzer 8 are arranged.
  • the phase difference plate 6 is arranged so that an angle formed by the optical principal axis of the phase difference plate 6 and the transmission axis of the polarizer 2 is 45 °.
  • white light is irradiated from the light source 9 installed on the polarizer side, and the transmittance spectrum is measured by the spectroscope 11 installed on the analyzer 8 side.
  • the above relationship was maintained for the polarizer 2, the phase difference plate 6, and the analyzer 8 so that the angle formed by the MD direction of the polyimide film 4 and the transmission axis of the polarizer 2 was 30 °.
  • the transmittance spectrum is measured by rotating the material as it is (FIG. 9B).
  • the polarizer 2, the phase difference plate 6, and the analyzer 8 so that the angles formed by the MD direction of the polyimide film 4 and the transmission axis of the polarizer 2 are 60 °, 90 °, 120 °, and 150 °.
  • the transmittance spectrum is measured by rotating while maintaining the above relationship (FIG. 9C). Waveform analysis of the obtained transmittance spectrum is performed, and the phase difference value having the largest value is set as the in-plane retardation Re of the polyimide film.
  • the phase difference is observed to be the highest; that is, when the slow axis of the polyimide film 4 and the optical principal axis of the retardation plate 6 are parallel, the MD direction of the polyimide film 4 and the optical property of the retardation plate 6
  • the angle formed by the main axis is the orientation angle of the polyimide film.
  • the transmittance spectrum is measured by rotating the polarizer 2 and the like by 30 °, but the rotation angle is not limited to the above angle. However, in order to accurately measure the in-plane retardation Re and specify the orientation angle, it is preferable to perform the measurement every 10 to 30 °.
  • the set of the polarizer 2, the phase difference plate 6, and the analyzer 8 is rotated with respect to the polyimide film roll film 4.
  • FIGS. 10 and 11 A set of a plurality of polarizers 2, a phase difference plate 6, and an analyzer 8 whose angles with respect to the MD direction are changed may be arranged along the flow direction.
  • the in-plane retardation Re transmittance
  • the in-plane retardation Re transmittance
  • a plurality of light sources 9 and a plurality of spectroscopes 11 corresponding thereto are arranged in the width direction.
  • a set of the light source 9 and the spectroscope 11 may be scanned in the width direction.
  • the light source 9 and the spectroscope 11 are disposed only in a portion where the anisotropy of the linear expansion coefficient is likely to be high at the time of polyimide film production, such as an end portion of the polyimide film, and the in-plane retardation Re is set. You may measure.
  • the in-plane phase difference Re may change with temperature and humidity. Therefore, the measurement of the in-plane retardation Re is preferably performed at a temperature of 15 to 40 ° C., and preferably 20 to 30 ° C.
  • the humidity during measurement is preferably 10 to 85% Rh, more preferably 30 to 65% Rh.
  • the transmittance spectrum of the polyimide film to be inspected is measured before or after the present step, and the measurement is performed by the above method based on the result. You may correct
  • the transmittance spectrum can be measured with the above-described spectroscope or the like.
  • the in-plane phase difference Re is obtained by analyzing the waveform of the transmittance spectrum measured as described above by the following method.
  • the transmittance T ( ⁇ ) at each wavelength when observing a polyimide film using a white light source with crossed Nicols is expressed by the following formula (1), and the transmitted light intensity I ⁇ ( ⁇ ) is expressed by the following formula (2). It is represented by
  • represents the wavelength of light
  • I 0 ( ⁇ ) represents the incident light intensity
  • represents the polarizer transmission axis and the slow axis of the sample (polyimide film).
  • the phase difference becomes maximum when the angle ⁇ formed by the polarizer transmission axis and the slow axis of the polyimide film is 45 °.
  • the value when the phase difference becomes maximum is defined as the in-plane phase difference Re.
  • the transmitted light intensities I ⁇ ( ⁇ ) and I ⁇ ( ⁇ ) can be measured with orthogonal Nicols and parallel Nicols, and the in-plane phase difference Re can be calculated.
  • Transmitted light intensities I ⁇ ( ⁇ ) and I ⁇ ( ⁇ ) when the light transmittance of the polyimide film using a white light source is observed with crossed Nicols and parallel Nicols are expressed by the following formula (7).
  • the in-plane phase difference Re can also be calculated.
  • this method first, only the phase difference plate 6 is disposed between the polarizer 2 and the analyzer 8 that are arranged in crossed Nicols, and the transmittance is measured. For example, when only the 550 nm phase difference plate 6 is disposed at the above position, the transmittance shows a minimum value at a wavelength of 550 nm.
  • the polyimide film 4 and the phase difference plate 6 are arrange
  • the orientation angle of the polyimide film 4 and the slow axis of the phase difference plate 6 are parallel, the wavelength showing the minimum value is shifted to the higher wavelength side by the in-plane retardation Re of the polyimide film 4.
  • the orientation angle of the polyimide film 4 is perpendicular to the slow axis of the retardation plate 6, the wavelength showing the minimum value is shifted to the lower wavelength side by the in-plane retardation Re of the polyimide film 4. Based on this, the shift amount of the wavelength exhibiting the minimum value can be examined, and the shift amount when the shift amount becomes the maximum can be calculated as the in-plane phase difference Re.
  • the in-plane phase difference threshold set in the step (A) is compared with the in-plane phase difference Re measured in the step (B). If the in-plane retardation Re measured in the step (B) exceeds the threshold value, it indicates that the anisotropy of the linear expansion coefficient of the polyimide film to be inspected is not within the allowable range. Therefore, this result is fed back to the production process of the polyimide film, and this result is fed back, and the process (D) of adjusting the production condition of the polyimide film; the production condition causing the anisotropy of the linear expansion coefficient in the polyimide film is performed. It is preferable.
  • the polyimide film may have anisotropy in linear expansion coefficient due to various factors during the production process. Therefore, taking into consideration the result detected in step (C), by immediately adjusting to the manufacturing conditions such that the anisotropy of the linear expansion coefficient does not occur in step (D), the anisotropy of the linear expansion coefficient is generated. Can be produced with high yield.
  • the production conditions to be adjusted based on the result calculated in the step (C) are, for example, (i) tension applied to the polyimide film or its precursor (polyamic acid) at the time of drying or imidization, and (ii) Stretch ratio of polyimide film or its precursor (polyamic acid), (iii) heating temperature of polyimide film or its precursor (polyamic acid), (iv) heating rate of polyimide film or its precursor (polyamic acid), (v ) The amount of dry air blown onto the polyimide film or its precursor (polyamide acid), (vi) the conveyance speed of the polyimide film or its precursor (polyamide acid), and the like. Two or more manufacturing conditions may be adjusted simultaneously.
  • the manufacturing method of the polyimide film of the present invention is in accordance with the conventional manufacturing method of polyimide film (dry film) except that the above-described inspection method is incorporated in the film forming process.
  • the flow of the manufacturing method of a polyimide film is demonstrated, giving an example.
  • a polyimide film can be obtained by, for example, applying a polyamic acid solution (polyamic acid varnish) as a polyimide precursor on a substrate, removing the solvent and imidizing, and then peeling the obtained film from the substrate. it can.
  • Solvent removal and imidation of the polyamic acid varnish are not particularly limited, but are preferably performed under reduced pressure or in an inert atmosphere such as nitrogen, helium, or argon. Solvent removal and imidization of the polyamic acid varnish are performed by passing the polyimide acid varnish coating film through a drying furnace at a constant speed.
  • the heating temperature at the time of desolvation and imidization of the polyamic acid varnish may be a temperature at which the imidization reaction proceeds while being not lower than the boiling point of the solvent.
  • the heating temperature for desolvation and imidization may be about 100 to 300 ° C., and the heating time is not particularly limited, Usually, it may be about 3 minutes to 12 hours.
  • the substrate on which the polyamic acid varnish is applied include a metal foil, an inorganic substrate such as glass, and various resin films.
  • the thickness of the coating film of the polyamic acid varnish is preferably adjusted so that the film thickness after solvent removal and imidization is 1 mm or less, although it depends on the solid content concentration of the polyamic acid varnish.
  • means for applying the polyamic acid varnish include general application means such as a roll coater, a die coater, a gravure coater, a dip coater, a spray coater, a comma coater, a curtain coater, and a bar coater. These application means are appropriately selected according to the viscosity and the coating film thickness of the polyamic acid varnish.
  • Examples of the means for drying the polyamic acid varnish include an electrically heated or oil heated hot air, a roll support using infrared rays as a heat source, an air float type drying furnace, and the like.
  • the dry atmosphere may be replaced with a gas other than air, such as nitrogen, argon, or hydrogen.
  • the polyamic acid varnish is conveyed in the drying furnace in a state in which both ends of the film are sandwiched between clip tenters or pin tenters and tension is applied. Moreover, you may extend
  • the produced film is usually wound up on a roll or the like.
  • the in-plane retardation Re (the above-described step (B)) with respect to the polyimide film before winding, which is taken out from the drying furnace and cooled to a predetermined temperature.
  • in-plane retardation measurement may be performed in the process of heating and stretching the polyimide film, that is, inside the drying furnace.
  • the orientation state of the polyimide film in the drying furnace can be evaluated in real time.
  • the polyimide film manufacturing apparatus of the present invention includes a storage mechanism that stores a threshold value of the in-plane retardation Re that is acceptable for the polyimide film to be inspected, and a transport mechanism that transports the polyimide film to be inspected in a certain direction. And at least a measurement mechanism for measuring the in-plane retardation Re of the polyimide film, and if necessary, determines whether the degree of anisotropy of the linear expansion coefficient of the polyimide film is within a standard range And a control mechanism for controlling the manufacturing conditions of the polyimide film based on the determination mechanism and the result determined by the determination mechanism.
  • the in-plane retardation Re of the polyimide film is measured by the measurement mechanism while the polyimide film is conveyed in a certain direction by the conveyance mechanism.
  • the anisotropy of the linear expansion coefficient of the polyimide film being manufactured can be quickly determined. This result can be fed back to the manufacturing conditions. Therefore, a polyimide film in which the occurrence of anisotropy of the linear expansion coefficient is suppressed can be efficiently produced.
  • positioned at the polyimide film manufacturing apparatus of this invention is a mechanism which memorize
  • the storage mechanism may include an input unit for inputting a threshold value and a storage unit for storing the threshold value.
  • the storage unit can be any data readable medium such as a magnetic disk, a hard disk, a CD-ROM or the like.
  • the threshold value stored in the memory mechanism is based on the method described in the polyimide film inspection method described above, that is, the correlation between the anisotropy of the linear expansion coefficient of the polyimide film and the in-plane retardation Re of the polyimide film.
  • the value calculated from the correlation and the anisotropy of the linear expansion coefficient acceptable for the polyimide film to be inspected is preferable.
  • the transport mechanism disposed in the polyimide film manufacturing apparatus is not particularly limited as long as it is a mechanism capable of moving the polyimide film in a constant direction at a constant speed, and may be a general roll film transport mechanism, for example.
  • the transport mechanism may be provided with a heating unit for drying the solvent of the polyamic acid varnish and imidizing the polyamic acid during the transport, a discharge unit for discharging the drying air, and the like.
  • the mechanism etc. which convey a polyimide film in a specific direction may be sufficient.
  • the measurement mechanism is a mechanism for measuring the in-plane retardation Re of the polyimide film.
  • the type of equipment of the measurement mechanism is appropriately selected depending on the inspection method.
  • a general optical system phase difference measuring device of an in-plane phase difference Re measuring device employing a parallel Nicol rotation method, an orthogonal Nicol rotation method, or the like can be used.
  • the measuring mechanism is preferably arranged so as to measure the in-plane retardation Re in-line when the polyimide film is transported by the transport mechanism.
  • the measurement mechanism has a plurality of optical phase difference measuring devices in the direction perpendicular to the polyimide film conveyance direction by the conveyance mechanism (the width direction of the film), or in FIG. As shown, it is preferable to have an optical phase difference measuring device capable of scanning in the vertical direction with respect to the conveyance direction of the polyimide film by the conveyance mechanism.
  • the determination mechanism is a mechanism that reads the threshold value of the in-plane phase difference stored in the storage mechanism and performs a comparison operation with the in-plane phase difference Re measured by the measurement mechanism described above. For example, the result of the comparison operation is output to the outside. It is preferable to have a means to do.
  • As an output method to the outside for example, a method of outputting a comparison calculation result to a monitor or the like, and an output method of generating an error sound when the in-plane phase difference Re exceeds a threshold value are exemplified.
  • the manufacturing condition control mechanism may be a mechanism that controls various manufacturing conditions of the polyimide film based on the result of the comparison operation by the determination mechanism.
  • Various production conditions include (i) tension applied to the polyimide film or its precursor (polyamic acid) during drying or imidization, (ii) stretch ratio of the polyimide film or its precursor (polyamic acid), (iii) ) Heating temperature of polyimide film or its precursor (polyamic acid), (iv) Heating speed of polyimide film or its precursor (polyamic acid), (v) Dry air sprayed onto polyimide film or its precursor (polyamic acid) The air volume, (vi) the conveyance speed of the polyimide film or its precursor (polyamic acid), etc. are mentioned.
  • Example 1 (1) Spectroscopic measurement of in-plane retardation and orientation angle of test piece As shown in FIG. 7, a polyimide film is disposed between a polarizer 2 and an analyzer 8 arranged in a crossed Nicol state. The test piece 4 and the phase difference plate 6 (530 nm) were arranged, and the transmittance spectrum was measured. In addition, as the polyimide film test piece 4, six Kapton EN films (fully aromatic polyimide films) manufactured by Toray DuPont having different lot numbers were used. A halogen lamp was used as a light source, and an optical fiber and a multi-channel spectrometer were used as detectors.
  • Kapton EN films fully aromatic polyimide films manufactured by Toray DuPont having different lot numbers
  • the white light was irradiated with a measurement wavelength range of 450 to 750 nm, and the transmittance spectrum was measured while rotating the test piece 4 around the light transmission axis 10 as the rotation center.
  • the measured transmittance spectrum waveform was fitted by the above equation (5), and the in-plane phase difference of each test piece 4 was calculated.
  • the MD direction of the polyimide film was set to 0 °, and the orientation angle of the polyimide film was calculated from the rotation angle when the phase difference reached the maximum value.
  • the linear expansion coefficient ellipsoids 20 and 30 shown in FIGS. 3 and 4 were plotted by plotting the linear expansion coefficient (CTE) values (measurement points 25 and 35) measured for each measurement sample for each test piece. . Thereafter, ⁇ CTE represented by the difference (ba) between the major axis radius b and the minor axis radius a of the linear expansion coefficient ellipsoid 30 shown in FIG. 4 was calculated.
  • the calculated ⁇ CTE corresponds to “the degree of anisotropy S 1 of the linear expansion coefficient of the film test piece”.
  • the inclination ⁇ of the short axis of the linear expansion coefficient ellipsoid 30 with respect to the MD direction axis was calculated as the orientation angle of the film test piece.
  • Table 1 shows the in-plane retardation and orientation angle at a wavelength of 600 nm calculated by spectroscopic techniques, and ⁇ CTE and orientation angle measurement results calculated by measuring the linear expansion coefficient for the above test pieces.
  • a graph (calibration curve) was prepared by plotting the orientation angle calculated by measuring the linear expansion coefficient with respect to the orientation angle calculated by the spectroscopic technique.
  • the prepared calibration curve is shown in FIG.
  • the correlation coefficient R using the following equation (8), were R 2 0.9197.
  • R 2 ⁇ Ao 2 / ⁇ A ⁇ o (8) ( ⁇ A indicates the dispersion of the orientation angle of the film specimen, ⁇ o indicates the dispersion of the orientation angle of the polyimide film, and ⁇ Ao indicates the covariance of the orientation angle of the film specimen and the orientation angle of the polyimide film)
  • the anisotropy of the linear expansion coefficient of the polyimide film can be measured quickly and easily in a nondestructive manner. For this reason, it becomes possible to manufacture efficiently the polyimide film by which generation
  • a polyimide film having an extremely small linear expansion coefficient anisotropy can be obtained by a simple technique. If a copper foil is laminated on the polyimide film thus obtained, a copper-clad laminate is obtained that is less likely to suffer from problems such as warping and that is less susceptible to problems such as distortion and thermal stress during heating in the wiring formation process. Can do.

Abstract

The purpose of the present invention is to provide an inspection method by which the scale of linear expansion coefficient anisotropy of a polyimide film can be determined speedily, easily and nondestructively. In order to achieve the purpose, this inspection method for polyimide film includes: a step (A) of measuring optically the in-plane retardation (Re) of a polyimide film; a step (B) of measuring the scales (S1) of linear expansion coefficient anisotropy of film specimens consisting of a polyimide having the same composition as that of the polyimide film; a step (C) of grasping the correlation between in-plane retardation (Re) and scale (S1) of linear expansion coefficient anisotropy; and a step (D) of estimating the scale (S2) of linear expansion coefficient anisotropy of the polyimide film on the basis of the grasped correlation from the in-plane retardation (Re).

Description

ポリイミドフィルムの検査方法、これを用いたポリイミドフィルムの製造方法、及びポリイミドフィルム製造装置Polyimide film inspection method, polyimide film manufacturing method using the same, and polyimide film manufacturing apparatus
 本発明は、ポリイミドフィルムの検査方法、これを利用したポリイミドフィルムの製造方法、及びポリイミドフィルム製造装置に関する。 The present invention relates to a polyimide film inspection method, a polyimide film manufacturing method using the same, and a polyimide film manufacturing apparatus.
 近年、電子機器の小型携帯化により、フレキシブル回路基板の薄型、高密度配線化が進行している。更に、部品実装において鉛フリー半田の使用割合が増加しているため、部品実装時やリペアー時の温度が高温となる場合がある。このため、フレキシブル回路基板には高耐熱性も要求される。フレキシブル回路基板の薄型化、高密度配線、及び高耐熱性の要求に伴い、回路基板材料としてのポリイミド金属積層板に対しても薄型化、高寸法安定性、高耐熱性の要求が増している。 In recent years, as electronic devices have become smaller and more portable, flexible circuit boards have become thinner and denser. Furthermore, since the proportion of lead-free solder used in component mounting is increasing, the temperature during component mounting or repair may become high. For this reason, the flexible circuit board is also required to have high heat resistance. With the demands for thinning flexible circuit boards, high-density wiring, and high heat resistance, demands for thinning, high dimensional stability, and high heat resistance are increasing for polyimide metal laminates as circuit board materials. .
 回路基板材料としてのポリイミド金属積層板としては、銅箔とポリイミドフィルムとを積層してなるフレキシブル回路基板が知られている(例えば、特許文献1参照)。このようなポリイミド金属積層板は、ラミネート方式等によりポリイミドフィルム上に金属箔を積層して得られる。 As a polyimide metal laminate as a circuit board material, a flexible circuit board obtained by laminating a copper foil and a polyimide film is known (for example, see Patent Document 1). Such a polyimide metal laminate is obtained by laminating a metal foil on a polyimide film by a laminating method or the like.
 ポリイミドフィルムを製造するには、その製膜工程において、フィルムの両端をクリップテンターやピンテンター等で挟んだ状態で加熱し、乾燥或いはイミド化させる。このため、フィルムが一時的に軟化して延伸してしまい、配向異方性が生ずる場合がある。特に、フィルムの端部が強く分子配向してしまう、いわゆるボーイング現象等が発生すると、得られるポリイミドフィルムの端部には著しい配向異方性が生じることがある。 In order to produce a polyimide film, in the film-forming process, the film is heated in a state where both ends of the film are sandwiched between clip tenters or pin tenters, and dried or imidized. For this reason, the film may be temporarily softened and stretched to cause orientation anisotropy. In particular, when a so-called bowing phenomenon or the like occurs in which the end portion of the film is strongly molecularly oriented, a remarkable orientation anisotropy may occur at the end portion of the obtained polyimide film.
 ポリイミドフィルムの線膨張係数は、ポリイミド分子鎖の配向度と密接に関連していることが知られている(例えば、非特許文献1参照)。このため、フィルム内に配向異方性が生じた場合には、線膨張係数異方性も同時に生じることになる。 It is known that the linear expansion coefficient of a polyimide film is closely related to the degree of orientation of polyimide molecular chains (for example, see Non-Patent Document 1). For this reason, when orientation anisotropy arises in a film, linear expansion coefficient anisotropy will also arise simultaneously.
 線膨張係数の異方性や異方性分布が大きいポリイミドフィルムをフレキシブルプリント回路基板(FPC)のベースフィルムとして用いると、銅箔との線膨張係数差に起因して反りが生ずる、或いは配線形成工程の加熱時に歪みや熱応力が生ずる等の不具合が生じ易くなる。このため、FPCのベースフィルムとして用いられるポリイミドフィルムに対しては、線膨張係数が銅箔と概ね一致すること、並びにその全幅方向において線膨張係数の異方性及び異方性分布が小さいことが要求される。 When a polyimide film with a large linear expansion coefficient anisotropy or anisotropic distribution is used as the base film of a flexible printed circuit board (FPC), warping occurs due to the difference in the linear expansion coefficient with the copper foil, or wiring formation Problems such as distortion and thermal stress are likely to occur during the heating of the process. For this reason, for the polyimide film used as the base film for FPC, the linear expansion coefficient is generally the same as that of the copper foil, and the anisotropy and anisotropic distribution of the linear expansion coefficient are small in the entire width direction. Required.
 線膨張係数とポリイミド分子鎖の配向度との関連性に基づき、分子配向度及び分子配向の向きを調べることで、ポリイミドフィルムの線膨張係数の異方性を推定することが可能である。しかしながら、一般的な分子配向度の測定方法は高精度である反面、簡便な方法であるとは言えない。そこで、操作をより簡便にすべく、超音波伝播速度、又はマイクロ波吸収等、分子配向度に依存する物性値を測定することで、線膨張係数異方性を推定する方法が提案されている(例えば、特許文献2~4参照)。 It is possible to estimate the anisotropy of the linear expansion coefficient of the polyimide film by examining the degree of molecular orientation and the direction of molecular orientation based on the relationship between the linear expansion coefficient and the degree of orientation of the polyimide molecular chain. However, while a general method for measuring the degree of molecular orientation is highly accurate, it cannot be said to be a simple method. Therefore, a method for estimating the linear expansion coefficient anisotropy by measuring physical property values depending on the degree of molecular orientation such as ultrasonic wave propagation speed or microwave absorption has been proposed in order to make the operation easier. (For example, see Patent Documents 2 to 4).
 また、ポリイミドフィルムの二色比を測定し、熱膨張率異方性を推定する方法も提案されている(特許文献5)。さらに、熱可塑性樹脂フィルムの特定波長の位相差を単色光で測定し、当該熱可塑性樹脂フィルムの製造条件を調整する方法も提案されている(例えば特許文献6)。 Also, a method for estimating the thermal expansion anisotropy by measuring the dichroic ratio of the polyimide film has been proposed (Patent Document 5). Furthermore, a method has also been proposed in which the retardation of a specific wavelength of a thermoplastic resin film is measured with monochromatic light and the production conditions of the thermoplastic resin film are adjusted (for example, Patent Document 6).
特開2001-270037号公報JP 2001-270037 A 特許第3006752号公報Japanese Patent No. 3006752 特許第3202935号公報Japanese Patent No. 3202935 特開2002-154168号公報JP 2002-154168 A 特開平07-63611号公報Japanese Patent Application Laid-Open No. 07-63611 特開平9-218307号公報JP-A-9-218307
 しかしながら、特許文献2~4等で提案された方法によれば、測定対象となるポリイミドフィルムを所定のサイズに切断する等の操作が必要である。このため、ポリイミドフィルムの製造工程の途中において、インラインでポリイミドフィルムの線膨張係数の異方性を検査することは極めて困難であった。 However, according to the methods proposed in Patent Documents 2 to 4 and the like, an operation such as cutting a polyimide film to be measured into a predetermined size is required. For this reason, it was extremely difficult to inspect the anisotropy of the linear expansion coefficient of the polyimide film in-line during the production process of the polyimide film.
 また、特許文献5で提案された方法では、吸光度を測定しているため、感度が非常に低く、実用的ではなかった。さらに、特許文献6で提案された方法では、単色光で位相差を測定しているため、広い範囲に位相差を有し得る熱可塑性樹脂フィルムには適用できなかった。 Also, in the method proposed in Patent Document 5, since the absorbance is measured, the sensitivity is very low and it is not practical. Furthermore, since the phase difference is measured with monochromatic light in the method proposed in Patent Document 6, it cannot be applied to a thermoplastic resin film that can have a phase difference in a wide range.
 また、ポリイミドフィルムの線膨張係数は、一般的には熱機械分析(TMA)試験により、100~200℃の温度範囲で、10℃/min以下(望ましくは5℃/min以下)の昇温速度で測定される。線膨張係数の異方性を測定するためには、少なくとも二点以上の測定点においてTMA試験を行う必要がある。従って、フィルムの幅方向と流れ方向にわたって線膨張係数の異方性分布を調べる場合には、線膨張係数の測定を多数回行う必要があるので、時間と労力がかかるという問題がある。このような問題を解消するために、ポリイミドフィルムの配向異方性を迅速かつ高精度に評価する方法を開発することが要求されている。更には、ポリイミドフィルムの製造工程中においてインラインで配向異方性を評価し、分子配向の分布を制御したポリイミドフィルムを製造することが要求されている。 The linear expansion coefficient of the polyimide film is generally determined by a thermomechanical analysis (TMA) test at a temperature rising rate of 10 ° C./min or less (preferably 5 ° C./min or less) in a temperature range of 100 to 200 ° C. Measured in In order to measure the anisotropy of the linear expansion coefficient, it is necessary to perform a TMA test at at least two measurement points. Therefore, when the anisotropic distribution of the linear expansion coefficient is examined across the width direction and the flow direction of the film, it is necessary to measure the linear expansion coefficient a number of times. In order to solve such problems, it is required to develop a method for evaluating the orientation anisotropy of a polyimide film quickly and with high accuracy. Furthermore, it is required to produce a polyimide film in which the orientation anisotropy is evaluated in-line during the production process of the polyimide film and the distribution of molecular orientation is controlled.
 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、ポリイミドフィルムの線膨張係数の異方性の大きさを迅速かつ簡便に非破壊で測定することが可能な検査方法を提供することにある。また、本発明の課題とするところは、線膨張係数の異方性が生ずるのを制御しつつ、ポリイミドフィルムを製造可能な方法、さらには、その製造装置を提供することにある。 The present invention has been made in view of such problems of the prior art, and the problem is that the magnitude of anisotropy of the linear expansion coefficient of the polyimide film can be quickly and easily nondestructive. An object of the present invention is to provide an inspection method that can be measured. Another object of the present invention is to provide a method capable of producing a polyimide film while controlling the occurrence of anisotropy of the linear expansion coefficient, and further to provide a production apparatus therefor.
 本発明者は上記課題を達成すべく鋭意検討した結果、ポリイミドフィルムの面内位相差と、線膨張係数の異方性の大きさとの間には高い相関性が存在することを見出した。そして、ポリイミドフィルムの面内位相差を白色光にて光学的に測定することで、ポリイミドフィルムの線膨張係数の異方性の大きさを迅速かつ簡便に非破壊で予測することができ、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above problems, the present inventor has found that a high correlation exists between the in-plane retardation of the polyimide film and the magnitude of anisotropy of the linear expansion coefficient. And by measuring the in-plane retardation of the polyimide film optically with white light, it is possible to quickly and easily predict the anisotropy of the linear expansion coefficient of the polyimide film in a nondestructive manner. The present inventors have found that it is possible to achieve the problem and have completed the present invention.
 即ち、本発明によれば、以下に示すポリイミドフィルムの検査方法、ポリイミドフィルムの製造方法、及びポリイミドフィルムの製造装置が提供される。 That is, according to the present invention, the following polyimide film inspection method, polyimide film manufacturing method, and polyimide film manufacturing apparatus are provided.
[1]ポリイミドフィルムの線膨張係数の異方性の大きさと、前記ポリイミドフィルムの面内位相差との関係から、検査対象のポリイミドフィルムに許容可能な面内位相差の閾値を設定する工程(A)と、検査対象のポリイミドフィルムの面内位相差Reを、白色光にて分光学的に測定する工程(B)と、前記閾値と、前記工程(B)で測定された面内位相差Reとを比較し、検査対象のポリイミドフィルムの線膨張係数の異方性の大きさが、規格の範囲内であるかを判定する工程(C)とを有する、ポリイミドフィルムの検査方法。 [1] A step of setting an in-plane retardation threshold allowable for the polyimide film to be inspected from the relationship between the anisotropy of the linear expansion coefficient of the polyimide film and the in-plane retardation of the polyimide film ( A), in-plane retardation Re measured spectroscopically with white light in the in-plane retardation Re of the polyimide film to be inspected, the threshold, and the in-plane retardation measured in the step (B) A method for inspecting a polyimide film, comprising comparing (Re) and determining whether the degree of anisotropy of the linear expansion coefficient of the polyimide film to be inspected is within a standard range.
[2]前記工程(A)が、ポリイミドフィルム試験片の面内位相差を白色光にて分光学的に測定する工程(a)と、前記ポリイミドフィルム試験片の線膨張係数の異方性の大きさSを測定する工程(b)と、前記試験片の面内位相差と前記異方性の大きさSとの相関関係を把握する工程(c)と、検査対象のポリイミドフィルムに許容可能な線膨張係数の異方性の大きさS、及び前記工程(c)で把握した相関関係に基づき、検査対象のポリイミドフィルムに許容可能な面内位相差の閾値を設定する工程(d)とを含む、[1]に記載のポリイミドフィルムの検査方法。 [2] Step (A) in which the in-plane retardation of the polyimide film test piece is measured spectroscopically with white light, and the anisotropy of the linear expansion coefficient of the polyimide film test piece a step of measuring the size S 1 (b), and step to grasp the correlation between the size S 1 of the in-plane retardation of the specimen anisotropy (c), a polyimide film to be inspected A step of setting a threshold value of an in-plane retardation that is allowable for the polyimide film to be inspected based on the anisotropy size S 2 of the allowable linear expansion coefficient and the correlation grasped in the step (c) ( The inspection method of the polyimide film as described in [1] containing d).
[3]前述の[1]または[2]に記載のポリイミドフィルムの検査方法が、ポリイミドフィルムの製膜過程で行われ、前記検査対象のポリイミドフィルムが、製膜過程におけるポリイミドフィルムである、ポリイミドフィルムの製造方法。
[4]前記工程(B)で、検査対象のポリイミドフィルムの配向角も算出する、[3]に記載のポリイミドフィルムの製造方法。
[5]前記工程(B)で、ロールフィルム状のポリイミドフィルムの、流れ方向及び幅方向に、前記面内位相差Reを複数箇所測定する、[3]または[4]に記載のポリイミドフィルムの製造方法。
[3] A polyimide film in which the method for inspecting a polyimide film according to [1] or [2] is performed in a polyimide film forming process, and the polyimide film to be inspected is a polyimide film in the film forming process. A method for producing a film.
[4] The method for producing a polyimide film according to [3], wherein the orientation angle of the polyimide film to be inspected is also calculated in the step (B).
[5] The polyimide film according to [3] or [4], wherein in the step (B), the in-plane retardation Re is measured at a plurality of locations in the flow direction and the width direction of the roll film-like polyimide film. Production method.
[6]検査対象のポリイミドフィルムが、ロールフィルム又はカットフィルムである[3]または[4]に記載のポリイミドフィルムの製造方法。
[7]前記工程(B)の分光学的測定を、500~800nmの波長範囲の白色光で行う、[3]~[6]のいずれかに記載のポリイミドフィルムの製造方法。
[8]前記工程(B)の分光学的測定が、白色光の透過率スペクトル測定を含み、予め、検査対象のポリイミドフィルムの透過率スペクトルを測定し、前記工程(B)で測定される透過率スペクトルを補正する、[3]~[7]のいずれかに記載のポリイミドフィルムの製造方法。
[9]前記工程(C)で判定された結果を、ポリイミドフィルムの製造過程にフィードバックし、ポリイミドフィルムの製造条件を調整する工程(D)を含む、[3]~[8]のいずれかに記載のポリイミドフィルムの製造方法。
[6] The method for producing a polyimide film according to [3] or [4], wherein the polyimide film to be inspected is a roll film or a cut film.
[7] The method for producing a polyimide film according to any one of [3] to [6], wherein the spectroscopic measurement in the step (B) is performed with white light having a wavelength range of 500 to 800 nm.
[8] The spectroscopic measurement in the step (B) includes the transmittance spectrum measurement of white light, the transmittance spectrum of the polyimide film to be inspected is measured in advance, and the transmittance measured in the step (B) is measured. The method for producing a polyimide film according to any one of [3] to [7], wherein the rate spectrum is corrected.
[9] In any one of [3] to [8], including the step (D) of feeding back the result determined in the step (C) to the manufacturing process of the polyimide film and adjusting the manufacturing conditions of the polyimide film The manufacturing method of the polyimide film of description.
[10]検査対象のポリイミドフィルムに許容可能な面内位相差の閾値を記憶する記憶機構と、ポリイミドフィルムを一定方向に搬送する搬送機構と、前記ポリイミドフィルムの面内位相差Reを測定する測定機構とを有するポリイミドフィルム製造装置。
[11]前記測定機構により測定された前記面内位相差Reと、前記記憶機構に記憶された閾値とを比較し、検査対象のポリイミドフィルムの線膨張係数の異方性の大きさが、規格の範囲内であるかを判定する判定機構を有する、[10]に記載のポリイミドフィルム製造装置。
[12]前記判定機構により判定された結果に基づき、ポリイミドフィルムの製造条件を制御する制御機構を有する、[11]に記載のポリイミドフィルム製造装置。
[13]前記制御機構で制御する製造条件が、前記ポリイミドフィルム又はその前駆体に負荷される張力、前記ポリイミドフィルム又はその前駆体の延伸倍率、前記ポリイミドフィルム又はその前駆体の加熱温度、前記ポリイミドフィルム又はその前駆体の加熱速度、前記ポリイミドフィルム又はその前駆体に吹き付ける乾燥風の風量、及び前記ポリイミドフィルム又はその前駆体の搬送速度からなる群より選択される少なくとも一種である、[2]に記載のポリイミドフィルム製造装置。
[10] A storage mechanism for storing a threshold value of an in-plane retardation allowable for the polyimide film to be inspected, a transport mechanism for transporting the polyimide film in a certain direction, and a measurement for measuring the in-plane retardation Re of the polyimide film A polyimide film manufacturing apparatus having a mechanism.
[11] The in-plane retardation Re measured by the measurement mechanism is compared with the threshold value stored in the storage mechanism, and the degree of anisotropy of the linear expansion coefficient of the polyimide film to be inspected is determined according to the standard. The polyimide film manufacturing apparatus according to [10], further including a determination mechanism for determining whether the value is within the range of [10].
[12] The polyimide film manufacturing apparatus according to [11], which includes a control mechanism that controls manufacturing conditions of the polyimide film based on a result determined by the determination mechanism.
[13] The manufacturing conditions controlled by the control mechanism are the tension applied to the polyimide film or its precursor, the draw ratio of the polyimide film or its precursor, the heating temperature of the polyimide film or its precursor, the polyimide [2], which is at least one selected from the group consisting of a heating speed of the film or its precursor, an air volume of dry air sprayed on the polyimide film or its precursor, and a transport speed of the polyimide film or its precursor. The polyimide film manufacturing apparatus of description.
[14]前記測定機構が、前記搬送機構によるポリイミドフィルムの搬送方向に対して、垂直方向に配置された複数の光学系位相差測定装置を有する、[10]~[13]のいずれかに記載のポリイミドフィルム製造装置。
[15]前記測定機構が、前記搬送機構によるポリイミドフィルムの搬送方向に対して、垂直方向に走査可能な光学系位相差測定装置を有する、[10]~[13]のいずれかに記載のポリイミドフィルム製造装置。
[14] The measurement system according to any one of [10] to [13], wherein the measurement mechanism includes a plurality of optical system phase difference measurement devices arranged in a direction perpendicular to a conveyance direction of the polyimide film by the conveyance mechanism. Polyimide film manufacturing equipment.
[15] The polyimide according to any one of [10] to [13], wherein the measurement mechanism includes an optical phase difference measuring device capable of scanning in a direction perpendicular to a conveyance direction of the polyimide film by the conveyance mechanism. Film manufacturing equipment.
 本発明のポリイミドフィルムの検査方法によれば、ポリイミドフィルムの線膨張係数の異方性の大きさを迅速かつ簡便に非破壊で測定することができる。ポリイミドフィルムの線膨張係数の異方性の大きさを非破壊で検査可能であることから、本発明の検査方法は、ポリイミドフィルムの製造工程中に組み込むことができる。これにより、検査結果を製造工程に直ちにフィードバックすることができるので、線膨張係数の異方性の発生が抑制されたポリイミドフィルムを効率的に製造することができる。 According to the polyimide film inspection method of the present invention, the anisotropy of the linear expansion coefficient of the polyimide film can be measured quickly and easily in a nondestructive manner. Since the anisotropic magnitude | size of the linear expansion coefficient of a polyimide film can be test | inspected nondestructively, the test | inspection method of this invention can be integrated in the manufacturing process of a polyimide film. Thereby, since an inspection result can be immediately fed back to a manufacturing process, the polyimide film by which generation | occurrence | production of the anisotropy of the linear expansion coefficient was suppressed can be manufactured efficiently.
図1は、本発明のポリイミドフィルムの検査方法の閾値決定工程の一例を示すフロー図である。FIG. 1 is a flowchart showing an example of a threshold value determining step of the polyimide film inspection method of the present invention. 図2は、ポリイミドフィルム試験片の線膨張係数の異方性の大きさSを測定する際の、サンプル切り出し方法の一例を示す模式図である。Figure 2 is a schematic diagram showing in measuring the size S 1 of the anisotropy of the linear expansion coefficient of the polyimide film specimen, an example of a sample cut method. 図3は、フィルム試験片1の線膨張係数楕円体を示す第一の図である。FIG. 3 is a first diagram showing a linear expansion coefficient ellipsoid of the film test piece 1. 図4は、フィルム試験片1の線膨張係数楕円体を示す第二の図である。FIG. 4 is a second diagram showing a linear expansion coefficient ellipsoid of the film test piece 1. 図5は、ポリイミドフィルム試験片について、分光学的手法により測定された面内位相差Reと、線膨張係数測定により算出されたΔCTEとの関係を示すグラフである。FIG. 5 is a graph showing the relationship between an in-plane retardation Re measured by a spectroscopic method and ΔCTE calculated by linear expansion coefficient measurement for a polyimide film test piece. 図6は、ポリイミドフィルム試験片について、分光学的手法により算出された配向角と、線膨張係数測定により算出された配向角とをの関係を示すグラフである。FIG. 6 is a graph showing the relationship between the orientation angle calculated by the spectroscopic method and the orientation angle calculated by measuring the linear expansion coefficient for the polyimide film test piece. 図7は、ポリイミドフィルムの面内位相差Reの測定方法の一例を示す模式図である。FIG. 7 is a schematic diagram showing an example of a method for measuring the in-plane retardation Re of the polyimide film. 図8は、面内位相差Reが100nmである場合の透過率スペクトルの波形、及び面内位相差Reが700nmである場合の透過率スペクトルの波形を示すグラフである。FIG. 8 is a graph showing the waveform of the transmittance spectrum when the in-plane phase difference Re is 100 nm and the waveform of the transmittance spectrum when the in-plane phase difference Re is 700 nm. 図9(a)~(c)は、検査対象のポリイミドフィルムの面内位相差Reをインラインで測定する手法の一例を示す工程図である。9A to 9C are process diagrams showing an example of a technique for measuring in-plane retardation Re of a polyimide film to be inspected in-line. 図10は、検査対象のポリイミドフィルムの面内位相差Reを、インラインで測定する手法の他の例を示す模式図である。FIG. 10 is a schematic diagram illustrating another example of a method for measuring in-plane retardation Re of a polyimide film to be inspected in-line. 図11は、検査対象のポリイミドフィルムの面内位相差Reを、インラインで測定する手法の他の例を示す模式図である。FIG. 11 is a schematic diagram showing another example of a method for measuring in-plane retardation Re of a polyimide film to be inspected in-line.
A.ポリイミドフィルムの検査方法及びポリイミドフィルムの製造方法
 本発明のポリイミドフィルムの検査方法は、検査対象のポリイミドフィルムに許容可能な面内位相差Reの閾値を設定する工程(A)と、検査対象のポリイミドフィルムの面内位相差Reを、白色光にて分光学的に測定する工程(B)と、前記閾値と、前記工程(B)にて測定された面内位相差Reとを比較し、検査対象のポリイミドフィルムの線膨張係数の異方性の大きさが、規格の範囲内であるかを判定する工程(C)とを有する方法である。
A. Method for Inspecting Polyimide Film and Method for Producing Polyimide Film The method for inspecting a polyimide film of the present invention includes the step (A) of setting a threshold value of an in-plane retardation Re that is acceptable for the polyimide film to be inspected, and the polyimide to be inspected The step (B) of measuring the in-plane retardation Re of the film spectroscopically with white light, the threshold value, and the in-plane retardation Re measured in the step (B) are compared and inspected. (C) which determines whether the magnitude | size of the anisotropy of the linear expansion coefficient of the object polyimide film is in the range of a specification.
 上記検査方法は、ポリイミドフィルムの製造過程に組み込むことができ、この場合、検査対象は、製膜過程におけるポリイミドフィルムとし得る。上記検査方法を、例えばポリイミドフィルムの製造条件設定時に行い、この結果に基づき製造条件の調整を行うことで、線膨張係数の異方性が低いポリイミドフィルムの各種製造条件を決定し得る。またポリイミドフィルムの製造ラインにて、製造中のポリイミドフィルムの品質管理を行う目的で、上記検査を行うことも可能である。 The above inspection method can be incorporated in the polyimide film manufacturing process, and in this case, the inspection object can be a polyimide film in the film forming process. The said inspection method is performed at the time of the manufacturing condition setting of a polyimide film, for example, Various manufacturing conditions of a polyimide film with low anisotropy of a linear expansion coefficient can be determined by adjusting manufacturing conditions based on this result. Moreover, it is also possible to perform the said test | inspection in the production line of a polyimide film for the purpose of performing quality control of the polyimide film under manufacture.
 本発明の検査方法で検査可能なポリイミドフィルムは、白色光にて分光学的に面内位相差を測定可能なフィルムであれば特に制限はなく、例えばポリイミドのみからなるフィルム、またはポリイミドと充填剤や添加剤等とを含有するフィルム等とし得る。 The polyimide film that can be inspected by the inspection method of the present invention is not particularly limited as long as the in-plane retardation can be measured spectroscopically with white light. For example, a film made of only polyimide, or a polyimide and a filler Or a film containing additives and the like.
 ポリイミドフィルムに含まれるポリイミドの種類は特に限定されず、例えば、全芳香族ポリイミド、脂肪族ポリイミド、脂環式ポリイミド、及びこれらを組み合わせたブレンド系、共重合系、及びブロック系のポリイミド等が挙げられる。これらの中でも、面内位相差Reの測定精度の観点から、非晶性のポリイミドが好ましく、具体的には、デュポン社のカプトンとして知られるピロメリット酸二無水物と4,4’-ジアミノジフェニルエーテルからなるポリイミドや、宇部興産社のユーピレックスとして知られる3,3,4,4-ビフェニルテトラカルボン酸無水物とp-フェニレンジアミンからなるポリイミド等が好ましい。 The kind of polyimide contained in the polyimide film is not particularly limited, and examples thereof include wholly aromatic polyimides, aliphatic polyimides, alicyclic polyimides, and blended, copolymerized, and block-based polyimides combining these. It is done. Among these, amorphous polyimide is preferable from the viewpoint of measurement accuracy of in-plane retardation Re, and specifically, pyromellitic dianhydride and 4,4′-diaminodiphenyl ether known as DuPont Kapton are preferable. And a polyimide composed of 3,3,4,4-biphenyltetracarboxylic acid anhydride and p-phenylenediamine, which are known as Upilex of Ube Industries, Ltd. are preferred.
 また、ポリイミドフィルムに含み得る充填剤または添加剤としては、グラファイト、カーボランダム、ケイ石粉、二硫化モリブデン、フッ素系樹脂などの耐摩耗性向上剤;三酸化アンチモン、炭酸マグネシウム、炭酸カルシウム等の難燃性向上剤;クレー、マイカ等の電気的特性向上剤;アスベスト、シリカ、グラファイト等の耐トラッキング向上剤;硫酸バリウム、シリカ、メタケイ酸カルシウム等の耐酸性向上剤;鉄粉、亜鉛粉、アルミニウム粉、銅粉等の熱伝導度向上剤;その他ガラスビーズ、ガラス球、タルク、ケイ藻土、アルミナ、シラスバルン、水和アルミナ、金属酸化物、着色料及び顔料等が挙げられる。これらの充填剤または添加剤は、単独または二種以上を組み合わせて用いてもよい。 In addition, the fillers or additives that can be included in the polyimide film include wear resistance improvers such as graphite, carborundum, silica stone powder, molybdenum disulfide, and fluorine-based resins; antimony trioxide, magnesium carbonate, calcium carbonate, and the like. Flammability improvers; Electrical property improvers such as clay and mica; Tracking resistance improvers such as asbestos, silica and graphite; Acid resistance improvers such as barium sulfate, silica and calcium metasilicate; Iron powder, zinc powder and aluminum Examples thereof include heat conductivity improvers such as powder and copper powder; glass beads, glass spheres, talc, diatomaceous earth, alumina, shirasu balun, hydrated alumina, metal oxides, colorants and pigments. These fillers or additives may be used alone or in combination of two or more.
 ポリイミド100重量部に対する充填剤または添加剤の含有量は、10重量部以下が好ましく、より好ましくは5重量部以下である。充填剤または添加剤の含有量が過剰である場合には、フィルムの透明性低下して光の散乱が生じ、面内位相差Reを分光学的に測定することが困難となるおそれがある。 The content of the filler or additive relative to 100 parts by weight of polyimide is preferably 10 parts by weight or less, more preferably 5 parts by weight or less. When the content of the filler or additive is excessive, the transparency of the film is lowered and light scattering occurs, which may make it difficult to measure the in-plane retardation Re spectroscopically.
 検査対象のポリイミドフィルムの全体形状についても特に限定されない。本願の検査方法によれば、ポリイミドフィルムを非破壊的に測定可能であることから、ロールフィルムやカットフィルム等の製品形状を有するポリイミドフィルムを用いることができる。
 検査対象のポリイミドフィルムの厚みは、例えば、一般的なFPCのベースフィルムとして用いられるポリイミドフィルムの厚みであればよく、好ましくは12.5~150μm程度である。
The overall shape of the polyimide film to be inspected is not particularly limited. According to the inspection method of the present application, since a polyimide film can be measured nondestructively, a polyimide film having a product shape such as a roll film or a cut film can be used.
The thickness of the polyimide film to be inspected may be, for example, the thickness of a polyimide film used as a general FPC base film, and is preferably about 12.5 to 150 μm.
(工程(A))
 工程(A)では、ポリイミドフィルムの線膨張係数の異方性の大きさと、ポリイミドフィルムの面内位相差との関係から、検査対象のポリイミドフィルムに許容可能な面内位相差の閾値を設定する。前述のように、ポリイミドフィルムの線膨張係数の異方性と、ポリイミドフィルムの面内位相差との間には高い相関性が存在する。
 そこで、例えば検査対象であるポリイミドフィルムと同一の組成を有するポリイミドフィルム試験片から、線膨張係数の異方性の大きさと面内位相差との相関関係を把握し、この相関関係と、目標とする線膨張係数の異方性の大きさに基づいて、検査対象のポリイミドフィルムに許容可能な面内位相差の閾値を設定する。なお、面内位相差は、波長依存性を有するため、特定の波長における面内位相差についての、閾値を設定する。
(Process (A))
In step (A), an in-plane retardation threshold allowable for the polyimide film to be inspected is set based on the relationship between the anisotropy of the linear expansion coefficient of the polyimide film and the in-plane retardation of the polyimide film. . As described above, there is a high correlation between the anisotropy of the linear expansion coefficient of the polyimide film and the in-plane retardation of the polyimide film.
Therefore, for example, from the polyimide film test piece having the same composition as the polyimide film to be inspected, the correlation between the magnitude of anisotropy of the linear expansion coefficient and the in-plane retardation is grasped, and this correlation and the target Based on the anisotropy of the linear expansion coefficient, an in-plane retardation threshold allowable for the polyimide film to be inspected is set. Since the in-plane phase difference has wavelength dependence, a threshold is set for the in-plane phase difference at a specific wavelength.
 図1に、面内位相差の閾値を設定するまでのフロー図を示す。ただし、これは一実施形態であり、この方法に限定されるものではない。
 図1に示すように、予め、ポリイミドフィルム試験片の面内位相差を測定する工程(工程(a))と、当該フィルム試験片の線膨張係数の異方性の大きさを測定する工程(工程(b))とを行う。これらの測定結果から検量線等を作成し、面内位相差と、線膨張係数の異方性の大きさとの相関関係を把握する(工程(c))。この検量線、及び検査対象に許容可能な線膨張係数の大きさSに基づき、検査対象のポリイミドフィルムに許容される面内位相差の閾値を算出する(工程(d))。なお、工程(a)と工程(b)は、いずれの工程を先に実施してもよい。即ち、工程(a)→工程(b)の順でもよく、工程(b)→工程(a)の順でもよい。
FIG. 1 shows a flowchart up to the setting of the in-plane phase difference threshold. However, this is an embodiment and the present invention is not limited to this.
As shown in FIG. 1, the process (process (a)) which measures the in-plane phase difference of a polyimide film test piece previously, and the process of measuring the anisotropic magnitude | size of the linear expansion coefficient of the said film test piece ( Step (b)) is performed. A calibration curve or the like is created from these measurement results, and the correlation between the in-plane phase difference and the anisotropy of the linear expansion coefficient is grasped (step (c)). The calibration curve, and based on the size S 2 of the acceptable linear expansion coefficient inspected to calculate the threshold value of the in-plane retardation that is acceptable to the polyimide film to be inspected (step (d)). Note that either step (a) or step (b) may be performed first. That is, the order of step (a) → step (b) may be used, and the order of step (b) → step (a) may be used.
 工程(a)及び工程(b)にて、面内位相差及び線膨張係数の異方性の大きさを測定する試験片の数は、特に制限はないが、工程(c)において相関関係を把握可能な数、すなわち検量線等の作成が可能な数であることが好ましい。具体的には、2以上が好ましく、5以上がより好ましく、10以上がさらに好ましい。 In the step (a) and the step (b), the number of test pieces for measuring the in-plane retardation and the anisotropy of the linear expansion coefficient is not particularly limited, but the correlation in the step (c) The number is preferably a number that can be grasped, that is, a number that allows creation of a calibration curve or the like. Specifically, 2 or more is preferable, 5 or more is more preferable, and 10 or more is more preferable.
 なお、過去の測定データ等に基づき、検査対象のポリイミドフィルムの線膨張係数の異方性の大きさを許容可能な範囲とし得る面内位相差の閾値が判明している場合には、上記工程(a)~(d)を必ずしも行う必要はなく、既知の値を上記閾値として設定してもよい。 In addition, when the in-plane retardation threshold that can make the anisotropy of the linear expansion coefficient anisotropy of the polyimide film to be inspected within an allowable range based on past measurement data or the like is known, the above process It is not always necessary to perform (a) to (d), and a known value may be set as the threshold value.
・工程(a)
 検査対象のポリイミドフィルムと同一の組成を有するポリイミドフィルム試験片を準備し、この試験片の面内位相差を測定する。同一の組成とは、その構成成分、及び成分比率のいずれもが同一であることをいう。試験片は、面内位相差及び線膨張係数の異方性の大きさを測定可能な大きさ、及び形状であれば特に制限はなく、例えばカットフィルム等とし得る。また、当該試験片の厚みは、検査対象のポリイミドフィルムと同一であってもよく、また異なっていてもよい。面内位相差は、フィルムの厚みに比例する。このため、検査対象のポリイミドフィルムと厚みの異なる試験片を用いた場合であっても、工程(d)にて厚みを補正し、検査対象のポリイミドフィルムに許容される面内位相差の閾値を算出することが可能である。
・ Process (a)
A polyimide film test piece having the same composition as the polyimide film to be inspected is prepared, and the in-plane retardation of the test piece is measured. The same composition means that both of its constituent components and component ratios are the same. The test piece is not particularly limited as long as it has a size and shape capable of measuring the in-plane retardation and the anisotropy of the linear expansion coefficient, and may be a cut film, for example. Moreover, the thickness of the test piece may be the same as or different from the polyimide film to be inspected. The in-plane retardation is proportional to the thickness of the film. For this reason, even when a test piece having a thickness different from that of the polyimide film to be inspected is used, the thickness is corrected in the step (d), and the threshold value of the in-plane retardation allowed for the polyimide film to be inspected is set. It is possible to calculate.
 試験片の面内位相差測定は、任意の方法で行うことができる。例えば検査対象のポリイミドフィルムの面内位相差Reと同様、すなわち白色光にて分光学的手法により面内位相差を測定してもよい。またベレック型コンペンセータ等を用いて干渉色を読む手法やセナルモン法等で面内位相差を測定してもよい。白色光にて分光学的に面内位相差を測定する方法は、後述の工程(B)にて、詳しく説明する。 The in-plane retardation measurement of the test piece can be performed by an arbitrary method. For example, the in-plane retardation may be measured by a spectroscopic technique with white light in the same manner as the in-plane retardation Re of the polyimide film to be inspected. Further, the in-plane phase difference may be measured by a method of reading an interference color using a Belek type compensator or the like, or the Senarmon method. The method of measuring the in-plane phase difference spectroscopically with white light will be described in detail in the step (B) described later.
 試験片の面内位相差を測定する際の温度及び湿度は、検査対象のポリイミドフィルムの面内位相差Reを測定する際の温度及び湿度と異なっていてもよいが、面内位相差は、測定時の温度及び湿度により変化する場合があるため、これらを同等とすることがより好ましい。 The temperature and humidity when measuring the in-plane retardation of the test piece may be different from the temperature and humidity when measuring the in-plane retardation Re of the polyimide film to be inspected. Since they may change depending on the temperature and humidity at the time of measurement, it is more preferable to make them equal.
・工程(b)
 上記面内位相差を測定するポリイミドフィルム試験片と同一の試験片について、線膨張係数を測定するとともに、その線膨張係数の異方性の大きさSを測定する。
 試験片の線膨張係数を測定するには、前述の試験片から複数の測定用サンプルを切り出す。図2は、フィルム試験片からサンプルを切り出す方法の一例を示す模式図である。図2は、正方形の試験片14から、6枚の短冊状の測定用サンプル12を切り出す状態を示している。図2に示す方法では、試験片14のMD方向軸を0°と仮定し、0°のサンプル12を短冊状に切り出す。次いで、このMD方向軸から15~45°傾斜した角度毎に、サンプル12を切り出す。この際、90°~180°の範囲にわたって、サンプル12を切り出すことが好ましい。
・ Process (b)
For polyimide film specimen of the same test piece for measuring the in-plane retardation, as well as measuring the linear expansion coefficient, measuring the size S 1 of the anisotropy of the linear expansion coefficient.
In order to measure the linear expansion coefficient of the test piece, a plurality of measurement samples are cut out from the test piece. FIG. 2 is a schematic diagram illustrating an example of a method of cutting a sample from a film test piece. FIG. 2 shows a state in which six strip-shaped measurement samples 12 are cut out from the square test piece 14. In the method shown in FIG. 2, the MD direction axis of the test piece 14 is assumed to be 0 °, and the 0 ° sample 12 is cut into a strip shape. Next, the sample 12 is cut out at every angle inclined by 15 to 45 ° from the MD direction axis. At this time, it is preferable to cut out the sample 12 over a range of 90 ° to 180 °.
 そして、これらの測定用サンプルについて熱機械分析(TMA)装置等を使用してTMA試験を行い、線膨張係数(CTE)を測定する。TMA試験は、例えば、窒素気流下、昇温速度:5~10℃/min、温度範囲:25~300℃の条件で実施することができる。 Then, a TMA test is performed on these measurement samples using a thermomechanical analysis (TMA) apparatus or the like, and a linear expansion coefficient (CTE) is measured. The TMA test can be performed, for example, under a nitrogen stream, under conditions of a temperature increase rate of 5 to 10 ° C./min and a temperature range of 25 to 300 ° C.
 各測定用サンプルについて測定された線膨張係数(CTE)の値(測定点25,35)を定法に従ってプロットして、図3及び4に示すような線膨張係数楕円体20,30を作成(作図)する。そして、図4に示すように、線膨張係数楕円体30の長軸半径bと短軸半径aの差(b-a)で表されるΔCTEの値を「フィルム試験片の線膨張係数の異方性の大きさS(ppm/K)」として算出することができる。なお、MD方向軸に対する、線膨張係数楕円体30の短軸の傾きθ(即ち、楕円の傾き)を「フィルム試験片の配向角(°)」として算出することができる。 The linear expansion coefficient ellipsoids 20 and 30 as shown in FIGS. 3 and 4 are created by plotting the linear expansion coefficient (CTE) values (measurement points 25 and 35) measured for each measurement sample according to a standard method (plotting). ) Then, as shown in FIG. 4, the value of ΔCTE represented by the difference (ba) between the major axis radius b and the minor axis radius a of the linear expansion coefficient ellipsoid 30 is expressed as “difference in linear expansion coefficient of film test piece”. It can be calculated as the magnitude of isotropic S 1 (ppm / K). The inclination θ (that is, the inclination of the ellipse) of the short axis of the linear expansion coefficient ellipsoid 30 with respect to the MD direction axis can be calculated as “orientation angle (°) of film test piece”.
・工程(c)及び(d)
 工程(c)では、工程(a)で算出した面内位相差と、工程(b)で算出した線膨張係数の異方性の大きさSとの相関関係を把握する。工程(a)で算出する面内位相差と、工程(b)で算出する線膨張係数の異方性の大きさS(ΔCTE)との間には高い相関性が存在し、上記面内位相差と線膨張係数の異方性の大きさSとの関係を示す検量線を作成し得る。図5は、工程(a)で分光学的に測定した面内位相差に対して、工程(b)の線膨張係数測定により算出されたΔCTEをプロットしたグラフである。
Steps (c) and (d)
In step (c), to understand the process and the in-plane phase difference calculated in (a), the anisotropy of the calculated coefficient of linear expansion in step (b) the correlation between the size S 1. There is a high correlation between the in-plane retardation calculated in step (a) and the anisotropy magnitude S 1 (ΔCTE) of the linear expansion coefficient calculated in step (b). A calibration curve showing the relationship between the phase difference and the anisotropy magnitude S 1 of the linear expansion coefficient can be created. FIG. 5 is a graph in which ΔCTE calculated by measuring the linear expansion coefficient in the step (b) is plotted against the in-plane retardation measured spectroscopically in the step (a).
 工程(d)では、工程(c)にて把握した相関関係と、検査対象となるポリイミドフィルムに許容される線膨張係数の異方性の大きさSとから、検査対象のポリイミドフィルムの面内位相差の閾値を設定する。すなわち、工程(c)で作成した検量線と、検査対象のポリイミドフィルムに許容される線膨張係数の異方性の大きさSとに基づいて、検査対象のポリイミドフィルムに許容される面内位相差の値が算出でき、その閾値を設定し得る。 In step (d), from a correlation grasped, it inspected and made anisotropic in linear expansion coefficient that is acceptable to the polyimide film size S 2 Metropolitan in step (c), the surface of the polyimide film to be inspected Sets a threshold value for the internal phase difference. That is, a calibration curve prepared in step (c), based on the size S 2 of the anisotropy of the linear expansion coefficient that is acceptable to the polyimide film to be inspected, acceptable plane polyimide film to be inspected The value of the phase difference can be calculated and the threshold value can be set.
 なお、図6は、工程(a)で分光学的手法によって算出した試験片の配向角と、工程(b)で線膨張係数測定により算出した配向角とをプロットしたグラフである。図6に示すように、分光学的な手法により測定及び算出したフィルムの配向角と、線膨張係数測定によって算出したフィルムの配向角は、ほぼ一致することが分かる。これは、後述の工程(B)にて、検査対象のポリイミドフィルムの面内位相差Reを測定するのと同時に、分光学的手法で配向角も求め得ることを示している。 FIG. 6 is a graph plotting the orientation angle of the test piece calculated by the spectroscopic technique in step (a) and the orientation angle calculated by measuring the linear expansion coefficient in step (b). As shown in FIG. 6, it can be seen that the orientation angle of the film measured and calculated by the spectroscopic technique and the orientation angle of the film calculated by measuring the linear expansion coefficient are almost the same. This indicates that the orientation angle can also be obtained by a spectroscopic technique at the same time when the in-plane retardation Re of the polyimide film to be inspected is measured in the step (B) described later.
(工程(B))
 工程(B)では、検査対象のポリイミドフィルムの面内位相差Reを、白色光にて分光学的に測定する。
 検査対象のポリイミドフィルムの面内位相差Reを白色光にて分光学的に測定する方法としては、例えば、平行ニコル回転法、直交ニコル回転法等を挙げることができる。これらの測定方法が採用された面内位相差Reの測定装置の市販品としては、例えば、王子計測機器社製の商品名「KOBRA」シリーズ、大塚電子社製の商品名「RETS」シリーズ、商品名「MCPD」シリーズ等を挙げることができる。なかでも、王子計測機器社製の商品名「KOBRA」シリーズ、及び大塚電子社製の商品名「RETS」シリーズは、インラインでロールフィルムの流れ方向(長さ方向)及び幅方向(流れ方向と直交する方向)に、面内位相差Reを複数箇所測定可能な装置であるために好ましい。
(Process (B))
In the step (B), the in-plane retardation Re of the polyimide film to be inspected is measured spectroscopically with white light.
Examples of the method for spectroscopically measuring the in-plane retardation Re of the polyimide film to be inspected with white light include a parallel Nicol rotation method and a crossed Nicol rotation method. Examples of commercially available measuring devices for in-plane retardation Re employing these measurement methods include the product name “KOBRA” series manufactured by Oji Scientific Instruments, the product name “RETS” series manufactured by Otsuka Electronics Co., Ltd. Name “MCPD” series and the like. Among them, the product name “KOBRA” series manufactured by Oji Scientific Instruments and the product name “RETS” series manufactured by Otsuka Electronics Co., Ltd. are in-line in the flow direction (length direction) and width direction (perpendicular to the flow direction) of the roll film. This is preferable because the apparatus can measure the in-plane retardation Re at a plurality of locations.
 以下、直交ニコル回転法により、白色光の透過率スペクトルを測定し、ポリイミドフィルムの面内位相差Reを算出する方法を例に説明する。図7は、直交ニコル回転法により、透過率スペクトルを測定する手法を示す模式図である。図7に示すように、偏光子2と検光子8とをクロスニコルに配置し、これらの間に、検査対象のポリイミドフィルム4と、任意で位相差板6を配置する。この状態で、偏光子2側から検光子8側に白色光10を照射し、検光子8側に設置された分光器(図示せず)等にて、透過率スペクトルを測定する。この透過率スペクトルの波形を解析することで、ポリイミドフィルムの面内位相差Reが特定できる。 Hereinafter, a method for measuring the transmittance spectrum of white light by the orthogonal Nicol rotation method and calculating the in-plane retardation Re of the polyimide film will be described as an example. FIG. 7 is a schematic diagram showing a technique for measuring a transmittance spectrum by the orthogonal Nicol rotation method. As shown in FIG. 7, the polarizer 2 and the analyzer 8 are arranged in crossed Nicols, and a polyimide film 4 to be inspected and optionally a phase difference plate 6 are arranged therebetween. In this state, the white light 10 is irradiated from the polarizer 2 side to the analyzer 8 side, and the transmittance spectrum is measured with a spectroscope (not shown) or the like installed on the analyzer 8 side. By analyzing the waveform of the transmittance spectrum, the in-plane retardation Re of the polyimide film can be specified.
 一般に、面内位相差Reは、単色光の透過光強度を測定して特定されることが多い。しかし、本発明では、前述のように、白色光を照射し、分光学的に面内位相差Reを特定する。これは、ポリイミドフィルムの面内位相差Reが比較的広い範囲を取り得るためである。単色光(測定波長λ)で面内位相差Reを特定する場合、測定波長(λ)と面内位相差Reと、透過光強度Iとの関係は、下記式で示される。Iは入射光強度を示す。
 I=Isin(πRe/λ)
 そのため、面内位相差Reが取り得る範囲が大きいと、異なる次数で同一の透過光強度Iが観察されることとなり、正確な面内位相差Reの特定が困難である。また面内位相差Reの値が、測定波長λのn/2(nは整数)倍前後である場合にも、面内位相差Reの特定が難しい。
In general, the in-plane retardation Re is often specified by measuring the transmitted light intensity of monochromatic light. However, in the present invention, as described above, white light is irradiated and the in-plane retardation Re is spectroscopically specified. This is because the in-plane retardation Re of the polyimide film can take a relatively wide range. When specifying the in-plane phase difference Re with monochromatic light (measurement wavelength λ), the relationship between the measurement wavelength (λ), the in-plane phase difference Re, and the transmitted light intensity I is expressed by the following equation. I 0 indicates the incident light intensity.
I = I 0 sin 2 (πRe / λ)
Therefore, if the range that the in-plane phase difference Re can take is large, the same transmitted light intensity I is observed in different orders, and it is difficult to specify the in-plane phase difference Re accurately. Even when the value of the in-plane retardation Re is about n / 2 (n is an integer) times the measurement wavelength λ, it is difficult to specify the in-plane retardation Re.
 本発明者は、厚みが約20μmのポリイミドフィルムの線膨張係数の異方性の大きい部分においては、面内位相差Reが概ね300nm以上となることを見出した。そこで、本発明では、単色光ではない白色光を用い、分光学的に面内位相差Reを特定する。白色光を用いれば、上記次数等に左右されることなく、固有の面内位相差Reを特定することができる。また特に、全芳香族ポリイミドからなるフィルム等、500nm以下の波長光を吸収するポリイミドフィルム(着色したポリイミドフィルム)については、500~800nmの波長範囲の光を照射して面内位相差Reを測定することが好ましい。 The present inventor has found that the in-plane retardation Re is approximately 300 nm or more in a portion having a large linear expansion coefficient anisotropy of a polyimide film having a thickness of about 20 μm. Therefore, in the present invention, the in-plane phase difference Re is specified spectroscopically using white light that is not monochromatic light. If white light is used, the specific in-plane phase difference Re can be specified without being influenced by the order or the like. Especially for polyimide films that absorb light with a wavelength of 500 nm or less, such as films made of wholly aromatic polyimide (colored polyimide film), the in-plane retardation Re is measured by irradiating light in the wavelength range of 500 to 800 nm. It is preferable to do.
 上記白色光の光源の種類は特に限定されず、例えばハロゲンランプ、キセノンランプ、重水素ランプ、レーザー光等やそれらを組み合わせたものを挙げることができる。 The type of the white light source is not particularly limited, and examples thereof include a halogen lamp, a xenon lamp, a deuterium lamp, a laser beam, and a combination thereof.
 また、本発明では、上記位相差板6を、偏光子2と検光子8との間に、その光学主軸が偏光子2及び検光子8の透過軸に対して45°傾くように配置することが好ましい。図8に、波長600nmでの面内位相差Reが100nmであるポリイミドフィルムの透過率スペクトル、及び波長600nmでの面内位相差Reが700nmであるポリイミドフィルムの透過率スペクトルを示す。図8に示すように、面内位相差Reが小さい場合には、波長変化に伴う透過率の変化が少なく、スペクトルの波形から、面内位相差Reを解析することが難しい。そこで位相差板6を配置することで、観察される面内位相差Reが、位相差板の位相差分、高波長側にシフトし、波長の解析が容易となる。
 なお、位相差板を配置して、透過率スペクトルの測定を行う場合には、透過率スペクトルの波形を解析して、仮の面内位相差Reを求めた後、さらに位相差板の位相差を減算し、真の面内位相差Reを特定する。
In the present invention, the retardation plate 6 is disposed between the polarizer 2 and the analyzer 8 so that the optical principal axis is inclined by 45 ° with respect to the transmission axes of the polarizer 2 and the analyzer 8. Is preferred. FIG. 8 shows a transmittance spectrum of a polyimide film having an in-plane retardation Re of 100 nm at a wavelength of 600 nm and a transmittance spectrum of a polyimide film having an in-plane retardation Re of 700 nm at a wavelength of 600 nm. As shown in FIG. 8, when the in-plane phase difference Re is small, there is little change in transmittance due to wavelength change, and it is difficult to analyze the in-plane phase difference Re from the spectrum waveform. Therefore, by arranging the phase difference plate 6, the observed in-plane phase difference Re shifts to the phase difference of the phase difference plate, the higher wavelength side, and wavelength analysis becomes easy.
In the case of measuring the transmittance spectrum by arranging a retardation plate, the waveform of the transmittance spectrum is analyzed to obtain a temporary in-plane retardation Re, and then the retardation of the retardation plate is further calculated. To determine the true in-plane phase difference Re.
 位相差板の位相差は400nm以上が適当であるが、より望ましくは鋭敏色板として用いられている500nmから750nmの位相差板である。また、透過率の極小値と極大値の両方が現れる750nm以上の位相差板を用いて測定を行ってもよい。 The retardation of the retardation plate is suitably 400 nm or more, but more preferably a retardation plate of 500 nm to 750 nm used as a sensitive color plate. Further, the measurement may be performed using a retardation plate of 750 nm or more in which both the minimum value and the maximum value of transmittance appear.
 透過率スペクトルの測定は、(i)検査対象のポリイミドフィルム4を、偏光子2、検光子8、及び位相差板6に対して相対的に回転させながら、或いは(ii)偏光子2、検光子8、及び位相差板6を、検査対象のポリイミドフィルム4に対して相対的に回転させながら、複数回行う。すなわちポリイミドフィルム4の遅相軸と、偏光子2の透過軸とがなす角度を変化させながら、透過率スペクトルの測定を複数回行う。 The transmittance spectrum can be measured by (i) rotating the polyimide film 4 to be inspected relative to the polarizer 2, the analyzer 8, and the phase difference plate 6, or (ii) the polarizer 2, the detector. The photon 8 and the phase difference plate 6 are performed a plurality of times while being rotated relative to the polyimide film 4 to be inspected. That is, the transmittance spectrum is measured a plurality of times while changing the angle formed by the slow axis of the polyimide film 4 and the transmission axis of the polarizer 2.
 検査対象がロールフィルムである場合には、偏光子2、検光子8、及び位相差板6のセットを回転させながら、ポリイミドフィルムの製膜過程(インライン)で透過率スペクトルの測定を行うことが好ましい。一方、検査対象がカットフィルムである場合には、検査対象のポリイミドフィルム4を回転させながら透過率スペクトル測定してもよく、偏光子2、検光子8、及び位相差板6のセットを回転させながら透過率スペクトルを測定してもよい。 When the inspection object is a roll film, the transmittance spectrum can be measured in the film forming process (in-line) of the polyimide film while rotating the set of the polarizer 2, the analyzer 8, and the phase difference plate 6. preferable. On the other hand, when the inspection object is a cut film, the transmittance spectrum may be measured while rotating the polyimide film 4 to be inspected, and the set of the polarizer 2, the analyzer 8, and the retardation plate 6 is rotated. However, the transmittance spectrum may be measured.
 ロールフィルムに対して、インラインで面内位相差Reを測定する場合の手法を、図9を例に説明する。図9の(a)に示すように、ポリイミドフィルム4の搬送方向(以下、「MD方向」ともいう)に対して、偏光子2の透過軸が平行に、検光子8の透過軸が垂直となるように、偏光子2及び検光子8を配置する。また位相差板6の光学主軸と、偏光子2の透過軸とがなす角度が45°となるように、位相差板6を配置する。この状態で、偏光子側に設置された光源9から白色光を照射し、検光子8側に設置された分光器11等にて、透過率スペクトルを測定する。 A technique for measuring the in-plane retardation Re in-line with respect to the roll film will be described with reference to FIG. As shown in FIG. 9A, the transmission axis of the polarizer 2 is parallel to the transport direction of the polyimide film 4 (hereinafter also referred to as “MD direction”), and the transmission axis of the analyzer 8 is vertical. Thus, the polarizer 2 and the analyzer 8 are arranged. Further, the phase difference plate 6 is arranged so that an angle formed by the optical principal axis of the phase difference plate 6 and the transmission axis of the polarizer 2 is 45 °. In this state, white light is irradiated from the light source 9 installed on the polarizer side, and the transmittance spectrum is measured by the spectroscope 11 installed on the analyzer 8 side.
 次に、ポリイミドフィルム4のMD方向と、偏光子2の透過軸とがなす角度が30°となるように、偏光子2、位相差板6、及び検光子8について、上記の関係を保ったまま回転させ、透過率スペクトルを測定する(図9(b))。同様に、ポリイミドフィルム4のMD方向と、偏光子2の透過軸とがなす角度が60°、90°、120°、150°となるように偏光子2、位相差板6、及び検光子8について、上記の関係を保ったまま回転させて透過率スペクトルを測定する(図9(c))。得られた透過率スペクトルの波形解析をそれぞれ行い、最も大きな値となった位相差の値をポリイミドフィルムの面内位相差Reとする。 Next, the above relationship was maintained for the polarizer 2, the phase difference plate 6, and the analyzer 8 so that the angle formed by the MD direction of the polyimide film 4 and the transmission axis of the polarizer 2 was 30 °. The transmittance spectrum is measured by rotating the material as it is (FIG. 9B). Similarly, the polarizer 2, the phase difference plate 6, and the analyzer 8 so that the angles formed by the MD direction of the polyimide film 4 and the transmission axis of the polarizer 2 are 60 °, 90 °, 120 °, and 150 °. The transmittance spectrum is measured by rotating while maintaining the above relationship (FIG. 9C). Waveform analysis of the obtained transmittance spectrum is performed, and the phase difference value having the largest value is set as the in-plane retardation Re of the polyimide film.
 また、位相差が最も高く観察された場合;すなわちポリイミドフィルム4の遅相軸と位相差板6の光学主軸とが平行になった場合のポリイミドフィルム4のMD方向と、位相差板6の光学主軸とがなす角度が、ポリイミドフィルムの配向角となる。 When the phase difference is observed to be the highest; that is, when the slow axis of the polyimide film 4 and the optical principal axis of the retardation plate 6 are parallel, the MD direction of the polyimide film 4 and the optical property of the retardation plate 6 The angle formed by the main axis is the orientation angle of the polyimide film.
 上記説明では、偏光子2等を30°ずつ回転させて、透過率スペクトルの測定を行っているが、当該回転角度は、上記角度に制限されない。ただし、正確な面内位相差Reの測定、及び配向角の特定のためには、10~30°毎に測定を行うことが好ましい。 In the above description, the transmittance spectrum is measured by rotating the polarizer 2 and the like by 30 °, but the rotation angle is not limited to the above angle. However, in order to accurately measure the in-plane retardation Re and specify the orientation angle, it is preferable to perform the measurement every 10 to 30 °.
 また図9に示す実施形態では、ポリイミドフィルムのロールフィルム4に対して、偏光子2、位相差板6、及び検光子8のセットを回転させたが、例えば図10及び図11に示すように、MD方向に対する角度を変更した複数の偏光子2、位相差板6、及び検光子8のセットを、流れ方向に沿って配置してもよい。 In the embodiment shown in FIG. 9, the set of the polarizer 2, the phase difference plate 6, and the analyzer 8 is rotated with respect to the polyimide film roll film 4. For example, as shown in FIGS. 10 and 11. A set of a plurality of polarizers 2, a phase difference plate 6, and an analyzer 8 whose angles with respect to the MD direction are changed may be arranged along the flow direction.
 また、本願では、ポリイミドフィルムの、TD方向(幅方向に)に、それぞれ面内位相差Re(透過率)を複数箇所ずつ測定することが好ましい。すなわち、例えば図10に示すように、面内位相差Re(透過率スペクトル)をTD方向に複数箇所測定することが好ましい。 In the present application, it is preferable to measure the in-plane retardation Re (transmittance) at a plurality of locations in the TD direction (in the width direction) of the polyimide film. That is, for example, as shown in FIG. 10, it is preferable to measure a plurality of in-plane retardation Re (transmittance spectrum) in the TD direction.
 TD方向に、面内位相差Re(透過率スペクトル)を複数箇所測定する方法としては、例えば図10に示すように、複数の光源9と、これに対応する分光器11を幅方向に複数配置してもよく、また、例えば図11に示すように、一組の光源9と分光器11とを、幅方向に走査させてもよい。 As a method of measuring a plurality of in-plane phase differences Re (transmittance spectra) in the TD direction, for example, as shown in FIG. 10, a plurality of light sources 9 and a plurality of spectroscopes 11 corresponding thereto are arranged in the width direction. Alternatively, for example, as shown in FIG. 11, a set of the light source 9 and the spectroscope 11 may be scanned in the width direction.
 また、本発明では、例えばポリイミドフィルムの端部等、ポリイミドフィルム作製時に線膨張係数の異方性が高くなりやすい箇所のみに、光源9と分光器11とを配置し、面内位相差Reを測定してもよい。 In the present invention, for example, the light source 9 and the spectroscope 11 are disposed only in a portion where the anisotropy of the linear expansion coefficient is likely to be high at the time of polyimide film production, such as an end portion of the polyimide film, and the in-plane retardation Re is set. You may measure.
 さらに本検査方法では、ライン上を流れるポリイミドのロールフィルムについて、例えば数メートル毎に、面内位相差Re(透過率スペクトル)を測定することが好ましい。 Furthermore, in this inspection method, it is preferable to measure the in-plane retardation Re (transmittance spectrum) for every several meters, for example, for a polyimide roll film flowing on the line.
 面内位相差Reは、温度及び湿度で変化する場合がある。そこで、面内位相差Reの測定は、温度15~40℃で行うことが好ましく、20~30℃が好ましい。また測定時の湿度10~85%Rhとすることが好ましく、より好ましくは30~65%Rhである。 The in-plane phase difference Re may change with temperature and humidity. Therefore, the measurement of the in-plane retardation Re is preferably performed at a temperature of 15 to 40 ° C., and preferably 20 to 30 ° C. The humidity during measurement is preferably 10 to 85% Rh, more preferably 30 to 65% Rh.
 また、例えばポリイミドフィルムが着色している場合等には、本工程を行う前、もしくは本工程後に、検査対象のポリイミドフィルムの透過率スペクトル測定を行い、この結果に基づき、上記手法で測定される透過率スペクトルの値の補正を行ってもよい。透過率スペクトルの測定は、上述の分光器等にて行うことができる。 In addition, for example, when the polyimide film is colored, the transmittance spectrum of the polyimide film to be inspected is measured before or after the present step, and the measurement is performed by the above method based on the result. You may correct | amend the value of the transmittance | permeability spectrum. The transmittance spectrum can be measured with the above-described spectroscope or the like.
 面内位相差Reは、前述のようにして測定した透過率スペクトルの波形を下記の方法で解析することで求められる。白色光源を用いたポリイミドフィルムを直交ニコルで観察するときの各波長における透過率T(λ)は、下記式(1)で表され、透過光強度I(λ)は、下記式(2)で表される。
Figure JPOXMLDOC01-appb-M000001
The in-plane phase difference Re is obtained by analyzing the waveform of the transmittance spectrum measured as described above by the following method. The transmittance T (λ) at each wavelength when observing a polyimide film using a white light source with crossed Nicols is expressed by the following formula (1), and the transmitted light intensity I (λ) is expressed by the following formula (2). It is represented by
Figure JPOXMLDOC01-appb-M000001
 上記式(1)及び(2)中、λは光の波長を示し、I(λ)は入射光強度を示し、χは偏光子透過軸と試料(ポリイミドフィルム)の遅相軸とがなす角を示す。
 上記式(2)~(4)に基づき、位相差を算出すると、位相差が最大となるのは、偏光子透過軸とポリイミドフィルムの遅相軸とがなす角度χが45°のときである。前述のように、この位相差が最大となったときの値を面内位相差Reとする。
In the above formulas (1) and (2), λ represents the wavelength of light, I 0 (λ) represents the incident light intensity, and χ represents the polarizer transmission axis and the slow axis of the sample (polyimide film). Indicates a corner.
When the phase difference is calculated based on the above formulas (2) to (4), the phase difference becomes maximum when the angle χ formed by the polarizer transmission axis and the slow axis of the polyimide film is 45 °. . As described above, the value when the phase difference becomes maximum is defined as the in-plane phase difference Re.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、面内位相差Reは、低波長側ほど高くなることが知られている。そこで、Cauchyの分散公式に従って面内位相差Reの波長分散を考慮すると、前記式(1)式を下記式(5)のように書き換えることができる。そして、下記式(5)における、A’及びB’をフィッティングパラメータとして解析することで、下記式(6)で示すポリイミドフィルムの各波長における面内位相差Reが算出できる。 It is known that the in-plane phase difference Re increases as the wavelength decreases. Therefore, considering the chromatic dispersion of the in-plane retardation Re according to the Cauchy dispersion formula, the equation (1) can be rewritten as the following equation (5). Then, by analyzing A ′ and B ′ in the following formula (5) as fitting parameters, the in-plane retardation Re at each wavelength of the polyimide film represented by the following formula (6) can be calculated.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記では、直交ニコルでの観察により、面内位相差Reを算出する方法を説明したが、本発明はこれに限定されるものではない。例えば、直交ニコル及び平行ニコルで、透過光強度I(λ)及びI(λ)を測定し、面内位相差Reを算出することも可能である。白色光源を用いたポリイミドフィルムの光透過率を直交ニコル及び平行ニコルで観察するときの透過光強度I(λ)及びI(λ)は、下記式(7)で表される。
Figure JPOXMLDOC01-appb-M000004
 そこで、χ=π/4等の適当な角でI(λ)とI(λ)を測定することによって、I及びδを求め、上記式(7)と上述の式(2)~(4)に基づき、面内位相差Reを算出してもよい。
In the above, the method of calculating the in-plane phase difference Re by observation with orthogonal Nicols has been described, but the present invention is not limited to this. For example, the transmitted light intensities I 強度 (λ) and I (λ) can be measured with orthogonal Nicols and parallel Nicols, and the in-plane phase difference Re can be calculated. Transmitted light intensities I (λ) and I (λ) when the light transmittance of the polyimide film using a white light source is observed with crossed Nicols and parallel Nicols are expressed by the following formula (7).
Figure JPOXMLDOC01-appb-M000004
Accordingly, I 0 and δ are obtained by measuring I (λ) and I (λ) at an appropriate angle such as χ = π / 4, and the above formula (7) and the above formula (2) to The in-plane phase difference Re may be calculated based on (4).
 また、直交ニコル配置された偏光子2と検光子8との間に、位相差板6及び検査対象のポリイミドフィルム4を配置し、極小値あるいは極大値を示す波長のシフト量を調べることで、面内位相差Reを算出することもできる。この方法では、まず、直交ニコル配置された偏光子2と検光子8との間に、位相差板6のみを配置し、透過率を測定する。例えば550nmの位相差板6のみを上記位置に配置した場合、550nmの波長で透過率が極小値を示す。次に偏光子2と検光子8との間に、ポリイミドフィルム4と位相差板6とを配置し、透過率スペクトルを測定する。このとき、ポリイミドフィルム4の配向角と位相差板6の遅相軸とが平行となると、極小値を示す波長がポリイミドフィルム4の面内位相差Re分だけ高波長側へシフトする。また、ポリイミドフィルム4の配向角が位相差板6の遅相軸と垂直となると、極小値を示す波長がポリイミドフィルム4の面内位相差Re分だけ低波長側へシフトする。これに基づき、極小値を示す波長のシフト量を調べ、最もシフト量が大きくなったときのシフト量を、面内位相差Reとして算出すること等ができる。 Further, by arranging the retardation film 6 and the polyimide film 4 to be inspected between the polarizer 2 and the analyzer 8 arranged in the crossed Nicols, and examining the shift amount of the wavelength showing the minimum value or the maximum value, The in-plane phase difference Re can also be calculated. In this method, first, only the phase difference plate 6 is disposed between the polarizer 2 and the analyzer 8 that are arranged in crossed Nicols, and the transmittance is measured. For example, when only the 550 nm phase difference plate 6 is disposed at the above position, the transmittance shows a minimum value at a wavelength of 550 nm. Next, the polyimide film 4 and the phase difference plate 6 are arrange | positioned between the polarizer 2 and the analyzer 8, and a transmittance | permeability spectrum is measured. At this time, when the orientation angle of the polyimide film 4 and the slow axis of the phase difference plate 6 are parallel, the wavelength showing the minimum value is shifted to the higher wavelength side by the in-plane retardation Re of the polyimide film 4. Further, when the orientation angle of the polyimide film 4 is perpendicular to the slow axis of the retardation plate 6, the wavelength showing the minimum value is shifted to the lower wavelength side by the in-plane retardation Re of the polyimide film 4. Based on this, the shift amount of the wavelength exhibiting the minimum value can be examined, and the shift amount when the shift amount becomes the maximum can be calculated as the in-plane phase difference Re.
(工程(C)及び工程(D))
 工程(C)では、工程(A)で設定された面内位相差の閾値と、工程(B)で測定された面内位相差Reとを比較する。工程(B)で測定された面内位相差Reが閾値を超えていれば、検査対象であるポリイミドフィルムの線膨張係数の異方性の大きさが、許容範囲内ではないことを示す。そこで、この結果をポリイミドフィルムの製造過程に、この結果をフィードバックし、ポリイミドフィルムの製造条件;ポリイミドフィルムに線膨張係数の異方性が生ずる要因となる製造条件を調整する工程(D)を行うことが好ましい。
(Process (C) and process (D))
In the step (C), the in-plane phase difference threshold set in the step (A) is compared with the in-plane phase difference Re measured in the step (B). If the in-plane retardation Re measured in the step (B) exceeds the threshold value, it indicates that the anisotropy of the linear expansion coefficient of the polyimide film to be inspected is not within the allowable range. Therefore, this result is fed back to the production process of the polyimide film, and this result is fed back, and the process (D) of adjusting the production condition of the polyimide film; the production condition causing the anisotropy of the linear expansion coefficient in the polyimide film is performed. It is preferable.
 ポリイミドフィルムには、その製造過程において、種々の要因により線膨張係数の異方性が生ずることがある。そこで工程(C)にて検出した結果を考慮し、工程(D)で線膨張係数の異方性が生じなくなるような製造条件へと直ちに調整することで、線膨張係数の異方性の発生が抑制された高品質なポリイミドフィルムを高い歩留まりで製造することができる。 The polyimide film may have anisotropy in linear expansion coefficient due to various factors during the production process. Therefore, taking into consideration the result detected in step (C), by immediately adjusting to the manufacturing conditions such that the anisotropy of the linear expansion coefficient does not occur in step (D), the anisotropy of the linear expansion coefficient is generated. Can be produced with high yield.
 上記工程(C)にて算出された結果に基づき、調整する製造条件としては、例えば、(i)乾燥時又はイミド化時にポリイミドフィルム又はその前駆体(ポリアミド酸)に負荷する張力、(ii)ポリイミドフィルム又はその前駆体(ポリアミド酸)の延伸倍率、(iii)ポリイミドフィルム又はその前駆体(ポリアミド酸)の加熱温度、(iv)ポリイミドフィルム又はその前駆体(ポリアミド酸)の加熱速度、(v)ポリイミドフィルム又はその前駆体(ポリアミド酸)に吹き付ける乾燥風の風量、(vi)ポリイミドフィルム又はその前駆体(ポリアミド酸)の搬送速度等を挙げることができる。なお、二以上の製造条件を同時に調整してもよい。 The production conditions to be adjusted based on the result calculated in the step (C) are, for example, (i) tension applied to the polyimide film or its precursor (polyamic acid) at the time of drying or imidization, and (ii) Stretch ratio of polyimide film or its precursor (polyamic acid), (iii) heating temperature of polyimide film or its precursor (polyamic acid), (iv) heating rate of polyimide film or its precursor (polyamic acid), (v ) The amount of dry air blown onto the polyimide film or its precursor (polyamide acid), (vi) the conveyance speed of the polyimide film or its precursor (polyamide acid), and the like. Two or more manufacturing conditions may be adjusted simultaneously.
 本発明のポリイミドフィルムの製造方法は、その製膜過程に前述の検査方法が組み込まれていること以外は、従来のポリイミドフィルム(ドライフィルム)の製造方法に準ずる。以下、ポリイミドフィルムの製造方法の流れについて、一例を挙げながら説明する。 The manufacturing method of the polyimide film of the present invention is in accordance with the conventional manufacturing method of polyimide film (dry film) except that the above-described inspection method is incorporated in the film forming process. Hereinafter, the flow of the manufacturing method of a polyimide film is demonstrated, giving an example.
 ポリイミドフィルムは、例えば基板上に、ポリイミドの前駆体となるポリアミド酸の溶液(ポリアミド酸ワニス)を塗布し、脱溶媒及びイミド化した後、得られたフィルムを基板から剥離することにより得ることができる。ポリアミド酸ワニスの脱溶媒及びイミド化は、特に制限はないが、減圧下、又は窒素、ヘリウム、アルゴン等の不活性雰囲気下で行うことが好ましい。ポリアミド酸ワニスの脱溶媒及びイミド化は、ポリイミド酸ワニスの塗膜を、一定の速度で乾燥炉内を通過させること等で行われる。 A polyimide film can be obtained by, for example, applying a polyamic acid solution (polyamic acid varnish) as a polyimide precursor on a substrate, removing the solvent and imidizing, and then peeling the obtained film from the substrate. it can. Solvent removal and imidation of the polyamic acid varnish are not particularly limited, but are preferably performed under reduced pressure or in an inert atmosphere such as nitrogen, helium, or argon. Solvent removal and imidization of the polyamic acid varnish are performed by passing the polyimide acid varnish coating film through a drying furnace at a constant speed.
 ポリアミド酸ワニスの脱溶媒及びイミド化を行う際の加熱温度は、溶媒の沸点以上であるとともに、イミド化反応が進行する温度であればよい。例えば、非プロトン系アミド溶媒中で合成されたポリアミド酸である場合、脱溶媒及びイミド化させる際の加熱温度は、100~300℃程度であればよく、加熱時間は、特に制限はないが、通常3分~12時間程度であればよい。ポリアミド酸ワニスを塗布する基板の例には、金属箔、ガラス等の無機基板、各種樹脂フィルム等が含まれる。ポリアミド酸ワニスの塗膜の厚みは、ポリアミド酸ワニスの固形分濃度にもよるが、脱溶媒、イミド化後のフィルム厚みが1mm以下となるように調整されることが好ましい。 The heating temperature at the time of desolvation and imidization of the polyamic acid varnish may be a temperature at which the imidization reaction proceeds while being not lower than the boiling point of the solvent. For example, in the case of a polyamic acid synthesized in an aprotic amide solvent, the heating temperature for desolvation and imidization may be about 100 to 300 ° C., and the heating time is not particularly limited, Usually, it may be about 3 minutes to 12 hours. Examples of the substrate on which the polyamic acid varnish is applied include a metal foil, an inorganic substrate such as glass, and various resin films. The thickness of the coating film of the polyamic acid varnish is preferably adjusted so that the film thickness after solvent removal and imidization is 1 mm or less, although it depends on the solid content concentration of the polyamic acid varnish.
 ポリアミド酸ワニスの塗布手段の例には、ロールコーター、ダイコーター、グラビアコーター、ディップコーター、スプレーコーター、コンマコーター、カーテンコーター、バーコーター等の一般的な塗布手段が含まれる。これらの塗布手段は、ポリアミド酸ワニスの粘度や塗膜厚さに応じて適宜選択される。 Examples of means for applying the polyamic acid varnish include general application means such as a roll coater, a die coater, a gravure coater, a dip coater, a spray coater, a comma coater, a curtain coater, and a bar coater. These application means are appropriately selected according to the viscosity and the coating film thickness of the polyamic acid varnish.
 ポリアミド酸ワニスの乾燥手段の例には、電気加熱又はオイル加熱した熱風、赤外線等を熱源としたロールサポート、エアーフロート方式の乾燥炉等が含まれる。ポリイミド樹脂の変質や、金属箔の酸化による変色等を防止するため、乾燥雰囲気を空気以外の窒素、アルゴン、水素等のガスで置換してもよい。上記乾燥炉内でのポリアミド酸ワニスの搬送は、フィルムの両端をクリップテンターやピンテンター等で挟み張力をかけた状態で行われる。また、得られたイミドフィルムに対して、延伸を行ってもよい。製造されたフィルムは、通常、ロール等に巻き取られる。 Examples of the means for drying the polyamic acid varnish include an electrically heated or oil heated hot air, a roll support using infrared rays as a heat source, an air float type drying furnace, and the like. In order to prevent deterioration of the polyimide resin, discoloration due to oxidation of the metal foil, and the like, the dry atmosphere may be replaced with a gas other than air, such as nitrogen, argon, or hydrogen. The polyamic acid varnish is conveyed in the drying furnace in a state in which both ends of the film are sandwiched between clip tenters or pin tenters and tension is applied. Moreover, you may extend | stretch with respect to the obtained imide film. The produced film is usually wound up on a roll or the like.
 なお、面内位相差Reの測定(上述の工程(B))は、乾燥炉から搬出され、所定の温度まで冷却された、巻き取り前のポリイミドフィルムに対して行うことが好ましい。特に、巻き取り直前に面内位相差Reを行うことが、測定される面内位相差Reの信頼性の観点から好ましい。 In addition, it is preferable to perform the measurement of the in-plane retardation Re (the above-described step (B)) with respect to the polyimide film before winding, which is taken out from the drying furnace and cooled to a predetermined temperature. In particular, it is preferable to perform the in-plane retardation Re immediately before winding from the viewpoint of the reliability of the measured in-plane retardation Re.
 また本発明では、ポリイミドフィルムを加熱・延伸している過程、すなわち乾燥炉内部で面内位相差測定を行ってもよい。この場合、乾燥炉内でのポリイミドフィルムの配向状態をリアルタイムで評価することが可能となる。 In the present invention, in-plane retardation measurement may be performed in the process of heating and stretching the polyimide film, that is, inside the drying furnace. In this case, the orientation state of the polyimide film in the drying furnace can be evaluated in real time.
B.ポリイミドフィルム製造装置
 本発明のポリイミドフィルム製造装置は、検査対象のポリイミドフィルムに許容可能な面内位相差Reの閾値を記憶する記憶機構と、検査対象のポリイミドフィルムを一定方向に搬送する搬送機構と、前記ポリイミドフィルムの面内位相差Reを測定する測定機構とを少なくとも有し、必要に応じて、ポリイミドフィルムの線膨張係数の異方性の大きさが、規格の範囲内であるかを判定する判定機構や、判定機構により判定された結果に基づき、ポリイミドフィルムの製造条件を制御する制御機構等を有する。
B. Polyimide film manufacturing apparatus The polyimide film manufacturing apparatus of the present invention includes a storage mechanism that stores a threshold value of the in-plane retardation Re that is acceptable for the polyimide film to be inspected, and a transport mechanism that transports the polyimide film to be inspected in a certain direction. And at least a measurement mechanism for measuring the in-plane retardation Re of the polyimide film, and if necessary, determines whether the degree of anisotropy of the linear expansion coefficient of the polyimide film is within a standard range And a control mechanism for controlling the manufacturing conditions of the polyimide film based on the determination mechanism and the result determined by the determination mechanism.
 本発明のポリイミドフィルム製造装置では、ポリイミドフィルムを、搬送機構により一定方向に搬送しながら、測定機構にてこのポリイミドフィルムの面内位相差Reを測定する。測定機構により測定された面内位相差Reと、記憶機構に記憶された面内位相差の閾値とを比較することで、製造中のポリイミドフィルムの線膨張係数の異方性の大きさを迅速に判断し得、この結果を製造条件にフィードバックすることが可能である。したがって、線膨張係数の異方性の発生が抑制されたポリイミドフィルムを効率的に製造することができる。 In the polyimide film manufacturing apparatus of the present invention, the in-plane retardation Re of the polyimide film is measured by the measurement mechanism while the polyimide film is conveyed in a certain direction by the conveyance mechanism. By comparing the in-plane retardation Re measured by the measurement mechanism with the in-plane retardation threshold stored in the storage mechanism, the anisotropy of the linear expansion coefficient of the polyimide film being manufactured can be quickly determined. This result can be fed back to the manufacturing conditions. Therefore, a polyimide film in which the occurrence of anisotropy of the linear expansion coefficient is suppressed can be efficiently produced.
(記憶機構)
 本発明のポリイミドフィルム製造装置に配置される記憶機構は、検査対象であるポリイミドフィルムの面内位相差Reの閾値を記憶する機構である。記憶機構としては、例えば閾値を入力するための入力部と、閾値を記憶するための記憶部とを備えるもの等とし得る。記憶部は、磁気ディスク、ハードディスク、CD-ROM等のあらゆるデータ可読媒体とし得る。
(Memory mechanism)
The memory | storage mechanism arrange | positioned at the polyimide film manufacturing apparatus of this invention is a mechanism which memorize | stores the threshold value of the in-plane phase difference Re of the polyimide film which is a test object. For example, the storage mechanism may include an input unit for inputting a threshold value and a storage unit for storing the threshold value. The storage unit can be any data readable medium such as a magnetic disk, a hard disk, a CD-ROM or the like.
 記憶機構に記憶させる閾値は、前述のポリイミドフィルムの検査方法で説明した方法、すなわちポリイミドフィルムの線膨張係数の異方性の大きさと、ポリイミドフィルムの面内位相差Reとの相関関係を把握し、この相関関係と、検査対象のポリイミドフィルムに許容可能な線膨張係数の異方性の大きさとから、算出された値であることが好ましい。 The threshold value stored in the memory mechanism is based on the method described in the polyimide film inspection method described above, that is, the correlation between the anisotropy of the linear expansion coefficient of the polyimide film and the in-plane retardation Re of the polyimide film. The value calculated from the correlation and the anisotropy of the linear expansion coefficient acceptable for the polyimide film to be inspected is preferable.
(搬送機構)
 ポリイミドフィルム製造装置に配置される搬送機構は、ポリイミドフィルムを一定速度で、一定方向に移動させることが可能な機構であれば特に制限はなく、例えば一般的なロールフィルムの搬送機構等とし得る。
 上記搬送機構には、例えば搬送中にポリアミド酸ワニスの溶媒を乾燥及びポリアミド酸をイミド化するための加熱部や、乾燥風を吐出するための吐出部等が併設されていてもよい。また、ポリイミドフィルムを特定方向に延伸しながら、搬送する機構等であってもよい。
(Transport mechanism)
The transport mechanism disposed in the polyimide film manufacturing apparatus is not particularly limited as long as it is a mechanism capable of moving the polyimide film in a constant direction at a constant speed, and may be a general roll film transport mechanism, for example.
The transport mechanism may be provided with a heating unit for drying the solvent of the polyamic acid varnish and imidizing the polyamic acid during the transport, a discharge unit for discharging the drying air, and the like. Moreover, the mechanism etc. which convey a polyimide film in a specific direction may be sufficient.
(測定機構)
 測定機構は、ポリイミドフィルムの面内位相差Reを測定する機構である。測定機構の機器の種類は、検査手法により適宜選択される。例えば平行ニコル回転法、直交ニコル回転法等が採用された面内位相差Reの測定装置の一般的な光学系位相差測定装置等とすることができる。
(Measuring mechanism)
The measurement mechanism is a mechanism for measuring the in-plane retardation Re of the polyimide film. The type of equipment of the measurement mechanism is appropriately selected depending on the inspection method. For example, a general optical system phase difference measuring device of an in-plane phase difference Re measuring device employing a parallel Nicol rotation method, an orthogonal Nicol rotation method, or the like can be used.
 測定機構は、前記搬送機構によるポリイミドフィルムの搬送時に、インラインで面内位相差Reを測定するよう、配置されることが好ましい。また測定機構は、例えば図10に示すように、搬送機構によるポリイミドフィルムの搬送方向に対して、垂直方向(フィルムの幅方向)に、複数の光学系位相差測定装置を有する、もしくは図11に示すように、搬送機構によるポリイミドフィルムの搬送方向に対して、垂直方向に走査可能な光学系位相差測定装置を有することが好ましい。 The measuring mechanism is preferably arranged so as to measure the in-plane retardation Re in-line when the polyimide film is transported by the transport mechanism. Further, for example, as shown in FIG. 10, the measurement mechanism has a plurality of optical phase difference measuring devices in the direction perpendicular to the polyimide film conveyance direction by the conveyance mechanism (the width direction of the film), or in FIG. As shown, it is preferable to have an optical phase difference measuring device capable of scanning in the vertical direction with respect to the conveyance direction of the polyimide film by the conveyance mechanism.
(判定機構)
 判定機構は、記憶機構に記憶された面内位相差の閾値を読み出し、上述の測定機構により測定された面内位相差Reと比較演算する機構であり、例えば比較演算の結果を、外部に出力する手段を備えることが好ましい。外部への出力方法としては、例えば比較演算結果をモニター等に出力する方法や、面内位相差Reが閾値を超えた場合には、エラー音を発生する等の出力方法が挙げられる。
(Judgment mechanism)
The determination mechanism is a mechanism that reads the threshold value of the in-plane phase difference stored in the storage mechanism and performs a comparison operation with the in-plane phase difference Re measured by the measurement mechanism described above. For example, the result of the comparison operation is output to the outside. It is preferable to have a means to do. As an output method to the outside, for example, a method of outputting a comparison calculation result to a monitor or the like, and an output method of generating an error sound when the in-plane phase difference Re exceeds a threshold value are exemplified.
(製造条件制御機構)
 製造条件制御機構は、上記判定機構で比較演算された結果に基づき、ポリイミドフィルムの各種製造条件を制御する機構とし得る。各種製造条件としては、(i)乾燥時又はイミド化時にポリイミドフィルム又はその前駆体(ポリアミド酸)に負荷される張力、(ii)ポリイミドフィルム又はその前駆体(ポリアミド酸)の延伸倍率、(iii)ポリイミドフィルム又はその前駆体(ポリアミド酸)の加熱温度、(iv)ポリイミドフィルム又はその前駆体(ポリアミド酸)の加熱速度、(v)ポリイミドフィルム又はその前駆体(ポリアミド酸)に吹き付ける乾燥風の風量、(vi)ポリイミドフィルム又はその前駆体(ポリアミド酸)の搬送速度等が挙げられる。
(Manufacturing condition control mechanism)
The manufacturing condition control mechanism may be a mechanism that controls various manufacturing conditions of the polyimide film based on the result of the comparison operation by the determination mechanism. Various production conditions include (i) tension applied to the polyimide film or its precursor (polyamic acid) during drying or imidization, (ii) stretch ratio of the polyimide film or its precursor (polyamic acid), (iii) ) Heating temperature of polyimide film or its precursor (polyamic acid), (iv) Heating speed of polyimide film or its precursor (polyamic acid), (v) Dry air sprayed onto polyimide film or its precursor (polyamic acid) The air volume, (vi) the conveyance speed of the polyimide film or its precursor (polyamic acid), etc. are mentioned.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
(実施例1)(1)試験片の面内位相差及び配向角の分光学的測定
 図7に示すように、直交ニコル状態に配置した偏光子2と検光子8との間に、ポリイミドフィルム試験片4と位相差板6(530nm)とを配置し、透過率スペクトルを測定した。なお、ポリイミドフィルム試験片4としては、ロット番号がそれぞれ異なる東レデュポン社製のカプトンENフィルム(全芳香族ポリイミドフィルム)を6枚用いた。また、ハロゲンランプを光源とし、光ファイバーとマルチチャンネル分光器を検出器とした。
(Example 1) (1) Spectroscopic measurement of in-plane retardation and orientation angle of test piece As shown in FIG. 7, a polyimide film is disposed between a polarizer 2 and an analyzer 8 arranged in a crossed Nicol state. The test piece 4 and the phase difference plate 6 (530 nm) were arranged, and the transmittance spectrum was measured. In addition, as the polyimide film test piece 4, six Kapton EN films (fully aromatic polyimide films) manufactured by Toray DuPont having different lot numbers were used. A halogen lamp was used as a light source, and an optical fiber and a multi-channel spectrometer were used as detectors.
 測定波長範囲を450~750nmとして白色光を照射し、試験片4を光の透過軸10を回転中心として回転させながら透過率スペクトルを測定した。測定した透過率スペクトルの波形を前記式(5)でフィッティングし、各試験片4の面内位相差を算出した。また、ポリイミドフィルムのMD方向を0°として、位相差が最大値となるときの回転角度からポリイミドフィルムの配向角を算出した。 The white light was irradiated with a measurement wavelength range of 450 to 750 nm, and the transmittance spectrum was measured while rotating the test piece 4 around the light transmission axis 10 as the rotation center. The measured transmittance spectrum waveform was fitted by the above equation (5), and the in-plane phase difference of each test piece 4 was calculated. Moreover, the MD direction of the polyimide film was set to 0 °, and the orientation angle of the polyimide film was calculated from the rotation angle when the phase difference reached the maximum value.
 なお、上記測定前には、フィルム試験片4を偏光子2の前に設置、すなわち、光源、フィルム試験片4、偏光子2、検光子8、検出器の順に配置した状態でキャリブレーションを行い、ポリイミドフィルム試験片4の着色の寄与を考慮した。 Before the measurement, calibration is performed with the film test piece 4 placed in front of the polarizer 2, that is, the light source, the film test piece 4, the polarizer 2, the analyzer 8, and the detector arranged in this order. The contribution of coloring of the polyimide film test piece 4 was considered.
(2)フィルム試験片のΔCTE及び配向角の測定
 上記(1)で用いたポリイミドフィルムと同一のフィルム試験片(10cm×10cm)14について、図2に示すように、それぞれのフィルム試験片14から短冊状の測定用サンプル12を6枚ずつ(合計36枚)切り出した。なお、測定用サンプル12は、フィルム試験片14のMD方向軸を0°とし、そこから30°ずつ傾斜させ、合計で-30~120°の範囲で切り出した。熱機械分析装置(商品名「TMA」シリーズ、島津製作所社製)を使用し、窒素気流下、昇温速度5℃/min、室温~300℃の温度範囲の条件でそれぞれの測定用サンプルについてTMA試験を行い、100~200℃の範囲内における線膨張係数(CTE)を測定した。
(2) Measurement of ΔCTE and orientation angle of film test piece About the same film test piece (10 cm × 10 cm) 14 as the polyimide film used in the above (1), as shown in FIG. Six strip-shaped measurement samples 12 (36 in total) were cut out. The measurement sample 12 was cut in a range of −30 to 120 ° in total, with the MD direction axis of the film test piece 14 set to 0 °, tilted by 30 ° therefrom. Using a thermomechanical analyzer (trade name “TMA” series, manufactured by Shimadzu Corporation), TMA was measured for each measurement sample under the conditions of a temperature increase rate of 5 ° C./min and a temperature range of room temperature to 300 ° C. under a nitrogen stream. A test was conducted, and the coefficient of linear expansion (CTE) in the range of 100 to 200 ° C. was measured.
 それぞれの測定用サンプルについて測定された線膨張係数(CTE)の値(測定点25,35)を試験片ごとにプロットして、図3及び4に示す線膨張係数楕円体20,30を作図した。その後、図4に示す線膨張係数楕円体30の長軸半径bと短軸半径aの差(b-a)で表されるΔCTEを算出した。なお、算出したΔCTEは「フィルム試験片の線膨張係数の異方性の大きさS」に対応する。また、MD方向軸に対する、線膨張係数楕円体30の短軸の傾きθを算出してフィルム試験片の配向角とした。 The linear expansion coefficient ellipsoids 20 and 30 shown in FIGS. 3 and 4 were plotted by plotting the linear expansion coefficient (CTE) values (measurement points 25 and 35) measured for each measurement sample for each test piece. . Thereafter, ΔCTE represented by the difference (ba) between the major axis radius b and the minor axis radius a of the linear expansion coefficient ellipsoid 30 shown in FIG. 4 was calculated. The calculated ΔCTE corresponds to “the degree of anisotropy S 1 of the linear expansion coefficient of the film test piece”. The inclination θ of the short axis of the linear expansion coefficient ellipsoid 30 with respect to the MD direction axis was calculated as the orientation angle of the film test piece.
 上記試験片について、分光学的手法により算出した波長600nmにおける面内位相差及び配向角、並びに線膨張係数測定により算出したΔCTE及び配向角の測定結果を表1に示す。 Table 1 shows the in-plane retardation and orientation angle at a wavelength of 600 nm calculated by spectroscopic techniques, and ΔCTE and orientation angle measurement results calculated by measuring the linear expansion coefficient for the above test pieces.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(3)検量線の作成
 各試験片について、分光学的手法により算出した面内位相差に対して、線膨張係数測定により算出したΔCTEをプロットしたグラフ(検量線)を作成した。作成した検量線を図5に示す。また、下記式(7)を用いて相関係数Rを求めたところ、R=0.9188であった。
  R=σtR /σσ  ・・・(7)
 (σは線膨張係数楕円体における長軸半径と短軸半径の差(ΔCTE)の分散を示し、σは面内位相差の分散を示し、σtRはΔCTEと配向角との共分散を示す)
(3) Preparation of calibration curve For each test piece, a graph (calibration curve) was plotted in which ΔCTE calculated by linear expansion coefficient measurement was plotted against the in-plane phase difference calculated by the spectroscopic technique. The prepared calibration curve is shown in FIG. Also, The correlation coefficient R using the following equation (7), was R 2 = 0.9188.
R 2 = σ tR 2 / σ t σ R (7)
t represents the variance of the major axis radius and minor axis radius (ΔCTE) in the linear expansion coefficient ellipsoid, σ R represents the in-plane phase difference variance, and σ tR represents the covariance between ΔCTE and the orientation angle Indicates)
 また、各試験片について、分光学的手法により算出した配向角に対して、線膨張係数測定により算出した配向角をプロットしたグラフ(検量線)を作成した。作成した検量線を図6に示す。また、下記式(8)を用いて相関係数Rを求めたところ、R=0.9197であった。
  R=σAo /σσ  ・・・(8)
 (σはフィルム試験片の配向角の分散を示し、σはポリイミドフィルムの配向角の分散を示し、σAoはフィルム試験片の配向角とポリイミドフィルムの配向角との共分散を示す)
For each test piece, a graph (calibration curve) was prepared by plotting the orientation angle calculated by measuring the linear expansion coefficient with respect to the orientation angle calculated by the spectroscopic technique. The prepared calibration curve is shown in FIG. Also, The correlation coefficient R using the following equation (8), were R 2 = 0.9197.
R 2 = σ Ao 2 / σ A σ o (8)
A indicates the dispersion of the orientation angle of the film specimen, σ o indicates the dispersion of the orientation angle of the polyimide film, and σ Ao indicates the covariance of the orientation angle of the film specimen and the orientation angle of the polyimide film)
 図5に示すように、各試験片について、分光学的手法により算出した面内位相差と、線膨張係数の異方性の大きさS(ΔCTE)との間には、高い相関性が存在することが明らかである。これにより、ポリイミドフィルムの面内位相差を光学的に測定することで、ポリイミドフィルムの線膨張係数の異方性の大きさを予測可能であることが明らかである。 As shown in FIG. 5, for each test piece, there is a high correlation between the in-plane phase difference calculated by the spectroscopic method and the anisotropy magnitude S 1 (ΔCTE) of the linear expansion coefficient. It is clear that it exists. Thus, it is clear that the anisotropy of the linear expansion coefficient of the polyimide film can be predicted by optically measuring the in-plane retardation of the polyimide film.
 また、図6に示すように、光学的な手法により測定及び算出したフィルムの配向角と、TMA試験により測定及び算出したフィルムの配向角は、よく一致することが明らかである。 Further, as shown in FIG. 6, it is clear that the orientation angle of the film measured and calculated by the optical technique and the orientation angle of the film measured and calculated by the TMA test are in good agreement.
 本発明のポリイミドフィルムの検査方法を用いれば、ポリイミドフィルムの線膨張係数の異方性の大きさを迅速かつ簡便に非破壊で測定することができる。このため、この検査方法をポリイミドフィルムの製造工程中に組み込むことで、線膨張係数の異方性の発生が抑制されたポリイミドフィルムを効率的に製造することが可能となる。また、本発明のポリイミドフィルムの製造方法によれば、線膨張係数の異方性が極めて小さいポリイミドフィルムを簡便な手法で得ることができる。このように得られたポリイミドフィルムに銅箔を積層すれば、反り等の不具合が生じ難いとともに、配線形成工程の加熱時に歪みや熱応力が生ずる等の不具合も生じ難い銅張積層板を得ることができる。 If the polyimide film inspection method of the present invention is used, the anisotropy of the linear expansion coefficient of the polyimide film can be measured quickly and easily in a nondestructive manner. For this reason, it becomes possible to manufacture efficiently the polyimide film by which generation | occurrence | production of the anisotropy of the linear expansion coefficient was suppressed by incorporating this test | inspection method in the manufacturing process of a polyimide film. Moreover, according to the method for producing a polyimide film of the present invention, a polyimide film having an extremely small linear expansion coefficient anisotropy can be obtained by a simple technique. If a copper foil is laminated on the polyimide film thus obtained, a copper-clad laminate is obtained that is less likely to suffer from problems such as warping and that is less susceptible to problems such as distortion and thermal stress during heating in the wiring formation process. Can do.
 2 偏光子
 4 ポリイミドフィルム
 6 位相差板
 8 検光子
 9 光源
 10 光の透過軸
 11 分光器
 12 測定用サンプル
 14 フィルム試験片
 20,30 線膨張係数楕円体
 25,35 測定点
2 Polarizer 4 Polyimide film 6 Phase difference plate 8 Analyzer 9 Light source 10 Light transmission axis 11 Spectrometer 12 Sample for measurement 14 Film specimen 20, 30 Linear expansion coefficient ellipsoid 25, 35 Measurement point

Claims (15)

  1.  ポリイミドフィルムの線膨張係数の異方性の大きさと、前記ポリイミドフィルムの面内位相差との関係から、検査対象のポリイミドフィルムに許容可能な面内位相差の閾値を設定する工程(A)と、
     検査対象のポリイミドフィルムの面内位相差Reを、白色光にて分光学的に測定する工程(B)と、
     前記閾値と、前記工程(B)で測定された面内位相差Reとを比較し、検査対象のポリイミドフィルムの線膨張係数の異方性の大きさが、規格の範囲内であるかを判定する工程(C)とを有する、ポリイミドフィルムの検査方法。
    From the relationship between the anisotropy of the linear expansion coefficient of the polyimide film and the in-plane retardation of the polyimide film, a step (A) for setting a threshold value of the in-plane retardation acceptable for the polyimide film to be inspected; ,
    Step (B) of measuring the in-plane retardation Re of the polyimide film to be inspected spectroscopically with white light;
    The threshold value is compared with the in-plane retardation Re measured in the step (B) to determine whether the anisotropy of the linear expansion coefficient of the polyimide film to be inspected is within a standard range. A method for inspecting a polyimide film, comprising the step (C).
  2.  前記工程(A)が、
     ポリイミドフィルム試験片の面内位相差を白色光にて分光学的に測定する工程(a)と、
     前記ポリイミドフィルム試験片の線膨張係数の異方性の大きさSを測定する工程(b)と、
     前記試験片の面内位相差と前記異方性の大きさSとの相関関係を把握する工程(c)と、
     検査対象のポリイミドフィルムに許容可能な線膨張係数の異方性の大きさS、及び前記工程(c)で把握した相関関係に基づき、検査対象のポリイミドフィルムに許容可能な面内位相差の閾値を設定する工程(d)とを含む、請求項1に記載のポリイミドフィルムの検査方法。
    The step (A)
    A step (a) for spectroscopically measuring the in-plane retardation of the polyimide film test piece with white light; and
    And step (b) measuring the size S 1 of the anisotropy of the linear expansion coefficient of the polyimide film specimen,
    And step (c) to ascertain the correlation between the size S 1 of the anisotropic in-plane retardation of the test piece,
    Based on the anisotropy size S 2 of the linear expansion coefficient acceptable for the polyimide film to be inspected and the correlation grasped in the step (c), the in-plane retardation acceptable for the polyimide film to be inspected The inspection method of the polyimide film of Claim 1 including the process (d) which sets a threshold value.
  3.  請求項1に記載のポリイミドフィルムの検査方法が、ポリイミドフィルムの製膜過程で行われ、
     前記検査対象のポリイミドフィルムが、製膜過程におけるポリイミドフィルムである、ポリイミドフィルムの製造方法。
    The method for inspecting a polyimide film according to claim 1 is performed in the process of forming a polyimide film,
    The method for producing a polyimide film, wherein the polyimide film to be inspected is a polyimide film in a film forming process.
  4.  前記工程(B)で、検査対象のポリイミドフィルムの配向角も算出する、請求項3に記載のポリイミドフィルムの製造方法。 The method for producing a polyimide film according to claim 3, wherein the orientation angle of the polyimide film to be inspected is also calculated in the step (B).
  5.  前記工程(B)で、ロールフィルム状のポリイミドフィルムの、流れ方向及び幅方向に、前記面内位相差Reを複数箇所測定する、請求項3に記載のポリイミドフィルムの製造方法。 The method for producing a polyimide film according to claim 3, wherein in the step (B), the in-plane retardation Re is measured at a plurality of locations in the flow direction and the width direction of the roll-film-like polyimide film.
  6.  検査対象のポリイミドフィルムが、ロールフィルム又はカットフィルムである請求項3に記載のポリイミドフィルムの製造方法。 The method for producing a polyimide film according to claim 3, wherein the polyimide film to be inspected is a roll film or a cut film.
  7.  前記工程(B)の分光学的測定を、500~800nmの波長範囲の白色光で行う、請求項3に記載のポリイミドフィルムの製造方法。 The method for producing a polyimide film according to claim 3, wherein the spectroscopic measurement in the step (B) is performed with white light in a wavelength range of 500 to 800 nm.
  8.  前記工程(B)の分光学的測定が、白色光の透過率スペクトル測定を含み、
     予め、検査対象のポリイミドフィルムの透過率スペクトルを測定し、前記工程(B)で測定される透過率スペクトルを補正する、請求項3に記載のポリイミドフィルムの製造方法。
    The spectroscopic measurement of the step (B) includes white light transmittance spectrum measurement,
    The manufacturing method of the polyimide film of Claim 3 which measures the transmittance | permeability spectrum of the polyimide film of test object previously, and correct | amends the transmittance | permeability spectrum measured by the said process (B).
  9.  前記工程(C)で判定された結果を、ポリイミドフィルムの製造過程にフィードバックし、ポリイミドフィルムの製造条件を調整する工程(D)を含む、請求項3に記載のポリイミドフィルムの製造方法。 The method for producing a polyimide film according to claim 3, comprising a step (D) of feeding back a result determined in the step (C) to a production process of the polyimide film and adjusting a production condition of the polyimide film.
  10.  検査対象のポリイミドフィルムに許容可能な面内位相差の閾値を記憶する記憶機構と、
     ポリイミドフィルムを一定方向に搬送する搬送機構と、
     前記ポリイミドフィルムの面内位相差Reを測定する測定機構とを有するポリイミドフィルム製造装置。
    A storage mechanism for storing a threshold value of an in-plane retardation acceptable to the polyimide film to be inspected;
    A transport mechanism for transporting the polyimide film in a certain direction;
    A polyimide film manufacturing apparatus having a measurement mechanism for measuring an in-plane retardation Re of the polyimide film.
  11.  前記測定機構により測定された前記面内位相差Reと、前記記憶機構に記憶された閾値とを比較し、検査対象のポリイミドフィルムの線膨張係数の異方性の大きさが、規格の範囲内であるかを判定する判定機構を有する、請求項10に記載のポリイミドフィルム製造装置。 The in-plane retardation Re measured by the measurement mechanism is compared with the threshold value stored in the storage mechanism, and the anisotropy of the linear expansion coefficient of the polyimide film to be inspected is within the standard range. The polyimide film manufacturing apparatus of Claim 10 which has the determination mechanism which determines whether it is.
  12.  前記判定機構により判定された結果に基づき、ポリイミドフィルムの製造条件を制御する制御機構を有する、請求項11に記載のポリイミドフィルム製造装置。 The polyimide film manufacturing apparatus according to claim 11, further comprising a control mechanism for controlling manufacturing conditions of the polyimide film based on the result determined by the determination mechanism.
  13.  前記制御機構で制御する製造条件が、前記ポリイミドフィルム又はその前駆体に負荷される張力、前記ポリイミドフィルム又はその前駆体の延伸倍率、前記ポリイミドフィルム又はその前駆体の加熱温度、前記ポリイミドフィルム又はその前駆体の加熱速度、前記ポリイミドフィルム又はその前駆体に吹き付ける乾燥風の風量、及び前記ポリイミドフィルム又はその前駆体の搬送速度からなる群より選択される少なくとも一種である、請求項12に記載のポリイミドフィルム製造装置。 The manufacturing conditions controlled by the control mechanism are the tension applied to the polyimide film or its precursor, the draw ratio of the polyimide film or its precursor, the heating temperature of the polyimide film or its precursor, the polyimide film or its The polyimide according to claim 12, which is at least one selected from the group consisting of a heating rate of a precursor, an amount of dry air blown onto the polyimide film or its precursor, and a transport speed of the polyimide film or its precursor. Film manufacturing equipment.
  14.  前記測定機構が、前記搬送機構によるポリイミドフィルムの搬送方向に対して、垂直方向に配置された複数の光学系位相差測定装置を有する、請求項10に記載のポリイミドフィルム製造装置。 The polyimide film manufacturing apparatus according to claim 10, wherein the measurement mechanism includes a plurality of optical phase difference measurement devices arranged in a direction perpendicular to a conveyance direction of the polyimide film by the conveyance mechanism.
  15.  前記測定機構が、前記搬送機構によるポリイミドフィルムの搬送方向に対して、垂直方向に走査可能な光学系位相差測定装置を有する、請求項10に記載のポリイミドフィルム製造装置。
     
    The polyimide film manufacturing apparatus according to claim 10, wherein the measurement mechanism includes an optical phase difference measurement device that can scan in a direction perpendicular to a conveyance direction of the polyimide film by the conveyance mechanism.
PCT/JP2011/005987 2010-10-29 2011-10-26 Inspection method for polyimide film, polyimide film manufacturing process using same, and polyimide film manufacturing equipment WO2012056697A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012540683A JP5881610B2 (en) 2010-10-29 2011-10-26 Polyimide film inspection method, polyimide film manufacturing method using the same, and polyimide film manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010243757 2010-10-29
JP2010-243757 2010-10-29

Publications (1)

Publication Number Publication Date
WO2012056697A1 true WO2012056697A1 (en) 2012-05-03

Family

ID=45993443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005987 WO2012056697A1 (en) 2010-10-29 2011-10-26 Inspection method for polyimide film, polyimide film manufacturing process using same, and polyimide film manufacturing equipment

Country Status (3)

Country Link
JP (1) JP5881610B2 (en)
TW (1) TW201224433A (en)
WO (1) WO2012056697A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102967688A (en) * 2012-11-12 2013-03-13 中国航天科技集团公司第五研究院第五一〇研究所 Method for analyzing failure of electric conductive black polyimide film in spatial environment
JP2013253850A (en) * 2012-06-06 2013-12-19 Sumitomo Chemical Co Ltd Test device and optical film manufacturing system
JP2015141094A (en) * 2014-01-28 2015-08-03 住友金属鉱山株式会社 Polyimide film dimension stability evaluation method
JP2015190964A (en) * 2014-03-28 2015-11-02 住友金属鉱山株式会社 Evaluation method for plastic film
JP2016188339A (en) * 2015-03-30 2016-11-04 住友金属鉱山株式会社 Quality determination method of polyimide film and manufacturing method of copper-clad laminate and flexible wiring board using the polyimide film
JP2018119144A (en) * 2017-01-25 2018-08-02 住友化学株式会社 Polyimide-based film and laminate
WO2019097939A1 (en) * 2017-11-17 2019-05-23 国立大学法人京都大学 Spectral analysis device and spectral analysis method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264028A (en) * 1985-05-17 1986-11-21 Ube Ind Ltd Polyimide film having high dimensional stability and production thereof
JP2004231946A (en) * 2003-01-10 2004-08-19 Nitto Denko Corp Polyimide film and method for producing the same
WO2005087480A1 (en) * 2004-03-15 2005-09-22 Kaneka Corporation Novel polyimide film and use thereof
JP2008012776A (en) * 2006-07-05 2008-01-24 Kaneka Corp Method for producing polyimide film
JP2008106141A (en) * 2006-10-25 2008-05-08 Du Pont Toray Co Ltd Polyimide film and method for producing the same
JP2008137178A (en) * 2006-11-30 2008-06-19 Toray Ind Inc Film with metal layer, flexible circuit board using the film, and semiconductor device
JP2010111086A (en) * 2008-11-10 2010-05-20 Kaneka Corp Method for producing polyimide-based multilayer film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007079548A (en) * 2005-06-23 2007-03-29 Sumitomo Chemical Co Ltd Method of manufacturing optical film
JPWO2007046228A1 (en) * 2005-10-19 2009-04-23 コニカミノルタオプト株式会社 Optical film manufacturing method, optical film manufacturing apparatus, and optical film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264028A (en) * 1985-05-17 1986-11-21 Ube Ind Ltd Polyimide film having high dimensional stability and production thereof
JP2004231946A (en) * 2003-01-10 2004-08-19 Nitto Denko Corp Polyimide film and method for producing the same
WO2005087480A1 (en) * 2004-03-15 2005-09-22 Kaneka Corporation Novel polyimide film and use thereof
JP2008012776A (en) * 2006-07-05 2008-01-24 Kaneka Corp Method for producing polyimide film
JP2008106141A (en) * 2006-10-25 2008-05-08 Du Pont Toray Co Ltd Polyimide film and method for producing the same
JP2008137178A (en) * 2006-11-30 2008-06-19 Toray Ind Inc Film with metal layer, flexible circuit board using the film, and semiconductor device
JP2010111086A (en) * 2008-11-10 2010-05-20 Kaneka Corp Method for producing polyimide-based multilayer film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253850A (en) * 2012-06-06 2013-12-19 Sumitomo Chemical Co Ltd Test device and optical film manufacturing system
CN102967688A (en) * 2012-11-12 2013-03-13 中国航天科技集团公司第五研究院第五一〇研究所 Method for analyzing failure of electric conductive black polyimide film in spatial environment
JP2015141094A (en) * 2014-01-28 2015-08-03 住友金属鉱山株式会社 Polyimide film dimension stability evaluation method
JP2015190964A (en) * 2014-03-28 2015-11-02 住友金属鉱山株式会社 Evaluation method for plastic film
JP2016188339A (en) * 2015-03-30 2016-11-04 住友金属鉱山株式会社 Quality determination method of polyimide film and manufacturing method of copper-clad laminate and flexible wiring board using the polyimide film
JP2018119144A (en) * 2017-01-25 2018-08-02 住友化学株式会社 Polyimide-based film and laminate
WO2018139392A1 (en) * 2017-01-25 2018-08-02 住友化学株式会社 Polyimide-based film and laminate
JP7164304B2 (en) 2017-01-25 2022-11-01 住友化学株式会社 Polyimide film and laminate
WO2019097939A1 (en) * 2017-11-17 2019-05-23 国立大学法人京都大学 Spectral analysis device and spectral analysis method
JP2019095220A (en) * 2017-11-17 2019-06-20 国立大学法人京都大学 Spectroscopic analyzer and spectroscopic analysis method
US11215507B2 (en) 2017-11-17 2022-01-04 Kyoto University Spectral analysis device and spectral analysis method

Also Published As

Publication number Publication date
TW201224433A (en) 2012-06-16
JP5881610B2 (en) 2016-03-09
JPWO2012056697A1 (en) 2014-03-20

Similar Documents

Publication Publication Date Title
JP5881610B2 (en) Polyimide film inspection method, polyimide film manufacturing method using the same, and polyimide film manufacturing apparatus
US20120292800A1 (en) Process and equipment for production of polyimide film
JP4921090B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP6939768B2 (en) Polyimide film, method for producing polyimide film, and polyimide precursor resin composition
JPS6052706A (en) Film thickness measuring device
JP7078520B2 (en) Material property inspection equipment
JP5262612B2 (en) Moisture content measuring method and moisture content measuring device
JP4340814B2 (en) Spectral analysis apparatus and spectral analysis method
Garcia-Caurel et al. Mid-infrared Mueller ellipsometer with pseudo-achromatic optical elements
JP2006226995A (en) Optical anisotropic parameter measuring method and measuring device
JP2003243467A5 (en)
US20070174014A1 (en) Method for matching a model spectrum to a measured spectrum
US7349086B2 (en) Systems and methods for optical measurement
JPH07280520A (en) Method and device for measuring thickness of thin film, and manufacture of optical filter and high polymer film
Granado et al. Non-destructive DRIFT spectroscopy measurement of the degree of curing of industrial epoxy/silica composite buildup layers
JP4158801B2 (en) Method for manufacturing liquid crystal panel and method for manufacturing substrate for liquid crystal panel
JP2009241329A (en) Method for forming multilayered polyimide film
KR20070066932A (en) Anisotropy thin film estmating method and anisotropy thin film estimating apparatus
KR20140088789A (en) Inspection device for optical film
Feneberg et al. Temperature dependent dielectric function and reflectivity spectra of nonpolar wurtzite AlN
JP2009069054A (en) Optical anisotropy measuring device and optical anisotropy measuring method
JP4728830B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
KR100732118B1 (en) Rotation compensator type single arm ellipsometer
JP4831388B2 (en) Method for measuring in-plane and out-of-plane mode spectra of thin films using non-polarized electromagnetic waves
KR102568613B1 (en) System for measuring film thickness having warpage correction function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835842

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012540683

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11835842

Country of ref document: EP

Kind code of ref document: A1