JP5262612B2 - Moisture content measuring method and moisture content measuring device - Google Patents

Moisture content measuring method and moisture content measuring device Download PDF

Info

Publication number
JP5262612B2
JP5262612B2 JP2008294457A JP2008294457A JP5262612B2 JP 5262612 B2 JP5262612 B2 JP 5262612B2 JP 2008294457 A JP2008294457 A JP 2008294457A JP 2008294457 A JP2008294457 A JP 2008294457A JP 5262612 B2 JP5262612 B2 JP 5262612B2
Authority
JP
Japan
Prior art keywords
resin film
light
measurement light
wavelength
reference light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008294457A
Other languages
Japanese (ja)
Other versions
JP2010121998A (en
Inventor
寛人 渡邉
栄三郎 神田
吉幸 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008294457A priority Critical patent/JP5262612B2/en
Publication of JP2010121998A publication Critical patent/JP2010121998A/en
Application granted granted Critical
Publication of JP5262612B2 publication Critical patent/JP5262612B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a moisture content measuring method suitable for measuring accurately the amount of moisture included in a resin film F under conveyance in a processing device applying a processing onto the surface of the resin film F. <P>SOLUTION: This moisture content measuring device 50 includes an irradiation part 80 for irradiating measuring light L1 having a first wavelength and reference light L2 having a second wavelength onto the resin film F, and a light receiving part 90 for receiving the measuring light L1 and the reference light K2 transmitted through the resin film F. The moisture content measuring device 50 also includes a reflecting mirror unit 60 for allowing transmission through the resin film F, of the measuring light L1 and the reference light L2 irradiated onto the resin film F; and a computing unit 100 for operating the amount of moisture included in the resin film F based on absorbances of both the measuring light L1 and the reference light L2 received by the light receiving part 90. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、樹脂フィルムが含有している水分の量を測定する水分量測定方法及び水分量測定装置に関する。   The present invention relates to a moisture content measuring method and a moisture content measuring device for measuring the amount of moisture contained in a resin film.

長尺樹脂フィルムは可撓性(フレキシブル性)を有しており容易に加工できるので、電子部品、光学部品、包装材料などの産業界で広く用いられている。産業界において用いられている樹脂フィルムの一例としてポリイミドフィルムが挙げられる。ポリイミドフィルムは、電気絶縁性、耐熱性を有する材料であり、フレキシブルプリント配線板、COF(Chip on Film)、TABテープ等で電気、電子分野において広く用いられている。ロール状に巻かれたポリイミドフィルムは、真空成膜装置を使用してクロムや銅等の金属の薄膜が真空成膜され、化学エッチングなどの処理が施されて配線パターンが形成されてフレキシブルプリント基板、COF、TABテープ等に加工される。   The long resin film has flexibility (flexibility) and can be easily processed, and thus is widely used in the industrial fields such as electronic parts, optical parts, and packaging materials. An example of a resin film used in the industry is a polyimide film. A polyimide film is a material having electrical insulation and heat resistance, and is widely used in the electrical and electronic fields for flexible printed wiring boards, COF (Chip on Film), TAB tape, and the like. Rolled polyimide film is a flexible printed circuit board in which a thin film of metal such as chrome or copper is vacuum-deposited using a vacuum film-formation device and then subjected to processing such as chemical etching to form a wiring pattern. , COF, TAB tape, etc.

ところで、ポリイミドが水への親和性を有することから、吸湿したポリイミドフィルムを微細配線等に適用する場合、吸湿による寸法変化が無視できないという問題がある。吸湿したポリイミドフィルムは、金−錫共晶結合の実装を行う際等の加熱によって水分が蒸発し、いわゆるポップコーン現象が発生し、金属の薄膜にピンホールを生じて接続信頼性を低下させるという問題もある。吸湿したポリイミドフィルムは、封止板樹脂中にボイドを発生させ、信頼性を低下させるという問題もある。また、吸湿したポリイミドフィルムと金属の接着の長期的信頼性に問題が生じることもある。これらの信頼性を改善する技術として、吸湿したポリイミドフィルムから水分を除去する技術が知られている(例えば、特許文献1参照。)。   By the way, since polyimide has an affinity for water, there is a problem that dimensional change due to moisture absorption cannot be ignored when a polyimide film that has absorbed moisture is applied to a fine wiring or the like. Moisture-absorbing polyimide film causes moisture to evaporate by heating, such as when mounting gold-tin eutectic bonds, causing the so-called popcorn phenomenon, creating pinholes in metal thin films and reducing connection reliability. There is also. The polyimide film that has absorbed moisture also has a problem that voids are generated in the sealing plate resin and the reliability is lowered. In addition, there may be a problem in the long-term reliability of adhesion between the moisture-absorbed polyimide film and the metal. As a technique for improving these reliability, a technique for removing moisture from a moisture-absorbed polyimide film is known (for example, see Patent Document 1).

しかし、特許文献1には、吸湿したポリイミドフィルムからの水分の除去技術は開示されているものの、ポリイミドフィルムがどの程度まで吸湿しているか測定する技術は開示されていない。しかも、ロール状に巻かれたポリイミドフィルムは、ロール状の外側部分と内側部分では水分量が異なるだけでなく、ロール状に巻かれたポリイミドフィルム全体の水分量は季節によっても異なる。従って、ポリイミドフィルムの吸湿状態をコントロールするためには、ポリイミドフィルムの水分量を測定する必要がある。ポリイミドフィルムを処理するための処置装置の一例である乾燥装置の雰囲気を四重極質量分析計で測定することにより、雰囲気の水分量を測定することは可能である。しかし、この測定は乾燥装置内の雰囲気の水分量の測定であり、ポリイミドフィルム自体の水分量を測定していない。また、化学分析や熱分析でポリイミドフィルムの水分量の測定は可能であるが、この測定ではポリイミドフィルムを破壊しなければ分析結果が得られないことや、分析結果を乾燥条件へタイムリーに(迅速に)フィードバックできない問題がある。乾燥装置や真空成膜装置等の処理装置でポリイミドフィルムの水分量をタイムリーに測定できないことから、乾燥が不十分なポリイミドフィルムに金属の薄膜を真空成膜することがあり、フレキシブルプリント基板、COF、TABテープ等の信頼性が低下するおそれがある。このため、電子部品の歩留まり低下という問題が生じることがある。   However, Patent Document 1 discloses a technique for removing moisture from a moisture-absorbed polyimide film, but does not disclose a technique for measuring how much the polyimide film has absorbed moisture. Moreover, the polyimide film wound in a roll shape not only has a different moisture content in the roll-shaped outer portion and the inner portion, but also the moisture content of the entire polyimide film wound in a roll shape varies depending on the season. Therefore, in order to control the moisture absorption state of the polyimide film, it is necessary to measure the moisture content of the polyimide film. It is possible to measure the moisture content of the atmosphere by measuring the atmosphere of a drying apparatus, which is an example of a treatment apparatus for treating a polyimide film, with a quadrupole mass spectrometer. However, this measurement is a measurement of the moisture content of the atmosphere in the drying apparatus, and does not measure the moisture content of the polyimide film itself. In addition, it is possible to measure the moisture content of the polyimide film by chemical analysis or thermal analysis, but in this measurement the analysis result cannot be obtained unless the polyimide film is destroyed, and the analysis result can be timely transferred to the drying conditions ( There is a problem that cannot be fed back quickly). Since the moisture content of the polyimide film cannot be measured in a timely manner by a processing device such as a drying device or a vacuum film-forming device, a metal thin film may be vacuum-deposited on a polyimide film that is insufficiently dried. There is a risk that the reliability of COF, TAB tape, etc. may be reduced. For this reason, the problem of the yield reduction of an electronic component may arise.

上述の問題に対応し、非破壊で試料の水分量を測定する方法として、水分子の赤外吸収を利用する技術が知られている(例えば、特許文献2参照。)。特許文献2には、試料に照射した赤外線の反射を利用した赤外線水分測定装置の発明が開示されている。しかし、この測定装置は、ポリイミドフィルムのように光を透過する試料の水分測定には適していない。さらに、公知の赤外線水分量測定装置は、真空成膜装置、減圧乾燥装置等のポリイミドフィルムの表面等を処理する処理装置内に設置することが寸法などの制約等から困難である。処理装置内のポリイミドフィルムが含有する水分の量を赤外線水分測定装置で測定する場合、のぞき窓を介して測定することになる。この場合、赤外線の光路等の調整が困難であるので、水分量を精度良く測定できない。また、フィルム中の含有水分が微量の場合、吸収強度が小さくなり、分解能以下になること、及びフィルム内での多重反射による干渉の影響で吸収ピークの判別が困難になる問題が発生する。従来技術ではこの問題を回避できない。
特開平5−106021号公報 特開平9−250982号公報
A technique that utilizes infrared absorption of water molecules is known as a method for measuring the moisture content of a sample in a non-destructive manner in response to the above-described problem (see, for example, Patent Document 2). Patent Document 2 discloses an invention of an infrared moisture measuring device that utilizes reflection of infrared rays irradiated on a sample. However, this measuring device is not suitable for moisture measurement of a sample that transmits light like a polyimide film. Furthermore, it is difficult to install a known infrared moisture measuring device in a processing apparatus for processing the surface of a polyimide film, such as a vacuum film forming apparatus or a vacuum drying apparatus, due to restrictions on dimensions and the like. When the amount of moisture contained in the polyimide film in the processing apparatus is measured with an infrared moisture measuring device, it is measured through a viewing window. In this case, since it is difficult to adjust the optical path of infrared rays, the water content cannot be measured with high accuracy. In addition, when the amount of moisture contained in the film is small, the absorption intensity becomes low, the resolution becomes less than the resolution, and the problem that it becomes difficult to determine the absorption peak due to the influence of interference due to multiple reflection in the film occurs. The prior art cannot avoid this problem.
JP-A-5-106021 Japanese Patent Laid-Open No. 9-250982

本発明は、上記事情に鑑み、樹脂フィルムの表面に処理を施す処理装置内を搬送中の樹脂フィルムに含まれている微量水分の量を正確に測定するのに好適な水分量測定方法及び水分量測定装置を提供することを目的とする。   In view of the above circumstances, the present invention provides a moisture content measuring method and moisture suitable for accurately measuring the amount of trace moisture contained in a resin film that is being transported through a treatment apparatus that treats the surface of the resin film. An object is to provide a quantity measuring device.

上記目的を達成するための本発明の水分量測定方法は、水分子に吸収される第1波長をもつ赤外光である測定光と、水分子に吸収されない第2波長をもつ赤外光である参照光とを樹脂フィルムに照射して、この樹脂フィルムが含有する水分の量を測定する水分量測定方法であって、
前記測定光と前記参照光を略同じ光路を経由させて、搬送中の樹脂フィルムに照射して透過させた後、反射鏡で反射して樹脂フィルムに再び照射して透過させることを複数回繰り返す際、樹脂フィルムへの前記測定光の入射角を全て異ならせて複数回透過させ、且つ前記測定光のうち前記第1波長の吸収ピーク波長付近での反射による干渉を低減させるべく、前記測定光のうち前記第1波長の吸収ピークを含みかつ半値幅の2倍以上の波長の範囲内であって、前記測定光及び前記参照光が前記樹脂フィルムを複数回透過した後の各波長の透過率の偏差二乗和が最小値になるように前記入射角を定め、
前記樹脂フィルムを透過した前記測定光及び前記参照光双方の吸光度に基づいて前記樹脂フィルムが含有する水分の量を測定することを特徴とするものである。
In order to achieve the above object, the moisture content measuring method of the present invention comprises measuring light that is infrared light having a first wavelength absorbed by water molecules and infrared light having a second wavelength that is not absorbed by water molecules. A moisture content measuring method for irradiating a resin film with a certain reference light and measuring the amount of moisture contained in the resin film,
The measurement light and the reference light are passed through substantially the same optical path, irradiated and transmitted to the resin film in transit, and then reflected by the reflecting mirror and irradiated again and transmitted through the resin film a plurality of times. In this case, in order to reduce the interference caused by reflection near the absorption peak wavelength of the first wavelength of the measurement light, the measurement light is transmitted through the resin film a plurality of times with different angles of incidence. The transmittance of each wavelength after including the absorption peak of the first wavelength and within the wavelength range of twice or more of the half-value width after the measurement light and the reference light are transmitted through the resin film a plurality of times. The incident angle is determined so that the sum of squared deviations of
The amount of moisture contained in the resin film is measured based on the absorbance of both the measurement light and the reference light transmitted through the resin film.

さらにまた、
記測定光及び前記参照光を、内壁面に鏡が形成された照射用反射筒を経由させて前記樹脂フィルムに照射し、
樹脂フィルムを透過し終わった前記測定光及び前記参照光を、内壁面に鏡が形成された受光用反射筒を経由させて受光してもよい。
Furthermore,
The pre-Symbol measurement light and the reference light, by way of the irradiation reflected cylinder mirror is formed on the inner wall surface irradiating the resin film,
The measurement light and the reference light that have been transmitted through the resin film may be received through a light-receiving reflection tube having a mirror formed on the inner wall surface.

さらにまた、
記樹脂フィルムを透過し終わった前記測定光及び前記参照光を分光し、この分光した前記測定光及び前記参照光双方の吸光度に基づいて前記樹脂フィルムが含有する水分の量を測定してもよい。
Furthermore,
Spectrally pre Symbol the measurement light and the reference light to the resin film was finished transmitting, even by measuring the amount of water contained in the said resin film on the basis of the spectral was the measurement light and the reference light both absorbance Good.

さらにまた、
記樹脂フィルムを透過し終わった前記測定光及び前記参照光双方の強度をフーリエ変換して吸光度を得、この吸光度に基づいて、前記樹脂フィルムが含有する水分の量を測定してもよい。
Furthermore,
Before SL give absorbance intensity of the both measuring light and the reference light has finished passing through the resin film by Fourier transform, on the basis of the absorbance, the resin film may measure the amount of moisture contained.

また、上記目的を達成するための本発明の水分量測定装置は、水分子に吸収される第1波長をもつ赤外光である測定光と、水分子に吸収されない第2波長をもつ赤外光である参照光とを樹脂フィルムに照射して、この樹脂フィルムが含有する水分の量を測定する水分量測定装置であって、
前記測定光と前記参照光を略同じ光路を経由させて、搬送中の樹脂フィルムに照射する照射手段と、
前記測定光と前記参照光を略同じ光路を経由させて、該樹脂フィルムに複数回透過させるミラーユニットと、
前記樹脂フィルムを透過した前記測定光と前記参照光を受光する受光手段と、
該受光手段が受光した前記測定光及び前記参照光双方の吸光度に基づいて前記樹脂フィルムが含有する水分の量を演算する演算手段とを備え、
前記ミラーユニットは、樹脂フィルムに照射して透過させた前記測定光と前記参照光を反射して樹脂フィルムに再び照射して透過させることを複数回繰り返す反射鏡を複数備え、該複数の反射鏡は樹脂フィルムへの前記測定光の入射角を全て異ならせるように配置され、前記測定光のうち前記第1波長の吸収ピーク波長付近での反射による干渉を低減させるべく、前記測定光のうち前記第1波長の吸収ピークを含みかつ半値幅の2倍以上の波長の範囲内であって、前記測定光及び前記参照光が前記樹脂フィルムを複数回透過した後の各波長の透過率の偏差二乗和が最小値になるように前記入射角が配されていることを特徴とするものである。
In order to achieve the above object, the water content measuring apparatus of the present invention includes a measuring light that is infrared light having a first wavelength absorbed by water molecules and an infrared light having a second wavelength that is not absorbed by water molecules. A moisture measuring device that irradiates a resin film with a reference light that is light and measures the amount of moisture contained in the resin film,
Irradiation means for irradiating the resin film being conveyed through the measurement light and the reference light through substantially the same optical path;
A mirror unit that transmits the measurement light and the reference light through the resin film a plurality of times through substantially the same optical path;
A light receiving means for receiving the measurement light and the reference light transmitted through the resin film;
Calculating means for calculating the amount of moisture contained in the resin film based on the absorbance of both the measurement light and the reference light received by the light receiving means;
The mirror unit includes a plurality of reflecting mirrors that repeat a plurality of times that the measurement light and the reference light that are irradiated and transmitted through the resin film are reflected, and the resin film is irradiated and transmitted again. Is arranged so that all the incident angles of the measurement light to the resin film are different from each other, and in order to reduce interference due to reflection near the absorption peak wavelength of the first wavelength of the measurement light, the measurement light of the measurement light The square of the deviation of the transmittance of each wavelength after including the absorption peak of the first wavelength and within the wavelength range of twice or more of the half-value width after the measurement light and the reference light are transmitted through the resin film a plurality of times The incident angle is arranged so that the sum becomes a minimum value .

さらにまた、
記照射手段から照射された前記測定光及び前記参照光が前記樹脂フィルムに到達する前に通過する、内壁面に鏡が形成された照射用反射筒と、
樹脂フィルムを透過し終わった前記測定光及び前記参照光が前記受光手段に到達する前に通過する、内壁面に鏡が形成された受光用反射筒とを備えてもよい。
Furthermore,
Before Symbol the measurement light and the reference light irradiated from the irradiation means passes before reaching the resin film, and irradiating the reflective cylinder mirror is formed on the inner wall surface,
Pass before the resin film the measurement light and the reference light has finished transmitting a reaches the light receiving means may be a light receiving reflecting cylinder mirror is formed on the inner wall surface.

さらにまた、
記受光手段は、受光した前記測定光及び前記参照光を分光し、この分光した前記測定光及び前記参照光双方の強度を得るものであってもよい。
Furthermore,
Before Symbol receiving means, it disperses the measurement light and the reference light received may be one to obtain the spectral and the measurement light and the intensity of the reference light both have.

さらにまた、
記受光手段で得られた前記測定光及び前記参照光双方の強度をフーリエ変換して前記樹脂フィルムの吸光度を得るフーリエ変換手段を備え、
記演算手段は、前記吸光度に基づいて、前記樹脂フィルムが含有する水分の量を演算するものであってもよい。
Furthermore,
The intensity of the measuring light and the reference light both obtained in the previous SL light receiving means to a Fourier transform comprises a Fourier transform means for obtaining the absorbance of the resin film,
Before SL calculating means, on the basis of the absorbance, the resin film may be one that calculates the amount of moisture contained.

本発明にいう樹脂フィルムとしては、例えば、ポリイミド系フィルム、ポリアミド系フィルム、ポリエステル系フィルム、ポリテトラフルオロエチレン系フィルム、ポリフェニレンサルファイド系フィルム、ポリエチレンナフタレート系フィルム、又は液晶ポリマー系フィルムなどが挙げられる。また、樹脂フィルムの他にガラスエポキシ基板、その他樹脂ボード等にも、本発明が適用できる。樹脂フィルムはロール・ツー・ロールで搬送される場合や、枚葉式の場合を問わず、本発明を適応できる。   Examples of the resin film used in the present invention include a polyimide film, a polyamide film, a polyester film, a polytetrafluoroethylene film, a polyphenylene sulfide film, a polyethylene naphthalate film, and a liquid crystal polymer film. . In addition to the resin film, the present invention can be applied to a glass epoxy substrate, other resin boards, and the like. The present invention can be applied regardless of whether the resin film is conveyed by roll-to-roll or a single wafer type.

水分子に吸収される第1波長とは、水分子が分子振動するためのエネルギーと同等のエネルギーをもつ電磁波の波長域をいう。但し、第1波長をもつ測定光が吸収される割合は水分子の量によって変わる。また、水分子に吸収されない第2波長とは、水分子が分子振動するためのエネルギーとは異なるエネルギーをもつ電磁波の波長域をいう。但し、第2波長をもつ参照光が水分子に全く吸収されないわけではなく、僅かには吸収される。   The first wavelength absorbed by water molecules refers to the wavelength region of electromagnetic waves having energy equivalent to the energy for water molecules to vibrate. However, the rate at which the measurement light having the first wavelength is absorbed depends on the amount of water molecules. The second wavelength that is not absorbed by water molecules refers to a wavelength region of electromagnetic waves having energy different from energy for molecular vibration of water molecules. However, the reference light having the second wavelength is not completely absorbed by water molecules, but is slightly absorbed.

測定光と参照光が略同じ光路とは、水分量の測定に誤差を生じない程度に同じという意味であり、全く同じものも含まれるが、それだけではない。   The optical path in which the measurement light and the reference light are substantially the same means that the measurement is the same to the extent that no error occurs in the measurement of the moisture content, and includes exactly the same, but is not limited thereto.

ここに、半値幅とは、吸光度のピークの1/2の吸光度での波長(波数)の範囲をいう。入射角を定める波長範囲に吸収ピークが含まれる理由は、吸収ピーク付近の測定光の樹脂フィルムでの干渉を排除するからである。また、前記波長範囲は吸収ピークの半値幅の2倍以上の4倍以下が望ましい。前記波長範囲を規定する理由は、波長範囲が狭いときは吸収特定ができなくなるからであり、広い範囲では干渉を抑えることが難しいからである。   Here, the full width at half maximum refers to a wavelength (wave number) range at an absorbance that is 1/2 of the absorbance peak. The reason why the absorption peak is included in the wavelength range that determines the incident angle is to eliminate interference of the measurement light near the absorption peak on the resin film. The wavelength range is preferably not less than 2 times the half width of the absorption peak and not more than 4 times. The reason for defining the wavelength range is that it is impossible to specify absorption when the wavelength range is narrow, and it is difficult to suppress interference over a wide range.

本発明によれば、略同じ光路を経由させて測定光と参照光を樹脂フィルムFに照射して透過させて水分量を測定するので、光を樹脂フィルムに反射させることはない。従って、樹脂フィルムの水分量を正確に測定できる。また、搬送中の樹脂フィルムであっても、この樹脂フィルムに測定光と参照光を透過させて水分量を検出できるので、搬送中の樹脂フィルムに含有される水分量を正確に測定できる。従って、従来では真空成膜装置などの処理装置内の寸法的な制約に起因して、処理装置内の樹脂フィルム(例えばポリイミドフィルム)の吸湿状態(水分量)を正確に測定できなかったが、本発明の水分量測定装置を真空成膜装置などに取り付けることにより、樹脂フィルムの水分量を測定できることとなり、ポリイミドフィルムなどの水分量を正確に知ることができる。この結果、フレキシブルプリント基板の信頼性確保も可能となる。   According to the present invention, since the moisture amount is measured by irradiating and transmitting the measurement light and the reference light to the resin film F through substantially the same optical path, the light is not reflected on the resin film. Therefore, the moisture content of the resin film can be accurately measured. Further, even if the resin film is being transported, the moisture content can be detected by transmitting the measurement light and the reference light through the resin film, so that the moisture content contained in the resin film being transported can be accurately measured. Therefore, conventionally, due to dimensional restrictions in the processing apparatus such as a vacuum film forming apparatus, the moisture absorption state (moisture content) of the resin film (for example, polyimide film) in the processing apparatus could not be accurately measured. By attaching the moisture content measuring device of the present invention to a vacuum film forming device or the like, the moisture content of the resin film can be measured, and the moisture content of the polyimide film or the like can be accurately known. As a result, it becomes possible to ensure the reliability of the flexible printed circuit board.

本発明は、搬送中の樹脂フィルムに含まれる水分の量を測定する水分量測定方法に実現された。   The present invention has been realized in a moisture content measuring method for measuring the amount of moisture contained in a resin film being conveyed.

図1を参照して、本発明の水分量測定装置の一例が取り付けられたロール・ツー・ロール真空成膜装置を説明する。図1は、本発明の水分量測定装置の一例が取り付けられたロール・ツー・ロール真空成膜装置を模式的に示す正面図である。   With reference to FIG. 1, the roll-to-roll vacuum film-forming apparatus to which an example of the moisture content measuring apparatus of this invention was attached is demonstrated. FIG. 1 is a front view schematically showing a roll-to-roll vacuum film forming apparatus to which an example of the moisture content measuring apparatus of the present invention is attached.

真空処理装置10は、その構成部品のほとんどが収納された直方体状の減圧容器12を備えている。減圧容器12は円筒状でも良く、その形状は問わないが、10−4Pa〜1Paの範囲に減圧された状態を保持できる形状であれば良い。この真空処理装置10は、減圧容器12内において長尺の樹脂フィルムFを加熱乾燥し、続いて、スパッタリング成膜するためのものである。樹脂フィルムFとしてポリイミドフィルムを用いる場合、ポリイミドフィルムは水(水分)を吸着(吸収)しているので、加熱乾燥によって水を除去する部品が必要となる。また、樹脂フィルムFが含有する水分の量を測定する水分量測定装置50が真空処理装置10には取り付けられている。これらの部品も含めた真空処理装置10の構成部品を説明する。 The vacuum processing apparatus 10 includes a rectangular parallelepiped decompression container 12 in which most of the components are stored. The decompression vessel 12 may be cylindrical and may have any shape as long as the decompression vessel 12 can maintain a decompressed state in a range of 10 −4 Pa to 1 Pa. The vacuum processing apparatus 10 is for heat-drying a long resin film F in a vacuum container 12 and subsequently performing sputtering film formation. When a polyimide film is used as the resin film F, the polyimide film adsorbs (absorbs) water (moisture), and thus a component for removing water by heat drying is required. In addition, a moisture amount measuring device 50 that measures the amount of moisture contained in the resin film F is attached to the vacuum processing apparatus 10. The components of the vacuum processing apparatus 10 including these components will be described.

真空処理装置10は、減圧容器12の内部に配置された各種ロールなどの構成部品(部材)を備えており、処理前(成膜前)の樹脂フィルムF(ここではポリイミドフィルム)は巻出ロール14にロール状に巻かれている。この巻出ロール14から引き出された樹脂フィルムFは矢印X方向(搬送方向、送り出し方向)に搬送されながら各種の処理を施される。巻出ロール14は駆動力を有するロール(駆動ロールであり、モータなどの駆動源に接続されている。)であり、この巻出ロール14に続いて、樹脂フィルムFの搬送方向の上流側から順に、樹脂フィルムFを加熱して乾燥するための一対のヒータ16、第1ガイドロール18、水分量測定装置50の一部品であるミラーユニット60、第2ガイドロール20が配置されている。第1ガイドロール18及び第2ガイドロール20は樹脂フィルムFを矢印X方向に案内するための従動ローラであり、駆動力をもっておらず、搬送中の樹脂フィルムFとの摩擦で回転する。   The vacuum processing apparatus 10 includes components (members) such as various rolls arranged inside the decompression vessel 12, and a resin film F (polyimide film here) before processing (before film formation) is an unwinding roll. 14 is wound into a roll. The resin film F drawn out from the unwinding roll 14 is subjected to various processes while being conveyed in the arrow X direction (conveyance direction, delivery direction). The unwinding roll 14 is a roll having a driving force (a driving roll and connected to a driving source such as a motor). Following the unwinding roll 14, from the upstream side in the transport direction of the resin film F. In order, a pair of heaters 16 for heating and drying the resin film F, the first guide roll 18, the mirror unit 60, which is one part of the moisture content measuring device 50, and the second guide roll 20 are arranged. The first guide roll 18 and the second guide roll 20 are driven rollers for guiding the resin film F in the arrow X direction, do not have a driving force, and rotate by friction with the resin film F being conveyed.

樹脂フィルムFの搬送路のうち一対のヒータ16に挟まれた空間を樹脂フィルムFが通過することにより加熱乾燥され、これにより、樹脂フィルムFが吸収している水分が除去される。水分が除去された樹脂フィルムFはミラーユニット60を通過する際に後述するように、含有する水分の量が測定される。第2ガイドロール20よりも搬送方向下流側にはキャンロール22が配置されている。樹脂フィルムFは第2ガイドロール20に案内されてキャンロール22の外周面に所定の圧力で接触して冷却されながら搬送される。キャンロール22の外周面のうち樹脂フィルムFが接触している部分に対向して3台のスパッタリングカソード24,26,28が配置されている。これらのスパッタリングカソード24,26,28によって樹脂フィルムFの表面に所定の薄膜が形成される。   When the resin film F passes through the space between the pair of heaters 16 in the conveyance path of the resin film F, the resin film F is dried by heating, and thereby moisture absorbed by the resin film F is removed. As will be described later, when the resin film F from which moisture has been removed passes through the mirror unit 60, the amount of moisture contained therein is measured. A can roll 22 is disposed downstream of the second guide roll 20 in the transport direction. The resin film F is guided by the second guide roll 20 and is conveyed while being cooled by contacting the outer peripheral surface of the can roll 22 with a predetermined pressure. Three sputtering cathodes 24, 26, and 28 are arranged facing the portion of the outer peripheral surface of the can roll 22 that is in contact with the resin film F. A predetermined thin film is formed on the surface of the resin film F by the sputtering cathodes 24, 26 and 28.

キャンロール22の内部には水や有機溶媒などの冷媒が循環し、スパッタリングの際に樹脂フィルムFを冷却する。また、キャンロール22はロータリージョイント(図示せず)を備え、動力も備える駆動ローラである。樹脂フィルムFの搬送速度は、巻出ロール14、キャンロール22、後述する巻取ロール34の回転速度で決められる。なお、スパッタリングカソード24,26,28は、マグネトロン方式であり、スパッタリングターゲットを備えている。スパッタリングターゲットの材料は、長尺樹脂フィルムFに成膜する膜に応じて適宜に選択される。キャンロール22を通過した樹脂フィルムFは、第3ガイドロール30及び第4ガイドロール32に案内されて、駆動力を有する巻取ロール34に巻き取られる。   A coolant such as water or an organic solvent circulates inside the can roll 22 to cool the resin film F during sputtering. The can roll 22 is a drive roller that includes a rotary joint (not shown) and also has power. The conveyance speed of the resin film F is determined by the rotation speed of the unwinding roll 14, the can roll 22, and a winding roll 34 described later. The sputtering cathodes 24, 26, and 28 are of a magnetron type and include a sputtering target. The material of the sputtering target is appropriately selected according to the film to be formed on the long resin film F. The resin film F that has passed through the can roll 22 is guided by the third guide roll 30 and the fourth guide roll 32 and is taken up by the take-up roll 34 having a driving force.

図2を参照して、本発明の水分量測定方法について説明する。図2(a)は、測定光と参照光を樹脂フィルムFに一回だけ透過させる測定方法の一例を示す模式図であり、(b)は、測定光と参照光を樹脂フィルムFに複数回(図では6回)透過させる測定方法の一例を示す模式図である。   With reference to FIG. 2, the moisture content measuring method of the present invention will be described. FIG. 2A is a schematic diagram illustrating an example of a measurement method in which the measurement light and the reference light are transmitted through the resin film F only once. FIG. 2B is a schematic view illustrating the measurement light and the reference light through the resin film F a plurality of times. It is a schematic diagram which shows an example of the measuring method which permeate | transmits (six times in a figure).

本発明は、水分子に吸収される第1波長をもつ測定光と、水分子に吸収されない第2波長をもつ参照光とを、真空成膜装置や乾燥装置などの装置(例えば真空処理装置10)の内部で搬送中の樹脂フィルムFに照射して透過させ、この樹脂フィルムFを透過し終わった測定光及び参照光双方の吸光度に基づいて、樹脂フィルムFが含有する水分の量を測定する方法である。具体的には、照射部80(本発明にいう照射手段の一例である)から照射された測定光L1と参照光L2が略同じ光路LWを経由して(辿り)樹脂フィルムFを透過し、受光部90(本発明にいう受光手段の一例である)に導かれ、受光部90で受光された測定光L1及び参照光L2双方の強度が測定される。測定光L1と参照光L2の光路LWは同じ(略同じ)である。本実施例の水分量測定方法によれば、受光部90で受光した測定光L1と参照光L2の強度(強度は、吸光度に演算される)に基づいて樹脂フィルムFの吸光度を測定するので、樹脂フィルムFには非接触であり、樹脂フィルムFを破壊することもない。また、測定光L1と参照光L2が樹脂フィルムFに入射するときの入射角は0°〜80°(0°以上80°以下)の範囲内が望ましい。なお、樹脂フィルムFの吸光度=−log(樹脂フィルムFの透過率)、すなわち本発明の水分量測定装置では、樹脂フィルムFの吸光度=−log(樹脂フィルムがある場合の受光部90で受光した強度/樹脂フィルムがない場合の受光部90で受光した強度)である。   In the present invention, measurement light having a first wavelength that is absorbed by water molecules and reference light having a second wavelength that is not absorbed by water molecules are applied to an apparatus such as a vacuum film forming apparatus or a drying apparatus (for example, the vacuum processing apparatus 10). ), The resin film F being conveyed is irradiated and transmitted, and the amount of moisture contained in the resin film F is measured based on the absorbance of both the measurement light and the reference light that have been transmitted through the resin film F. Is the method. Specifically, the measurement light L1 and the reference light L2 irradiated from the irradiation unit 80 (which is an example of the irradiation means according to the present invention) pass through the resin film F via the substantially same optical path LW, and pass through the resin film F. The intensity of both the measurement light L1 and the reference light L2 that are guided to the light receiving unit 90 (which is an example of a light receiving unit in the present invention) and received by the light receiving unit 90 are measured. The optical paths LW of the measurement light L1 and the reference light L2 are the same (substantially the same). According to the moisture content measurement method of the present embodiment, the absorbance of the resin film F is measured based on the intensity of the measurement light L1 received by the light receiving unit 90 and the reference light L2 (the intensity is calculated as the absorbance). There is no contact with the resin film F, and the resin film F is not destroyed. Further, the incident angle when the measurement light L1 and the reference light L2 are incident on the resin film F is preferably in the range of 0 ° to 80 ° (0 ° to 80 °). The absorbance of the resin film F = −log (transmittance of the resin film F), that is, in the moisture content measuring apparatus of the present invention, the absorbance of the resin film F = −log (received by the light receiving unit 90 when there is a resin film). Intensity / intensity received by the light receiving unit 90 when there is no resin film).

上記のように設定した場合、樹脂フィルムFに照射された測定光L1と参照光L2は、同じ光路LWを辿り樹脂フィルムFに0°〜80°の範囲内の入射角で入射して透過し、受光部90へ導かれ、それらの強度が測定される。測定光L1と参照光L2の光路は同じなので、これらの光路LWの相違(差異)が測定光L1と参照光L2に与える影響を排除できる。また、樹脂フィルムFへの入射角を0°〜80°の範囲内とした理由は、入射角が80°を超えたときは透過率が低くなり測定感度が低下するためである。なお、入射角とは、樹脂フィルムFの法線と測定光L1及び参照光L2が成す角度をいう。   When set as described above, the measurement light L1 and the reference light L2 irradiated on the resin film F follow the same optical path LW and enter the resin film F at an incident angle within a range of 0 ° to 80 ° and transmit therethrough. Then, the light is guided to the light receiving unit 90 and the intensity thereof is measured. Since the optical paths of the measurement light L1 and the reference light L2 are the same, the influence of the difference (difference) between these optical paths LW on the measurement light L1 and the reference light L2 can be eliminated. Moreover, the reason for setting the incident angle to the resin film F within the range of 0 ° to 80 ° is that when the incident angle exceeds 80 °, the transmittance is lowered and the measurement sensitivity is lowered. In addition, an incident angle means the angle which the normal line of the resin film F, the measurement light L1, and the reference light L2 comprise.

図2(a)に示す例では、測定光L1と参照光L2を樹脂フィルムFに一回だけ透過させる例であり、照射部80から照射された測定光L1と参照光K2が、ミラーユニット60の反射鏡62で反射されて樹脂フィルムFへ照射される。測定光L1と参照光L2は樹脂フィルムFに入射角0°〜80°の範囲内で入射されるように反射鏡62によって反射される。なお、図2(a)の例では反射鏡62を用いているが、照射部80の位置によっては反射鏡62がなくても入射角0°〜80°を実現できる。すなわち、照射部80の取り付け位置の調整や選択又は反射鏡62のいずれかを適宜に選択することにより、測定光L1と参照光L2が入射角0°〜80°の範囲内になるように樹脂フィルムFに照射されるようにすればよい。樹脂フィルムFを透過した測定光L1と参照光L2は、反射鏡64で反射されて受光部90へ導かれる。   In the example shown in FIG. 2A, the measurement light L1 and the reference light L2 are transmitted only once through the resin film F, and the measurement light L1 and the reference light K2 irradiated from the irradiation unit 80 are converted into the mirror unit 60. Is reflected by the reflecting mirror 62 and irradiated onto the resin film F. The measurement light L1 and the reference light L2 are reflected by the reflecting mirror 62 so as to be incident on the resin film F within an incident angle range of 0 ° to 80 °. 2A, the reflecting mirror 62 is used. However, depending on the position of the irradiation unit 80, an incident angle of 0 ° to 80 ° can be realized without the reflecting mirror 62. That is, the resin is adjusted so that the measurement light L1 and the reference light L2 are within the range of incident angles of 0 ° to 80 ° by appropriately selecting either the adjustment or selection of the attachment position of the irradiation unit 80 or the reflecting mirror 62. The film F may be irradiated. The measurement light L1 and the reference light L2 that have passed through the resin film F are reflected by the reflecting mirror 64 and guided to the light receiving unit 90.

図2(b)に示す例では、測定光L1と参照光L2を樹脂フィルムFに6回透過させる例である。照射部80から照射された測定光L1と参照光L2は樹脂フィルムFを透過(第1回目の透過)して反射鏡66で反射され、樹脂フィルムFを再び透過(第2回目の透過)して反射鏡68で反射され、樹脂フィルムFを再び透過(第3回目の透過)して反射鏡70で反射され、樹脂フィルムFを再び透過(第4回目の透過)して反射鏡72で反射され、樹脂フィルムFを再び透過(第5目の透過)して反射鏡74で反射され、樹脂フィルムFを再び透過(第6回目の透過)して受光部90に導かれる。このように複数回透過させる場合であっても、測定光L1と参照光L2が入射角0°〜80°の範囲内で樹脂フィルムに入射するように反射鏡66,68,70,72,74を配置する。上記の例では、樹脂フィルムFを透過する回数を6回としたが、それ以下でもそれ以上でもよく、透過回数は樹脂フィルムFの材質等に応じて適宜に決められる。なお、反射鏡62,64,66,68,70,72,74は、ガラス板に金属膜をコーティングし、金属膜で測定光と参照光を反射するように構成されている。金属膜としては、赤外領域での反射率の高い金などの金属の膜が好ましい。反射鏡66,68,70,72,74はガラス板に例えばアルミニウム膜がコーティングされたものであり、アルミニウム膜で測定光L1と参照光L2が反射される。また、反射鏡62,64,66,68,70,72,74としては、平面鏡でも凹面鏡でもよく、測定光L1と参照光L2の光路LWの設計上、適宜に選択できる。図2(a),(b)の光路LWの概略図では、反射鏡62,64,66,68,70,72,74として平面鏡を用いているが、光路設計を適切に行うことで凹面鏡を用いてもよい。   In the example shown in FIG. 2B, the measurement light L1 and the reference light L2 are transmitted through the resin film F six times. The measurement light L1 and the reference light L2 emitted from the irradiation unit 80 are transmitted through the resin film F (first transmission), reflected by the reflecting mirror 66, and transmitted through the resin film F again (second transmission). And reflected by the reflecting mirror 68, transmitted again through the resin film F (third transmission), reflected by the reflecting mirror 70, transmitted again through the resin film F (fourth transmission), and reflected by the reflecting mirror 72. Then, the resin film F is transmitted again (fifth transmission) and reflected by the reflecting mirror 74, and the resin film F is transmitted again (sixth transmission) and guided to the light receiving unit 90. Even in the case where the light is transmitted a plurality of times in this way, the reflecting mirrors 66, 68, 70, 72, 74 so that the measurement light L1 and the reference light L2 are incident on the resin film within an incident angle range of 0 ° to 80 °. Place. In the above example, the number of times of transmission through the resin film F is six, but it may be less or more, and the number of transmission is appropriately determined according to the material of the resin film F and the like. The reflecting mirrors 62, 64, 66, 68, 70, 72, 74 are configured such that a glass plate is coated with a metal film, and the measurement light and the reference light are reflected by the metal film. As the metal film, a metal film such as gold having a high reflectance in the infrared region is preferable. The reflecting mirrors 66, 68, 70, 72, and 74 are made by, for example, coating an aluminum film on a glass plate, and the measurement light L1 and the reference light L2 are reflected by the aluminum film. The reflecting mirrors 62, 64, 66, 68, 70, 72, and 74 may be plane mirrors or concave mirrors, and can be appropriately selected in terms of the design of the optical path LW of the measurement light L1 and the reference light L2. In the schematic diagram of the optical path LW in FIGS. 2A and 2B, plane mirrors are used as the reflecting mirrors 62, 64, 66, 68, 70, 72, and 74. However, the concave mirror can be formed by appropriately designing the optical path. It may be used.

図2(b)の例のように測定光L1と参照光L2が樹脂フィルムFを複数回透過する(繰り返し透過する)場合は、樹脂フィルムFに含まれる水分の量が微量であっても、水分子による第1波長の吸収量を増幅させることができるので、測定感度を向上させることができる。さらに、フィルムを多数回透過させることにより水分吸収強度を高めること、及び多数回入射角度を最適化することでフィルム内多重反射による干渉を減少させることで、微量水分の検出が可能になる。   When the measurement light L1 and the reference light L2 are transmitted through the resin film F a plurality of times (repeatedly transmitted) as in the example of FIG. 2B, even if the amount of moisture contained in the resin film F is very small, Since the absorption amount of the first wavelength by water molecules can be amplified, measurement sensitivity can be improved. Furthermore, it is possible to detect a minute amount of moisture by increasing the moisture absorption intensity by transmitting the film a number of times and reducing the interference due to the multiple reflection within the film by optimizing the incident angle a number of times.

測定光L1としては、水分子によって吸収されることにより樹脂フィルムFの吸光度が変化する第1波長をもつ赤外光が挙げられる。第1波長は、水分子が特徴的に吸収する波長である。樹脂フィルムFとしてポリイミドフィルムを用いる場合、波長1800nm〜2000nmの範囲内の光源を用いるときは、測定光L1の波長(第1波長)を1910nmにすることができる。また、波長2600nm〜3300nmの範囲内の光源を用いるときは、2740nm又は2870nmの波長(第1波長)をもつ測定光L1にすることができる。   Examples of the measurement light L1 include infrared light having a first wavelength that changes the absorbance of the resin film F by being absorbed by water molecules. The first wavelength is a wavelength that is characteristically absorbed by water molecules. When using a polyimide film as the resin film F, when using a light source within a wavelength range of 1800 nm to 2000 nm, the wavelength (first wavelength) of the measurement light L1 can be 1910 nm. Further, when a light source in the wavelength range of 2600 nm to 3300 nm is used, the measurement light L1 having a wavelength (first wavelength) of 2740 nm or 2870 nm can be obtained.

参照光L2としては、水分子に吸収されずに樹脂フィルムFの吸光度が略変化しない波長をもつ赤外光が挙げられる。樹脂フィルムFにポリイミドフィルムを用いる場合、水分子が特徴的に吸収せずに、ポリイミドフィルムが特徴的に吸収する波長とすることができる。波長2600nm〜3300nmの範囲内の光源を用いるときは、3250nmの波長(第2波長)をもつ参照光L2にすることができる。波長3250nmはポリイミドの特徴的な吸収波長で、ポリイミドフィルムに含まれる水分ではほとんど変化しない。   Examples of the reference light L2 include infrared light having a wavelength that is not absorbed by water molecules and does not substantially change the absorbance of the resin film F. When a polyimide film is used for the resin film F, the wavelength that the polyimide film absorbs characteristically can be obtained without characteristically absorbing water molecules. When a light source having a wavelength in the range of 2600 nm to 3300 nm is used, the reference light L2 having a wavelength (second wavelength) of 3250 nm can be obtained. The wavelength 3250 nm is a characteristic absorption wavelength of polyimide, and hardly changes with moisture contained in the polyimide film.

受光部90で受光された測定光L1と参照光L2の強度を測定し、両者の吸光度の差または比を算出することにより、ポリイミドフィルムに含まれる水に起因する吸光度の変化を知ることができる。上記の吸光度の差または比は水分量の算出に応じて適宜に選択できる。特に、測定光L1と参照光L2のそれぞれの強度から透過率を算出し、さらに測定光L1の吸光度=−log(測定光L1の透過率)、参照光L2の吸光度=−log(参照光L2の透過率)を算出し、(測定光L1の吸光度−測定光L1の第1の波長での吸光度でのバックグラウンド)/(参照光L2の吸光度−参照光L2の第二の波長のバックグラウンド)から水分量を演算することが望ましい。なお、波長λの透過率は、透過率(λ)=樹脂フィルムがあるときの受光部90で受光した波長λの強度/樹脂フィルムが無いときの受光部90で受光した波長λの強度である。さらに、バックグラウンドとは、吸光度のスペクトルにおいて、ある波長ピークの直近に現れる平坦部分を前記ある波長のバックグラウンドという。測定光L1と参照光L2の吸光度の比を算出することにより、測定光L1および参照光L2が通過する光路の変動等を補うことが可能である。例えば、樹脂フィルムFをロール・ツー・ロール方式で搬送しながら、その水分量を測定する場合、測定光L1と参照光L2の強度の比を算出することにより、樹脂フィルムFを装置にセットするごとに反射鏡などの光路の微調整や光源などの劣化の補正をする必要がなくなる。   By measuring the intensities of the measurement light L1 and the reference light L2 received by the light receiving unit 90 and calculating the difference or ratio of the absorbance between them, it is possible to know the change in absorbance due to water contained in the polyimide film. . The above difference or ratio of absorbance can be appropriately selected according to the calculation of the water content. In particular, the transmittance is calculated from the intensities of the measurement light L1 and the reference light L2, and the absorbance of the measurement light L1 = −log (the transmittance of the measurement light L1) and the absorbance of the reference light L2 = −log (reference light L2). ) (Absorbance of the measurement light L1−background at the first wavelength of the measurement light L1) / (absorbance of the reference light L2−background of the second wavelength of the reference light L2) ) To calculate the amount of water. The transmittance of the wavelength λ is transmittance (λ) = the intensity of the wavelength λ received by the light receiving unit 90 when there is a resin film / the intensity of the wavelength λ received by the light receiving unit 90 when there is no resin film. . Furthermore, the background refers to a flat portion that appears in the immediate vicinity of a certain wavelength peak in the absorbance spectrum. By calculating the ratio of the absorbance of the measurement light L1 and the reference light L2, it is possible to compensate for variations in the optical path through which the measurement light L1 and the reference light L2 pass. For example, when the moisture content is measured while transporting the resin film F by the roll-to-roll method, the resin film F is set in the apparatus by calculating the ratio of the intensity of the measurement light L1 and the reference light L2. This eliminates the need for fine adjustment of the optical path of the reflecting mirror and correction of deterioration of the light source.

図2に示す概略図の光路LWであれば測定光L1のみでも樹脂フィルムFの水分量を測定することができる。しかし、上述の通り、測定光L1と参照光L2の吸光度の差または比を求めないときは、光路LWや光源の微調整が必要になることもあり、水分量の測定結果が不安定になる。   If the optical path LW of the schematic diagram shown in FIG. 2 is used, the moisture content of the resin film F can be measured only by the measurement light L1. However, as described above, when the difference or ratio between the absorbances of the measurement light L1 and the reference light L2 is not obtained, fine adjustment of the optical path LW or the light source may be necessary, and the measurement result of the moisture amount becomes unstable. .

図3と図4を参照して、照射部と受光部について説明する。図3は、照射部と受光部の概略構成を示す側面図であり、図1の矢印A方向から、照射部、受光部、及びミラーユニットを視た図である。図4は、測定光と参照光の強度に基づいて水分量を演算する演算器を示すブロック図である。また、図3では、紙面の表側から裏側に向けて樹脂フィルムFが搬送される(即ち、図3の紙面の表側から裏側に向かう方向が図1の矢印A方向である)。図3と図4では、図1と図2に示す構成要素と同じ構成要素には同じ符号が付されている。   The irradiation unit and the light receiving unit will be described with reference to FIGS. 3 and 4. FIG. 3 is a side view showing a schematic configuration of the irradiating unit and the light receiving unit, and is a view of the irradiating unit, the light receiving unit, and the mirror unit from the direction of arrow A in FIG. FIG. 4 is a block diagram showing a calculator that calculates the amount of water based on the intensity of the measurement light and the reference light. In FIG. 3, the resin film F is conveyed from the front side to the back side of the paper surface (that is, the direction from the front side to the back side of the paper surface in FIG. 3 is the direction of arrow A in FIG. 1). In FIG. 3 and FIG. 4, the same components as those shown in FIG. 1 and FIG.

真空処理装置10(図1参照)に組み込まれたミラーユニット60の内部を搬送中(通過中)の樹脂フィルムFが含有する水分の量を測定する水分量測定装置50は、上記の第1波長をもつ測定光L1と、上記の第2波長をもつ参照光L2とを樹脂フィルムFに照射する照射部80と、樹脂フィルムFを透過し終わった測定光L1と参照光K2が受光される受光部90とを備えている。また、水分量測定装置50は、樹脂フィルムFに照射された測定光L1と参照光L2を樹脂フィルムFに透過させるミラーユニット60と、受光部90が受光した測定光L1及び参照光L2双方の強度に基づいて樹脂フィルムFが含有する水分の量を演算する演算器100(本発明にいう、演算手段の一例である)とを備えている。ミラーユニット60の側壁には、搬送中の樹脂フィルムFが導入される開口61と出て行く開口(図示せず)が形成されている。   The water content measuring device 50 for measuring the amount of water contained in the resin film F being conveyed (passing through) the inside of the mirror unit 60 incorporated in the vacuum processing apparatus 10 (see FIG. 1) is the first wavelength. Irradiating unit 80 for irradiating the resin film F with the measurement light L1 having the above and the reference light L2 having the second wavelength, and the light reception by which the measurement light L1 and the reference light K2 having been transmitted through the resin film F are received. Part 90. In addition, the moisture content measuring device 50 includes a mirror unit 60 that transmits the measurement light L1 and the reference light L2 irradiated to the resin film F to the resin film F, and both the measurement light L1 and the reference light L2 received by the light receiving unit 90. A computing unit 100 (which is an example of computing means in the present invention) that computes the amount of moisture contained in the resin film F based on the strength is provided. On the side wall of the mirror unit 60, an opening 61 for introducing the resin film F being conveyed and an opening (not shown) are formed.

照射部80の光源82から照射された測定光L1と反射光L2は、後述する照射用反射筒86を通ってミラーユニット60に入り、図2(b)を参照して説明したように樹脂フィルムFを透過して反射鏡66で反射され、樹脂フィルムFを再び透過して反射鏡68で反射され、樹脂フィルムFを再び透過して反射鏡70で反射され、樹脂フィルムFを再び透過して反射鏡72で反射され、樹脂フィルムFを再び透過して反射鏡74で反射され、樹脂フィルムFを再び透過してミラーユニット60を抜け出し、後述する受光用反射筒92を通過して受光部90に導かれる。   The measurement light L1 and the reflected light L2 irradiated from the light source 82 of the irradiation unit 80 enter the mirror unit 60 through the irradiation reflector 86 described later, and as described with reference to FIG. F is transmitted through and reflected by the reflecting mirror 66, transmitted through the resin film F again, reflected by the reflecting mirror 68, transmitted through the resin film F again, reflected by the reflecting mirror 70, and transmitted through the resin film F again. Reflected by the reflecting mirror 72, transmitted again through the resin film F and reflected by the reflecting mirror 74, transmitted through the resin film F again, exits the mirror unit 60, passes through a light receiving reflecting cylinder 92, which will be described later, and receives the light receiving unit 90. Led to.

ミラーユニット60の内部には、測定光L1と反射光L2が同じ光路になるように各反射鏡66,68,70,72,74が配置されている。また、ロール・ツー・ロール真空成膜装置10では、ミラーユニット60内の雰囲気は、1Pa未満の減圧状態に保たれる。一方、照射部80、受光部90、照射用反射筒86、受光用反射筒92は常圧下に配置されている。なお、ロール・ツー・ロール真空成膜装置10の内部は減圧状態に保たれるが、ミラーユニット60の内部の雰囲気圧力は、使用状況に応じて適宜に選択できる。   Inside the mirror unit 60, the reflecting mirrors 66, 68, 70, 72, and 74 are arranged so that the measurement light L1 and the reflected light L2 have the same optical path. Further, in the roll-to-roll vacuum film forming apparatus 10, the atmosphere in the mirror unit 60 is maintained in a reduced pressure state of less than 1 Pa. On the other hand, the irradiation unit 80, the light receiving unit 90, the irradiation reflecting tube 86, and the light receiving reflecting tube 92 are arranged under normal pressure. Although the inside of the roll-to-roll vacuum film forming apparatus 10 is kept in a reduced pressure state, the atmospheric pressure inside the mirror unit 60 can be appropriately selected according to the use situation.

照射部80には、光源82からの測定光L1と参照光L2が通過する照射窓88が取り付けられている。照射窓88は照射用反射筒86の入口に相当し、照射部80の本体と照射用反射筒86との境界に配置されている。照射部80の内部は公知の鏡等(図示せず)によって、光源82からの測定光L1と参照光L2を適切に照射窓88に導く。光源82は、測定光L1と参照光L2を発光できる1つの光源とすることもできるし、測定光L1と参照光L2でそれぞれ専用の光源としても良い。すなわち、光源82には、例えば波長1800nm〜2000nmの範囲や波長2600nm〜3300nmの範囲で連続した波長の光を発光する光源や、測定光L1と参照光L2を別個の光源とすることができる。一つの光源から測定光L1と参照光L2が連続する光として発光する場合や、測定光L1と参照光L2を別個の光源で同時に発光させる場合には、後述するように受光部90の内部に分光手段を配置したり、照射部80の内部に干渉計84を配置したりしても良く、この場合は、測定光L1と参照光L2を光学的に分離できる。   An irradiation window 88 through which the measurement light L1 from the light source 82 and the reference light L2 pass is attached to the irradiation unit 80. The irradiation window 88 corresponds to the entrance of the irradiation reflector 86 and is arranged at the boundary between the main body of the irradiation unit 80 and the irradiation reflector 86. The inside of the irradiation unit 80 appropriately guides the measurement light L1 and the reference light L2 from the light source 82 to the irradiation window 88 by a known mirror or the like (not shown). The light source 82 may be a single light source that can emit the measurement light L1 and the reference light L2, or may be a dedicated light source for the measurement light L1 and the reference light L2. That is, for the light source 82, for example, a light source that emits light having a continuous wavelength in a wavelength range of 1800 nm to 2000 nm or a wavelength range of 2600 nm to 3300 nm, or the measurement light L1 and the reference light L2 can be separate light sources. When the measurement light L1 and the reference light L2 are emitted as a continuous light from one light source, or when the measurement light L1 and the reference light L2 are simultaneously emitted by separate light sources, as will be described later, the light receiving unit 90 has an inside. A spectroscopic unit may be arranged, or the interferometer 84 may be arranged inside the irradiation unit 80. In this case, the measurement light L1 and the reference light L2 can be optically separated.

照射部80から照射された測定光L1と参照光L2は、ミラーユニット60の入口側窓60aを通過し、ミラーユニット60を経由してミラーユニット60の出口側窓60b、受光窓94を通過して受光部90に到達する。照射窓88、ミラーユニット60の入口側窓60a,出口側窓60b、受光窓94はいずれも光学フッ化カルシウム(CaF)から作製されている。受光部90には、受光した測定光L1と参照光L2を検出器96に導く公知の鏡等(図示せず)と、測定光L1や参照光L2の強度を検出する検出器96(図示せず)とが配置されている。 The measurement light L1 and the reference light L2 emitted from the irradiation unit 80 pass through the entrance-side window 60a of the mirror unit 60, pass through the exit-side window 60b of the mirror unit 60 and the light-receiving window 94 via the mirror unit 60. To reach the light receiving unit 90. The irradiation window 88, the entrance side window 60a of the mirror unit 60, the exit side window 60b, and the light receiving window 94 are all made of optical calcium fluoride (CaF 2 ). The light receiving unit 90 includes a known mirror (not shown) that guides the received measurement light L1 and reference light L2 to the detector 96, and a detector 96 (not shown) that detects the intensity of the measurement light L1 and the reference light L2. Z) and are arranged.

照射用反射筒86及び受光用反射筒92について説明する。   The irradiation reflecting tube 86 and the light receiving reflecting tube 92 will be described.

ロール・ツー・ロール真空成膜装置10と照射部80および受光部90の間には、各装置の寸法などの制約から間隙(空間)が形成されることもあり、この場合、間隙を通過する測定光L1と参照光L2は散乱や拡散で減衰する。この隙間に照射用反射筒86と受光用反射筒92を配置することにより、照射部80とミラーユニット60の間、及びミラーユニット60と受光部90の間での測定光L1と参照光L2の散乱や拡散による減衰を抑制することができる。測定感度を向上させるためにも照射用反射筒86と受光用反射筒92を設けることが望ましい。照射用反射筒86、受光用反射筒92は内壁面の全てが鏡で形成されていればその形状は問わず、円筒でも、断面が四角形や六角形の筒であってもよい。鏡面は公知の電解研磨などにより形成することができる。   A gap (space) may be formed between the roll-to-roll vacuum film forming apparatus 10 and the irradiation unit 80 and the light receiving unit 90 due to restrictions such as the size of each device. In this case, the gap passes through the gap. The measurement light L1 and the reference light L2 are attenuated by scattering or diffusion. By disposing the irradiation reflecting tube 86 and the light receiving reflecting tube 92 in the gap, the measurement light L1 and the reference light L2 between the irradiation unit 80 and the mirror unit 60 and between the mirror unit 60 and the light receiving unit 90 are transmitted. Attenuation due to scattering and diffusion can be suppressed. In order to improve the measurement sensitivity, it is desirable to provide an irradiation reflecting tube 86 and a light receiving reflecting tube 92. Irradiation reflecting tube 86 and light receiving reflecting tube 92 may be of any shape as long as all of the inner wall surface is formed of a mirror, and may be a cylinder or a tube having a square or hexagonal cross section. The mirror surface can be formed by known electropolishing.

照射用反射筒86および受光用反射筒92の代わりに光ファイバーを用いることもできる。光ファイバーを用いる場合は、カルコゲナイト系の光ファイバーを用いるが、カルコゲナイト系光ファイバーは波長領域が限定されるので、測定光L1および参照光L2の波長の選択に注意する必要があり、選択した波長によっては測定精度の向上が望めない場合がある。光ファイバーを用いた場合の波長選択の注意点に鑑みたとき、反照射用反射筒86と受光用反射筒92を用いることにより、波長選択の自由度が上がり、測定精度向上にもつながる。   An optical fiber may be used instead of the irradiation reflecting tube 86 and the light receiving reflecting tube 92. When using an optical fiber, a chalcogenite-based optical fiber is used. However, since the wavelength region of the chalcogenite-based optical fiber is limited, it is necessary to pay attention to the selection of the wavelengths of the measurement light L1 and the reference light L2, and depending on the selected wavelength, measurement is possible. In some cases, improvement in accuracy cannot be expected. When considering the precautions of wavelength selection when using an optical fiber, the use of the anti-irradiation reflecting tube 86 and the light receiving reflecting tube 92 increases the degree of freedom in wavelength selection and leads to improved measurement accuracy.

受光部90の構成について説明する。   The configuration of the light receiving unit 90 will be described.

受光部90には、樹脂フィルムFを複数回透過した測定光と参照光を分光法によって波長ごとに分離する分光手段(図示せず)を備えてもよい。分光手段としては公知の分光手段、例えばプリズムや回折格子を用いることができる。さらに、受光窓94から検出器96に導かれる光路には、公知の光学手段、例えばスリットや鏡を備えても良い。照射部80の干渉計84に代えて、分光手段を備えた受光部でいわゆる分散型分光光度計を構成してもよい。本実施例の特徴であるミラーユニット60を用いることにより、商業的に入手可能な分光光度計の照射部と受光部を用いて精度の高い樹脂フィルムの水分量測定が行える。   The light receiving unit 90 may include a spectroscopic unit (not shown) that separates the measurement light and the reference light transmitted through the resin film F a plurality of times for each wavelength by spectroscopy. As the spectroscopic means, a known spectroscopic means such as a prism or a diffraction grating can be used. Furthermore, the optical path guided from the light receiving window 94 to the detector 96 may be provided with known optical means such as a slit or a mirror. Instead of the interferometer 84 of the irradiation unit 80, a so-called dispersive spectrophotometer may be configured by a light receiving unit provided with spectroscopic means. By using the mirror unit 60 which is a feature of the present embodiment, it is possible to measure the moisture content of the resin film with high accuracy using the irradiation unit and the light receiving unit of a commercially available spectrophotometer.

また、測定光L1と参照光L2を、樹脂フィルムFの放出する赤外線成分と分離するために、いわゆるチョッピングを行ってもよい。具体的には、測定光L1と参照光L2を周期的で機械的に遮光する手段を検出器96に備え、遮光の周期と測定光L1の強度と参照光L2の強度を同期させる信号処理を行う。両信号を同期させるには、公知の電気的な信号変換手段で行うことができる。   Further, in order to separate the measurement light L1 and the reference light L2 from the infrared component emitted from the resin film F, so-called chopping may be performed. Specifically, the detector 96 includes means for periodically and mechanically shielding the measurement light L1 and the reference light L2, and performs signal processing for synchronizing the light shielding period, the intensity of the measurement light L1, and the intensity of the reference light L2. Do. In order to synchronize both signals, a known electrical signal converting means can be used.

検出器96で検出された測定光L1と参照光L2の強度から樹脂フィルムFの吸光度を得る手法(検出した強度をフーリエ変換して算出される手法)を説明する。   A method for obtaining the absorbance of the resin film F from the intensities of the measurement light L1 and the reference light L2 detected by the detector 96 (a method calculated by Fourier transforming the detected intensity) will be described.

図4に示すように、照射部80には、光源82から発光した光を干渉させる干渉計84を備え、受光部90には、樹脂フィルムFを透過した光の強度を検出する検出器96を備えておき、検出器96で検出される強度と干渉計84から得られるインターフェログラムをフーリエ変換するフーリエ変換器98によって樹脂フィルムFの吸光度を測定しても良い。商業的に入手可能なフーリエ変換分光光度計の照射部80、試料室に代わるミラーユニット60、受光部90、フーリエ変換器98などとで水分量測定装置を構成する。すなわち、商業的に入手可能なフーリエ分光光度計(例えばフーリエ変換赤外分光光度計、以下FT−IRという)の照射部と受光部を利用して精度の高い樹脂フィルムFの水分量測定を図ることができる。フーリエ変換器98は、電子計算機で構成され、公知のものを用いることができる。なお、干渉計84としてはマイケルソン干渉計をはじめ公知の干渉計を用いることができる。さらに、フーリエ変換を行う場合には、樹脂フィルムF自体から放射される赤外成分は、測定時間(約1秒間)では変化せず、検出器96では直流成分となり、フーリエ変換によって除かれるので前述のチョッピング処理は不要となる。   As shown in FIG. 4, the irradiation unit 80 includes an interferometer 84 that interferes with the light emitted from the light source 82, and the light receiving unit 90 includes a detector 96 that detects the intensity of the light transmitted through the resin film F. The absorbance of the resin film F may be measured by a Fourier transformer 98 that Fourier-transforms the intensity detected by the detector 96 and the interferogram obtained from the interferometer 84. A commercially available Fourier transform spectrophotometer irradiation unit 80, a mirror unit 60 instead of the sample chamber, a light receiving unit 90, a Fourier transformer 98, and the like constitute a moisture content measuring apparatus. That is, the moisture content of the resin film F is measured with high accuracy by using an irradiation part and a light receiving part of a commercially available Fourier spectrophotometer (for example, a Fourier transform infrared spectrophotometer, hereinafter referred to as FT-IR). be able to. The Fourier transformer 98 is composed of an electronic computer, and a known one can be used. As the interferometer 84, a known interferometer such as a Michelson interferometer can be used. Further, in the case of performing Fourier transform, the infrared component emitted from the resin film F itself does not change during the measurement time (about 1 second) and becomes a direct current component in the detector 96 and is removed by Fourier transform. This chopping process becomes unnecessary.

樹脂フィルムFに含有されている水分の量の算出について説明する。   Calculation of the amount of moisture contained in the resin film F will be described.

上述したように、樹脂フィルムFの水分量は、測定光L1と参照光L2の強度から算出される吸光度の差または比に基づいて算出される。水分量既知の樹脂フィルムの吸光度の検量線を求めておけば、この検量線を参照にして、水分量未知の樹脂フィルムの吸光度から水分量を算出することができる。なお、検量線は樹脂フィルムの種類(銘柄も含む)や厚みごとに作成すればよい。水分量測定装置50が電子計算機(例えば、図4に示す水分量演算器102)を備えているならば、電子計算機に検量線を記憶させておき、得られた吸光度から水分量を算出するようにプログラムを組めばよい。樹脂フィルムの種類ごとに検量線を作成することは勿論であるが、銘柄ごとにも検量線を作成することが望ましい。この理由は、例えばポリイミドフィルムでは、フィルムメーカ各社で重合度合いなど異なることがあり、吸収波長のチャートが異なることがあるからである。   As described above, the moisture content of the resin film F is calculated based on the difference or ratio in absorbance calculated from the intensities of the measurement light L1 and the reference light L2. If a calibration curve for the absorbance of a resin film with a known moisture content is obtained, the moisture content can be calculated from the absorbance of the resin film with an unknown moisture content by referring to this calibration curve. A calibration curve may be created for each type (including brand) and thickness of the resin film. If the water content measuring apparatus 50 includes an electronic computer (for example, the water content calculator 102 shown in FIG. 4), a calibration curve is stored in the electronic computer, and the water content is calculated from the obtained absorbance. A program should be organized. Of course, a calibration curve is created for each type of resin film, but it is also desirable to create a calibration curve for each brand. This is because, for example, in polyimide films, the degree of polymerization may differ among film manufacturers, and the chart of absorption wavelengths may differ.

水分量測定装置50のバックグラウンド補正について説明する。   The background correction of the water content measuring device 50 will be described.

樹脂フィルムFをミラーユニット60内部にセットしない(樹脂フィルムFを通過させない)場合は、水分量測定装置50のバックグラウンド測定が可能である。バックグラウンドの測定結果は、電子計算機(水分量演算器102)等に記憶させて吸光度を補正するとよい。   When the resin film F is not set in the mirror unit 60 (the resin film F is not allowed to pass), the background measurement of the moisture content measuring device 50 is possible. The background measurement result may be stored in an electronic computer (water content calculator 102) or the like to correct the absorbance.

樹脂フィルムF内における反射による干渉について説明する。   Interference due to reflection in the resin film F will be described.

樹脂フィルムFに入射した光は樹脂フィルムF表面から出る時に一部樹脂フィルムF内へ反射する。この反射は樹脂フィルムF内で多数回発生し、結果として、透過光は、樹脂フィルムF内の透過回数が1回の光、3回の光、5回の光の重ね合わせになる。光の重ね合わせによる干渉が起こり光の強度が増減し、結果的に樹脂フィルムFの吸光度は、光波長依存性の山谷を持つことになる。この山谷が微量水分の吸収波長と一致すると測定値に影響することになる。樹脂フィルムFを1回しか透過させない場合は、この干渉を除去することはできないが、樹脂フィルムFを多数回透過する場合は、限られた波長の範囲内ではあるが、干渉を低減させることが可能になる。干渉による山谷の波長は、樹脂フィルムFの屈折率と厚さ以外に、入射角にも依存する。各透過で入射角が変わるだけでも、重ね合わせによる波長依存性の山谷を低減させることができる。これは入射角度によって、樹脂フィルムF内での光路長さが変わり、その結果、山谷の波長依存性が変わることに起因する。これを利用して、樹脂フィルムFを複数回透過させるときの互いの入射角度を替えることで各透過における干渉の山谷の位置を変化させ、結果として複数回透過における山谷の高さを低減することができる。
以下計算の概要を記す。樹脂フィルムFに入射した電解Eは樹脂フィルムF内での多数回反射して、透過された電界強度E‘は次式で与えられる。
The light incident on the resin film F is partially reflected into the resin film F when it exits the surface of the resin film F. This reflection is generated many times in the resin film F, and as a result, the transmitted light is a combination of light having one transmission in the resin film F, three lights, and five lights. Interference due to the superposition of light occurs and the intensity of the light increases or decreases. As a result, the absorbance of the resin film F has a peak and valley depending on the light wavelength. If these peaks and valleys coincide with the absorption wavelength of a trace amount of water, the measured value is affected. If the resin film F is transmitted only once, this interference cannot be removed. However, if the resin film F is transmitted many times, the interference can be reduced although it is within a limited wavelength range. It becomes possible. In addition to the refractive index and thickness of the resin film F, the wavelength of the peaks and valleys due to interference depends on the incident angle. Even if the incident angle changes with each transmission, the wavelength-dependent peaks and valleys due to superposition can be reduced. This is due to the fact that the optical path length in the resin film F changes depending on the incident angle, and as a result, the wavelength dependence of the valleys changes. Utilizing this, the position of the peaks and valleys of interference in each transmission is changed by changing the incident angle when transmitting the resin film F a plurality of times, and as a result, the height of the peaks and valleys in the transmission a plurality of times is reduced. Can do.
The outline of the calculation is described below. The electrolysis E incident on the resin film F is reflected many times in the resin film F, and the transmitted electric field strength E ′ is given by the following equation.

Figure 0005262612
ここに、n=樹脂フィルムF内の多重反射の回数、λ=光の空気中における波長、δ=2π2dcosβm/λ、α=膜伝播中の減衰係数=exp(−a d/cosβ) a=吸収係数(cm−1) p=空気から樹脂フィルムFへの透過係数 、q=樹脂フィルムFから空気への透過係数、r=樹脂フィルムFから空気への反射係数、d=薄膜の厚さ、m=薄膜の屈折率、θ=入射角、β=反射角 ( sinβ=sinθ/m)である。
Figure 0005262612
Here, n = number of multiple reflections in the resin film F, λ = wavelength of light in air, δ = 2π2 dcos βm / λ, α = attenuation coefficient during film propagation = exp (−ad / cosβ) a = absorption Coefficient (cm-1) p = Transmission coefficient from air to resin film F, q = Transmission coefficient from resin film F to air, r = Reflection coefficient from resin film F to air, d = Thickness of thin film, m = Refractive index of thin film, θ = incident angle, β = reflection angle (sin β = sin θ / m).

1式から樹脂フィルムF1回透過の透過率あるいは吸光度を計算でき、その値をここで、f(θi、λ)とする。樹脂フィルムF多数回透過の場合の吸光度Fは入射角θiと波長λの関数として与えられる。
F(λ)=Σf(θi、λ) i=1,2・・透過回数
各透過における入射角θiは図2bにおける反射鏡の角度によって決まる。従って、反射鏡の角度を適切に選ぶことにより、F(λ)のλ依存性を少なくすることができる。実際には、全波長で波長(λ)依存性をなくすることはできないので、測定する波長すなわち水分子の吸収がある波長付近で波長(λ)依存性を少なくするように、反射鏡角度を設定(すなわちθiを設定)する。実際の計算は、指定した波長範囲において、各波長で複数回透過した偏差二乗和が最少になるように、反射鏡の角度の最適値を装置設計可能範囲で求める。すなわち、指定した波長範囲において各波長λxごと2式の吸光度の偏差二乗和が最小になるようにθiを求めればよい。結果的には、任意の一の反射鏡の角度(入射角)を指定することで他の反射鏡の角度を規定することができる。
以上まとめると、樹脂フィルムFを複数回透過させることで1回透過に比較して、干渉の影響を低減させることができ、かつ、水分による吸収を増加させることができるので、感度良く水分量を測定することは可能になる。樹脂フィルムF自体の水分に影響されない波長が3195cm−1(3129nm)、水分により吸収される波長が3597cm−1(2780nm)、樹脂フィルムF透過回数6回の場合で、水分吸収付近の波長で干渉を低減する条件をシミュレーションした例を図8に示す。図8は、干渉について考慮していない反射鏡の角度、すなわち通常の角度(図3のように、反射鏡の角度は樹脂フィルムF面に対して、反射鏡66が22.5°、反射鏡68,70,72が0°、反射鏡74が22.5°である。)で入射した場合、及び、水分による吸収のある付近でもっとも干渉が少なくなる条件(反射鏡の角度が前述の通常角度に対して、それぞれ、反射鏡66が22.5°+1.1°、反射鏡68が0°−1.4°、反射鏡70が0°+0.7°、反射鏡72が0°+1.3°、反射鏡74が22.5°+5.7°)で計算した例である。
The transmittance or absorbance of the resin film F once transmitted can be calculated from the equation (1), and the value is defined as f (θi, λ). Absorbance F in the case of multiple transmissions of resin film F is given as a function of incident angle θi and wavelength λ.
F (λ) = Σf (θi, λ) i = 1, 2,... Number of transmissions The incident angle θi in each transmission is determined by the angle of the reflecting mirror in FIG. Therefore, the λ dependency of F (λ) can be reduced by appropriately selecting the angle of the reflecting mirror. Actually, since the wavelength (λ) dependence cannot be eliminated at all wavelengths, the reflector angle should be set so as to reduce the wavelength (λ) dependence around the wavelength to be measured, that is, the absorption of water molecules. Set (that is, set θi). In actual calculation, an optimum value of the angle of the reflecting mirror is obtained within the device designable range so that the sum of squared deviations transmitted at each wavelength a plurality of times in the designated wavelength range is minimized. That is, it is only necessary to obtain θi so that the sum of deviation squares of the two absorbances is minimized for each wavelength λx in the designated wavelength range. As a result, the angle of the other reflector can be defined by designating the angle (incident angle) of any one reflector.
In summary, the effect of interference can be reduced by allowing the resin film F to pass through a plurality of times as compared with a single pass, and the absorption by moisture can be increased, so that the moisture content can be increased with high sensitivity. It becomes possible to measure. In the case where the wavelength of the resin film F itself is not affected by the moisture is 3195 cm −1 (3129 nm), the wavelength absorbed by the moisture is 3597 cm −1 (2780 nm), and the resin film F is transmitted six times, interference occurs at a wavelength near the moisture absorption. FIG. 8 shows an example in which the conditions for reducing the above are simulated. FIG. 8 shows an angle of the reflecting mirror that does not consider interference, that is, a normal angle (as shown in FIG. 3, the reflecting mirror angle is 22.5 ° with respect to the resin film F surface, the reflecting mirror 66 is 22.5 °. 68, 70, 72 are 0 ° and the reflecting mirror 74 is 22.5 °), and the condition where the interference is the smallest in the vicinity of the absorption by moisture (the angle of the reflecting mirror is the above-mentioned normal). With respect to the angle, the reflecting mirror 66 is 22.5 ° + 1.1 °, the reflecting mirror 68 is 0 ° -1.4 °, the reflecting mirror 70 is 0 ° + 0.7 °, and the reflecting mirror 72 is 0 ° + 1. .3 ° and the reflection mirror 74 is 22.5 ° + 5.7 °).

本実施例の水分量測定装置50は、ロール・ツー・ロール真空成膜装置の他にロール・ツー・ロール乾燥装置や各種の樹脂フィルムFの表面処理装置に取り付けることができることは勿論である。また、本実施例の樹脂フィルムFの水分量測定方法の測定結果から、樹脂フィルムFの乾燥条件を制御することも可能である。樹脂フィルムFの乾燥の前(及び/又は後)に水分量を測定して乾燥条件を制御する。すなわち、乾燥前の樹脂フィルムFの水分量を測定して、望ましい乾燥体となるように乾燥条件(乾燥温度や乾燥時間)を制御し、また、乾燥後のポリイミド樹脂フィルムFの水分量を測定することで、乾燥条件にフィードバックすることができる。測定した水分量を乾燥条件にフィードバックすることは、以後の乾燥不良を抑制することができ、乾燥不良のポリイミド樹脂フィルムFを次工程に流出することを防止できる。加熱乾燥の熱源としては、電気ヒータ、電磁波(赤外線等も含む)等公知の熱源を用いることができる。さらに、本実施例の水分量測定方法は、真空中、大気中を問わず実施可能である。真空レベルを乾燥機構と成膜機構で分ける必要もない。   Of course, the moisture content measuring apparatus 50 of the present embodiment can be attached to a roll-to-roll drying apparatus or a surface treatment apparatus for various resin films F in addition to a roll-to-roll vacuum film forming apparatus. Moreover, it is also possible to control the drying conditions of the resin film F from the measurement result of the moisture content measuring method of the resin film F of this example. The moisture content is measured before (and / or after) drying of the resin film F to control the drying conditions. That is, the moisture content of the resin film F before drying is measured, the drying conditions (drying temperature and drying time) are controlled so as to obtain a desired dry body, and the moisture content of the polyimide resin film F after drying is measured. By doing so, it is possible to feed back to the drying conditions. Feeding back the measured moisture content to the drying conditions can suppress subsequent drying defects and prevent the poorly dried polyimide resin film F from flowing out to the next step. As a heat source for heat drying, a known heat source such as an electric heater or electromagnetic waves (including infrared rays) can be used. Furthermore, the moisture content measuring method of this embodiment can be carried out regardless of whether it is in a vacuum or in the atmosphere. There is no need to separate the vacuum level between the drying mechanism and the film forming mechanism.

図5から図7までを参照して、樹脂フィルムFに含まれる水分の量を実測する実験例を説明する。図5は、図1に示すロール・ツー・ロール真空成膜装置10と水分量測定装置50を使用して、樹脂フィルムFとしてカプトン(登録商標)東レ−デュポン社製)を用いて得られた検量線を示すグラフである。図6は、ロール・ツー・ロール真空成膜装置10を用いて減圧雰囲気下で水分量を変えた(乾燥時間を変えた)カプトン(ポリイミド樹脂フィルムF)の波長と吸光度の関係を示す参考グラフである。図7は、図1に示すロール・ツー・ロール真空成膜装置10と水分量測定装置50を使用して、樹脂フィルムFとしてユーピレックス(登録商標)宇部興産製)を用いて得られた検量線を示すグラフである。
(実験例1)
An experimental example in which the amount of moisture contained in the resin film F is actually measured will be described with reference to FIGS. FIG. 5 was obtained using Kapton (registered trademark) manufactured by Toray-DuPont Co., Ltd. as the resin film F using the roll-to-roll vacuum film forming apparatus 10 and the water content measuring apparatus 50 shown in FIG. It is a graph which shows a calibration curve. FIG. 6 is a reference graph showing the relationship between the wavelength and absorbance of Kapton (polyimide resin film F) in which the amount of water was changed (the drying time was changed) in a reduced-pressure atmosphere using the roll-to-roll vacuum film forming apparatus 10. It is. FIG. 7 shows a calibration curve obtained using the Upilex (registered trademark) Ube Industries) as the resin film F using the roll-to-roll vacuum film forming apparatus 10 and the water content measuring apparatus 50 shown in FIG. It is a graph which shows.
(Experimental example 1)

図1に示すロール・ツー・ロール真空成膜装置10のヒータ16、スパッタリングカソード24、26、28を運転せずに、水分量既知のポリイミド樹脂フィルムF(カプトン(登録商標)東レ−デュポン社製)について検量線を作成した。水分量既知のポリイミド樹脂フィルムFは、ポリイミド樹脂フィルムFの乾燥時間を変えて作製した。ポリイミド樹脂フィルムFの水分量は重量法で測定した。この検量線の相関係数は0.96であった。測定光L1の波長を2748nm(3639cm−1)、参照光L2の波長を2868nm(3487cm−1)とした。 Without operating the heater 16 and the sputtering cathodes 24, 26, and 28 of the roll-to-roll vacuum film forming apparatus 10 shown in FIG. A calibration curve was created for The polyimide resin film F having a known moisture content was produced by changing the drying time of the polyimide resin film F. The moisture content of the polyimide resin film F was measured by a weight method. The correlation coefficient of this calibration curve was 0.96. The wavelength of the measurement light L1 was 2748 nm (3639 cm −1 ), and the wavelength of the reference light L2 was 2868 nm (3487 cm −1 ).

図6に示す参考グラフを作成するに際しては、波長2600nm〜3300nmの光を含む発光する光源82とマイケルソン干渉計84を照射部80に組み込むと共に、反射鏡ユニット60の構成と光路は図3の通りとして、この光を樹脂フィルムFに6回透過することとした。各ミラーの角度は後述する後述する実験例3に同じである。また、受光部90で検出された信号をフーリエ変換するフーリエ変換器98(図4参照)と、検量線を記憶させておきこの検量線に従い水分量を算出するプログラムを格納した水分量演算器102とを備えた電子計算機100(本発明にいう演算手段の一例である)を用いた。さらに、2つの反射筒86,92(図3参照)も用いた。   When creating the reference graph shown in FIG. 6, the light source 82 and the Michelson interferometer 84 including light having a wavelength of 2600 nm to 3300 nm are incorporated in the irradiation unit 80, and the configuration and optical path of the reflector unit 60 are as shown in FIG. This light was transmitted through the resin film F six times. The angle of each mirror is the same as in Experimental Example 3 described later. In addition, a Fourier transformer 98 (see FIG. 4) that Fourier-transforms the signal detected by the light receiving unit 90, and a moisture amount calculator 102 that stores a calibration curve and stores a program for calculating a moisture amount according to the calibration curve. And an electronic computer 100 (which is an example of a computing means according to the present invention). Further, two reflecting cylinders 86 and 92 (see FIG. 3) were also used.

水分量未知の試料のカプトン(登録商標 東レ−デュポン社製)をロール・ツー・ロール真空成膜装置10にセットし、ヒータ16、スパッタリングカソード24,26、28を運転せずに、試料のカプトンの水分量を吸光度から測定したところ0.38質量%であった。比較のため、同試料についてTG−DTA(Thermogravimetry−DiFerential Thermal Analysis)で250℃に30分間保持して重量減少から水分量を測定したところ0.41質量%であった。吸光度で測定した水分量とTG−DTAで測定した水分量には差がない。さらに、上記した水分量未知の試料のカプトン樹脂フィルムFをロール・ツー・ロール成膜装置10で減圧雰囲気下、ヒータ16を運転して温度150℃で乾燥させて水分量を測定すると、図5の検量線によれば0.15質量%であった。
(実験例2)
A sample Kapton (registered trademark, manufactured by Toray-DuPont Co., Ltd.) having an unknown moisture content is set in the roll-to-roll vacuum film forming apparatus 10, and the sample Kapton is not operated without operating the heater 16, the sputtering cathodes 24, 26, and 28. The water content was measured from the absorbance, and it was 0.38% by mass. For comparison, the water content of the sample was measured by TG-DTA (Thermogravimetry-Diferential Thermal Analysis) at 250 ° C. for 30 minutes, and the water content was measured from the weight reduction to be 0.41% by mass. There is no difference between the amount of water measured by absorbance and the amount of water measured by TG-DTA. Furthermore, when the above-described sample Kapton resin film F having an unknown moisture content is dried in a roll-to-roll film forming apparatus 10 under a reduced pressure atmosphere by operating the heater 16 and drying at a temperature of 150 ° C., the moisture content is measured. According to the calibration curve, it was 0.15% by mass.
(Experimental example 2)

樹脂フィルムFとしてポリイミド樹脂フィルムF(ユーピレックス(登録商標)宇部興産製)を用いた以外は実験例1と同様に検量線(図7)を作成した。検量線の相関係数は0.94であった。   A calibration curve (FIG. 7) was prepared in the same manner as in Experimental Example 1 except that the polyimide resin film F (Upilex (registered trademark) Ube Industries) was used as the resin film F. The correlation coefficient of the calibration curve was 0.94.

水分量未知の試料ユーピレックスについて吸光度から水分量を測定したところ0.12質量%であった。同試料についてTG−DTAで250℃に30分間保持して重量減少から水分量を測定したところ0.10質量%であった。吸光度で測定した水分量とTG−DTAで測定した水分量には差がない。さらに、同試料についてロール・ツー・ロール成膜装置10を用いて減圧雰囲気下、温度300℃で乾燥させて水分量を測定した場合、図7の検量線によれば0.03質量%であった。各ミラーの角度は後述する後述する実験例3に同じである。
(実験例3)
When the moisture content of the sample Iupilex with unknown moisture content was measured from the absorbance, it was 0.12% by mass. The sample was held at 250 ° C. for 30 minutes with TG-DTA, and the water content was measured from the weight loss. There is no difference between the amount of water measured by absorbance and the amount of water measured by TG-DTA. Further, when the moisture content was measured by drying the sample at a temperature of 300 ° C. in a reduced pressure atmosphere using the roll-to-roll film forming apparatus 10, it was 0.03% by mass according to the calibration curve of FIG. It was. The angle of each mirror is the same as in Experimental Example 3 described later.
(Experimental example 3)

大気中にて反射鏡を5枚使用して樹脂フィルムFに6回透過させて干渉を低減した例について、図8と図9を参照して説明する。図8は、光を樹脂フィルムFに6回透過させたときの樹脂フィルムF内での干渉をパターンを示すグラフである。図9は、光を樹脂フィルムFに透過させる場合に入射角度を最適化して干渉を低減させたときの吸光度を示すグラフである。図9では、実線が入射角を最適化しない場合で、破線が入射角を最適化した場合である。図3の各反射鏡の樹脂フィルムFの面に対する角度は、入射角を最適化しない場合で反射鏡66が22.5°、反射鏡68,70,72が0°、反射鏡74が22.5°であり、入射角を最適化した場合では反射鏡66が23.6°、反射鏡68が−1.4°、反射鏡70が+0.7°、反射鏡72が+1.3°、反射鏡74が28.2°であった。   An example in which interference is reduced by using the five reflecting mirrors in the atmosphere and transmitting the resin film F six times will be described with reference to FIGS. FIG. 8 is a graph showing a pattern of interference in the resin film F when light is transmitted through the resin film F six times. FIG. 9 is a graph showing the absorbance when the incident angle is optimized to reduce interference when light is transmitted through the resin film F. FIG. In FIG. 9, the solid line indicates the case where the incident angle is not optimized, and the broken line indicates the case where the incident angle is optimized. The angles of the reflecting mirrors with respect to the surface of the resin film F in FIG. 3 are 22.5 ° for the reflecting mirror 66, 0 ° for the reflecting mirrors 68, 70, and 72, and 22.2 for the reflecting mirror 74 when the incident angle is not optimized. When the incident angle is optimized, the reflecting mirror 66 is 23.6 °, the reflecting mirror 68 is −1.4 °, the reflecting mirror 70 is + 0.7 °, the reflecting mirror 72 is + 1.3 °, The reflecting mirror 74 was 28.2 °.

最適角度は、始めに前述の値に概略合わせてFTIRにて吸光度測定を行い、干渉パターンが最少になるように反射鏡の角度を調整した。樹脂フィルムFへの入射角が通常の場合とに比較して、最適化した場合は干渉の山谷が減少していることが分る。このようにして大気中にて調整した反射鏡光学系ユニットを、真空装置内に組み込むことで、同一の干渉低減条件で測定することが可能である。   As for the optimum angle, first, the absorbance was measured by FTIR in accordance with the above-mentioned value, and the angle of the reflecting mirror was adjusted so as to minimize the interference pattern. It can be seen that when the angle of incidence on the resin film F is optimized, the peaks and valleys of interference are reduced. By incorporating the reflecting mirror optical system unit adjusted in the air in this way into the vacuum apparatus, it is possible to perform measurement under the same interference reduction conditions.

以上説明したように、本発明によれば、ロール・ツー・ロール成膜装置10(図1参照)のような処理装置から樹脂フィルムFを取り出すことなく、また、樹脂フィルムFを破壊することなく、さらには、処理装置の操業中に樹脂フィルムFの水分量を正確に測定できるので、産業上の利用可能性はきわめて高い。   As described above, according to the present invention, the resin film F is not taken out from the processing apparatus such as the roll-to-roll film forming apparatus 10 (see FIG. 1), and the resin film F is not destroyed. Furthermore, since the moisture content of the resin film F can be accurately measured during the operation of the processing apparatus, the industrial applicability is extremely high.

本発明の水分量測定装置の一例が取り付けられたロール・ツー・ロール真空成膜装置を模式的に示す正面図である。It is a front view which shows typically the roll-to-roll vacuum film-forming apparatus to which an example of the moisture content measuring apparatus of this invention was attached. (a)は、測定光と参照光を樹脂フィルムFに一回だけ透過させる測定方法の一例を示す模式図であり、(b)は、測定光と参照光を樹脂フィルムFに複数回(図では6回)透過させる測定方法の一例を示す模式図である。(A) is a schematic diagram which shows an example of the measuring method which permeate | transmits measurement light and reference light to the resin film F only once, (b) is measurement light and reference light to the resin film F several times (FIG. (6 times) is a schematic diagram showing an example of a measurement method for transmission. 照射部と受光部の概略構成を示す側面図であり、図1の矢印A方向から、照射部、受光部、及び反射鏡ユニットを視た図である。It is a side view which shows schematic structure of an irradiation part and a light-receiving part, and is the figure which looked at the irradiation part, the light-receiving part, and the reflective mirror unit from the arrow A direction of FIG. 測定光と参照光の強度に基づいて水分量を演算する演算器を示すブロック図である。It is a block diagram which shows the computing unit which calculates a moisture content based on the intensity | strength of measurement light and reference light. 図1に示すロール・ツー・ロール真空成膜装置10と水分量測定装置50を使用して、樹脂フィルムFとしてカプトン(登録商標)東レ−デュポン社製)を用いて得られた検量線を示すグラフである。The calibration curve obtained using the Kapton (registered trademark) Toray DuPont Co., Ltd. as the resin film F using the roll-to-roll vacuum film forming apparatus 10 and the water content measuring apparatus 50 shown in FIG. It is a graph. ロール・ツー・ロール真空成膜装置10を用いて減圧雰囲気下で水分量を変えた(乾燥時間を変えた)カプトン(ポリイミド樹脂フィルムF)の波長と吸光°の関係を示す参考グラフである。3 is a reference graph showing the relationship between the wavelength and absorbance of Kapton (polyimide resin film F) whose water content was changed (changed in drying time) under a reduced pressure atmosphere using the roll-to-roll vacuum film forming apparatus 10. 図1に示すロール・ツー・ロール真空成膜装置10と水分量測定装置50を使用して、樹脂フィルムFとしてユーピレックス(登録商標)宇部興産製)を用いて得られた検量線を示すグラフである。1 is a graph showing a calibration curve obtained by using the roll-to-roll vacuum film forming apparatus 10 and the water content measuring apparatus 50 shown in FIG. 1 and using the Upilex (registered trademark) Ube Industries) as the resin film F. is there. 光を樹脂フィルムFに6回透過させたときの樹脂フィルムF内での干渉をパターンを示すグラフである。It is a graph which shows a pattern in the resin film F when light is permeate | transmitted the resin film F 6 times. 光を樹脂フィルムFに透過させる場合に入射角度を最適化して干渉を低減させたときの吸光度を示すグラフである。It is a graph which shows the light absorbency when an incident angle is optimized and interference is reduced when transmitting light to the resin film.

符号の説明Explanation of symbols

50 水分量測定装置
60 反射鏡ユニット
80 照射部
82 光源
86 照射用反射筒
90 受光部
92 受光用反射筒
100 演算器
F 樹脂フィルムF
L1 測定光
L2 参照光
DESCRIPTION OF SYMBOLS 50 Moisture content measuring apparatus 60 Reflector unit 80 Irradiation part 82 Light source 86 Irradiation reflection cylinder 90 Light reception part 92 Light reception reflection cylinder 100 Calculator F Resin film F
L1 Measurement light L2 Reference light

Claims (8)

水分子に吸収される第1波長をもつ赤外光である測定光と、水分子に吸収されない第2波長をもつ赤外光である参照光とを樹脂フィルムに照射して、この樹脂フィルムが含有する水分の量を測定する水分量測定方法であって、
前記測定光と前記参照光を略同じ光路を経由させて、搬送中の樹脂フィルムに照射して透過させた後、反射鏡で反射して樹脂フィルムに再び照射して透過させることを複数回繰り返す際、樹脂フィルムへの前記測定光の入射角を全て異ならせて複数回透過させ、且つ前記測定光のうち前記第1波長の吸収ピーク波長付近での反射による干渉を低減させるべく、前記測定光のうち前記第1波長の吸収ピークを含みかつ半値幅の2倍以上の波長の範囲内であって、前記測定光及び前記参照光が前記樹脂フィルムを複数回透過した後の各波長の透過率の偏差二乗和が最小値になるように前記入射角を定め、
前記樹脂フィルムを透過した前記測定光及び前記参照光双方の吸光度に基づいて前記樹脂フィルムが含有する水分の量を測定することを特徴とする水分量測定方法。
The resin film is irradiated with measurement light that is infrared light having a first wavelength absorbed by water molecules and reference light that is infrared light having a second wavelength that is not absorbed by water molecules. A moisture content measuring method for measuring the amount of moisture contained,
The measurement light and the reference light are passed through substantially the same optical path, irradiated and transmitted to the resin film in transit, and then reflected by the reflecting mirror and irradiated again and transmitted through the resin film a plurality of times. In this case, in order to reduce the interference caused by reflection near the absorption peak wavelength of the first wavelength of the measurement light, the measurement light is transmitted through the resin film a plurality of times with different angles of incidence. The transmittance of each wavelength after including the absorption peak of the first wavelength and within the wavelength range of twice or more of the half-value width after the measurement light and the reference light are transmitted through the resin film a plurality of times. The incident angle is determined so that the sum of squared deviations of
A method for measuring moisture content, comprising measuring the amount of moisture contained in the resin film based on the absorbance of both the measurement light and the reference light transmitted through the resin film.
前記測定光及び前記参照光を、内壁面に鏡が形成された照射用反射筒を経由させて前記樹脂フィルムに照射し、
該樹脂フィルムを透過し終わった前記測定光及び前記参照光を、内壁面に鏡が形成された受光用反射筒を経由させて受光することを特徴とする請求項1に記載の水分量測定方法。
Irradiating the measurement light and the reference light to the resin film via an irradiation reflector having a mirror formed on the inner wall surface,
2. The method of measuring moisture content according to claim 1 , wherein the measurement light and the reference light that have been transmitted through the resin film are received via a light-receiving reflection tube having a mirror formed on an inner wall surface. .
前記樹脂フィルムを透過し終わった前記測定光及び前記参照光を分光し、この分光した前記測定光及び前記参照光双方の強度に基づいて前記樹脂フィルムが含有する水分の量を測定することを特徴とする請求項1又は2に記載の水分量測定方法。 The measurement light and the reference light that have been transmitted through the resin film are dispersed, and the amount of moisture contained in the resin film is measured based on the intensities of both of the measured measurement light and the reference light. The water content measuring method according to claim 1 or 2 . 前記樹脂フィルムを透過し終わった前記測定光及び前記参照光双方の強度をフーリエ変換して吸光度を得、この吸光度に基づいて、前記樹脂フィルムが含有する水分の量を測定することを特徴とする請求項1又は2に記載の水分量測定方法。 The intensity of both the measurement light and the reference light that have been transmitted through the resin film is Fourier-transformed to obtain absorbance, and based on this absorbance, the amount of moisture contained in the resin film is measured. The moisture content measuring method according to claim 1 or 2 . 水分子に吸収される第1波長をもつ赤外光である測定光と、水分子に吸収されない第2波長をもつ赤外光である参照光とを樹脂フィルムに照射して、この樹脂フィルムが含有する水分の量を測定する水分量測定装置であって、
前記測定光と前記参照光を略同じ光路を経由させて、搬送中の樹脂フィルムに照射する照射手段と、
前記測定光と前記参照光を略同じ光路を経由させて、該樹脂フィルムに複数回透過させるミラーユニットと、
前記樹脂フィルムを透過した前記測定光と前記参照光を受光する受光手段と、
該受光手段が受光した前記測定光及び前記参照光双方の吸光度に基づいて前記樹脂フィルムが含有する水分の量を演算する演算手段とを備え、
前記ミラーユニットは、樹脂フィルムに照射して透過させた前記測定光と前記参照光を反射して樹脂フィルムに再び照射して透過させることを複数回繰り返す反射鏡を複数備え、該複数の反射鏡は樹脂フィルムへの前記測定光の入射角を全て異ならせるように配置され、前記測定光のうち前記第1波長の吸収ピーク波長付近での反射による干渉を低減させるべく、前記測定光のうち前記第1波長の吸収ピークを含みかつ半値幅の2倍以上の波長の範囲内であって、前記測定光及び前記参照光が前記樹脂フィルムを複数回透過した後の各波長の透過率の偏差二乗和が最小値になるように前記入射角が配されていることを特徴とする水分量測定装置。
The resin film is irradiated with measurement light that is infrared light having a first wavelength absorbed by water molecules and reference light that is infrared light having a second wavelength that is not absorbed by water molecules. A moisture content measuring device for measuring the amount of moisture contained,
Irradiation means for irradiating the resin film being conveyed through the measurement light and the reference light through substantially the same optical path;
A mirror unit that transmits the measurement light and the reference light through the resin film a plurality of times through substantially the same optical path;
A light receiving means for receiving the measurement light and the reference light transmitted through the resin film;
Calculating means for calculating the amount of moisture contained in the resin film based on the absorbance of both the measurement light and the reference light received by the light receiving means;
The mirror unit includes a plurality of reflecting mirrors that repeat a plurality of times that the measurement light and the reference light that are irradiated and transmitted through the resin film are reflected, and the resin film is irradiated and transmitted again. Is arranged so that all the incident angles of the measurement light to the resin film are different from each other, and in order to reduce interference due to reflection near the absorption peak wavelength of the first wavelength of the measurement light, the measurement light of the measurement light The square of the deviation of the transmittance of each wavelength after including the absorption peak of the first wavelength and within the wavelength range of twice or more of the half-value width after the measurement light and the reference light are transmitted through the resin film a plurality of times The moisture content measuring apparatus , wherein the incident angle is arranged so that the sum is a minimum value .
前記照射手段から照射された前記測定光及び前記参照光が前記樹脂フィルムに到達する前に通過する、内壁面に鏡が形成された照射用反射筒と、
該樹脂フィルムを透過し終わった前記測定光及び前記参照光が前記受光手段に到達する前に通過する、内壁面に鏡が形成された受光用反射筒とを備えたことを特徴とする請求項5に記載の水分量測定装置。
A reflection cylinder for irradiation in which a mirror is formed on an inner wall surface, through which the measurement light and the reference light irradiated from the irradiation means pass before reaching the resin film;
Claims, characterized in that the measuring light and the reference light has finished transmitting the resin film passes before reaching the light receiving unit, and a light receiving reflecting cylinder mirror is formed on the inner wall surface 5. The water content measuring apparatus according to 5.
前記受光手段は、
受光した前記測定光及び前記参照光を分光し、この分光した前記測定光及び前記参照光双方の強度を得るものであることを特徴とする請求項5又は6に記載の水分量測定装置。
The light receiving means is
The water content measuring apparatus according to claim 5 or 6 , wherein the measurement light and the reference light received are split to obtain the intensities of both the split measurement light and the reference light.
前記受光手段で得られた前記測定光及び前記参照光双方の強度をフーリエ変換して前記樹脂フィルムの吸光度を得るフーリエ変換手段を備え、
前記演算手段は、前記吸光度に基づいて、前記樹脂フィルムが含有する水分の量を演算するものであることを特徴とする請求項5又は6に記載の水分量測定装置。
Fourier transform means for obtaining the absorbance of the resin film by Fourier transforming the intensity of both the measurement light and the reference light obtained by the light receiving means,
The moisture content measuring apparatus according to claim 5 or 6 , wherein the computing means computes the amount of moisture contained in the resin film based on the absorbance.
JP2008294457A 2008-11-18 2008-11-18 Moisture content measuring method and moisture content measuring device Expired - Fee Related JP5262612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008294457A JP5262612B2 (en) 2008-11-18 2008-11-18 Moisture content measuring method and moisture content measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008294457A JP5262612B2 (en) 2008-11-18 2008-11-18 Moisture content measuring method and moisture content measuring device

Publications (2)

Publication Number Publication Date
JP2010121998A JP2010121998A (en) 2010-06-03
JP5262612B2 true JP5262612B2 (en) 2013-08-14

Family

ID=42323473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008294457A Expired - Fee Related JP5262612B2 (en) 2008-11-18 2008-11-18 Moisture content measuring method and moisture content measuring device

Country Status (1)

Country Link
JP (1) JP5262612B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5787276B2 (en) * 2011-09-07 2015-09-30 株式会社リコー Moisture sensor, moisture detector, and image forming apparatus
CN103837491B (en) * 2012-11-21 2018-11-23 上海宝钢工业技术服务有限公司 The method for building up of the strip steel surface coating moisture content infrared spectrometry model
JP6926286B2 (en) * 2016-10-25 2021-08-25 旭化成株式会社 Evaluation device
KR102170120B1 (en) * 2017-07-28 2020-10-26 주식회사 엘지화학 Analysis method of acrylic acid contents in acrylate based adhesive resin copolymers
JP2019025056A (en) * 2017-07-31 2019-02-21 株式会社ジーシー Laser treatment apparatus and laser treatment apparatus control method
JP7003505B2 (en) * 2017-09-05 2022-01-20 コニカミノルタ株式会社 Recording material discrimination sensor and image forming device
KR102250889B1 (en) * 2019-12-13 2021-05-12 대한민국 Apparatus for drying forages and measuring moisture content of forages in real time using microwave and method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458139A (en) * 1990-06-27 1992-02-25 Kurabo Ind Ltd Infrared optical device
JPH04178540A (en) * 1990-11-13 1992-06-25 Konica Corp Measuring method for moisture content
US5250811A (en) * 1991-12-20 1993-10-05 Eastman Kodak Company Method for determining compositional information of a multilayer web
JPH0798284A (en) * 1993-09-29 1995-04-11 Toppan Printing Co Ltd Inspection apparatus for light transmitting film material
JPH08247936A (en) * 1995-03-14 1996-09-27 Toshiba Corp Spectroanalyzer
JP2000321203A (en) * 1999-05-13 2000-11-24 Tsutsumi Yotaro Infrared moisture meter
JP2001194301A (en) * 2000-01-05 2001-07-19 Yokogawa Electric Corp Method of measuring quality of paper sheet made of synthetic resin and device for measuring quality of paper sheet made of synthetic resin

Also Published As

Publication number Publication date
JP2010121998A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
JP5262612B2 (en) Moisture content measuring method and moisture content measuring device
US8314388B2 (en) Single-sided infrared sensor for thickness or weight measurement of products containing a reflective layer
WO2010013429A1 (en) Film thickness measuring device and film thickness measuring method
JP2022058585A (en) Multi-pass sample cell
US20230295875A1 (en) Yankee dryer profiler and control
WO2012056697A1 (en) Inspection method for polyimide film, polyimide film manufacturing process using same, and polyimide film manufacturing equipment
US20070187027A1 (en) Curing system and method of curing
CN111373244A (en) Method and apparatus for determining coating properties on transparent film and method for manufacturing capacitor film
WO1998010270A1 (en) Improvements in or relating to gas sensors
US20070189018A1 (en) Curing system and method of curing
KR20100114903A (en) Vacuum coating apparatus and method
JP6716589B2 (en) Process monitoring for UV curing
JP5595748B2 (en) Sheet drying control apparatus, drying control method, and sheet drying apparatus
JP5358822B2 (en) State measuring device and state measuring method
EP2972070B1 (en) Method and system for real-time in-process measurement of coating thickness
EP3403076A1 (en) Optical inspection system, processing system for processing of a material on a flexible substrate, and methods of inspecting a flexible substrate
JP3797476B2 (en) Thickness / component measurement method and apparatus
CN115290571A (en) Measuring apparatus and measuring method
JP5045498B2 (en) Method and apparatus for detecting end point of dry etching
JP2005283273A (en) Method for measuring deposit amount of coat
CN111912785A (en) Optical constant measuring method and optical constant measuring equipment
JP2006091001A (en) Method and system for measuring coating deposition, and infrared spectrophotometer
JP2001249050A (en) Temperature-measuring apparatus, film-forming apparatus, etching apparatus, method for measuring temperature, and etching method
CN113137929A (en) Optical measuring device and optical measuring method
JPH11241912A (en) Film thickness measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110527

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120727

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130312

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5262612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees