WO2020137870A1 - Method for producing polyimide resin - Google Patents

Method for producing polyimide resin Download PDF

Info

Publication number
WO2020137870A1
WO2020137870A1 PCT/JP2019/050059 JP2019050059W WO2020137870A1 WO 2020137870 A1 WO2020137870 A1 WO 2020137870A1 JP 2019050059 W JP2019050059 W JP 2019050059W WO 2020137870 A1 WO2020137870 A1 WO 2020137870A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
compound
film
polyimide resin
Prior art date
Application number
PCT/JP2019/050059
Other languages
French (fr)
Japanese (ja)
Inventor
絵美 大久保
奈津美 西山
皓史 宮本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019220593A external-priority patent/JP2020105496A/en
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201980085770.1A priority Critical patent/CN113272361A/en
Priority to KR1020217023008A priority patent/KR20210107761A/en
Publication of WO2020137870A1 publication Critical patent/WO2020137870A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides

Definitions

  • the present invention relates to a method for producing a polyimide resin used as a material for a flexible display device or the like.
  • Display devices such as liquid crystal display devices and organic EL display devices are widely used in various applications such as mobile phones and smart watches.
  • glass has been used as a front plate of such a display device, it is difficult to use it as a front plate material of a flexible display device because glass is very rigid and easily broken.
  • polyimide resin As one of the materials replacing the glass, and a film using the polyimide resin has been studied (Patent Document 1).
  • the film When applying such a film to a flexible display device, the film is required to have bending resistance that can withstand breakage even when repeatedly bent.
  • a film formed of a polyimide resin may not have sufficient flex resistance.
  • an object of the present invention is to provide a method for producing a polyimide resin capable of forming a film having excellent flex resistance.
  • Step (II) of reacting a compound A method for producing a polyimide resin comprising: [2] The amount of the diamine compound reacted in the step (I) is 80 to 99.99 mol, when the total amount of the diamine compound reacted in the steps (I) and (II) is 100 mol.
  • the production method of the present invention comprises a step (I) of obtaining an intermediate (K) comprising a step (A) of reacting a diamine compound with a carboxylic acid compound having three or more carbonyl groups, and the intermediate (K).
  • the step (II) of reacting a diamine compound is further included.
  • the polyimide resin obtained by the production method of the present invention means a polyimide resin, a polyamideimide resin, a polyimide resin precursor, or a polyamideimide resin precursor.
  • the polyimide resin precursor and the polyamide-imide resin precursor may be collectively referred to as a polyimide resin precursor.
  • the polyimide resin is a polymer containing a repeating structural unit containing an imide group, for example, a repeating structural unit derived from a diamine compound and a repeating structural unit derived from a carboxylic acid compound having three or more carbonyl groups (for example, tetracarboxylic acid). And a repeating structural unit derived from an acid compound).
  • the polyamide-imide resin is a polymer containing both a repeating structural unit containing an imide group and a repeating structural unit containing an amide group, and has, for example, a repeating structural unit derived from a diamine compound and three or more carbonyl groups.
  • a resin containing a repeating structural unit derived from a carboxylic acid compound for example, a repeating structural unit derived from a tricarboxylic acid compound), a repeating structural unit derived from a diamine compound, and a repeating structural unit derived from a carboxylic acid compound having three or more carbonyl groups.
  • a repeating structural unit derived from a tetracarboxylic acid compound and a repeating structural unit derived from a dicarboxylic acid compound.
  • the polyimide resin precursor indicates a precursor before producing a polyimide resin by imidization
  • the polyamideimide resin precursor indicates a precursor before producing a polyamideimide resin by imidization.
  • a "repeating structural unit” may be called a "structural unit.”
  • the “original constitutional unit” may be simply referred to as a “unit”, and for example, the compound-derived constitutional unit may be referred to as a compound unit.
  • Step (I) is a step of obtaining an intermediate (K) including a step (A) of reacting a diamine compound with a carboxylic acid compound having three or more carbonyl groups.
  • Step A Examples of the diamine compound used in Step A include aliphatic diamines such as acyclic or cycloaliphatic diamines, aromatic diamines, and mixtures thereof.
  • the “aromatic diamine” represents a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group or another substituent may be included in a part of its structure.
  • the aromatic ring may be a single ring or a condensed ring, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring and a fluorene ring, but are not limited thereto.
  • the "aliphatic diamine” represents a diamine in which an amino group is directly bonded to the aliphatic group, and may have an aromatic ring or other substituent in a part of its structure.
  • the diamine compounds may be used alone or in combination of two or more.
  • the diamine compound has, for example, the formula (1)
  • diamine compound (1) a compound represented by (may be referred to as a diamine compound (1)).
  • diamine compound (1) a compound represented by (may be referred to as a diamine compound (1).
  • two or more kinds of diamine compounds are used, two or more kinds of diamine compounds having different kinds of X in the diamine compound (1) may be used.
  • X represents a divalent organic group, preferably a divalent organic group having 4 to 40 carbon atoms, and more preferably a divalent organic group having 4 to 40 carbon atoms and having a cyclic structure.
  • the cyclic structure include an alicyclic structure, an aromatic ring structure, and a heterocyclic structure.
  • the organic group, the hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, in which case, the carbon number of the hydrocarbon group and the fluorine-substituted hydrocarbon group is preferably Is 1 to 8.
  • X is represented by formula (10), formula (11), formula (12), formula (13), formula (14), formula (15), formula (16), formula (17) and formula (18).
  • a chain hydrocarbon group is exemplified.
  • * represents a bond, V 1, V 2 and V 3 independently of one another, a single bond, -O -, - S -, - CH 2 -, - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3 ) 2 ⁇ , —C(CF 3 ) 2 —, —SO 2 —, —CO— or —N(Q)—.
  • Q represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom.
  • V 1 and V 3 are single bonds, —O— or —S—
  • V 2 is —CH 2 —, —C(CH 3 ) 2 —, —C(CF 3 ) 2 -Or-SO 2 -.
  • the bonding position of each of V 1 and V 2 with respect to each ring and the bonding position of each of V 2 and V 3 with respect to each ring are preferably a meta position or a para position with respect to each ring, and in the para position. More preferably.
  • V 1 , V 2 and V 3 are each independently a single bond, —O— from the viewpoint of easily improving the elastic modulus, flexibility, bending resistance and surface hardness of a film containing a polyimide resin.
  • —S— is preferable, and a single bond or —O— is more preferable.
  • X in formula (1) is represented by formula (2):
  • R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms,
  • the hydrogen atoms contained in R 1 to R 8 may be independently substituted with a halogen atom, and * represents a bond.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carbon number 1 It represents an alkoxy group having 6 to 6 or an aryl group having 6 to 12 carbon atoms.
  • Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group and 2-methyl- group.
  • Examples thereof include a butyl group, a 3-methylbutyl group, a 2-ethyl-propyl group, and an n-hexyl group.
  • Examples of the alkoxy group having 1 to 6 carbon atoms include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, hexyloxy group and cyclohexyloxy group.
  • Examples of the aryl group having 6 to 12 carbon atoms include phenyl group, tolyl group, xylyl group, naphthyl group and biphenyl group.
  • R 1 to R 8 independently of each other preferably represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, wherein R 1 to R 8
  • the hydrogen atoms contained in R 8 may be independently substituted with a halogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • R 1 to R 8 are, independently of each other, more preferably a hydrogen atom, a methyl group or a fluoro group from the viewpoint of easily improving the surface hardness, optical properties, elastic modulus and flex resistance of the film containing a polyimide resin.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are hydrogen atoms
  • R 7 and R 8 are hydrogen atoms, a methyl group and a fluoro group.
  • Chloro group or trifluoromethyl group, particularly preferably R 7 and R 8 represent methyl group or trifluoromethyl group.
  • the formula (2) is the formula (2'):
  • the film containing the polyimide resin has a haze and a yellowness index (hereinafter, referred to as YI value). Sometimes)), and it is easy to improve optical characteristics. Further, the skeleton containing the elemental fluorine improves the solubility of the polyimide resin in the solvent, and the viscosity of the resin varnish can be easily suppressed to a low level.
  • examples of the aliphatic diamine include acyclic aliphatic diamine such as hexamethylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, norbornanediamine. And cycloaliphatic diamines such as 4,4′-diaminodicyclohexylmethane. These may be used alone or in combination of two or more.
  • aromatic diamines examples include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene, and 2,6-diaminonaphthalene.
  • An aromatic diamine having one aromatic ring 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′- Diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4 -Aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl] Propane, 2,2-bis[4-
  • the aromatic diamine is preferably 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenyl sulfone, 1,4-bis(4-aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2′-dimethylbenzidine, 2,2′-bis (Trifluoromethyl)-4,4′-diaminodiphenyl (
  • diamine compounds from the viewpoint of high surface hardness, high transparency, high elastic modulus, high flexibility, high bending resistance and low colorability of a film containing a polyimide resin, an aromatic compound having a biphenyl structure It is preferable to use at least one selected from the group consisting of diamines.
  • TFMB 2,2′-bis(trifluoromethyl)-4,4′-diaminodiphenyl
  • a diamine compound in which X in formula (1) is a group represented by formula (2) for example, X in formula (1) is represented by formula (2′).
  • the ratio of the diamine compound as a group is preferably 30 mol% or more, more preferably 50 mol% or more, further preferably 70 mol% or more, and particularly preferably, with respect to the total molar amount of the diamine compound used in Step A. It is 80 mol% or more, and preferably 100 mol% or less.
  • the ratio of the diamine compound in which X in the formula (1) is a group represented by the formula (2) may be calculated from the charging ratio of the raw materials.
  • the carboxylic acid compound having three or more carbonyl groups used in step A is preferably a tricarboxylic acid compound or a tetracarboxylic acid compound, and more preferably a tetracarboxylic acid compound.
  • the tetracarboxylic acid compound indicates a tetracarboxylic acid or a tetracarboxylic acid derivative.
  • the tetracarboxylic acid derivative include tetracarboxylic acid anhydrides and acid chlorides, and preferably tetracarboxylic acid dianhydrides.
  • the tetracarboxylic acid compound include aromatic tetracarboxylic acid and its anhydride, preferably aromatic tetracarboxylic acid compound such as its dianhydride; aliphatic tetracarboxylic acid and its anhydride, preferably its dianhydride and the like. And the like. These tetracarboxylic acid compounds may be used alone or in combination of two or more.
  • the tetracarboxylic acid compound is preferably tetracarboxylic dianhydride.
  • tetracarboxylic dianhydride examples include compounds represented by the formula (3)
  • tetracarboxylic acid compound (3) is a compound represented by (hereinafter sometimes referred to as a tetracarboxylic acid compound (3)).
  • the tetracarboxylic acid compounds can be used alone or in combination of two or more kinds. When two or more kinds of tetracarboxylic acid compounds are used, two or more kinds of tetracarboxylic acid compounds having different kinds of Y in the tetracarboxylic acid compound (3) are different from each other. You may use.
  • Y's each independently represent a tetravalent organic group, preferably a tetravalent organic group having 4 to 40 carbon atoms, and more preferably 4 to 40 carbon atoms having a cyclic structure.
  • the cyclic structure include an alicyclic structure, an aromatic ring structure, and a heterocyclic structure.
  • the organic group is an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, in which case, a hydrocarbon group and a fluorine-substituted hydrocarbon group
  • the carbon number is preferably 1-8.
  • W 1 represents a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, -Ar -, - SO 2 -, - CO -, - O-Ar-O -, - Ar-O-Ar -, - Ar-CH 2 -Ar -, - Ar-C (CH 3) 2 -Ar- Alternatively, it represents —Ar—SO 2 —Ar—.
  • Ar represents an arylene group having 6 to 20 carbon atoms in which a hydrogen atom may be replaced by a fluorine atom, and a specific example thereof is a phenylene group.
  • the group represented by the formulas (20) to (29), the formula (26), the formula (28) or the formula (29) is used from the viewpoint of easily improving the elastic modulus, flex resistance and surface hardness of the film.
  • the group represented by the formula (26) is preferable, and the group represented by the formula (26) is more preferable.
  • W 1 the elastic modulus of the film, tends to improve the flexing resistance and surface hardness, and from the viewpoint of easily improve optical properties, preferably a single bond, -O -, - CH 2 - , - CH 2 - It represents a group represented by CH 2 —, —CH(CH 3 )—, —C(CH 3 ) 2 — or —C(CF 3 ) 2 —, more preferably a single bond, —O—, —CH 2 Represents a group represented by --, --CH(CH 3 )--, --C(CH 3 ) 2 --, or --C(CF 3 ) 2 --, more preferably a single bond, --C(CH 3 ) 2 --, or It represents a group represented by —C(CF 3 ) 2 —.
  • Y in formula (3) is represented by formula (4)
  • R 9 to R 16 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms
  • the hydrogen atoms contained in R 9 to R 16 may be independently substituted with a halogen atom, and * represents a bond.
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a carbon atom. It represents an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • Examples of the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms or the aryl group having 6 to 12 carbon atoms include an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms in the formula (2).
  • R 9 ⁇ R 16 are, independently of one another, preferably hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, wherein, R 9 ⁇
  • the hydrogen atoms contained in R 16 may be independently substituted with a halogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • R 9 to R 16 are, independently of each other, more preferably a hydrogen atom, a methyl group or a fluoro group, from the viewpoint of easily improving the elastic modulus, optical properties, flex resistance and surface hardness of the film containing a polyimide resin.
  • a chloro group or a trifluoromethyl group more preferably R 9 , R 10 , R 11 , R 12 , R 13 and R 14 are hydrogen atoms
  • R 15 and R 16 are hydrogen atoms, a methyl group and fluoro.
  • the formula (4) is the formula (4′):
  • the film containing the polyimide resin has a modulus of elasticity, optical characteristics, and bending resistance. Also, it is easy to increase the surface hardness. Further, the skeleton containing the elemental fluorine improves the solubility of the resin in the solvent, the viscosity of the resin varnish can be suppressed low, and the film production becomes easy.
  • aromatic tetracarboxylic dianhydride examples include a non-condensed polycyclic aromatic tetracarboxylic dianhydride, a monocyclic aromatic tetracarboxylic dianhydride and a condensed polycyclic aromatic tetraanhydride.
  • aromatic tetracarboxylic dianhydride examples include carboxylic acid dianhydride.
  • non-condensed polycyclic aromatic tetracarboxylic acid dianhydride examples include 4,4′-oxydiphthalic acid dianhydride, 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride and 2,2 ',3,3'-Benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride ,3,3',4,4'-diphenylsulfone tetracarboxylic acid dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-di) Carboxyphenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenoxyphenyl)propane dianhydride, 4,4′-(hexafluor
  • examples of the monocyclic aromatic tetracarboxylic dianhydride include 1,2,4,5-benzenetetracarboxylic dianhydride, and condensed polycyclic aromatic tetracarboxylic dianhydrides. Examples thereof include 2,3,6,7-naphthalenetetracarboxylic dianhydride.
  • 4,4′-oxydiphthalic acid dianhydride, 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride and 2,2′,3,3′-benzophenone tetracarboxylic acid dianhydride are preferable.
  • Examples of the aliphatic tetracarboxylic acid dianhydride include cyclic or acyclic aliphatic tetracarboxylic acid dianhydride.
  • the cycloaliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples thereof include 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
  • cycloalkanetetracarboxylic dianhydrides such as 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo[2.2 .2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyl-3,3',4,4'-tetracarboxylic dianhydride and positional isomers thereof.
  • cycloalkanetetracarboxylic dianhydrides such as 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo[2.2 .2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyl-3,3',4,4'-tetracarboxylic dianhydride and positional isomers
  • acyclic aliphatic tetracarboxylic dianhydride examples include 1,2,3,4-butanetetracarboxylic dianhydride and 1,2,3,4-pentanetetracarboxylic dianhydride. These may be used alone or in combination of two or more. Moreover, you may use combining cycloaliphatic tetracarboxylic dianhydride and acyclic aliphatic tetracarboxylic dianhydride.
  • 4,4′-oxydiphthalic dianhydride from the viewpoint of high surface hardness, high transparency, high flexibility, high elastic modulus, high bending resistance and low colorability of the film, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic acid Dianhydride, 3,3′,4,4′-diphenylsulfone tetracarboxylic acid dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 4,4′-(hexafluoro Isopropylidene)diphthalic acid dianhydride, and mixtures thereof are preferable, and 3,3′,4,4′-biphenyltetracarboxylic acid dianhydride
  • the ratio of the tetracarboxylic acid compound which is a group represented by is preferably 30 mol% or more, more preferably 50 mol% or more, and further preferably, based on the total molar amount of the tetracarboxylic acid compound used in Step A. It is 70 mol% or more, particularly preferably 80 mol% or more, and preferably 100 mol% or less.
  • the film containing the polyimide-based resin has elastic modulus, optical characteristics, and bending resistance. It is easy to increase the hardness and surface hardness. Further, the skeleton containing the elemental fluorine improves the solubility of the resin in the solvent, the viscosity of the resin varnish can be suppressed low, and the film production becomes easy.
  • the ratio of the tetracarboxylic acid compound in which Y in the formula (3) is a group represented by the formula (4) may be calculated from the raw material charging ratio.
  • the tetracarboxylic acid compound is preferably tetracarboxylic acid dianhydride, but tetracarboxylic acid monoanhydride may be used.
  • the tetracarboxylic acid monoanhydride has the formula (5)
  • tetracarboxylic acid compound (5) can be used alone or in combination of two or more kinds.
  • two kinds of the tetracarboxylic acid compound (5) are used, two kinds of the tetracarboxylic acid compound (5) in which Y 1 is different from each other are used. You may use the above tetracarboxylic acid compound (5).
  • Y 1 is a tetravalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • R 17 and R 18 are each independently —OH, —OMe, —OEt, —OPr, —OBu or —Cl, and preferably —Cl.
  • the tricarboxylic acid compound indicates a tricarboxylic acid or a tricarboxylic acid derivative, and examples of the tricarboxylic acid derivative include acid chlorides, anhydrides and ester forms of tricarboxylic acid.
  • the tricarboxylic acid compound may be, for example, a compound of formula (8)
  • tricarboxylic acid compound (8) and the like.
  • the tricarboxylic acid compounds may be used alone or in combination of two or more, and when two or more tricarboxylic acid compounds are used, two or more tricarboxylic acid compounds (8) in which the Y 2 types of the tricarboxylic acid compound (8) are different from each other are used. You may use.
  • R 34 is —OH, —OMe, —OEt, —OPr, —OBu or —Cl, and preferably —Cl.
  • Y 2 is a trivalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) or Examples thereof include a group in which any one of the bonds of the group represented by the formula (29) is replaced with a hydrogen atom, and a trivalent chain hydrocarbon group having 6 or less carbon atoms.
  • the tricarboxylic acid compound examples include aromatic tricarboxylic acids, aliphatic tricarboxylic acids and their derivatives (eg, acid chloride, acid anhydride, etc.), and specific examples thereof include 1,3,5-benzenetricarboxylic acid and The acid chloride, an anhydride of 1,2,4-benzenetricarboxylic acid; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; a single bond of phthalic anhydride and benzoic acid, -O-,
  • the compound include —CH 2 —, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —SO 2 — or a phenylene group.
  • These tricarboxylic acid compounds can be used alone or in combination of two or more kinds.
  • the amount of the carboxylic acid compound having three or more carbonyl groups to be reacted in step (A) can be appropriately selected according to the ratio of the constituent units in the desired polyimide resin, and in steps (I) and (II)
  • the total amount of diamine compounds to be reacted is 100 mol, preferably 1 mol or more, more preferably 5 mol or more, further preferably 10 mol or more, preferably 150 mol or less, more preferably 100 mol or less, It is preferably 80 mol or less, and particularly preferably 50 mol or less.
  • the amount of the carboxylic acid compound having three or more carbonyl groups used is within the above range, the imide skeleton is appropriately introduced, and the flex resistance of the film after film formation is likely to be improved.
  • the amount of the diamine compound to be reacted in the step (I) is preferably 80 mol or more, more preferably 85 mol or more, when the total amount of the diamine compounds reacted in the process (I) and the process (II) is 100 mol. , More preferably 90 mol or more, still more preferably 95 mol or more, particularly preferably 98 mol or more, and preferably 99.99 mol or less.
  • the amount of the diamine compound to be reacted in the step (I) is within the above range, the flex resistance of the film containing the polyimide resin can be more easily improved.
  • the reaction in step (I) is preferably carried out in a solvent inert to the reaction.
  • the solvent is not particularly limited as long as it does not affect the reaction, and for example, water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, Alcohol solvents such as 2-butoxyethanol and propylene glycol monomethyl ether; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, ⁇ -valerolactone, propylene glycol methyl ether acetate and ethyl lactate; Ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, methyl isobutyl ketone; aliphatic hydrocarbon
  • the amount of the solvent used is preferably 0.5 to 30 parts by mass, more preferably 1 to 20 parts by mass, and further 1 part by mass of the total amount of the diamine compound and the carboxylic acid compound having three or more carbonyl groups. It is preferably 5 to 15 parts by mass.
  • the content of the solvent is at least the above lower limit, it is advantageous from the viewpoint of suppressing an increase in the viscosity of the reaction system, and when it is at most the above upper limit, it is advantageous from the viewpoint of the polymerization reaction.
  • one of the diamine compound and the carboxylic acid compound having three or more carbonyl groups may be added to the solution prepared by dissolving the solvent in the solvent, and the other may be reacted by stirring or the like.
  • the diamine compound and the carboxylic acid compound having three or more carbonyl groups may be separately dissolved in a solvent to obtain a solution, and then the solutions may be mixed and stirred to react with each other.
  • both may be reacted together by adding them together and stirring.
  • the reaction temperature of step (A) is not particularly limited, but may be, for example, ⁇ 5 to 100° C., preferably 0 to 50° C., and more preferably 5 to 30° C.
  • the reaction time may be, for example, 1 minute to 72 hours, preferably 10 minutes to 24 hours, more preferably 30 minutes to 10 hours.
  • the reaction may be carried out in air or in an atmosphere of an inert gas such as nitrogen or argon with stirring, and may be carried out under normal pressure, under pressure or under reduced pressure. In a preferred embodiment, the treatment is carried out under normal pressure and/or the above-mentioned inert gas atmosphere while stirring.
  • the obtained intermediate (K) has a constitutional unit derived from a diamine compound and a constitutional unit derived from a carboxylic acid compound having three or more carbonyl groups.
  • the intermediate (K) contains a repeating structural unit represented by the formula (A) obtained by reacting the diamine compound (1) and the tetracarboxylic acid compound (3).
  • G 1 is the same as Y in the formula (3), and X 1 is the same as X in the formula (1)].
  • the intermediate (K) has two or more kinds of repeating structural units represented by the formula (A).
  • the intermediate (K) having a structural unit derived from a diamine compound and a structural unit derived from a tetracarboxylic acid compound may be referred to as an intermediate (K-1).
  • the step (I) may include a step (B) of reacting a dicarboxylic acid compound after the step (A).
  • the dicarboxylic acid compound used in step (B) represents a dicarboxylic acid or a dicarboxylic acid derivative, and examples of the dicarboxylic acid derivative include acid chlorides and ester forms of the dicarboxylic acid.
  • examples of the dicarboxylic acid compound include compounds represented by the formula (6)
  • dicarboxylic acid compound (6) is a compound represented by (hereinafter sometimes referred to as a dicarboxylic acid compound (6)).
  • the dicarboxylic acid compounds may be used alone or in combination of two or more kinds.
  • two or more kinds of dicarboxylic acid compounds are used, two or more kinds of dicarboxylic acid compounds (6) having different W types of dicarboxylic acid compounds (6) are used.
  • R 19 and R 20 independently of each other are —OH, —OMe, —OEt, —OPr, —OBu or —Cl, and preferably —Cl.
  • W is a divalent organic group, preferably carbon which may be substituted with a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms. It is a divalent organic group having 4 to 40 carbon atoms, more preferably a cyclic structure which may be substituted with a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms. It is a divalent organic group having 4 to 40 carbon atoms.
  • the cyclic structure include an alicyclic structure, an aromatic ring structure, and a heterocyclic structure.
  • the bonds of the group represented by the formula (29) two groups which are not adjacent to each other are replaced by hydrogen atoms, and a divalent chain hydrocarbon group having 6 or less carbon atoms are exemplified.
  • the groups represented by the formulas (20) to (27) are preferable.
  • Examples of the organic group of W include formula (20′), formula (21′), formula (22′), formula (23′), formula (24′), formula (25′), formula (26′), and formula (26′) (27'), Equation (28') and Equation (29'):
  • W 1 and * are as defined in the formulas (20) to (29)]
  • a divalent organic group represented by is more preferable.
  • the hydrogen atom on the ring in the formulas (20) to (29) and the formulas (20′) to (29′) is a hydrocarbon group having 1 to 8 carbon atoms or 1 to 8 carbon atoms substituted with fluorine. May be substituted with a hydrocarbon group of, a C 1-6 alkoxy group, or a fluorine-substituted C 1-6 alkoxy group.
  • the dicarboxylic acid compound contains a compound in which W in the formula (6) is represented by any one of the above formulas (20′) to (29′), W in the formula (6) is,
  • the dicarboxylic acid compound may have the following formula (d1) in addition to the compound represented by formula (6a) in which W in formula (6):
  • R c's each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms
  • R d is , R c or —C( ⁇ O)R e
  • R e independently of each other represents —OH, —OMe, —OEt, —OPr, —OBu or —Cl
  • * represents a bond.
  • the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms, and the aryl group having 6 to 12 carbon atoms are, respectively, an alkyl group having 1 to 6 carbon atoms and a carbon atom in formula (2). Examples of the alkoxy group having 1 to 6 carbon atoms or the aryl group having 6 to 12 carbon atoms are given.
  • the compound (d1) specifically, a compound in which R c and R d are both hydrogen atoms, a compound in which both R c are hydrogen atoms and R d is —C( ⁇ O)R e Etc.
  • the dicarboxylic acid compound in the present invention may include a plurality of types of W as W in the formula (6), and the plurality of types of W may be the same as or different from each other.
  • W in the formula (6) is preferably the formula (6a): from the viewpoint of easily increasing the surface hardness, water resistance, optical properties, elastic modulus, yield point strain and bending resistance of the optical film.
  • R a and R b independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. , R a and R b may each independently be substituted with a halogen atom, A and * are the same as A and * in the formula (7b), respectively, m is an integer from 0 to 4, t is an integer of 0 to 4, u is an integer from 0 to 4] And more preferably formula (7a);
  • R 21 to R 24 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms,
  • the hydrogen atoms contained in R 21 to R 24 may be independently substituted with a halogen atom
  • m2 is an integer of 1 to 4
  • a compound in which W in the formula (6) is a group represented by the formula (7a) and a compound in which W in the formula (6) is a group represented by the formula (6a) are respectively dicarboxylic acid compounds ( 7a) and dicarboxylic acid compound (6a).
  • each benzene ring may be bonded to any of the ortho position, the meta position or the para position with respect to -A-, preferably the meta position or the para position.
  • R a and R b each independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • t and u are preferably 0, but when t and/or u is 1 or more, R a and R b are independently of each other, preferably an alkyl group having 1 to 6 carbon atoms.
  • R a and R b in the formula (6a) a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms and an aryl group having 6 to 12 carbon atoms are respectively represented by the formula (2 Examples of the halogen atom, the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms or the aryl group having 6 to 12 carbon atoms in ).
  • t and u are each independently an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and even more preferably 0.
  • m is an integer in the range of 0 to 4, and when m is in this range, the flex resistance and elastic modulus of the film containing the polyimide resin are good.
  • m is preferably an integer in the range of 0 to 3, more preferably an integer in the range of 0 to 2, still more preferably 0 or 1, and most preferably 0. When m is in this range, the flexural resistance and elastic modulus of the film containing the polyimide resin are good, and at the same time, the availability of the raw materials is relatively good.
  • the compound represented by formula (6a) in which m is 0 is, for example, terephthalic acid or isophthalic acid or a derivative thereof, and the compound is a compound in which m in formula (6a) is 0 and u is 0. It is preferable to have.
  • the dicarboxylic acid compound may contain one or more compounds in which W in the formula (6) is represented by the formula (6a), and the elastic modulus and resistance of the film containing the polyimide resin are From the viewpoint of improving the flexibility and reducing the YI value, two or more kinds of compounds having different values of m, preferably two kinds of compounds having different values of m may be contained.
  • a compound represented by the formula (6a) in which m in the formula (6a) is 0 is used. It is preferable to include, and it is more preferable to further include a compound represented by the formula (6a) in which m is 1, in addition to the compound.
  • R 21 , R 22 , R 23 and R 24 are independently of each other a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 6 to 12 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms or the aryl group having 6 to 12 carbon atoms include an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms in the formula (2).
  • Examples of the group or the aryl group having 6 to 12 carbon atoms include those exemplified above.
  • R 21 to R 24 are independently of each other, preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. , More preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and further preferably a hydrogen atom.
  • the hydrogen atoms contained in R 21 to R 24 may be independently substituted with a halogen atom.
  • m2 is preferably an integer of 1 to 3, more preferably 1 or 2, and even more preferably 1 from the viewpoint of easily increasing the bending resistance and elastic modulus of the film containing a polyimide resin. is there.
  • R 21 to R 24 are hydrogen atoms, it is advantageous in terms of improving the elastic modulus and flex resistance of the film containing the polyimide resin.
  • the dicarboxylic acid compound has two or more aromatic hydrocarbon rings each having a single bond or an aromatic ring. It includes an aromatic dicarboxylic acid compound linked by a divalent group excluding a group.
  • the aromatic hydrocarbon ring include a monocyclic hydrocarbon ring such as a benzene ring; a condensed bicyclic hydrocarbon ring such as naphthalene; and a polycyclic hydrocarbon ring such as a ring-assembled hydrocarbon ring such as biphenyl.
  • a benzene ring Preferably a benzene ring.
  • W is represented by the formula (7b )
  • R 25 to R 32 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, hydrogen atoms contained in R 25 ⁇ R 32, independently of one another, may be substituted with a halogen atom, a is a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH(CH 3 ) ⁇ , —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —SO 2 —, —S—, —CO— or —N(R 33 )—, and R 33 Represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom, m 1 is an integer of 1 to 4, and * represents a bond.]
  • the compound is a group represented
  • the film containing the polyimide resin has excellent elastic modulus, flex resistance and optical properties. Easy to develop.
  • the compound in which W in the formula (6) is a group represented by the formula (7b) may be referred to as a dicarboxylic acid compound (7b).
  • A is a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 - , -C(CF 3 ) 2 -, -SO 2 -, -S-, -CO- or -N(R 33 )-, and improves the elastic modulus and flex resistance of a film containing a polyimide resin. From the viewpoint of facilitation, it preferably represents —O— or —S—, more preferably —O—.
  • Examples of the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms or the aryl group having 6 to 12 carbon atoms include an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms in the formula (2). Examples of the group or the aryl group having 6 to 12 carbon atoms include those exemplified above. From the viewpoint of easily improving the surface hardness, flexibility and bending resistance of a film containing a polyimide resin, R 25 to R 32 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 25 to R 32 may be independently substituted with a halogen atom.
  • R 33 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom.
  • Examples of the monovalent hydrocarbon group having 1 to 12 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, Examples include 2-methyl-butyl group, 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl, n-heptyl group, n-octyl group, tert-octyl group, n-nonyl group and n-decyl group. And these may be substituted with a halogen atom.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • A may be the same or different.
  • m 1 is an integer of 1 to 4, and when m 1 is in this range, the flex resistance and elastic modulus of the film containing the polyimide resin are likely to be good.
  • m 1 is preferably an integer of 1 to 3, more preferably 1 or 2, and even more preferably 1. If m 1 is within this range, the flex resistance of the film and The elastic modulus tends to be good.
  • dicarboxylic acid compound (7a) or (7b) as the dicarboxylic acid compound in step (B).
  • the dicarboxylic acid compound (7a) and the dicarboxylic acid compound (7b) are used in combination.
  • the formula (7a) is the formula (7a'):
  • W in the formula (6) is a compound represented by the formula (7a′) or a compound represented by the formula (7b′), or both of them are used, It is easy to obtain a film having a further improved elastic modulus and bending resistance.
  • dicarboxylic acid compound examples include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and related acid chloride compounds, acid anhydrides, and the like, and two or more kinds may be used in combination.
  • Specific examples thereof include terephthalic acid; isophthalic acid; naphthalenedicarboxylic acid; 4,4′-biphenyldicarboxylic acid; 3,3′-biphenyldicarboxylic acid; a chain hydrocarbon having 8 or less carbon atoms, and a dicarboxylic acid compound and 2
  • a compound in which two benzoic acids are linked by a single bond, —CH 2 —, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —SO 2 — or a phenylene group, and their acid chloride compounds are Can be mentioned.
  • 4,4′-oxybisbenzoic acid, terephthalic acid or acid chlorides thereof are preferable from the viewpoint of easily improving the elastic modulus and flex resistance of the film containing a polyimide resin.
  • 4,4′-oxybis(benzoyl chloride) and terephthaloyl chloride are more preferable, and it is further preferable to use 4,4′-oxybis(benzoyl chloride) and terephthaloyl chloride in combination.
  • step (I) includes the step (B)
  • the intermediate (K-1) obtained in the step (A) may be isolated and used in the step (B), but it is usually continuous without isolation. Then, step (B) is performed.
  • the amount of the dicarboxylic acid compound to be reacted in step (B) can be appropriately selected according to the ratio with the constituent unit of the desired polyimide resin, and for example, the step (I) and
  • the total amount of the diamine compound reacted in (II) is 100 mol, preferably 5 mol or more, more preferably 20 mol or more, further preferably 30 mol or more, still more preferably 40 mol or more, and particularly preferably 50 mol.
  • the amount is at least mol, particularly preferably at least 60 mol, preferably at most 95 mol, more preferably at most 90 mol, further preferably at most 85 mol, particularly preferably at most 80 mol.
  • the amount of the dicarboxylic acid compound used is in the above range, the elastic modulus and flex resistance of the film containing the polyimide resin can be easily improved.
  • the ratio of the dicarboxylic acid compound (6a) is the total amount of the dicarboxylic acid compound used in the step (B).
  • the molar amount is preferably 30 mol% or more, more preferably 50 mol% or more, further preferably 70 mol% or more, particularly preferably 80 mol% or more, and preferably 100 mol% or less.
  • the proportion of the dicarboxylic acid compound (6a) is within the above range, the film containing the polyimide resin tends to have higher elastic modulus, optical properties, bending resistance and surface hardness.
  • the ratio of the dicarboxylic acid compound (6a) may be calculated from the charging ratio of raw materials.
  • the total proportion of dicarboxylic acid compounds (7a) and (7b) is the total amount of dicarboxylic acid compounds used in step (B).
  • the molar amount is preferably 30 mol% or more, more preferably 50 mol% or more, further preferably 70 mol% or more, particularly preferably 80 mol% or more, and preferably 100 mol% or less.
  • the total ratio of the dicarboxylic acid compounds (7a) and (7b) may be calculated from the raw material charging ratio.
  • the dicarboxylic acid compounds (7a) and (7b) together as the dicarboxylic acid compound.
  • the amount of the dicarboxylic acid compound (7b) used is preferably 0.01 mol or more, more preferably 0.05 mol or more, still more preferably 0.1 mol or more, relative to 1 mol of the dicarboxylic acid compound (7a). It is preferably 20 mol or less, more preferably 15 mol or less, still more preferably 10 mol or less, still more preferably 1 mol or less, particularly preferably 0.5 mol or less, and particularly preferably 0.3 mol or less.
  • the amount of the dicarboxylic acid compound (7b) used is in the above range, the film after film formation tends to have both flex resistance and elastic modulus.
  • a solvent may be further added in step (B).
  • the solvent in step (B) it is possible to suppress a rapid increase in the viscosity of the reaction system and maintain a uniformly stirrable state for a long time. Therefore, the polymerization reaction can proceed sufficiently, and the molecular weight of the polyimide resin and the flex resistance of the obtained film can be easily improved.
  • the solvent to be added include those exemplified in the section of (Step (A)), and these solvents can be used alone or in combination of two or more kinds.
  • An amide solvent can be preferably used from the viewpoint of good solubility and easy improvement of the molecular weight of the polyimide resin and the flex resistance of the resulting film.
  • the solvent added in step (B) may be the same as or different from the solvent used in step (A), but it is the same from the viewpoint of improving the molecular weight and flex resistance of the resin. Is preferred.
  • the solvent may be added at once, or may be dividedly added in plural times.
  • the amount of the solvent added in step (B) is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and further preferably 10 parts by mass with respect to 1 part by mass of the dicarboxylic acid compound used in step (B). Parts or more, particularly preferably 20 parts by mass or more, preferably 300 parts by mass or less, more preferably 200 parts by mass or less, further preferably 100 parts by mass or less, particularly preferably 50 parts by mass or less.
  • the amount of the solvent added in step (B) is in the above range, it is easy to improve the molecular weight of the polyimide resin and the flex resistance of the obtained film.
  • the dicarboxylic acid compound may be added all at once or in portions.
  • the polymerization reaction easily proceeds, and the molecular weight of the obtained polyimide resin and the bending resistance of the obtained film are easily improved.
  • the number of divisions when the dicarboxylic acid compound is dividedly added can be appropriately selected depending on the reaction scale, the type of raw material, etc., and is preferably 2 to 20 times, more preferably 2 to 10 times, and further preferably 2 times. ⁇ 6 times. When the number of divisions is within the above range, it is easy to improve the molecular weight of the polyimide resin and the flex resistance of the resulting film.
  • the dicarboxylic acid compound may be divided and added in an equal amount, or may be divided and added in an uneven amount.
  • the time between each addition (hereinafter sometimes referred to as an addition interval) may be the same or different.
  • the term “divided addition” means that the total amount of all dicarboxylic acid compounds is divided and added, and the method of dividing each dicarboxylic acid compound is not particularly limited. However, each dicarboxylic acid compound may be added separately or collectively or in a divided manner, each dicarboxylic acid compound may be added in a divided manner together, or a combination thereof may be used.
  • the first dicarboxylic acid compound when there are two kinds of dicarboxylic acid compounds (hereinafter referred to as a first dicarboxylic acid compound and a second dicarboxylic acid compound, respectively), for example, the first dicarboxylic acid compound is added all at once, and the second dicarboxylic acid compound is added.
  • the dicarboxylic acid compound may be added all at once, the first dicarboxylic acid compound and the second dicarboxylic acid compound may be separately added separately, or the first dicarboxylic acid compound and the second dicarboxylic acid compound may be added together separately. It is also possible to add the remainder separately or separately after adding the remainder separately, or after adding separately separately and then adding the remainder together or one remainder. ..
  • the first dicarboxylic acid compound and the second dicarboxylic acid compound are added in a divided manner together, or after the addition is made in a divided manner, the remaining one is It is preferable to add.
  • the solvent when a solvent is further added, the solvent may be added together with the dicarboxylic acid compound, may be added separately from the dicarboxylic acid, or when the dicarboxylic acid is dividedly added. May be a combination of these.
  • the reaction temperature of step (B) is not particularly limited, but may be, for example, -5 to 100°C, preferably 0 to 50°C, more preferably 5 to 30°C.
  • the reaction time may be, for example, 1 minute to 72 hours, preferably 10 minutes to 24 hours, more preferably 30 minutes to 10 hours.
  • the reaction may be carried out in air or in an inert gas atmosphere (for example, nitrogen, argon, etc.) with stirring, and may be carried out under normal pressure, under pressure or under reduced pressure. In a preferred embodiment, it is carried out under normal pressure and/or an inert gas atmosphere with stirring.
  • step (B) the intermediate (K) is obtained by adding the dicarboxylic acid compound and then stirring and reacting for a predetermined time.
  • the intermediate (K) is a structural unit derived from a diamine compound and a structural unit derived from a carboxylic acid compound having three or more carbonyl groups. And a structural unit derived from a dicarboxylic acid compound.
  • the intermediate (K) comprises a repeating structural unit represented by the formula (A) obtained by reacting a diamine compound (1) with a tetracarboxylic acid compound (3), and a diamine compound ( A) and a repeating structural unit represented by the formula (B) obtained by reacting the dicarboxylic acid compound (6).
  • G 2 is the same as W in the formula (6)
  • G 1 is the same as Y in formula (3)
  • X 1 and X 2 are respectively the same as X in formula (1)
  • X 1 and X 2 may be the same or different
  • the intermediate (K) has a repeating structure represented by the formula (A). It has two or more kinds of units and/or repeating structural units represented by the formula (B).
  • the intermediate (K) having a structural unit derived from a diamine compound, a structural unit derived from a tetracarboxylic acid compound, and a dicarboxylic acid compound may be referred to as an intermediate (K-2).
  • the intermediate (K) When a polyimide-based resin is produced, the intermediate (K) may be isolated and then subjected to the step (II) described below, but the viewpoint of the bending resistance of the film containing the polyimide-based resin and the production efficiency. From the viewpoint of, it is directly subjected to the step (II) without isolation.
  • Step (II) is a step of reacting the intermediate (K) with a diamine compound.
  • the present invention is characterized by including the step (II), that is, performing the reaction (divided reaction) by dividing the diamine compound into two or more times.
  • the bending resistance refers to a property capable of suppressing or preventing the occurrence of breakage or the like even when bending is repeated.
  • the film formed from the polyimide resin of the present invention does not break even when repeatedly bent, for example, 150,000 times or more, preferably 200,000 times or more.
  • Examples of the diamine compound to be reacted in the step (II) include those exemplified above as the diamine compound to be reacted in the step (A).
  • the diamine compounds may be used alone or in combination of two or more.
  • a diamine compound in which X in the formula (1) is a group represented by the formula (2) for example, X in the formula (1) is represented by the formula (2′).
  • the ratio of the diamine compound which is a group is preferably 30 mol% or more, more preferably 50 mol% or more, further preferably 70 mol% or more with respect to the total molar amount of the diamine compound used in the step (II). It is particularly preferably 80 mol% or more, and preferably 100 mol% or less.
  • the film containing the polyimide resin has a solvent of the resin due to the skeleton containing elemental fluorine. Solubility in the resin varnish, the viscosity of the resin varnish can be suppressed to a low level, the YI value and haze of the film can be reduced, and the optical characteristics can be easily improved.
  • the ratio of the diamine compound in which X in the formula (1) is a group represented by the formula (2) may be calculated from the charging ratio of the raw materials.
  • At least the diamine compound to be reacted in the step (I) and the diamine compound to be reacted in the step (II) are at least from the viewpoint of further improving the bending resistance of the film containing the polyimide resin. It is preferable that one compound is the same.
  • the diamine compound to be reacted in the step (I) is the diamine compound (I) and the diamine compound to be reacted in the step (II) is the diamine compound (II)
  • "at least one compound is the same” means the diamine compound ( When I) is one type and diamine compound (II) is one type, it means that these diamine compounds (I) and (II) are the same, and one diamine compound (I) is, and When the diamine compound (II) is two or more kinds, it means that at least one kind of the diamine compound (II) is the same as the diamine compound (I).
  • diamine compounds (I) and one kind of diamine compounds (II) when two or more kinds of diamine compounds (I) and one kind of diamine compounds (II) are used, it means that one or more kinds of diamine compounds (I) are the same as the diamine compounds (II). However, when the diamine compound (I) is two or more kinds and the diamine compound (II) is two or more kinds, it means that one or more kinds are the same as each other. In a further preferred embodiment, all the diamine compounds reacted in the step (I) and the diamine compound reacted in the step (II) are from the viewpoint of easily improving the bending resistance of the film containing the polyimide resin. It is preferably the same.
  • the diamine compound may be added all at once or may be added in portions.
  • the divided addition means that the compound to be added is divided and added several times, more specifically, the compound to be added is divided into a specific amount and added at a predetermined interval or a predetermined time. Means Since the predetermined interval or predetermined time includes a very short interval or time, the divided addition also includes continuous addition or continuous feed.
  • the number of divisions, the amount of division, and the method of divisional addition include the number of divisions of the dicarboxylic acid compound in step (B), the amount of division, and the method of divisional addition. Examples of the above are given.
  • a solvent may be further added. When the solvent is further added, it may be added together with the diamine compound, may be added separately from the diamine compound, or may be a combination of these when the diamine compound is dividedly added.
  • the solvent to be added examples include those exemplified in the section of (Step (A)), and these solvents can be used alone or in combination of two or more kinds.
  • the solvent When the solvent is added, it may be the same as or different from the solvent used in step (A), but from the viewpoint of improving the molecular weight of the polyimide resin and the flex resistance of the film, the step (A It is preferred that it is the same as the solvent used in ().
  • the solvent may be added all at once, or may be added dividedly in multiple times.
  • the amount of the diamine compound to be reacted in the step (II) is preferably 0.01 or more, preferably 20 when the total amount of the diamine compound to be reacted in the steps (I) and (II) is 100 mol.
  • the amount is not more than 15 mol, more preferably not more than 15 mol, further preferably not more than 10 mol, still more preferably not more than 5 mol, and particularly preferably not more than 2 mol.
  • the amount of the diamine compound to be reacted in the step (II) is within the above range, the flex resistance of the film containing the polyimide resin can be more easily improved.
  • the total amount of diamine compounds reacted in steps (I) and (II) is preferably 10.0 to 1,000 moles, more preferably 50, when the carboxylic acid compound reacted in step (I) is 100 moles. 0.0 to 150 mol, more preferably 80.0 to 120 mol, even more preferably 90.0 to 110 mol, particularly preferably 95.0 to 100, particularly preferably 97.0 to 99.9, and especially It is preferably 98.0 to 99.9.
  • the carboxylic acid compound means a carboxylic acid compound including the dicarboxylic acid compound, the tetracarboxylic acid compound, and the tricarboxylic acid compound used in steps (I) and (II).
  • the reaction temperature in step (II) is not particularly limited, but may be, for example, -5 to 100°C, preferably 0 to 50°C, more preferably 5 to 30°C.
  • the reaction time may be, for example, 1 minute to 72 hours, preferably 10 minutes to 24 hours, more preferably 30 minutes to 10 hours.
  • the reaction may be carried out in air or in an atmosphere of an inert gas such as nitrogen or argon with stirring, and may be carried out under normal pressure, under pressure or under reduced pressure. In a preferred embodiment, the treatment is carried out under normal pressure and/or the above-mentioned inert gas atmosphere while stirring.
  • a polyimide resin precursor or a polyamide-imide resin precursor is obtained. More specifically, the polyimide resin precursor is obtained by reacting the intermediate (K-1) obtained in step (A) in step (I) with a diamine compound in step (II). Therefore, the polyimide resin precursor contains a structural unit derived from a diamine compound and a structural unit derived from a tetracarboxylic acid compound, and in a preferred embodiment, a repeating structural unit represented by the formula (A).
  • the polyamideimide precursor is obtained by reacting the intermediate (K-2) obtained in step (B) in step (I) with a diamine compound in step (II).
  • the polyamide-imide resin contains a constitutional unit derived from a diamine compound, a constitutional unit derived from a tetracarboxylic acid compound, and a constitutional unit derived from a dicarboxylic acid compound, and in a preferred embodiment, a repeating structural unit represented by the formula (A): And a repeating structural unit represented by the formula (B).
  • the polyimide resin precursor or the polyamide-imide precursor can be prepared by adding a large amount of water, methanol, or the like to a reaction solution containing the resin precursor to precipitate the resin precursor, and filtering, concentrating, drying, or the like. Can be separated.
  • step (III) When producing a polyimide resin or a polyamide-imide resin, after isolating the polyimide resin precursor or the polyamide-imide resin precursor, it may be subjected to the step (III) described below, but from the viewpoint of production efficiency, without isolation It is preferable to directly provide the step (III).
  • Step (III) is a step of imidizing the polyimide resin precursor in the presence of an imidization catalyst.
  • a polyimide resin precursor containing a repeating structural unit represented by the formula (A) to step (III), the repeating structural unit portion represented by the formula (A) is imidized (ring closed), A polyimide resin containing a repeating structural unit represented by the formula (C) can be obtained.
  • the repeating structural unit part represented by the formula (A) is imidized (closed) to form a repeating structural unit represented by the formula (C) and a repeating structural unit represented by the formula (B). It is possible to obtain a polyamide-imide resin containing the same.
  • G 1 is the same as Y in the formula (3)
  • G 2 is the same as W in formula (6)
  • X 1 and X 2 are respectively the same as X in formula (1)
  • X 1 and X 2 may be the same or different
  • imidization catalyst examples include aliphatic amines such as tripropylamine, diisopropylethylamine, dibutylpropylamine and ethyldibutylamine; N-ethylpiperidine, N-propylpiperidine, N-butylpyrrolidine, N-butylpiperidine, and N- Alicyclic amine (monocyclic) such as propylhexahydroazepine; azabicyclo[2.2.1]heptane, azabicyclo[3.2.1]octane, azabicyclo[2.2.2]octane, and azabicyclo[3 2.2.2] Alicyclic amine (polycyclic) such as nonane; and pyridine, 2-methylpyridine (2-picoline), 3-methylpyridine (3-picoline), 4-methylpyridine (4-picoline) , 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2,
  • the imidization catalyst is used in an amount of preferably 0.1 to 10 mol, more preferably 1 to 5 mol, per 1 mol of the carboxylic acid compound having three or more carbonyl groups used in step (A). is there.
  • an acid anhydride together with the imidization catalyst from the viewpoint of facilitating the imidization reaction.
  • the acid anhydride include conventional acid anhydrides used in imidization reaction, and specific examples thereof include aliphatic acid anhydrides such as acetic anhydride, propionic anhydride, butyric anhydride, and aromatics such as phthalic acid. Examples thereof include acid anhydrides.
  • the amount of the acid anhydride used is preferably 0.5 to 25 mol, more preferably 1 to 20 mol, relative to 1 mol of the carboxylic acid compound having three or more carbonyl groups. More preferably, it is 1 to 15 mol.
  • the reaction temperature in step (III) is not particularly limited, but may be, for example, ⁇ 5 to 100° C., preferably 0 to 90° C., and more preferably 5 to 80° C.
  • the reaction time may be, for example, 1 minute to 72 hours, preferably 10 minutes to 24 hours, more preferably 30 minutes to 10 hours.
  • the reaction may be carried out in air or in an atmosphere of an inert gas such as nitrogen or argon with stirring, and may be carried out under normal pressure, under pressure or under reduced pressure. In a preferred embodiment, it is carried out under normal pressure and/or the aforementioned inert gas atmosphere while stirring.
  • the polyimide resin obtained in the step (III) can be separated and purified by a conventional method, for example, separation means such as filtration, concentration, extraction, crystallization, recrystallization, column chromatography or a combination of these separation means. May be isolated, in a preferred embodiment, a reaction solution containing a polyimide resin, a large amount of water, methanol or the like is added to precipitate the polyimide resin, and the polyimide resin can be isolated by performing concentration, filtration, drying or the like. it can.
  • separation means such as filtration, concentration, extraction, crystallization, recrystallization, column chromatography or a combination of these separation means.
  • the film containing the polyimide resin in the present invention can be suitably used as a front plate material for a display device such as a liquid crystal display device or an organic EL display device, and particularly for a flexible display device.
  • the weight average molecular weight (Mw) of the polyimide resin is, in terms of standard polystyrene, preferably 150,000 or more, more preferably 200,000 or more, further preferably 250,000 or more, and particularly preferably 300,000 or more, It is preferably 1,000,000 or less, more preferably 800,000 or less, further preferably 700,000 or less, and particularly preferably 500,000 or less.
  • the weight average molecular weight can be determined, for example, by gel permeation chromatography (GPC) measurement, and can be determined by standard polystyrene conversion. For example, it can be determined by the method described in Examples.
  • the viscosity of the polyimide resin at 25° C. when dissolved in N,N-dimethylacetamide at a concentration of 10% by mass is preferably 1,000 mPa ⁇ s or more, more preferably 5,000 mPa ⁇ s or more, and further preferably 10 mPa ⁇ s or more.
  • the viscosity of the polyimide-based resin is the above lower limit or more, the interaction between molecules becomes large, and it is easy to improve the bending resistance and mechanical strength, and when it is the above upper limit or less, the film forming property becomes good. , Easy to form a uniform film.
  • the viscosity can be measured by a Brookfield viscometer, for example, by the method described in Examples.
  • the polyimide resin preferably has at least a structural unit derived from a diamine compound and a structural unit derived from a tetracarboxylic acid compound, and in a preferred embodiment, has the formula (C) Including a repeating structural unit represented by.
  • the polyamide-imide resin preferably has at least a structural unit derived from a diamine compound, a structural unit derived from a tetracarboxylic acid compound, and a structural unit derived from a dicarboxylic acid compound, and in a preferred embodiment, is represented by the formula (C). And a repeating structural unit represented by the formula (B).
  • the polyimide resin may be composed of a constitutional unit derived from a diamine compound and a constitutional unit derived from a tricarboxylic acid compound, and in the preferred embodiment, may further include a constitutional unit derived from a tricarboxylic acid compound.
  • a polyimide resin containing a structural unit derived from a tetracarboxylic acid compound and a structural unit derived from a tricarboxylic acid compound, for example, a tricarboxylic acid compound may be added together with or separately from the tetracarboxylic acid compound in step (A). It may be produced by adding a tricarboxylic acid compound in (B) together with or separately from the dicarboxylic acid compound.
  • the polyimide resin having at least a constitutional unit derived from a diamine compound (1) and a constitutional unit derived from a tetracarboxylic acid compound (3) contains a repeating constitutional unit represented by the formula (C). Further, at least one structural unit selected from the group consisting of a structural unit derived from the diamine compound (1), a structural unit derived from the tetracarboxylic acid compound (3) and a structural unit derived from the tricarboxylic acid compound (8), and a dicarboxylic acid.
  • the polyamideimide resin having at least the structural unit derived from the acid compound (6) is represented by the repeating structural unit represented by the formula (B), the repeating structural unit represented by the formula (C) and the formula (D). And at least one structural unit selected from the group consisting of repeating structural units.
  • the polyamide-imide resin having at least a structural unit of a species and a structural unit derived from the dicarboxylic acid compound (6) has a repeating structural unit represented by the formula (B), a repeating structural unit represented by the formula (C), and And at least one structural unit selected from the group consisting of repeating structural units represented by formula (E).
  • G 4 is the same as Y 1 in the formula (5)
  • X 4 is the same as X in the formula (1)
  • R 18 is R 18 in the formula (5) Is the same as]
  • the polyimide resin in the present invention can be formed into a film, preferably an optical film.
  • the step (II) since the step (II) is particularly included, a film having excellent bending resistance can be obtained.
  • the film is not particularly limited, for example, the following steps: (A) a step of preparing a liquid containing the polyimide resin (sometimes referred to as a resin varnish) (varnish preparation step), (B) a step of applying a resin varnish to a support material to form a coating film (application step), and (c) a step of drying the applied liquid (coating film) to form a film (film forming step) Can be manufactured by a method including.
  • the polyimide resin is dissolved in a solvent, and if necessary, additives are added and mixed by stirring to prepare.
  • the additives include fillers, ultraviolet absorbers, bluing agents, antioxidants, release agents, stabilizers, flame retardants, pH adjusters, dispersants, lubricants, thickeners, and leveling agents. ..
  • the solvent used for preparing the resin varnish is not particularly limited as long as it can dissolve the polyimide resin. Examples of such a solvent include the solvents exemplified in the section (step (A)). Among these solvents, an amide solvent or a lactone solvent can be preferably used. These solvents can be used alone or in combination of two or more.
  • the solid content concentration of the resin varnish is preferably 1 to 25% by mass, more preferably 5 to 20% by mass.
  • the solid content indicates a component obtained by removing the solvent from the resin varnish, and the solid content concentration indicates the mass of the solid content with respect to the mass of the resin varnish.
  • a resin varnish is applied on the support material to form a coating film.
  • the coating method include a wire bar coating method, a reverse coating method, a roll coating method such as gravure coating, a die coating method, a comma coating method, a lip coating method, a spin coating method, a screen coating method, a fountain coating method, a dipping method, and a spray method. , A spout molding method and the like.
  • the film can be formed by drying the coating film and peeling it from the support material. You may perform the drying process which dries a film further after peeling.
  • the coating film can be dried usually at a temperature of 50 to 350°C. If necessary, the coating film may be dried under an inert atmosphere or a reduced pressure condition.
  • the support material examples include a metal belt such as SUS, and a resin film such as a PET film, a PEN film, another polyimide film, a polyamide film, and a polyamideimide film.
  • a PET film, a PEN film, and the like are preferable from the viewpoint of excellent heat resistance, and a PET film is more preferable from the viewpoints of adhesion with the film during film formation, easy peeling property, and cost.
  • the thickness of the film can be appropriately selected according to the application, and is preferably 25 ⁇ m or more, more preferably 30 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, still more preferably 60 ⁇ m or less.
  • the thickness of the film can be measured using, for example, a micrometer.
  • the film containing the polyimide resin in the present invention is an optical film.
  • the optical film has excellent optical characteristics in addition to bending resistance.
  • the optical property refers to a property that can be optically evaluated, including total light transmittance, YI, and haze, for example.
  • the total light transmittance of the optical film having a thickness of 50 ⁇ m is preferably 80% or more, more preferably 85% or more, further preferably 88% or more, and particularly preferably 90% or more.
  • the upper limit of the total light transmittance is usually 100% or less.
  • the total light transmittance can be measured by using a haze computer in accordance with JIS K 7361-1:1997, for example.
  • the haze of the optical film is preferably 3.0% or less, more preferably 2.0% or less, further preferably 1.0% or less, particularly preferably 0.5% or less, and usually 0.01% or more. is there.
  • the haze of the optical film is less than or equal to the above upper limit, the transparency becomes good, and when used for a front plate of a display device, for example, it can contribute to high visibility.
  • the haze can be measured using a haze computer according to JIS K 7136:2000.
  • the YI value of the optical film is preferably 8 or less, more preferably 5 or less, further preferably 3 or less, particularly preferably 2 or less, and usually -5 or more, preferably -2 or more.
  • the film is not particularly limited and may be used for various purposes.
  • the film may be a single layer or a laminate, and the film may be used as it is, or may be used as a laminate with another film.
  • all layers laminated on one side or both sides of the film are referred to as a film.
  • the film When the film is a laminate, it is preferable to have one or more functional layers on at least one surface of the film.
  • the functional layer include an ultraviolet absorbing layer, a hard coat layer, a primer layer, a gas barrier layer, an adhesive layer, a hue adjusting layer and a refractive index adjusting layer.
  • the functional layers may be used alone or in combination of two or more.
  • the ultraviolet absorbing layer is a layer having a function of absorbing ultraviolet rays, and for example, a main material selected from a transparent resin of an ultraviolet curable type, a transparent resin of an electron beam curable type, and a transparent resin of a thermosetting type, and the main material It is composed of dispersed ultraviolet absorbers.
  • the adhesive layer is a layer having an adhesive function and has a function of adhering the film to other members.
  • a commonly known material can be used as the material for forming the adhesive layer.
  • a thermosetting resin composition or a photocurable resin composition can be used.
  • the thermosetting resin composition or the photocurable resin composition can be polymerized and cured by supplying energy afterwards.
  • the adhesive layer may be a layer called pressure sensitive adhesive (Pressure Sensitive Adhesive, PSA) that is attached to an object by pressing.
  • PSA Pressure Sensitive Adhesive
  • the pressure-sensitive adhesive may be an adhesive that is "a substance that has adhesiveness at room temperature and that adheres to an adherend with a light pressure" (JIS K 6800), or "a protective film (microcapsule) for specific components. ), and a capsule type adhesive which is an adhesive (JIS K6800) capable of maintaining stability until the coating is broken by an appropriate means (pressure, heat, etc.).
  • the hue adjustment layer is a layer that has a hue adjustment function, and is a layer that can adjust the film to a desired hue.
  • the hue adjustment layer is, for example, a layer containing a resin and a colorant.
  • the colorant include titanium oxide, zinc oxide, rouge, titanium oxide-based calcined pigment, ultramarine blue, cobalt aluminate, and inorganic pigments such as carbon black; azo-based compounds, quinacridone-based compounds, anthraquinone-based compounds, Organic pigments such as perylene compounds, isoindolinone compounds, phthalocyanine compounds, quinophthalone compounds, slene compounds, and diketopyrrolopyrrole compounds; extender pigments such as barium sulfate and calcium carbonate; and basic dyes, Examples include acid dyes and mordant dyes.
  • the refractive index adjusting layer is a layer having a refractive index adjusting function, and has a refractive index different from that of, for example, a single-layer film, and is a layer capable of imparting a predetermined refractive index to the film.
  • the refractive index adjusting layer may be, for example, a resin layer containing an appropriately selected resin and optionally a pigment, or a metal thin film.
  • the pigment for adjusting the refractive index include silicon oxide, aluminum oxide, antimony oxide, tin oxide, titanium oxide, zirconium oxide and tantalum oxide.
  • the average primary particle diameter of the pigment may be 0.1 ⁇ m or less.
  • the metal used for the refractive index adjusting layer include metals such as titanium oxide, tantalum oxide, zirconium oxide, zinc oxide, tin oxide, silicon oxide, indium oxide, titanium oxynitride, titanium nitride, silicon oxynitride, and silicon nitride. An oxide or a metal nitride is mentioned.
  • the film may further include a protective layer (also referred to as a protective film).
  • the protective layer may be laminated on one side or both sides of the film.
  • the protective layer may be laminated on the surface on the film side or the surface on the functional layer side, or may be laminated on both the film side and the functional layer side.
  • the protective layer may be laminated on one of the functional layer-side surfaces or on both functional layer-side surfaces.
  • the protective layer is a layer for temporarily protecting the surface of the film or the functional layer, and is not particularly limited as long as it is a peelable layer capable of protecting the surface of the film or the functional layer.
  • the protective layer examples include polyester resin films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefin resin films such as polyethylene and polypropylene films; acrylic resin films; polyolefin resin films, polyethylene terephthalate. It is preferably selected from the group consisting of an acrylic resin film and an acrylic resin film. When the film has two protective layers, each protective layer may be the same or different.
  • the thickness of the protective layer is not particularly limited, but is usually 10 to 100 ⁇ m, preferably 10 to 80 ⁇ m, and more preferably 10 to 50 ⁇ m.
  • the thickness of each protective layer may be the same or different.
  • the film containing the polyimide resin obtained by the present invention has excellent bending resistance and optical characteristics, and is therefore suitable as a front plate of a display device, particularly a flexible display device (hereinafter, may be referred to as a window film).
  • a window film can be used for
  • the front plate has a function of protecting the display element of the flexible display device.
  • the display device include TVs, smartphones, mobile phones, car navigations, tablet PCs, portable game machines, electronic papers, indicators, bulletin boards, watches, and wearable devices such as smart watches.
  • Examples of the flexible display include display devices having flexible characteristics, such as televisions, smartphones, mobile phones, and smart watches.
  • the flexible display device includes a flexible display device laminate and an organic EL display panel.
  • the flexible display device laminate is arranged on the viewing side of the organic EL display panel and is configured to be bendable.
  • the laminate for a flexible display device may contain the window film, the polarizing plate, and the touch sensor, and the lamination order thereof is arbitrary, but from the viewing side, the window film, the polarizing plate, the touch sensor or the window film, It is preferable that the touch sensor and the polarizing plate are laminated in this order.
  • the presence of the polarizing plate on the viewing side of the touch sensor is preferable because the pattern of the touch sensor is less visible and the visibility of the display image is improved.
  • Each member can be laminated using an adhesive, a pressure-sensitive adhesive or the like. Further, a light-shielding pattern formed on at least one surface of any one of the window film, the polarizing plate, and the touch sensor may be provided.
  • the window film is arranged on the viewing side of the flexible display device and plays a role of protecting the other constituent elements from external impacts or environmental changes such as temperature and humidity.
  • glass has been used as such a protective layer, but the window film in the flexible display device is not rigid and rigid like glass, but has flexible characteristics.
  • the window film may include a hard coat layer on at least one surface.
  • a hard coat layer may be provided on at least one surface of the window film.
  • the thickness of the hard coat layer is not particularly limited and may be, for example, 2 to 100 ⁇ m. When the thickness of the hard coat layer is within the above range, sufficient scratch resistance can be ensured, bending resistance is unlikely to decrease, and a problem of curling due to curing shrinkage tends not to occur. ..
  • the hard coat layer can be formed by curing a hard coat composition containing a reactive material capable of forming a crosslinked structure by irradiation with active energy rays or application of heat energy, and irradiation with active energy rays is preferable.
  • Active energy rays are defined as energy rays capable of decomposing compounds that generate active species to generate active species, such as visible light, ultraviolet rays, infrared rays, X-rays, ⁇ rays, ⁇ rays, ⁇ rays and electron rays. And the like, and preferably ultraviolet rays.
  • the hard coat composition contains at least one polymer of a radically polymerizable compound and a cationically polymerizable compound.
  • the radical polymerizable compound is a compound having a radical polymerizable group.
  • the radical polymerizable group contained in the radical polymerizable compound may be any functional group capable of causing a radical polymerization reaction, and examples thereof include a group containing a carbon-carbon unsaturated double bond, and specifically, a vinyl group. And (meth)acryloyl group.
  • the radical-polymerizable compound has two or more radical-polymerizable groups, these radical-polymerizable groups may be the same or different.
  • the number of radically polymerizable groups contained in one molecule of the radically polymerizable compound is preferably 2 or more from the viewpoint of improving the hardness of the hard coat layer.
  • the radically polymerizable compound is preferably a compound having a (meth)acryloyl group. Specifically, 2 to 6 (meth)acryloyl groups are included in one molecule.
  • Thousands of oligomers may be mentioned, preferably one or more selected from epoxy (meth)acrylate, urethane (meth)acrylate and polyester (meth)acrylate.
  • the cationically polymerizable compound is a compound having a cationically polymerizable group such as an epoxy group, an oxetanyl group and a vinyl ether group.
  • the number of cationically polymerizable groups contained in one molecule of the cationically polymerizable compound is preferably 2 or more, and more preferably 3 or more, from the viewpoint of improving the hardness of the hard coat layer.
  • a compound having at least one of an epoxy group and an oxetanyl group as a cationically polymerizable group is preferable.
  • a cyclic ether group such as an epoxy group or an oxetanyl group is preferable from the viewpoint that the shrinkage accompanying the polymerization reaction is small.
  • compounds having an epoxy group among cyclic ether groups are easily available as compounds having various structures, do not adversely affect the durability of the obtained hard coat layer, and easily control the compatibility with the radically polymerizable compound.
  • the oxetanyl group of the cyclic ether group tends to have a higher degree of polymerization than the epoxy group, accelerates the network formation rate obtained from the cationically polymerizable compound of the obtained hard coat layer, and is mixed with the radically polymerizable compound.
  • the cationically polymerizable compound having an epoxy group for example, a polyglycidyl ether of a polyhydric alcohol having an alicyclic ring or a cyclohexene ring, a cyclopentene ring-containing compound, hydrogen peroxide, with a suitable oxidizing agent such as peracid Alicyclic epoxy resin obtained by epoxidation; polyglycidyl ether of aliphatic polyhydric alcohol or alkylene oxide adduct thereof, polyglycidyl ester of aliphatic long-chain polybasic acid, homopolymer of glycidyl (meth)acrylate, Aliphatic epoxy resins such as copolymers; glycidyl ethers produced by the reaction of bisphenol A, bisphenol F, bisphenols such as hydrogenated bisphenol A, or derivatives thereof such as alkylene oxide a
  • the hard coat composition may further include a polymerization initiator.
  • the polymerization initiator include radical polymerization initiators, cationic polymerization initiators, radical and cationic polymerization initiators, etc., which are appropriately selected and used. These polymerization initiators are decomposed by at least one of irradiation with active energy rays and heating to generate radicals or cations to promote radical polymerization and cation polymerization.
  • the radical polymerization initiator may be any one that can release a substance that initiates radical polymerization by at least one of irradiation with active energy rays and heating.
  • thermal radical polymerization initiators examples include hydrogen peroxide, organic peroxides such as perbenzoic acid, and azo compounds such as azobisbutyronitrile.
  • active energy ray radical polymerization initiator a Type 1 type radical polymerization initiator that produces a radical by decomposition of a molecule and a Type 2 type radical polymerization initiator that produces a radical by a hydrogen abstraction type reaction coexisting with a tertiary amine Yes, they are used alone or in combination. Any cationic polymerization initiator may be used as long as it can release a substance that initiates cationic polymerization by irradiation with active energy rays and/or heating.
  • an aromatic iodonium salt an aromatic sulfonium salt, a cyclopentadienyl iron(II) complex or the like can be used. These can initiate cationic polymerization either by irradiation with active energy rays or by heating, or both, depending on the difference in structure.
  • the polymerization initiator may preferably be contained in an amount of 0.1 to 10% by mass based on 100% by mass of the entire hard coat composition.
  • content of the polymerization initiator is in the above range, curing can be sufficiently advanced, and the mechanical properties and adhesion of the finally obtained coating film can be set in a good range, and Poor adhesion due to curing shrinkage, cracking and curling tend to occur less easily.
  • the hard coat composition may further include one or more selected from the group consisting of a solvent and an additive.
  • the solvent is a solvent that can dissolve or disperse the polymerizable compound and the polymerization initiator, if the solvent is known as a solvent of the hard coat composition of the present technical field, does not impair the effects of the present invention Can be used in a range.
  • the additive may further include inorganic particles, a leveling agent, a stabilizer, a surfactant, an antistatic agent, a lubricant, an antifouling agent, and the like.
  • the flexible display device including the optical film of the present invention may further include a polarizing plate, preferably a circularly polarizing plate.
  • the polarizing plate is a functional layer having a function of transmitting only the right circularly polarized light component or the left circularly polarized light component by laminating a ⁇ /4 retardation plate on a linear polarizing plate. For example, by converting the external light into right circularly polarized light and blocking the external light reflected by the organic EL panel to become left circularly polarized light, and transmitting only the luminescent component of the organic EL, the influence of reflected light is suppressed and the image is displayed. It is used to make it easier to see.
  • the absorption axis of the linear polarizing plate and the slow axis of the ⁇ /4 retardation plate are theoretically required to be 45°, but they are practically 45 ⁇ 10°.
  • the linearly polarizing plate and the ⁇ /4 retardation plate are not necessarily required to be laminated adjacent to each other as long as the relationship between the absorption axis and the slow axis satisfies the above range. It is preferable to achieve perfect circularly polarized light at all wavelengths, but this is not necessary in practice, so the circularly polarizing plate in the present invention also includes an elliptically polarizing plate. It is also preferable to further laminate a ⁇ /4 retardation film on the visible side of the linearly polarizing plate to make the emitted light circularly polarized light to improve the visibility in the state of wearing polarized sunglasses.
  • the linearly polarizing plate is a functional layer having a function of transmitting light oscillating in the transmission axis direction but blocking polarized light of an oscillating component perpendicular thereto.
  • the linear polarizing plate may be configured to include a linear polarizer alone or a linear polarizer and a protective film attached to at least one surface thereof.
  • the thickness of the linear polarizing plate may be 200 ⁇ m or less, preferably 0.5 to 100 ⁇ m. When the thickness is in the above range, the flexibility tends to be difficult to decrease.
  • the linear polarizer may be a film-type polarizer manufactured by dyeing and stretching a polyvinyl alcohol (PVA) film.
  • a dichroic dye such as iodine is adsorbed on a PVA-based film oriented by stretching or is stretched in a state of being adsorbed on PVA, whereby the dichroic dye is oriented and exhibits polarization performance.
  • the production of the film-type polarizer may further include steps such as swelling, crosslinking with boric acid, washing with an aqueous solution, and drying.
  • the stretching and dyeing steps may be performed on the PVA film alone, or may be performed in a state of being laminated with another film such as polyethylene terephthalate.
  • the thickness of the PVA-based film used is preferably 10 to 100 ⁇ m, and the stretching ratio is preferably 2 to 10 times.
  • a liquid crystal coating type polarizer formed by coating a liquid crystal polarizing composition may be used.
  • the liquid crystal polarizing composition may include a liquid crystal compound and a dichroic dye compound.
  • the liquid crystalline compound is only required to have a property of exhibiting a liquid crystal state, and it is preferable to have a higher order alignment state such as a smectic phase because high polarization performance can be exhibited. It is also preferable that the liquid crystal compound has a polymerizable functional group.
  • the dichroic dye is a dye that is aligned with the liquid crystal compound and exhibits dichroism, and the dichroic dye itself may have liquid crystallinity or has a polymerizable functional group. You can also Any of the compounds in the liquid crystal polarizing composition has a polymerizable functional group.
  • the liquid crystal polarizing composition may further include an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a cross-linking agent, a silane coupling agent and the like.
  • the liquid crystal polarizing layer is manufactured by applying a liquid crystal polarizing composition on the alignment film to form a liquid crystal polarizing layer.
  • the liquid crystal polarizing layer can be formed thinner than a film type polarizer.
  • the thickness of the liquid crystal polarizing layer may be preferably 0.5 to 10 ⁇ m, more preferably 1 to 5 ⁇ m.
  • the alignment film can be produced, for example, by applying the composition for forming an alignment film on a substrate and imparting the alignment property by rubbing, irradiation of polarized light, or the like.
  • the composition for forming an alignment film may contain a solvent, a cross-linking agent, an initiator, a dispersant, a leveling agent, a silane coupling agent and the like in addition to the alignment agent.
  • the alignment agent for example, polyvinyl alcohols, polyacrylates, polyamic acids, and polyimides can be used.
  • an aligning agent containing a cinnamate group When photo-alignment is applied, it is preferable to use an aligning agent containing a cinnamate group.
  • the weight average molecular weight of the polymer used as the aligning agent may be about 10,000 to 1,000,000.
  • the thickness of the alignment film is preferably 5 to 10,000 nm, more preferably 10 to 500 nm, from the viewpoint of the alignment regulating force.
  • the liquid crystal polarizing layer can be peeled from the base material and transferred to be laminated, or the base material can be laminated as it is. It is also preferable that the base material plays a role as a protective film, a retardation plate, or a window film.
  • the protective film may be a transparent polymer film, and specifically, the polymer film used has a monomer unit containing polyethylene, polypropylene, polymethylpentene, norbornene or cycloolefin.
  • Polyolefins such as cycloolefin derivatives, (modified)celluloses such as diacetylcellulose, triacetylcellulose, propionylcellulose, acrylics such as methylmethacrylate (co)polymers, polystyrenes such as styrene (co)polymers, acrylonitrile -Butadiene-styrene copolymers, acrylonitrile-styrene copolymers, ethylene-vinyl acetate copolymers, polyvinyl chlorides, polyvinylidene chlorides, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, poly Films such as polyesters such as arylate, polyamide
  • polyamide, polyamideimide, polyimide, polyester, olefin, acrylic, or cellulose-based films are preferable in terms of excellent transparency and heat resistance.
  • These polymers can be used alone or in admixture of two or more. These films are used as unstretched films or as uniaxially or biaxially stretched films.
  • Cellulose type films, olefin type films, acrylic films and polyester type films are preferable. It may be a coating type protective film obtained by applying and curing a cationically curable composition such as an epoxy resin or a radical curable composition such as an acrylate.
  • the protective film may have a thickness of 200 ⁇ m or less, preferably 1 to 100 ⁇ m. When the thickness of the protective film is within the above range, the flexibility of the protective film does not easily deteriorate.
  • the ⁇ /4 retardation plate is a film that gives a ⁇ /4 retardation in a direction orthogonal to the traveling direction of incident light (in-plane direction of the film).
  • the ⁇ /4 retardation plate may be a stretchable retardation plate produced by stretching a polymer film such as a cellulose-based film, an olefin-based film, or a polycarbonate-based film.
  • retarder, plasticizer, ultraviolet absorber, infrared absorber, colorant such as pigment or dye, fluorescent brightening agent, dispersant, heat stabilizer, light stabilizer, antistatic agent, antioxidant. , A lubricant, a solvent, etc. may be contained.
  • the thickness of the stretchable retardation plate may be 200 ⁇ m or less, preferably 1 to 100 ⁇ m. When the thickness is in the above range, the flexibility of the film tends to be less likely to decrease.
  • another example of the ⁇ /4 retardation plate may be a liquid crystal coating type retardation plate formed by applying a liquid crystal composition.
  • the liquid crystal composition contains a liquid crystal compound having a property of exhibiting a liquid crystal state such as nematic, cholesteric, or smectic. Any compound in the liquid crystal composition, including the liquid crystal compound, has a polymerizable functional group.
  • the liquid crystal coated retardation plate may further contain an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a cross-linking agent, a silane coupling agent and the like.
  • the liquid crystal coating type retardation plate can be manufactured by coating and curing the liquid crystal composition on the alignment film to form the liquid crystal retardation layer as in the case of the liquid crystal polarizing layer.
  • the liquid crystal coating type retardation plate can be formed thinner than the stretched type retardation plate.
  • the thickness of the liquid crystal polarizing layer may be usually 0.5 to 10 ⁇ m, preferably 1 to 5 ⁇ m.
  • the liquid crystal coating type retardation plate can be peeled from the base material and transferred to be laminated, or the base material can be laminated as it is. It is also preferable that the base material plays a role as a protective film, a retardation plate, or a window film.
  • phase difference of ⁇ /4 cannot be achieved in the entire visible light region, an in-plane phase difference of 100 to 180 nm, preferably 130, which is ⁇ /4 near 560 nm where the visibility is high. Often designed to be ⁇ 150 nm. It is preferable to use an inverse dispersion ⁇ /4 retardation plate using a material having a birefringence wavelength dispersion characteristic opposite to the usual one because the visibility can be improved.
  • the materials described in JP-A-2007-232873 in the case of a stretched retardation plate and the JP-A-2010-30979 in the case of a liquid crystal coated retardation plate. ..
  • a technique for obtaining a broadband ⁇ /4 retardation plate by combining it with a ⁇ /2 retardation plate Japanese Patent Laid-Open No. 10-90521.
  • the ⁇ /2 retardation plate is also manufactured by the same material method as that of the ⁇ /4 retardation plate.
  • the combination of the stretched retardation plate and the liquid crystal coating type retardation plate is arbitrary, but it is preferable to use the liquid crystal coating type retardation plate for both because the thickness can be reduced.
  • the positive C plate may be a liquid crystal coating type retardation plate or a stretching type retardation plate.
  • the retardation in the thickness direction is -200 to -20 nm, preferably -140 to -40 nm.
  • the touch sensor is used as an input means.
  • various types such as a resistance film type, a surface acoustic wave type, an infrared type, an electromagnetic induction type, and a capacitance type have been proposed, and any type may be used. Of these, the capacitance method is preferable.
  • the capacitive touch sensor is divided into an active region and a non-active region located outside the active region.
  • the active region is a region corresponding to a region where the screen is displayed on the display panel (display unit), and is a region where the user's touch is sensed
  • the inactive region is a region where the screen is not displayed on the display device (non-display region). It is an area corresponding to the display part).
  • the touch sensor includes a substrate having flexible characteristics; a sensing pattern formed in an active region of the substrate; formed in an inactive region of the substrate and connected to an external driving circuit through the sensing pattern and a pad unit. Each sensing line can be included.
  • the substrate having flexible characteristics the same material as the polymer film can be used.
  • the toughness of the substrate of the touch sensor is preferably 2,000 MPa% or more from the viewpoint of suppressing cracks in the touch sensor. More preferably, the toughness may be 2,000 to 30,000 MPa%.
  • the toughness is defined as the area under the curve to the breaking point in a stress (MPa)-strain (%) curve (Stress-strain curve) obtained through a tensile test of a polymer material.
  • the sensing pattern may include a first pattern formed in the first direction and a second pattern formed in the second direction.
  • the first pattern and the second pattern are arranged in different directions.
  • the first pattern and the second pattern are formed on the same layer, and the respective patterns must be electrically connected in order to detect a touched point.
  • the first pattern has a structure in which the unit patterns are connected to each other through a joint, but the second pattern has a structure in which the unit patterns are separated from each other in an island shape.
  • a separate bridge electrode is required to make the connection.
  • a known transparent electrode material can be applied to the sensing pattern.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • IZTO indium zinc tin oxide
  • IGZO indium gallium zinc oxide
  • CTO cadmium tin oxide
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • carbon nanotube carbon nanotube
  • graphene metal wire, and the like, and these may be used alone or in combination of two or more.
  • ITO can be used.
  • the metal used for the metal wire is not particularly limited, and examples thereof include silver, gold, aluminum, copper, iron, nickel, titanium, selenium, and chromium. These may be used alone or in combination of two or more.
  • the bridge electrode may be formed on the sensing layer via an insulating layer, and the bridge electrode may be formed on the substrate, and the insulating layer and the sensing pattern may be formed on the bridge electrode.
  • the bridge electrode may be formed of the same material as the sensing pattern, and may be formed of a metal such as molybdenum, silver, aluminum, copper, palladium, gold, platinum, zinc, tin, titanium, or an alloy of two or more of these. You can also do it. Since the first pattern and the second pattern must be electrically insulated, an insulating layer is formed between the sensing pattern and the bridge electrode. The insulating layer may be formed only between the joint of the first pattern and the bridge electrode, or may be formed in the structure of the layer covering the sensing pattern.
  • the bridge electrode can connect the second pattern through a contact hole formed in the insulating layer.
  • the touch sensor has a difference in transmittance between a pattern area where a pattern is formed and a non-pattern area where a pattern is not formed, specifically, a light transmittance which is induced by a difference in refractive index in these areas.
  • An optical adjustment layer may be further included between the substrate and the electrode as a means for appropriately compensating the difference, and the optical adjustment layer may include an inorganic insulating material or an organic insulating material.
  • the optical adjustment layer may be formed by coating a photocurable composition containing a photocurable organic binder and a solvent on a substrate.
  • the photocurable composition may further include inorganic particles.
  • the inorganic particles may increase the refractive index of the optical adjustment layer.
  • the photocurable organic binder may include, for example, a copolymer of each monomer such as an acrylate-based monomer, a styrene-based monomer, and a carboxylic acid-based monomer.
  • the photocurable organic binder may be, for example, a copolymer containing different repeating units such as an epoxy group-containing repeating unit, an acrylate repeating unit, and a carboxylic acid repeating unit.
  • the inorganic particles can include, for example, zirconia particles, titania particles, alumina particles, and the like.
  • the photocurable composition may further include various additives such as a photopolymerization initiator, a polymerizable monomer, and a curing aid.
  • a film member such as a linear polarizing plate and a ⁇ /4 retardation plate that forms each layer such as a window film, a polarizing plate, and a touch sensor that forms the laminated body for a flexible display device and each layer may be bonded with an adhesive. it can.
  • a water-based adhesive an organic solvent-based adhesive, a solvent-free adhesive, a solid adhesive, a solvent volatilization type adhesive, a water-based solvent volatilization type adhesive, a moisture-curable adhesive, a heat-curable adhesive, Anaerobic curable adhesives, active energy ray curable adhesives, curing agent mixed adhesives, heat-meltable adhesives, pressure-sensitive adhesives, pressure-sensitive adhesives, rewet adhesives, etc.
  • water-based solvent volatilizing adhesives, active energy ray-curing adhesives, and pressure-sensitive adhesives are often used.
  • the thickness of the adhesive layer can be appropriately adjusted according to the required adhesive strength and the like, and is, for example, 0.01 to 500 ⁇ m, preferably 0.1 to 300 ⁇ m, and the adhesive layer is the laminate for a flexible display device. There may be a plurality of them, but the thickness of each and the type of adhesive used may be the same or different.
  • polyvinyl alcohol-based polymer As the water-based solvent volatilizing adhesive, polyvinyl alcohol-based polymer, water-soluble polymer such as starch, water-dispersed polymer such as ethylene-vinyl acetate emulsion, styrene-butadiene emulsion can be used as the main polymer.
  • a cross-linking agent a silane compound, an ionic compound, a cross-linking catalyst, an antioxidant, a dye, a pigment, an inorganic filler, an organic solvent and the like may be added.
  • the water-based solvent volatile adhesive may be injected between the adhered layers to bond the adhered layers and then dried to impart adhesiveness.
  • the thickness of the adhesive layer when the water-based solvent volatilizing adhesive is used may be 0.01 to 10 ⁇ m, preferably 0.1 to 1 ⁇ m.
  • the thickness of each layer and the type of the adhesive may be the same or different.
  • the active energy ray-curable adhesive can be formed by curing an active energy ray-curable composition containing a reactive material that irradiates an active energy ray to form an adhesive layer.
  • the active energy ray-curable composition can contain at least one polymer of a radically polymerizable compound and a cationically polymerizable compound similar to the hard coat composition.
  • the radical-polymerizable compound is the same as the hard coat composition, and the same kind as the hard coat composition can be used.
  • As the radically polymerizable compound used in the adhesive layer a compound having an acryloyl group is preferable. It is also preferable to include a monofunctional compound in order to reduce the viscosity of the adhesive composition.
  • the cationically polymerizable compound is the same as that used in the hard coat composition, and the same kind as the hard coat composition can be used.
  • An epoxy compound is preferable as the cationically polymerizable compound used in the active energy ray-curable composition. It is also preferable to include a monofunctional compound as a reactive diluent in order to reduce the viscosity of the adhesive composition.
  • the active energy ray composition may further contain a polymerization initiator. Examples of the polymerization initiator include radical polymerization initiators, cationic polymerization initiators, radical and cationic polymerization initiators, etc., which can be appropriately selected and used.
  • These polymerization initiators are decomposed by at least one of irradiation with active energy rays and heating to generate radicals or cations to promote radical polymerization and cation polymerization.
  • an initiator capable of initiating radical polymerization and/or cationic polymerization by irradiation with active energy rays can be used.
  • the active energy ray-curable composition is further an ion scavenger, an antioxidant, a chain transfer agent, an adhesion promoter, a thermoplastic resin, a filler, a flow viscosity modifier, a plasticizer, a defoaming agent solvent, an additive, a solvent. Can be included.
  • the active energy ray-curable composition is applied to either or both of the adherend layers and then laminated, and activated through either adherent layer or both adherent layers. It can be adhered by irradiating it with an energy ray and curing it.
  • the thickness of the adhesive layer when the active energy ray-curable adhesive is used may be 0.01 to 20 ⁇ m, preferably 0.1 to 10 ⁇ m.
  • the thickness of each layer and the type of adhesive used may be the same or different.
  • the pressure-sensitive adhesive may be classified into an acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, etc. depending on the base polymer, and any of these may be used.
  • the adhesive may contain a crosslinking agent, a silane compound, an ionic compound, a crosslinking catalyst, an antioxidant, a tackifier, a plasticizer, a dye, a pigment, an inorganic filler, and the like.
  • the components constituting the pressure-sensitive adhesive are dissolved and dispersed in a solvent to obtain a pressure-sensitive adhesive composition, and the pressure-sensitive adhesive composition is applied onto a substrate and then dried to form a pressure-sensitive adhesive layer adhesive layer.
  • the adhesive layer may be directly formed, or may be separately formed on a substrate and transferred. It is also preferable to use a release film to cover the adhesive surface before adhesion.
  • the thickness of the adhesive layer may be 1 to 500 ⁇ m, preferably 2 to 300 ⁇ m.
  • the thickness of each layer and the type of pressure-sensitive adhesive used may be the same or different.
  • the light blocking pattern may be applied as at least a part of a bezel or a housing of the flexible display device.
  • the visibility of the image is improved by hiding the wiring arranged at the peripheral portion of the flexible display device by the light-shielding pattern and making it difficult to see.
  • the light-shielding pattern may be in the form of a single layer or multiple layers.
  • the color of the light-shielding pattern is not particularly limited, and may have various colors such as black, white and metallic colors.
  • the light-shielding pattern can be formed of a pigment for realizing color and a polymer such as acrylic resin, ester resin, epoxy resin, polyurethane, or silicone. These may be used alone or as a mixture of two or more kinds.
  • the light-shielding pattern can be formed by various methods such as printing, lithography and inkjet.
  • the thickness of the light-shielding pattern is usually 1 to 100 ⁇ m, preferably 2 to 50 ⁇ m. It is also preferable to give a shape such as an inclination in the thickness direction of the light pattern.
  • Example 1 Synthesis of polyimide resin
  • Nitrogen was introduced into a sufficiently dried reaction vessel equipped with a stirrer and a thermometer, and the inside of the vessel was replaced with nitrogen.
  • the inside of the reaction vessel was cooled to 10° C., 1907.2 parts of N,N-dimethylacetamide (DMAc) was put into the vessel, and 2,2′-bis(trifluoromethyl)benzidine (TFMB) 111.37 parts and 4, 4′-(Hexafluoroisopropylidene)diphthalic acid dianhydride (6FDA) (46.82 parts) was added, and the mixture was stirred for 3 hours.
  • DMAc N,N-dimethylacetamide
  • TFMB 2,2′-bis(trifluoromethyl)benzidine
  • 6FDA 4′-(Hexafluoroisopropylidene)diphthalic acid dianhydride
  • OBBC 4,4′-oxybis(benzoyl chloride)
  • TPC terephthaloyl chloride
  • step (III) the diamine compound used in the production of the polyimide resin is TFMB, and the addition amount of the diamine compound in the step (I) (first addition amount) and the addition amount of the diamine compound in the step (II) (second amount) The addition ratio) was 99.5:0.5.
  • Example 2 A polyimide resin was obtained in the same manner as in Example 1 except that the first addition amount of the diamine compound was 110.26 parts and the second addition amount was 1.679 parts.
  • Example 3 A polyimide resin was obtained in the same manner as in Example 1 except that the first addition amount of the diamine compound was 111.60 parts and the second addition amount was 0.448 parts.
  • Example 4 A polyimide resin was obtained in the same manner as in Example 1 except that the first addition amount of the diamine compound was 110.60 parts and the second addition amount was 0.045 parts.
  • Example 5 A polyimide resin was obtained in the same manner as in Example 1 except that the first addition amount of the diamine compound was 110.60 parts and the second addition amount was 0.179 parts.
  • Example 6 A polyimide resin was obtained in the same manner as in Example 1 except that the first addition amount of the diamine compound was 110.60 parts and the second addition amount was 0.067 parts.
  • Example 1 A polyimide resin was obtained in the same manner as in Example 1 except that the first addition amount of the diamine compound was 111.37 parts and the step (II) was not performed (the second addition was not performed). ..
  • Example 2 A polyimide resin was obtained in the same manner as in Example 1 except that the first addition amount of the diamine compound was 110.81 parts and the step (II) was not carried out (the second addition was not carried out). ..
  • the polyimide resins prepared in Examples 1 to 6 and Comparative Examples 1 and 2 were dissolved in DMAc to obtain polyimide resin varnish having a polyimide resin concentration of 10% by mass.
  • the obtained resin varnish was applied on a smooth surface of a polyester substrate (manufactured by Toyobo Co., Ltd., trade name “A4100”) using an applicator so that the thickness of the self-supporting film was 55 ⁇ m, and the temperature was 50° C. for 30 minutes. Then, after drying at 140° C. for 15 minutes, the obtained coating film was peeled off from the polyester base material to obtain a self-supporting film.
  • the self-supporting film was fixed to a metal frame and further dried in the atmosphere at 200° C.

Abstract

Provided is a method for producing a polyimide resin capable of forming a film which has a high flex resistance. A method for producing a polyimide resin, which comprises: process (I) for preparing an intermediate (K), said process including step (A) for reacting a diamine compound with a carboxylic acid compound having 3 or more carbonyl groups; and process (II) for further reacting the intermediate (K) with a diamine compound.

Description

ポリイミド系樹脂の製造方法Method for producing polyimide resin
 本発明は、フレキシブル表示装置等の材料として使用されるポリイミド系樹脂の製造方法に関する。 The present invention relates to a method for producing a polyimide resin used as a material for a flexible display device or the like.
 液晶表示装置や有機EL表示装置等の表示装置は、携帯電話やスマートウォッチといった種々の用途に広く活用されている。このような表示装置の前面板としてガラスが用いられてきたが、ガラスは非常に剛直であり、割れやすいため、フレキシブル表示装置の前面板材料としての利用は難しい。ガラスに代わる材料の一つとして、ポリイミド系樹脂があり、該ポリイミド系樹脂を用いたフィルムが検討されている(特許文献1)。 Display devices such as liquid crystal display devices and organic EL display devices are widely used in various applications such as mobile phones and smart watches. Although glass has been used as a front plate of such a display device, it is difficult to use it as a front plate material of a flexible display device because glass is very rigid and easily broken. There is a polyimide resin as one of the materials replacing the glass, and a film using the polyimide resin has been studied (Patent Document 1).
特開2017-203984号公報JP, 2017-203984, A
 このようなフィルムをフレキシブル表示装置に適用する場合、該フィルムには繰り返し折り曲げても破断等に耐えうる耐屈曲性が求められる。しかし、本発明者の検討によれば、ポリイミド系樹脂から形成されるフィルムは、耐屈曲性が十分でない場合があることがわかった。 When applying such a film to a flexible display device, the film is required to have bending resistance that can withstand breakage even when repeatedly bent. However, according to the study by the present inventors, it has been found that a film formed of a polyimide resin may not have sufficient flex resistance.
 従って、本発明の目的は、耐屈曲性に優れたフィルムを形成可能なポリイミド系樹脂の製造方法を提供することにある。 Therefore, an object of the present invention is to provide a method for producing a polyimide resin capable of forming a film having excellent flex resistance.
 本発明者は、上記課題を解決するために鋭意検討した結果、ポリイミド系樹脂の製造過程において、ジアミン化合物を2回以上に分割して反応させると、上記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明には、以下の好適な態様が含まれる。 MEANS TO SOLVE THE PROBLEM As a result of earnestly studying in order to solve the said subject, in the manufacturing process of a polyimide resin, when a diamine compound was divided and reacted twice or more, it found out that the said subject can be solved, and this invention is carried out. It came to completion. That is, the present invention includes the following preferred modes.
[1]ジアミン化合物と3つ以上のカルボニル基を有するカルボン酸化合物とを反応させるステップ(A)を含む中間体(K)を得る工程(I)、及び
 該中間体(K)に、さらにジアミン化合物を反応させる工程(II)
を含む、ポリイミド系樹脂の製造方法。
[2]工程(I)で反応させるジアミン化合物の使用量は、工程(I)及び工程(II)で反応させるジアミン化合物の総量を100モルとしたときに、80~99.99モルである、[1]に記載の製造方法。
[3]工程(I)は、ステップ(A)の後、さらにジカルボン酸化合物を反応させるステップ(B)を含む、[1]又は[2]に記載の製造方法。
[1] A step (I) of obtaining an intermediate (K), which comprises a step (A) of reacting a diamine compound with a carboxylic acid compound having three or more carbonyl groups, and the intermediate (K) further comprises a diamine. Step (II) of reacting a compound
A method for producing a polyimide resin, comprising:
[2] The amount of the diamine compound reacted in the step (I) is 80 to 99.99 mol, when the total amount of the diamine compound reacted in the steps (I) and (II) is 100 mol. The manufacturing method according to [1].
[3] The production method according to [1] or [2], wherein the step (I) further includes a step (B) of reacting a dicarboxylic acid compound after the step (A).
 本発明の製造方法によれば、耐屈曲性に優れたフィルムを形成可能なポリイミド系樹脂を得ることができる。 According to the manufacturing method of the present invention, it is possible to obtain a polyimide resin capable of forming a film having excellent flex resistance.
[ポリイミド系樹脂の製造方法]
 本発明の製造方法は、ジアミン化合物と3つ以上のカルボニル基を有するカルボン酸化合物とを反応させるステップ(A)を含む中間体(K)を得る工程(I)、及び該中間体(K)に、さらにジアミン化合物を反応させる工程(II)を含む。本発明の製造方法により得られるポリイミド系樹脂は、ポリイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂前駆体、又はポリアミドイミド樹脂前駆体を意味する。なお、ポリイミド樹脂前駆体、及びポリアミドイミド樹脂前駆体を総称してポリイミド系樹脂前駆体という場合がある。ポリイミド樹脂は、イミド基を含む繰り返し構造単位を含有する重合体であり、例えば、ジアミン化合物由来の繰り返し構造単位と、3つ以上のカルボニル基を有するカルボン酸化合物由来の繰り返し構造単位(例えばテトラカルボン酸化合物由来の繰り返し構造単位)とを含む樹脂である。ポリアミドイミド樹脂は、イミド基を含む繰り返し構造単位とアミド基を含む繰り返し構造単位との両方を含有する重合体であり、例えば、ジアミン化合物由来の繰り返し構造単位と、3つ以上のカルボニル基を有するカルボン酸化合物由来の繰り返し構造単位(例えばトリカルボン酸化合物由来の繰り返し構造単位)とを含む樹脂や、ジアミン化合物由来の繰り返し構造単位と、3つ以上のカルボニル基を有するカルボン酸化合物由来の繰り返し構造単位(例えばテトラカルボン酸化合物由来の繰り返し構造単位)と、ジカルボン酸化合物由来の繰り返し構造単位とを含む樹脂である。ポリイミド樹脂前駆体は、イミド化によりポリイミド樹脂を製造する前の前駆体を示し、ポリアミドイミド樹脂前駆体は、イミド化によりポリアミドイミド樹脂を製造する前の前駆体を示す。なお、本明細書において、「繰り返し構造単位」を「構成単位」ということがある。また、「由来の構成単位」を単に「単位」ということがあり、例えば化合物由来の構成単位を化合物単位などということがある。
[Method for producing polyimide resin]
The production method of the present invention comprises a step (I) of obtaining an intermediate (K) comprising a step (A) of reacting a diamine compound with a carboxylic acid compound having three or more carbonyl groups, and the intermediate (K). In addition, the step (II) of reacting a diamine compound is further included. The polyimide resin obtained by the production method of the present invention means a polyimide resin, a polyamideimide resin, a polyimide resin precursor, or a polyamideimide resin precursor. The polyimide resin precursor and the polyamide-imide resin precursor may be collectively referred to as a polyimide resin precursor. The polyimide resin is a polymer containing a repeating structural unit containing an imide group, for example, a repeating structural unit derived from a diamine compound and a repeating structural unit derived from a carboxylic acid compound having three or more carbonyl groups (for example, tetracarboxylic acid). And a repeating structural unit derived from an acid compound). The polyamide-imide resin is a polymer containing both a repeating structural unit containing an imide group and a repeating structural unit containing an amide group, and has, for example, a repeating structural unit derived from a diamine compound and three or more carbonyl groups. A resin containing a repeating structural unit derived from a carboxylic acid compound (for example, a repeating structural unit derived from a tricarboxylic acid compound), a repeating structural unit derived from a diamine compound, and a repeating structural unit derived from a carboxylic acid compound having three or more carbonyl groups. (For example, a repeating structural unit derived from a tetracarboxylic acid compound) and a repeating structural unit derived from a dicarboxylic acid compound. The polyimide resin precursor indicates a precursor before producing a polyimide resin by imidization, and the polyamideimide resin precursor indicates a precursor before producing a polyamideimide resin by imidization. In addition, in this specification, a "repeating structural unit" may be called a "structural unit." Further, the “original constitutional unit” may be simply referred to as a “unit”, and for example, the compound-derived constitutional unit may be referred to as a compound unit.
 <工程(I)>
 工程(I)は、ジアミン化合物と3つ以上のカルボニル基を有するカルボン酸化合物とを反応させるステップ(A)を含む中間体(K)を得る工程である。
<Process (I)>
Step (I) is a step of obtaining an intermediate (K) including a step (A) of reacting a diamine compound with a carboxylic acid compound having three or more carbonyl groups.
 (ステップA)
 ステップAで使用するジアミン化合物としては、例えば、非環式又は環式脂肪族ジアミン等の脂肪族ジアミン、芳香族ジアミン、又はこれらの混合物が挙げられる。なお、本実施態様において「芳香族ジアミン」とは、アミノ基が芳香環に直接結合しているジアミンを表し、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。この芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環及びフルオレン環等が例示されるが、これらに限定されない。また「脂肪族ジアミン」とは、アミノ基が脂肪族基に直接結合しているジアミンを表し、その構造の一部に芳香環、又はその他の置換基を含んでいてもよい。ジアミン化合物は単独又は二種以上組合せて使用できる。
(Step A)
Examples of the diamine compound used in Step A include aliphatic diamines such as acyclic or cycloaliphatic diamines, aromatic diamines, and mixtures thereof. In addition, in this embodiment, the “aromatic diamine” represents a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group or another substituent may be included in a part of its structure. The aromatic ring may be a single ring or a condensed ring, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring and a fluorene ring, but are not limited thereto. The "aliphatic diamine" represents a diamine in which an amino group is directly bonded to the aliphatic group, and may have an aromatic ring or other substituent in a part of its structure. The diamine compounds may be used alone or in combination of two or more.
 本発明の一実施態様において、ジアミン化合物は、例えば、式(1) In one embodiment of the present invention, the diamine compound has, for example, the formula (1)
Figure JPOXMLDOC01-appb-C000001
で表される化合物(ジアミン化合物(1)と称する場合がある)を含むことが好ましい。ジアミン化合物を二種以上使用する場合、ジアミン化合物(1)のXの種類が互いに異なる二種以上のジアミン化合物を用いてよい。
Figure JPOXMLDOC01-appb-C000001
It is preferable to include a compound represented by (may be referred to as a diamine compound (1)). When two or more kinds of diamine compounds are used, two or more kinds of diamine compounds having different kinds of X in the diamine compound (1) may be used.
 式(1)において、Xは、2価の有機基を表し、好ましくは炭素数4~40の2価の有機基、より好ましくは環状構造を有する炭素数4~40の2価の有機基を表す。環状構造としては、脂環、芳香環、ヘテロ環構造が挙げられる。前記有機基は、有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよく、その場合、炭化水素基及びフッ素置換された炭化水素基の炭素数は好ましくは1~8である。Xとしては、式(10)、式(11)、式(12)、式(13)、式(14)、式(15)、式(16)、式(17)及び式(18)で表される基;それらの式(10)~式(18)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに炭素数6以下の鎖式炭化水素基が例示される。 In the formula (1), X represents a divalent organic group, preferably a divalent organic group having 4 to 40 carbon atoms, and more preferably a divalent organic group having 4 to 40 carbon atoms and having a cyclic structure. Represent Examples of the cyclic structure include an alicyclic structure, an aromatic ring structure, and a heterocyclic structure. The organic group, the hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, in which case, the carbon number of the hydrocarbon group and the fluorine-substituted hydrocarbon group is preferably Is 1 to 8. X is represented by formula (10), formula (11), formula (12), formula (13), formula (14), formula (15), formula (16), formula (17) and formula (18). A group represented by the formulas (10) to (18) in which a hydrogen atom is substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group; and a group having 6 or less carbon atoms. A chain hydrocarbon group is exemplified.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(10)~式(18)中、*は結合手を表し、
 V、V及びVは、互いに独立に、単結合、-O-、-S-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-CO-又は-N(Q)-を表す。ここで、Qはハロゲン原子で置換されていてもよい炭素数1~12の1価の炭化水素基を表す。
 1つの例は、V及びVが単結合、-O-又は-S-であり、かつ、Vが-CH-、-C(CH-、-C(CF-又は-SO-である。VとVとの各環に対する結合位置、及び、VとVとの各環に対する結合位置は、それぞれ、各環に対してメタ位又はパラ位であることが好ましく、パラ位であることがより好ましい。
In formulas (10) to (18), * represents a bond,
V 1, V 2 and V 3 independently of one another, a single bond, -O -, - S -, - CH 2 -, - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3 ) 2 −, —C(CF 3 ) 2 —, —SO 2 —, —CO— or —N(Q)—. Here, Q represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom.
One example is that V 1 and V 3 are single bonds, —O— or —S—, and V 2 is —CH 2 —, —C(CH 3 ) 2 —, —C(CF 3 ) 2 -Or-SO 2 -. The bonding position of each of V 1 and V 2 with respect to each ring and the bonding position of each of V 2 and V 3 with respect to each ring are preferably a meta position or a para position with respect to each ring, and in the para position. More preferably.
 式(10)~式(18)で表される基の中でも、ポリイミド系樹脂を含んでなるフィルムの弾性率、耐屈曲性及び表面硬度を向上しやすい観点から、式(13)、式(14)、式(15)、式(16)及び式(17)で表される基が好ましく、式(14)、式(15)及び式(16)で表される基がより好ましい。また、V、V及びVは、ポリイミド系樹脂を含んでなるフィルムの弾性率、柔軟性、耐屈曲性及び表面硬度を向上しやすい観点から、互いに独立に、単結合、-O-又は-S-であることが好ましく、単結合又は-O-であることがより好ましい。 Among the groups represented by the formulas (10) to (18), the formula (13) and the formula (14) are preferable from the viewpoint of easily improving the elastic modulus, flex resistance and surface hardness of the film containing the polyimide resin. ), Formula (15), Formula (16) and Formula (17) are preferable, and the group represented by Formula (14), Formula (15) and Formula (16) is more preferable. Further, V 1 , V 2 and V 3 are each independently a single bond, —O— from the viewpoint of easily improving the elastic modulus, flexibility, bending resistance and surface hardness of a film containing a polyimide resin. Alternatively, —S— is preferable, and a single bond or —O— is more preferable.
 本発明の好適な実施態様において、式(1)中のXは、式(2): In a preferred embodiment of the present invention, X in formula (1) is represented by formula (2):
Figure JPOXMLDOC01-appb-C000003
[式(2)中、R~Rは、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表し、R~Rに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、*は結合手を表す]
で表される基である。ジアミン化合物として、式(1)中のXが式(2)で表される基である化合物を含むと、ポリイミド系樹脂を含んでなる光学フィルムは、高い弾性率、耐屈曲性及び光学特性を発現しやすい。
Figure JPOXMLDOC01-appb-C000003
[In the formula (2), R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, The hydrogen atoms contained in R 1 to R 8 may be independently substituted with a halogen atom, and * represents a bond.]
Is a group represented by. When the compound in which X in the formula (1) is a group represented by the formula (2) is contained as the diamine compound, the optical film containing the polyimide resin has high elastic modulus, bending resistance and optical characteristics. Easy to develop.
 式(2)において、R、R、R、R、R、R、R及びRは、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表す。
 炭素数1~6のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基、n-ヘキシル基等が挙げられる。
 炭素数1~6のアルコキシ基としては、例えばメトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基等が挙げられる。
 炭素数6~12のアリール基としては、例えばフェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基等が挙げられる。R~Rは、互いに独立に、好ましくは水素原子又は炭素数1~6のアルキル基を表し、より好ましくは水素原子又は炭素数1~3のアルキル基を表し、ここで、R~Rに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよい。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。R~Rは、互いに独立に、ポリイミド系樹脂を含んでなるフィルムの表面硬度、光学特性、弾性率及び耐屈曲性を向上しやすい観点から、さらに好ましくは水素原子、メチル基、フルオロ基、クロロ基又はトリフルオロメチル基を表し、さらにより好ましくはR、R、R、R、R及びRが水素原子、R及びRが水素原子、メチル基、フルオロ基、クロロ基又はトリフルオロメチル基を表し、とりわけ好ましくはR及びRがメチル基又はトリフルオロメチル基を表す。
In the formula (2), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carbon number 1 It represents an alkoxy group having 6 to 6 or an aryl group having 6 to 12 carbon atoms.
Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group and 2-methyl- group. Examples thereof include a butyl group, a 3-methylbutyl group, a 2-ethyl-propyl group, and an n-hexyl group.
Examples of the alkoxy group having 1 to 6 carbon atoms include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, hexyloxy group and cyclohexyloxy group. Can be mentioned.
Examples of the aryl group having 6 to 12 carbon atoms include phenyl group, tolyl group, xylyl group, naphthyl group and biphenyl group. R 1 to R 8 independently of each other preferably represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, wherein R 1 to R 8 The hydrogen atoms contained in R 8 may be independently substituted with a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. R 1 to R 8 are, independently of each other, more preferably a hydrogen atom, a methyl group or a fluoro group from the viewpoint of easily improving the surface hardness, optical properties, elastic modulus and flex resistance of the film containing a polyimide resin. , A chloro group or a trifluoromethyl group, and even more preferably, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are hydrogen atoms, R 7 and R 8 are hydrogen atoms, a methyl group and a fluoro group. , Chloro group or trifluoromethyl group, particularly preferably R 7 and R 8 represent methyl group or trifluoromethyl group.
 本発明の好適な実施態様において、式(2)は、式(2’): In a preferred embodiment of the present invention, the formula (2) is the formula (2'):
Figure JPOXMLDOC01-appb-C000004
で表される。ジアミン化合物として、式(2)中のXが式(2’)で表される基である化合物を含むと、ポリイミド系樹脂を含んでなるフィルムは、ヘーズ及び黄色度(以下、YI値と称することがある)を低減しやすく、光学特性を向上しやすい。また、フッ素元素を含有する骨格により、ポリイミド系樹脂の溶媒への溶解性が向上され、樹脂ワニスの粘度を低く抑制しやすい。
Figure JPOXMLDOC01-appb-C000004
It is represented by. When the diamine compound contains a compound in which X in the formula (2) is a group represented by the formula (2′), the film containing the polyimide resin has a haze and a yellowness index (hereinafter, referred to as YI value). Sometimes)), and it is easy to improve optical characteristics. Further, the skeleton containing the elemental fluorine improves the solubility of the polyimide resin in the solvent, and the viscosity of the resin varnish can be easily suppressed to a low level.
 具体的には、脂肪族ジアミンとしては、例えば、ヘキサメチレンジアミン等の非環式脂肪族ジアミン、並びに1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ノルボルナンジアミン及び4,4’-ジアミノジシクロヘキシルメタン等の環式脂肪族ジアミン等が挙げられる。これらは単独で又は二種以上を組合せて用いることができる。 Specifically, examples of the aliphatic diamine include acyclic aliphatic diamine such as hexamethylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, norbornanediamine. And cycloaliphatic diamines such as 4,4′-diaminodicyclohexylmethane. These may be used alone or in combination of two or more.
 芳香族ジアミンとしては、例えばp-フェニレンジアミン、m-フェニレンジアミン、2,4-トルエンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン等の、芳香環を1つ有する芳香族ジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMBと記載することがある)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン等の、芳香環を2つ以上有する芳香族ジアミンが挙げられる。これらは単独又は2種以上を組合せて使用できる。 Examples of aromatic diamines include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene, and 2,6-diaminonaphthalene. , An aromatic diamine having one aromatic ring, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′- Diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4 -Aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl] Propane, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2'-dimethylbenzidine, 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl (TFMB and May be mentioned), 4,4'-bis(4-aminophenoxy)biphenyl, 9,9-bis(4-aminophenyl)fluorene, 9,9-bis(4-amino-3-methylphenyl)fluorene And aromatic diamines having two or more aromatic rings, such as 9,9-bis(4-amino-3-chlorophenyl)fluorene and 9,9-bis(4-amino-3-fluorophenyl)fluorene. These may be used alone or in combination of two or more.
 芳香族ジアミンとしては、好ましくは4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB)、4,4’-ビス(4-アミノフェノキシ)ビフェニルであり、より好ましくは4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB)、4,4’-ビス(4-アミノフェノキシ)ビフェニルである。これらは単独又は二種以上を組合せて使用できる。 The aromatic diamine is preferably 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenyl sulfone, 1,4-bis(4-aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2′-dimethylbenzidine, 2,2′-bis (Trifluoromethyl)-4,4′-diaminodiphenyl (TFMB) and 4,4′-bis(4-aminophenoxy)biphenyl, more preferably 4,4′-diaminodiphenylmethane and 4,4′-diamino Diphenylpropane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 1,4-bis(4-aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, 2,2 -Bis[4-(4-aminophenoxy)phenyl]propane, 2,2'-dimethylbenzidine, 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl (TFMB), 4,4' -Bis(4-aminophenoxy)biphenyl. These may be used alone or in combination of two or more.
 上記ジアミン化合物の中でも、ポリイミド系樹脂を含んでなるフィルムの高表面硬度、高透明性、高弾性率、高柔軟性、高耐屈曲性及び低着色性の観点からは、ビフェニル構造を有する芳香族ジアミンからなる群から選ばれる1種以上を用いることが好ましい。2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4’-ビス(4-アミノフェノキシ)ビフェニル及び4,4’-ジアミノジフェニルエーテルからなる群から選ばれる1種以上を用いることがより好ましく、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB)を用いることがよりさらに好ましい。 Among the above diamine compounds, from the viewpoint of high surface hardness, high transparency, high elastic modulus, high flexibility, high bending resistance and low colorability of a film containing a polyimide resin, an aromatic compound having a biphenyl structure It is preferable to use at least one selected from the group consisting of diamines. One selected from the group consisting of 2,2′-dimethylbenzidine, 2,2′-bis(trifluoromethyl)benzidine, 4,4′-bis(4-aminophenoxy)biphenyl and 4,4′-diaminodiphenyl ether It is more preferable to use the above, and it is more preferable to use 2,2′-bis(trifluoromethyl)-4,4′-diaminodiphenyl (TFMB).
 ステップAで使用するジアミン化合物のうち、式(1)中のXが式(2)で表される基であるジアミン化合物、例えば式(1)中のXが式(2’)で表される基であるジアミン化合物の割合は、ステップAで使用するジアミン化合物の総モル量に対して、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは70モル%以上、とりわけ好ましくは80モル%以上であり、好ましくは100モル%以下である。式(1)中のXが式(2)で表される基であるジアミン化合物の割合が上記範囲であると、ポリイミド系樹脂を含んでなるフィルムは、フッ素元素を含有する骨格により樹脂の溶媒への溶解性を向上し、樹脂ワニスの粘度を低く抑制することができ、またフィルムのYI値やヘーズ等を低減でき、光学特性を向上しやすい。なお、式(1)中のXが式(2)で表される基であるジアミン化合物の割合等は、原料の仕込み比から算出してもよい。 Among the diamine compounds used in step A, a diamine compound in which X in formula (1) is a group represented by formula (2), for example, X in formula (1) is represented by formula (2′). The ratio of the diamine compound as a group is preferably 30 mol% or more, more preferably 50 mol% or more, further preferably 70 mol% or more, and particularly preferably, with respect to the total molar amount of the diamine compound used in Step A. It is 80 mol% or more, and preferably 100 mol% or less. When the proportion of the diamine compound in which X in the formula (1) is a group represented by the formula (2) is in the above range, the film containing the polyimide resin has a solvent of the resin due to the skeleton containing elemental fluorine. Solubility in the resin varnish, the viscosity of the resin varnish can be suppressed to a low level, the YI value and haze of the film can be reduced, and the optical characteristics can be easily improved. The ratio of the diamine compound in which X in the formula (1) is a group represented by the formula (2) may be calculated from the charging ratio of the raw materials.
 ステップAで使用する3つ以上のカルボニル基を有するカルボン酸化合物は、好ましくはトリカルボン酸化合物又はテトラカルボン酸化合物であり、より好ましくはテトラカルボン酸化合物である。 The carboxylic acid compound having three or more carbonyl groups used in step A is preferably a tricarboxylic acid compound or a tetracarboxylic acid compound, and more preferably a tetracarboxylic acid compound.
 テトラカルボン酸化合物は、テトラカルボン酸又はテトラカルボン酸誘導体を示す。テトラカルボン酸誘導体としては、テトラカルボン酸の無水物及び酸クロリド等が挙げられ、好ましくはテトラカルボン酸の二無水物が挙げられる。
 テトラカルボン酸化合物としては、例えば芳香族テトラカルボン酸及びその無水物、好ましくはその二無水物等の芳香族テトラカルボン酸化合物;脂肪族テトラカルボン酸及びその無水物、好ましくはその二無水物等の脂肪族テトラカルボン酸化合物等が挙げられる。これらのテトラカルボン酸化合物は単独又は二種以上組合せて使用できる。
The tetracarboxylic acid compound indicates a tetracarboxylic acid or a tetracarboxylic acid derivative. Examples of the tetracarboxylic acid derivative include tetracarboxylic acid anhydrides and acid chlorides, and preferably tetracarboxylic acid dianhydrides.
Examples of the tetracarboxylic acid compound include aromatic tetracarboxylic acid and its anhydride, preferably aromatic tetracarboxylic acid compound such as its dianhydride; aliphatic tetracarboxylic acid and its anhydride, preferably its dianhydride and the like. And the like. These tetracarboxylic acid compounds may be used alone or in combination of two or more.
 本発明の一実施態様において、テトラカルボン酸化合物は、好ましくはテトラカルボン酸二無水物である。テトラカルボン酸二無水物としては、例えば式(3) In one embodiment of the present invention, the tetracarboxylic acid compound is preferably tetracarboxylic dianhydride. Examples of the tetracarboxylic dianhydride include compounds represented by the formula (3)
Figure JPOXMLDOC01-appb-C000005
で表される化合物(以下、テトラカルボン酸化合物(3)と称する場合がある)であることが好ましい。テトラカルボン酸化合物は単独又は二種以上組合せて使用でき、テトラカルボン酸化合物を二種以上使用する場合、テトラカルボン酸化合物(3)のYの種類が互いに異なる二種以上のテトラカルボン酸化合物を用いてもよい。
Figure JPOXMLDOC01-appb-C000005
It is preferable that it is a compound represented by (hereinafter sometimes referred to as a tetracarboxylic acid compound (3)). The tetracarboxylic acid compounds can be used alone or in combination of two or more kinds. When two or more kinds of tetracarboxylic acid compounds are used, two or more kinds of tetracarboxylic acid compounds having different kinds of Y in the tetracarboxylic acid compound (3) are different from each other. You may use.
 式(3)において、Yは、互いに独立に、4価の有機基を表し、好ましくは炭素数4~40の4価の有機基を表し、より好ましくは環状構造を有する炭素数4~40の4価の有機基を表す。環状構造としては、脂環、芳香環、ヘテロ環構造が挙げられる。前記有機基は、有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基であり、その場合、炭化水素基及びフッ素置換された炭化水素基の炭素数は好ましくは1~8である。Yとしては、以下の式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基;それらの式(20)~式(29)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに4価の炭素数6以下の鎖式炭化水素基が挙げられる。 In formula (3), Y's each independently represent a tetravalent organic group, preferably a tetravalent organic group having 4 to 40 carbon atoms, and more preferably 4 to 40 carbon atoms having a cyclic structure. Represents a tetravalent organic group. Examples of the cyclic structure include an alicyclic structure, an aromatic ring structure, and a heterocyclic structure. The organic group is an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, in which case, a hydrocarbon group and a fluorine-substituted hydrocarbon group The carbon number is preferably 1-8. As Y, the following formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) And a group represented by the formula (29); a group in which a hydrogen atom in the group represented by the formula (20) to the formula (29) is substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group. And a chain hydrocarbon group having 4 or less carbon atoms and 6 or less.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(20)~式(29)中、
 *は結合手を表し、
 Wは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-Ar-、-SO-、-CO-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又は-Ar-SO-Ar-を表す。Arは、水素原子がフッ素原子で置換されていてもよい炭素数6~20のアリーレン基を表し、具体例としてはフェニレン基が挙げられる。
In formulas (20) to (29),
* Represents a bond,
W 1 represents a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, -Ar -, - SO 2 -, - CO -, - O-Ar-O -, - Ar-O-Ar -, - Ar-CH 2 -Ar -, - Ar-C (CH 3) 2 -Ar- Alternatively, it represents —Ar—SO 2 —Ar—. Ar represents an arylene group having 6 to 20 carbon atoms in which a hydrogen atom may be replaced by a fluorine atom, and a specific example thereof is a phenylene group.
 式(20)~式(29)で表される基の中でも、フィルムの弾性率、耐屈曲性及び表面硬度を向上しやすい観点から、式(26)、式(28)又は式(29)で表される基が好ましく、式(26)で表される基がより好ましい。また、Wは、フィルムの弾性率、耐屈曲性及び表面硬度を向上しやすく、また光学特性を向上しやすい観点から、好ましくは単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-又は-C(CF-で表される基を表し、より好ましくは単結合、-O-、-CH-、-CH(CH)-、-C(CH-又は-C(CF-で表される基を表し、さらに好ましくは単結合、-C(CH-又は-C(CF-で表される基を表す。 Among the groups represented by the formulas (20) to (29), the formula (26), the formula (28) or the formula (29) is used from the viewpoint of easily improving the elastic modulus, flex resistance and surface hardness of the film. The group represented by the formula (26) is preferable, and the group represented by the formula (26) is more preferable. Further, W 1, the elastic modulus of the film, tends to improve the flexing resistance and surface hardness, and from the viewpoint of easily improve optical properties, preferably a single bond, -O -, - CH 2 - , - CH 2 - It represents a group represented by CH 2 —, —CH(CH 3 )—, —C(CH 3 ) 2 — or —C(CF 3 ) 2 —, more preferably a single bond, —O—, —CH 2 Represents a group represented by --, --CH(CH 3 )--, --C(CH 3 ) 2 --, or --C(CF 3 ) 2 --, more preferably a single bond, --C(CH 3 ) 2 --, or It represents a group represented by —C(CF 3 ) 2 —.
 本発明の好適な実施態様において、式(3)中のYは、式(4) In a preferred embodiment of the present invention, Y in formula (3) is represented by formula (4)
Figure JPOXMLDOC01-appb-C000007
[式(4)中、R~R16は、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表し、R~R16に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、*は結合手を表す]
で表される基である。テトラカルボン酸化合物として、式(3)中のYが式(4)で表される基である化合物を含むと、ポリイミド系樹脂を含んでなるフィルムの弾性率、光学特性、耐屈曲性及び表面硬度を向上しやすい。また、樹脂の溶媒への溶解性が向上され、樹脂ワニスの粘度を低く抑制することができ、フィルムの製造が容易となる。
Figure JPOXMLDOC01-appb-C000007
[In the formula (4), R 9 to R 16 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, The hydrogen atoms contained in R 9 to R 16 may be independently substituted with a halogen atom, and * represents a bond.
Is a group represented by. When a compound in which Y in the formula (3) is a group represented by the formula (4) is contained as a tetracarboxylic acid compound, the elastic modulus, the optical property, the flex resistance and the surface of the film containing the polyimide resin are included. Easy to improve hardness. Further, the solubility of the resin in the solvent is improved, the viscosity of the resin varnish can be suppressed to a low level, and the film production becomes easy.
 式(4)において、好ましくはR、R10、R11、R12、R13、R14、R15及びR16は、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表す。炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基としては、式(2)における炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基として上記に例示のものが挙げられる。R~R16は、互いに独立に、好ましくは水素原子又は炭素数1~6のアルキル基を表し、より好ましくは水素原子又は炭素数1~3のアルキル基を表し、ここで、R~R16に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。R~R16は、互いに独立に、ポリイミド系樹脂を含んでなるフィルムの弾性率、光学特性、耐屈曲性及び表面硬度を向上しやすい観点から、さらに好ましくは水素原子、メチル基、フルオロ基、クロロ基又はトリフルオロメチル基を表し、よりさらに好ましくはR、R10、R11、R12、R13、及びR14が水素原子、R15及びR16が水素原子、メチル基、フルオロ基、クロロ基又はトリフルオロメチル基を表し、とりわけ好ましくはR15及びR16がメチル基又はトリフルオロメチル基を表す。 In formula (4), preferably R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a carbon atom. It represents an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms. Examples of the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms or the aryl group having 6 to 12 carbon atoms include an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms in the formula (2). Examples of the group or the aryl group having 6 to 12 carbon atoms include those exemplified above. R 9 ~ R 16 are, independently of one another, preferably hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, wherein, R 9 ~ The hydrogen atoms contained in R 16 may be independently substituted with a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. R 9 to R 16 are, independently of each other, more preferably a hydrogen atom, a methyl group or a fluoro group, from the viewpoint of easily improving the elastic modulus, optical properties, flex resistance and surface hardness of the film containing a polyimide resin. , A chloro group or a trifluoromethyl group, more preferably R 9 , R 10 , R 11 , R 12 , R 13 and R 14 are hydrogen atoms, R 15 and R 16 are hydrogen atoms, a methyl group and fluoro. Represents a group, a chloro group or a trifluoromethyl group, and particularly preferably R 15 and R 16 represent a methyl group or a trifluoromethyl group.
 本発明の好適な実施態様において、式(4)は、式(4’): In a preferred embodiment of the present invention, the formula (4) is the formula (4′):
Figure JPOXMLDOC01-appb-C000008
で表される。テトラカルボン酸化合物として、式(4)中のYが式(4’)で表される基である化合物を含むと、ポリイミド系樹脂を含んでなるフィルムは、弾性率、光学特性、耐屈曲性及び表面硬度を高めやすい。また、フッ素元素を含有する骨格により樹脂の溶媒への溶解性が向上され、樹脂ワニスの粘度を低く抑制することができ、フィルムの製造が容易となる。
Figure JPOXMLDOC01-appb-C000008
It is represented by. When a compound in which Y in the formula (4) is a group represented by the formula (4′) is contained as a tetracarboxylic acid compound, the film containing the polyimide resin has a modulus of elasticity, optical characteristics, and bending resistance. Also, it is easy to increase the surface hardness. Further, the skeleton containing the elemental fluorine improves the solubility of the resin in the solvent, the viscosity of the resin varnish can be suppressed low, and the film production becomes easy.
 芳香族テトラカルボン酸二無水物の具体例としては、非縮合多環式の芳香族テトラカルボン酸二無水物、単環式の芳香族テトラカルボン酸二無水物及び縮合多環式の芳香族テトラカルボン酸二無水物が挙げられる。非縮合多環式の芳香族テトラカルボン酸二無水物としては、例えば4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDAと記載することがある)、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。また、単環式の芳香族テトラカルボン酸二無水物としては、例えば1,2,4,5-ベンゼンテトラカルボン酸二無水物が挙げられ、縮合多環式の芳香族テトラカルボン酸二無水物としては、例えば2,3,6,7-ナフタレンテトラカルボン酸二無水物が挙げられる。 Specific examples of the aromatic tetracarboxylic dianhydride include a non-condensed polycyclic aromatic tetracarboxylic dianhydride, a monocyclic aromatic tetracarboxylic dianhydride and a condensed polycyclic aromatic tetraanhydride. Examples include carboxylic acid dianhydride. Examples of the non-condensed polycyclic aromatic tetracarboxylic acid dianhydride include 4,4′-oxydiphthalic acid dianhydride, 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride and 2,2 ',3,3'-Benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride ,3,3',4,4'-diphenylsulfone tetracarboxylic acid dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-di) Carboxyphenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenoxyphenyl)propane dianhydride, 4,4′-(hexafluoroisopropylidene)diphthalic acid dianhydride (described as 6FDA , 1,2-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,2-bis(3,3) 4-dicarboxyphenyl)ethane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, bis(2,3 -Dicarboxyphenyl)methane dianhydride, 4,4'-(p-phenylenedioxy)diphthalic acid dianhydride and 4,4'-(m-phenylenedioxy)diphthalic acid dianhydride. In addition, examples of the monocyclic aromatic tetracarboxylic dianhydride include 1,2,4,5-benzenetetracarboxylic dianhydride, and condensed polycyclic aromatic tetracarboxylic dianhydrides. Examples thereof include 2,3,6,7-naphthalenetetracarboxylic dianhydride.
 これらの中でも、好ましくは4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物及び4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられ、より好ましくは4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、ビス(3,4-ジカルボキシフェニル)メタン二無水物及び4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。これらは単独又は二種以上を組合せて使用できる。 Among these, 4,4′-oxydiphthalic acid dianhydride, 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride and 2,2′,3,3′-benzophenone tetracarboxylic acid dianhydride are preferable. Anhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-diphenyl Sulfone tetracarboxylic acid dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 2,2- Bis(3,4-dicarboxyphenoxyphenyl)propane dianhydride, 4,4'-(hexafluoroisopropylidene)diphthalic acid dianhydride (6FDA), 1,2-bis(2,3-dicarboxyphenyl) Ethane dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,2-bis(3,4-dicarboxyphenyl)ethane dianhydride, 1,1-bis(3 ,4-Dicarboxyphenyl)ethane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, bis(2,3-dicarboxyphenyl)methane dianhydride, 4,4'-(p- Examples thereof include phenylenedioxy)diphthalic acid dianhydride and 4,4′-(m-phenylenedioxy)diphthalic acid dianhydride, and more preferably 4,4′-oxydiphthalic acid dianhydride, 3,3′, 4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 4,4'-(hexafluoroisopropylidene)diphthalic dianhydride (6FDA) , Bis(3,4-dicarboxyphenyl)methane dianhydride and 4,4′-(p-phenylenedioxy)diphthalic dianhydride. These may be used alone or in combination of two or more.
 脂肪族テトラカルボン酸二無水物としては、環式又は非環式の脂肪族テトラカルボン酸二無水物が挙げられる。環式脂肪族テトラカルボン酸二無水物とは、脂環式炭化水素構造を有するテトラカルボン酸二無水物であり、その具体例としては、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物等のシクロアルカンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジシクロヘキシル-3,3’,4,4’-テトラカルボン酸二無水物及びこれらの位置異性体が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。非環式脂肪族テトラカルボン酸二無水物の具体例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、及び1,2,3,4-ペンタンテトラカルボン酸二無水物等が挙げられ、これらは単独で又は2種以上を組合せて用いることができる。また、環式脂肪族テトラカルボン酸二無水物及び非環式脂肪族テトラカルボン酸二無水物を組合せて用いてもよい。 Examples of the aliphatic tetracarboxylic acid dianhydride include cyclic or acyclic aliphatic tetracarboxylic acid dianhydride. The cycloaliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples thereof include 1,2,4,5-cyclohexanetetracarboxylic dianhydride. Compounds, cycloalkanetetracarboxylic dianhydrides such as 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo[2.2 .2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyl-3,3',4,4'-tetracarboxylic dianhydride and positional isomers thereof. To be These may be used alone or in combination of two or more. Specific examples of the acyclic aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride and 1,2,3,4-pentanetetracarboxylic dianhydride. These may be used alone or in combination of two or more. Moreover, you may use combining cycloaliphatic tetracarboxylic dianhydride and acyclic aliphatic tetracarboxylic dianhydride.
 上記テトラカルボン酸二無水物の中でも、フィルムの高表面硬度、高透明性、高柔軟性、高弾性率、高屈曲耐性及び低着色性の観点から、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、並びにこれらの混合物が好ましく、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、並びにこれらの混合物がより好ましく、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)がさらに好ましい。 Among the above tetracarboxylic dianhydrides, 4,4′-oxydiphthalic dianhydride, from the viewpoint of high surface hardness, high transparency, high flexibility, high elastic modulus, high bending resistance and low colorability of the film, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic acid Dianhydride, 3,3′,4,4′-diphenylsulfone tetracarboxylic acid dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 4,4′-(hexafluoro Isopropylidene)diphthalic acid dianhydride, and mixtures thereof are preferable, and 3,3′,4,4′-biphenyltetracarboxylic acid dianhydride and 4,4′-(hexafluoroisopropylidene)diphthalic acid dianhydride , And a mixture thereof are more preferable, and 4,4′-(hexafluoroisopropylidene)diphthalic acid dianhydride (6FDA) is further preferable.
 ステップAで使用するテトラカルボン酸化合物のうち、式(3)中のYが式(4)で表される基であるテトラカルボン酸化合物、例えば式(3)中のYが式(4’)で表される基であるテトラカルボン酸化合物の割合は、ステップAで使用するテトラカルボン酸化合物の総モル量に対して、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは70モル%以上、とりわけ好ましくは80モル%以上であり、好ましくは100モル%以下である。式(3)中のYが式(4)で表される基であるテトラカルボン酸化合物の割合が上記範囲であると、ポリイミド系樹脂を含んでなるフィルムは、弾性率、光学特性、耐屈曲性及び表面硬度を高めやすい。また、フッ素元素を含有する骨格により樹脂の溶媒への溶解性が向上され、樹脂ワニスの粘度を低く抑制することができ、フィルムの製造が容易となる。なお、式(3)中のYが式(4)で表される基であるテトラカルボン酸化合物の割合等は、原料の仕込み比から算出してもよい。 Among the tetracarboxylic acid compounds used in step A, a tetracarboxylic acid compound in which Y in formula (3) is a group represented by formula (4), for example, Y in formula (3) is represented by formula (4′) The ratio of the tetracarboxylic acid compound which is a group represented by is preferably 30 mol% or more, more preferably 50 mol% or more, and further preferably, based on the total molar amount of the tetracarboxylic acid compound used in Step A. It is 70 mol% or more, particularly preferably 80 mol% or more, and preferably 100 mol% or less. When the ratio of the tetracarboxylic acid compound that is the group represented by Formula (4) in which Y in Formula (3) is in the above range, the film containing the polyimide-based resin has elastic modulus, optical characteristics, and bending resistance. It is easy to increase the hardness and surface hardness. Further, the skeleton containing the elemental fluorine improves the solubility of the resin in the solvent, the viscosity of the resin varnish can be suppressed low, and the film production becomes easy. The ratio of the tetracarboxylic acid compound in which Y in the formula (3) is a group represented by the formula (4) may be calculated from the raw material charging ratio.
 また、テトラカルボン酸化合物としては、テトラカルボン酸二無水物が好ましいが、テトラカルボン酸一無水物を使用してもよい。テトラカルボン酸一無水物としては、式(5) The tetracarboxylic acid compound is preferably tetracarboxylic acid dianhydride, but tetracarboxylic acid monoanhydride may be used. The tetracarboxylic acid monoanhydride has the formula (5)
Figure JPOXMLDOC01-appb-C000009
で表される化合物(以下、テトラカルボン酸化合物(5)と称する場合がある)等が挙げられる。テトラカルボン酸化合物(5)は単独又は二種以上組合せて使用でき、テトラカルボン酸化合物(5)を二種以上使用する場合、テトラカルボン酸化合物(5)のYの種類が互いに異なる二種以上のテトラカルボン酸化合物(5)を用いてもよい。
Figure JPOXMLDOC01-appb-C000009
And the like (hereinafter, sometimes referred to as tetracarboxylic acid compound (5)). The tetracarboxylic acid compound (5) can be used alone or in combination of two or more kinds. When two or more kinds of the tetracarboxylic acid compound (5) are used, two kinds of the tetracarboxylic acid compound (5) in which Y 1 is different from each other are used. You may use the above tetracarboxylic acid compound (5).
 式(5)において、Yは4価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)又は式(29)で表される基、それらの式(20)~式(29)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基、並びに4価の炭素数6以下の鎖式炭化水素基が挙げられる。また、R17及びR18は、互いに独立に、-OH、-OMe、-OEt、-OPr、-OBu又は-Clであり、好ましくは-Clである。 In the formula (5), Y 1 is a tetravalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. As Y 1 , the formula (20), the formula (21), the formula (22), the formula (23), the formula (24), the formula (25), the formula (26), the formula (27), the formula (28), or A group represented by the formula (29), a group in which a hydrogen atom in the group represented by the formulas (20) to (29) is substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group, And a chain hydrocarbon group having 4 or less carbon atoms and 6 or less. R 17 and R 18 are each independently —OH, —OMe, —OEt, —OPr, —OBu or —Cl, and preferably —Cl.
 トリカルボン酸化合物は、トリカルボン酸又はトリカルボン酸誘導体を示し、トリカルボン酸誘導体としては、例えばトリカルボン酸の酸クロリド、無水物及びエステル体などが挙げられる。 The tricarboxylic acid compound indicates a tricarboxylic acid or a tricarboxylic acid derivative, and examples of the tricarboxylic acid derivative include acid chlorides, anhydrides and ester forms of tricarboxylic acid.
 本発明の一実施態様において、トリカルボン酸化合物としては、例えば式(8) In one embodiment of the present invention, the tricarboxylic acid compound may be, for example, a compound of formula (8)
Figure JPOXMLDOC01-appb-C000010
で表される化合物(以下、トリカルボン酸化合物(8)と称する場合がある)等が挙げられる。トリカルボン酸化合物は単独又は二種以上組合せて使用でき、トリカルボン酸化合物を二種以上使用する場合、トリカルボン酸化合物(8)のYの種類が互いに異なる二種以上のトリカルボン酸化合物(8)を用いてもよい。式(8)中、R34は、-OH、-OMe、-OEt、-OPr、-OBu又は-Clであり、好ましくは-Clである。
Figure JPOXMLDOC01-appb-C000010
And the like (hereinafter, sometimes referred to as tricarboxylic acid compound (8)) and the like. The tricarboxylic acid compounds may be used alone or in combination of two or more, and when two or more tricarboxylic acid compounds are used, two or more tricarboxylic acid compounds (8) in which the Y 2 types of the tricarboxylic acid compound (8) are different from each other are used. You may use. In the formula (8), R 34 is —OH, —OMe, —OEt, —OPr, —OBu or —Cl, and preferably —Cl.
 式(8)において、Yは3価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)又は式(29)で表される基の結合手のいずれか1つが水素原子に置き換わった基、並びに3価の炭素数6以下の鎖式炭化水素基が例示される。 In formula (8), Y 2 is a trivalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. As Y 2 , formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) or Examples thereof include a group in which any one of the bonds of the group represented by the formula (29) is replaced with a hydrogen atom, and a trivalent chain hydrocarbon group having 6 or less carbon atoms.
 トリカルボン酸化合物としては、芳香族トリカルボン酸、脂肪族トリカルボン酸及びそれらの誘導体(例えば、酸クロリド、酸無水物等)が挙げられ、その具体例としては、1,3,5-ベンゼントリカルボン酸及びその酸クロリド、1,2,4-ベンゼントリカルボン酸の無水物;2,3,6-ナフタレントリカルボン酸-2,3-無水物;フタル酸無水物と安息香酸とが単結合、-O-、-CH-、-C(CH-、-C(CF-、-SO-又はフェニレン基で連結された化合物が挙げられる。これらのトリカルボン酸化合物は単独又は二種以上組合せて使用できる。 Examples of the tricarboxylic acid compound include aromatic tricarboxylic acids, aliphatic tricarboxylic acids and their derivatives (eg, acid chloride, acid anhydride, etc.), and specific examples thereof include 1,3,5-benzenetricarboxylic acid and The acid chloride, an anhydride of 1,2,4-benzenetricarboxylic acid; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; a single bond of phthalic anhydride and benzoic acid, -O-, Examples of the compound include —CH 2 —, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —SO 2 — or a phenylene group. These tricarboxylic acid compounds can be used alone or in combination of two or more kinds.
 ステップ(A)で反応させる3つ以上のカルボニル基を有するカルボン酸化合物の使用量は、所望とするポリイミド系樹脂における構成単位の比率に応じて適宜選択でき、工程(I)及び(II)で反応させるジアミン化合物の総量を100モルとしたときに、好ましくは1モル以上、より好ましくは5モル以上、さらに好ましくは10モル以上であり、好ましくは150モル以下、より好ましくは100モル以下、さらに好ましくは80モル以下、とりわけ好ましくは50モル以下である。3つ以上のカルボニル基を有するカルボン酸化合物の使用量が上記範囲であると、イミド骨格が適度に導入され成膜後のフィルムの耐屈曲性を向上しやすい。 The amount of the carboxylic acid compound having three or more carbonyl groups to be reacted in step (A) can be appropriately selected according to the ratio of the constituent units in the desired polyimide resin, and in steps (I) and (II) When the total amount of diamine compounds to be reacted is 100 mol, preferably 1 mol or more, more preferably 5 mol or more, further preferably 10 mol or more, preferably 150 mol or less, more preferably 100 mol or less, It is preferably 80 mol or less, and particularly preferably 50 mol or less. When the amount of the carboxylic acid compound having three or more carbonyl groups used is within the above range, the imide skeleton is appropriately introduced, and the flex resistance of the film after film formation is likely to be improved.
 工程(I)で反応させるジアミン化合物の使用量は、工程(I)及び工程(II)で反応させるジアミン化合物の総量を100モルとしたときに、好ましくは80モル以上、より好ましくは85モル以上、さらに好ましくは90モル以上、さらにより好ましくは95モル以上、とりわけ好ましくは98モル以上であり、好ましくは99.99モル以下である。工程(I)で反応させるジアミン化合物の使用量が上記の範囲であると、ポリイミド系樹脂を含んでなるフィルムの耐屈曲性をより向上しやすい。 The amount of the diamine compound to be reacted in the step (I) is preferably 80 mol or more, more preferably 85 mol or more, when the total amount of the diamine compounds reacted in the process (I) and the process (II) is 100 mol. , More preferably 90 mol or more, still more preferably 95 mol or more, particularly preferably 98 mol or more, and preferably 99.99 mol or less. When the amount of the diamine compound to be reacted in the step (I) is within the above range, the flex resistance of the film containing the polyimide resin can be more easily improved.
 工程(I)における反応は、反応に不活性な溶媒中で行うことが好ましい。溶媒としては、反応に影響を与えない限り特に限定されないが、例えば、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、1-メトキシ-2-プロパノール、2-ブトキシエタノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、γ-バレロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル系溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン等のケトン系溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;エチルシクロヘキサン等の脂環式炭化水素溶媒;トルエン、キシレン等の芳香族炭化水素溶媒;アセトニトリル等のニトリル系溶媒;テトラヒドロフラン及びジメトキシエタン等のエーテル系溶媒;クロロホルム及びクロロベンゼン等の塩素含有溶媒;N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;及びそれらの組合せなどが挙げられる。これらの中でも、ジアミン化合物及びテトラカルボン酸化合物の溶解性の観点から、アミド系溶媒を好適に使用できる。 The reaction in step (I) is preferably carried out in a solvent inert to the reaction. The solvent is not particularly limited as long as it does not affect the reaction, and for example, water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, Alcohol solvents such as 2-butoxyethanol and propylene glycol monomethyl ether; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, γ-butyrolactone, γ-valerolactone, propylene glycol methyl ether acetate and ethyl lactate; Ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane, heptane; alicyclic hydrocarbon solvents such as ethylcyclohexane; toluene, xylene Aromatic hydrocarbon solvent such as acetonitrile; Nitrile solvent such as acetonitrile; Ether solvent such as tetrahydrofuran and dimethoxyethane; Chlorine-containing solvent such as chloroform and chlorobenzene; Amide such as N,N-dimethylacetamide, N,N-dimethylformamide Examples thereof include system solvents; sulfur-containing solvents such as dimethyl sulfone, dimethyl sulfoxide, and sulfolane; carbonate solvents such as ethylene carbonate and propylene carbonate; and combinations thereof. Among these, the amide solvent can be preferably used from the viewpoint of solubility of the diamine compound and the tetracarboxylic acid compound.
 溶媒の使用量は、ジアミン化合物と3つ以上のカルボニル基を有するカルボン酸化合物との総量1質量部に対して、好ましくは0.5~30質量部、より好ましくは1~20質量部、さらに好ましくは5~15質量部である。溶媒の含有量が上記の下限以上であると、反応系の粘度上昇を抑制する観点から有利であり、上記の上限以下であると、重合反応の観点から有利である。 The amount of the solvent used is preferably 0.5 to 30 parts by mass, more preferably 1 to 20 parts by mass, and further 1 part by mass of the total amount of the diamine compound and the carboxylic acid compound having three or more carbonyl groups. It is preferably 5 to 15 parts by mass. When the content of the solvent is at least the above lower limit, it is advantageous from the viewpoint of suppressing an increase in the viscosity of the reaction system, and when it is at most the above upper limit, it is advantageous from the viewpoint of the polymerization reaction.
 溶媒を使用する場合、ジアミン化合物及び3つ以上のカルボニル基を有するカルボン酸化合物のいずれか一方を、溶媒に溶解させた溶液に、他方を添加して撹拌等することで反応させてもよいし、ジアミン化合物と3つ以上のカルボニル基を有するカルボン酸化合物とを別々に溶媒に溶解させて溶液を得た後、それらの溶液を混合及び撹拌等することで反応させてもよいし、溶媒に対して、両方を一緒に添加して撹拌等することで反応させてもよい。 When a solvent is used, one of the diamine compound and the carboxylic acid compound having three or more carbonyl groups may be added to the solution prepared by dissolving the solvent in the solvent, and the other may be reacted by stirring or the like. Alternatively, the diamine compound and the carboxylic acid compound having three or more carbonyl groups may be separately dissolved in a solvent to obtain a solution, and then the solutions may be mixed and stirred to react with each other. Alternatively, both may be reacted together by adding them together and stirring.
 ステップ(A)の反応温度は、特に限定されないが、例えば-5~100℃、好ましくは0~50℃、より好ましくは5~30℃であってよい。反応時間は、例えば1分~72時間、好ましくは10分~24時間、より好ましくは30分~10時間であってよい。また、反応は空気中又は窒素やアルゴン等の不活性ガス雰囲気で撹拌しながら行ってよく、常圧下、加圧下又は減圧下で行ってもよい。好ましい実施態様では、常圧及び/又は前記不活性ガス雰囲気下、撹拌しながら行う。 The reaction temperature of step (A) is not particularly limited, but may be, for example, −5 to 100° C., preferably 0 to 50° C., and more preferably 5 to 30° C. The reaction time may be, for example, 1 minute to 72 hours, preferably 10 minutes to 24 hours, more preferably 30 minutes to 10 hours. The reaction may be carried out in air or in an atmosphere of an inert gas such as nitrogen or argon with stirring, and may be carried out under normal pressure, under pressure or under reduced pressure. In a preferred embodiment, the treatment is carried out under normal pressure and/or the above-mentioned inert gas atmosphere while stirring.
 工程(I)がステップ(A)で構成されている場合、得られる中間体(K)は、ジアミン化合物由来の構成単位と、3つ以上のカルボニル基を有するカルボン酸化合物由来の構成単位とを有する。本発明の好ましい態様では、中間体(K)は、ジアミン化合物(1)とテトラカルボン酸化合物(3)とが反応して得られる式(A)で表される繰り返し構造単位を含む。 When the step (I) is constituted by the step (A), the obtained intermediate (K) has a constitutional unit derived from a diamine compound and a constitutional unit derived from a carboxylic acid compound having three or more carbonyl groups. Have. In a preferred embodiment of the present invention, the intermediate (K) contains a repeating structural unit represented by the formula (A) obtained by reacting the diamine compound (1) and the tetracarboxylic acid compound (3).
Figure JPOXMLDOC01-appb-C000011
[式(A)中、Gは式(3)中のYと同じであり、Xは式(1)中のXと同じである]
Figure JPOXMLDOC01-appb-C000011
[In the formula (A), G 1 is the same as Y in the formula (3), and X 1 is the same as X in the formula (1)].
 ジアミン化合物(1)及び/又はテトラカルボン酸化合物(3)が二種以上ある場合、中間体(K)は、式(A)で表される繰り返し構造単位を二種以上有する。なお、ジアミン化合物由来の構成単位とテトラカルボン酸化合物由来の構成単位とを有する中間体(K)を中間体(K-1)ということがある。 When there are two or more kinds of the diamine compound (1) and/or the tetracarboxylic acid compound (3), the intermediate (K) has two or more kinds of repeating structural units represented by the formula (A). The intermediate (K) having a structural unit derived from a diamine compound and a structural unit derived from a tetracarboxylic acid compound may be referred to as an intermediate (K-1).
 本発明の一実施態様において、工程(I)は、ステップ(A)の後、さらにジカルボン酸化合物を反応させるステップ(B)を含んでいてもよい。 In one embodiment of the present invention, the step (I) may include a step (B) of reacting a dicarboxylic acid compound after the step (A).
 (ステップB)
 ステップ(B)で使用するジカルボン酸化合物は、ジカルボン酸又はジカルボン酸誘導体を示し、ジカルボン酸誘導体としては、例えば該ジカルボン酸の酸クロリドやエステル体などが挙げられる。本発明の一実施態様において、ジカルボン酸化合物としては、例えば、式(6)
(Step B)
The dicarboxylic acid compound used in step (B) represents a dicarboxylic acid or a dicarboxylic acid derivative, and examples of the dicarboxylic acid derivative include acid chlorides and ester forms of the dicarboxylic acid. In one embodiment of the present invention, examples of the dicarboxylic acid compound include compounds represented by the formula (6)
Figure JPOXMLDOC01-appb-C000012
で表される化合物(以下、ジカルボン酸化合物(6)と称する場合がある)であることが好ましい。ジカルボン酸化合物は単独又は二種以上組合せて使用でき、ジカルボン酸化合物を二種以上使用する場合、ジカルボン酸化合物(6)のWの種類が互いに異なる二種以上のジカルボン酸化合物(6)を用いてよい。式(6)中、R19及びR20は、互いに独立に、-OH、-OMe、-OEt、-OPr、-OBu又は-Clであり、好ましくは-Clである。
Figure JPOXMLDOC01-appb-C000012
It is preferable that it is a compound represented by (hereinafter sometimes referred to as a dicarboxylic acid compound (6)). The dicarboxylic acid compounds may be used alone or in combination of two or more kinds. When two or more kinds of dicarboxylic acid compounds are used, two or more kinds of dicarboxylic acid compounds (6) having different W types of dicarboxylic acid compounds (6) are used. You can In formula (6), R 19 and R 20 independently of each other are —OH, —OMe, —OEt, —OPr, —OBu or —Cl, and preferably —Cl.
 式(6)において、Wは2価の有機基であり、好ましくは炭素数1~8の炭化水素基又はフッ素置換された炭素数1~8の炭化水素基で置換されていてもよい、炭素数4~40の2価の有機基であり、より好ましくは炭素数1~8の炭化水素基又はフッ素置換された炭素数1~8の炭化水素基で置換されていてもよい、環状構造を有する炭素数4~40の2価の有機基である。環状構造としては、脂環、芳香環、ヘテロ環構造が挙げられる。Wの有機基として、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基の結合手のうち、隣接しない2つが水素原子に置き換わった基及び炭素数6以下の2価の鎖式炭化水素基が例示される。ポリイミド系樹脂を含んでなるフィルムのYI値を低減しやすい観点から、式(20)~式(27)で表される基が好ましい。 In the formula (6), W is a divalent organic group, preferably carbon which may be substituted with a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms. It is a divalent organic group having 4 to 40 carbon atoms, more preferably a cyclic structure which may be substituted with a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms. It is a divalent organic group having 4 to 40 carbon atoms. Examples of the cyclic structure include an alicyclic structure, an aromatic ring structure, and a heterocyclic structure. As the organic group of W, formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) Further, among the bonds of the group represented by the formula (29), two groups which are not adjacent to each other are replaced by hydrogen atoms, and a divalent chain hydrocarbon group having 6 or less carbon atoms are exemplified. From the viewpoint of easily reducing the YI value of the film containing the polyimide resin, the groups represented by the formulas (20) to (27) are preferable.
 Wの有機基としては、式(20’)、式(21’)、式(22’)、式(23’)、式(24’)、式(25’)、式(26’)、式(27’)、式(28’)及び式(29’): Examples of the organic group of W include formula (20′), formula (21′), formula (22′), formula (23′), formula (24′), formula (25′), formula (26′), and formula (26′) (27'), Equation (28') and Equation (29'):
Figure JPOXMLDOC01-appb-C000013
[式(20’)~式(29’)中、W及び*は、式(20)~式(29)において定義する通りである]
で表される2価の有機基がより好ましい。なお、式(20)~式(29)及び式(20’)~式(29’)における環上の水素原子は、炭素数1~8の炭化水素基又はフッ素置換された炭素数1~8の炭化水素基、炭素数1~6のアルコキシ基、又はフッ素置換された炭素数1~6のアルコキシ基で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000013
[In the formulas (20′) to (29′), W 1 and * are as defined in the formulas (20) to (29)]
A divalent organic group represented by is more preferable. The hydrogen atom on the ring in the formulas (20) to (29) and the formulas (20′) to (29′) is a hydrocarbon group having 1 to 8 carbon atoms or 1 to 8 carbon atoms substituted with fluorine. May be substituted with a hydrocarbon group of, a C 1-6 alkoxy group, or a fluorine-substituted C 1-6 alkoxy group.
 ジカルボン酸化合物が、式(6)中のWが上記の式(20’)~式(29’)のいずれかで表される化合物を含む場合、中でも式(6)中のWが後述する式(6a)で表される化合物を含む場合、ジカルボン酸化合物は、式(6)中のWが式(6a)で表される化合物に加えて、次の式(d1): When the dicarboxylic acid compound contains a compound in which W in the formula (6) is represented by any one of the above formulas (20′) to (29′), W in the formula (6) is, When the compound represented by formula (6a) is included, the dicarboxylic acid compound may have the following formula (d1) in addition to the compound represented by formula (6a) in which W in formula (6):
Figure JPOXMLDOC01-appb-C000014
[式(d1)中、Rは、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表し、Rは、R又は-C(=O)Rを表し、Rは、互いに独立に、-OH、-OMe、-OEt、-OPr、-OBu又は-Clを表し、*は結合手を表す]
で表される化合物(以下、化合物(d1)ということがある)をさらに含むことが、ワニスの成膜性を高めやすく、ポリイミド系樹脂を含んでなるフィルムの均一性を高めやすい観点から好ましい。
Figure JPOXMLDOC01-appb-C000014
[In the formula (d1), R c's each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and R d is , R c or —C(═O)R e , R e independently of each other represents —OH, —OMe, —OEt, —OPr, —OBu or —Cl, and * represents a bond.
It is preferable to further include the compound represented by (hereinafter, sometimes referred to as compound (d1)) from the viewpoint of easily improving the film forming property of the varnish and easily improving the uniformity of the film containing the polyimide resin.
 Rにおいて、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基としては、それぞれ、式(2)における炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基として例示のものが挙げられる。化合物(d1)としては、具体的には、R及びRがいずれも水素原子である化合物、Rがいずれも水素原子であり、Rが-C(=O)Rである化合物等が挙げられる。 In R c , the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms, and the aryl group having 6 to 12 carbon atoms are, respectively, an alkyl group having 1 to 6 carbon atoms and a carbon atom in formula (2). Examples of the alkoxy group having 1 to 6 carbon atoms or the aryl group having 6 to 12 carbon atoms are given. As the compound (d1), specifically, a compound in which R c and R d are both hydrogen atoms, a compound in which both R c are hydrogen atoms and R d is —C(═O)R e Etc.
 本発明におけるジカルボン酸化合物は、式(6)中のWとして複数種のWを含んでよく、複数種のWは、互いに同一であってもよいし、異なっていてもよい。中でも、光学フィルムの表面硬度、耐水性、光学特性、弾性率、降伏点歪及び耐屈曲性を高めやすい観点から、式(6)中のWは好ましくは式(6a): The dicarboxylic acid compound in the present invention may include a plurality of types of W as W in the formula (6), and the plurality of types of W may be the same as or different from each other. Among them, W in the formula (6) is preferably the formula (6a): from the viewpoint of easily increasing the surface hardness, water resistance, optical properties, elastic modulus, yield point strain and bending resistance of the optical film.
Figure JPOXMLDOC01-appb-C000015
[式(6a)中、R及びRは、互いに独立に、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、又は炭素数6~12のアリール基を表し、R及びRに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、
 A及び*は、それぞれ式(7b)中のA及び*と同じであり、
 mは0~4の整数であり、
 tは0~4の整数であり、
 uは0~4の整数である]
で表され、より好ましくは式(7a);
Figure JPOXMLDOC01-appb-C000015
[In the formula (6a), R a and R b independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. , R a and R b may each independently be substituted with a halogen atom,
A and * are the same as A and * in the formula (7b), respectively,
m is an integer from 0 to 4,
t is an integer of 0 to 4,
u is an integer from 0 to 4]
And more preferably formula (7a);
Figure JPOXMLDOC01-appb-C000016
[式(7a)中、R21~R24は、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表し、
 R21~R24に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、
 m2は1~4の整数であり、
 *は結合手を表す]
で表される。ジカルボン酸化合物として、式(6)中のWが式(7a)で表される基である化合物を含むと、ポリイミド系樹脂を含んでなるフィルムが優れた弾性率、耐屈曲性及び光学特性を発現しやすい。なお、式(6)中のWが式(7a)で表される基である化合物及び式(6)中のWが式(6a)で表される基である化合物を、それぞれジカルボン酸化合物(7a)及びジカルボン酸化合物(6a)ということがある。
Figure JPOXMLDOC01-appb-C000016
[In the formula (7a), R 21 to R 24 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms,
The hydrogen atoms contained in R 21 to R 24 may be independently substituted with a halogen atom,
m2 is an integer of 1 to 4,
* Represents a bond]
It is represented by. When the compound of formula (6) in which W in formula (6) is a group represented by formula (7a) is contained as the dicarboxylic acid compound, the film containing the polyimide resin has excellent elastic modulus, flex resistance and optical properties. Easy to develop. A compound in which W in the formula (6) is a group represented by the formula (7a) and a compound in which W in the formula (6) is a group represented by the formula (6a) are respectively dicarboxylic acid compounds ( 7a) and dicarboxylic acid compound (6a).
 式(6a)において、各ベンゼン環の結合手は、-A-を基準に、オルト位、メタ位又はパラ位のいずれに結合していてもよく、好ましくはメタ位又はパラ位に結合していてもよい。R及びRは、互いに独立に、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、又は炭素数6~12のアリール基を表す。式(6a)中のt及びuは0であることが好ましいが、t及び/又はuが1以上である場合、R及びRは、互いに独立に、好ましくは炭素数1~6のアルキル基を表し、より好ましくは炭素数1~3のアルキル基を表す。式(6a)中のR及びRにおいて、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基としては、それぞれ、式(2)におけるハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基として例示のものが挙げられる。 In the formula (6a), the bond of each benzene ring may be bonded to any of the ortho position, the meta position or the para position with respect to -A-, preferably the meta position or the para position. May be. R a and R b each independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. In the formula (6a), t and u are preferably 0, but when t and/or u is 1 or more, R a and R b are independently of each other, preferably an alkyl group having 1 to 6 carbon atoms. It represents a group, more preferably an alkyl group having 1 to 3 carbon atoms. In R a and R b in the formula (6a), a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms and an aryl group having 6 to 12 carbon atoms are respectively represented by the formula (2 Examples of the halogen atom, the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms or the aryl group having 6 to 12 carbon atoms in ).
 式(6a)中のt及びuは、互いに独立に、0~4の整数であり、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。 In formula (6a), t and u are each independently an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and even more preferably 0.
 式(6a)において、mは、0~4の範囲の整数であり、mがこの範囲内であると、ポリイミド系樹脂を含んでなるフィルムの耐屈曲性や弾性率が良好である。また、式(6a)において、mは、好ましくは0~3の範囲の整数、より好ましくは0~2の範囲の整数、さらに好ましくは0又は1、とりわけ好ましくは0である。mがこの範囲内であると、ポリイミド系樹脂を含んでなるフィルムの耐屈曲性や弾性率が良好であると同時に、原料の入手性が比較的良好である。mが0である式(6a)で表される化合物は、例えばテレフタル酸又はイソフタル酸又はこれらの誘導体であり、該化合物は、式(6a)中のmが0及びuが0である化合物であることが好ましい。また、ジカルボン酸化合物は、式(6)中のWが式(6a)で表される化合物を1種又は2種類以上含んでいてもよく、ポリイミド系樹脂を含んでなるフィルムの弾性率及び耐屈曲性の向上、YI値低減の観点から、mの値が異なる2種類以上の、好ましくはmの値の異なる2種類の化合物を含んでいてもよい。 In the formula (6a), m is an integer in the range of 0 to 4, and when m is in this range, the flex resistance and elastic modulus of the film containing the polyimide resin are good. In the formula (6a), m is preferably an integer in the range of 0 to 3, more preferably an integer in the range of 0 to 2, still more preferably 0 or 1, and most preferably 0. When m is in this range, the flexural resistance and elastic modulus of the film containing the polyimide resin are good, and at the same time, the availability of the raw materials is relatively good. The compound represented by formula (6a) in which m is 0 is, for example, terephthalic acid or isophthalic acid or a derivative thereof, and the compound is a compound in which m in formula (6a) is 0 and u is 0. It is preferable to have. Further, the dicarboxylic acid compound may contain one or more compounds in which W in the formula (6) is represented by the formula (6a), and the elastic modulus and resistance of the film containing the polyimide resin are From the viewpoint of improving the flexibility and reducing the YI value, two or more kinds of compounds having different values of m, preferably two kinds of compounds having different values of m may be contained.
 ポリイミド系樹脂を含んでなるフィルムの弾性率及び耐屈曲性の向上、黄色度(YI値)低減の観点から、式(6a)中のmが0である式(6a)で表される化合物を含むことが好ましく、該化合物に加えてmが1である式(6a)で表される化合物をさらに含むことがより好ましい。 From the viewpoint of improving the elastic modulus and bending resistance of a film containing a polyimide resin and reducing the yellowness (YI value), a compound represented by the formula (6a) in which m in the formula (6a) is 0 is used. It is preferable to include, and it is more preferable to further include a compound represented by the formula (6a) in which m is 1, in addition to the compound.
 式(7a)において、R21、R22、R23及びR24は、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表す。炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基としては、式(2)における炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基として上記に例示のものが挙げられる。ポリイミド系樹脂を含んでなるフィルムの表面硬度、柔軟性及び耐屈曲性を向上しやすい観点から、R21~R24は、互いに独立に、好ましくは水素原子又は炭素数1~6のアルキル基を表し、より好ましくは水素原子又は炭素数1~3のアルキル基を表し、さらに好ましくは水素原子を表す。ここで、R21~R24に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよい。 In the formula (7a), R 21 , R 22 , R 23 and R 24 are independently of each other a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 6 to 12 carbon atoms. Represents an aryl group. Examples of the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms or the aryl group having 6 to 12 carbon atoms include an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms in the formula (2). Examples of the group or the aryl group having 6 to 12 carbon atoms include those exemplified above. From the viewpoint of easily improving the surface hardness, flexibility and bending resistance of a film containing a polyimide resin, R 21 to R 24 are independently of each other, preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. , More preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and further preferably a hydrogen atom. Here, the hydrogen atoms contained in R 21 to R 24 may be independently substituted with a halogen atom.
 式(7a)において、ポリイミド系樹脂を含んでなるフィルムの耐屈曲性及び弾性率を高めやすい観点から、m2は、好ましくは1~3の整数、より好ましくは1又は2、さらに好ましくは1である。R21~R24が全て水素原子であると、ポリイミド系樹脂を含んでなるフィルムの弾性率及び耐屈曲性向上の点で有利である。 In the formula (7a), m2 is preferably an integer of 1 to 3, more preferably 1 or 2, and even more preferably 1 from the viewpoint of easily increasing the bending resistance and elastic modulus of the film containing a polyimide resin. is there. When all of R 21 to R 24 are hydrogen atoms, it is advantageous in terms of improving the elastic modulus and flex resistance of the film containing the polyimide resin.
 本発明の好適な実施態様において、ポリイミド系樹脂を含んでなるフィルムが良好な耐屈曲性を発現しやすい観点から、ジカルボン酸化合物は、2つ以上の芳香族炭化水素環が単結合又は芳香族基を除く二価の基で連結された芳香族ジカルボン酸化合物を含む。芳香族炭化水素環としては、例えばベンゼン環等の単環式炭化水素環;ナフタレン等の縮合二環式炭化水素環、ビフェニル等の環集合炭化水素環等の多環式炭化水素環が挙げられ、好ましくはベンゼン環である。 In a preferred embodiment of the present invention, from the viewpoint that a film containing a polyimide resin is likely to exhibit good bending resistance, the dicarboxylic acid compound has two or more aromatic hydrocarbon rings each having a single bond or an aromatic ring. It includes an aromatic dicarboxylic acid compound linked by a divalent group excluding a group. Examples of the aromatic hydrocarbon ring include a monocyclic hydrocarbon ring such as a benzene ring; a condensed bicyclic hydrocarbon ring such as naphthalene; and a polycyclic hydrocarbon ring such as a ring-assembled hydrocarbon ring such as biphenyl. , Preferably a benzene ring.
 具体的には、2つ以上の芳香族炭化水素環が単結合又は芳香族基を除く二価の基で連結された芳香族ジカルボン酸化合物は、式(6)において、Wが、式(7b) Specifically, in the aromatic dicarboxylic acid compound in which two or more aromatic hydrocarbon rings are linked by a single bond or a divalent group excluding an aromatic group, in the formula (6), W is represented by the formula (7b )
Figure JPOXMLDOC01-appb-C000017
[式(7b)中、R25~R32は、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表し、R25~R32に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、Aは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-S-、-CO-又は-N(R33)-を表し、R33は水素原子、ハロゲン原子で置換されていてもよい炭素数1~12の1価の炭化水素基を表し、mは1~4の整数であり、*は結合手を表す]
で表される基である化合物である。ジカルボン酸化合物として、式(6)中のWが式(7b)で表される基である化合物を含むと、ポリイミド系樹脂を含んでなるフィルムが優れた弾性率、耐屈曲性及び光学特性を発現しやすい。なお、式(6)中のWが式(7b)で表される基である化合物をジカルボン酸化合物(7b)ということがある。
Figure JPOXMLDOC01-appb-C000017
[In the formula (7b), R 25 to R 32 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, hydrogen atoms contained in R 25 ~ R 32, independently of one another, may be substituted with a halogen atom, a is a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH(CH 3 )−, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —SO 2 —, —S—, —CO— or —N(R 33 )—, and R 33 Represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom, m 1 is an integer of 1 to 4, and * represents a bond.]
The compound is a group represented by. When the compound of formula (6) in which W in formula (6) is a group represented by formula (7b) is contained as the dicarboxylic acid compound, the film containing the polyimide resin has excellent elastic modulus, flex resistance and optical properties. Easy to develop. The compound in which W in the formula (6) is a group represented by the formula (7b) may be referred to as a dicarboxylic acid compound (7b).
 式(7b)及び式(6a)において、Aは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-S-、-CO-又は-N(R33)-を表し、ポリイミド系樹脂を含んでなるフィルムの弾性率及び耐屈曲性を向上しやすい観点から、好ましくは-O-又は-S-、より好ましくは-O-を表す。炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基としては、式(2)における炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基として上記に例示のものが挙げられる。ポリイミド系樹脂を含んでなるフィルムの表面硬度、柔軟性及び耐屈曲性を向上しやすい観点から、R25~R32は、互いに独立に、好ましくは水素原子又は炭素数1~6のアルキル基を表し、より好ましくは水素原子又は炭素数1~3のアルキル基を表し、さらに好ましくは水素原子を表す。ここで、R25~R32に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよい。R33は水素原子、ハロゲン原子で置換されていてもよい炭素数1~12の1価の炭化水素基を表す。炭素数1~12の1価の炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基、n-ヘキシル、n-ヘプチル基、n-オクチル基、tert-オクチル基、n-ノニル基、n-デシル基等が挙げられ、これらはハロゲン原子で置換されていてもよい。前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。mが2~4である場合、Aは同一であってもよいし、異なっていてもよい。 In the formula (7b) and the formula (6a), A is a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 - , -C(CF 3 ) 2 -, -SO 2 -, -S-, -CO- or -N(R 33 )-, and improves the elastic modulus and flex resistance of a film containing a polyimide resin. From the viewpoint of facilitation, it preferably represents —O— or —S—, more preferably —O—. Examples of the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms or the aryl group having 6 to 12 carbon atoms include an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms in the formula (2). Examples of the group or the aryl group having 6 to 12 carbon atoms include those exemplified above. From the viewpoint of easily improving the surface hardness, flexibility and bending resistance of a film containing a polyimide resin, R 25 to R 32 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. , More preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and further preferably a hydrogen atom. Here, the hydrogen atoms contained in R 25 to R 32 may be independently substituted with a halogen atom. R 33 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom. Examples of the monovalent hydrocarbon group having 1 to 12 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, Examples include 2-methyl-butyl group, 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl, n-heptyl group, n-octyl group, tert-octyl group, n-nonyl group and n-decyl group. And these may be substituted with a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. When m 1 is 2 to 4, A may be the same or different.
 式(7b)において、mは、1~4の整数であり、mがこの範囲であると、ポリイミド系樹脂を含んでなるフィルムの耐屈曲性や弾性率が良好になりやすい。また、式(7b)において、mは、好ましくは1~3の整数、より好ましくは1又は2、さらに好ましくは1であり、mがこの範囲内であると、フィルムの耐屈曲性や弾性率が良好になりやすい。 In the formula (7b), m 1 is an integer of 1 to 4, and when m 1 is in this range, the flex resistance and elastic modulus of the film containing the polyimide resin are likely to be good. In the formula (7b), m 1 is preferably an integer of 1 to 3, more preferably 1 or 2, and even more preferably 1. If m 1 is within this range, the flex resistance of the film and The elastic modulus tends to be good.
 ポリイミド系樹脂を含んでなるフィルムの弾性率及び耐屈曲性の向上、YI値低減の観点から、ステップ(B)におけるジカルボン酸化合物として、ジカルボン酸化合物(7a)又は(7b)を使用することが好ましく、ジカルボン酸化合物(7a)と、ジカルボン酸化合物(7b)とを併用することがより好ましい。 From the viewpoint of improving the elastic modulus and bending resistance of a film containing a polyimide resin and reducing the YI value, it is possible to use a dicarboxylic acid compound (7a) or (7b) as the dicarboxylic acid compound in step (B). Preferably, the dicarboxylic acid compound (7a) and the dicarboxylic acid compound (7b) are used in combination.
 本発明のより好適な実施態様において、式(7a)は式(7a’): In a more preferred embodiment of the present invention, the formula (7a) is the formula (7a'):
Figure JPOXMLDOC01-appb-C000018
で表される。また、式(7b)は式(7b’):
Figure JPOXMLDOC01-appb-C000018
It is represented by. Further, the formula (7b) is the formula (7b′):
Figure JPOXMLDOC01-appb-C000019
で表される。ジカルボン酸化合物として、式(6)中のWが式(7a’)で表される基である化合物又は式(7b’)で表される基である化合物、又は、これらの両方を使用すると、弾性率及び耐屈曲性がより向上されたフィルムが得られやすい。
Figure JPOXMLDOC01-appb-C000019
It is represented by. As the dicarboxylic acid compound, when W in the formula (6) is a compound represented by the formula (7a′) or a compound represented by the formula (7b′), or both of them are used, It is easy to obtain a film having a further improved elastic modulus and bending resistance.
 ジカルボン酸化合物の具体例としては、芳香族ジカルボン酸、脂肪族ジカルボン酸及びそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、2種以上を組合せて用いてもよい。具体例としては、テレフタル酸;イソフタル酸;ナフタレンジカルボン酸;4,4’-ビフェニルジカルボン酸;3,3’-ビフェニルジカルボン酸;炭素数8以下である鎖式炭化水素、のジカルボン酸化合物及び2つの安息香酸が単結合、-CH-、-C(CH-、-C(CF-、-SO-又はフェニレン基で連結された化合物並びに、それらの酸クロリド化合物が挙げられる。これらのジカルボン酸化合物の中でも、ポリイミド系樹脂を含んでなるフィルムの弾性率及び耐屈曲性を向上しやすい観点から、4,4’-オキシビス安息香酸、テレフタル酸又はそれらの酸クロリドが好ましく、上記の通り、4,4’-オキシビス(ベンゾイルクロリド)及びテレフタロイルクロリドがより好ましく、4,4’-オキシビス(ベンゾイルクロリド)とテレフタロイルクロリドとを組合せて用いることがさらに好ましい。 Specific examples of the dicarboxylic acid compound include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and related acid chloride compounds, acid anhydrides, and the like, and two or more kinds may be used in combination. Specific examples thereof include terephthalic acid; isophthalic acid; naphthalenedicarboxylic acid; 4,4′-biphenyldicarboxylic acid; 3,3′-biphenyldicarboxylic acid; a chain hydrocarbon having 8 or less carbon atoms, and a dicarboxylic acid compound and 2 A compound in which two benzoic acids are linked by a single bond, —CH 2 —, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —SO 2 — or a phenylene group, and their acid chloride compounds are Can be mentioned. Among these dicarboxylic acid compounds, 4,4′-oxybisbenzoic acid, terephthalic acid or acid chlorides thereof are preferable from the viewpoint of easily improving the elastic modulus and flex resistance of the film containing a polyimide resin, As described above, 4,4′-oxybis(benzoyl chloride) and terephthaloyl chloride are more preferable, and it is further preferable to use 4,4′-oxybis(benzoyl chloride) and terephthaloyl chloride in combination.
 工程(I)がステップ(B)を含む場合、ステップ(A)で得られた中間体(K-1)を単離してステップ(B)に供してもよいが、通常、単離せずに連続してステップ(B)を行う。 When the step (I) includes the step (B), the intermediate (K-1) obtained in the step (A) may be isolated and used in the step (B), but it is usually continuous without isolation. Then, step (B) is performed.
 本発明の好適な実施態様において、ステップ(B)で反応させるジカルボン酸化合物の使用量は、所望とするポリイミド系樹脂の構成単位との比率に応じて適宜選択でき、例えば、工程(I)及び(II)で反応させるジアミン化合物の総量を100モルとしたときに、好ましくは5モル以上、より好ましくは20モル以上、さらに好ましくは30モル以上、さらにより好ましくは40モル以上、とりわけ好ましくは50モル以上、とりわけより好ましくは60モル以上であり、好ましくは95モル以下、より好ましくは90モル以下、さらに好ましくは85モル以下、とりわけ好ましくは80モル以下である。ジカルボン酸化合物の使用量が上記範囲であると、ポリイミド系樹脂を含んでなるフィルムの弾性率及び耐屈曲性を向上しやすい。 In a preferred embodiment of the present invention, the amount of the dicarboxylic acid compound to be reacted in step (B) can be appropriately selected according to the ratio with the constituent unit of the desired polyimide resin, and for example, the step (I) and When the total amount of the diamine compound reacted in (II) is 100 mol, preferably 5 mol or more, more preferably 20 mol or more, further preferably 30 mol or more, still more preferably 40 mol or more, and particularly preferably 50 mol. The amount is at least mol, particularly preferably at least 60 mol, preferably at most 95 mol, more preferably at most 90 mol, further preferably at most 85 mol, particularly preferably at most 80 mol. When the amount of the dicarboxylic acid compound used is in the above range, the elastic modulus and flex resistance of the film containing the polyimide resin can be easily improved.
 本発明の好適な実施態様において、工程(I)(ステップ(B))で使用するジカルボン酸化合物のうち、ジカルボン酸化合物(6a)の割合は、ステップ(B)で使用するジカルボン酸化合物の総モル量に対して、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは70モル%以上、とりわけ好ましくは80モル%以上であり、好ましくは100モル%以下である。ジカルボン酸化合物(6a)の割合が上記範囲内であると、ポリイミド系樹脂を含んでなるフィルムは、弾性率、光学特性、耐屈曲性及び表面硬度を高めやすい。また、フッ素元素を含有する骨格により樹脂の溶媒への溶解性が向上され、樹脂ワニスの粘度を低く抑制することができ、フィルムの製造が容易となる。なお、ジカルボン酸化合物(6a)の割合は、原料の仕込み比から算出してもよい。 In a preferred embodiment of the present invention, in the dicarboxylic acid compound used in the step (I) (step (B)), the ratio of the dicarboxylic acid compound (6a) is the total amount of the dicarboxylic acid compound used in the step (B). The molar amount is preferably 30 mol% or more, more preferably 50 mol% or more, further preferably 70 mol% or more, particularly preferably 80 mol% or more, and preferably 100 mol% or less. When the proportion of the dicarboxylic acid compound (6a) is within the above range, the film containing the polyimide resin tends to have higher elastic modulus, optical properties, bending resistance and surface hardness. Further, the skeleton containing the elemental fluorine improves the solubility of the resin in the solvent, the viscosity of the resin varnish can be suppressed low, and the film production becomes easy. The ratio of the dicarboxylic acid compound (6a) may be calculated from the charging ratio of raw materials.
 本発明の好適な実施態様において、ステップ(B)で使用するジカルボン酸化合物のうち、ジカルボン酸化合物(7a)と(7b)との合計割合は、ステップ(B)で使用するジカルボン酸化合物の総モル量に対して、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは70モル%以上、とりわけ好ましくは80モル%以上であり、好ましくは100モル%以下である。ジカルボン酸化合物(7a)と(7b)との合計割合が上記範囲であると、ポリイミド系樹脂を含んでなるフィルムは、弾性率、光学特性、耐屈曲性及び表面硬度を高めやすい。また、フッ素元素を含有する骨格により樹脂の溶媒への溶解性が向上され、樹脂ワニスの粘度を低く抑制することができ、フィルムの製造が容易となる。なお、ジカルボン酸化合物(7a)と(7b)との合計割合は、原料の仕込み比から算出してもよい。 In a preferred embodiment of the present invention, of the dicarboxylic acid compounds used in step (B), the total proportion of dicarboxylic acid compounds (7a) and (7b) is the total amount of dicarboxylic acid compounds used in step (B). The molar amount is preferably 30 mol% or more, more preferably 50 mol% or more, further preferably 70 mol% or more, particularly preferably 80 mol% or more, and preferably 100 mol% or less. When the total ratio of the dicarboxylic acid compounds (7a) and (7b) is in the above range, the film containing the polyimide resin tends to have higher elastic modulus, optical characteristics, flex resistance and surface hardness. Further, the skeleton containing the elemental fluorine improves the solubility of the resin in the solvent, the viscosity of the resin varnish can be suppressed low, and the film production becomes easy. The total ratio of the dicarboxylic acid compounds (7a) and (7b) may be calculated from the raw material charging ratio.
 本発明の好適な実施態様において、ジカルボン酸化合物として、ジカルボン酸化合物(7a)と(7b)とを併用することが好ましい。ジカルボン酸化合物(7b)の使用量は、ジカルボン酸化合物(7a)1モルに対して、好ましくは0.01モル以上、より好ましくは0.05モル以上、さらに好ましくは0.1モル以上であり、好ましくは20モル以下、より好ましくは15モル以下、さらに好ましくは10モル以下、さらにより好ましくは1モル以下、とりわけ好ましくは0.5モル以下、とりわけより好ましくは0.3モル以下である。ジカルボン酸化合物(7b)の使用量が上記範囲であると、成膜後のフィルムが耐屈曲性と弾性率を両立しやすい。 In a preferred embodiment of the present invention, it is preferable to use the dicarboxylic acid compounds (7a) and (7b) together as the dicarboxylic acid compound. The amount of the dicarboxylic acid compound (7b) used is preferably 0.01 mol or more, more preferably 0.05 mol or more, still more preferably 0.1 mol or more, relative to 1 mol of the dicarboxylic acid compound (7a). It is preferably 20 mol or less, more preferably 15 mol or less, still more preferably 10 mol or less, still more preferably 1 mol or less, particularly preferably 0.5 mol or less, and particularly preferably 0.3 mol or less. When the amount of the dicarboxylic acid compound (7b) used is in the above range, the film after film formation tends to have both flex resistance and elastic modulus.
 本発明の一実施態様において、ステップ(B)では、溶媒をさらに添加してもよい。ステップ(B)で溶媒を添加することにより、反応系の急激な粘度上昇を抑制し、均一に撹拌可能な状態を長く維持することができる。そのため、十分に重合反応を進行することができ、ポリイミド系樹脂の分子量及び得られるフィルムの耐屈曲性を向上しやすい。添加する溶媒としては、例えば、(ステップ(A))の項に例示されたものが挙げられ、これらの溶媒は単独又は二種以上組合せて使用できる。溶解性が良く、ポリイミド系樹脂の分子量及び得られるフィルムの耐屈曲性を向上しやすい観点からは、アミド系溶媒を好適に使用できる。ステップ(B)で添加する溶媒は、ステップ(A)で使用する溶媒と同一であってもよいし、異なっていてもよいが、樹脂の分子量及び耐屈曲性向上の観点から、同一であることが好ましい。溶媒は、一度に添加してもよく、複数回にわけて分割添加してもよい。 In one embodiment of the present invention, a solvent may be further added in step (B). By adding the solvent in step (B), it is possible to suppress a rapid increase in the viscosity of the reaction system and maintain a uniformly stirrable state for a long time. Therefore, the polymerization reaction can proceed sufficiently, and the molecular weight of the polyimide resin and the flex resistance of the obtained film can be easily improved. Examples of the solvent to be added include those exemplified in the section of (Step (A)), and these solvents can be used alone or in combination of two or more kinds. An amide solvent can be preferably used from the viewpoint of good solubility and easy improvement of the molecular weight of the polyimide resin and the flex resistance of the resulting film. The solvent added in step (B) may be the same as or different from the solvent used in step (A), but it is the same from the viewpoint of improving the molecular weight and flex resistance of the resin. Is preferred. The solvent may be added at once, or may be dividedly added in plural times.
 ステップ(B)で添加する溶媒の使用量は、ステップ(B)で使用するジカルボン酸化合物1質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上、さらに好ましくは10質量部以上、とりわけ好ましくは20質量部以上であり、好ましくは300質量部以下、より好ましくは200質量部以下、さらに好ましくは100質量部以下、とりわけ好ましくは50質量部以下である。ステップ(B)で添加する溶媒の使用量が上記範囲であると、ポリイミド系樹脂の分子量及び得られるフィルムの耐屈曲性を向上しやすい。 The amount of the solvent added in step (B) is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and further preferably 10 parts by mass with respect to 1 part by mass of the dicarboxylic acid compound used in step (B). Parts or more, particularly preferably 20 parts by mass or more, preferably 300 parts by mass or less, more preferably 200 parts by mass or less, further preferably 100 parts by mass or less, particularly preferably 50 parts by mass or less. When the amount of the solvent added in step (B) is in the above range, it is easy to improve the molecular weight of the polyimide resin and the flex resistance of the obtained film.
 ステップ(B)では、ジカルボン酸化合物を一括添加してもよいし、分割添加してもよい。分割添加すると、反応系の急激な粘度上昇を抑制しやすく、均一に撹拌可能な状態を長く維持しやすい。そのため、重合反応を進行しやすく、得られるポリイミド系樹脂の分子量及び得られるフィルムの耐屈曲性を向上しやすい。 In step (B), the dicarboxylic acid compound may be added all at once or in portions. When added in portions, it is easy to suppress a rapid increase in the viscosity of the reaction system, and it is easy to maintain a uniformly stirrable state for a long time. Therefore, the polymerization reaction easily proceeds, and the molecular weight of the obtained polyimide resin and the bending resistance of the obtained film are easily improved.
 ステップ(B)において、ジカルボン酸化合物を分割添加する際の分割回数は、反応スケールや原料の種類等により適宜選択でき、好ましくは2~20回、より好ましくは2~10回、さらに好ましくは2~6回である。分割回数が上記範囲であると、ポリイミド系樹脂の分子量及び得られるフィルムの耐屈曲性を向上しやすい。 In step (B), the number of divisions when the dicarboxylic acid compound is dividedly added can be appropriately selected depending on the reaction scale, the type of raw material, etc., and is preferably 2 to 20 times, more preferably 2 to 10 times, and further preferably 2 times. ~6 times. When the number of divisions is within the above range, it is easy to improve the molecular weight of the polyimide resin and the flex resistance of the resulting film.
 ジカルボン酸化合物は、均等な量に分割して添加してもよく、不均等な量に分割して添加してもよい。各添加の間の時間(以下、添加間隔という場合がある)は、全て同一であってもよいし、異なっていてもよい。また、ジカルボン酸化合物を二種類以上添加する場合、用語「分割添加」は、全てのジカルボン酸化合物の合計量を分割して添加することを意味し、各ジカルボン酸化合物の分割の仕方は特に限定されないが、例えば各ジカルボン酸化合物を別々に一括又は分割添加してもよいし、各ジカルボン酸化合物を一緒に分割添加してもよいし、これらの組合せであってもよい。 The dicarboxylic acid compound may be divided and added in an equal amount, or may be divided and added in an uneven amount. The time between each addition (hereinafter sometimes referred to as an addition interval) may be the same or different. When two or more dicarboxylic acid compounds are added, the term “divided addition” means that the total amount of all dicarboxylic acid compounds is divided and added, and the method of dividing each dicarboxylic acid compound is not particularly limited. However, each dicarboxylic acid compound may be added separately or collectively or in a divided manner, each dicarboxylic acid compound may be added in a divided manner together, or a combination thereof may be used.
 本発明の一実施態様において、ジカルボン酸化合物が二種類(以下、それぞれ第1ジカルボン酸化合物、第2ジカルボン酸化合物と称する)である場合、例えば、第1ジカルボン酸化合物を一括添加し、第2ジカルボン酸化合物を一括添加してもよいし、第1ジカルボン酸化合物と第2ジカルボン酸化合物を別々に分割添加してもよいし、第1ジカルボン酸化合物と第2ジカルボン酸化合物を一緒に分割添加してもよいし、一緒に分割添加した後、残りを別々に又は一方の残りを添加してもよいし、別々に分割添加した後、残りを一緒に又は一方の残りを添加してもよい。ポリイミド系樹脂の高分子量化及び得られるフィルムの高耐屈曲性化の観点から、第1ジカルボン酸化合物と第2ジカルボン酸化合物を一緒に分割添加する、又は一緒に分割添加後、一方の残りを添加することが好ましい。 In one embodiment of the present invention, when there are two kinds of dicarboxylic acid compounds (hereinafter referred to as a first dicarboxylic acid compound and a second dicarboxylic acid compound, respectively), for example, the first dicarboxylic acid compound is added all at once, and the second dicarboxylic acid compound is added. The dicarboxylic acid compound may be added all at once, the first dicarboxylic acid compound and the second dicarboxylic acid compound may be separately added separately, or the first dicarboxylic acid compound and the second dicarboxylic acid compound may be added together separately. It is also possible to add the remainder separately or separately after adding the remainder separately, or after adding separately separately and then adding the remainder together or one remainder. .. From the viewpoint of increasing the molecular weight of the polyimide-based resin and increasing the flex resistance of the resulting film, the first dicarboxylic acid compound and the second dicarboxylic acid compound are added in a divided manner together, or after the addition is made in a divided manner, the remaining one is It is preferable to add.
 ステップ(B)において、溶媒をさらに添加する場合、溶媒は、ジカルボン酸化合物と一緒に添加してもよいし、ジカルボン酸とは別々に添加してもよいし、ジカルボン酸を分割添加する場合には、これらの組合せであってもよい。 In the step (B), when a solvent is further added, the solvent may be added together with the dicarboxylic acid compound, may be added separately from the dicarboxylic acid, or when the dicarboxylic acid is dividedly added. May be a combination of these.
 ステップ(B)の反応温度は、特に限定されないが、例えば-5~100℃、好ましくは0~50℃、より好ましくは5~30℃であってよい。反応時間は、例えば1分~72時間、好ましくは10分~24時間、より好ましくは30分~10時間であってよい。また、反応は空気中又は不活性ガス雰囲気(例えば窒素、アルゴン等)で撹拌しながら行ってよく、常圧下、加圧下又は減圧下で行ってもよい。好ましい態様では、常圧及び/又は不活性ガス雰囲気下、撹拌しながら行う。 The reaction temperature of step (B) is not particularly limited, but may be, for example, -5 to 100°C, preferably 0 to 50°C, more preferably 5 to 30°C. The reaction time may be, for example, 1 minute to 72 hours, preferably 10 minutes to 24 hours, more preferably 30 minutes to 10 hours. The reaction may be carried out in air or in an inert gas atmosphere (for example, nitrogen, argon, etc.) with stirring, and may be carried out under normal pressure, under pressure or under reduced pressure. In a preferred embodiment, it is carried out under normal pressure and/or an inert gas atmosphere with stirring.
 ステップ(B)において、ジカルボン酸化合物を添加後、所定時間撹拌等して反応させることで、中間体(K)が得られる。 In step (B), the intermediate (K) is obtained by adding the dicarboxylic acid compound and then stirring and reacting for a predetermined time.
 工程(I)がステップ(A)及び(B)で構成されている場合、中間体(K)は、ジアミン化合物由来の構成単位と、3つ以上のカルボニル基を有するカルボン酸化合物由来の構成単位と、ジカルボン酸化合物由来の構成単位とを有する。本発明の好ましい態様では、中間体(K)は、ジアミン化合物(1)とテトラカルボン酸化合物(3)とが反応して得られる式(A)で表される繰り返し構造単位と、ジアミン化合物(A)とジカルボン酸化合物(6)とが反応して得られる式(B)で表される繰り返し構造単位とを含む。 When the step (I) is composed of steps (A) and (B), the intermediate (K) is a structural unit derived from a diamine compound and a structural unit derived from a carboxylic acid compound having three or more carbonyl groups. And a structural unit derived from a dicarboxylic acid compound. In a preferred embodiment of the present invention, the intermediate (K) comprises a repeating structural unit represented by the formula (A) obtained by reacting a diamine compound (1) with a tetracarboxylic acid compound (3), and a diamine compound ( A) and a repeating structural unit represented by the formula (B) obtained by reacting the dicarboxylic acid compound (6).
Figure JPOXMLDOC01-appb-C000020
[式(A)及び式(B)中、Gは式(6)中のWと同じであり、
 Gは式(3)中のYと同じであり、
 X及びXは、それぞれ式(1)中のXと同じであり、X及びXは同一であってもよいし、異なっていてもよい]
Figure JPOXMLDOC01-appb-C000020
[In the formulas (A) and (B), G 2 is the same as W in the formula (6),
G 1 is the same as Y in formula (3),
X 1 and X 2 are respectively the same as X in formula (1), and X 1 and X 2 may be the same or different]
 ジアミン化合物(1)、テトラカルボン酸化合物(3)及びジカルボン酸化合物(5)から選択される少なくとも1つが二種以上ある場合、中間体(K)は、式(A)で表される繰り返し構造単位及び/又は式(B)で表される繰り返し構造単位を二種以上有する。なお、ジアミン化合物由来の構成単位と、テトラカルボン酸化合物由来の構成単位と、ジカルボン酸化合物とを有する中間体(K)を中間体(K-2)という場合がある。 When at least one selected from the diamine compound (1), the tetracarboxylic acid compound (3) and the dicarboxylic acid compound (5) is two or more, the intermediate (K) has a repeating structure represented by the formula (A). It has two or more kinds of units and/or repeating structural units represented by the formula (B). The intermediate (K) having a structural unit derived from a diamine compound, a structural unit derived from a tetracarboxylic acid compound, and a dicarboxylic acid compound may be referred to as an intermediate (K-2).
 ポリイミド系樹脂を製造する場合、中間体(K)を単離した後、後述の工程(II)に供してもよいが、ポリイミド系樹脂を含んでなるフィルムの耐屈曲性の観点、及び製造効率の観点から、単離せずに、直接工程(II)に供する。 When a polyimide-based resin is produced, the intermediate (K) may be isolated and then subjected to the step (II) described below, but the viewpoint of the bending resistance of the film containing the polyimide-based resin and the production efficiency. From the viewpoint of, it is directly subjected to the step (II) without isolation.
 <工程(II)>
 工程(II)は、前記中間体(K)に、さらにジアミン化合物を反応させる工程である。本発明は、工程(II)を含む、すなわち、ジアミン化合物を2回以上にわけて反応(分割して反応)させることを特徴としている。本発明者は、驚くべきことに、ポリイミド系樹脂の製造工程において、工程(II)を含むと、得られるフィルムの耐屈曲性が向上され、耐屈曲性に優れたポリイミド系樹脂が得られることを見出した。本明細書において、耐屈曲性とは、折り曲げを繰り返し行っても、破断等の発生を抑制又は防止できる特性を示す。本発明の好ましい態様において、本発明におけるポリイミド系樹脂から形成されたフィルムは、例えば15万回以上、好ましくは20万回以上繰り返し折り曲げても、破断等を生じない。
<Step (II)>
Step (II) is a step of reacting the intermediate (K) with a diamine compound. The present invention is characterized by including the step (II), that is, performing the reaction (divided reaction) by dividing the diamine compound into two or more times. Surprisingly, the present inventors have found that when the step (II) is included in the process for producing a polyimide resin, the resulting film has improved flex resistance and a polyimide resin having excellent flex resistance is obtained. Found. In the present specification, the bending resistance refers to a property capable of suppressing or preventing the occurrence of breakage or the like even when bending is repeated. In a preferred embodiment of the present invention, the film formed from the polyimide resin of the present invention does not break even when repeatedly bent, for example, 150,000 times or more, preferably 200,000 times or more.
 工程(II)で反応させるジアミン化合物としては、ステップ(A)で反応させるジアミン化合物として上記に例示のものが挙げられる。ジアミン化合物は単独又は二種以上組合せて使用できる。 Examples of the diamine compound to be reacted in the step (II) include those exemplified above as the diamine compound to be reacted in the step (A). The diamine compounds may be used alone or in combination of two or more.
 工程(II)で反応させるジアミン化合物のうち、式(1)中のXが式(2)で表される基であるジアミン化合物、例えば式(1)中のXが式(2’)で表される基であるジアミン化合物の割合は、工程(II)で使用するジアミン化合物の総モル量に対して、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは70モル%以上、とりわけ好ましくは80モル%以上であり、好ましくは100モル%以下である。式(1)中のXが式(2)で表される基であるジアミン化合物の割合が上記範囲であると、ポリイミド系樹脂を含んでなるフィルムは、フッ素元素を含有する骨格により樹脂の溶媒への溶解性を向上し、樹脂ワニスの粘度を低く抑制することができ、またフィルムのYI値やヘーズ等を低減でき、光学特性を向上しやすい。なお、式(1)中のXが式(2)で表される基であるジアミン化合物の割合等は、原料の仕込み比から算出してもよい。 Among the diamine compounds reacted in the step (II), a diamine compound in which X in the formula (1) is a group represented by the formula (2), for example, X in the formula (1) is represented by the formula (2′). The ratio of the diamine compound which is a group is preferably 30 mol% or more, more preferably 50 mol% or more, further preferably 70 mol% or more with respect to the total molar amount of the diamine compound used in the step (II). It is particularly preferably 80 mol% or more, and preferably 100 mol% or less. When the proportion of the diamine compound in which X in the formula (1) is a group represented by the formula (2) is in the above range, the film containing the polyimide resin has a solvent of the resin due to the skeleton containing elemental fluorine. Solubility in the resin varnish, the viscosity of the resin varnish can be suppressed to a low level, the YI value and haze of the film can be reduced, and the optical characteristics can be easily improved. The ratio of the diamine compound in which X in the formula (1) is a group represented by the formula (2) may be calculated from the charging ratio of the raw materials.
 本発明の一実施態様において、ポリイミド系樹脂を含んでなるフィルムの耐屈曲性をより向上しやすい観点から、工程(I)で反応させるジアミン化合物と工程(II)で反応させるジアミン化合物は、少なくとも1種が同じ化合物であることが好ましい。工程(I)で反応させるジアミン化合物を、ジアミン化合物(I)とし、工程(II)で反応させるジアミン化合物をジアミン化合物(II)とすると、「少なくとも1種が同じ化合物」とは、ジアミン化合物(I)が1種類、かつジアミン化合物(II)が1種類である場合は、これらのジアミン化合物(I)及び(II)が同じであることを意味し、ジアミン化合物(I)が1種類、かつジアミン化合物(II)が2種類以上である場合は、ジアミン化合物(II)のうち、1種類以上がジアミン化合物(I)と同じであることを意味する。また、ジアミン化合物(I)が2種類以上、かつジアミン化合物(II)が1種類である場合は、ジアミン化合物(I)のうち、1種類以上がジアミン化合物(II)と同じであることを意味し、ジアミン化合物(I)が2種類以上、かつジアミン化合物(II)が2種類以上である場合は、互いに1種類以上が同じであることを意味する。さらに好適な実施態様においては、ポリイミド系樹脂を含んでなるフィルムの耐屈曲性をより向上しやすい観点から、工程(I)で反応させるジアミン化合物と工程(II)で反応させるジアミン化合物は、全て同じであることが好ましい。 In one embodiment of the present invention, at least the diamine compound to be reacted in the step (I) and the diamine compound to be reacted in the step (II) are at least from the viewpoint of further improving the bending resistance of the film containing the polyimide resin. It is preferable that one compound is the same. When the diamine compound to be reacted in the step (I) is the diamine compound (I) and the diamine compound to be reacted in the step (II) is the diamine compound (II), "at least one compound is the same" means the diamine compound ( When I) is one type and diamine compound (II) is one type, it means that these diamine compounds (I) and (II) are the same, and one diamine compound (I) is, and When the diamine compound (II) is two or more kinds, it means that at least one kind of the diamine compound (II) is the same as the diamine compound (I). Moreover, when two or more kinds of diamine compounds (I) and one kind of diamine compounds (II) are used, it means that one or more kinds of diamine compounds (I) are the same as the diamine compounds (II). However, when the diamine compound (I) is two or more kinds and the diamine compound (II) is two or more kinds, it means that one or more kinds are the same as each other. In a further preferred embodiment, all the diamine compounds reacted in the step (I) and the diamine compound reacted in the step (II) are from the viewpoint of easily improving the bending resistance of the film containing the polyimide resin. It is preferably the same.
 工程(II)では、ジアミン化合物を一括添加してもよいし、分割添加してもよい。なお、本明細書において、分割添加とは、添加する化合物を何回かにわけて添加すること、より詳細には添加する化合物を特定量に分け、所定間隔又は所定時間あけてそれぞれ添加することを意味する。該所定間隔又は所定時間は非常に短い間隔又は時間も含まれるため、分割添加には連続添加又は連続フィードも含まれる。 In step (II), the diamine compound may be added all at once or may be added in portions. In the present specification, the divided addition means that the compound to be added is divided and added several times, more specifically, the compound to be added is divided into a specific amount and added at a predetermined interval or a predetermined time. Means Since the predetermined interval or predetermined time includes a very short interval or time, the divided addition also includes continuous addition or continuous feed.
 工程(II)において、ジアミン化合物を分割添加する場合、分割回数、分割する量、及び分割添加の方法としては、ステップ(B)におけるジカルボン酸化合物の分割回数、分割する量、及び分割添加の方法として上記に例示したものが挙げられる。
 工程(II)において、溶媒をさらに添加してもよい。溶媒をさらに添加する場合、ジアミン化合物と一緒に添加してもよいし、ジアミン化合物と別々に添加してもよいし、ジアミン化合物を分割添加する場合には、これらの組合せであってもよい。
When the diamine compound is dividedly added in the step (II), the number of divisions, the amount of division, and the method of divisional addition include the number of divisions of the dicarboxylic acid compound in step (B), the amount of division, and the method of divisional addition. Examples of the above are given.
In step (II), a solvent may be further added. When the solvent is further added, it may be added together with the diamine compound, may be added separately from the diamine compound, or may be a combination of these when the diamine compound is dividedly added.
 添加する溶媒としては、例えば、(ステップ(A))の項に例示されたものが挙げられ、これらの溶媒は単独又は二種以上組合せて使用できる。溶媒を添加する場合、ステップ(A)で使用される溶媒と同一であってもよいし、異なっていてもよいが、ポリイミド系樹脂の分子量及びフィルムの耐屈曲性向上の観点から、ステップ(A)で使用される溶媒と同一であることが好ましい。溶媒は一度に添加してもよく、複数回に分けて分割添加してもよい。 Examples of the solvent to be added include those exemplified in the section of (Step (A)), and these solvents can be used alone or in combination of two or more kinds. When the solvent is added, it may be the same as or different from the solvent used in step (A), but from the viewpoint of improving the molecular weight of the polyimide resin and the flex resistance of the film, the step (A It is preferred that it is the same as the solvent used in (). The solvent may be added all at once, or may be added dividedly in multiple times.
 工程(II)で反応させるジアミン化合物の使用量は、工程(I)及び工程(II)で反応させるジアミン化合物の総量を100モルとしたときに、好ましくは0.01以上であり、好ましくは20モル以下、より好ましくは15モル以下、さらに好ましくは10モル以下、さらにより好ましくは5モル以下、とりわけ好ましくは2モル以下である。工程(II)で反応させるジアミン化合物の使用量が上記の範囲であると、ポリイミド系樹脂を含んでなるフィルムの耐屈曲性をより向上しやすい。 The amount of the diamine compound to be reacted in the step (II) is preferably 0.01 or more, preferably 20 when the total amount of the diamine compound to be reacted in the steps (I) and (II) is 100 mol. The amount is not more than 15 mol, more preferably not more than 15 mol, further preferably not more than 10 mol, still more preferably not more than 5 mol, and particularly preferably not more than 2 mol. When the amount of the diamine compound to be reacted in the step (II) is within the above range, the flex resistance of the film containing the polyimide resin can be more easily improved.
 工程(I)及び(II)で反応させるジアミン化合物の総量は、工程(I)で反応させるカルボン酸化合物を100モルとしたときに、好ましくは10.0~1,000モル、より好ましくは50.0~150モル、さらに好ましくは80.0~120モル、さらにより好ましくは90.0~110モル、とりわけ好ましくは95.0~100、とりわけより好ましくは97.0~99.9、とりわけさらに好ましくは98.0~99.9である。工程(I)及び(II)で反応させるジアミン化合物の総量が上記範囲であると、ポリイミド系樹脂を含んでなるフィルムの耐屈曲性をより向上しやすい。なお、該カルボン酸化合物とは、工程(I)及び(II)で用いられるジカルボン酸化合物、テトラカルボン酸化合物、及びトリカルボン酸化合物を含むカルボン酸化合物を意味する。 The total amount of diamine compounds reacted in steps (I) and (II) is preferably 10.0 to 1,000 moles, more preferably 50, when the carboxylic acid compound reacted in step (I) is 100 moles. 0.0 to 150 mol, more preferably 80.0 to 120 mol, even more preferably 90.0 to 110 mol, particularly preferably 95.0 to 100, particularly preferably 97.0 to 99.9, and especially It is preferably 98.0 to 99.9. When the total amount of the diamine compound to be reacted in steps (I) and (II) is in the above range, the flex resistance of the film containing the polyimide resin can be more easily improved. The carboxylic acid compound means a carboxylic acid compound including the dicarboxylic acid compound, the tetracarboxylic acid compound, and the tricarboxylic acid compound used in steps (I) and (II).
 工程(II)の反応温度は、特に限定されないが、例えば-5~100℃、好ましくは0~50℃、より好ましくは5~30℃であってよい。反応時間は、例えば1分~72時間、好ましくは10分~24時間、より好ましくは30分~10時間であってよい。また、反応は空気中又は窒素やアルゴン等の不活性ガス雰囲気で撹拌しながら行ってよく、常圧下、加圧下又は減圧下で行ってもよい。好ましい実施態様では、常圧及び/又は前記不活性ガス雰囲気下、撹拌しながら行う。 The reaction temperature in step (II) is not particularly limited, but may be, for example, -5 to 100°C, preferably 0 to 50°C, more preferably 5 to 30°C. The reaction time may be, for example, 1 minute to 72 hours, preferably 10 minutes to 24 hours, more preferably 30 minutes to 10 hours. The reaction may be carried out in air or in an atmosphere of an inert gas such as nitrogen or argon with stirring, and may be carried out under normal pressure, under pressure or under reduced pressure. In a preferred embodiment, the treatment is carried out under normal pressure and/or the above-mentioned inert gas atmosphere while stirring.
 工程(II)により、ポリイミド樹脂前駆体又はポリアミドイミド樹脂前駆体が得られる。より詳細には、ポリイミド樹脂前駆体は、工程(I)におけるステップ(A)で得られる中間体(K-1)に、さらに工程(II)によりジアミン化合物が反応して得られる。そのため、ポリイミド樹脂前駆体は、ジアミン化合物由来の構成単位とテトラカルボン酸化合物由来の構成単位とを含み、好ましい態様では、式(A)で表される繰り返し構造単位を含む。また、ポリアミドイミド前駆体は、工程(I)におけるステップ(B)で得られる中間体(K-2)に、さらに工程(II)によりジアミン化合物が反応して得られる。そのため、ポリアミドイミド樹脂は、ジアミン化合物由来の構成単位とテトラカルボン酸化合物由来の構成単位とジカルボン酸化合物由来の構成単位とを含み、好ましい態様では、式(A)で表される繰り返し構造単位と式(B)で表される繰り返し構造単位とを含む。なお、ポリイミド樹脂前駆体又はポリアミドイミド前駆体は、その樹脂前駆体を含む反応液に多量の水やメタノール等を加え、該樹脂前駆体を析出させ、濾過、濃縮、乾燥等を行うことにより単離できる。 By the step (II), a polyimide resin precursor or a polyamide-imide resin precursor is obtained. More specifically, the polyimide resin precursor is obtained by reacting the intermediate (K-1) obtained in step (A) in step (I) with a diamine compound in step (II). Therefore, the polyimide resin precursor contains a structural unit derived from a diamine compound and a structural unit derived from a tetracarboxylic acid compound, and in a preferred embodiment, a repeating structural unit represented by the formula (A). The polyamideimide precursor is obtained by reacting the intermediate (K-2) obtained in step (B) in step (I) with a diamine compound in step (II). Therefore, the polyamide-imide resin contains a constitutional unit derived from a diamine compound, a constitutional unit derived from a tetracarboxylic acid compound, and a constitutional unit derived from a dicarboxylic acid compound, and in a preferred embodiment, a repeating structural unit represented by the formula (A): And a repeating structural unit represented by the formula (B). Note that the polyimide resin precursor or the polyamide-imide precursor can be prepared by adding a large amount of water, methanol, or the like to a reaction solution containing the resin precursor to precipitate the resin precursor, and filtering, concentrating, drying, or the like. Can be separated.
 ポリイミド樹脂又はポリアミドイミド樹脂を製造する場合、ポリイミド樹脂前駆体又はポリアミドイミド樹脂前駆体を単離した後、後述の工程(III)に供してもよいが、製造効率の観点から、単離せずに、直接工程(III)に供することが好ましい。 When producing a polyimide resin or a polyamide-imide resin, after isolating the polyimide resin precursor or the polyamide-imide resin precursor, it may be subjected to the step (III) described below, but from the viewpoint of production efficiency, without isolation It is preferable to directly provide the step (III).
 <工程(III)>
 工程(III)は、イミド化触媒の存在下、ポリイミド系樹脂前駆体をイミド化する工程である。例えば、式(A)で表される繰り返し構造単位を含むポリイミド樹脂前駆体を工程(III)に供することにより、式(A)で表される繰り返し構造単位部分がイミド化され(閉環され)、式(C)で表される繰り返し構造単位を含むポリイミド樹脂を得ることができる。また、例えば、式(A)で表される繰り返し構造単位と式(B)で表される繰り返し構造単位とを含むポリアミドイミド前駆体を工程(III)に供することにより、ポリアミドイミド前駆体の構成単位のうち、式(A)で表される繰り返し構造単位部分がイミド化され(閉環され)、式(C)で表される繰り返し構造単位と式(B)で表される繰り返し構造単位とを含むポリアミドイミド樹脂を得ることができる。
<Step (III)>
Step (III) is a step of imidizing the polyimide resin precursor in the presence of an imidization catalyst. For example, by subjecting a polyimide resin precursor containing a repeating structural unit represented by the formula (A) to step (III), the repeating structural unit portion represented by the formula (A) is imidized (ring closed), A polyimide resin containing a repeating structural unit represented by the formula (C) can be obtained. Further, for example, by providing a polyamideimide precursor containing a repeating structural unit represented by the formula (A) and a repeating structural unit represented by the formula (B) to the step (III), the constitution of the polyamideimide precursor Of the units, the repeating structural unit part represented by the formula (A) is imidized (closed) to form a repeating structural unit represented by the formula (C) and a repeating structural unit represented by the formula (B). It is possible to obtain a polyamide-imide resin containing the same.
Figure JPOXMLDOC01-appb-C000021
[式(B)及び式(C)中、Gは式(3)中のYと同じであり、
 Gは式(6)中のWと同じであり、
 X及びXは、それぞれ式(1)中のXと同じであり、X及びXは同一であってもよいし、異なっていてもよい]
Figure JPOXMLDOC01-appb-C000021
[In the formulas (B) and (C), G 1 is the same as Y in the formula (3),
G 2 is the same as W in formula (6),
X 1 and X 2 are respectively the same as X in formula (1), and X 1 and X 2 may be the same or different]
 イミド化触媒としては、例えばトリプロピルアミン、ジイソプロピルエチルアミン、ジブチルプロピルアミン、エチルジブチルアミン等の脂肪族アミン;N-エチルピペリジン、N-プロピルピペリジン、N-ブチルピロリジン、N-ブチルピペリジン、及びN-プロピルヘキサヒドロアゼピン等の脂環式アミン(単環式);アザビシクロ[2.2.1]ヘプタン、アザビシクロ[3.2.1]オクタン、アザビシクロ[2.2.2]オクタン、及びアザビシクロ[3.2.2]ノナン等の脂環式アミン(多環式);並びにピリジン、2-メチルピリジン(2-ピコリン)、3-メチルピリジン(3-ピコリン)、4-メチルピリジン(4-ピコリン)、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、2,4-ジメチルピリジン、2,4,6-トリメチルピリジン、3,4-シクロペンテノピリジン、5,6,7,8-テトラヒドロイソキノリン、及びイソキノリン等の芳香族アミンが挙げられる。これらのイミド化触媒は単独又は二種以上組合せて使用できる。 Examples of the imidization catalyst include aliphatic amines such as tripropylamine, diisopropylethylamine, dibutylpropylamine and ethyldibutylamine; N-ethylpiperidine, N-propylpiperidine, N-butylpyrrolidine, N-butylpiperidine, and N- Alicyclic amine (monocyclic) such as propylhexahydroazepine; azabicyclo[2.2.1]heptane, azabicyclo[3.2.1]octane, azabicyclo[2.2.2]octane, and azabicyclo[3 2.2.2] Alicyclic amine (polycyclic) such as nonane; and pyridine, 2-methylpyridine (2-picoline), 3-methylpyridine (3-picoline), 4-methylpyridine (4-picoline) , 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2,4-dimethylpyridine, 2,4,6-trimethylpyridine, 3,4-cyclopentenopyridine, 5,6,7,8-tetrahydro Isoquinoline, and aromatic amines such as isoquinoline. These imidization catalysts can be used alone or in combination of two or more.
 イミド化触媒の使用量は、ステップ(A)で使用される3つ以上のカルボニル基を有するカルボン酸化合物1モルに対して、好ましくは0.1~10モル、より好ましくは1~5モルである。 The imidization catalyst is used in an amount of preferably 0.1 to 10 mol, more preferably 1 to 5 mol, per 1 mol of the carboxylic acid compound having three or more carbonyl groups used in step (A). is there.
 工程(III)では、イミド化反応を促進しやすい観点から、イミド化触媒とともに、酸無水物を用いることが好ましい。酸無水物は、イミド化反応に用いられる慣用の酸無水物等が挙げられ、その具体例としては、無水酢酸、無水プロピオン酸、無水酪酸等の脂肪族酸無水物、フタル酸等の芳香族酸無水物などが挙げられる。 In the step (III), it is preferable to use an acid anhydride together with the imidization catalyst from the viewpoint of facilitating the imidization reaction. Examples of the acid anhydride include conventional acid anhydrides used in imidization reaction, and specific examples thereof include aliphatic acid anhydrides such as acetic anhydride, propionic anhydride, butyric anhydride, and aromatics such as phthalic acid. Examples thereof include acid anhydrides.
 酸無水物を使用する場合、酸無水物の使用量は、3つ以上のカルボニル基を有するカルボン酸化合物1モルに対して、好ましくは0.5~25モル、より好ましくは1~20モル、さらに好ましくは1~15モルである。 When an acid anhydride is used, the amount of the acid anhydride used is preferably 0.5 to 25 mol, more preferably 1 to 20 mol, relative to 1 mol of the carboxylic acid compound having three or more carbonyl groups. More preferably, it is 1 to 15 mol.
 工程(III)の反応温度は、特に限定されないが、例えば-5~100℃、好ましくは0~90℃、より好ましくは5~80℃であってよい。反応時間は、例えば1分~72時間、好ましくは10分~24時間、より好ましくは30分~10時間であってよい。また、反応は空気中又は窒素やアルゴン等の不活性ガス雰囲気で撹拌しながら行ってよく、常圧下、加圧下又は減圧下で行ってもよい。好ましい態様では、常圧及び/又は前記不活性ガス雰囲気下、撹拌しながら行う。 The reaction temperature in step (III) is not particularly limited, but may be, for example, −5 to 100° C., preferably 0 to 90° C., and more preferably 5 to 80° C. The reaction time may be, for example, 1 minute to 72 hours, preferably 10 minutes to 24 hours, more preferably 30 minutes to 10 hours. The reaction may be carried out in air or in an atmosphere of an inert gas such as nitrogen or argon with stirring, and may be carried out under normal pressure, under pressure or under reduced pressure. In a preferred embodiment, it is carried out under normal pressure and/or the aforementioned inert gas atmosphere while stirring.
 工程(III)で得られたポリイミド系樹脂は、慣用の方法、例えば、濾過、濃縮、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組合せた分離手段の分離精製により単離してもよく、好ましい態様では、ポリイミド系樹脂を含む反応液に、多量の水やメタノール等を加え、ポリイミド系樹脂を析出させ、濃縮、濾過、乾燥等を行うことにより単離することができる。 The polyimide resin obtained in the step (III) can be separated and purified by a conventional method, for example, separation means such as filtration, concentration, extraction, crystallization, recrystallization, column chromatography or a combination of these separation means. May be isolated, in a preferred embodiment, a reaction solution containing a polyimide resin, a large amount of water, methanol or the like is added to precipitate the polyimide resin, and the polyimide resin can be isolated by performing concentration, filtration, drying or the like. it can.
[ポリイミド系樹脂]
 本発明の製造方法では、耐屈曲性に優れたフィルムを形成可能なポリイミド系樹脂が得られる。そのため、本発明におけるポリイミド系樹脂を含んでなるフィルムは、液晶表示装置や有機EL表示装置等の表示装置、中でもフレキシブル表示装置の前面板材料として好適に使用できる。
[Polyimide resin]
According to the production method of the present invention, a polyimide resin capable of forming a film having excellent flex resistance can be obtained. Therefore, the film containing the polyimide resin in the present invention can be suitably used as a front plate material for a display device such as a liquid crystal display device or an organic EL display device, and particularly for a flexible display device.
 ポリイミド系樹脂の重量平均分子量(Mw)は、標準ポリスチレン換算で、好ましくは150,000以上、より好ましくは200,000以上、さらに好ましくは250,000以上、とりわけ好ましくは300,000以上であり、好ましくは1,000,000以下、より好ましくは800,000以下、さらに好ましくは700,000以下、とりわけ好ましくは500,000以下である。重量平均分子量が、上記の下限以上であると、ポリイミド系樹脂を含んでなるフィルムの弾性率、耐屈曲性及び表面硬度を向上しやすく、また、上記の上限以下であると、樹脂ワニスのゲル化を抑制しやすく、フィルムの光学特性を向上しやすい。なお、重量平均分子量は、例えばゲル浸透クロマトグラフィー(GPC)測定を行い、標準ポリスチレン換算によって求めることができ、例えば実施例に記載の方法により求めることができる。 The weight average molecular weight (Mw) of the polyimide resin is, in terms of standard polystyrene, preferably 150,000 or more, more preferably 200,000 or more, further preferably 250,000 or more, and particularly preferably 300,000 or more, It is preferably 1,000,000 or less, more preferably 800,000 or less, further preferably 700,000 or less, and particularly preferably 500,000 or less. When the weight average molecular weight is not less than the above lower limit, the elastic modulus of the film containing a polyimide resin, the bending resistance and the surface hardness are easily improved, and when it is not more than the above upper limit, the gel of the resin varnish is obtained. It is easy to suppress film formation and improve the optical characteristics of the film. The weight average molecular weight can be determined, for example, by gel permeation chromatography (GPC) measurement, and can be determined by standard polystyrene conversion. For example, it can be determined by the method described in Examples.
 ポリイミド系樹脂をN,N-ジメチルアセトアミドに濃度10質量%で溶解させたときの25℃における粘度は、好ましくは1,000mPa・s以上、より好ましくは5,000mPa・s以上、さらに好ましくは10,000mPa・s以上、とりわけ好ましくは20,000mPa・s以上であり、好ましくは70,000mPa・s以下、より好ましくは60,000mPa・s以下、さらに好ましくは50,000mPa・s以下、とりわけ好ましくは40,000mPa・s以下である。ポリイミド系樹脂の粘度が上記の下限以上であると、分子間の相互作用が大きくなり、耐屈曲性及び機械的強度を向上しやすく、上記の上限値以下であると、成膜性が良好となり、均一な膜を形成しやすい。なお、粘度は、ブルックフィールド粘度計により測定でき、例えば、実施例に記載の方法により測定できる。 The viscosity of the polyimide resin at 25° C. when dissolved in N,N-dimethylacetamide at a concentration of 10% by mass is preferably 1,000 mPa·s or more, more preferably 5,000 mPa·s or more, and further preferably 10 mPa·s or more. 2,000 mPa·s or more, particularly preferably 20,000 mPa·s or more, preferably 70,000 mPa·s or less, more preferably 60,000 mPa·s or less, further preferably 50,000 mPa·s or less, particularly preferably It is 40,000 mPa·s or less. When the viscosity of the polyimide-based resin is the above lower limit or more, the interaction between molecules becomes large, and it is easy to improve the bending resistance and mechanical strength, and when it is the above upper limit or less, the film forming property becomes good. , Easy to form a uniform film. The viscosity can be measured by a Brookfield viscometer, for example, by the method described in Examples.
 本発明の製造方法により得られるポリイミド系樹脂のうち、ポリイミド樹脂は、好ましくはジアミン化合物由来の構成単位とテトラカルボン酸化合物由来の構成単位とを少なくとも有し、好適な態様では、式(C)で表される繰り返し構造単位を含む。また、ポリアミドイミド樹脂は、好ましくはジアミン化合物由来の構成単位とテトラカルボン酸化合物由来の構成単位とジカルボン酸化合物由来の構成単位とを少なくとも有し、好適な態様では、式(C)で表される繰り返し構造単位と式(B)で表される繰り返し構造単位とを含む。ポリイミド系樹脂は、ジアミン化合物由来の構成単位とトリカルボン酸化合物由来の構成単位からなってもよく、前記好適な態様において、さらにトリカルボン酸化合物由来の構成単位を含むものでもよい。テトラカルボン酸化合物由来の構成単位とトリカルボン酸化合物由来の構成単位を含むポリイミド系樹脂は、例えばステップ(A)でテトラカルボン酸化合物と一緒又は別々にトリカルボン酸化合物を添加してもよいし、ステップ(B)でジカルボン酸化合物と一緒又は別々にトリカルボン酸化合物を添加して製造してもよい。 Among the polyimide-based resins obtained by the production method of the present invention, the polyimide resin preferably has at least a structural unit derived from a diamine compound and a structural unit derived from a tetracarboxylic acid compound, and in a preferred embodiment, has the formula (C) Including a repeating structural unit represented by. The polyamide-imide resin preferably has at least a structural unit derived from a diamine compound, a structural unit derived from a tetracarboxylic acid compound, and a structural unit derived from a dicarboxylic acid compound, and in a preferred embodiment, is represented by the formula (C). And a repeating structural unit represented by the formula (B). The polyimide resin may be composed of a constitutional unit derived from a diamine compound and a constitutional unit derived from a tricarboxylic acid compound, and in the preferred embodiment, may further include a constitutional unit derived from a tricarboxylic acid compound. A polyimide resin containing a structural unit derived from a tetracarboxylic acid compound and a structural unit derived from a tricarboxylic acid compound, for example, a tricarboxylic acid compound may be added together with or separately from the tetracarboxylic acid compound in step (A). It may be produced by adding a tricarboxylic acid compound in (B) together with or separately from the dicarboxylic acid compound.
 本発明の一実施態様において、ジアミン化合物(1)由来の構成単位及びテトラカルボン酸化合物(3)由来の構成単位を少なくとも有するポリイミド樹脂は、式(C)で表される繰り返し構成単位を含む。また、ジアミン化合物(1)由来の構成単位と、テトラカルボン酸化合物(3)由来の構成単位及びトリカルボン酸化合物(8)由来の構成単位からなる群から選ばれる少なくとも1種の構成単位と、ジカルボン酸化合物(6)由来の構成単位とを少なくとも有するポリアミドイミド樹脂は、式(B)で表される繰り返し構造単位と、式(C)で表される繰り返し構造単位及び式(D)で表される繰り返し構造単位からなる群から選ばれる少なくとも1種の構造単位とを含む。 In one embodiment of the present invention, the polyimide resin having at least a constitutional unit derived from a diamine compound (1) and a constitutional unit derived from a tetracarboxylic acid compound (3) contains a repeating constitutional unit represented by the formula (C). Further, at least one structural unit selected from the group consisting of a structural unit derived from the diamine compound (1), a structural unit derived from the tetracarboxylic acid compound (3) and a structural unit derived from the tricarboxylic acid compound (8), and a dicarboxylic acid. The polyamideimide resin having at least the structural unit derived from the acid compound (6) is represented by the repeating structural unit represented by the formula (B), the repeating structural unit represented by the formula (C) and the formula (D). And at least one structural unit selected from the group consisting of repeating structural units.
Figure JPOXMLDOC01-appb-C000022
[式(D)中、Gは、式(8)中のYと同じであり、Xは式(1)中のXと同じである]
Figure JPOXMLDOC01-appb-C000022
[In formula (D), G 3 is the same as Y 2 in formula (8), and X 3 is the same as X in formula (1)]
 本発明の一実施態様において、ジアミン化合物(1)由来の構成単位と、テトラカルボン酸化合物(3)由来の構成単位及びテトラカルボン酸化合物(5)由来の構成単位からなる群から選ばれる少なくとも1種の構成単位と、ジカルボン酸化合物(6)由来の構成単位とを少なくとも有するポリアミドイミド樹脂は、式(B)で表される繰り返し構造単位と、式(C)で表される繰り返し構造単位及び式(E)で表される繰り返し構造単位からなる群から選ばれる少なくとも1種の構造単位とを含む。 In one embodiment of the present invention, at least one selected from the group consisting of a constitutional unit derived from a diamine compound (1), a constitutional unit derived from a tetracarboxylic acid compound (3) and a constitutional unit derived from a tetracarboxylic acid compound (5). The polyamide-imide resin having at least a structural unit of a species and a structural unit derived from the dicarboxylic acid compound (6) has a repeating structural unit represented by the formula (B), a repeating structural unit represented by the formula (C), and And at least one structural unit selected from the group consisting of repeating structural units represented by formula (E).
Figure JPOXMLDOC01-appb-C000023
[式(E)中、Gは、式(5)中のYと同じであり、Xは式(1)中のXと同じであり、R18は式(5)中のR18と同じである]
Figure JPOXMLDOC01-appb-C000023
Wherein (E), G 4 is the same as Y 1 in the formula (5), X 4 is the same as X in the formula (1), R 18 is R 18 in the formula (5) Is the same as]
[フィルム]
 本発明におけるポリイミド系樹脂は、フィルム、好ましくは光学フィルムに成形することができる。本発明では、特に工程(II)を含むため、耐屈曲性に優れたフィルムを得ることができる。フィルムは、特に限定されないが、例えば、以下の工程:
(a)前記ポリイミド系樹脂を含む液(樹脂ワニスと称することがある)を調製する工程(ワニス調製工程)、
(b)樹脂ワニスを支持材に塗布して塗膜を形成する工程(塗布工程)、及び
(c)塗布された液(塗膜)を乾燥させて、フィルムを形成する工程(フィルム形成工程)
を含む方法によって製造することができる。
[the film]
The polyimide resin in the present invention can be formed into a film, preferably an optical film. In the present invention, since the step (II) is particularly included, a film having excellent bending resistance can be obtained. The film is not particularly limited, for example, the following steps:
(A) a step of preparing a liquid containing the polyimide resin (sometimes referred to as a resin varnish) (varnish preparation step),
(B) a step of applying a resin varnish to a support material to form a coating film (application step), and (c) a step of drying the applied liquid (coating film) to form a film (film forming step)
Can be manufactured by a method including.
 ワニス調製工程において、前記ポリイミド系樹脂を溶媒に溶解し、必要に応じて、添加剤を添加して撹拌混合することにより調製する。添加剤としては、例えばフィラー、紫外線吸収剤、ブルーイング剤、酸化防止剤、離型剤、安定剤、難燃剤、pH調整剤、分散剤、滑剤、増粘剤、及びレベリング剤等が挙げられる。樹脂ワニスの調製に用いられる溶媒は、ポリイミド系樹脂を溶解可能であれば特に限定されない。かかる溶媒としては、例えば(ステップ(A))の項に例示の溶媒等が挙げられる。これらの溶媒の中でも、アミド系溶媒又はラクトン系溶媒を好適に使用できる。これらの溶媒は単独又は二種以上組合せて使用できる。 In the varnish preparation step, the polyimide resin is dissolved in a solvent, and if necessary, additives are added and mixed by stirring to prepare. Examples of the additives include fillers, ultraviolet absorbers, bluing agents, antioxidants, release agents, stabilizers, flame retardants, pH adjusters, dispersants, lubricants, thickeners, and leveling agents. .. The solvent used for preparing the resin varnish is not particularly limited as long as it can dissolve the polyimide resin. Examples of such a solvent include the solvents exemplified in the section (step (A)). Among these solvents, an amide solvent or a lactone solvent can be preferably used. These solvents can be used alone or in combination of two or more.
 樹脂ワニスの固形分濃度は、好ましくは1~25質量%、より好ましくは5~20質量%である。なお、固形分とは、樹脂ワニスから溶媒を除いた成分を示し、固形分濃度とは、樹脂ワニスの質量に対する固形分の質量を示す。 The solid content concentration of the resin varnish is preferably 1 to 25% by mass, more preferably 5 to 20% by mass. The solid content indicates a component obtained by removing the solvent from the resin varnish, and the solid content concentration indicates the mass of the solid content with respect to the mass of the resin varnish.
 塗布工程において、支持材上に樹脂ワニスを塗布して塗膜を形成する。塗布方法としては、例えばワイヤーバーコーティング法、リバースコーティング、グラビアコーティング等のロールコーティング法、ダイコート法、カンマコート法、リップコート法、スピンコーティング法、スクリーンコーティング法、ファウンテンコーティング法、ディッピング法、スプレー法、流涎成形法等が挙げられる。 In the coating process, a resin varnish is applied on the support material to form a coating film. Examples of the coating method include a wire bar coating method, a reverse coating method, a roll coating method such as gravure coating, a die coating method, a comma coating method, a lip coating method, a spin coating method, a screen coating method, a fountain coating method, a dipping method, and a spray method. , A spout molding method and the like.
 フィルム形成工程において、塗膜を乾燥し、支持材から剥離することによって、フィルムを形成することができる。剥離後にさらにフィルムを乾燥する乾燥工程を行ってもよい。塗膜の乾燥は、通常50~350℃の温度にて行うことができる。必要に応じて、不活性雰囲気又は減圧の条件下において塗膜の乾燥を行ってよい。 In the film forming process, the film can be formed by drying the coating film and peeling it from the support material. You may perform the drying process which dries a film further after peeling. The coating film can be dried usually at a temperature of 50 to 350°C. If necessary, the coating film may be dried under an inert atmosphere or a reduced pressure condition.
 支持材の例としては、SUS等の金属ベルト、及び、PETフィルム、PENフィルム、他のポリイミドフィルム、ポリアミドフィルム、ポリアミドイミドフィルム等の樹脂フィルムが挙げられる。中でも、耐熱性に優れる観点から、PETフィルム、PENフィルム等が好ましく、さらにフィルムとの成膜時密着性、易剥離性、及びコストの観点から、PETフィルムがより好ましい。 Examples of the support material include a metal belt such as SUS, and a resin film such as a PET film, a PEN film, another polyimide film, a polyamide film, and a polyamideimide film. Among them, a PET film, a PEN film, and the like are preferable from the viewpoint of excellent heat resistance, and a PET film is more preferable from the viewpoints of adhesion with the film during film formation, easy peeling property, and cost.
 フィルムの厚さは、用途に応じて適宜選択でき、好ましくは25μm以上、より好ましくは30μm以上であり、好ましくは100μm以下、より好ましくは80μm以下、さらに好ましくは60μm以下である。フィルムの厚さは、例えばマイクロメーターを用いて測定できる。 The thickness of the film can be appropriately selected according to the application, and is preferably 25 μm or more, more preferably 30 μm or more, preferably 100 μm or less, more preferably 80 μm or less, still more preferably 60 μm or less. The thickness of the film can be measured using, for example, a micrometer.
 本発明の好適な実施態様において、本発明におけるポリイミド系樹脂を含んでなるフィルムは、光学フィルムである。該光学フィルムは、耐屈曲性に加え、優れた光学特性を有する。本明細書において、光学特性とは、例えば、全光線透過率、YI、及びヘーズを含む光学的に評価し得る特性を示す。 In a preferred embodiment of the present invention, the film containing the polyimide resin in the present invention is an optical film. The optical film has excellent optical characteristics in addition to bending resistance. In the present specification, the optical property refers to a property that can be optically evaluated, including total light transmittance, YI, and haze, for example.
 光学フィルムの厚さ50μmにおける全光線透過率は、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは88%以上、とりわけ好ましくは90%以上である。全光線透過率が上記の下限以上であると透明性が良好となり、例えば表示装置の前面板に使用した場合に、高い視認性に寄与することができる。また全光線透過率の上限は通常100%以下である。なお、全光線透過率は、例えばJIS K 7361-1:1997に準拠してヘーズコンピュータを用いて測定できる。 The total light transmittance of the optical film having a thickness of 50 μm is preferably 80% or more, more preferably 85% or more, further preferably 88% or more, and particularly preferably 90% or more. When the total light transmittance is equal to or more than the above lower limit, the transparency becomes good, and when it is used for a front plate of a display device, it can contribute to high visibility. The upper limit of the total light transmittance is usually 100% or less. The total light transmittance can be measured by using a haze computer in accordance with JIS K 7361-1:1997, for example.
 光学フィルムのヘーズは、好ましくは3.0%以下、より好ましくは2.0%以下、さらに好ましくは1.0%以下、とりわけ好ましくは0.5%以下であり、通常0.01%以上である。光学フィルムのヘーズが上記の上限以下であると透明性が良好となり、例えば表示装置の前面板に使用した場合に、高い視認性に寄与することができる。なお、ヘーズは、JIS K 7136:2000に準拠してヘーズコンピュータを用いて測定できる。 The haze of the optical film is preferably 3.0% or less, more preferably 2.0% or less, further preferably 1.0% or less, particularly preferably 0.5% or less, and usually 0.01% or more. is there. When the haze of the optical film is less than or equal to the above upper limit, the transparency becomes good, and when used for a front plate of a display device, for example, it can contribute to high visibility. The haze can be measured using a haze computer according to JIS K 7136:2000.
 光学フィルムのYI値は、好ましくは8以下、より好ましくは5以下、さらに好ましくは3以下、とりわけ好ましくは2以下であり、通常-5以上、好ましくは-2以上である。光学フィルムのYI値が上記の上限以下であると透明性が良好となり、例えば表示装置の前面板に使用した場合に、高い視認性に寄与することができる。なお、YI値は、JIS K 7373:2006に準拠して、紫外可視近赤外分光光度計を用いて300~800nmの光に対する透過率測定を行い、3刺激値(X、Y、Z)を求め、YI=100×(1.2769X-1.0592Z)/Yの式に基づいて算出できる。 The YI value of the optical film is preferably 8 or less, more preferably 5 or less, further preferably 3 or less, particularly preferably 2 or less, and usually -5 or more, preferably -2 or more. When the YI value of the optical film is less than or equal to the above upper limit, the transparency is good, and when it is used for a front plate of a display device, it can contribute to high visibility. The YI value was measured in accordance with JIS K 7373:2006 using a UV-visible near-infrared spectrophotometer to measure the transmittance for light of 300 to 800 nm, and the tristimulus values (X, Y, Z) were calculated. It can be calculated and calculated based on the formula of YI=100×(1.2769X−1.0592Z)/Y.
 フィルムの用途は特に限定されず、種々の用途に使用してよい。該フィルムは、上記に述べたように単層であっても、積層体であってもよく、フィルムをそのまま使用してもよいし、さらに他のフィルムとの積層体として使用してもよい。なお、フィルムが積層体である場合、フィルムの片面又は両面に積層された全ての層を含めてフィルムと称する。 The use of the film is not particularly limited and may be used for various purposes. As described above, the film may be a single layer or a laminate, and the film may be used as it is, or may be used as a laminate with another film. In addition, when a film is a laminated body, all layers laminated on one side or both sides of the film are referred to as a film.
 フィルムが積層体である場合、フィルムの少なくとも一方の面に1以上の機能層を有することが好ましい。機能層としては、例えば紫外線吸収層、ハードコート層、プライマー層、ガスバリア層、粘着層、色相調整層、屈折率調整層などが挙げられる。機能層は単独又は二種以上組合せて使用できる。 When the film is a laminate, it is preferable to have one or more functional layers on at least one surface of the film. Examples of the functional layer include an ultraviolet absorbing layer, a hard coat layer, a primer layer, a gas barrier layer, an adhesive layer, a hue adjusting layer and a refractive index adjusting layer. The functional layers may be used alone or in combination of two or more.
 紫外線吸収層は、紫外線吸収の機能を有する層であり、例えば、紫外線硬化型の透明樹脂、電子線硬化型の透明樹脂、及び熱硬化型の透明樹脂から選ばれる主材と、この主材に分散した紫外線吸収剤とから構成される。 The ultraviolet absorbing layer is a layer having a function of absorbing ultraviolet rays, and for example, a main material selected from a transparent resin of an ultraviolet curable type, a transparent resin of an electron beam curable type, and a transparent resin of a thermosetting type, and the main material It is composed of dispersed ultraviolet absorbers.
 粘着層は、粘着性の機能を有する層であり、フィルムを他の部材に接着させる機能を有する。粘着層の形成材料としては、通常知られたものを用いることができる。例えば、熱硬化性樹脂組成物又は光硬化性樹脂組成物を用いることができる。この場合、事後的にエネルギーを供給することで熱硬化性樹脂組成物又は光硬化性樹脂組成物を高分子化し硬化させることができる。 The adhesive layer is a layer having an adhesive function and has a function of adhering the film to other members. A commonly known material can be used as the material for forming the adhesive layer. For example, a thermosetting resin composition or a photocurable resin composition can be used. In this case, the thermosetting resin composition or the photocurable resin composition can be polymerized and cured by supplying energy afterwards.
 粘着層は、感圧型接着剤(Pressure Sensitive Adhesive、PSA)と呼ばれる、押圧により対象物に貼着される層であってもよい。感圧型接着剤は、「常温で粘着性を有し、軽い圧力で被着材に接着する物質」(JIS K 6800)である粘着剤であってもよく、「特定成分を保護被膜(マイクロカプセル)に内容し、適当な手段(圧力、熱等)によって被膜を破壊するまでは安定性を保持できる接着剤」(JIS K 6800)であるカプセル型接着剤であってもよい。 The adhesive layer may be a layer called pressure sensitive adhesive (Pressure Sensitive Adhesive, PSA) that is attached to an object by pressing. The pressure-sensitive adhesive may be an adhesive that is "a substance that has adhesiveness at room temperature and that adheres to an adherend with a light pressure" (JIS K 6800), or "a protective film (microcapsule) for specific components. ), and a capsule type adhesive which is an adhesive (JIS K6800) capable of maintaining stability until the coating is broken by an appropriate means (pressure, heat, etc.).
 色相調整層は、色相調整の機能を有する層であり、フィルムを目的の色相に調整することができる層である。色相調整層は、例えば、樹脂及び着色剤を含有する層である。この着色剤としては、例えば、酸化チタン、酸化亜鉛、弁柄、チタニウムオキサイド系焼成顔料、群青、アルミン酸コバルト、及びカーボンブラック等の無機顔料;アゾ系化合物、キナクリドン系化合物、アンスラキノン系化合物、ペリレン系化合物、イソインドリノン系化合物、フタロシアニン系化合物、キノフタロン系化合物、スレン系化合物、及びジケトピロロピロール系化合物等の有機顔料;硫酸バリウム、及び炭酸カルシウム等の体質顔料;並びに塩基性染料、酸性染料、及び媒染染料等の染料を挙げることができる。 The hue adjustment layer is a layer that has a hue adjustment function, and is a layer that can adjust the film to a desired hue. The hue adjustment layer is, for example, a layer containing a resin and a colorant. Examples of the colorant include titanium oxide, zinc oxide, rouge, titanium oxide-based calcined pigment, ultramarine blue, cobalt aluminate, and inorganic pigments such as carbon black; azo-based compounds, quinacridone-based compounds, anthraquinone-based compounds, Organic pigments such as perylene compounds, isoindolinone compounds, phthalocyanine compounds, quinophthalone compounds, slene compounds, and diketopyrrolopyrrole compounds; extender pigments such as barium sulfate and calcium carbonate; and basic dyes, Examples include acid dyes and mordant dyes.
 屈折率調整層は、屈折率調整の機能を有する層であり、例えば単層のフィルムとは異なる屈折率を有し、フィルムに所定の屈折率を付与することができる層である。屈折率調整層は、例えば、適宜選択された樹脂、及び場合によりさらに顔料を含有する樹脂層であってもよいし、金属の薄膜であってもよい。屈折率を調整する顔料としては、例えば、酸化珪素、酸化アルミニウム、酸化アンチモン、酸化錫、酸化チタン、酸化ジルコニウム及び酸化タンタルが挙げられる。該顔料の平均一次粒子径は、0.1μm以下であってもよい。顔料の平均一次粒子径を0.1μm以下とすることにより、屈折率調整層を透過する光の乱反射を防止し、透明度の低下を防止することができる。屈折率調整層に用いられる金属としては、例えば、酸化チタン、酸化タンタル、酸化ジルコニウム、酸化亜鉛、酸化錫、酸化ケイ素、酸化インジウム、酸窒化チタン、窒化チタン、酸窒化ケイ素、窒化ケイ素等の金属酸化物又は金属窒化物が挙げられる。 The refractive index adjusting layer is a layer having a refractive index adjusting function, and has a refractive index different from that of, for example, a single-layer film, and is a layer capable of imparting a predetermined refractive index to the film. The refractive index adjusting layer may be, for example, a resin layer containing an appropriately selected resin and optionally a pigment, or a metal thin film. Examples of the pigment for adjusting the refractive index include silicon oxide, aluminum oxide, antimony oxide, tin oxide, titanium oxide, zirconium oxide and tantalum oxide. The average primary particle diameter of the pigment may be 0.1 μm or less. By setting the average primary particle diameter of the pigment to 0.1 μm or less, diffuse reflection of light passing through the refractive index adjusting layer can be prevented, and a decrease in transparency can be prevented. Examples of the metal used for the refractive index adjusting layer include metals such as titanium oxide, tantalum oxide, zirconium oxide, zinc oxide, tin oxide, silicon oxide, indium oxide, titanium oxynitride, titanium nitride, silicon oxynitride, and silicon nitride. An oxide or a metal nitride is mentioned.
 フィルムは、保護層(保護フィルムともいう)をさらに含んでいてもよい。保護層は、フィルムの片面又は両面に積層されていてもよい。フィルムの片面に機能層を有する場合には、保護層は、フィルム側の表面又は機能層側の表面に積層されていてもよく、フィルム側と機能層側の両方に積層されていてもよい。フィルムの両面に機能層を有する場合には、保護層は、片方の機能層側の表面に積層されていてもよく、両方の機能層側の表面に積層されていてもよい。保護層は、フィルム又は機能層の表面を一時的に保護するための層であり、フィルム又は機能層の表面を保護できる剥離可能な層である限り特に限定されない。保護層は、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂フィルム;ポリエチレン、ポリプロピレンフィルムなどのポリオレフィン系樹脂フィルム、アクリル系樹脂フィルム等が挙げられ、ポリオレフィン系樹脂フィルム、ポリエチレンテレフタレート系樹脂フィルム及びアクリル系樹脂フィルムからなる群から選択されることが好ましい。フィルムが保護層を2つ有する場合、各保護層は同一であってもよいし、異なっていてもよい。 The film may further include a protective layer (also referred to as a protective film). The protective layer may be laminated on one side or both sides of the film. When the functional layer is provided on one side of the film, the protective layer may be laminated on the surface on the film side or the surface on the functional layer side, or may be laminated on both the film side and the functional layer side. When the film has functional layers on both sides, the protective layer may be laminated on one of the functional layer-side surfaces or on both functional layer-side surfaces. The protective layer is a layer for temporarily protecting the surface of the film or the functional layer, and is not particularly limited as long as it is a peelable layer capable of protecting the surface of the film or the functional layer. Examples of the protective layer include polyester resin films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefin resin films such as polyethylene and polypropylene films; acrylic resin films; polyolefin resin films, polyethylene terephthalate. It is preferably selected from the group consisting of an acrylic resin film and an acrylic resin film. When the film has two protective layers, each protective layer may be the same or different.
 保護層の厚さは、特に限定されるものではないが、通常、10~100μm、好ましくは10~80μm、より好ましくは10~50μmである。光学フィルムが保護層を2つ有する場合、各保護層の厚さは同一であってもよいし、異なっていてもよい。 The thickness of the protective layer is not particularly limited, but is usually 10 to 100 μm, preferably 10 to 80 μm, and more preferably 10 to 50 μm. When the optical film has two protective layers, the thickness of each protective layer may be the same or different.
 本発明により得られるポリイミド系樹脂を含んでなるフィルムは、優れた耐屈曲性や光学特性を有するため、表示装置、中でもフレキシブル表示装置の前面版(以下、ウインドウフィルムと称することがある)として好適に使用できる。該前面板は、フレキシブル表示装置の表示素子を保護する機能を有する。表示装置としては、テレビ、スマートフォン、携帯電話、カーナビゲーション、タブレットPC、携帯ゲーム機、電子ペーパー、インジケーター、掲示板、時計、及びスマートウォッチ等のウェアラブルデバイス等が挙げられる。フレキシブルディスプレイとしては、フレキシブル特性を有する表示装置、例えばテレビ、スマートフォン、携帯電話、スマートウォッチ等が挙げられる。 The film containing the polyimide resin obtained by the present invention has excellent bending resistance and optical characteristics, and is therefore suitable as a front plate of a display device, particularly a flexible display device (hereinafter, may be referred to as a window film). Can be used for The front plate has a function of protecting the display element of the flexible display device. Examples of the display device include TVs, smartphones, mobile phones, car navigations, tablet PCs, portable game machines, electronic papers, indicators, bulletin boards, watches, and wearable devices such as smart watches. Examples of the flexible display include display devices having flexible characteristics, such as televisions, smartphones, mobile phones, and smart watches.
[フレキシブル表示装置]
 フレキシブル表示装置は、フレキシブル表示装置用積層体と、有機EL表示パネルとからなり、有機EL表示パネルに対して視認側にフレキシブル表示装置用積層体が配置され、折り曲げ可能に構成されている。フレキシブル表示装置用積層体としては、前記ウインドウフィルム、偏光板、タッチセンサを含有していてもよく、それらの積層順任意であるが、視認側からウインドウフィルム、偏光板、タッチセンサ又はウインドウフィルム、タッチセンサ、偏光板の順に積層されていることが好ましい。タッチセンサの視認側に偏光板が存在すると、タッチセンサのパターンが視認されにくくなり表示画像の視認性が良くなるので好ましい。それぞれの部材は接着剤、粘着剤等を用いて積層することができる。また、前記ウインドウフィルム、偏光板、タッチセンサのいずれかの層の少なくとも一面に形成された遮光パターンを具備することができる。
[Flexible display device]
The flexible display device includes a flexible display device laminate and an organic EL display panel. The flexible display device laminate is arranged on the viewing side of the organic EL display panel and is configured to be bendable. The laminate for a flexible display device may contain the window film, the polarizing plate, and the touch sensor, and the lamination order thereof is arbitrary, but from the viewing side, the window film, the polarizing plate, the touch sensor or the window film, It is preferable that the touch sensor and the polarizing plate are laminated in this order. The presence of the polarizing plate on the viewing side of the touch sensor is preferable because the pattern of the touch sensor is less visible and the visibility of the display image is improved. Each member can be laminated using an adhesive, a pressure-sensitive adhesive or the like. Further, a light-shielding pattern formed on at least one surface of any one of the window film, the polarizing plate, and the touch sensor may be provided.
[ウインドウフィルム]
 ウインドウフィルムは、フレキシブル表示装置の視認側に配置され、その他の構成要素を外部からの衝撃又は温湿度等の環境変化から保護する役割を担っている。従来このような保護層としてはガラスが使用されてきたが、フレキシブル表示装置におけるウインドウフィルムはガラスのようにリジッドで堅いものではなく、フレキシブルな特性を有する。前記ウインドウフィルムは、少なくとも一面にハードコート層を含んでいてもよい。
[Window film]
The window film is arranged on the viewing side of the flexible display device and plays a role of protecting the other constituent elements from external impacts or environmental changes such as temperature and humidity. Conventionally, glass has been used as such a protective layer, but the window film in the flexible display device is not rigid and rigid like glass, but has flexible characteristics. The window film may include a hard coat layer on at least one surface.
(ハードコート)
 前記ウインドウフィルムには少なくとも一面にハードコート層が設けられていてもよい。ハードコート層の厚さは特に限定されず、例えば、2~100μmであってもよい。前記ハードコート層の厚さが前記の範囲にあると、十分な耐擦傷性を確保することができ、また耐屈曲性が低下しにくく、硬化収縮によるカール発生の問題が発生し難い傾向がある。
 前記ハードコート層は、活性エネルギー線照射、或いは熱エネルギー付与により架橋構造を形成し得る反応性材料を含むハードコート組成物を硬化させて形成することができ、活性エネルギー線照射によるものが好ましい。活性エネルギー線は、活性種を発生する化合物を分解して活性種を発生させることができるエネルギー線と定義され、可視光、紫外線、赤外線、X線、α線、β線、γ線及び電子線などが挙げられ、好ましくは紫外線が挙げられる。前記ハードコート組成物は、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する。
(Hard coat)
A hard coat layer may be provided on at least one surface of the window film. The thickness of the hard coat layer is not particularly limited and may be, for example, 2 to 100 μm. When the thickness of the hard coat layer is within the above range, sufficient scratch resistance can be ensured, bending resistance is unlikely to decrease, and a problem of curling due to curing shrinkage tends not to occur. ..
The hard coat layer can be formed by curing a hard coat composition containing a reactive material capable of forming a crosslinked structure by irradiation with active energy rays or application of heat energy, and irradiation with active energy rays is preferable. Active energy rays are defined as energy rays capable of decomposing compounds that generate active species to generate active species, such as visible light, ultraviolet rays, infrared rays, X-rays, α rays, β rays, γ rays and electron rays. And the like, and preferably ultraviolet rays. The hard coat composition contains at least one polymer of a radically polymerizable compound and a cationically polymerizable compound.
 前記ラジカル重合性化合物は、ラジカル重合性基を有する化合物である。前記ラジカル重合性化合物が有するラジカル重合性基としては、ラジカル重合反応を生じ得る官能基であればよく、炭素‐炭素不飽和二重結合を含む基などが挙げられ、具体的には、ビニル基、(メタ)アクリロイル基などが挙げられる。なお、前記ラジカル重合性化合物が2個以上のラジカル重合性基を有する場合、これらのラジカル重合性基はそれぞれ同一であってもよいし、異なっていてもよい。前記ラジカル重合性化合物が1分子中に有するラジカル重合性基の数は、ハードコート層の硬度を向上する点から、好ましくは2以上である。前記ラジカル重合性化合物としては、反応性の高さの点から、好ましくは(メタ)アクリロイル基を有する化合物が挙げられ、具体的には1分子中に2~6個の(メタ)アクリロイル基を有する多官能アクリレートモノマーと称される化合物やエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートと称される分子内に数個の(メタ)アクリロイル基を有する分子量が数百から数千のオリゴマーが挙げられ、好ましくはエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート及びポリエステル(メタ)アクリレートから選択された1種以上が挙げられる。 The radical polymerizable compound is a compound having a radical polymerizable group. The radical polymerizable group contained in the radical polymerizable compound may be any functional group capable of causing a radical polymerization reaction, and examples thereof include a group containing a carbon-carbon unsaturated double bond, and specifically, a vinyl group. And (meth)acryloyl group. When the radical-polymerizable compound has two or more radical-polymerizable groups, these radical-polymerizable groups may be the same or different. The number of radically polymerizable groups contained in one molecule of the radically polymerizable compound is preferably 2 or more from the viewpoint of improving the hardness of the hard coat layer. From the viewpoint of high reactivity, the radically polymerizable compound is preferably a compound having a (meth)acryloyl group. Specifically, 2 to 6 (meth)acryloyl groups are included in one molecule. A compound called a polyfunctional acrylate monomer, an epoxy (meth)acrylate, a urethane (meth)acrylate, or a polyester (meth)acrylate, which has several (meth)acryloyl groups in the molecule, has a molecular weight of from several hundred. Thousands of oligomers may be mentioned, preferably one or more selected from epoxy (meth)acrylate, urethane (meth)acrylate and polyester (meth)acrylate.
 前記カチオン重合性化合物は、エポキシ基、オキセタニル基、ビニルエーテル基等のカチオン重合性基を有する化合物である。前記カチオン重合性化合物が1分子中に有するカチオン重合性基の数は、ハードコート層の硬度を向上する点から、好ましくは2以上であり、より好ましくは3以上である。
 また、前記カチオン重合性化合物としては、中でも、カチオン重合性基としてエポキシ基及びオキセタニル基の少なくとも1種を有する化合物が好ましい。エポキシ基、オキセタニル基等の環状エーテル基は、重合反応に伴う収縮が小さいという点から好ましい。また、環状エーテル基のうちエポキシ基を有する化合物は多様な構造の化合物が入手し易く、得られたハードコート層の耐久性に悪影響を与えず、ラジカル重合性化合物との相溶性もコントロールし易いという利点がある。また、環状エーテル基のうちオキセタニル基は、エポキシ基と比較して重合度が高くなりやすく、得られたハードコート層のカチオン重合性化合物から得られるネットワーク形成速度を早め、ラジカル重合性化合物と混在する領域でも未反応のモノマーを膜中に残さずに独立したネットワークを形成する等の利点がある。
 エポキシ基を有するカチオン重合性化合物としては、例えば、脂環族環を有する多価アルコールのポリグリシジルエーテル又は、シクロヘキセン環、シクロペンテン環含有化合物を、過酸化水素、過酸等の適当な酸化剤でエポキシ化する事によって得られる脂環族エポキシ樹脂;脂肪族多価アルコール、又はそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジル(メタ)アクリレートのホモポリマー、コポリマーなどの脂肪族エポキシ樹脂;ビスフェノールA、ビスフェノールFや水添ビスフェノールA等のビスフェノール類、又はそれらのアルキレンオキサイド付加体、カプロラクトン付加体等の誘導体と、エピクロルヒドリンとの反応によって製造されるグリシジルエーテル、及びノボラックエポキシ樹脂等でありビスフェノール類から誘導されるグリシジルエーテル型エポキシ樹脂等が挙げられる。
The cationically polymerizable compound is a compound having a cationically polymerizable group such as an epoxy group, an oxetanyl group and a vinyl ether group. The number of cationically polymerizable groups contained in one molecule of the cationically polymerizable compound is preferably 2 or more, and more preferably 3 or more, from the viewpoint of improving the hardness of the hard coat layer.
In addition, as the cationically polymerizable compound, among others, a compound having at least one of an epoxy group and an oxetanyl group as a cationically polymerizable group is preferable. A cyclic ether group such as an epoxy group or an oxetanyl group is preferable from the viewpoint that the shrinkage accompanying the polymerization reaction is small. In addition, compounds having an epoxy group among cyclic ether groups are easily available as compounds having various structures, do not adversely affect the durability of the obtained hard coat layer, and easily control the compatibility with the radically polymerizable compound. There is an advantage that. In addition, the oxetanyl group of the cyclic ether group tends to have a higher degree of polymerization than the epoxy group, accelerates the network formation rate obtained from the cationically polymerizable compound of the obtained hard coat layer, and is mixed with the radically polymerizable compound. Even in the area to be filled, there is an advantage that an independent network is formed without leaving unreacted monomer in the film.
As the cationically polymerizable compound having an epoxy group, for example, a polyglycidyl ether of a polyhydric alcohol having an alicyclic ring or a cyclohexene ring, a cyclopentene ring-containing compound, hydrogen peroxide, with a suitable oxidizing agent such as peracid Alicyclic epoxy resin obtained by epoxidation; polyglycidyl ether of aliphatic polyhydric alcohol or alkylene oxide adduct thereof, polyglycidyl ester of aliphatic long-chain polybasic acid, homopolymer of glycidyl (meth)acrylate, Aliphatic epoxy resins such as copolymers; glycidyl ethers produced by the reaction of bisphenol A, bisphenol F, bisphenols such as hydrogenated bisphenol A, or derivatives thereof such as alkylene oxide adducts and caprolactone adducts with epichlorohydrin, And glycidyl ether type epoxy resins derived from bisphenols, such as novolac epoxy resins.
 前記ハードコート組成物は重合開始剤をさらに含むことができる。重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等が挙げられ、適宜選択して用いられる。これらの重合開始剤は、活性エネルギー線照射及び加熱の少なくとも一種により分解されて、ラジカル又はカチオンを発生してラジカル重合とカチオン重合を進行させるものである。
 ラジカル重合開始剤は、活性エネルギー線照射及び加熱の少なくともいずれかによりラジカル重合を開始させる物質を放出することが可能であればよい。例えば、熱ラジカル重合開始剤としては、過酸化水素、過安息香酸等の有機過酸化物、アゾビスブチロニトリル等のアゾ化合物等があげられる。
 活性エネルギー線ラジカル重合開始剤としては、分子の分解でラジカルが生成されるType1型ラジカル重合開始剤と、3級アミンと共存して水素引き抜き型反応でラジカルを生成するType2型ラジカル重合開始剤があり、それらは単独で又は併用して使用される。
 カチオン重合開始剤は、活性エネルギー線照射及び加熱の少なくともいずれかによりカチオン重合を開始させる物質を放出することが可能であればよい。カチオン重合開始剤としては、芳香族ヨードニウム塩、芳香族スルホニウム塩、シクロペンタジエニル鉄(II)錯体等が使用できる。これらは、構造の違いによって活性エネルギー線照射又は加熱のいずれか又はいずれでもカチオン重合を開始することができる。
The hard coat composition may further include a polymerization initiator. Examples of the polymerization initiator include radical polymerization initiators, cationic polymerization initiators, radical and cationic polymerization initiators, etc., which are appropriately selected and used. These polymerization initiators are decomposed by at least one of irradiation with active energy rays and heating to generate radicals or cations to promote radical polymerization and cation polymerization.
The radical polymerization initiator may be any one that can release a substance that initiates radical polymerization by at least one of irradiation with active energy rays and heating. Examples of thermal radical polymerization initiators include hydrogen peroxide, organic peroxides such as perbenzoic acid, and azo compounds such as azobisbutyronitrile.
As the active energy ray radical polymerization initiator, a Type 1 type radical polymerization initiator that produces a radical by decomposition of a molecule and a Type 2 type radical polymerization initiator that produces a radical by a hydrogen abstraction type reaction coexisting with a tertiary amine Yes, they are used alone or in combination.
Any cationic polymerization initiator may be used as long as it can release a substance that initiates cationic polymerization by irradiation with active energy rays and/or heating. As the cationic polymerization initiator, an aromatic iodonium salt, an aromatic sulfonium salt, a cyclopentadienyl iron(II) complex or the like can be used. These can initiate cationic polymerization either by irradiation with active energy rays or by heating, or both, depending on the difference in structure.
 前記重合開始剤は、前記ハードコート組成物全体100質量%に対して、好ましくは0.1~10質量%を含むことができる。前記重合開始剤の含量が前記の範囲にあると、硬化を十分に進行させることができ、最終的に得られる塗膜の機械的物性や密着力を良好な範囲とすることができ、また、硬化収縮による接着力不良や割れ現象及びカール現象が発生し難くなる傾向がある。 The polymerization initiator may preferably be contained in an amount of 0.1 to 10% by mass based on 100% by mass of the entire hard coat composition. When the content of the polymerization initiator is in the above range, curing can be sufficiently advanced, and the mechanical properties and adhesion of the finally obtained coating film can be set in a good range, and Poor adhesion due to curing shrinkage, cracking and curling tend to occur less easily.
 前記ハードコート組成物はさらに溶剤、添加剤からなる群から選択される一つ以上をさらに含むことができる。
 前記溶剤は、前記重合性化合物及び重合開始剤を溶解又は分散させることができるもので、本技術分野のハードコート組成物の溶剤として知られている溶剤であれば、本発明の効果を阻害しない範囲で、使用することができる。
 前記添加剤は、無機粒子、レベリング剤、安定剤、界面活性剤、帯電防止剤、潤滑剤、防汚剤などをさらに含むことができる。
The hard coat composition may further include one or more selected from the group consisting of a solvent and an additive.
The solvent is a solvent that can dissolve or disperse the polymerizable compound and the polymerization initiator, if the solvent is known as a solvent of the hard coat composition of the present technical field, does not impair the effects of the present invention Can be used in a range.
The additive may further include inorganic particles, a leveling agent, a stabilizer, a surfactant, an antistatic agent, a lubricant, an antifouling agent, and the like.
[偏光板]
 本発明の光学フィルムを備えるフレキシブル表示装置は、偏光板、好ましくは円偏光板をさらに備えていてもよい。偏光板は、直線偏光板にλ/4位相差板を積層することにより右円偏光成分又は左円偏光成分のみを透過させる機能を有する機能層である。たとえば外光を右円偏光に変換して有機ELパネルで反射されて左円偏光となった外光を遮断し、有機ELの発光成分のみを透過させることで反射光の影響を抑制して画像を見やすくするために用いられる。円偏光機能を達成するためには、直線偏光板の吸収軸とλ/4位相差板の遅相軸は理論上45°である必要があるが、実用的には45±10°である。直線偏光板とλ/4位相差板とは必ずしも隣接して積層される必要はなく、吸収軸と遅相軸の関係が前述の範囲を満足していればよい。全波長において完全な円偏光を達成することが好ましいが実用上は必ずしもその必要はないので本発明における円偏光板は楕円偏光板をも包含する。直線偏光板の視認側にさらにλ/4位相差フィルムを積層して、出射光を円偏光とすることで偏光サングラスをかけた状態での視認性を向上させることも好ましい。
[Polarizer]
The flexible display device including the optical film of the present invention may further include a polarizing plate, preferably a circularly polarizing plate. The polarizing plate is a functional layer having a function of transmitting only the right circularly polarized light component or the left circularly polarized light component by laminating a λ/4 retardation plate on a linear polarizing plate. For example, by converting the external light into right circularly polarized light and blocking the external light reflected by the organic EL panel to become left circularly polarized light, and transmitting only the luminescent component of the organic EL, the influence of reflected light is suppressed and the image is displayed. It is used to make it easier to see. In order to achieve the circular polarization function, the absorption axis of the linear polarizing plate and the slow axis of the λ/4 retardation plate are theoretically required to be 45°, but they are practically 45±10°. The linearly polarizing plate and the λ/4 retardation plate are not necessarily required to be laminated adjacent to each other as long as the relationship between the absorption axis and the slow axis satisfies the above range. It is preferable to achieve perfect circularly polarized light at all wavelengths, but this is not necessary in practice, so the circularly polarizing plate in the present invention also includes an elliptically polarizing plate. It is also preferable to further laminate a λ/4 retardation film on the visible side of the linearly polarizing plate to make the emitted light circularly polarized light to improve the visibility in the state of wearing polarized sunglasses.
 直線偏光板は、透過軸方向に振動している光は通すが、それとは垂直な振動成分の偏光を遮断する機能を有する機能層である。前記直線偏光板は、直線偏光子単独又は直線偏光子及びその少なくとも一面に貼り付けられた保護フィルムを備えた構成であってもよい。前記直線偏光板の厚さは、200μm以下であってもよく、好ましくは0.5~100μmである。厚さが前記の範囲にあると柔軟性が低下し難い傾向にある。
 前記直線偏光子は、ポリビニルアルコール(PVA)系フィルムを染色、延伸することで製造されるフィルム型偏光子であってもよい。延伸によって配向したPVA系フィルムに、ヨウ素等の二色性色素が吸着、又はPVAに吸着した状態で延伸されることで二色性色素が配向し、偏光性能を発揮する。前記フィルム型偏光子の製造においては、他に膨潤、ホウ酸による架橋、水溶液による洗浄、乾燥等の工程を有していてもよい。延伸や染色工程はPVA系フィルム単独で行ってもよいし、ポリエチレンテレフタレートのような他のフィルムと積層された状態で行うこともできる。用いられるPVA系フィルムの厚さは好ましくは10~100μmであり、延伸倍率は好ましくは2~10倍である。
 さらに前記偏光子の他の一例としては、液晶偏光組成物を塗布して形成する液晶塗布型偏光子であってもよい。前記液晶偏光組成物は、液晶性化合物及び二色性色素化合物を含むことができる。前記液晶性化合物は液晶状態を示す性質を有していればよく、スメクチック相等の高次の配向状態を有していると高い偏光性能を発揮することができるため好ましい。また、液晶性化合物は重合性官能基を有していることも好ましい。
The linearly polarizing plate is a functional layer having a function of transmitting light oscillating in the transmission axis direction but blocking polarized light of an oscillating component perpendicular thereto. The linear polarizing plate may be configured to include a linear polarizer alone or a linear polarizer and a protective film attached to at least one surface thereof. The thickness of the linear polarizing plate may be 200 μm or less, preferably 0.5 to 100 μm. When the thickness is in the above range, the flexibility tends to be difficult to decrease.
The linear polarizer may be a film-type polarizer manufactured by dyeing and stretching a polyvinyl alcohol (PVA) film. A dichroic dye such as iodine is adsorbed on a PVA-based film oriented by stretching or is stretched in a state of being adsorbed on PVA, whereby the dichroic dye is oriented and exhibits polarization performance. The production of the film-type polarizer may further include steps such as swelling, crosslinking with boric acid, washing with an aqueous solution, and drying. The stretching and dyeing steps may be performed on the PVA film alone, or may be performed in a state of being laminated with another film such as polyethylene terephthalate. The thickness of the PVA-based film used is preferably 10 to 100 μm, and the stretching ratio is preferably 2 to 10 times.
Further, as another example of the polarizer, a liquid crystal coating type polarizer formed by coating a liquid crystal polarizing composition may be used. The liquid crystal polarizing composition may include a liquid crystal compound and a dichroic dye compound. The liquid crystalline compound is only required to have a property of exhibiting a liquid crystal state, and it is preferable to have a higher order alignment state such as a smectic phase because high polarization performance can be exhibited. It is also preferable that the liquid crystal compound has a polymerizable functional group.
 前記二色性色素は、前記液晶化合物とともに配向して二色性を示す色素であって、二色性色素自身が液晶性を有していてもよいし、重合性官能基を有していることもできる。液晶偏光組成物の中のいずれかの化合物は重合性官能基を有している。
 前記液晶偏光組成物はさらに開始剤、溶剤、分散剤、レベリング剤、安定剤、界面活性剤、架橋剤、シランカップリング剤などを含むことができる。
 前記液晶偏光層は、配向膜上に液晶偏光組成物を塗布して液晶偏光層を形成することにより製造される。
 液晶偏光層は、フィルム型偏光子に比べて厚さを薄く形成することができる。前記液晶偏光層の厚さは好ましくは0.5~10μm、より好ましくは1~5μmであってもよい。
 前記配向膜は、例えば基材上に配向膜形成組成物を塗布し、ラビング、偏光照射等により配向性を付与することで製造することができる。前記配向膜形成組成物は、配向剤の他に溶剤、架橋剤、開始剤、分散剤、レベリング剤、シランカップリング剤等を含んでいてもよい。前記配向剤としては、例えば、ポリビニルアルコール類、ポリアクリレート類、ポリアミック酸類、ポリイミド類を使用できる。光配向を適用する場合にはシンナメート基を含む配向剤を使用することが好ましい。前記配向剤として使用される高分子の重量平均分子量が10,000~1,000,000程度であってもよい。前記配向膜の厚さは、配向規制力の観点から、好ましくは5~10,000nm、より好ましは10~500nmである。前記液晶偏光層は基材から剥離して転写して積層することもできるし、前記基材をそのまま積層することもできる。前記基材が、保護フィルムや位相差板、ウインドウフィルムとしての役割を担うことも好ましい。
The dichroic dye is a dye that is aligned with the liquid crystal compound and exhibits dichroism, and the dichroic dye itself may have liquid crystallinity or has a polymerizable functional group. You can also Any of the compounds in the liquid crystal polarizing composition has a polymerizable functional group.
The liquid crystal polarizing composition may further include an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a cross-linking agent, a silane coupling agent and the like.
The liquid crystal polarizing layer is manufactured by applying a liquid crystal polarizing composition on the alignment film to form a liquid crystal polarizing layer.
The liquid crystal polarizing layer can be formed thinner than a film type polarizer. The thickness of the liquid crystal polarizing layer may be preferably 0.5 to 10 μm, more preferably 1 to 5 μm.
The alignment film can be produced, for example, by applying the composition for forming an alignment film on a substrate and imparting the alignment property by rubbing, irradiation of polarized light, or the like. The composition for forming an alignment film may contain a solvent, a cross-linking agent, an initiator, a dispersant, a leveling agent, a silane coupling agent and the like in addition to the alignment agent. As the alignment agent, for example, polyvinyl alcohols, polyacrylates, polyamic acids, and polyimides can be used. When photo-alignment is applied, it is preferable to use an aligning agent containing a cinnamate group. The weight average molecular weight of the polymer used as the aligning agent may be about 10,000 to 1,000,000. The thickness of the alignment film is preferably 5 to 10,000 nm, more preferably 10 to 500 nm, from the viewpoint of the alignment regulating force. The liquid crystal polarizing layer can be peeled from the base material and transferred to be laminated, or the base material can be laminated as it is. It is also preferable that the base material plays a role as a protective film, a retardation plate, or a window film.
 前記保護フィルムとしては、透明な高分子フィルムであればよく、具体的には、用いられる高分子フィルムとしては、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ノルボルネン又はシクロオレフィンを含む単量体の単位を有するシクロオレフィン系誘導体等のポリオレフィン類、ジアセチルセルロース、トリアセチルセルロース、プロピオニルセルロース等の(変性)セルロース類、メチルメタクリレート(共)重合体等のアクリル類、スチレン(共)重合体等のポリスチレン類、アクリロニトリル・ブタジエン・スチレン共重合体類、アクリロニトリル・スチレン共重合体類、エチレン‐酢酸ビニル共重合体類、ポリ塩化ビニル類、ポリ塩化ビニリデン類、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリアリレート等のポリエステル類、ナイロン等のポリアミド類、ポリイミド類、ポリアミドイミド類、ポリエーテルイミド類、ポリエーテルスルホン類、ポリスルホン類、ポリビニルアルコール類、ポリビニルアセタール類、ポリウレタン類、エポキシ樹脂類などのフィルムが挙げられ、透明性及び耐熱性に優れる点で、好ましくはポリアミド、ポリアミドイミド、ポリイミド、ポリエステル、オレフィン、アクリル又はセルロース系のフィルムが挙げられる。これらの高分子はそれぞれ単独又は2種以上混合して使用することができる。これらのフィルムは未延伸のまま、あるいは1軸又は2軸延伸したフィルムとして使用される。セルロース系フィルム、オレフィン系フィルム、アクリルフィルム、ポリエステル系フィルムが好ましい。エポキシ樹脂等のカチオン硬化組成物やアクリレート等のラジカル硬化組成物を塗布して硬化して得られるコーティング型の保護フィルムであってもよい。必要により可塑剤、紫外線吸収剤、赤外線吸収剤、顔料や染料のような着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、帯電防止剤、酸化防止剤、滑剤、溶剤等を含んでいてもよい。前記保護フィルムの厚さは、200μm以下であってもよく、好ましくは1~100μmである。前記保護フィルムの厚さが前記の範囲にあると、保護フィルムの柔軟性が低下し難い。 The protective film may be a transparent polymer film, and specifically, the polymer film used has a monomer unit containing polyethylene, polypropylene, polymethylpentene, norbornene or cycloolefin. Polyolefins such as cycloolefin derivatives, (modified)celluloses such as diacetylcellulose, triacetylcellulose, propionylcellulose, acrylics such as methylmethacrylate (co)polymers, polystyrenes such as styrene (co)polymers, acrylonitrile -Butadiene-styrene copolymers, acrylonitrile-styrene copolymers, ethylene-vinyl acetate copolymers, polyvinyl chlorides, polyvinylidene chlorides, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, poly Films such as polyesters such as arylate, polyamides such as nylon, polyimides, polyamideimides, polyetherimides, polyethersulfones, polysulfones, polyvinyl alcohols, polyvinyl acetals, polyurethanes, epoxy resins, etc. Of these, polyamide, polyamideimide, polyimide, polyester, olefin, acrylic, or cellulose-based films are preferable in terms of excellent transparency and heat resistance. These polymers can be used alone or in admixture of two or more. These films are used as unstretched films or as uniaxially or biaxially stretched films. Cellulose type films, olefin type films, acrylic films and polyester type films are preferable. It may be a coating type protective film obtained by applying and curing a cationically curable composition such as an epoxy resin or a radical curable composition such as an acrylate. If necessary, plasticizers, ultraviolet absorbers, infrared absorbers, colorants such as pigments and dyes, optical brighteners, dispersants, heat stabilizers, light stabilizers, antistatic agents, antioxidants, lubricants, solvents, etc. May be included. The protective film may have a thickness of 200 μm or less, preferably 1 to 100 μm. When the thickness of the protective film is within the above range, the flexibility of the protective film does not easily deteriorate.
 前記λ/4位相差板は、入射光の進行方向に直行する方向(フィルムの面内方向)にλ/4の位相差を与えるフィルムである。前記λ/4位相差板は、セルロース系フィルム、オレフィン系フィルム、ポリカーボネート系フィルム等の高分子フィルムを延伸することで製造される延伸型位相差板であってもよい。必要により位相差調整剤、可塑剤、紫外線吸収剤、赤外線吸収剤、顔料や染料のような着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、帯電防止剤、酸化防止剤、滑剤、溶剤等を含んでいてもよい。前記延伸型位相差板の厚さは、200μm以下であってもよく、好ましくは1~100μmである。厚さが前記の範囲にあるとフィルムの柔軟性が低下し難い傾向にある。
 さらに前記λ/4位相差板の他の一例としては、液晶組成物を塗布して形成する液晶塗布型位相差板であってもよい。前記液晶組成物は、ネマチック、コレステリック、スメクチック等の液晶状態を示す性質を有する液晶性化合物を含む。液晶組成物の中の液晶性化合物を含むいずれかの化合物は重合性官能基を有している。前記液晶塗布型位相差板はさらに開始剤、溶剤、分散剤、レベリング剤、安定剤、界面活性剤、架橋剤、シランカップリング剤などを含むことができる。前記液晶塗布型位相差板は、前記液晶偏光層での記載と同様に配向膜上に液晶組成物を塗布硬化して液晶位相差層を形成することで製造することができる。液晶塗布型位相差板は、延伸型位相差板に比べて厚さを薄く形成することができる。前記液晶偏光層の厚さは、通常0.5~10μm、好ましくは1~5μmであってもよい。前記液晶塗布型位相差板は基材から剥離して転写して積層することもできるし、前記基材をそのまま積層することもできる。前記基材が、保護フィルムや位相差板、ウインドウフィルムとしての役割を担うことも好ましい。
The λ/4 retardation plate is a film that gives a λ/4 retardation in a direction orthogonal to the traveling direction of incident light (in-plane direction of the film). The λ/4 retardation plate may be a stretchable retardation plate produced by stretching a polymer film such as a cellulose-based film, an olefin-based film, or a polycarbonate-based film. If necessary, retarder, plasticizer, ultraviolet absorber, infrared absorber, colorant such as pigment or dye, fluorescent brightening agent, dispersant, heat stabilizer, light stabilizer, antistatic agent, antioxidant. , A lubricant, a solvent, etc. may be contained. The thickness of the stretchable retardation plate may be 200 μm or less, preferably 1 to 100 μm. When the thickness is in the above range, the flexibility of the film tends to be less likely to decrease.
Further, another example of the λ/4 retardation plate may be a liquid crystal coating type retardation plate formed by applying a liquid crystal composition. The liquid crystal composition contains a liquid crystal compound having a property of exhibiting a liquid crystal state such as nematic, cholesteric, or smectic. Any compound in the liquid crystal composition, including the liquid crystal compound, has a polymerizable functional group. The liquid crystal coated retardation plate may further contain an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a cross-linking agent, a silane coupling agent and the like. The liquid crystal coating type retardation plate can be manufactured by coating and curing the liquid crystal composition on the alignment film to form the liquid crystal retardation layer as in the case of the liquid crystal polarizing layer. The liquid crystal coating type retardation plate can be formed thinner than the stretched type retardation plate. The thickness of the liquid crystal polarizing layer may be usually 0.5 to 10 μm, preferably 1 to 5 μm. The liquid crystal coating type retardation plate can be peeled from the base material and transferred to be laminated, or the base material can be laminated as it is. It is also preferable that the base material plays a role as a protective film, a retardation plate, or a window film.
 一般的には、短波長ほど複屈折が大きく長波長になるほど小さな複屈折を示す材料が多い。この場合には全可視光領域でλ/4の位相差を達成することはできないので、視感度の高い560nm付近に対してλ/4となるような面内位相差100~180nm、好ましくは130~150nmとなるように設計されることが多い。通常とは逆の複屈折率波長分散特性を有する材料を用いた逆分散λ/4位相差板を用いることは視認性をよくすることができるので好ましい。このような材料としては延伸型位相差板の場合は特開2007-232873号公報等、液晶塗布型位相差板の場合には特開2010-30979号公報記載されているものを用いることも好ましい。
 また、他の方法としてはλ/2位相差板と組合せることで広帯域λ/4位相差板を得る技術も知られている(特開平10-90521号公報)。λ/2位相差板もλ/4位相差板と同様の材料方法で製造される。延伸型位相差板と液晶塗布型位相差板との組合せは任意であるが、どちらも液晶塗布型位相差板を用いることは厚さを薄くすることができるので好ましい。
 前記円偏光板には斜め方向の視認性を高めるために、正のCプレートを積層する方法も知られている(特開2014-224837号公報)。正のCプレートも液晶塗布型位相差板であっても延伸型位相差板であってもよい。厚さ方向の位相差は-200~-20nm好ましくは-140~-40nmである。
In general, many materials exhibit large birefringence at shorter wavelengths and smaller birefringence at longer wavelengths. In this case, since a phase difference of λ/4 cannot be achieved in the entire visible light region, an in-plane phase difference of 100 to 180 nm, preferably 130, which is λ/4 near 560 nm where the visibility is high. Often designed to be ~150 nm. It is preferable to use an inverse dispersion λ/4 retardation plate using a material having a birefringence wavelength dispersion characteristic opposite to the usual one because the visibility can be improved. As such a material, it is also preferable to use the materials described in JP-A-2007-232873 in the case of a stretched retardation plate and the JP-A-2010-30979 in the case of a liquid crystal coated retardation plate. ..
As another method, there is also known a technique for obtaining a broadband λ/4 retardation plate by combining it with a λ/2 retardation plate (Japanese Patent Laid-Open No. 10-90521). The λ/2 retardation plate is also manufactured by the same material method as that of the λ/4 retardation plate. The combination of the stretched retardation plate and the liquid crystal coating type retardation plate is arbitrary, but it is preferable to use the liquid crystal coating type retardation plate for both because the thickness can be reduced.
There is also known a method of laminating a positive C plate on the circularly polarizing plate in order to enhance visibility in an oblique direction (Japanese Patent Laid-Open No. 2014-224837). The positive C plate may be a liquid crystal coating type retardation plate or a stretching type retardation plate. The retardation in the thickness direction is -200 to -20 nm, preferably -140 to -40 nm.
[タッチセンサ]
 タッチセンサは入力手段として用いられる。タッチセンサとしては、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式等様々な様式が提案されており、いずれの方式でも構わない。中でも静電容量方式が好ましい。静電容量方式タッチセンサは活性領域及び前記活性領域の外郭部に位置する非活性領域に区分される。活性領域は表示パネルで画面が表示される領域(表示部)に対応する領域であって、使用者のタッチが感知される領域であり、非活性領域は表示装置で画面が表示されない領域(非表示部)に対応する領域である。タッチセンサはフレキシブルな特性を有する基板と;前記基板の活性領域に形成された感知パターンと;前記基板の非活性領域に形成され、前記感知パターンとパッド部を介して外部の駆動回路と接続するための各センシングラインを含むことができる。フレキシブルな特性を有する基板としては、前記高分子フィルムと同様の材料が使用できる。タッチセンサの基板は、その靱性が2,000MPa%以上であるものがタッチセンサのクラック抑制の面から好ましい。より好ましくは靱性が2,000~30,000MPa%であってもよい。ここで、靭性は、高分子材料の引張実験を通じて得られる応力(MPa)-歪み(%)曲線(Stress-strain curve)で破壊点までの曲線の下部面積として定義される。
[Touch sensor]
The touch sensor is used as an input means. As the touch sensor, various types such as a resistance film type, a surface acoustic wave type, an infrared type, an electromagnetic induction type, and a capacitance type have been proposed, and any type may be used. Of these, the capacitance method is preferable. The capacitive touch sensor is divided into an active region and a non-active region located outside the active region. The active region is a region corresponding to a region where the screen is displayed on the display panel (display unit), and is a region where the user's touch is sensed, and the inactive region is a region where the screen is not displayed on the display device (non-display region). It is an area corresponding to the display part). The touch sensor includes a substrate having flexible characteristics; a sensing pattern formed in an active region of the substrate; formed in an inactive region of the substrate and connected to an external driving circuit through the sensing pattern and a pad unit. Each sensing line can be included. As the substrate having flexible characteristics, the same material as the polymer film can be used. The toughness of the substrate of the touch sensor is preferably 2,000 MPa% or more from the viewpoint of suppressing cracks in the touch sensor. More preferably, the toughness may be 2,000 to 30,000 MPa%. Here, the toughness is defined as the area under the curve to the breaking point in a stress (MPa)-strain (%) curve (Stress-strain curve) obtained through a tensile test of a polymer material.
 前記感知パターンは、第1方向に形成された第1パターン及び第2方向に形成された第2パターンを備えることができる。第1パターンと第2パターンは互いに異なる方向に配置される。第1パターン及び第2パターンは、同一層に形成され、タッチされる地点を感知するためには、それぞれのパターンが電気的に接続されなければならない。第1パターンは各単位パターンが継ぎ手を介して互いに接続された形態であるが、第2パターンは各単位パターンがアイランド形態に互いに分離された構造になっているので、第2パターンを電気的に接続するためには別途のブリッジ電極が必要である。感知パターンは周知の透明電極素材を適用することができる。例えば、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、亜鉛酸化物(ZnO)、インジウム亜鉛スズ酸化物(IZTO)、インジウムガリウム亜鉛酸化物(IGZO)、カドミウムスズ酸化物(CTO)、PEDOT(poly(3,4-ethylenedioxythiophene))、炭素ナノチューブ(CNT)、グラフェン、金属ワイヤなどを挙げることができ、これらは単独又は2種以上混合して使用することができる。好ましくはITOを使用することができる。金属ワイヤに使用される金属は特に限定されず、例えば、銀、金、アルミニウム、銅、鉄、ニッケル、チタン、セレニウム、クロムなどを挙げることができる。これらは単独又は2種以上混合して使用することができる。 The sensing pattern may include a first pattern formed in the first direction and a second pattern formed in the second direction. The first pattern and the second pattern are arranged in different directions. The first pattern and the second pattern are formed on the same layer, and the respective patterns must be electrically connected in order to detect a touched point. The first pattern has a structure in which the unit patterns are connected to each other through a joint, but the second pattern has a structure in which the unit patterns are separated from each other in an island shape. A separate bridge electrode is required to make the connection. A known transparent electrode material can be applied to the sensing pattern. For example, indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium zinc tin oxide (IZTO), indium gallium zinc oxide (IGZO), cadmium tin oxide (CTO). , PEDOT (poly(3,4-ethylenedioxythiophene)), carbon nanotube (CNT), graphene, metal wire, and the like, and these may be used alone or in combination of two or more. Preferably ITO can be used. The metal used for the metal wire is not particularly limited, and examples thereof include silver, gold, aluminum, copper, iron, nickel, titanium, selenium, and chromium. These may be used alone or in combination of two or more.
 ブリッジ電極は感知パターン上部に絶縁層を介して前記絶縁層上部に形成することができ、基板上にブリッジ電極が形成されており、その上に絶縁層及び感知パターンを形成することができる。前記ブリッジ電極は感知パターンと同じ素材で形成することもでき、モリブデン、銀、アルミニウム、銅、パラジウム、金、白金、亜鉛、スズ、チタン又はこれらのうちの2種以上の合金などの金属で形成することもできる。第1パターンと第2パターンは電気的に絶縁されなければならないので、感知パターンとブリッジ電極の間には絶縁層が形成される。絶縁層は第1パターンの継ぎ手とブリッジ電極の間にのみ形成することもでき、感知パターンを覆う層の構造に形成することもできる。後者の場合は、ブリッジ電極は絶縁層に形成されたコンタクトホールを介して第2パターンを接続することができる。前記タッチセンサはパターンが形成されたパターン領域と 、パターンが形成されていない非パターン領域間の透過率の差、具体的には、これらの領域における屈折率の差によって誘発される光透過率の差を適切に補償するための手段として基板と電極の間に光学調節層をさらに含むことができ、前記光学調節層は無機絶縁物質又は有機絶縁物質を含むことができる。光学調節層は光硬化性有機バインダー及び溶剤を含む光硬化組成物を基板上にコーティングして形成することができる。前記光硬化組成物は無機粒子をさらに含むことができる。前記無機粒子によって光学調節層の屈折率が上昇することができる。
前記光硬化性有機バインダーは、例えば、アクリレート系単量体、スチレン系単量体、カルボン酸系単量体などの各単量体の共重合体を含むことができる。前記光硬化性有機バインダーは、例えば、エポキシ基含有繰り返し単位、アクリレート繰り返し単位、カルボン酸繰り返し単位などの互いに異なる各繰り返し単位を含む共重合体であってもよい。
 前記無機粒子は、例えば、ジルコニア粒子、チタニア粒子、アルミナ粒子などを含むことができる。前記光硬化組成物は、光重合開始剤、重合性モノマー、硬化補助剤などの各添加剤をさらに含むこともできる。
The bridge electrode may be formed on the sensing layer via an insulating layer, and the bridge electrode may be formed on the substrate, and the insulating layer and the sensing pattern may be formed on the bridge electrode. The bridge electrode may be formed of the same material as the sensing pattern, and may be formed of a metal such as molybdenum, silver, aluminum, copper, palladium, gold, platinum, zinc, tin, titanium, or an alloy of two or more of these. You can also do it. Since the first pattern and the second pattern must be electrically insulated, an insulating layer is formed between the sensing pattern and the bridge electrode. The insulating layer may be formed only between the joint of the first pattern and the bridge electrode, or may be formed in the structure of the layer covering the sensing pattern. In the latter case, the bridge electrode can connect the second pattern through a contact hole formed in the insulating layer. The touch sensor has a difference in transmittance between a pattern area where a pattern is formed and a non-pattern area where a pattern is not formed, specifically, a light transmittance which is induced by a difference in refractive index in these areas. An optical adjustment layer may be further included between the substrate and the electrode as a means for appropriately compensating the difference, and the optical adjustment layer may include an inorganic insulating material or an organic insulating material. The optical adjustment layer may be formed by coating a photocurable composition containing a photocurable organic binder and a solvent on a substrate. The photocurable composition may further include inorganic particles. The inorganic particles may increase the refractive index of the optical adjustment layer.
The photocurable organic binder may include, for example, a copolymer of each monomer such as an acrylate-based monomer, a styrene-based monomer, and a carboxylic acid-based monomer. The photocurable organic binder may be, for example, a copolymer containing different repeating units such as an epoxy group-containing repeating unit, an acrylate repeating unit, and a carboxylic acid repeating unit.
The inorganic particles can include, for example, zirconia particles, titania particles, alumina particles, and the like. The photocurable composition may further include various additives such as a photopolymerization initiator, a polymerizable monomer, and a curing aid.
[接着層]
 前記フレキシブル表示装置用積層体を形成する、ウインドウフィルム、偏光板、タッチセンサ等の各層並びに各層を構成する、直線偏光板、λ/4位相差板等のフィルム部材は接着剤によって接着することができる。接着剤としては、水系接着剤、有機溶剤系接着剤、無溶剤系接着剤、固体接着剤、溶剤揮散型接着剤、水系溶剤揮散型接着剤、湿気硬化型接着剤、加熱硬化型接着剤、嫌気硬化型接着剤、活性エネルギー線硬化型接着剤、硬化剤混合型接着剤、熱溶融型接着剤、感圧型接着剤、感圧型粘着剤、再湿型接着剤等汎用に使用されているものが使用できる。中でも水系溶剤揮散型接着剤、活性エネルギー線硬化型接着剤、粘着剤がよく用いられる。接着層の厚さは、求められる接着力等に応じて適宜調節することができ、例えば、0.01~500μm、好ましくは0.1~300μmであり、接着層は前記フレキシブル表示装置用積層体には複数存在してよいが、それぞれの厚さ及び用いられる接着剤の種類は同一であってもよいし、異なっていてもよい。
[Adhesive layer]
A film member such as a linear polarizing plate and a λ/4 retardation plate that forms each layer such as a window film, a polarizing plate, and a touch sensor that forms the laminated body for a flexible display device and each layer may be bonded with an adhesive. it can. As the adhesive, a water-based adhesive, an organic solvent-based adhesive, a solvent-free adhesive, a solid adhesive, a solvent volatilization type adhesive, a water-based solvent volatilization type adhesive, a moisture-curable adhesive, a heat-curable adhesive, Anaerobic curable adhesives, active energy ray curable adhesives, curing agent mixed adhesives, heat-meltable adhesives, pressure-sensitive adhesives, pressure-sensitive adhesives, rewet adhesives, etc. Can be used. Of these, water-based solvent volatilizing adhesives, active energy ray-curing adhesives, and pressure-sensitive adhesives are often used. The thickness of the adhesive layer can be appropriately adjusted according to the required adhesive strength and the like, and is, for example, 0.01 to 500 μm, preferably 0.1 to 300 μm, and the adhesive layer is the laminate for a flexible display device. There may be a plurality of them, but the thickness of each and the type of adhesive used may be the same or different.
 前記水系溶剤揮散型接着剤としてはポリビニルアルコール系ポリマー、でんぷん等の水溶性ポリマー、エチレン-酢酸ビニル系エマルジョン、スチレン-ブタジエン系エマルジョン等水分散状態のポリマーを主剤ポリマーとして使用することができる。水、前記主剤ポリマーに加えて、架橋剤、シラン系化合物、イオン性化合物、架橋触媒、酸化防止剤、染料、顔料、無機フィラー、有機溶剤等を配合してもよい。前記水系溶剤揮散型接着剤によって接着する場合、前記水系溶剤揮散型接着剤を被接着層間に注入して被着層を貼合した後、乾燥させることで接着性を付与することができる。前記水系溶剤揮散型接着剤を用いる場合の接着層の厚さは0.01~10μm、好ましくは0.1~1μmであってもよい。前期水系溶剤揮散型接着剤を複数層の形成に用いる場合、それぞれの層の厚さ及び前記接着剤の種類は同一であってもよいし、異なっていてもよい。 As the water-based solvent volatilizing adhesive, polyvinyl alcohol-based polymer, water-soluble polymer such as starch, water-dispersed polymer such as ethylene-vinyl acetate emulsion, styrene-butadiene emulsion can be used as the main polymer. In addition to water and the base polymer, a cross-linking agent, a silane compound, an ionic compound, a cross-linking catalyst, an antioxidant, a dye, a pigment, an inorganic filler, an organic solvent and the like may be added. In the case of bonding with the water-based solvent volatile adhesive, the water-based solvent volatile adhesive may be injected between the adhered layers to bond the adhered layers and then dried to impart adhesiveness. The thickness of the adhesive layer when the water-based solvent volatilizing adhesive is used may be 0.01 to 10 μm, preferably 0.1 to 1 μm. When the above-mentioned aqueous solvent volatilization type adhesive is used for forming a plurality of layers, the thickness of each layer and the type of the adhesive may be the same or different.
 前記活性エネルギー線硬化型接着剤は、活性エネルギー線を照射して接着剤層を形成する反応性材料を含む活性エネルギー線硬化組成物の硬化により形成することができる。前記活性エネルギー線硬化組成物は、ハードコート組成物と同様のラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有することができる。前記ラジカル重合性化合物とは、ハードコート組成物と同様であり、ハードコート組成物と同様の種類のものが使用できる。接着層に用いられるラジカル重合性化合物としてはアクリロイル基を有する化合物が好ましい。接着剤組成物としての粘度を下げるために単官能の化合物を含むことも好ましい。 The active energy ray-curable adhesive can be formed by curing an active energy ray-curable composition containing a reactive material that irradiates an active energy ray to form an adhesive layer. The active energy ray-curable composition can contain at least one polymer of a radically polymerizable compound and a cationically polymerizable compound similar to the hard coat composition. The radical-polymerizable compound is the same as the hard coat composition, and the same kind as the hard coat composition can be used. As the radically polymerizable compound used in the adhesive layer, a compound having an acryloyl group is preferable. It is also preferable to include a monofunctional compound in order to reduce the viscosity of the adhesive composition.
 前記カチオン重合性化合物は、ハードコート組成物と同様であり、ハードコート組成物と同様の種類のものが使用できる。活性エネルギー線硬化組成物に用いられるカチオン重合性化合物としては、エポキシ化合物が好ましい。接着剤組成物としての粘度を下げるために単官能の化合物を反応性希釈剤として含むことも好ましい。
 活性エネルギー線組成物には重合開始剤をさらに含むことができる。重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等であり、適宜選択して用いることができる。これらの重合開始剤は、活性エネルギー線照射及び加熱の少なくとも一種により分解されて、ラジカル又はカチオンを発生してラジカル重合とカチオン重合を進行させるものである。ハードコート組成物の記載の中で活性エネルギー線照射によりラジカル重合又はカチオン重合の内の少なくともいずれか開始することができる開始剤を使用することができる。
The cationically polymerizable compound is the same as that used in the hard coat composition, and the same kind as the hard coat composition can be used. An epoxy compound is preferable as the cationically polymerizable compound used in the active energy ray-curable composition. It is also preferable to include a monofunctional compound as a reactive diluent in order to reduce the viscosity of the adhesive composition.
The active energy ray composition may further contain a polymerization initiator. Examples of the polymerization initiator include radical polymerization initiators, cationic polymerization initiators, radical and cationic polymerization initiators, etc., which can be appropriately selected and used. These polymerization initiators are decomposed by at least one of irradiation with active energy rays and heating to generate radicals or cations to promote radical polymerization and cation polymerization. In the description of the hard coat composition, an initiator capable of initiating radical polymerization and/or cationic polymerization by irradiation with active energy rays can be used.
 前記活性エネルギー線硬化組成物はさらに、イオン捕捉剤、酸化防止剤、連鎖移動剤、密着付与剤、熱可塑性樹脂、充填剤、流動粘度調整剤、可塑剤、消泡剤溶剤、添加剤、溶剤を含むことができる。前記活性エネルギー線硬化型接着剤によって接着する場合、前記活性エネルギー線硬化組成物を被接着層のいずれか又は両方に塗布後貼合し、いずれかの被着層又は両方の被着層を通して活性エネルギー線を照射して硬化させることで接着することができる。前記活性エネルギー線硬化型接着剤を用いる場合の接着層の厚さは0.01~20μm、好ましくは0.1~10μmであってもよい。前期活性エネルギー線硬化型接着剤を複数層の形成に用いる場合には、それぞれの層の厚さ及び用いられる接着剤の種類は同一であってもよいし、異なっていてもよい。 The active energy ray-curable composition is further an ion scavenger, an antioxidant, a chain transfer agent, an adhesion promoter, a thermoplastic resin, a filler, a flow viscosity modifier, a plasticizer, a defoaming agent solvent, an additive, a solvent. Can be included. In the case of adhering with the active energy ray-curable adhesive, the active energy ray-curable composition is applied to either or both of the adherend layers and then laminated, and activated through either adherent layer or both adherent layers. It can be adhered by irradiating it with an energy ray and curing it. The thickness of the adhesive layer when the active energy ray-curable adhesive is used may be 0.01 to 20 μm, preferably 0.1 to 10 μm. When the active energy ray-curable adhesive is used for forming a plurality of layers, the thickness of each layer and the type of adhesive used may be the same or different.
 前記粘着剤としては、主剤ポリマーに応じて、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤、シリコーン系粘着剤等に分類され何れを使用することもできる。粘着剤には主剤ポリマーに加えて、架橋剤、シラン系化合物、イオン性化合物、架橋触媒、酸化防止剤、粘着付与剤、可塑剤、染料、顔料、無機フィラー等を配合してもよい。前記粘着剤を構成する各成分を溶剤に溶解・分散させて粘着剤組成物を得て、該粘着剤組成物を基材上に塗布した後に乾燥させることで、粘着剤層接着層が形成される。粘着層は直接形成されてもよいし、別途基材に形成したものを転写することもできる。接着前の粘着面をカバーするためには離型フィルムを使用することも好ましい。前記粘着剤を用いる場合の接着層の厚さは1~500μm、好ましくは2~300μmであってもよい。前期粘着剤を複数層の形成に用いる場合、それぞれの層の厚さ及び用いられる粘着剤の種類は同一であってもよいし、異なっていてもよい。 The pressure-sensitive adhesive may be classified into an acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, etc. depending on the base polymer, and any of these may be used. In addition to the base polymer, the adhesive may contain a crosslinking agent, a silane compound, an ionic compound, a crosslinking catalyst, an antioxidant, a tackifier, a plasticizer, a dye, a pigment, an inorganic filler, and the like. The components constituting the pressure-sensitive adhesive are dissolved and dispersed in a solvent to obtain a pressure-sensitive adhesive composition, and the pressure-sensitive adhesive composition is applied onto a substrate and then dried to form a pressure-sensitive adhesive layer adhesive layer. It The adhesive layer may be directly formed, or may be separately formed on a substrate and transferred. It is also preferable to use a release film to cover the adhesive surface before adhesion. When the pressure-sensitive adhesive is used, the thickness of the adhesive layer may be 1 to 500 μm, preferably 2 to 300 μm. When the pressure-sensitive adhesive is used for forming a plurality of layers, the thickness of each layer and the type of pressure-sensitive adhesive used may be the same or different.
[遮光パターン]
 前記遮光パターンは前期フレキシブル表示装置のベゼル又はハウジングの少なくとも一部として適用することができる。遮光パターンによって前記フレキシブル表示装置の辺縁部に配置される配線が隠されて視認されにくくすることで、画像の視認性が向上する。前記遮光パターンは単層又は複層の形態であってもよい。遮光パターンのカラーは特に制限されることはなく、黒色、白色、金属色などの多様なカラーを有することができる。遮光パターンはカラーを具現するための顔料と、アクリル系樹脂、エステル系樹脂、エポキシ系樹脂、ポリウレタン、シリコーンなどの高分子で形成することができる。これらの単独又は2種類以上の混合物で使用することもできる。前記遮光パターンは、印刷、リソグラフィ、インクジェットなど各種の方法にて形成することができる。遮光パターンの厚さは、通常1~100μm、好ましくは2~50μmである。また、光パターンの厚さ方向に傾斜等の形状を付与することも好ましい。
[Shading pattern]
The light blocking pattern may be applied as at least a part of a bezel or a housing of the flexible display device. The visibility of the image is improved by hiding the wiring arranged at the peripheral portion of the flexible display device by the light-shielding pattern and making it difficult to see. The light-shielding pattern may be in the form of a single layer or multiple layers. The color of the light-shielding pattern is not particularly limited, and may have various colors such as black, white and metallic colors. The light-shielding pattern can be formed of a pigment for realizing color and a polymer such as acrylic resin, ester resin, epoxy resin, polyurethane, or silicone. These may be used alone or as a mixture of two or more kinds. The light-shielding pattern can be formed by various methods such as printing, lithography and inkjet. The thickness of the light-shielding pattern is usually 1 to 100 μm, preferably 2 to 50 μm. It is also preferable to give a shape such as an inclination in the thickness direction of the light pattern.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。例中の「%」及び「部」は、特記ない限り、質量%及び質量部を意味する。まず測定方法について説明する。 Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to the following Examples. Unless otherwise specified, "%" and "parts" in the examples mean% by mass and parts by mass. First, the measuring method will be described.
 <重量平均分子量(Mw)の測定>
 ゲル浸透クロマトグラフィー(GPC)を用いて測定を行った。測定試料の調製方法及び測定条件は下記の通りである。
(1)試料調製方法
 ポリイミド系樹脂を20mg秤りとり、10mLのDMF溶離液(10mM臭化リチウム溶液)を加え、完全に溶解させた。この溶液をクロマトディスク(孔径0.45μm)にてろ過し、試料溶液とした。
(2)測定条件
装置:HLC-8020GPC
カラム:ガードカラム+TSKgelα-M(300mm×7.8mm径)×2本+α-2500(300mm×7.8mm径)×1本
溶離液:DMF(10mMの臭化リチウム添加)
流量:1.0mL/分
検出器:RI検出器
カラム温度:40℃
注入量:100μL
分子量標準:標準ポリスチレン
<Measurement of weight average molecular weight (Mw)>
The measurements were performed using gel permeation chromatography (GPC). The method for preparing the measurement sample and the measurement conditions are as follows.
(1) Sample preparation method 20 mg of a polyimide resin was weighed and 10 mL of a DMF eluent (10 mM lithium bromide solution) was added and completely dissolved. This solution was filtered through a chromatodisc (pore size 0.45 μm) to give a sample solution.
(2) Measurement condition device: HLC-8020GPC
Column: Guard column + TSKgel α-M (300 mm × 7.8 mm diameter) × 2 + α-2500 (300 mm × 7.8 mm diameter) × 1 Eluent: DMF (10 mM lithium bromide added)
Flow rate: 1.0 mL/min Detector: RI detector Column temperature: 40°C
Injection volume: 100 μL
Molecular weight standard: Standard polystyrene
 <粘度の測定>
(1)試料調整方法
 DMAcに10質量%となるようにポリイミド系樹脂を溶解させ、測定サンプルとした。
(2)測定条件
 装置名      :LVDV-II+Pro(ブルックフィールド社製)
 測定温度     :25℃
 スピンドル    :CPE-52
 サンプル量    :0.6mL
 ローター回転速度 :3.0rpm
<Measurement of viscosity>
(1) Sample Preparation Method A polyimide-based resin was dissolved in DMAc in an amount of 10% by mass to prepare a measurement sample.
(2) Measurement conditions Device name: LVDV-II+Pro (manufactured by Brookfield)
Measurement temperature: 25℃
Spindle: CPE-52
Sample volume: 0.6mL
Rotor rotation speed: 3.0 rpm
 <フィルムの厚さの測定>
 実施例及び比較例で得られたフィルムの厚さは、ABSデジマチックインジケーター((株)ミツトヨ製、「ID-C112BS」)により測定した。
<Measurement of film thickness>
The thickness of the films obtained in Examples and Comparative Examples was measured with an ABS Digimatic Indicator (“ID-C112BS” manufactured by Mitutoyo Corporation).
 <屈曲性試験>
 実施例及び比較例で得られたフィルムを、ダンベルカッターを用いて10mm×100mmの大きさにカットした。カットしたフィルムをMIT耐折疲労試験機((株)東洋精機製作所製「MIT-DA」 形式:0530)本体にセットして、試験速度175cpm、折り曲げ角度135°、加重750g、折り曲げクランプのR 1.0mmの条件で、裏表両方向への折り曲げ試験を実施し、各フィルムの耐屈曲回数(破断せずに折り曲げ可能な回数)を測定した。
 耐屈曲回数15万回以上の場合を良好として〇で表記し、15万回未満の場合を不良として×で表記した。なお、良好(○)は、裏表方向両方の屈曲回数が15万回以上であるものを示し、不良(×)は、裏表方向のいずれか、又は、両方が屈曲回数15万回未満であるものを示す。
<Flexibility test>
The films obtained in Examples and Comparative Examples were cut into a size of 10 mm×100 mm using a dumbbell cutter. The cut film is set in the body of the MIT folding fatigue tester (“MIT-DA” type: 0530 manufactured by Toyo Seiki Seisaku-sho, Ltd.), the test speed is 175 cpm, the bending angle is 135°, the load is 750 g, and the bending clamp is R 1. A bending test was conducted in both front and back directions under the condition of 0.0 mm to measure the number of times of flexing resistance of each film (the number of times bending was possible without breaking).
When the number of flexing cycles was 150,000 or more, it was marked as good, and when less than 150,000, it was marked as bad and marked with x. In addition, good (○) indicates that the number of flexing in both front and back directions is 150,000 or more, and poor (x) indicates that the number of flexing in either or both front and back is less than 150,000. Indicates.
[実施例1:ポリイミド系樹脂の合成]
 十分に乾燥させた撹拌機と温度計を備える反応容器に、窒素を導通させ、容器内を窒素で置換した。反応容器内を10℃に冷却し、N,N-ジメチルアセトアミド(DMAc)1907.2部を容器に入れ、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)111.37部と4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)46.82部を加え、3時間撹拌した。
 次いで、4,4’-オキシビス(ベンゾイルクロリド)(OBBC)10.37部とテレフタロイルクロリド(TPC)38.54部を加え、撹拌した。生成した反応液にDMAcを1907.2部、TPC4.28部を加え、更に10℃で1時間撹拌した(工程(I))。さらにTFMB0.56部加え、2時間攪拌した(工程(II))。
 次いで、ジイソプロピルエチルアミン31.80部、及び無水酢酸75.32部を加え、10℃に保ったまま30分間撹拌した後、4-ピコリン22.90部を加え、反応容器を75℃に昇温し、さらに3時間撹拌し、反応液を得た。得られた反応液を冷却し、40℃以下に下がったところで、メタノール1147.1部を加えた。次いで、撹拌機と温度計を備える反応容器に、窒素を導通させ、容器内を窒素で置換した。20℃で攪拌しながら反応容器内に上記反応液を入れた。さらに、メタノールを4575.1部滴下し、次いでイオン交換水を2861.7部滴下し、白色固体を析出させた。析出した白色固体を遠心ろ過により捕集し、メタノールで洗浄することにより、ポリイミド系樹脂を含むウェットケーキを得た。得られたウェットケーキを減圧下、78℃で乾燥させることにより、ポリイミド系樹脂(粉体)を得た(工程(III))。
 上記の通り、ポリイミド系樹脂の製造で用いたジアミン化合物はTFMBであり、工程(I)におけるジアミン化合物の添加量(第1添加量)と、工程(II)におけるジアミン化合物の添加量(第2添加量)とのモル比は、99.5:0.5であった。
[Example 1: Synthesis of polyimide resin]
Nitrogen was introduced into a sufficiently dried reaction vessel equipped with a stirrer and a thermometer, and the inside of the vessel was replaced with nitrogen. The inside of the reaction vessel was cooled to 10° C., 1907.2 parts of N,N-dimethylacetamide (DMAc) was put into the vessel, and 2,2′-bis(trifluoromethyl)benzidine (TFMB) 111.37 parts and 4, 4′-(Hexafluoroisopropylidene)diphthalic acid dianhydride (6FDA) (46.82 parts) was added, and the mixture was stirred for 3 hours.
Then, 10.37 parts of 4,4′-oxybis(benzoyl chloride) (OBBC) and 38.54 parts of terephthaloyl chloride (TPC) were added and stirred. To the resulting reaction solution, 1907.2 parts of DMAc and 4.28 parts of TPC were added, and the mixture was further stirred at 10° C. for 1 hour (step (I)). Further, 0.56 part of TFMB was added and stirred for 2 hours (step (II)).
Then, 31.80 parts of diisopropylethylamine and 75.32 parts of acetic anhydride were added and stirred for 30 minutes while maintaining the temperature at 10°C, 22.90 parts of 4-picoline was added, and the temperature of the reaction vessel was raised to 75°C. The mixture was further stirred for 3 hours to obtain a reaction liquid. The obtained reaction liquid was cooled, and when the temperature dropped to 40° C. or lower, 1147.1 parts of methanol was added. Then, nitrogen was introduced into a reaction vessel equipped with a stirrer and a thermometer, and the inside of the vessel was replaced with nitrogen. The above reaction liquid was put into a reaction vessel while stirring at 20°C. Further, 4575.1 parts of methanol was dropped, and then 2861.7 parts of ion-exchanged water was dropped to deposit a white solid. The deposited white solid was collected by centrifugal filtration and washed with methanol to obtain a wet cake containing a polyimide resin. The resulting wet cake was dried at 78° C. under reduced pressure to obtain a polyimide resin (powder) (step (III)).
As described above, the diamine compound used in the production of the polyimide resin is TFMB, and the addition amount of the diamine compound in the step (I) (first addition amount) and the addition amount of the diamine compound in the step (II) (second amount) The addition ratio) was 99.5:0.5.
[実施例2]
 ジアミン化合物の第1添加量を110.26部、第2添加量を1.679部としたこと以外は、実施例1と同様にしてポリイミド系樹脂を得た。
[Example 2]
A polyimide resin was obtained in the same manner as in Example 1 except that the first addition amount of the diamine compound was 110.26 parts and the second addition amount was 1.679 parts.
[実施例3]
 ジアミン化合物の第1添加量を111.60部、第2添加量を0.448部としたこと以外は、実施例1と同様にしてポリイミド系樹脂を得た。
[Example 3]
A polyimide resin was obtained in the same manner as in Example 1 except that the first addition amount of the diamine compound was 111.60 parts and the second addition amount was 0.448 parts.
[実施例4]
 ジアミン化合物の第1添加量を110.60部、第2添加量を0.045部としたこと以外は、実施例1と同様にしてポリイミド系樹脂を得た。
[Example 4]
A polyimide resin was obtained in the same manner as in Example 1 except that the first addition amount of the diamine compound was 110.60 parts and the second addition amount was 0.045 parts.
[実施例5]
 ジアミン化合物の第1添加量を110.60部、第2添加量を0.179部としたこと以外は、実施例1と同様にしてポリイミド系樹脂を得た。
[Example 5]
A polyimide resin was obtained in the same manner as in Example 1 except that the first addition amount of the diamine compound was 110.60 parts and the second addition amount was 0.179 parts.
[実施例6]
 ジアミン化合物の第1添加量を110.60部、第2添加量を0.067部としたこと以外は、実施例1と同様にしてポリイミド系樹脂を得た。
[Example 6]
A polyimide resin was obtained in the same manner as in Example 1 except that the first addition amount of the diamine compound was 110.60 parts and the second addition amount was 0.067 parts.
[比較例1]
 ジアミン化合物の第1添加量を111.37部とし、工程(II)を実施しなかった(第2の添加を行わなかった)こと以外は、実施例1と同様にしてポリイミド系樹脂を得た。
[Comparative Example 1]
A polyimide resin was obtained in the same manner as in Example 1 except that the first addition amount of the diamine compound was 111.37 parts and the step (II) was not performed (the second addition was not performed). ..
[比較例2]
 ジアミン化合物の第1添加量を110.81部とし、工程(II)を実施しなかった(第2の添加を行わなかった)こと以外は、実施例1と同様にしてポリイミド系樹脂を得た。
[Comparative example 2]
A polyimide resin was obtained in the same manner as in Example 1 except that the first addition amount of the diamine compound was 110.81 parts and the step (II) was not carried out (the second addition was not carried out). ..
 実施例1~6及び比較例1、2について、ポリイミド系樹脂の製造に用いた各成分(6FDA、TPC、OBBC、及びTFMB)のモル比を表1に示す。 In Examples 1 to 6 and Comparative Examples 1 and 2, the molar ratio of each component (6FDA, TPC, OBBC, and TFMB) used in the production of the polyimide resin is shown in Table 1.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
[フィルムの作製]
 実施例1~6並びに比較例1及び2で作製したポリイミド系樹脂をDMAcに溶解してポリイミド系樹脂の濃度が10質量%であるポリイミド系樹脂ワニスを得た。得られた樹脂ワニスをポリエステル基材(東洋紡(株)製、商品名「A4100」)の平滑面上に自立膜の厚さが55μmとなるようにアプリケーターを用いて塗布し、50℃で30分間、次いで140℃で15分間乾燥後、得られた塗膜をポリエステル基材から剥離して、自立膜を得た。自立膜を金枠に固定し、さらに大気下、200℃で40分間乾燥し、厚さ50μmのポリイミド系樹脂フィルムを得た。
 得られたポリイミド系樹脂フィルムの耐屈曲性試験を行った。各成分中のアミンのモル比(最終アミン比と称する)、第2添加(工程(II))の有無、第1添加量と第2添加量とのモル比、ポリイミド系樹脂の重量平均分子量(Mw)、ポリイミド系樹脂ワニスの25℃における粘度、及び耐屈曲性試験の評価結果を表2に示す。
[Production of film]
The polyimide resins prepared in Examples 1 to 6 and Comparative Examples 1 and 2 were dissolved in DMAc to obtain polyimide resin varnish having a polyimide resin concentration of 10% by mass. The obtained resin varnish was applied on a smooth surface of a polyester substrate (manufactured by Toyobo Co., Ltd., trade name “A4100”) using an applicator so that the thickness of the self-supporting film was 55 μm, and the temperature was 50° C. for 30 minutes. Then, after drying at 140° C. for 15 minutes, the obtained coating film was peeled off from the polyester base material to obtain a self-supporting film. The self-supporting film was fixed to a metal frame and further dried in the atmosphere at 200° C. for 40 minutes to obtain a polyimide resin film having a thickness of 50 μm.
A flex resistance test was conducted on the obtained polyimide resin film. Molar ratio of amine in each component (referred to as final amine ratio), presence or absence of second addition (step (II)), molar ratio of first addition amount and second addition amount, weight average molecular weight of polyimide resin ( Table 2 shows Mw), the viscosity of the polyimide resin varnish at 25° C., and the evaluation results of the bending resistance test.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表2に示されるように、実施例1~6のフィルムは、耐屈曲性試験における評価が良好であり、耐屈曲性に優れていることが確認された。これに対して、工程(II)を経由せずに製造されたポリイミド系樹脂から形成された比較例1及び2のフィルムは、耐屈曲性試験における評価が不良であることがわかった。 As shown in Table 2, it was confirmed that the films of Examples 1 to 6 were evaluated as good in the flex resistance test and were excellent in flex resistance. On the other hand, the films of Comparative Examples 1 and 2 formed from the polyimide-based resin produced without passing through the step (II) were found to be poorly evaluated in the flex resistance test.

Claims (3)

  1.  ジアミン化合物と3つ以上のカルボニル基を有するカルボン酸化合物とを反応させるステップ(A)を含む中間体(K)を得る工程(I)、及び
     該中間体(K)に、さらにジアミン化合物を反応させる工程(II)
    を含む、ポリイミド系樹脂の製造方法。
    Step (I) of obtaining an intermediate (K), which comprises a step (A) of reacting a diamine compound with a carboxylic acid compound having three or more carbonyl groups, and further reacting the intermediate (K) with a diamine compound. Step (II)
    A method for producing a polyimide resin, comprising:
  2.  工程(I)で反応させるジアミン化合物の使用量は、工程(I)及び工程(II)で反応させるジアミン化合物の総量を100モルとしたときに、80~99.99モルである、請求項1に記載の製造方法。 The amount of the diamine compound to be reacted in the step (I) is 80 to 99.99 mol, when the total amount of the diamine compound to be reacted in the steps (I) and (II) is 100 mol. The manufacturing method described in.
  3.  工程(I)は、ステップ(A)の後、さらにジカルボン酸化合物を反応させるステップ(B)を含む、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the step (I) further includes a step (B) of reacting a dicarboxylic acid compound after the step (A).
PCT/JP2019/050059 2018-12-26 2019-12-20 Method for producing polyimide resin WO2020137870A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980085770.1A CN113272361A (en) 2018-12-26 2019-12-20 Method for producing polyimide resin
KR1020217023008A KR20210107761A (en) 2018-12-26 2019-12-20 Method for producing polyimide-based resin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018243595 2018-12-26
JP2018-243595 2018-12-26
JP2019220593A JP2020105496A (en) 2018-12-26 2019-12-05 Manufacturing method of polyimide resin
JP2019-220593 2019-12-05

Publications (1)

Publication Number Publication Date
WO2020137870A1 true WO2020137870A1 (en) 2020-07-02

Family

ID=71127757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050059 WO2020137870A1 (en) 2018-12-26 2019-12-20 Method for producing polyimide resin

Country Status (1)

Country Link
WO (1) WO2020137870A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416835A (en) * 1987-07-13 1989-01-20 Kanegafuchi Chemical Ind Production of polyamic acid copolymer and polyimide copolymer therefrom
JPH05263049A (en) * 1992-03-19 1993-10-12 Kanegafuchi Chem Ind Co Ltd Tape for tab and its production
JP2012077144A (en) * 2010-09-30 2012-04-19 Kaneka Corp Polyamideimide resin, manufacturing method therefor, polyamideimide resin solution, polyamideimide film, and use thereof
WO2014192733A1 (en) * 2013-05-31 2014-12-04 株式会社カネカ Insulated coating material and use of same
JP2018119141A (en) * 2017-01-20 2018-08-02 住友化学株式会社 Film, resin composition, and production method for polyamide-imide resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416835A (en) * 1987-07-13 1989-01-20 Kanegafuchi Chemical Ind Production of polyamic acid copolymer and polyimide copolymer therefrom
JPH05263049A (en) * 1992-03-19 1993-10-12 Kanegafuchi Chem Ind Co Ltd Tape for tab and its production
JP2012077144A (en) * 2010-09-30 2012-04-19 Kaneka Corp Polyamideimide resin, manufacturing method therefor, polyamideimide resin solution, polyamideimide film, and use thereof
WO2014192733A1 (en) * 2013-05-31 2014-12-04 株式会社カネカ Insulated coating material and use of same
JP2018119141A (en) * 2017-01-20 2018-08-02 住友化学株式会社 Film, resin composition, and production method for polyamide-imide resin

Similar Documents

Publication Publication Date Title
JP2020076067A (en) Optical film
KR20220095208A (en) polyamideimide resin
WO2020230663A1 (en) Varnish, optical film, and method for manufacturing optical film
JP6799182B2 (en) Optical film, flexible display device, and resin composition
JP6595080B1 (en) Optical film, flexible display device, and resin composition
WO2020138045A1 (en) Optical film and flexible display device
JP2020094190A (en) Resin composition
KR20210110643A (en) Polyamideimide-based resin, optical film and flexible display device
WO2020138046A1 (en) Optical film
JP2020109155A (en) Optical film, flexible display device and polyamide-imide resin
JP2020109160A (en) Optical film
JP2020050864A (en) Composition
WO2020137870A1 (en) Method for producing polyimide resin
CN113227205B (en) Polyimide resin and method for producing same
JP2020105496A (en) Manufacturing method of polyimide resin
TWI834786B (en) Manufacturing method of polyimide resin
WO2020137871A1 (en) Polyimide resin and method for producing same
JP2022163714A (en) Optical laminate and flexible display device
JP2023132812A (en) Optical film, laminate, and manufacturing method therefor
KR20220084341A (en) optical film
JP2020100805A (en) Optical film, flexible display device, and resin composition
JP2021084941A (en) Optical film and flexible display device
KR20220142371A (en) Optical laminate and flexible display device
KR20210110646A (en) Optical film, flexible display device, and polyamideimide-based resin
WO2020138044A1 (en) Polyamide-based resin, optical film, and flexible display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217023008

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19905320

Country of ref document: EP

Kind code of ref document: A1