WO2018135121A1 - 光学部品および照明装置 - Google Patents

光学部品および照明装置 Download PDF

Info

Publication number
WO2018135121A1
WO2018135121A1 PCT/JP2017/041469 JP2017041469W WO2018135121A1 WO 2018135121 A1 WO2018135121 A1 WO 2018135121A1 JP 2017041469 W JP2017041469 W JP 2017041469W WO 2018135121 A1 WO2018135121 A1 WO 2018135121A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
phosphor
light
optical component
translucent
Prior art date
Application number
PCT/JP2017/041469
Other languages
English (en)
French (fr)
Inventor
直剛 岡田
近藤 順悟
山口 省一郎
大和田 巌
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2018562901A priority Critical patent/JP6928621B2/ja
Priority to CN201780082068.0A priority patent/CN110168418B/zh
Priority to EP17892529.3A priority patent/EP3572853B1/en
Publication of WO2018135121A1 publication Critical patent/WO2018135121A1/ja
Priority to US16/458,563 priority patent/US10995934B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence

Definitions

  • the present invention relates to an optical component and a lighting device, and more particularly to an optical component having a phosphor substrate and a lighting device having the optical component.
  • Patent Document 1 discloses a vehicle headlight module having a support that supports a phosphor and a radiation source that performs electromagnetic radiation to the phosphor.
  • the support include polycrystalline alumina ceramics or sapphire. Any of these materials has high heat resistance and high thermal conductivity, and is suitable for application to a headlight that is an illuminating device in which a rise in temperature and uneven temperature distribution are likely to occur.
  • the phosphor include yttrium aluminum garnet (YAG) doped with cerium (Ce).
  • YAG yttrium aluminum garnet
  • Ce cerium
  • a blue emitting laser is exemplified as the radiation source. The blue laser light passes through the yellow phosphor and is converted into white light by its complementary color. Accordingly, the headlight module can emit white light.
  • Patent Document 2 a light emitting device having a phosphor as a wavelength conversion member is disclosed.
  • the phosphor a powder in a powder form dispersed in a binder can be used.
  • a single single crystal or a single polycrystal can be used, in which case light scattering at the interface between the phosphor and the binder is eliminated due to the difference in the refractive index between the phosphor and the binder. It is described that the effect to do is acquired.
  • a light emitting device it may be desired that light is scattered appropriately. For example, in the case of a headlight using a blue laser as a light source, if the light scattering is too small, bluish light rather than white light is strongly emitted along the traveling direction of the unscattered blue laser light. End up. For this reason, the illumination light from the headlight has strong color unevenness. On the other hand, if the light scattering is too large, the attenuation of light increases, and the output of illumination light decreases.
  • the degree of light scattering varies depending on whether the phosphor is dispersed in a binder, polycrystalline, or single crystal. Specifically, the degree of light scattering is large in the case of a phosphor dispersed in a binder, medium in the case of a polycrystalline phosphor, and small in the case of a single crystal phosphor. It is not always possible to select any of these three types of phosphors. For example, a phosphor dispersed in a binder tends to have low internal quantum efficiency at high temperatures. In particular, when the binder is an organic substance, the binder tends to deteriorate.
  • the illuminating device When the illuminating device has a high brightness such as a headlight or a light source for a projector, the temperature is likely to rise, so that the phosphor dispersed in the binder may be inappropriate for the above reason.
  • the single crystal phosphor has a relatively small decrease in internal quantum efficiency even at a high temperature of about 300 ° C. For this reason, application to high-luminance applications is being studied.
  • the single crystal phosphor is generally produced by a pulling method, it is difficult to produce a large crystal, and the concentration of the additive active agent differs in the vertical direction of the crystal.
  • polycrystals such as ceramics are easy to increase in size and hardly cause a difference in concentration of additive activator.
  • the same temperature characteristics and transmission characteristics as single crystals have been proposed. Thus, in high brightness applications, it is difficult to adjust the degree of light scattering by selecting the phosphor type.
  • the degree of light scattering in the phosphor cannot be adjusted sufficiently, if the degree of light scattering in the support can be adjusted sufficiently, the light scattering as a whole The degree can be optimized.
  • the choice of support is generally limited to two: a polycrystal that scatters light significantly, or a single crystal that scatters less light. Therefore, the degree of light scattering in the support cannot be arbitrarily adjusted.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to provide an optical component that can arbitrarily adjust the degree of light scattering in a support holding a phosphor. Is to provide. Another object is to provide an illumination device that can appropriately scatter light from a light source.
  • the optical component of the present invention includes a first substrate including a phosphor substrate, and a second substrate that supports the first substrate and includes a translucent substrate.
  • the translucent substrate has a polycrystalline structure with orientation.
  • the lighting device of the present invention has an optical component and a light source.
  • the optical component includes a first substrate including a phosphor substrate and a second substrate that supports the first substrate and includes a translucent substrate.
  • the translucent substrate has a polycrystalline structure with orientation.
  • the light source provides light that passes through both the first substrate and the second substrate of the optical component.
  • the phosphor substrate is supported by the translucent substrate having a polycrystalline structure with orientation.
  • the degree of light scattering can be adjusted by adjusting the orientation of the translucent substrate. That is, the degree of light scattering in the support that supports the phosphor can be arbitrarily adjusted.
  • the illumination device of the present invention light from the light source passes not only through the first substrate but also through the second substrate. Thereby, the degree of light scattering in the lighting device can be adjusted by adjusting the orientation of the translucent substrate included in the second substrate.
  • FIG. 2 is a partially enlarged view of FIG. 1 and is a partial cross-sectional view schematically showing the vicinity of a bonding layer between a supported substrate and a support substrate in an optical component. It is sectional drawing which shows schematically the structure of the optical component in Embodiment 2 of this invention.
  • FIG. 4 is a partial enlarged view of FIG. 3, and is a partial cross-sectional view schematically showing the vicinity of a bonding layer between a supported substrate and a supporting substrate. It is sectional drawing which shows schematically the 1st process of the manufacturing method of the optical component of FIG.
  • the illuminating device 100 has the light source 90 and the wavelength conversion member 50 (optical component).
  • the light source 90 is, for example, a semiconductor laser.
  • the wavelength conversion member 50 converts the wavelength of light by using a phosphor.
  • Excitation light 91 from the light source is converted into illumination light 92 by passing through the wavelength conversion member 50.
  • the excitation light 91 is blue light or ultraviolet light
  • the illumination light 92 is white light (combined light of blue light that is transmitted light of the excitation light 91 and yellow light that is converted light converted in wavelength by a phosphor). ).
  • the wavelength conversion member 50 includes a supported substrate 10 (first substrate) and a support substrate 20 (second substrate) that mechanically holds the supported substrate 10.
  • the supported substrate 10 includes a phosphor substrate 11.
  • the supported substrate 10 is the phosphor substrate 11.
  • the support substrate 20 includes a translucent substrate 21, and the support substrate 20 is the translucent substrate 21 in the present embodiment.
  • the phosphor substrate 11 has a polycrystalline structure.
  • the phosphor substrate 11 is preferably one that does not substantially contain a binder such as glass or resin. That is, the phosphor substrate 11 is not a material in which a large number of phosphor particles are bonded by a binder, but is formed by continuously providing a polycrystalline structure itself, typically ceramics. Is preferred.
  • the thermal conductivity of the translucent substrate 21 is higher than the thermal conductivity of the phosphor substrate 11.
  • the phosphor substrate 11 is made of, for example, YAG doped with an additive activator such as Ce.
  • the translucent substrate 21 is a translucent substrate, and is preferably a substantially transparent substrate.
  • the linear transmittance of the translucent substrate 21 is preferably about 70% or more per 0.5 mm thickness in the wavelength range used by the lighting device 100.
  • the thickness of the translucent substrate 21 is, for example, about 1 mm.
  • the translucent substrate 21 preferably has a substantially constant refractive index in the horizontal direction (lateral direction in the figure).
  • the translucent substrate 21 preferably has substantially no pores. The observation of the pores is performed, for example, by microscopic observation of about 5000 times. In order to avoid degranulation when the observed surface is prepared, the observed surface is preferably finished by polishing using ion milling.
  • the translucent substrate 21 preferably contains alumina (Al 2 O 3 ) or aluminum nitride as a main component.
  • the proportion of the main component in the components of the translucent substrate 21 is preferably 99% or more, and more preferably 99.99% or more.
  • the linear expansion coefficient of the translucent substrate 21 is within ⁇ 30% of the linear expansion coefficient of the phosphor substrate 11.
  • the linear expansion coefficient is in the in-plane direction (lateral direction in the figure).
  • the translucent substrate 21 is a ceramic (sintered body) and has a polycrystalline structure with orientation.
  • the orientation direction is preferably along the thickness direction (longitudinal direction in the figure) of the translucent substrate 21. In other words, the orientation direction is preferably along the stacking direction of the supported substrate 10 and the supporting substrate 20.
  • the crystal orientation axis is typically the c-axis in crystallography.
  • the orientation of the polycrystalline structure of the translucent substrate 21 preferably has an orientation degree of 10% or more and 99% or less.
  • the degree of orientation can be measured by the Lotgering method using X-ray diffraction.
  • the measurement sample is obtained by smooth polishing of a substantially horizontal cross section (cross section substantially perpendicular to the thickness direction) of the translucent substrate 21.
  • An X-ray diffraction profile is acquired by irradiating the polished surface with X-rays.
  • the translucent substrate 21 is made of alumina will be described in detail.
  • the intensity ratio P 0 and the intensity ratio P in the above formula are calculated by the following formula.
  • Intensity ratio P is, the measurement sample corresponds to the c-plane (006) plane intensity I S (006) of, normalized by the sum of the intensities I S (hkl) for all of the measurement range (hkl) It is a thing.
  • Intensity ratio P 0 is for non-oriented alumina standard by the sum of corresponding to the c-plane (006) intensity of the plane I 0 (006) is the intensity I 0 for all (hkl) of the measurement range (hkl) It has been
  • the intensity ratio P 0 is the JCPDS (Joint Committee on Powder Diffraction Standards) card No. of standard ⁇ -alumina as non-oriented alumina. 46-1212.
  • X-ray diffractometer for example, “RINT-TTR III” manufactured by Rigaku Corporation can be used.
  • setting conditions of the X-ray source for example, conditions of a voltage of 50 kV and a current of 300 mA can be used.
  • Ordinary polycrystalline alumina has no orientation and has a degree of orientation of substantially 0%.
  • the degree of orientation of polycrystalline alumina intentionally imparted with orientation can be controlled from about 1% to nearly 100%.
  • a template grain growth (TGG) method using a raw material containing plate-like alumina particles is used.
  • the degree of orientation can be arbitrarily adjusted by adjusting the blending ratio of the plate-like alumina particles and the non-plate-like ordinary alumina particles in the raw material.
  • the thickness of the plate-like alumina particles is preferably about 1.5 ⁇ m or more and about 20 ⁇ m or less in order to obtain both high degree of orientation and denseness.
  • the wavelength conversion member 50 has a bonding layer 30 between the supported substrate 10 and the support substrate 20 when microscopically observed with an electron microscope or the like.
  • the bonding layer 30 is an interface layer formed by direct bonding between the supported substrate 10 and the support substrate 20. Since atomic diffusion occurs during direct bonding, the bonding layer 30 includes at least one element included in the surface of the supported substrate 10 facing the support substrate 20 (the lower surface in the drawing) and the support substrate 20. And at least one element included in the surface (upper surface in the drawing) facing the supported substrate 10. Particularly in the present embodiment, the bonding layer 30 is an interface layer formed by direct bonding between the phosphor substrate 11 and the translucent substrate 21.
  • the bonding layer 30 includes at least one element included in the phosphor substrate 11 and at least one element included in the translucent substrate 21.
  • the thickness of the bonding layer 30 is very small, and therefore the bonding layer 30 hardly obstructs the progress of light passing through it.
  • the thickness of the bonding layer 30 is preferably about 1 nm to 100 nm, and more preferably 1 nm to 10 nm.
  • the bonding layer 30 exists, it can be said that the phosphor substrate 11 is supported by the light-transmitting substrate 21 via the bonding layer 30.
  • the phosphor substrate 11 is supported by the translucent substrate 21 having a polycrystalline structure with orientation.
  • the degree of light scattering can be adjusted by adjusting the orientation of the translucent substrate 21. That is, the degree of light scattering in the support that supports the phosphor can be arbitrarily adjusted.
  • the phosphor substrate 11 has a polycrystalline structure. Therefore, the phosphor substrate 11 scatters light to a moderate degree as compared with the case where the phosphor is a single crystal and the case where the phosphor is dispersed in the binder. In this case, in order to moderate the scattering of light by the whole of the phosphor substrate 11 and the translucent substrate 21, it may be required that the translucent substrate 21 scatters light moderately. According to this embodiment, translucent substrate 21 has a polycrystalline structure with orientation. Thereby, the translucent board
  • the phosphor substrate 11 is not limited to one having a polycrystalline structure.
  • the effect that the degree of light scattering can be adjusted by adjusting the orientation of the polycrystalline structure of the translucent substrate 21 can be obtained regardless of the configuration of the phosphor substrate 11. Therefore, as a modification, the phosphor substrate 11 may have a single crystal structure. In this case, by reducing the degree of orientation of the translucent substrate 21, light scattering can be prevented from being insufficient.
  • the phosphor substrate 11 may be dispersed in a binder. In this case, by reducing the degree of orientation of the translucent substrate 21, light scattering can be prevented from becoming excessive.
  • the thermal conductivity of the translucent substrate 21 is higher than the thermal conductivity of the phosphor substrate 11.
  • exhaust heat of the heat generated in the phosphor substrate 11 can be promoted. Therefore, it is possible to suppress degradation of performance due to the temperature of the phosphor substrate 11 rising due to heat generation.
  • the polycrystalline structure of the translucent substrate 21 has an orientation degree of 10% or more and 99% or less.
  • the degree of light scattering in the translucent substrate 21 is sufficiently smaller than that in the case where the polycrystalline structure of the translucent substrate 21 is non-oriented, and the translucent substrate 21 is a single crystal. It can be made sufficiently large.
  • the degree of orientation is preferably 90% or more.
  • the bonding layer 30 includes at least one element included in the surface of the supported substrate 10 facing the support substrate 20 and at least one element included in the surface of the support substrate 20 facing the supported substrate 10. .
  • Such a bonding layer 30 can be formed by direct bonding as described above. By using the direct bonding, it is possible to suppress the heat conduction from the supported substrate 10 to the supporting substrate 20 from being hindered at the bonding portion.
  • a method other than direct bonding may be used for bonding the supported substrate 10 and the supporting substrate 20.
  • a layer for bonding different from the bonding layer 30 is provided.
  • the linear expansion coefficient of the translucent substrate 21 is within ⁇ 30% of the linear expansion coefficient of the phosphor substrate 11.
  • production of the crack of the fluorescent substance substrate 11 resulting from the difference in thermal expansion can be prevented.
  • the thickness of the phosphor substrate 11 is about 100 ⁇ m or less and the thickness of the translucent substrate 21 is 1 mm or more, the difference between the thicknesses is large.
  • the light from the light source 90 passes through the support substrate 20 as well as the support substrate 10.
  • the degree of light scattering in the lighting device 100 can be adjusted by adjusting the orientation of the translucent substrate 21 included in the support substrate 20. Due to the fact that the degree of scattering is not too small, it is possible to avoid that components that are not scattered in the excitation light 91 are strongly emitted in a specific direction (upward in FIG. 1). For this reason, the uneven color of the illumination light 92 is suppressed. In particular, when a laser is used as the light source 90, color unevenness generally tends to occur, so the above effect is remarkable.
  • the wavelength conversion member 50a (optical component) of the present embodiment has a supported substrate 10a (first substrate) instead of the supported substrate 10 (FIG. 1).
  • the supported substrate 10 a includes an intermediate layer 13 that faces the support substrate 20. Therefore, the phosphor substrate 11 is supported by the translucent substrate 21 via the intermediate layer 13.
  • the intermediate layer 13 is made of a material different from the material of the phosphor substrate 11.
  • the intermediate layer 13 is a layer having translucency, and is preferably substantially transparent.
  • the thickness of the intermediate layer 13 is 1 ⁇ m or less.
  • the thermal conductivity of the intermediate layer 13 is higher than the thermal conductivity of the phosphor substrate 11.
  • the material of the intermediate layer 13 is preferably an oxide, for example, alumina (Al 2 O 3 ) or tantalum pentoxide (Ta 2 O 5 ).
  • the wavelength conversion member 50a of the present embodiment has a bonding layer 30a instead of the bonding layer 30 (FIG. 2).
  • the bonding layer 30 a is an interface layer formed by direct bonding between the supported substrate 10 a and the support substrate 20. Therefore, the bonding layer 30a includes at least one element included in the surface (the lower surface in the figure) facing the support substrate 20 of the supported substrate 10a and the surface (the illustrated surface) facing the supported substrate 10a. And at least one element included in the upper surface).
  • the bonding layer 30 a is an interface layer formed by direct bonding between the intermediate layer 13 and the translucent substrate 21.
  • the bonding layer 30 a includes at least one element included in the intermediate layer 13 and at least one element included in the translucent substrate 21. Strictly speaking, since the bonding layer 30a exists, it can be said that the phosphor substrate 11 is supported by the translucent substrate 21 via the intermediate layer 13 and the bonding layer 30a. Except for the above, the bonding layer 30a is similar to the bonding layer 30 (FIG. 2).
  • intermediate layer 13 is formed on phosphor substrate 11 (on the lower surface in the figure).
  • the supported substrate 10a having the phosphor substrate 11 and the intermediate layer 13 is obtained.
  • substrate 21 as the support substrate 20 is prepared.
  • the supported substrate 10 a and the supporting substrate 20 are transferred into the vacuum chamber 40.
  • the particle beam 42 is irradiated from the particle beam generating device 41 to each of the surface of the intermediate layer 13 of the supported substrate 10 a and the surface of the support substrate 20.
  • the particle beam generator 41 is an ion gun
  • the particle beam 42 is an ion beam.
  • the ion beam is typically an argon (Ar) ion beam. Note that plasma may be irradiated instead of the particle beam.
  • the pair of surfaces are brought into contact with each other. Then, the supported substrate 10 a and the support substrate 20 are pressed against each other by the load 44. As a result, the supported substrate 10a and the support substrate 20 are bonded to each other by direct bonding.
  • the temperature at the time of joining may be normal temperature or higher than normal temperature. When high temperatures are used, especially about 800 ° C. or higher, the diffusion of the substance is particularly significantly promoted. For this reason, the smoothness of the surfaces to be joined is not required more strictly than at normal temperature. For this reason, if a high bonding temperature is allowed, it is possible to reduce the cost and increase the yield.
  • the thickness of phosphor substrate 11 is reduced by polishing 46 as necessary.
  • one or more wavelength conversion members 50 a are cut out along the dicing line 48 from the stacked body of the supported substrate 10 a and the support substrate 20 obtained by the bonding.
  • the wavelength conversion member 50a (FIG. 3) is obtained.
  • the wavelength conversion member 50 (FIG. 1: Embodiment 1) will be obtained.
  • the supported substrate 10 a includes the intermediate layer 13 facing the support substrate 20, and the intermediate layer 13 is made of a material different from the material of the phosphor substrate 11.
  • the material of the surface of the supported substrate 10a facing the support substrate 20 can be made a material suitable for bonding to the support substrate 20.
  • This facilitates the joining of the supported substrate 10a and the supporting substrate 20, and particularly facilitates the direct joining, which is a joining in which the combination of materials is important.
  • the material of the intermediate layer 13 may be the same as the material of the translucent substrate 21, and in this case, direct bonding becomes easier.
  • the wavelength conversion member 50b (optical component) of the modification has a support substrate 20a (second substrate) instead of the support substrate 20 (FIG. 3).
  • the support substrate 20a includes an intermediate layer 23 facing the supported substrate 10a. Therefore, the phosphor substrate 11 is supported by the translucent substrate 21 via the intermediate layer 13 and the intermediate layer 23.
  • the intermediate layer 23 is made of a material different from the material of the translucent substrate 21.
  • the intermediate layer 23 is a layer having translucency, and is preferably substantially transparent.
  • the thickness of the intermediate layer 23 is 1 ⁇ m or less.
  • the thermal conductivity of the intermediate layer 23 is higher than the thermal conductivity of the phosphor substrate 11.
  • the material of the intermediate layer 23 is preferably an oxide, for example, alumina or tantalum pentoxide.
  • the wavelength conversion member 50b has a bonding layer 30b instead of the bonding layer 30a (FIG. 4).
  • the bonding layer 30b is an interface layer formed by direct bonding between the supported substrate 10a and the supporting substrate 20a.
  • the bonding layer 30b includes at least one element included in a surface (lower surface in the figure) facing the support substrate 20a of the supported substrate 10a and a surface (in the figure) facing the supported substrate 10a of the support substrate 20a. And at least one element included in the upper surface).
  • the bonding layer 30 b is an interface layer formed by direct bonding between the intermediate layer 13 and the intermediate layer 23.
  • the bonding layer 30 b includes at least one element included in the intermediate layer 13 and at least one element included in the intermediate layer 23. Strictly speaking, since the bonding layer 30b exists, it can be said that the phosphor substrate 11 is supported by the translucent substrate 21 through the intermediate layer 13, the intermediate layer 23, and the bonding layer 30b. Except for the above, the bonding layer 30b is similar to the bonding layer 30a (FIG. 4).
  • the material of the intermediate layer 23 may be the same as the material of the intermediate layer 13, and in this case, direct bonding is easier.
  • Example 1 As the phosphor substrate 11 (FIG. 5), a polycrystalline YAG ceramic substrate doped with Ce atoms (manufactured by Kamishima Chemical Co., Ltd.) was prepared. On the phosphor substrate 11, an alumina layer having a thickness of 0.5 ⁇ m was formed as the intermediate layer 13 (FIG. 5) by sputtering. The resulting layer had a surface roughness Ra of 0.5 nm. A transparent alumina substrate having a thickness of 1 mm, an orientation degree of 60%, and a linear transmittance of 70% was prepared as the support substrate 20 (FIG. 5). The alumina layer and the transparent alumina substrate were directly joined.
  • an argon ion beam was irradiated on both surfaces. Next, they were brought into contact at room temperature in a vacuum, and a load 44 (FIG. 6) was applied. That is, direct joining was performed. According to microscopic observation, no bubbles were observed on the joint surface.
  • polishing 46 (FIG. 7), the thickness of the phosphor substrate 11 was reduced to 100 ⁇ m within an error of ⁇ 0.25 ⁇ m. Polishing 46 was performed with optical polishing accuracy. Specifically, grinder grinding, lapping and chemical mechanical polishing (CMP) were sequentially performed.
  • the wavelength conversion member 50a (FIG. 3) was cut out with a size of 3 mm square using a dicing apparatus. The obtained wavelength conversion member 50a was neither chipped nor cracked.
  • a GaN blue laser device having an output of 10 W and a wavelength of 450 nm was prepared.
  • the measurement of the output of the illumination light 92 was performed in accordance with the provisions of “JIS C 7801” in the Japanese Industrial Standards (JIS: Japanese Industrial Standards). Specifically, it was measured by the time average of the total luminous flux from the wavelength conversion member 50a. The total luminous flux was measured using an integrating sphere (spherical photometer). The light source to be measured and the standard light source in which the total luminous flux was valued were turned on at the same position, and the measurement was performed by comparing the two.
  • Color unevenness was evaluated by a chromaticity diagram obtained using a luminance distribution measuring apparatus.
  • the chromaticity diagram if the measurement result is in the range of median x: 0.3447 ⁇ 0.005, y: 0.3553 ⁇ 0.005, it is determined that there is no color unevenness, otherwise color It was determined that there was unevenness.
  • Example 2 A transparent alumina substrate having an orientation degree of 10% and a linear transmittance of 50% was prepared as the support substrate 20 (FIG. 5).
  • the other production conditions were the same as in Example 1.
  • no bubbles were observed on the joint surface, and neither chipping nor cracking was observed in the obtained wavelength conversion member 50a.
  • the output of the illumination light 92 (FIG. 1) from the wavelength conversion member 50a was 2200 lm, and no color unevenness was observed. Therefore, the wavelength conversion member 50a was determined to be acceptable.
  • Example 3 As the support substrate 20 (FIG. 5), a transparent alumina substrate having an orientation degree of 99% and a linear transmittance of 84% was prepared. The other production conditions were the same as in Example 1. As in Examples 1 and 2, no bubbles were observed on the joint surface, and neither chipping nor cracking was observed in the obtained wavelength conversion member 50a. As shown in the above table, the output of the illumination light 92 (FIG. 1) from the wavelength conversion member 50a was 2550 lm, and no color unevenness was observed. Therefore, the wavelength conversion member 50a was determined to be acceptable.
  • Comparative Example 1 As the translucent substrate constituting the support substrate 20 (FIG. 5), oriented polycrystalline alumina was used in Examples 1 to 3, but in this comparative example, single crystal sapphire having a c-axis along the thickness direction was used. Was used. For this reason, the c-plane orientation degree of the translucent substrate in this comparative example can be said to be 100%.
  • the linear transmittance of the single crystal sapphire was 85%.
  • the other production conditions were the same as in Example 1. As in Examples 1 to 3, no bubbles were observed on the joint surface, and the obtained wavelength conversion member was neither chipped nor cracked. As shown in the table above, the output of the illumination light from the wavelength conversion member was 2500 lm, and color unevenness was observed. This wavelength conversion member was determined to be unacceptable due to uneven color.
  • Example 2 As the translucent substrate constituting the support substrate 20 (FIG. 5), oriented polycrystalline alumina was used in Examples 1 to 3, but non-oriented alumina was used in this comparative example. For this reason, it can be said that the c-plane orientation degree of the translucent substrate in this comparative example is 0%. The linear transmittance of non-oriented alumina was 45%. The other production conditions were the same as in Example 1. As in the above examples, no bubbles were observed on the joint surface, and the obtained wavelength conversion member was neither chipped nor cracked. As shown in the above table, the illumination light output from the wavelength conversion member was 2000 lm, and no color unevenness was observed. This wavelength conversion member was determined to be unacceptable due to insufficient output.
  • Comparative Example 2 the output of illumination light from the wavelength conversion member was insufficient. The reason is considered to be that light scattering was excessive because non-oriented polycrystalline alumina was used as the translucent substrate in Comparative Example 2. On the other hand, in another example, it is considered that the reduction of the output of the illumination light is suppressed because the light is not scattered excessively. Therefore, in order to suppress a reduction in the output of illumination light, it is considered preferable that the polycrystalline structure of the light-transmitting substrate has orientation.
  • the light-transmitting substrate 21 has a polycrystalline structure with orientation, so that excessive and insufficient light scattering can be avoided. As a result, it is considered that the occurrence of uneven color can be avoided and the reduction in the output of the illumination light 92 can be suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Luminescent Compositions (AREA)
  • Securing Globes, Refractors, Reflectors Or The Like (AREA)
  • Semiconductor Lasers (AREA)

Abstract

光学部品(50)は、蛍光体基板(11)を含む第1基板(10)と、第1基板(10)を支持し透光性基板(21)を含む第2基板(20)とを有している。透光性基板(21)は、配向性をともなう多結晶構造を有している。

Description

光学部品および照明装置
 本発明は、光学部品および照明装置に関し、特に、蛍光体基板を有する光学部品と、当該光学部品を有する照明装置とに関するものである。
 国際公開第2011/141377号(特許文献1)によれば、蛍光体を支持する支持体と、蛍光体への電磁放射を行う放射源とを有する車両用ヘッドライトモジュールが開示されている。支持体としては、多結晶アルミナセラミックスまたはサファイアが例示されている。いずれの材料も、高い耐熱性と高い熱伝導性とを有する点で、温度の上昇および温度分布のむらが生じやすい照明装置であるヘッドライトへの適用に適している。蛍光体としては、セリウム(Ce)でドーピングされたイットリウムアルミニウムガーネット(YAG)が例示されている。放射源として青色発光レーザが例示されている。青色レーザ光は黄色蛍光体を通りその補色により白色光に変換される。これによりヘッドライトモジュールは白色光を放射することができる。
 特開2016-119361号公報(特許文献2)によれば、波長変換部材としての蛍光体を有する発光装置が開示されている。蛍光体として、バインダに分散された粉末形態のものを用いることができる。またこれに代わる態様として、単一の単結晶または単一の多結晶を用いることができ、その場合、蛍光体とバインダとの屈折率の差によって両者の界面で光の散乱が起きることを排除する効果が得られることが記載されている。
国際公開第2011/141377号 特開2016-119361号公報
 発光装置においては、光が適度に散乱されることが望まれる場合がある。例えば、光源として青色レーザを用いたヘッドライトの場合、光の散乱が小さ過ぎると、散乱されなかった青色レーザ光の進行方向に沿って、白色光ではなく青みを帯びた光が強く放射されてしまう。このため、ヘッドライトからの照明光は、強い色むらを有してしまう。一方で、光の散乱が大き過ぎると、光の減衰が大きくなるので、照明光の出力が低下してしまう。
 蛍光体が、バインダ中に分散されたものか、多結晶のものか、あるいは単結晶のものかによって、光が散乱される程度は異なる。具体的には、光が散乱される程度は、バインダに分散された蛍光体の場合に大きく、多結晶蛍光体の場合に中程度であり、単結晶蛍光体の場合に小さい。これら3つのタイプの蛍光体から任意のものを選択することができるとは限らない。例えば、バインダに分散された蛍光体は、高温下において、内部量子効率が低下しやすく、特にバインダが有機物の場合はバインダが劣化しやすい。照明装置がヘッドライトおよびはプロジェクタ用光源のように高輝度のものである場合、温度が上昇しやすいので、バインダに分散された蛍光体は上記理由によって不適当な場合がある。一方、単結晶蛍光体は、内部量子効率の低下が300℃程度の高温下でも比較的少ない。このため高輝度用途への適用が検討されている。しかしながら、単結晶蛍光体は一般に引き上げ法により作製されるため、大型結晶の作製が困難であり、また結晶の上下方向で添加活剤の濃度が異なるといった欠点を有している。一方、セラミックなどの多結晶は大型化は容易で、添加活剤の濃度差も生じにくい。また、最近では単結晶の温度特性および透過特性と遜色ないものも提案されている。このように、高輝度用途においては、光の散乱の程度を蛍光体のタイプの選択によって調整することは難しい。
 光が蛍光体だけでなくその支持体も通る場合、光の散乱は、蛍光体中だけでなく、それを機械的に保持する支持体中においても生じる。よって、蛍光体中での光の散乱の程度を十分に調整することができなくても、支持体中での光の散乱の程度を十分に調整することができれば、全体として、光の散乱の程度を最適化することができる。しかしながら従来技術においては、支持体の選択肢が、概して、光を大きく散乱させる多結晶か、光をあまり散乱させない単結晶かの2つに限られる。よって支持体中での光の散乱の程度を任意に調整することができない。
 本発明は以上のような課題を解決するためになされたものであり、その一の目的は、蛍光体を保持する支持体中における光の散乱の程度を任意に調整することができる光学部品を提供することである。また他の目的は、光源からの光を適度に散乱させることができる照明装置を提供することである。
 本発明の光学部品は、蛍光体基板を含む第1基板と、第1基板を支持し透光性基板を含む第2基板とを有している。透光性基板は、配向性をともなう多結晶構造を有している。
 本発明の照明装置は光学部品および光源を有している。光学部品は、蛍光体基板を含む第1基板と、第1基板を支持し透光性基板を含む第2基板とを有している。透光性基板は、配向性をともなう多結晶構造を有している。光源は、光学部品の第1基板および第2基板の両方を通過する光を供する。
 本発明の光学部品によれば、蛍光体基板は、配向性をともなう多結晶構造を有する透光性基板によって支持されている。これにより、透光性基板の配向性を調整することによって、光の散乱の程度を調整することができる。すなわち、蛍光体を支持する支持体中における光の散乱の程度を任意に調整することができる。
 本発明の照明装置によれば、光源からの光は、第1基板だけでなく第2基板も通過する。これにより、第2基板が有する透光性基板の配向性を調整することによって、照明装置における光の散乱の程度を調整することができる。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施の形態1における光学部品を有する照明装置の構成を概略的に示す断面図である。 図1の一部拡大図であって、光学部品における被支持基板と支持基板との間の接合層の近傍を概略的に示す部分断面図である。 本発明の実施の形態2における光学部品の構成を概略的に示す断面図である。 図3の一部拡大図であって、被支持基板と支持基板との間の接合層の近傍を概略的に示す部分断面図である。 図3の光学部品の製造方法の第1工程を概略的に示す断面図である。 図3の光学部品の製造方法の第2工程を概略的に示す断面図である。 図3の光学部品の製造方法の第3工程を概略的に示す断面図である。 図3の光学部品の製造方法の第4工程を概略的に示す断面図である。 図4の変形例である。 実施例および比較例の光学部品についての評価結果を示すグラフ図である。
 <実施の形態1>
 (構成)
 図1を参照して、照明装置100は、光源90と、波長変換部材50(光学部品)とを有している。光源90は、例えば半導体レーザである。波長変換部材50は、蛍光体を用いることによって、光の波長を変換するものである。光源からの励起光91は、波長変換部材50を通過することによって、照明光92に変換される。例えば、励起光91は青色光または紫外光であり、照明光92は白色光(励起光91の透過光である青色光と、蛍光体によって波長変換された変換光である黄色光との合成光)である。
 波長変換部材50は、被支持基板10(第1基板)と、被支持基板10を機械的に保持する支持基板20(第2基板)とを有している。照明装置100が使用される際は、被支持基板10および支持基板20の両方を通過する光が、光源90によって供される。被支持基板10は蛍光体基板11を含み、本実施の形態においては被支持基板10は蛍光体基板11である。支持基板20は透光性基板21を含み、本実施の形態においては支持基板20は透光性基板21である。
 蛍光体基板11は多結晶構造を有している。蛍光体基板11は、ガラスまたは樹脂などのバインダを実質的に含有しないものであることが好ましい。すなわち、蛍光体基板11は、多数の蛍光体粒子がバインダによって結合されているものではなく、多結晶構造自体が連続的に設けられることによって構成されたもの、典型的にはセラミックス、であることが好ましい。好ましくは、透光性基板21の熱伝導率は、蛍光体基板11の熱伝導率よりも高い。蛍光体基板11は、例えば、Ceなど添加活剤をドーピングされたYAGから作られている。
 透光性基板21は、透光性を有する基板であり、好ましくは実質的に透明な基板である。透光性基板21の直線透過率は、照明装置100が利用する波長範囲において、厚み0.5mm当たり70%程度以上が好ましい。透光性基板21の厚みは、例えば1mm程度である。透光性基板21は、水平方向(図中、横方向)において、実質的に一定の屈折率を有していることが好ましい。透光性基板21は、実質的に気孔を有しないことが好ましい。気孔の観察は、例えば、5000倍程度の顕微鏡観察によって行われる。観察される面が準備される際に脱粒が生じることを避けるために、観察される面は、イオンミリングを用いた研磨によって仕上げられることが好ましい。
 透光性基板21は、主成分としてアルミナ(Al)または窒化アルミニウムを含むことが好ましい。透光性基板21の成分中、主成分が占める割合は、99%以上が好ましく、99.99%以上がより好ましい。好ましくは、透光性基板21の線膨張係数は、蛍光体基板11の線膨張係数の±30%以内である。ここで線膨張係数は面内方向(図中、横方向)のものである。
 透光性基板21は、セラミックス(焼結体)であり、配向性をともなう多結晶構造を有している。配向方向は、透光性基板21の厚み方向(図中、縦方向)に沿っていることが好ましい。言い換えれば、配向方向は、被支持基板10と支持基板20との積層方向に沿っていることが好ましい。結晶の配向軸は、典型的には結晶学におけるc軸である。
 透光性基板21の多結晶構造の配向性は、10%以上99%以下の配向度を有していることが好ましい。配向度は、X線回折を用いたロットゲーリング法によって測定することができる。測定試料は、透光性基板21のほぼ水平な断面(厚み方向にほぼ垂直な断面)を平滑に研磨することによって得られる。この研磨された面に対してX線が照射されることで、X線回折プロファイルが取得される。以下、透光性基板21がアルミナから作られている場合について詳述する。
 入射X線方向と回折X線方向とのなす角度を2θとし、X線としてCuKα線が用いられるとすると、X線回折プロファイルは、例えば、2θ=20°~70°の範囲で取得される。このプロファイルから、(hkl)面の各々に対応する強度I(hkl)のデータが読み取られる。このデータから、c面配向度が、以下のように算出される。
Figure JPOXMLDOC01-appb-M000001
 上記の式における強度比Pおよび強度比Pは、以下の式によって算出される。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 強度比Pは、測定試料についての、c面に対応する(006)面の強度I(006)が、測定範囲のすべての(hkl)についての強度I(hkl)の和で規格化されたものである。強度比Pは、無配向アルミナについての、c面に対応する(006)面の強度I(006)が、測定範囲のすべての(hkl)についての強度I(hkl)の和で規格化されたものである。強度比Pは、無配向アルミナとしての標準α-アルミナについてのJCPDS(Joint Committee on Powder Diffraction Standards:粉末回折標準のための合同委員会)カードのNo.46-1212から算出することができる。なおX線回折装置としては、例えば、株式会社リガク製「RINT-TTR III」を用いることができ、X線源の設定条件としては、例えば、電圧50kVおよび電流300mAの条件を用いることができる。
 通常の多結晶アルミナは、配向性を有しておらず、実質的に0%の配向度を有している。一方、意図的に配向性が付与される多結晶アルミナの配向度は、1%程度から100%近くまで制御することができる。配向性を得るためには、例えば、板状アルミナ粒子を含む原材料を用いてのテンプレート粒成長(Templated Grain Growth:TGG)法が用いられる。原材料中の、板状アルミナ粒子と、板状でない通常のアルミナ粒子との配合比を調整することによって、配向度を任意に調整することができる。なお板状アルミナ粒子の厚みは、高い配向度と、緻密性との両方を得るためには、1.5μm程度以上20μm程度以下が好ましい。
 図2を参照して、波長変換部材50は、電子顕微鏡などによって微視的に観察されると、被支持基板10と支持基板20との間に接合層30を有している。接合層30は、被支持基板10と支持基板20との間の直接接合によって形成された界面層である。直接接合の際に原子の拡散が生じることから、接合層30は、被支持基板10の支持基板20に面する面(図中、下面)に含まれる少なくとも1種類の元素と、支持基板20の被支持基板10に面する面(図中、上面)に含まれる少なくとも1種類の元素とを含む。特に本実施の形態においては、接合層30は、蛍光体基板11と透光性基板21との間の直接接合によって形成された界面層である。このため接合層30は、蛍光体基板11に含まれる少なくとも1種類の元素と、透光性基板21に含まれる少なくとも1種類の元素とを含む。接合層30の厚みは非常に小さく、よって接合層30はそれを透過する光の進行をほとんど妨げない。接合層30の厚みは、1nm程度以上100nm程度以下が好ましく、1nm以上10nm以下がより好ましい。
 なお、接合層30が存在していることから、厳密にいえば、蛍光体基板11は、透光性基板21によって接合層30を介して支持されているといえる。
 (効果)
 本実施の形態の波長変換部材50によれば、蛍光体基板11は、配向性をともなう多結晶構造を有する透光性基板21によって支持されている。これにより、透光性基板21の配向性を調整することによって、光の散乱の程度を調整することができる。すなわち、蛍光体を支持する支持体中における光の散乱の程度を任意に調整することができる。
 また本実施の形態においては、蛍光体基板11は多結晶構造を有している。よって蛍光体基板11は、蛍光体が単結晶の場合および蛍光体がバインダ中に分散される場合に比して、光を中程度に散乱する。この場合、蛍光体基板11および透光性基板21の全体による光の散乱を適度なものとするために、透光性基板21が光を中程度散乱することが求められることがあり得る。本実施の形態によれば、透光性基板21が、配向性をともなう多結晶構造を有する。これにより、透光性基板21は、単結晶構造の場合および無配向多結晶構造の場合と比較して、光を中程度に散乱することができる。
 なお蛍光体基板11は多結晶構造を有するものに限定されるわけではない。透光性基板21の多結晶構造が有する配向性を調整することによって光の散乱の程度を調整することができるという効果は、蛍光体基板11の構成を問わず、得られるものである。よって変形例として、蛍光体基板11は、単結晶構造を有するものであってもよい。この場合、透光性基板21の配向度を小さくすることによって、光の散乱が不足しないようにすることができる。他の変形例として、蛍光体基板11は、バインダ中に分散されたものであってもよい。この場合、透光性基板21の配向度を小さくすることによって、光の散乱が過剰にならないようにすることができる。
 好ましくは、透光性基板21の熱伝導率は、蛍光体基板11の熱伝導率よりも高い。これにより、蛍光体基板11で発生した熱の排熱を促進することができる。よって、発熱により蛍光体基板11の温度が上昇することによる性能の劣化を抑制することができる。
 好ましくは、透光性基板21の多結晶構造は、10%以上99%以下の配向度を有している。これにより、透光性基板21における光の散乱の程度を、透光性基板21の多結晶構造が無配向の場合に比して十分に小さく、かつ透光性基板21が単結晶の場合に比して十分に大きくすることができる。なお、透光性基板21の熱伝導度を高める観点では、配向度が90%以上であることが好ましい。
 接合層30は、被支持基板10の支持基板20に面する面に含まれる少なくとも1種類の元素と、支持基板20の被支持基板10に面する面に含まれる少なくとも1種類の元素とを含む。このような接合層30は、前述したように、直接接合によって形成することができる。直接接合が用いられることにより、被支持基板10から支持基板20への熱伝導が接合部において阻害されることが抑制される。
 なお変形例として、被支持基板10と支持基板20との接合に、直接接合以外の方法が用いられてもよい。その場合、上記接合層30とは異なる、接合のための層が設けられる。
 好ましくは、透光性基板21の線膨張係数は、蛍光体基板11の線膨張係数の±30%以内である。これにより、熱膨張の差異に起因した蛍光体基板11の割れの発生を防止することができる。特に、蛍光体基板11の厚みが100μm程度以下かつ透光性基板21の厚みが1mm以上のように両者の厚みの相異が大きい場合、顕著な効果が得られる。
 本実施の形態の照明装置100によれば、光源90からの光は、被支持基板10だけでなく支持基板20も通過する。これにより、支持基板20が有する透光性基板21の配向性を調整することによって、照明装置100における光の散乱の程度を調整することができる。散乱の程度が過小でないことによって、励起光91のうち散乱されなかった成分が特定の方向(図1における上方)へ強く放射されることが避けられる。このため照明光92の色むらが抑制される。特に、光源90としてレーザが用いられた場合は一般に色むらが発生しやすいので、上記効果が顕著である。一方、散乱の程度が過大でないことによって、光の過度な減衰が避けられる。このため、散乱に起因しての照明光92の出力低下が抑制される。以上から、色むらを抑制しつつ出力を高めることができる。
 <実施の形態2>
 (構成)
 図3を参照して、本実施の形態の波長変換部材50a(光学部品)は、被支持基板10(図1)に代わり、被支持基板10a(第1基板)を有している。被支持基板10aは、支持基板20に面する中間層13を含む。よって蛍光体基板11は、透光性基板21によって中間層13を介して支持されている。中間層13は、蛍光体基板11の材料とは異なる材料からなる。中間層13は、透光性を有する層であり、好ましくは実質的に透明である。好ましくは、中間層13の厚みは、1μm以下である。好ましくは、中間層13の熱伝導率は、蛍光体基板11の熱伝導率よりも高い。中間層13の材料は、好ましくは酸化物であり、例えば、アルミナ(Al)または五酸化タンタル(Ta)である。
 図4を参照して、本実施の形態の波長変換部材50aは、接合層30(図2)に代わり接合層30aを有している。接合層30aは、被支持基板10aと支持基板20との間の直接接合によって形成された界面層である。このため接合層30aは、被支持基板10aの支持基板20に面する面(図中、下面)に含まれる少なくとも1種類の元素と、支持基板20の被支持基板10aに面する面(図中、上面)に含まれる少なくとも1種類の元素とを含む。特に本実施の形態においては、接合層30aは、中間層13と透光性基板21との間の直接接合によって形成された界面層である。このため接合層30aは、中間層13に含まれる少なくとも1種類の元素と、透光性基板21に含まれる少なくとも1種類の元素とを含む。接合層30aが存在していることから、厳密にいえば、蛍光体基板11は、透光性基板21によって中間層13および接合層30aを介して支持されているといえる。上記以外については、接合層30aは接合層30(図2)に類したものである。
 なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
 (製造方法)
 波長変換部材50aの製造方法について、図5~図8を参照しつつ、以下に説明する。
 図5を参照して、蛍光体基板11上(図中、下面上)に中間層13が形成される。これにより、蛍光体基板11および中間層13を有する被支持基板10aが得られる。また、支持基板20としての透光性基板21が準備される。被支持基板10aおよび支持基板20が真空チャンバ40中へ搬送される。被支持基板10aの中間層13の表面と、支持基板20の表面との各々へ、粒子線生成装置41から粒子線42が照射される。これにより、両表面が、直接接合に適したものとなる。例えば、粒子線生成装置41はイオンガンであり、粒子線42はイオンビームである。イオンビームは、典型的には、アルゴン(Ar)イオンビームである。なお、粒子線に代わり、プラズマが照射されてもよい。
 さらに図6を参照して、上記1対の表面が互いに接触させられる。そして、被支持基板10aと支持基板20とが荷重44によって互いに押し付けられる。これにより被支持基板10aと支持基板20とが直接接合によって互いに接合される。接合時の温度は、常温であってもよく、常温より高い温度であってもよい。高温、特に800℃程度以上の温度、が用いられると、物質の拡散が特に有意に促進される。このため、接合されることになる表面の平滑性が、常温の場合よりは、厳しく求められない。このため、高い接合温度が許容されるならば、それを用いることで、コストを低減したり、歩留まりを高めたりすることができる。
 図7を参照して、必要に応じて、蛍光体基板11の厚みが研磨46によって低減される。図8を参照して、上記接合によって得られた被支持基板10aおよび支持基板20の積層体から、ダイシングライン48に沿って、1つ以上の波長変換部材50aが切り出される。
 以上により、波長変換部材50a(図3)が得られる。なお中間層13を形成することなく上記製造方法が行われれば、波長変換部材50(図1:実施の形態1)が得られる。
 (効果)
 本実施の形態によっても、前述した実施の形態1とほぼ同様の効果が得られる。
 さらに、本実施の形態によれば、被支持基板10aは、支持基板20に面する中間層13を含み、この中間層13は、蛍光体基板11の材料とは異なる材料からなる。これにより、被支持基板10aの支持基板20に面する面の材料を、支持基板20との接合に適した材料とすることができる。これにより、被支持基板10aと支持基板20との接合が容易となり、特に、材料の組み合わせが重要な接合である直接接合が容易となる。なお中間層13の材料は透光性基板21の材料と同じであってもよく、その場合、直接接合がより容易となる。
 (変形例)
 図9を参照して、変形例の波長変換部材50b(光学部品)は、支持基板20(図3)に代わり支持基板20a(第2基板)を有している。支持基板20aは、被支持基板10aに面する中間層23を含む。よって蛍光体基板11は、透光性基板21によって中間層13および中間層23を介して支持されている。中間層23は、透光性基板21の材料とは異なる材料からなる。中間層23は、透光性を有する層であり、好ましくは実質的に透明である。好ましくは、中間層23の厚みは、1μm以下である。好ましくは、中間層23の熱伝導率は、蛍光体基板11の熱伝導率よりも高い。中間層23の材料は、好ましくは酸化物であり、例えば、アルミナまたは五酸化タンタルである。
 また波長変換部材50bは、接合層30a(図4)に代わり、接合層30bを有している。接合層30bは、被支持基板10aと支持基板20aとの間の直接接合によって形成された界面層である。このため接合層30bは、被支持基板10aの支持基板20aに面する面(図中、下面)に含まれる少なくとも1種類の元素と、支持基板20aの被支持基板10aに面する面(図中、上面)に含まれる少なくとも1種類の元素とを含む。特に本実施の形態においては、接合層30bは、中間層13と中間層23との間の直接接合によって形成された界面層である。このため接合層30bは、中間層13に含まれる少なくとも1種類の元素と、中間層23に含まれる少なくとも1種類の元素とを含む。接合層30bが存在していることから、厳密にいえば、蛍光体基板11は、透光性基板21によって中間層13と中間層23と接合層30bとを介して支持されているといえる。上記以外については、接合層30bは接合層30a(図4)に類したものである。
 本変形例によっても、実施の形態2とほぼ同様の効果が得られる。なお中間層23の材料は中間層13の材料と同じであってもよく、その場合、直接接合がより容易となる。
 波長変換部材50a(図3)の実施例1~3と、その比較例1および2とについての検討結果を、以下の表にまとめる。なお、表中の「総合評価」は、照明光92(図1)の出力が2200lm以上、かつ、照明光92に色むらがみられない場合に「合格」とされ、そうでない場合に「不合格」とされた。
Figure JPOXMLDOC01-appb-T000004
 以下、各例について詳述する。
 (実施例1)
 蛍光体基板11(図5)として、Ce原子がドーピングされた多結晶YAGセラミック基板(神島化学工業株式会社製)が準備された。蛍光体基板11上に、中間層13(図5)として、厚み0.5μmのアルミナ層がスパッタ法によって成膜された。得られた層は、表面粗さRa0.5nmを有していた。また支持基板20(図5)として、厚み1mm、配向度60%および直線透過率70%を有する透明アルミナ基板が準備された。アルミナ層と透明アルミナ基板とが直接接合された。具体的には、まず、両者の表面にアルゴンイオンビームが照射された。次に、真空中、常温下で、両者が接触させられ、そして荷重44(図6)が加えられた。すなわち、直接接合が行われた。顕微鏡観察によれば、接合面に気泡はみられなかった。次に、研磨46(図7)によって、蛍光体基板11の厚みが、誤差±0.25μm以内で100μmまで低減された。研磨46は、光学研磨の精度で行われた。具体的には、グラインダー研削、ラップおよび化学機械研磨(CMP)が順に行われた。次に、ダイシング装置を用いて3mm角のサイズで波長変換部材50a(図3)が切り出された。得られた波長変換部材50aには、欠けもクラックもみられなかった。
 光源90(図1)として、出力10W、波長450nmのGaN系青色レーザ装置が準備された。これを用いて生成された励起光91(図1)が波長変換部材50a(図1)へ照射された。この光が波長変換部材50aを通過することによって得られた照明光92(図1)について、その出力および色むらが評価された。上記の表に示したように、出力は2800lmであり、色むらはみられなかった。よって波長変換部材50aは合格と判定された。
 なお、照明光92の出力の測定は、日本工業規格(JIS:Japanese Industrial Standards)における「JIS C 7801」の規定に沿って行われた。具体的には、波長変換部材50aからの全光束の時間平均によって測定された。全光束の測定は,積分球(球形光束計)を用いて行われた。被測定光源と、全光束が値づけられた標準光源とが、同じ位置で点灯され、両者の比較によって測定が行われた。
 色むらは、輝度分布測定装置を用いて得られた色度図によって評価された。色度図において、測定結果が、中央値x:0.3447±0.005、y:0.3553±0.005の範囲にある場合は色むらがないと判定され、それ以外の場合は色むらがあると判定された。
 (実施例2)
 支持基板20(図5)として、配向度10%および直線透過率50%を有する透明アルミナ基板が準備された。これ以外の製造条件は、実施例1と同じとされた。実施例1と同様、接合面に気泡はみられず、また、得られた波長変換部材50aには、欠けもクラックもみられなかった。上記の表に示したように、波長変換部材50aからの照明光92(図1)の出力は2200lmであり、色むらはみられなかった。よって波長変換部材50aは合格と判定された。
 (実施例3)
 支持基板20(図5)として、配向度99%および直線透過率84%を有する透明アルミナ基板が準備された。これ以外の製造条件は、実施例1と同じとされた。実施例1および2と同様、接合面に気泡はみられず、また、得られた波長変換部材50aには欠けもクラックもみられなかった。上記の表に示したように、波長変換部材50aからの照明光92(図1)の出力は2550lmであり、色むらはみられなかった。よって波長変換部材50aは合格と判定された。
 (比較例1)
 支持基板20(図5)を構成する透光性基板として、実施例1~3では配向性多結晶アルミナが用いられたが、本比較例では、厚み方向に沿ったc軸を有する単結晶サファイアが用いられた。このため本比較例における透光性基板のc面配向度は100%といえる。単結晶サファイアの直線透過率は85%であった。これ以外の製造条件は、実施例1と同じとされた。実施例1~3と同様、接合面に気泡はみられず、また、得られた波長変換部材には、欠けもクラックもみられなかった。上記の表に示したように、波長変換部材からの照明光の出力は2500lmであり、色むらがみられた。色むらがあることによって、この波長変換部材は不合格と判定された。
 (比較例2)
 支持基板20(図5)を構成する透光性基板として、実施例1~3では配向性多結晶アルミナが用いられたが、本比較例では、無配向性アルミナが用いられた。このため本比較例における透光性基板のc面配向度は0%といえる。無配向性アルミナの直線透過率は45%であった。これ以外の製造条件は、実施例1と同じとされた。上記各例と同様、接合面に気泡はみられず、また、得られた波長変換部材には、欠けもクラックもみられなかった。上記の表に示したように、波長変換部材からの照明光の出力は2000lmであり、色むらはみられなかった。出力の不足によって、この波長変換部材は不合格と判定された。
 (その他の実施例)
 上記に加えて、配向度20%、50%および70%を有する透明アルミナ基板が用いられた実施例についても、上記と同様の検討が行われた。図10のグラフにそれらの評価結果がまとめられている。
 (上記例に対する検討)
 比較例1においては、波長変換部材からの照明光に色むらがみられた。その理由は、比較例1において透光性基板として単結晶サファイアが用いられたために、光の散乱が不足したためと考えられる。これに対して他の例では、光が十分に散乱されたために色むらの発生が抑制されたと考えられる。よって色むらの発生を避けるためには、透光性基板として、単結晶サファイアではなく多結晶アルミナを用いることが好ましいと考えられる。
 比較例2においては、波長変換部材からの照明光の出力が不足した。その理由は、比較例2において透光性基板として無配向性の多結晶アルミナが用いられたために、光の散乱が過剰であったためと考えられる。これに対して他の例では、光が過剰に散乱されなかったために照明光の出力の低減が抑制されたと考えられる。よって照明光の出力の低減を抑制するためには、透光性基板の多結晶構造が配向性を有することが好ましいと考えられる。
 以上のように、透光性基板21が、配向性をともなう多結晶構造を有していることによって、光の散乱の過不足が避けられたと考えられる。そしてそれによって、色むらの発生を避けることができ、かつ、照明光92の出力の低減を抑制することができたと考えられる。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 10,10a 被支持基板(第1基板)
 11 蛍光体基板
 13,23 中間層
 20,20a 支持基板(第2基板)
 21 透光性基板
 30,30a,30b 接合層
 40 真空チャンバ
 41 粒子線生成装置
 50,50a,50b 波長変換部材(光学部品)
 90 光源
 91 励起光
 92 照明光
 100 照明装置

Claims (9)

  1.  蛍光体基板(11)を含む第1基板(10,10a)と、
     前記第1基板(10,10a)を支持し、透光性基板(21)を含む第2基板(20,20a)と、
    を備え、前記透光性基板(21)は、配向性をともなう多結晶構造を有している、光学部品(50,50a,50b)。
  2.  前記蛍光体基板(11)は多結晶構造を有している、請求項1に記載の光学部品(50,50a,50b)。
  3.  前記透光性基板(21)の熱伝導率は、前記蛍光体基板(11)の熱伝導率よりも高い、請求項1または2に記載の光学部品(50,50a,50b)。
  4.  前記透光性基板(21)の前記多結晶構造は、10%以上99%以下の配向度を有している、請求項1から3のいずれか1項に記載の光学部品(50,50a,50b)。
  5.  前記第1基板(10,10a)と前記第2基板(20,20a)との間に接合層(30,30a,30b)をさらに備え、前記接合層(30,30a,30b)は、前記第1基板(10,10a)の前記第2基板(20,20a)に面する面に含まれる少なくとも1種類の元素と、前記第2基板(20,20a)の前記第1基板(10,10a)に面する面に含まれる少なくとも1種類の元素とを含む、請求項1から4のいずれか1項に記載の光学部品(50,50a,50b)。
  6.  前記透光性基板(21)の線膨張係数は、前記蛍光体基板(11)の線膨張係数の±30%以内である、請求項1から5のいずれか1項に記載の光学部品(50,50a,50b)。
  7.  前記第1基板(10a)は、前記第2基板に面する中間層(13,23)を含み、前記中間層(13,23)は、前記蛍光体基板(11)の材料とは異なる材料からなる、請求項1から6のいずれか1項に記載の光学部品(50a,50b)。
  8.  照明装置(100)であって、
     光学部品(50,50a,50b)を備え、前記光学部品(50,50a,50b)は、
      蛍光体基板(11)を含む第1基板(10,10a)と、
      前記第1基板(10,10a)を支持し、透光性基板(21)を含む第2基板(20,20a)と、を含み、前記透光性基板(21)は、配向性をともなう多結晶構造を有しており、前記照明装置(100)はさらに
     前記光学部品(50,50a,50b)の前記第1基板(10,10a)および前記第2基板(20,20a)の両方を通過する光を供する光源(90)を備える、照明装置(100)。
  9.  前記光源(90)はレーザを含む、請求項8に記載の照明装置(100)。
PCT/JP2017/041469 2017-01-18 2017-11-17 光学部品および照明装置 WO2018135121A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018562901A JP6928621B2 (ja) 2017-01-18 2017-11-17 光学部品および照明装置
CN201780082068.0A CN110168418B (zh) 2017-01-18 2017-11-17 光学部件以及照明装置
EP17892529.3A EP3572853B1 (en) 2017-01-18 2017-11-17 Optical component and lighting device
US16/458,563 US10995934B2 (en) 2017-01-18 2019-07-01 Optical component including a translucent substrate for adjustable light scattering and lighting device including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017006504 2017-01-18
JP2017-006504 2017-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/458,563 Continuation US10995934B2 (en) 2017-01-18 2019-07-01 Optical component including a translucent substrate for adjustable light scattering and lighting device including the same

Publications (1)

Publication Number Publication Date
WO2018135121A1 true WO2018135121A1 (ja) 2018-07-26

Family

ID=62908711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041469 WO2018135121A1 (ja) 2017-01-18 2017-11-17 光学部品および照明装置

Country Status (5)

Country Link
US (1) US10995934B2 (ja)
EP (1) EP3572853B1 (ja)
JP (1) JP6928621B2 (ja)
CN (1) CN110168418B (ja)
WO (1) WO2018135121A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699419B (zh) * 2018-02-19 2022-09-09 日本碍子株式会社 光学部件及照明装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293609A (ja) * 2001-03-29 2002-10-09 Ngk Insulators Ltd セラミックス多結晶体及びその製造方法
WO2011141377A1 (de) 2010-05-12 2011-11-17 Osram Gesellschaft mit beschränkter Haftung Scheinwerfermodul
JP2012521066A (ja) * 2009-03-19 2012-09-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 色調節装置
JP2016063163A (ja) * 2014-09-19 2016-04-25 東芝ライテック株式会社 光学装置及び発光装置
JP2016119361A (ja) 2014-12-19 2016-06-30 パナソニックIpマネジメント株式会社 発光装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234790A (ja) * 1990-02-09 1991-10-18 Nippon Telegr & Teleph Corp <Ntt> 赤外可視変換素子
DE112013002508B4 (de) * 2012-05-16 2020-09-24 Panasonic Intellectual Property Management Co., Ltd. Wellenlängen-Umwandlungselement, Verfahren zu seiner Herstellung und LED-Element und Laserlicht emittierendes Halbleiterbauteil, die das Wellenlängen-Umwandlungselement verwenden
JP6139071B2 (ja) * 2012-07-30 2017-05-31 日亜化学工業株式会社 発光装置とその製造方法
CN103968332B (zh) * 2013-01-25 2015-10-07 深圳市光峰光电技术有限公司 一种波长转换装置、发光装置及投影系统
JP6299478B2 (ja) * 2013-06-26 2018-03-28 日亜化学工業株式会社 発光装置およびその製造方法
CN105830237B (zh) * 2013-12-18 2019-09-06 日本碍子株式会社 发光元件用复合基板及其制造方法
JP6302762B2 (ja) * 2014-06-23 2018-03-28 スタンレー電気株式会社 発光装置および照明装置
EP3557293A4 (en) * 2016-12-13 2020-08-05 NGK Insulators, Ltd. OPTICAL COMPONENT
JP6979572B2 (ja) * 2017-02-28 2021-12-15 パナソニックIpマネジメント株式会社 蛍光体ホイールおよびこれを備えた蛍光体ホイール装置、光変換装置、投射型表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293609A (ja) * 2001-03-29 2002-10-09 Ngk Insulators Ltd セラミックス多結晶体及びその製造方法
JP2012521066A (ja) * 2009-03-19 2012-09-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 色調節装置
WO2011141377A1 (de) 2010-05-12 2011-11-17 Osram Gesellschaft mit beschränkter Haftung Scheinwerfermodul
JP2016063163A (ja) * 2014-09-19 2016-04-25 東芝ライテック株式会社 光学装置及び発光装置
JP2016119361A (ja) 2014-12-19 2016-06-30 パナソニックIpマネジメント株式会社 発光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3572853A4

Also Published As

Publication number Publication date
US10995934B2 (en) 2021-05-04
US20190323685A1 (en) 2019-10-24
EP3572853A4 (en) 2020-03-25
CN110168418B (zh) 2021-12-14
EP3572853B1 (en) 2022-12-28
JPWO2018135121A1 (ja) 2019-11-07
EP3572853A1 (en) 2019-11-27
CN110168418A (zh) 2019-08-23
JP6928621B2 (ja) 2021-09-01

Similar Documents

Publication Publication Date Title
US8256914B2 (en) Arrangement for emitting mixed light
JP5049336B2 (ja) エレクトロルミネセントデバイス
US20190309936A1 (en) Optical component
TWI491061B (zh) 冷光裝置
JP6499381B2 (ja) 蛍光体素子および照明装置
WO2017159696A1 (ja) 蛍光部材および発光モジュール
TWI668295B (zh) Optical wavelength conversion member and light emitting device
Xu et al. Emitting area limitation via scattering control in phosphor film realizing high-luminance laser lighting
US20210184425A1 (en) Phosphor element and illumination device
US11105486B2 (en) Optic and illumination device
WO2018135121A1 (ja) 光学部品および照明装置
KR20100107001A (ko) 산란이 감소된 led를 위한 세라믹 재료 및 그것을 제조하는 방법
JP2018072607A (ja) 光波長変換部材及び発光装置
WO2019065194A1 (ja) 波長変換部材、光源、蛍光体粒子及び波長変換部材の製造方法
TW201910287A (zh) 波長轉換構件及發光裝置
KR102318473B1 (ko) 광 파장 변환 부재의 제조 방법, 광 파장 변환 부재, 광 파장 변환 부품, 및 발광 장치
TWI619906B (zh) 使用光擴散劑之磷光板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018562901

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017892529

Country of ref document: EP

Effective date: 20190819