WO2018134259A1 - Procédé de production de nitrure d'aluminium et nitrure d'aluminium spécial lui-même - Google Patents

Procédé de production de nitrure d'aluminium et nitrure d'aluminium spécial lui-même Download PDF

Info

Publication number
WO2018134259A1
WO2018134259A1 PCT/EP2018/051117 EP2018051117W WO2018134259A1 WO 2018134259 A1 WO2018134259 A1 WO 2018134259A1 EP 2018051117 W EP2018051117 W EP 2018051117W WO 2018134259 A1 WO2018134259 A1 WO 2018134259A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum oxide
dispersion
alumina particles
alumina
mixture
Prior art date
Application number
PCT/EP2018/051117
Other languages
English (en)
Inventor
Bodo Frings
Paul Brandl
Yuan-Chang Huang
Ting-Tai Lee
Janne-Min YANG
Chi-Yuen Huang
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Publication of WO2018134259A1 publication Critical patent/WO2018134259A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the invention relates to a process for producing aluminum nitride and a special aluminum nitride itself.
  • AIN aluminum nitride
  • CNN carbothermal reduction and nitridation
  • DN direct nitridation
  • the CRN process is regarded to proceed according reactions (1 ) to (3).
  • EP-A-434165 discloses a process for preparing an aluminum nitride powder, by starting from an aqueous solution of an inorganic aluminum salt comprising the steps:
  • said suspension is mixed with a carbohydrate, with a suspension being obtained of an aluminum compound and carbon in a solution which contains the carbohydrate;
  • the suspension obtained from the (c) step is sprayed onto, or dropwise added to, an alkaline solution, with spherical bodies being obtained, which contain aluminum hydroxide and carbon;
  • said spherical bodies are carbothermally reduced and nitrided at a temperature comprised within the range of from 1350 to 1650°C for a time comprised within the range of from 1 to 24 hours, so that powders containing aluminum nitride are obtained;
  • carbon is removed from said powders by a calcination step carried out at a temperature comprised within the range of from 600 to 700°C, for a time comprised within the range of from 1 to 7 hours, under an oxygen-containing atmosphere.
  • US5221527 discloses a process for producing aluminum nitride by reacting aluminum hydroxides with carbon in a molar ratio of 1 : 1.5 to 1 :2.5, which comprises
  • drying aluminum hydroxides selected from the group consisting of AIOOH and AI(OH)3 at temperatures of up to 300°C to remove water adhering thereto;
  • EP-A-2530049 discloses a process for producing a spherical aluminum nitride powder comprising particles having a high degree of sphericalness and relatively large particle size of 10 to 200 ⁇ and, specifically, 20 to 50 ⁇ and a BET specific surface area of 0.5 to 20 m 2 /g.
  • Starting material is a spherical granulated alumina powder or an alumina hydrate powder.
  • any alumina can be used if it has a crystal structure such as of ⁇ , ⁇ , ⁇ , ⁇ or ⁇ .
  • Alumina hydrate such as boehmite, diaspore and aluminum hydroxide, changes into a transition alumina upon heating.
  • the alumina and alumina hydrate can be produced by an alkoxide process, Bayer process, ammonium alum thermal decomposition process or ammonium dawsonite thermal decomposition process. Specifically, the alkoxide process makes it possible to obtain the alumina and alumina hydrate having a high purity and a uniform particle size distribution.
  • the object of the invention is a method for producing an aluminum nitride powder comprising the steps of:
  • a1 a particle diameter of not more than 150 nm, preferably 50 to 100 nm, as determined by laser diffraction methods,
  • a2) are selected from the group consisting of gamma aluminum oxide, theta aluminum oxide, delta aluminum oxide, alpha aluminum oxide and mixtures thereof,
  • the mixing of the dispersion of alumina particles with a carbon source material may be achieved by any suitable mixing apparatus, for example wet ball milling.
  • the alumina particles are aggregated.
  • the particle diameter refers to the aggregate diameter.
  • the aggregated alumina particles are of pyrogenic origin.
  • the gamma modification is the main constituent of pyrogenic aluminum oxides.
  • the pyrogenic aluminum oxide powder of the present invention does not comprise alpha aluminum oxide.
  • pyrogenic refers to processes of flame hydrolysis and flame oxidation.
  • aluminum compounds generally aluminum chloride
  • primary particles are formed, which have a compact, approximately spherical shape and are largely free of internal pores. These primary particles subsequently aggregate.
  • the BET surface area of the alumina particles is preferably least 50 m 2 /g, more preferably 50 to 180 g/m 2 , most preferably 120 to 150 m 2 /g.
  • Pyrogenic aluminum oxide powders have a very high purity.
  • the aluminum oxide content of the powder obtained in this way is preferably at least 99.8% by weight, particularly preferably at least 99.9% by weight.
  • the proportion of silicon dioxide in the powder obtained is, in a particular embodiment, less than 0.1 % by weight, particularly preferably less than 0.01 % by weight.
  • the concentration of the aggregated alumina particles in the dispersion is at least 25 wt.-%, preferably 30 to 50 wt.-%.
  • the dispersion of the present invention preferably is an aqueous dispersion.
  • the major part of the liquid phase is water.
  • the liquid phase may also contain organic solvents miscible with the water, e.g. alcohols. Even an organic solution is possible, depending on the carbon source used.
  • carbon is used as the reducing agent.
  • the carbon source material can be carbon black, graphite or carbon precursor that could become the carbon source material at high temperature.
  • Preferred carbon precursors are water soluble cellulose, starch or saccharides. Examples of water-soluble saccharides are glucose and lactose.
  • the molar ratio alumina to carbon from the carbon source material is preferably 1 : 3 to 1 :20, more preferably 1 :5 to 1 : 15.
  • the first dispersion of alumina particles is mixed with the carbon source material to obtain a second dispersion.
  • This second dispersion is dried and optionally pulverized.
  • the second dispersion is dried using a spray drier or a belt dryer to obtain a powdery or granular mixture.
  • This process has proven beneficial in that a sedimentation of the alumina in the second dispersion during storage can be avoided.
  • the dried material does not show any significant gradient of the alumina concentration. A gradient might induce a local excess of alumina, which may result in impurities in the aluminum nitride due to non-reacted alumina.
  • the powdery or granular mixture comprises or consists of alumina particles, selected from the group consisting of gamma aluminum oxide, theta aluminum oxide, delta aluminum oxide, alpha aluminum oxide and mixtures thereof, and a water soluble saccharide, preferably glucose, in a molar ratio alumina to carbon deriving from the saccharide of 1 :3 to 1 :20, preferably 1 :5 to 1 :15.
  • alumina particles selected from the group consisting of gamma aluminum oxide, theta aluminum oxide, delta aluminum oxide, alpha aluminum oxide and mixtures thereof, and a water soluble saccharide, preferably glucose, in a molar ratio alumina to carbon deriving from the saccharide of 1 :3 to 1 :20, preferably 1 :5 to 1 :15.
  • Carbonization is usually carried out in an air oven using temperatures of approx. 200°C.
  • the reduction of the carbonized mixture is done at temperatures below 2000°C, preferably at temperatures of 1300°C to 1700°C, more preferably 1400 to 1600°C.
  • the reaction time usually is from 2 to 10 hours.
  • Another object of the present invention is a AIN powder having a BET surface area of 3-5 m 2 /g, a dso particle diameter of 1 - 2 ⁇ and a span (dgg.gg - dio)/dso of 2.5 to 3.5, wherein dso, dio and dgg.gg are determined by laser diffraction method.
  • Alumina Dispersion 32.00 wt.-% AEROXIDE® Alu C; Evonik Industries; Water; pH 4;
  • alumina dispersion 1000 g was dispersed by ultrasonic homogenizer for 5 minutes, and D50 was measured by laser particle sizer. The D50 was reduced to 60 nm.
  • alumina dispersion was added to the glucose solution with agitating (500 rpm, 30 minutes) to obtain a glucose/alumina slurry.
  • the AI2O3 content in the slurry is 15 wt.-%.
  • the glucose/alumina slurry is dried at 120°C and was subsequently pulverized with alumina mortar.
  • For carbonization the pulverized mixture was added in a cordierite sagger and treated at 250°C for 50 h.
  • the carbonized product was heated in a reduction furnace to a temperature of 1500°C at an heating rate of 5°C / min. The temperature was maintained for 10 h. The atmosphere was nitrogen gas. The gas flow was 20 liter per minutes. After cooling, powders were decarburized in air atmosphere at 650°C for 5h in a conventional muffle furnace to obtain AIN powder.
  • the AIN powder of this invention showed finer and narrower particle size distribution.
  • the specific surface area was also higher than the commercials products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Ceramic Products (AREA)

Abstract

Une méthode de production d'une poudre de nitrure d'aluminium comprend les étapes consistant à : a) fournir une dispersion de particules d'alumine, les particules d'alumine : a1) ayant un diamètre de particule inférieur ou égal à 150 nm tel que déterminé par des méthodes de diffraction laser, a2) étant choisies dans le groupe constitué d'oxyde d'aluminium gamma, d'oxyde d'aluminium thêta, d'oxyde d'aluminium delta, d'oxyde d'aluminium alpha et de mélanges de ceux-ci, b) mélanger la dispersion de particules d'alumine avec un matériau source de carbone pour obtenir un mélange, c) sécher le mélange et éventuellement pulvériser le mélange séché, d) carboniser ledit mélange séché, e) réduire ledit mélange carbonisé dans une atmosphère contenant de l'azote gazeux, et f) décarboniser le produit fritté pour obtenir la poudre de nitrure d'aluminium.
PCT/EP2018/051117 2017-01-18 2018-01-17 Procédé de production de nitrure d'aluminium et nitrure d'aluminium spécial lui-même WO2018134259A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17151951 2017-01-18
EP17151951.5 2017-01-18

Publications (1)

Publication Number Publication Date
WO2018134259A1 true WO2018134259A1 (fr) 2018-07-26

Family

ID=57914705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/051117 WO2018134259A1 (fr) 2017-01-18 2018-01-17 Procédé de production de nitrure d'aluminium et nitrure d'aluminium spécial lui-même

Country Status (2)

Country Link
TW (1) TW201838913A (fr)
WO (1) WO2018134259A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109293368A (zh) * 2018-12-06 2019-02-01 石家庄学院 一种氮化铝粉体的制备方法
CN109437130A (zh) * 2018-11-11 2019-03-08 淄博市新阜康特种材料有限公司 氮化铝粉体的制备方法
CN109437918A (zh) * 2018-12-07 2019-03-08 中国电子科技集团公司第四十三研究所 一种氮化铝粉体及其制备方法和应用
CN109879257A (zh) * 2018-11-11 2019-06-14 淄博市新阜康特种材料有限公司 一种氮化铝粉体的制备方法
CN116443824A (zh) * 2023-04-19 2023-07-18 南昌宝弘新材料技术有限公司 一种基于有机碳源的氮化铝的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0272493A2 (fr) * 1986-11-28 1988-06-29 Kawasaki Steel Corporation Procédé pour préparer du nitrure d'aluminium
JPH01100006A (ja) * 1987-10-14 1989-04-18 Nippon Light Metal Co Ltd 窒化アルミニウム粉体の製造方法
JPH02296707A (ja) * 1989-05-10 1990-12-07 Onoda Cement Co Ltd 窒化アルミニウム粉末の製造方法
EP0434165A1 (fr) 1989-12-21 1991-06-26 TEMAV S.p.A. Procédé pour la préparation des poudres fines de nitrure d'aluminium
EP0464369A1 (fr) * 1990-06-30 1992-01-08 Hoechst Aktiengesellschaft Procédé de préparation de nitrure d'aluminium
EP0487728A1 (fr) * 1989-08-07 1992-06-03 Sumitomo Chemical Company, Limited Procede de production de poudre de nitrure d'aluminium enrobee avec des oxydes, oxynitrides ou nitrides d'yttrium
EP2530049A1 (fr) 2010-01-29 2012-12-05 Tokuyama Corporation Procédé de fabrication de poudre sphérique de nitrure d'aluminium, et poudre sphérique de nitrure d'aluminium obtenue par ce procédé
EP2650259A1 (fr) * 2010-12-06 2013-10-16 Tokuyama Corporation Poudre de nitrure d'aluminium et procédé pour la fabriquer
JP2015101510A (ja) * 2013-11-25 2015-06-04 株式会社アドマテックス シリカ被覆金属窒化物粒子およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0272493A2 (fr) * 1986-11-28 1988-06-29 Kawasaki Steel Corporation Procédé pour préparer du nitrure d'aluminium
JPH01100006A (ja) * 1987-10-14 1989-04-18 Nippon Light Metal Co Ltd 窒化アルミニウム粉体の製造方法
JPH02296707A (ja) * 1989-05-10 1990-12-07 Onoda Cement Co Ltd 窒化アルミニウム粉末の製造方法
EP0487728A1 (fr) * 1989-08-07 1992-06-03 Sumitomo Chemical Company, Limited Procede de production de poudre de nitrure d'aluminium enrobee avec des oxydes, oxynitrides ou nitrides d'yttrium
EP0434165A1 (fr) 1989-12-21 1991-06-26 TEMAV S.p.A. Procédé pour la préparation des poudres fines de nitrure d'aluminium
EP0464369A1 (fr) * 1990-06-30 1992-01-08 Hoechst Aktiengesellschaft Procédé de préparation de nitrure d'aluminium
US5221527A (en) 1990-06-30 1993-06-22 Hoechst Aktiengesellschaft Process for producing aluminum nitride
EP2530049A1 (fr) 2010-01-29 2012-12-05 Tokuyama Corporation Procédé de fabrication de poudre sphérique de nitrure d'aluminium, et poudre sphérique de nitrure d'aluminium obtenue par ce procédé
EP2650259A1 (fr) * 2010-12-06 2013-10-16 Tokuyama Corporation Poudre de nitrure d'aluminium et procédé pour la fabriquer
JP2015101510A (ja) * 2013-11-25 2015-06-04 株式会社アドマテックス シリカ被覆金属窒化物粒子およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109437130A (zh) * 2018-11-11 2019-03-08 淄博市新阜康特种材料有限公司 氮化铝粉体的制备方法
CN109879257A (zh) * 2018-11-11 2019-06-14 淄博市新阜康特种材料有限公司 一种氮化铝粉体的制备方法
CN109293368A (zh) * 2018-12-06 2019-02-01 石家庄学院 一种氮化铝粉体的制备方法
CN109293368B (zh) * 2018-12-06 2021-08-10 石家庄学院 一种氮化铝粉体的制备方法
CN109437918A (zh) * 2018-12-07 2019-03-08 中国电子科技集团公司第四十三研究所 一种氮化铝粉体及其制备方法和应用
CN116443824A (zh) * 2023-04-19 2023-07-18 南昌宝弘新材料技术有限公司 一种基于有机碳源的氮化铝的制备方法

Also Published As

Publication number Publication date
TW201838913A (zh) 2018-11-01

Similar Documents

Publication Publication Date Title
WO2018134259A1 (fr) Procédé de production de nitrure d'aluminium et nitrure d'aluminium spécial lui-même
JP4579907B2 (ja) ナノ多孔質超微細アルファ−アルミナ粉末及び該粉末を調製するゾル−ゲル法
US8088355B2 (en) Transitional alumina particulate materials having controlled morphology and processing for forming same
KR100812052B1 (ko) 탄산세륨 분말, 산화세륨 분말, 그 제조방법, 및 이를포함하는 cmp 슬러리
US7993445B2 (en) Nanoparticles of alumina and oxides of elements of main groups I and II of the periodic table, and their preparation
JP4347884B2 (ja) ナノサイズα−アルミナ粉末及びそれを含むスラリーの製造方法
CN105836770B (zh) 一种耐高温勃姆石的制备方法
US20090041656A1 (en) Nanoparticles of alumina and oxides of elements of main groups I and II of the periodic table, and their preparation
KR20060043550A (ko) α―알루미나 입자의 제조 방법
FR2884511A1 (fr) Procede de production de fines particules d'alpha-alumine et de fines particules d'un compose metallique, et fines particules ainsi obtenues
JPH02239113A (ja) ベーマイトの製造方法
KR20100075742A (ko) 알루미나의 제조방법
JP4595383B2 (ja) 微粒αアルミナの製造法
JPH05117636A (ja) α−三酸化アルミニウムを基礎とする多結晶性の焼結研磨粒子、この研磨粒子からなる研磨剤、研磨粒子の製造法および耐火性セラミツク製品の製造法
Tajizadegan et al. Influence of different alumina precursors on structural properties and morphology of ZnO‐Al2O3 nanocomposite powder
JP2869287B2 (ja) 板状ベーマイト粒子の製造方法
KR101728517B1 (ko) 습식 혼합된 보헤마이트 슬러리를 이용한 질화알루미늄의 제조 방법
ZA200703961B (en) Transitional alumina particulate materials having controlled morphology and processing for forming same
JP4251124B2 (ja) 微粒αアルミナの製造方法
WO1992019536A1 (fr) Procede de preparation de particules d'alumine d'une grosseur inferieure au micron
JP4386046B2 (ja) 微粒αアルミナの製造方法
JP4442214B2 (ja) 微粒αアルミナの製造方法
JP6010843B2 (ja) 微粒子α−アルミナの製造法
JPH09110420A (ja) 易焼結性の酸化アルミニウム粉末及びイットリウムアルミニウムガーネット粉末の製造方法
JPS63297207A (ja) 窒化アルミニウム粉末の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18700425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18700425

Country of ref document: EP

Kind code of ref document: A1