WO2018133804A1 - 路径规划方法和装置 - Google Patents

路径规划方法和装置 Download PDF

Info

Publication number
WO2018133804A1
WO2018133804A1 PCT/CN2018/073113 CN2018073113W WO2018133804A1 WO 2018133804 A1 WO2018133804 A1 WO 2018133804A1 CN 2018073113 W CN2018073113 W CN 2018073113W WO 2018133804 A1 WO2018133804 A1 WO 2018133804A1
Authority
WO
WIPO (PCT)
Prior art keywords
regions
signal quality
pass cost
pass
signal
Prior art date
Application number
PCT/CN2018/073113
Other languages
English (en)
French (fr)
Other versions
WO2018133804A9 (zh
Inventor
包鼎华
张志军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18742359.5A priority Critical patent/EP3567447B1/en
Publication of WO2018133804A1 publication Critical patent/WO2018133804A1/zh
Publication of WO2018133804A9 publication Critical patent/WO2018133804A9/zh
Priority to US16/515,491 priority patent/US20190339080A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0217Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with energy consumption, time reduction or distance reduction criteria
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3461Preferred or disfavoured areas, e.g. dangerous zones, toll or emission zones, intersections, manoeuvre types, segments such as motorways, toll roads, ferries
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • Embodiments of the present invention relate to the field of intelligent control, and more particularly, to a path planning method and apparatus.
  • Path planning is an important branch in the field of intelligent control research. Using good path planning technology can save the working time of intelligent executing devices (for example, robots), improve the efficiency of executing tasks, and improve the quality of executing tasks.
  • intelligent executing devices for example, robots
  • a map may be adopted to implement path planning.
  • the map includes location information and information of obstacles, so that the smart executing device can find a path capable of bypassing the obstacle based on the map.
  • the embodiment of the invention provides a path planning method and device, which can implement a more optimized path planning.
  • a path planning method including: obtaining, according to a traffic distance of each of the plurality of first regions, and a signal quality of a wireless signal of each of the first regions, Passing cost of the first area; obtaining a starting position and a target position; determining a path to the target position from the starting position according to the path planning by the pass cost of each of the first areas,
  • the pass path includes an area that passes from the starting position to the target position.
  • a pass cost through each of the first regions is obtained, and according to the pass cost, Path planning is performed so that when the path planning is performed, not only the traffic distance of the area but also the signal quality of the wireless signal at the area can be considered, a more optimized path planning can be realized, and the traffic distance and signal quality can be uniformly quantized.
  • the intelligent execution device can obtain the traffic path based on the traffic cost when performing path planning, which can save the working time of the intelligent execution device and improve the efficiency of executing the task.
  • the pass path may be the path with the least cost.
  • the method further includes: generating a signal quality map according to a pass cost through each of the first regions, the signal quality map including a pass cost through each of the first regions, for marking Determining a signal quality of each of the first regions within a plurality of first region coverages; determining, based on the pass cost of each of the first regions, path planning from the starting location
  • the transit path of the target location includes determining, based on the signal quality map, the transit path based on a pass cost through each of the regions within the coverage of the plurality of regions.
  • the traffic cost at each of the first regions is obtained, and each of the indications is generated A better map can be obtained from the signal quality map of the regional pass cost.
  • the signal quality map may be a pass cost list or a global peer cost topology map.
  • the obtaining, by the transit distance of each of the plurality of first regions, and the signal quality of the wireless signal of each of the first regions, obtaining a pass cost through each of the first regions includes: determining, according to the transit distance of each of the first regions, a first pass cost component corresponding to the pass distance of each of the first regions; according to a signal quality of the wireless signal of each of the first regions, Determining a second pass cost component corresponding to a signal quality of the wireless signal of each of the first regions; calculating, according to the first pass cost component and the second pass cost component of each of the first regions Through the pass cost of each of the first regions.
  • the traffic cost of the task type in each region is separately calculated, so that when the path planning of a certain task type is performed, the traffic cost of each region for the task type can be directly obtained, thereby A more optimized path planning can be achieved.
  • the method further includes: acquiring at least one type of task to be executed when passing the path; acquiring the first first according to a signal quality of the wireless signal of each of the first regions a second pass cost component corresponding to the pass distance of the region, comprising: obtaining, according to a signal quality of the at least one wireless signal available in each of the at least one task type, at each of the first regions a second pass cost component corresponding to each of the first types of the task types; the first pass cost component and the second pass cost component according to the each first region, Calculating a pass cost through each of the first regions, including: according to the first pass cost component of each of the first regions, and corresponding to each of the first regions in each of the task types a two-pass cost component, calculating a pass cost through each of the first regions when performing each of the task types; the path planning according to the pass cost through each of the first regions Comprising: the type of task when executed by said each of said cost of each of the first passage region for performing the determining the type of each task of the
  • the at least one task type includes a first task type
  • the obtaining performs the second pass cost component corresponding to each task type at each of the first regions, including: according to Determining, in each of the first regions, a signal quality of the at least one wireless signal whose signal quality satisfies a predetermined condition in the wireless signal available in the first task type, determining the first task type in each of the first regions The corresponding second pass cost component.
  • the determining the second pass cost component corresponding to the first task type at each of the first regions comprises: according to each of the first regions, the first task type is available Determining a signal quality of the at least one wireless signal having the best signal quality in the wireless signal, determining a second pass cost component corresponding to the first task type at each of the first regions; wherein the first region is An area that satisfies the condition that, at the first area, the at least one wireless signal having the highest signal quality among the available wireless signals of the first task type satisfies the requirements of the first task type for wireless signals .
  • the method further includes: determining at least one second region, wherein at the second region, the signal of the at least one wireless signal with the best signal quality of the wireless signal available for the first task type The quality does not satisfy the requirement of the first task type for the wireless signal; when performing the path planning, each of the at least one second region is regarded as an obstacle.
  • the method further includes: acquiring a plurality of task types to be executed when passing the path; and acquiring each of the first regions according to a signal quality of the wireless signal of each of the first regions
  • the second pass cost component corresponding to the signal quality of the wireless signal comprising: acquiring the plurality of task types as a whole according to signal quality of at least one wireless signal available for each of the plurality of task types a second pass cost component corresponding to each of the first regions; the first pass cost component and the second pass cost component according to each of the first regions are calculated by each of the
  • the pass cost of the first area includes: a second pass cost component corresponding to each of the plurality of task types as a whole at each of the first areas, according to the first pass cost component of each of the first areas, Calculating a corresponding traffic cost of the plurality of task types as a whole at each of the first regions; the path rules are performed according to the traffic cost through each of the first regions , Comprising: a plurality of tasks according to the type as a whole in the
  • the plurality of task types can be used as a traffic cost at each region as a whole, thereby directly acquiring each region for the plurality of tasks when performing multiple path planning needs to be performed.
  • the overall cost of the operation can save the processing time of the intelligent execution device and improve the processing efficiency.
  • the acquiring the plurality of task types as a whole corresponding to the second pass cost component at each of the first regions including: according to each of the first regions, the multiple task types a signal quality of at least one type of wireless signal available for each type of task, resulting in a second pass cost component corresponding to each of said task types at said first region; said plurality of task types being said A plurality of corresponding second pass cost components at each of the first regions are weighted to obtain the second pass cost component corresponding to the plurality of task types as a whole at the first region.
  • the first area is an area that satisfies the following conditions: at each of the first areas, a signal quality of a wireless signal available for each of the plurality of task types meets each of the tasks Type requirements for wireless signals.
  • the method further includes: determining at least one third area, wherein, at the third area, a signal quality of a wireless signal corresponding to at least one of the multiple task types is not satisfied Determining a signal quality requirement of at least one task type; each third region of the at least one third region is regarded as an obstacle when performing path planning.
  • determining, according to the signal quality of the wireless signal of each of the first regions, a second pass cost component corresponding to a signal quality of the wireless signal of each of the first regions including: according to the wireless signal The correspondence between the signal quality interval and the pass cost component, and the signal quality of the wireless signal of each of the regions, determines the acquisition of the second pass cost component of each of the first regions.
  • the obtaining, by the transit distance of each of the plurality of first regions, and the signal quality of the wireless signal of each of the first regions, obtaining a pass cost through each of the first regions includes: obtaining a pass cost through each of the first regions in a statistical manner according to a pass distance of each of the first regions, and a signal quality of the wireless signals of each of the first regions acquired multiple times; Or, according to the passing distance of each of the first regions, and the signal quality of the wireless signals of each of the first regions acquired in real time, obtaining a transit cost through each of the first regions in real time; or, according to The transit distance of each of the first regions, and the predicted signal quality of the wireless signals of each of the first regions, obtains a pass cost through each of the first regions.
  • the passing distance according to each of the first areas, and the signal quality of the wireless signal of each of the first areas acquired multiple times are acquired in a statistical manner through each of the first areas.
  • the pass cost includes: in the case where the rate of change of the direction and/or the intensity of the wireless signal of each of the first regions is less than or equal to the first threshold, according to the travel distance of each of the first regions, and multiple times Acquiring the signal quality of the wireless signal of each of the first regions, and obtaining the traffic cost through each of the first regions in a statistical manner.
  • the passing distance of each of the first areas is obtained in real time according to the passing distance of each of the first areas, and the signal quality of the wireless signals of each of the first areas acquired in real time
  • the method includes: in a case where a rate of change of a wireless signal direction and/or an intensity of each of the first regions is greater than a second threshold, according to a transit distance of each of the first regions, and each of the first acquired in real time
  • the signal quality of the wireless signal of an area acquires the pass cost through each of the first areas in real time.
  • the wireless signal is a satellite signal
  • a signal quality of the wireless signal includes a positioning accuracy of the wireless signal, a passing distance according to each of the first regions, and each of the predicted first The signal quality of the wireless signal of the region, before acquiring the pass cost through each of the first regions, the method further comprising: transmitting according to the first time received at other regions outside the first region a satellite signal determining a satellite arrangement at the first time at the other region; each of the first region and the other according to a satellite arrangement at the first time at the other region a positional relationship of the regions, and a law of operation of the satellite, determining a satellite arrangement at a second time at each of the first regions; predicting a satellite arrangement at a second time at each of the first regions The positioning accuracy of the satellite signal at the second moment of each of the first regions.
  • the signal quality value of the wireless signal comprises at least one of: an intensity of the wireless signal, a rate of change of a direction and/or an intensity of the wireless signal, and a positioning accuracy of the wireless signal.
  • the wireless signal comprises at least one of a wireless electromagnetic signal, a geomagnetic signal, an infrared signal, and an acoustic signal.
  • the signal quality value of the wireless signal comprises at least one of: an intensity of the wireless signal, a rate of change of a direction and/or an intensity of the wireless signal, and a positioning accuracy of the wireless signal.
  • the wireless signal comprises at least one of a wireless electromagnetic signal, a geomagnetic signal, an infrared signal, and an acoustic signal.
  • a path planning apparatus in a second aspect, can include means for performing the method of the first aspect or any alternative implementation thereof.
  • a path planning apparatus may include a memory and a processor, wherein the memory may store program code, and the processor and the memory communicate with each other through an internal connection path, and the processor may call The program code stored in the memory performs the method of the first aspect or any alternative implementation thereof.
  • a storage medium is provided, the storage medium being operative to store program code, the program code stored in the memory being operative by a processor to perform the method of the first aspect or any alternative implementation thereof.
  • FIG. 1 is a schematic diagram of a system for path planning in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a path planning method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of path planning according to a pass cost, in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of path planning according to a pass cost, in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of path planning according to a pass cost according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of path planning according to a transit cost, in accordance with an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of path planning according to a pass cost, in accordance with an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a map generation method according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a path planning method according to an embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of a path planning apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of a map generation device in accordance with an embodiment of the present invention.
  • Figure 12 is a schematic block diagram of a path planning apparatus in accordance with an embodiment of the present invention.
  • Figure 13 is a schematic block diagram of a processing device in accordance with an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a system for path planning in accordance with an embodiment of the present invention. As shown in FIG. 1, in the system, a generator 110 of wireless signals and an intelligent execution device 120 may be included.
  • the wireless signal generating body 110 may be an artificially manufactured device, or a naturally occurring object or life.
  • the artificially manufactured device can be a network device, a satellite, a terminal device, etc.
  • the wireless signal can be a wireless communication signal, a wireless network signal, or a wireless positioning signal.
  • a naturally occurring object may be the earth, a natural object existing in the earth, for example, flowing water, etc.
  • the life may be an animal or a human, etc.
  • the wireless signal may be a geomagnetic signal, an infrared signal, an acoustic signal, or the like.
  • the intelligent execution device 120 may perform path planning based on the signal quality of the wireless signal generated by the generator 110 of the wireless signal.
  • the smart execution device 120 may generate a signal quality map based on the signal quality of the wireless signal and perform path planning based on the signal quality map.
  • system can also include an intelligent execution device 130.
  • the smart executive device 120 can also transmit the generated signal quality map to the smart executive device 130.
  • the intelligent execution device 130 may perform path planning based on the signal quality map transmitted by the smart execution device 120.
  • the smart execution device mentioned in the embodiment of the present invention may refer to a machine device that automatically performs work, for example, may be a robot, a driverless car, or a drone.
  • the intelligent actuators 120 and 130 shown in FIG. 1 are robots, they are merely for the reader's understanding and are not intended to limit the scope of the invention.
  • the manner in which the wireless signal generator 110 is illustrated should not be construed as limiting the scope of the embodiments of the invention.
  • the candidate area When performing path planning, the candidate area can be divided into multiple areas, and the traffic cost through the area is marked in all or part of the area.
  • the greater the cost of the passage means the higher the cost to be paid through the area, in the path planning process.
  • the probability of being selected is smaller.
  • the pass cost may be a value, and all regions may obtain a unitless value corresponding to each region based on the same criterion.
  • the following describes in detail how to obtain the traffic cost through multiple regions, and generates a signal quality map based on the traffic costs of multiple regions, and describes how to perform path planning according to the traffic cost of multiple regions.
  • FIG. 2 is a schematic flowchart of a path planning method 200 according to an embodiment of the present invention.
  • the method 200 can be applied to the system shown in FIG.
  • the method can optionally be performed by the smart executive device 120 shown in FIG. It should be understood that the method 200 can be performed by other devices, and the embodiment of the present invention is only described by taking an intelligent execution device as an example.
  • the method 200 includes the following.
  • a pass cost through each of the first regions is obtained according to a traffic distance of each of the plurality of first regions and a signal quality of the wireless signal of each of the first regions.
  • the smart execution device may directly detect the signal quality of the wireless signal at each area, or may receive the signal quality of the wireless signal sent by other devices, or may also receive the signal quality of the manually input wireless signal.
  • the intelligent execution device may traverse the respective regions to obtain the signal quality of the wireless signal when directly detecting the signal quality of the wireless signal at each region for calculating the traffic cost.
  • the area mentioned in the embodiment of the present invention may be referred to as a node, and the area may be a square structure, or may be a rectangle, a hexagon or any other shape.
  • the travel distances of all the areas in a map may be the same or different.
  • the transit distance of the first area refers to a length between any two points of the first area.
  • the area division is performed in a grid manner, and the length between any two points may be a straight-through distance or The distance through which the oblique line passes.
  • the wireless signal mentioned in the embodiment of the present invention may include at least one of a wireless electromagnetic signal, a geomagnetic signal, an infrared signal, and an acoustic signal.
  • the signal quality of the wireless signal comprises at least one of: an intensity of the wireless signal, a rate of change of a direction and/or an intensity of the wireless signal, and a positioning accuracy of the wireless signal.
  • the signal quality of the wireless signal may be considered by other means, depending on the task to be performed.
  • the embodiment of the present invention does not specifically limit this.
  • the wireless electromagnetic signal includes, but is not limited to, a wireless network signal, a wireless communication signal, and a wireless positioning signal.
  • wireless electromagnetic signal communication with the network terminal device can be realized can be referred to as a wireless communication signal
  • the wireless communication signal includes, but not limited to the fifth-generation communication technology (5 th generation, 5G) signal, a fourth-generation communication technology (4 th generation, 4G) signal, a third-generation communication technology (3 th generation, 3G) signal, a second generation communication technologies (2nd generation, 2G) signal, a CDMA (Code Division Multiple Access, CDMA) signal, Frequency division multiple access (FDMA) signal, time division multiple access (TDMA) signal, Global System for Mobile Communication (GSM) signal, wireless local area network (WLAN) Signal, Worldwide Interoperability for Microwave Access (WiMAX) signals, and Wireless Fidelity (WIFI) signals.
  • 5G fifth-generation communication technology
  • 4G fourth-generation communication technology
  • 3 th generation, 3G third-generation communication technology
  • 2nd generation, 2G second generation communication technologies
  • CDMA Code Division Multiple Access
  • FDMA Frequency division multiple access
  • wireless electromagnetic signals that can be wirelessly communicated can be referred to as wireless communication signals, including but not limited to Bluetooth signals, zigbee signals, 2.4G digital transmissions, infrared signals, radio communication signals, and the like.
  • wireless electromagnetic signals that can be wirelessly positioned may be referred to as wireless positioning signals, wherein the wireless positioning signals may include, but are not limited to, Global Positioning System (GPS) signals, WIFI, base station positioning signals, Bluetooth, Radio Frequency Identification (RFID) signal, or Ultra Wideband (UWB).
  • GPS Global Positioning System
  • WIFI Wireless Fidelity
  • base station positioning signals Bluetooth
  • RFID Radio Frequency Identification
  • UWB Ultra Wideband
  • the geomagnetic signal can be used for positioning, and the signal quality of the geomagnetic signal can include the stability and strength of the geomagnetic signal, the stability refers to the stability of the geomagnetic direction, and the stability of the geomagnetic strength.
  • the infrared signal can be used for positioning and detection, and the like.
  • the acoustic signal may include an ultrasonic signal, which may enable positioning, detection, and the like.
  • the first area mentioned in the embodiment of the present invention may be any area in the candidate area, or may be an area that satisfies certain conditions, for example, an area with better signal quality, in which the pass cost can be calculated. For areas that do not meet the conditions, such as areas with poor signal quality, the area can be directly considered as an obstacle.
  • the pass cost through the first region in embodiments of the present invention may sometimes also be referred to as the pass cost of the first region or the pass cost at the first region.
  • the smart execution device may generate a signal quality map according to a pass cost through each of the first regions, where the signal quality map includes a pass cost through each of the first regions And for indicating signal quality of each of the first regions in the coverage of the plurality of first regions, the signal quality map may perform path planning.
  • the signal quality map may be a pass cost list or a global peer cost topology map.
  • the signal quality map may mark the signal quality of the wireless signal, but it does not mean that the traffic cost of each area in the map is only related to the signal quality of the wireless signal, and also to each area.
  • the transit distance is related. For example, if the traffic distance is inconsistent, the same traffic cost may be different for the signal quality of the wireless signal.
  • the smart execution device may not generate a map, but directly perform path planning according to the transit cost of the plurality of first regions.
  • the intelligent execution device may adopt the wireless signal quality acquired multiple times, and obtain the traffic cost at the corresponding area by using statistics or voting; or, the signal quality of the wireless signal acquired in real time may be used to obtain the corresponding area in real time.
  • the traffic cost at the location; or, the signal quality of the wireless signal can be predicted to obtain the traffic cost of the corresponding region.
  • the signal quality map may be generated by using the wireless signal quality acquired multiple times, and the traffic cost at the corresponding area obtained by statistics or voting, or the signal quality of the wireless signal acquired in real time may be used.
  • the traffic cost at the area is updated in real time on the signal quality map; or the signal quality of the corresponding region of the signal quality of the wireless signal can be predicted to generate a signal quality map.
  • the statistical method refers to performing unified processing on the quality of the wireless signal acquired multiple times, for example, weighting processing, etc., to obtain the traffic cost at the corresponding area.
  • the voting method is to select the signal quality of the wireless signal acquired in part from the signal quality of the wireless signal acquired multiple times to obtain the traffic cost of the corresponding area.
  • the use of statistics or voting to obtain the pass cost, or to obtain the pass cost in real time, or to obtain the pass cost in a predictive manner, or a combination of the two ways to obtain the pass cost may be determined in conjunction with the actual situation.
  • the traffic cost of the corresponding region may be obtained in a statistical manner; when the signal quality of the wireless signal is poor, the traffic cost of the corresponding wireless may be obtained in real time. .
  • the stability of the signal quality of the wireless signal may refer to the strength of the wireless signal and/or the stability of the direction. For example, if the rate of change of the strength of the wireless signal is less than or equal to a predetermined value or the rate of change of the direction is less than or equal to a predetermined value, It is considered to be better in stability.
  • the rate of change of the direction of the wireless signal may include a rate of change of the pointing angle of the wireless signal, and the like.
  • the wireless signal is a predictable wireless signal, that is, the signal quality of the wireless signal at another time and/or another region can be predicted by the signal quality of the wireless signal at a certain time and/or a certain region.
  • the wireless signal can be considered as a predictable wireless signal.
  • the intelligent execution device uses satellite signal positioning outdoors, records the positioning accuracy at different times and at different locations, the number of visible satellites, the distribution of visible satellites caused by occlusion, and the area where the satellites in the orbit are located, and uses these data to calculate Signal quality map at any point in the future.
  • the intelligent execution device records the GPS coordinates of a certain area, and combines the satellite regions solved from the GPS ephemeris to obtain a predicted distribution of visible satellites, and compares the actual distribution of satellites exceeding a certain carrier-to-noise ratio threshold.
  • the statistical method can learn the occlusion of the area.
  • Signal quality maps can be generated based on occlusion conditions at different locations.
  • the distribution of the satellite in the region at a certain moment in the future may be determined according to the obtained occlusion condition, and the error estimate of the latitude and longitude calculation may be obtained by using the constellation distribution.
  • the error estimate is less than the preset threshold, it is considered that the signal quality of this area is good at some time in the future, otherwise it is poor.
  • the place where the occlusion is severe the positioning cannot be located or the positioning accuracy is poor.
  • Such a place is defined as no signal, so that it can be calculated. The cost and generate a signal quality map.
  • the satellite arrangement of the first time at the other area may be determined based on the satellite signal transmitted at the first time received in the other area outside the first area; according to the first at the other area
  • the satellite arrangement at the second moment is to predict the positioning accuracy of the satellite signal at the second moment of each of the first region points.
  • the traffic quality map may mark the traffic cost at the first time at the second time.
  • the signal quality map in the embodiment of the present invention may include a traffic cost for each region at multiple regions, where the traffic cost of each region may include multiple traffic costs, for example, may include predictions at various times The cost of the passage, thus, in the path planning, the traffic cost at each moment in a certain region and the time at which it is run can be obtained, and the corresponding path planning at the region can be obtained, so that a better path can be selected.
  • the traffic cost at each of the first regions is obtained according to the traffic distance of each of the plurality of first regions and the signal quality of the wireless signal of each of the first regions. Therefore, when generating the signal quality map, the traffic cost at each of the regions is identified in each of the regions, whereby when generating the signal quality map, not only the traffic distance of the region but also the wireless location at the region can be considered.
  • the signal quality of the signal quantifies the traffic distance and the signal quality of the wireless signal to obtain a pass-through cost, so that a better signal quality map can be obtained, so that the application range of the signal quality map is wider, and a better path planning can be realized.
  • the traffic distance and the signal quality are uniformly quantified as the traffic cost, so that the robot can obtain the transit path based on the traffic cost when performing path planning, which can save the robot working time and improve the efficiency of executing the task.
  • the first traffic cost component corresponding to the traffic distance may be calculated, and the wireless The second pass cost component corresponding to the signal quality of the signal, combined with the first pass cost component and the second pass cost component, yields a pass cost through the region.
  • the first pass cost component of the first region and the second pass cost component may be added to obtain a pass cost for the first region.
  • the first pass cost component of the first region and the second pass cost component of the first region may be weighted to obtain a pass cost of the first region, where the weighting coefficient may be specific Depending on the situation, for example, if the task to be executed is more sensitive to the traffic distance of the area, the weighting factor of the size can be set higher.
  • the second pass cost may be a coefficient multiplied by the first pass cost component to obtain a pass cost, and then the first pass cost component and the coefficient may be combined to obtain the first region.
  • the cost of the passage may be a coefficient multiplied by the first pass cost component to obtain a pass cost, and then the first pass cost component and the coefficient may be combined to obtain the first region. The cost of the passage.
  • the third pass cost component at the area according to the contact surface state of each area, The first pass cost component, the second pass cost component, and the third pass cost component may be added or weighted to obtain a pass cost for the region.
  • determining the second pass cost component of each of the first regions may be determined according to a correspondence between a signal quality interval of the wireless signal and a traffic cost, and a signal quality of the wireless signal of each region.
  • the signal quality of the wireless signal can be divided into three levels of good, medium and poor, each level includes a range of values that can be quantified, and each level can correspond to a different second pass cost component, and the signal of the wireless signal is acquired. After the quality, the level to which the signal quality of the wireless signal belongs can be determined, and the second pass cost component corresponding to the level is obtained.
  • the coefficient corresponding to the signal quality of the wireless signal is 1, the corresponding coefficient in the signal quality of the wireless signal is 5, the coefficient corresponding to the signal quality difference of the wireless signal is 10, and the distance corresponding to the distance at a certain area is 10 (straight line) and 14 (oblique line), if the signal quality of the wireless signal at the area is poor, the traffic cost of the straight line and the oblique line at the area can be determined as 100 and 140 if the wireless signal at the area If the signal quality is medium, the traffic cost of the straight line and the oblique line at the area can be determined as 50 and 70. If the signal quality of the wireless signal at the area is good, the straight line and the oblique line can be used at the area. The cost is determined to be 10 and 14.
  • a traffic cost may be set in the signal quality map for each of the plurality of wireless signals in combination with the traffic distance, and when the task is performed by using the signal quality map, the task may be determined.
  • the wireless signal is used and path planning is performed using the pass-through cost obtained based on the available wireless signal.
  • the traffic cost of each area may be obtained by combining at least one type of task to be executed. And optionally, the traffic cost corresponding to the task type may be marked in the signal quality map, and when the task is performed by using the signal quality map, the traffic cost corresponding to the task may be determined, and path planning is performed.
  • the tasks to be performed include, but are not limited to, at least one of positioning, communication, networking, detection, and identification.
  • the intelligent execution device is in an indoor space, wherein the positioning mainly adopts a WIFI and a Bluetooth composite mode, and the intelligent execution device can continuously according to the intensity, positioning accuracy, and observable beacon of the two wireless signals in different regions during the continuous operation. Calculating the pass cost, and then obtaining a signal quality map containing two signal qualities, the planned path on the signal quality map can ensure the positioning accuracy of the intelligent execution device.
  • the signal quality map generation method can be as follows: a region can receive at least four WIFI APs with acceptable strength or four strengths.
  • the Bluetooth beacon signal then the signal passing through the cost is recorded as 20 and 28; if the observed WIFI AP or beacon itself belongs to a better area, the positioning accuracy is higher, then the traffic cost at the area is 10 and 14; If an area receives less than three WIFI APs or Bluetooth beacons, the pass charges are recorded as 50 and 70; if only one AP or beacon signal is received, the pass charges are recorded as 100 and 140; others are recorded as obstacles. Things.
  • the wireless pass cost is determined in combination with the wireless signal quality requirements of the task type and the signal quality of the wireless signal. For example, if both task type A and task type B use signal a, task type A pairs signal a. The quality requirement is higher than the requirement of the task type B for the signal quality, then the same signal quality, the traffic cost component corresponding to the task type A (or the coefficient multiplied by the first pass cost component corresponding to the traffic distance) is higher than the task type. The traffic cost component corresponding to B (or the coefficient multiplied by the first traffic cost component corresponding to the traffic distance).
  • the following describes how to combine the mode types to be executed to obtain the traffic cost at each area when generating the signal quality map in combination with mode A and mode B.
  • Acquiring at least one type of task to be executed obtaining, according to signal quality of the at least one wireless signal available in each of the at least one of the at least one task type, each of the task types a second pass cost component at the first region; calculating the first pass cost component of each of the first regions, and a second pass cost component of each of the task types at each of the first regions The pass cost for each type of task at each of the first regions.
  • the signal quality map may be generated according to a pass cost of each task type at each of the first regions, wherein the signal quality map includes a pass of the each task type at each of the first regions cost.
  • the traffic cost of the task type in each area is calculated separately, so that when performing path planning of a certain task type, the traffic cost of each area for the task type can be directly obtained. Therefore, a better path planning can be achieved.
  • the pass rate when calculating the second pass cost component of each task type in a certain area, can be determined according to the requirements of the task type on the quality of the wireless signal and the signal quality of the wireless signal.
  • the at least one task type includes a first task type, according to a signal quality of the at least one wireless signal whose signal quality meets a predetermined condition in the wireless signal available in the first task type according to each of the first regions Determining a second pass cost component of the first task type at each of the first regions.
  • the at least one wireless signal that satisfies the predetermined condition may refer to at least one wireless signal whose value of the signal quality of the wireless signal is greater than a predetermined value, or at least one wireless signal whose signal quality is optimal for the wireless signal.
  • the quality can be selected.
  • the better wireless signal performs the calculation of the pass cost component. For example, if the task is located, if the signal that can be located at a certain area includes an access point (AP) signal and a geomagnetic signal, two signals can be acquired. The positioning accuracy determines the positioning accuracy of the wireless signal with better positioning accuracy as a parameter for determining the traffic cost at the area.
  • AP access point
  • geomagnetic signal two signals can be acquired.
  • the positioning accuracy determines the positioning accuracy of the wireless signal with better positioning accuracy as a parameter for determining the traffic cost at the area.
  • the second pass cost component can be calculated in combination with the signal quality of the plurality of wireless signals, for example, weighting the signal quality of the plurality of wireless signals. Processing, weighting the obtained signal quality for calculating the second pass cost component, or calculating the second pass cost component separately for the signal quality of the plurality of wireless signals, and performing weighting processing on the obtained plurality of second pass cost components, The second pass cost component that is finally available is obtained.
  • weighting process other processing methods may be used, which may be determined according to actual conditions. For example, if there are multiple wireless signals, the multiple wireless signals may be used cumulatively, and the signal quality of the multiple wireless signals may be used. A similar addition process is performed and a second pass cost component is further calculated.
  • the first area may be any area included in the candidate area, or may be an area that satisfies the following conditions: at each of the first areas, the signal quality of the wireless signal available in the first task type is optimal. The signal quality of the at least one wireless signal satisfies the requirements of the first task type for the wireless signal.
  • each of the at least one second region is identified as an obstacle for the first task type.
  • the signal quality map may be generated according to the plurality of task types as a whole traffic cost at each of the first regions, where the signal quality map includes the plurality of task types as a whole in each of the first regions The cost of the passage.
  • the plurality of task types can be regarded as a total transaction cost at each region, thereby directly obtaining each region for the multi-purpose path planning.
  • the overall cost of the task can be achieved, so that better path planning can be achieved.
  • the signal quality of the at least one wireless signal available for each of the plurality of task types at each of the first regions obtaining the first type of each task type at each of the first regions Two pass cost components; weighting a plurality of second pass cost components at each of the plurality of task types at the first region to obtain the second plurality of task types as a whole at the first region Passing cost component.
  • the signal quality of the plurality of types of wireless signals may be similarly added, and the second pass cost component may be further calculated.
  • a plurality of second pass cost components corresponding to the plurality of task types are added to be processed as the traffic cost corresponding to the plurality of task types as a whole.
  • the at least one wireless signal available for each task type may be the corresponding task type. All available wireless signals at the area may also be partially available wireless signals, such as at least one wireless signal of optimal signal quality.
  • the first area may be any area that needs to be included in the signal quality map, or may be an area in which each of the multiple task types is available at each of the first areas.
  • the signal quality of the wireless signal satisfies the requirements of the wireless signal for each type of task.
  • determining at least one third area wherein, at the third area, a signal quality of the wireless signal corresponding to the at least one of the multiple task types does not satisfy the at least one task type to the signal quality Requirements; when planning a path, the third area can be considered an obstacle.
  • each of the at least one third region is set as an obstacle for the plurality of task types.
  • the tasks to be performed using the signal quality map include Task 1, Task 2, and Task 3.
  • the traffic cost can be calculated separately for Task 1 Task 2 and Task 3, and the traffic cost can be calculated by combining Task 1, Task 2, and Task 3. Or, calculate the pass cost of task 1, and combine task 2 and task 3 to calculate the pass cost.
  • the division of the "species" of the wireless signal may refer to the difference of the signal type itself.
  • the satellite signal and the WIFI signal are considered to be different kinds of wireless signals; or may be the same type of wireless signals.
  • Different sources, for example, wireless signals from different APs can be considered as different kinds of wireless signals, and the distinguishing dimension of "species" can be determined according to specific conditions, for example, in some cases, divided into positioning signals and The traffic signal, or, in some cases, is considered to be a different type of signal for different transmitters of the same type of signal.
  • the division of the "category" of the task type may also be determined in connection with a specific case, for example, agricultural use and industrial use are different kinds of task types, for example, positioning and communication are different task types.
  • the starting position and the target position are obtained.
  • a path plan is obtained from the start position to the target position based on the path plan through the pass cost of each of the first areas, the pass path including an area from the start position to the target position .
  • the path from the starting position to the target position may be determined by using a signal quality map.
  • various algorithms can be used, for example, Dijksra algorithm, A* algorithm, and the like.
  • F(n) is the traffic cost estimated from the initial node to the target node via the intermediate node n
  • G(n) is the actual acquisition pass cost from the starting node to the intermediate node n
  • H(n) is the intermediate node An estimate of the pass cost of n to the best path of the target node.
  • the H(n) calculation can be performed by the Manhattan algorithm or an algorithm thereof, and is not specifically limited herein.
  • Step 1 Add the starting node to the open list.
  • Step 2 repeat the following operations:
  • the neighboring node is already in the open list, it is better to check whether the new path is better with the G value. If so, the backtracking node of the neighboring node is taken as the current node, and the G and F values of the node are recalculated.
  • Step three save the path. From the target node, starting from the target node, the backtracking node along each node moves to the starting node, which is the selected path.
  • Figure 3 shown in Figure 3 is the starting node, the positional relationship between the obstacle and the target node.
  • Figure 4 and Figure 6 show the path calculation path corresponding only to the travel distance of the node. It is assumed that the straight line and the oblique line distance of each node are the same, and the pass cost corresponding to the straight line distance of each node can be recorded. For 10, the pass cost corresponding to the skewed distance of each node is recorded as 14.
  • Figure 7 shows the path calculation path corresponding to the traffic distance of the node and the signal quality of the wireless signal.
  • the lower left is the G value
  • the lower right is the H value
  • the upper left is the F value
  • the node A is the starting node
  • the node B is the target node
  • the three nodes O between the node A and the node B are obstacles, that is, nodes that are not passable.
  • the node with the lowest F value that is, the node C immediately adjacent to the right side of the start node A
  • the node C is searched.
  • Put the node C into the close list and then check the nodes adjacent to the node C. Since the node on the left is the start node and the node on the right is the obstacle, the two nodes can be ignored.
  • Put the other two adjacent nodes of the node into the open list then check the open list, check whether the new path is better with the G value, and find that the upper and lower nodes of the C node are directly connected to the starting node, and the path is more excellent.
  • the node added to the list may be selected, or may be randomly selected. For example, as shown in FIG. 5, node D is selected. And continue to make selection until the optimal path is found.
  • the resulting path may be as shown in FIG. 6, that is, the nodes requiring the path from the starting node A to the terminating node B include node D, node E, node F, node G, and node H.
  • Figure 7 is an optimal path from the starting node A to the terminating node B obtained in conjunction with the wireless signal quality and the transit distance of the region.
  • the signal quality of the three nodes to the left of the obstacle in the signal quality map shown in FIG. 7 is poor, and the pass cost is modified to 100 and 140. It can be seen from the figure that the backtracking nodes of the upper and lower nodes of the three nodes with poor signal quality have changed.
  • the optimal path from node A to node B needs to be routed.
  • the nodes include Node I, Node E, Node F, Node G, and Node H.
  • the signal quality map obtained based on the signal quality and the travel distance of the wireless signal and the signal quality map obtained based only on the transit distance, the final planned path is different, and thus based on The signal quality map of the signal quality and the distance generated by the wireless signal is used for path planning, and more factors can be considered to make the planned path better.
  • FIG. 8 is a schematic flowchart of a map generation method 300 according to an embodiment of the present invention. As shown in FIG. 8, the method 300 includes the following.
  • a pass cost through each of the first regions is obtained based on a traffic distance of each of the plurality of first regions and a signal quality of the wireless signals of each of the first regions.
  • a signal quality map is generated based on a pass cost through each of the first regions, the signal quality map including a pass cost through each of the first regions for indicating the plurality of first regions The signal quality of each of the first regions within the coverage.
  • the specific implementation of the method for generating a map shown in FIG. 8 can be referred to the description in the method 300.
  • details are not described herein again.
  • FIG. 9 is a schematic flowchart of a path planning method 400 according to an embodiment of the present invention. As shown in FIG. 9, the method 400 includes the following.
  • a signal quality map is obtained, the signal quality map including a pass cost through each of the plurality of first regions for indicating each of the first plurality of first region coverages The signal quality of the region, wherein the pass cost for each of the first regions is determined by the pass distance of each of the first regions and the signal quality of the wireless signals of each of the first regions.
  • path planning is performed using the signal quality map.
  • a location to be operated is selected from the plurality of locations according to the map.
  • the robot does not actively move to the area where the signal quality of the wireless signal is poor, thereby improving the stability of the wireless signal input, improving the robustness of the corresponding function of the robot, and the robot finds that the signal quality of the wireless signal is not good. At the same time, it can actively run to the area where the signal quality of the wireless signal is good according to the map, thereby improving the stability and user experience of the robot.
  • a starting location and a target location are obtained; using the map, a path from the starting location to the target location is determined.
  • the specific implementation of the path planning method shown in FIG. 9 may be referred to the description in the method 200.
  • details are not described herein again.
  • FIG. 10 is a schematic block diagram of a path planning apparatus 500 in accordance with an embodiment of the present invention.
  • the path planning apparatus 500 includes: a first acquiring unit 510, configured to: according to a traffic distance of each of the plurality of first regions, and a signal of a wireless signal of each of the first regions Mass, obtaining a pass cost through each of the first regions; a second obtaining unit 520, configured to acquire a start location and a target location; and a path planning unit 530, configured to: according to the pass through each of the first regions
  • the pass cost performs path planning to determine a travel path from the start location to the target location, the pass path including an area from the start location to the target location.
  • the apparatus 600 further includes a map generating unit 540, configured to: generate a signal quality map according to a pass cost through each of the first regions, where the signal quality map includes each of the first regions a pass cost for indicating the signal quality of each of the first regions in the coverage of the plurality of first regions; the path planning unit 530 is further configured to: based on the signal quality map, according to the The traffic cost for each of the regions within the coverage of the area determines the traffic path.
  • a map generating unit 540 configured to: generate a signal quality map according to a pass cost through each of the first regions, where the signal quality map includes each of the first regions a pass cost for indicating the signal quality of each of the first regions in the coverage of the plurality of first regions; the path planning unit 530 is further configured to: based on the signal quality map, according to the The traffic cost for each of the regions within the coverage of the area determines the traffic path.
  • the first acquiring unit 510 is further configured to: determine, according to the traffic distance of each of the first regions, a first traffic cost component corresponding to the traffic distance of each of the first regions; Determining a signal quality of the wireless signal of each of the first regions, determining a second pass cost component corresponding to a signal quality of the wireless signal of each of the first regions; according to the first of each of the first regions The pass cost component and the second pass cost component calculate a pass cost through each of the first regions.
  • the first obtaining unit 510 is further configured to: acquire at least one type of task to be executed when passing the path; and perform at least one type of wireless according to each task type of the at least one task type Acquiring a signal quality at each of the first regions, acquiring a second pass cost component corresponding to each of the task types at each of the first locations; according to the first of each of the first regions a pass cost component, and a second pass cost component corresponding to each of the first regions of each task type, calculating a pass cost through each of the first regions when performing each of the task types;
  • the path planning unit 530 is further configured to: determine, according to the pass cost of each of the first regions, when performing each of the task types, the pass path for executing each of the task types.
  • the at least one task type includes a first task type
  • the first obtaining unit 510 is further configured to: according to the wireless signal available in the first task type at each of the first regions A signal quality of the at least one wireless signal whose signal quality satisfies a predetermined condition, and a second pass cost component corresponding to the first task type at each of the first regions is determined.
  • the first obtaining unit 510 is further configured to: according to the signal quality of the at least one wireless signal with the best signal quality among the wireless signals available in the first task type according to each of the first regions Determining, according to the first task type, a second pass cost component corresponding to each of the first regions; wherein the first region is an area that satisfies the following condition: at the first region, the The at least one wireless signal having the best signal quality among the wireless signals available for a task type satisfies the requirements of the first task type for the wireless signal.
  • the first obtaining unit 510 is further configured to: determine at least one second area, where, at the second area, at least one of the signal quality of the wireless signal available for the first task type is optimal The signal quality of the wireless signal does not satisfy the requirement of the first task type for the wireless signal; the path planning unit 530 is further configured to: when performing path planning, each second of the at least one second region The area is considered an obstacle.
  • the first obtaining unit 510 is further configured to: acquire multiple types of tasks to be executed when passing the path; and select at least one wireless signal that is available according to each of the plurality of task types Signal quality, obtaining the plurality of task types as a whole corresponding second pass cost component at each of the first regions; according to the first pass cost component of each of the first regions, and the plurality of a task type as a second pass cost component corresponding to each of the first regions as a whole, and calculating a corresponding pass cost of the plurality of task types as a whole at each of the first regions; the path planning unit 530 further And for determining, according to the plurality of task types as a whole, a corresponding pass cost at each of the first regions, determining the pass path for executing the plurality of task types.
  • the first obtaining unit 510 is further configured to: obtain, according to a signal quality of at least one type of wireless signal that is available for each of the multiple task types at each of the first regions, a second pass cost component corresponding to each of the first regions of each task type; weighting processing a plurality of second pass cost components corresponding to the plurality of task types at each of the first regions, The second pass cost component corresponding to the plurality of task types as a whole at the first region is obtained.
  • the first area is an area that satisfies the following conditions: at each of the first areas, a signal quality of a wireless signal available for each of the plurality of task types meets each of the tasks Type requirements for wireless signals.
  • the first obtaining unit 510 is further configured to: determine at least one third area, where, at the third area, at least one of the multiple task types corresponds to a wireless signal The signal quality does not meet the signal quality requirements of the at least one task type; the path planning unit 530 is further configured to: treat each third region of the at least one third region as an obstacle when performing path planning Things.
  • the first acquiring unit 510 is further configured to: determine, according to a correspondence between a signal quality interval of the wireless signal and a traffic cost component, and a signal quality of the wireless signal of each region, The second pass cost component of the first region.
  • the first obtaining unit 510 is further configured to: according to the traffic distance of each of the first regions, and the signal quality of the wireless signal of each of the first regions acquired multiple times, in a statistical manner Obtaining a pass cost through each of the first regions; or, according to a pass distance of each of the first regions, and a signal quality of a wireless signal of each of the first regions acquired in real time, real-time acquisition by the a pass cost for each of the first regions; or, based on the pass distance of each of the first regions, and the predicted signal quality of the wireless signal of each of the first regions, acquired through each of the first regions The cost of the passage.
  • the first obtaining unit 510 is further configured to: in a case that a rate of change of a direction and/or an intensity of the wireless signal of each of the first regions is less than or equal to a first threshold, according to each of the The pass distance of an area, and the signal quality of the wireless signals of each of the first areas acquired multiple times, acquires the pass cost through each of the first areas in a statistical manner.
  • the first obtaining unit 510 is further configured to: according to the case that the rate of change of the wireless signal direction and/or the intensity of each of the first regions is greater than a second threshold, according to each of the first regions The transit distance, and the signal quality of the wireless signal of each of the first regions obtained in real time, real-time acquisition of the pass cost through each of the first regions.
  • the wireless signal is a satellite signal
  • the signal quality of the wireless signal includes a positioning accuracy of the wireless signal
  • the first acquiring unit 510 is further configured to: pass according to each of the first regions a distance, and a predicted signal quality of the wireless signal of each of the first regions, before being acquired by the other region of each of the first regions a satellite signal transmitted at a first time to determine a satellite arrangement at said first time at said other region; said first first according to a satellite arrangement at said first time at said other region a positional relationship of the area with the other area, and a law of operation of the satellite, determining a satellite arrangement at a second time at each of the first areas; according to a second moment at each of the first areas The satellite arrangement predicts the positioning accuracy of the satellite signals at the second moment of each of the first regions.
  • path planning apparatus 500 can perform the method shown in FIG. 2, and details are not described herein for brevity.
  • FIG. 11 is a schematic block diagram of a map generation device 600 in accordance with an embodiment of the present invention.
  • the device 600 includes an acquisition unit 610 and a map generation unit 620.
  • the obtaining unit 610 is configured to acquire, according to a traffic distance of each of the plurality of first regions, and a signal quality of the wireless signal of each of the first regions, a pass cost through each of the first regions;
  • the map generating unit 620 is configured to generate a signal quality map according to a pass cost through each of the first regions, where the signal quality map includes a pass cost through each of the first regions, and is used to mark the plurality of The signal quality of each of the first regions within a region coverage.
  • the manner in which the obtaining unit 610 obtains the pass-through cost and the manner in which the map generating unit 620 generates the map may be referred to the description of the above method. For brevity, no further details are provided herein.
  • FIG. 12 is a schematic block diagram of a path planning apparatus 700 in accordance with an embodiment of the present invention.
  • the apparatus 700 includes an acquisition unit 710 and a path planning unit 720.
  • the acquiring unit 710 is configured to acquire a signal quality map, where the signal quality map includes a pass cost through each of the first regions, and is used to mark each of the first regions in the coverage of the plurality of first regions.
  • Signal quality wherein, the pass cost of each of the first regions is determined according to a traffic distance of each of the plurality of first regions, and a signal quality of the wireless signal of each of the first regions .
  • the path planning unit 720 is configured to perform path planning by using the signal quality map.
  • FIG. 13 is a schematic block diagram of an intelligent execution device 800 in accordance with an embodiment of the present invention.
  • the smart executive device 800 may refer to a mechanical device that automatically performs work, for example, may be a robot, a driverless car, or a drone.
  • the smart executive device 800 can include a control system 810, a drive mechanism 820, a sensor 830, an actuator 840, and an external output device 850.
  • the control system 810 can send an instruction to the drive mechanism 820, and the drive mechanism 820 can drive the actuator 840 to perform a corresponding action according to an instruction issued by the control system 810.
  • the control system 810 can output a signal to the outside through the external output device 850.
  • the external output device 850 can include a display, a voice output device, or a wireless transmitter, etc., wherein the display can display power, or display a planned path, etc., and the voice output device can cooperate with the sensor for detecting voice to implement a dialogue with the user.
  • the wireless transmitter can send wireless signals and the like.
  • Sensor 830 can include an internal information sensor and an external information sensor.
  • the internal information sensor can detect the working condition of each part of the intelligent execution device, for example, the position, speed and acceleration of each joint included in the actuator 840;
  • the external information sensor can detect the external information, for example, the embodiment of the present invention can be obtained.
  • the wireless signal mentioned, etc. can also obtain other information, for example, obtaining a voice command number input by the user.
  • the sensor 830 can provide the acquired information to the control system 810, which can issue commands to the drive mechanism 820 based on the sensor information and/or externally output signals via the external output device 850.
  • the drive mechanism 820 may be an electric drive device such as a stepper motor or a servo motor or the like.
  • the actuator 840 is configured to perform a corresponding action in accordance with the driving of the drive mechanism 820.
  • the actuator 840 can employ a spatial open chain link mechanism, wherein the rotary pair can be referred to as a joint, and the number of joints can determine the degree of freedom of the smart actuator.
  • the actuator 800 as an example of the robot, the actuator may include a hand, a wrist, an arm, a walking portion, etc., and the portions may optionally be connected by joints.
  • control system 810 can include a processor 814 and a memory 812.
  • the memory 812 can store program code
  • the processor 814 can execute the program code stored in the memory 812.
  • the processor 814 and the memory 812 communicate with each other through an internal connection path.
  • the method shown in FIG. 2, FIG. 8, or FIG. 9 may be performed at processor 814 by invoking program code stored in memory 812. And, optionally, the processor 814 can call the program code stored in the memory 812 to issue an instruction to the drive mechanism 820. And, optionally, the processor 814 can call the program code stored in the memory 812 to output a signal to the external output device 850.
  • the intelligent execution mechanism 800 shown in FIG. 13 is only an optional embodiment of the present invention.
  • the smart execution device of the embodiment of the present invention may further have other mechanisms.
  • the smart execution device 800 may not include external output.
  • the device, or the wireless transceiver included in the external output device may be integrated with a receiver in the sensor or the like.
  • the present invention can be understood that the processor in the embodiment of the present invention can be an integrated circuit chip with signal processing capability.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种路径规划方法和设备,可以实现更优化的路径规划。该方法包括:根据多个第一区域中每个第一区域的通行距离,以及每个第一区域的无线信号的信号质量,获取通过每个第一区域的通行代价(200);获取起始位置和目标位置(220);根据通过每个第一区域的通行代价进行路径规划,确定从起始位置到达目标位置的通行路径,通行路径包括从起始位置到达目标位置经过的区域(230)。

Description

路径规划方法和装置
本申请要求于2017年1月18日提交中国专利局、申请号为201710035221.6、申请名称为“路径规划方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及智能控制领域,并且更具体地,涉及一种路径规划方法和装置。
背景技术
路径规划是智能控制研究领域中的一个重要分支,采用良好的路径规划技术可以节省智能执行装置(例如,机器人)的作业时间,提高执行任务的效率,并且可以提高执行任务的质量。
在进行路径规划时,可以采用地图,以实现路径规划,在现有的技术中,地图包括位置信息和障碍物的信息,从而智能执行装置可以基于该地图找到能够绕开障碍物的路径。
但是在现有的路径规划中,仅考虑位置信息和障碍物信息,并没有考虑其他因素,限制了路径规划的应用。
发明内容
本发明实施例提供了一种路径规划方法和设备,可以实现更优化的路径规划。
第一方面,提供了一种路径规划方法,包括:根据多个第一区域中每个第一区域的通行距离,以及所述每个第一区域的无线信号的信号质量,获取通过所述每个第一区域的通行代价;获取起始位置和目标位置;根据通过所述每个第一区域的所述通行代价进行路径规划,确定从所述起始位置到达所述目标位置的通行路径,所述通行路径包括从所述起始位置到达所述目标位置经过的区域。
因此,根据多个第一区域中每个第一区域的通行距离,以及该每个第一区域的无线信号的信号质量,获取通过该每个第一区域的通行代价,并根据该通行代价,进行路径规划,从而可以在进行路径规划时,不仅考虑区域的通行距离,还可以考虑该区域处的无线信号的信号质量,可以实现更为优化的路径规划,并且将通行距离和信号质量统一量化为通行代价,可以使得智能执行装置在进行路径规划时,基于该通行代价获取通行路径,可以节省智能执行装置的作业时间,提高执行任务的效率。
可选地,该通行路径可以是通行代价最小的路径。
可选地,所述方法还包括:根据通过所述每个第一区域的通行代价,生成信号质量地图,所述信号质量地图包括通过所述每个第一区域的通行代价,用于标示所述多个第一区域覆盖范围内所述每个第一区域的信号质量;所述根据通过所述每个第一区域的所述通 行代价进行路径规划,确定从所述起始位置到达所述目标位置的通行路径,包括:基于所述信号质量地图,根据通过所述多个区域覆盖范围内每个所述区域的通行代价确定所述通行路径。
因此,根据多个第一区域中每个第一区域的通行距离,以及该每个第一区域的无线信号的信号质量,获取该每个第一区域处的通行代价,并生成标示有每个区域的通行代价的信号质量地图,可以得到更优的地图。
可选地,该信号质量地图可以是一个通行代价列表或者全局同行代价拓扑图。
可选地,所述根据多个第一区域中每个第一区域的通行距离,以及所述每个第一区域的无线信号的信号质量,获取通过所述每个第一区域的通行代价,包括:根据所述每个第一区域的通行距离,确定所述每个第一区域的所述通行距离对应的第一通行代价分量;根据所述每个第一区域的无线信号的信号质量,确定所述每个第一区域的所述无线信号的信号质量对应的第二通行代价分量;根据所述每个第一区域的所述第一通行代价分量和所述第二通行代价分量,计算通过所述每个第一区域的通行代价。
因此,针对每种任务类型,分别计算该任务类型在每个区域处的通行代价,由此在进行某一种任务类型的路径规划时,可以直接获取各个区域针对该任务类型的通行代价,从而可以实现更为优化的路径规划。
可选地,所述方法还包括:获取通过所述通行路径时待执行的至少一种任务类型;所述根据所述每个第一区域的无线信号的信号质量,获取所述每个第一区域的所述通行距离对应的第二通行代价分量,包括:根据所述至少一种任务类型中每种任务类型可用的至少一种无线信号在所述每个第一区域处的信号质量,获取所述每种任务类型在所述每个第一位置处对应的第二通行代价分量;所述根据所述每个第一区域的所述第一通行代价分量和所述第二通行代价分量,计算通过所述每个第一区域的通行代价,包括:根据所述每个第一区域的所述第一通行代价分量,和所述每种任务类型在所述每个第一区域对应的第二通行代价分量,计算执行所述每种任务类型时通过所述每个第一区域的通行代价;所述根据通过所述每个第一区域的所述通行代价进行路径规划,包括:根据执行所述每种任务类型时通过所述每个第一区域的通行代价,确定用于执行所述每种任务类型的所述通行路径。
可选地,所述至少一种任务类型包括第一任务类型,所述获取执行所述每种任务类型在所述每个第一区域处对应的所述第二通行代价分量,包括:根据在所述每个第一区域处,所述第一任务类型可用的无线信号中信号质量满足预定条件的至少一种无线信号的信号质量,确定所述第一任务类型在所述每个第一区域处对应的第二通行代价分量。
可选地,所述确定所述第一任务类型在所述每个第一区域处对应的第二通行代价分量,包括:根据在所述每个第一区域处,所述第一任务类型可用的无线信号中信号质量最优的至少一种无线信号的信号质量,确定所述第一任务类型在所述每个第一区域处对应的第二通行代价分量;其中,所述第一区域为满足以下条件的区域:在所述第一区域处,所述第一任务类型可用的无线信号中信号质量最优的所述至少一种无线信号,满足所述第一任务类型对无线信号的要求。
可选地,所述方法还包括:确定至少一个第二区域,其中,在所述第二区域处,所述第一任务类型可用的无线信号的信号质量最优的至少一种无线信号的信号质量,不满足 所述第一任务类型对无线信号的要求;在进行路径规划时,将所述至少一个第二区域中每个第二区域视为障碍物。
可选地,所述方法还包括:获取通过所述通行路径时待执行的多种任务类型;所述根据所述每个第一区域的无线信号的信号质量,获取所述每个第一区域的所述无线信号的信号质量对应的第二通行代价分量,包括:根据所述多种任务类型中每种任务类型可用的至少一种无线信号的信号质量,获取所述多种任务类型作为整体在所述每个第一区域处对应的第二通行代价分量;所述根据所述每个第一区域的所述第一通行代价分量和所述第二通行代价分量,计算通过所述每个第一区域的通行代价,包括:根据所述每个第一区域的所述第一通行代价分量,和所述多种任务类型作为整体在每个第一区域处对应的第二通行代价分量,计算所述多种任务类型作为整体在所述每个第一区域处对应的通行代价;所述根据通过所述每个第一区域的所述通行代价进行路径规划,包括:根据所述多种任务类型作为整体在所述每个第一区域处对应的通行代价,确定用于执行所述多种任务类型的所述通行路径。
因此,针对多种任务类型,可以将该多种任务类型作为整体在每个区域处的通行代价,由此在进行需要执行多种任的路径规划时,可以直接获取各个区域针对该多种任务整体的通行代价,从而可以节省智能执行装置的处理时间,提高处理效率。
可选地,所述获取所述多种任务类型作为整体在所述每个第一区域处对应的第二通行代价分量,包括:根据所述每个第一区域处,所述多种任务类型中每种任务类型可用的至少一种无线信号的信号质量,得到所述每种任务类型在所述每个第一区域处对应的第二通行代价分量;对所述多种任务类型在所述每个第一区域处对应的多个第二通行代价分量进行加权处理,以得到所述多种任务类型作为整体在所述第一区域处对应的所述第二通行代价分量。
可选地,所述第一区域为满足以下条件的区域:在所述每个第一区域处,所述多种任务类型中每种任务类型可用的无线信号的信号质量满足所述每种任务类型对无线信号的要求。
可选地,所述方法还包括:确定至少一个第三区域,其中,在所述第三区域处,所述多种任务类型中的至少一种任务类型对应的无线信号的信号质量不满足所述至少一种任务类型对信号质量的要求;在进行路径规划时,将所述至少一个第三区域中每个第三区域视为障碍物。
可选地,所述根据所述每个第一区域的无线信号的信号质量,确定所述每个第一区域的所述无线信号的信号质量对应的第二通行代价分量,包括:根据无线信号的信号质量区间与通行代价分量的对应关系,以及所述每个区域的无线信号的信号质量,确定所述获取所述每个第一区域的所述第二通行代价分量。
可选地,所述根据多个第一区域中每个第一区域的通行距离,以及所述每个第一区域的无线信号的信号质量,获取通过所述每个第一区域的通行代价,包括:根据所述每个第一区域的通行距离,以及多次获取的所述每个第一区域的无线信号的信号质量,以统计的方式获取通过所述每个第一区域的通行代价;或,根据所述每个第一区域的通行距离,以及实时获取的所述每个第一区域的无线信号的信号质量,实时获取通过所述每个第一区域的通行代价;或,根据所述每个第一区域的通行距离,以及预测的所述每个第一区域的 无线信号的信号质量,获取通过所述每个第一区域处的通行代价。
可选地,所述根据所述每个第一区域的通行距离,以及多次获取的所述每个第一区域的无线信号的信号质量,以统计的方式获取通过所述每个第一区域的通行代价,包括:在所述每个第一区域的无线信号的方向和/或强度的变化率小于等于第一阈值的情况下,根据所述每个第一区域的通行距离,以及多次获取的所述每个第一区域的无线信号的信号质量,以统计的方式获取通过所述每个第一区域的通行代价。
可选地,所述根据所述每个第一区域的通行距离,以及实时获取的所述每个第一区域的无线信号的信号质量,实时获取通过所述每个第一区域的通行代价,包括:在所述每个第一区域的无线信号方向和/或强度的变化率大于第二阈值的情况下,根据所述每个第一区域的通行距离,以及实时获取的所述每个第一区域的所述无线信号的信号质量,实时获取通过所述每个第一区域的通行代价。
可选地,所述无线信号为卫星信号,所述无线信号的信号质量包括所述无线信号的定位精度,在根据所述每个第一区域的通行距离,以及预测的所述每个第一区域的无线信号的信号质量,获取通过所述每个第一区域的通行代价之前,所述方法还包括:根据在所述每个第一区域之外的其他区域接收到的第一时刻发射的卫星信号,确定在所述其他区域处的所述第一时刻的卫星排布;根据在所述其他区域处的所述第一时刻的卫星排布,所述每个第一区域与所述其他区域的位置关系,以及卫星的运行规律,确定在所述每个第一区域处的第二时刻的卫星排布;根据在所述每个第一区域处的第二时刻的卫星排布,预测在所述每个第一区域的所述第二时刻的卫星信号的定位精度。
可选地,所述无线信号的信号质量值包括以下中的至少一种:所述无线信号的强度、所述无线信号的方向和/或强度的改变率和所述无线信号的定位精度。可选地,所述无线信号包括无线电磁信号、地磁信号、红外信号和声波信号中的至少一种。
可选地,所述无线信号的信号质量值包括以下中的至少一种:所述无线信号的强度、所述无线信号的方向和/或强度的改变率和所述无线信号的定位精度。可选地,所述无线信号包括无线电磁信号、地磁信号、红外信号和声波信号中的至少一种。
第二方面,提供了一种路径规划装置,该路径规划装置可以包括用于执行第一方面或其任一可选的实现方式中的方法的单元。
第三方面,提供了一种路径规划装置,该路径规划装置可以包括存储器和处理器,该存储器可以存储程序代码,该处理器和该存储器之间通过内部连接通路互相通信,该处理器可以调用该存储器中存储的程序代码执行第一方面或其任一种可选实现方式中的方法。
第四方面,提供了一种存储介质,该存储介质可以存储程序代码,该存储器中存储的程序代码可以被处理器调用,以执行第一方面或其任一种可选实现方式中的方法。
附图说明
图1是根据本发明实施例的用于路径规划的系统的示意性图。
图2是根据本发明实施例的路径规划方法的示意性流程图。
图3是根据本发明实施例的根据通行代价进行路径规划的示意图。
图4是根据本发明实施例的根据通行代价进行路径规划的示意图。
图5是根据本发明实施例的根据通行代价进行路径规划的示意图。
图6是根据本发明实施例的根据通行代价进行路径规划的示意图。
图7是根据本发明实施例的根据通行代价进行路径规划的示意图。
图8是根据本发明实施例的地图生成方法的示意性流程图。
图9是根据本发明实施例的路径规划方法的示意性流程图。
图10是根据本发明实施例的路径规划装置的示意性框图。
图11是根据本发明实施例的地图生成设备的示意性框图。
图12是根据本发明实施例的路径规划装置的示意性框图。
图13是根据本发明实施例的处理设备的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
图1是根据本发明实施例的用于路径规划的系统的示意性图。如图1所述,在该系统中,可以包括无线信号的产生体110和智能执行装置120。
其中,无线信号的产生体110可以是人为制造的设备,或天然存在的物体或生命。
例如,如果是人为制造的设备可以是网络设备,卫星,终端设备等,此时无线信号可以为无线通信信号,无线网络信号或无线定位信号等。
例如,天然存在的物体可以是地球,地球中存在的天然物,例如,流动的水等,生命可以是动物或者人类等,此时无线信号可以是地磁信号,红外信号,声波信号等。
智能执行装置120可以基于无线信号的产生体110产生的无线信号的信号质量,进行路径规划。
具体地,智能执行装置120可以基于无线信号的信号质量,生成信号质量地图,并基于该信号质量地图,进行路径规划。
可选地,该系统还可以包括智能执行装置130。
智能执行装置120还可以将生成的信号质量地图,发送给智能执行装置130。智能执行装置130可以基于智能执行装置120发送的信号质量地图,进行路径规划。
应理解,本发明实施例提到的智能执行装置可以是指自动执行工作的机器装置,例如,可以为机器人,无人驾驶汽车,或无人机等。虽然图1所示的智能执行装置120和130为机器人,但是仅仅便于读者理解,并不是为了限制本发明的范围。类似地,无线信号的产生体110的图示方式不应对本发明实施例的范围构成任何限定。
在进行路径规划时,可以将备选区域划分为多个区域,在全部或部分区域处标记通过该区域的通行代价,通行代价越大意味着通过该区域付出的代价越大,在路径规划时,被选中的机率越小。
可选地,通行代价可以是一个数值,所有的区域可以基于相同的标准得到各个区域对应的无单位的数值。
以下将具体描述如何获取通过多个区域的通行代价,并根据多个区域的通行代价生成信号质量地图,以及描述如何根据多个区域的通行代价,进行路径规划。
图2是根据本发明实施例的一种路径规划方法200的示意性流程图。该方法200可以应用于图1所示的系统。该方法可选的可以由图1所示的智能执行装置120执行。应理 解,该方法200可以由其他设备执行,本发明实施例仅以智能执行装置为例进行描述。
如图2所示,该方法200包括以下内容。
在210中,根据多个第一区域中每个第一区域的通行距离,以及该每个第一区域的无线信号的信号质量,获取通过该每个第一区域的通行代价。
可选地,智能执行装置可以直接检测各个区域处的无线信号的信号质量,或者,也可以接收其他设备发送的无线信号的信号质量,或者,也可以接收人工输入的无线信号的信号质量。
可选地,智能执行装置在直接检测各个区域处的无线信号的信号质量时,可以遍历各个区域得到无线信号的信号质量,以用于计算通行代价。
可选地,本发明实施例提到的区域可以称为节点,该区域可以是正方形形结构,也可以是矩形,六角形或者其他任意形状。
可选地,一个地图中所有的区域的通行距离可以相同,也可以不相同。
可选地,第一区域的通行距离指第一区域的任意两点之间的长度,例如,以栅格方式进行区域的划分为例,任意两点之间的长度可以为直行通过的距离或斜行通过的距离。
可选地,本发明实施例提到的无线信号可以包括无线电磁信号、地磁信号、红外信号和声波信号中的至少一种。
可选地,该无线信号的信号质量包括以下中的至少一种:该无线信号的强度、该无线信号的方向和/或强度的改变率和无线信号的定位精度。
应理解,除了无线信号的强度、该无线信号的方向和/或强度的改变率和无线信号的定位精度,无线信号的信号质量还可以通过其他方式来考量,具体可以根据待执行的任务而定,本发明实施例并不对此做具体限定。
其中,无线电磁信号包含但不限于无线网络信号,无线通信信号和无线定位信号。
应理解,可以实现终端设备与网络设备的通信的无线电磁信号均可以称为无线通信信号,无线通信信号包含但不限于第五代通信技术(5 th generation,5G)信号、第四代通信技术(4 th generation,4G)信号、第三代通信技术(3 th generation,3G)信号、第二代通信技术(2nd generation,2G)信号、码分多址(Code Division Multiple Access,CDMA)信号、频分多址(frequency division multiple access,FDMA)信号、时分多址(time division multiple access,TDMA)信号、全球移动通信系统Global System for Mobile Communication,GSM)信号、无线局域网(Wireless Local Area Network,WLAN)信号、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)信号和无线保证(Wireless Fidelity,WIFI)信号。
还应理解,可以实现无线通信的无线电磁信号均可以称为无线通信信号,无线通信信号包含但不限于蓝牙信号、紫蜂(zigbee)信号、2.4G数传、红外信号、无线电通信信号等。
还应理解,可以实现无线定位的无线电磁信号均可以称为无线定位信号,其中,无线定位信号可包含但不限于全球定位系统(Global Positioning System,GPS)信号、WIFI、基站定位信号、蓝牙、射频识别(Radio Frequency Identification,RFID)信号,或超宽带信号(Ultra Wideband,UWB)等。
可选地,地磁信号可以用于定位,地磁信号的信号质量可以包括地磁信号的稳定性 和强度,稳定性是指地磁方向的稳定性,也可以是指地磁强度的稳定性。
可选地,红外信号可以用于定位和探测等。
可选地,声波信号可以包括超声波信号,可以实现定位和探测等。
应理解,本发明实施例提到的第一区域可以是备选区域中的任意区域,也可以是满足一定条件的区域,例如,信号质量较好的区域,在该区域下可以计算通行代价,对于不满足条件的区域,例如,信号质量较差的区域,可以直接将该区域视为障碍物。
应理解,在本发明实施例中通过第一区域的通行代价有时也可以称为第一区域的通行代价或第一区域处的通行代价。
可选地,在本发明实施例中,智能执行装置可以根据通过所述每个第一区域的通行代价,生成信号质量地图,所述信号质量地图包括通过所述每个第一区域的通行代价,用于标示所述多个第一区域覆盖范围内所述每个第一区域的信号质量,该信号质量地图可以进行路径规划。
可选地,该信号质量地图可以是一个通行代价列表或者全局同行代价拓扑图。
应理解,本发明实施例中,信号质量地图可以对无线信号的信号质量起到标示作用,但并不意味着地图中各个区域的通行代价仅与无线信号的信号质量有关系,还与各个区域的通行距离有关系,例如,如果通行距离不一致,相同的通行代价可能无线信号的信号质量不一样。
应理解,在本发明实施例中,智能执行装置还可以不生成地图,而是直接根据多个第一区域的通行代价进行路径规划。
可选地,智能执行装置可以采用多次获取的无线信号质量,以统计或投票的方式得到的对应区域处的通行代价;或者,也可以采用实时获取的无线信号的信号质量,实时获取对应区域处的通行代价;或者,也可以预测的无线信号的信号质量获的对应区域的通行代价。
具体地,可以采用多次获取的无线信号质量,以统计或投票的方式得到的对应区域处的通行代价,来生成信号质量地图;或者,也可以采用实时获取的无线信号的信号质量得到的对应区域处的通行代价,对信号质量地图进行实时更新;或者,也可以预测的无线信号的信号质量获的对应区域的通行代价,来生成信号质量地图。
其中,统计方式是指将多次获取的无线信号质量进行统一处理,例如,加权处理等,得到对应区域处的通行代价。投票方式是从多次获取的无线信号的信号质量中选择部分次获取的无线信号的信号质量,以得到对应区域的通行代价。
具体是采用统计或投票的方式获取通行代价,或是实时获取通行代价,或是预测的方式获取通行代价,或者任两种方式的结合获取通行代价,可以结合实际情况而定。
可选地,在无线信号的信号质量的稳定性较好时,可以以统计的方式得到对应区域的通行代价;在无线信号的信号质量的稳定性较差时,可以实时获取对应无线的通行代价。
其中,无线信号的信号质量的稳定性可以是指无线信号的强度大小和/或方向的稳定性,例如,无线信号的强度的改变率小于等于预定值或者方向的改变率小于等于预定值,则认为是稳定性较好。其中,无线信号的方向的改变率可以包括无线信号的指向角度的改变率等。
可选地,在无线信号为可预测的无线信号时,即通过某一时刻和/或某一区域的无线 信号的信号质量可以预测另一时刻和/或另一区域的无线信号的信号质量时,则可以认为该无线信号为可预测的无线信号。
具体地说,智能执行装置在在室外采用卫星信号定位,记录不同时间不同地点的定位精度、可见卫星数、遮挡导致的可见卫星分布情况、轨道中卫星所处的区域等数据,利用这些数据计算未来任意某时间点的信号质量地图。
例如,智能执行装置记录某一个区域的GPS坐标,结合从GPS星历中解算的卫星区域,求出预测可见卫星分布情况,对比实际收到的超过某载噪比阈值的卫星分布情况,通过统计的方法可以学习出该区域的遮挡情况。根据不同地点的遮挡情况可以生成信号质量地图。
具体地,可以根据求出的遮挡情况,确定在未来某时刻的卫星在此区域的分布情况,利用星座分布求出经纬度计算的误差估计值。当误差估计小于预设阈值,则认为未来某时刻此区域的信号质量好,否则为差,对于遮挡严重的地方,导致无法定位或定位精度很差,此类地点定义为无信号,从而可以计算代价,并生成信号质量地图。
例如,可以根据在第一区域之外的其他区域接收到的第一时刻发射的卫星信号,确定在该其他区域处的该第一时刻的卫星排布;根据在该其他区域处的该第一时刻的卫星排布,该第一区域与该其他区域的位置关系,以及卫星的运行规律,确定在该每个第一区域处的第二时刻的卫星排布;根据在该每个第一区域处的第二时刻的卫星排布,预测在该每个第一区域点的该第二时刻的卫星信号的定位精度。可选地,在生成地时图,可以在该信号质量地图标记出在该第二时刻,第一区域处的通行代价。
应理解,本发明实施例对无线信号的信号质量的预测方式还可以有其他实现方式,在此不再赘述。
可选地,本发明实施例中的信号质量地图可以包括多个区域处每个区域的通行代价,其中,每个区域的通行代价可以包括多个通行代价,例如,可以包括预测的在各个时刻的通行代价,从而,在进行路径规划时,可以结合某一区域各个时刻的通行代价,以及运行到此处的时刻,得到对应的该区域处的路径规划,从而可以选择出更优的路径。
因此,在本发明实施例中,根据多个第一区域中每个第一区域的通行距离,以及该每个第一区域的无线信号的信号质量,获取该每个第一区域处的通行代价,从而可以在生成信号质量地图时,在该每个区域标识该每个区域处的通行代价,由此在生成信号质量地图时,可以不仅考虑区域的通行距离,还可以考虑该区域处的无线信号的信号质量,将通行距离和无线信号的信号质量进行量化得到通行代价,可以得到更优的信号质量地图,从而使得信号质量地图的应用范围更为广泛,可以实现更为良好的路径规划,并且将通行距离和信号质量统一量化为通行代价,可以使得机器人在进行路径规划时,基于该通行代价进行获取通行路径,可以节省机器人作业时间,提高执行任务的效率。
可选地,在本发明实施例中,在结合第一区域的通行距离和无线信号的信号质量得到该第一区域处的通行代价时,可以计算通行距离对应的第一通行代价分量,以及无线信号的信号质量对应的第二通行代价分量,并结合第一通行代价分量和该第二通行代价分量,得到通过该区域的通行代价。
在一种实现方式中,可以将第一区域的第一通行代价分量与该第二通行代价分量进行相加,得到该第一区域的通行代价。
在另一种实现方式,可以将该第一区域的第一通行代价分量与该第一区域的第二通行代价分量进行加权处理,得到该第一区域的通行代价,其中,加权系数可以根据具体情况而定,例如,如果待执行的任务对区域的通行距离的灵敏度较大,则可以将尺寸的加权系数设置的较高。
在另一种实现方式中,该第二通行代价可以是与该第一通行代价分量进行相乘以得到通行代价的系数,则可以结合该第一通行代价分量和该系数,得到该第一区域处的通行代价。
应理解,在本发明实施例中,除了区域的通行距离以及无线信号的信号质量,还可以考虑其他因素,例如,根据每个区域的接触面状态确定该区域处的第三通行代价分量,则可以将第一通行代价分量、第二通行代价分量和第三通行代价分量进行相加或进行加权处理,得到该区域的通行代价。
可选地,可以根据无线信号的信号质量区间与通行代价的对应关系,以及该每个区域的无线信号的信号质量,确定该获取该每个第一区域的第二通行代价分量。
例如,可以将无线信号的信号质量分为好、中和差三个等级,每个等级均包括可以量化的数值范围,每个等级可以对应不同的第二通行代价分量,在获取无线信号的信号质量之后,可以确定该无线信号的信号质量所属的等级,并得到该等级对应的第二通行代价分量。
例如,无线信号的信号质量好对应的系数为1,无线信号的信号质量中对应的系数为5,无线信号的信号质量差对应的系数为10,某一区域处的距离对应的通行代价为10(直行)和14(斜行),如果该区域处的无线信号的信号质量差,则可以将该区域处的直行和斜行的通行代价确定为100和140,如果该区域处的无线信号的信号质量为中,则可以将该区域处的直行和斜行的通行代价确定为50和70,如果该区域处的无线信号的信号质量为好,则可以将该区域处的直行和斜行通行代价确定为10和14。
可选地,在本发明实施例中,可以结合通行距离,针对多种无线信号中的每种无线信号在信号质量地图中设置通行代价,在利用信号质量地图执行任务时,可以确定该任务可以采用的无线信号,并利用基于该可以采用的无线信号得到的通行代价,进行路径规划。
可选地,在本发明实施例中,可以结合待执行的至少一种任务类型,得到各个区域的通行代价。并且可选地可以将该任务类型对应的通行代价标示在信号质量地图中,在利用信号质量地图执行任务时,可以确定该任务对应的通行代价,进行路径规划。其中,待执行的任务包括但不限于定位、通信、联网、探测和识别中的至少一种。
例如,智能执行装置处于某室内空间,其中定位主要采用WIFI和蓝牙复合的方式,智能执行装置在不断运行过程中可以根据不同区域的两种无线信号的强度、定位精度、可观测beacon数量,分别计算通行代价,进而得到包含两种信号质量的信号质量地图,在此信号质量地图上规划路径可以保证智能执行装置的定位精度。
其中,假设各个区域的通行距离一样,直行和斜行对应的通行代价分别为10和14,信号质量地图生成方式可以如下:某区域至少能收到四个强度合格的WIFI AP或四个强度合格的蓝牙beacon信号,则此地信号通过代价记为20和28;如果观测到的WIFI AP或beacon本身所属的区域较好,定位的精度较高则此该区域处的通行代价为10和14;如果某区域收到的WIFI AP或蓝牙beacon小于三个大于一个,则通行代价记为50和70;如 果只能收到一个AP或beacon的信号,则通行代价记为100和140;其他记为障碍物。
可选地,结合任务类型对无线信号质量的要求,以及无线信号的信号质量,确定无线通行代价,例如,如果任务类型A和任务类型B均用到信号a,其中,任务类型A对信号a的质量要求高于任务类型B对于信号质量的要求,则相同的信号质量,任务类型A对应的通行代价分量(或与通行距离对应的第一通行代价分量进行相乘的系数)高于任务类型B对应的通行代价分量(或与通行距离对应的第一通行代价分量进行相乘的系数)。
以下将结合方式A和方式B描述在生成信号质量地图时,如何结合待执行的任务类型来得到各个区域处的通行代价。
方式A
获取待执行的至少一种任务类型;根据该至少一种任务类型中每种任务类型可用的至少一种无线信号在该每个第一区域处的信号质量,获取该每种任务类型在该每个第一区域处的第二通行代价分量;根据该每个第一区域的该第一通行代价分量,和该每种任务类型在该每个第一区域处的第二通行代价分量,计算该每种任务类型在该每个第一区域处的通行代价。
可选地,可以根据每种任务类型在该每个第一区域处的通行代价,生成该信号质量地图,其中,该信号质量地图包括该每种任务类型在该每个第一区域处的通行代价。
也就说,针对每种任务类型,分别计算该任务类型在每个区域处的通行代价,由此在进行某一种任务类型的路径规划时,可以直接获取各个区域针对该任务类型的通行代价,从而可以实现更为良好的路径规划。
其中,在计算每种任务类型在某个区域的第二通行代价分量时,可以结合任务类型对无线信号质量的要求,以及无线信号的信号质量,确定通行代价。
可选地,该至少一种任务类型包括第一任务类型,根据在该每个第一区域处,该第一任务类型可用的无线信号中信号质量满足预定条件的至少一种无线信号的信号质量,确定该第一任务类型在该每个第一区域处的第二通行代价分量。
可选地,满足预定条件的至少一种无线信号可以指无线信号的信号质量的值大于预定值的至少一种无线信号,或者,无线信号的信号质量最优的至少一种无线信号。
具体地说,由于针对某一任务,在可用的无线信号存在多种的情况下,由于在智能执行装置运行此处执行待执行的任务时,可以选择质量较优的无线信号,则可以选择质量较优的无线信号进行通行代价分量的计算,例如,对于任务为定位,如果某一区域处可以定位的信号包括接入点(Access Point,AP)信号和地磁信号,则可以获取两种信号的定位精度,将定位精度较好的无线信号的定位精度确定为用于确定该区域处的通行代价的参数。
当然,对于第一任务类型而言,某区域处存在多种可用的无线信号,可以结合该多种无线信号的信号质量计算第二通行代价分量,例如,对多种无线信号的信号质量进行加权处理,加权处理得到的信号质量用于计算第二通行代价分量,或者,对多种无线信号的信号质量分别计算第二通行代价分量,对于得到的多个第二通行代价分量可以进行加权处理,得到最终可用的第二通行代价分量。当然,除了加权处理,也可以是其他处理方式,具体可以根据实际情况而定,例如,如果存在多种无线信号,该多种无线信号可以累加使用,则可以将该多种无线信号的信号质量进行类似相加处理,并进一步计算得到第二通行 代价分量。
可选地,该第一区域可以是备选区域中包含的任意区域,也可以是满足以下条件的区域:该每个第一区域处,该第一任务类型可用的无线信号中信号质量最优的该至少一种无线信号的信号质量,满足该第一任务类型对无线信号的要求。
可选地,确定至少一个第二区域,其中,在该第二区域处,该第一任务类型可用的无线信号的信号质量最优的至少一种无线信号的信号质量,不满足该第一任务类型对无线信号的要求;在进行路径规划时,可以将该第二区域视为障碍物。
可选地,在该信号质量地图中,针对该第一任务类型,将该至少一个第二区域中每个第二区域标识为障碍物。
方式B
获取待执行的多种任务类型;根据该多种任务类型中每种任务类型可用的至少一种无线信号的信号质量,获取该多种任务类型作为整体在该每个第一区域处的第二通行代价分量;根据该每个第一区域的该第一通行代价分量,和该多种任务类型作为整体在每个第一区域处的第二通行代价分量,计算该多种任务类型作为整体在该每个第一区域处的通行代价。
可选地,可以根据该多种任务类型作为整体在该每个第一区域处的通行代价,生成该信号质量地图,该信号质量地图包括该多种任务类型作为整体在该每个第一区域处的通行代价。
也就说,针对多种任务类型,可以将该多种任务类型作为整体在每个区域处的通行代价,由此在进行需要执行多种任的路径规划时,可以直接获取各个区域针对该多种任务整体的通行代价,从而可以实现更为良好的路径规划。
可选地,根据该每个第一区域处,该多种任务类型中每种任务类型可用的至少一种无线信号的信号质量,得到该每种任务类型在该每个第一区域处的第二通行代价分量;对该多种任务类型在该每个第一区域处的多个第二通行代价分量进行加权处理,以得到该多种任务类型作为整体在该第一区域处的该第二通行代价分量。
除了加权处理,也可以是其他处理方式,具体可以根据实际情况而定,例如,则可以将该多种类型的无线信号的信号质量进行类似相加处理,并进一步计算得到第二通行代价分量。或者,将多个任务类型对应的多个第二通行代价分量进行相加处理,作为该多种任务类型作为整体所对应的通行代价。
应理解,在本发明实施例中,在多种任务类型作为整体计算在某一区域处的第二通行代价分量时,采用的每种任务类型可用的至少一种无线信号可以是对应的任务类型在该区域处的全部可用的无线信号,也可以是部分可用的无线信号,例如,信号质量最优的至少一种无线信号。
可选地,该第一区域可以是信号质量地图中需要包含的任意区域,也可以是满足以下条件的区域:在该每个第一区域处,该多种任务类型中每种任务类型可用的无线信号的信号质量满足该每种任务类型对无线信号的要求。
可选地,确定至少一个第三区域,其中,在该第三区域处,该多种任务类型中的至少一种任务类型对应的无线信号的信号质量不满足该至少一种任务类型对信号质量的要求;在进行路径规划时,可以将第三区域视为障碍物。
可选地,在该信号质量地图中,针对该多种任务类型,将该至少一个第三区域中每个第三区域设置为障碍物。
应理解,在生成信号质量地图时,以上方式A和方式B可以结合使用。
例如,利用该信号质量地图待执行的任务包括任务1、任务2和任务3,可以分别针对任务1任务2和任务3分别计算通行代价,以及将任务1、任务2和任务3结合计算通行代价;或者,计算任务1的通行代价,将任务2和任务3结合计算通行代价。
应理解,在本发明实施例中,无线信号的“种”的划分可以是指信号类型本身的不同,例如,卫星信号和WIFI信号即认为不同种的无线信号;也可以是同类型的无线信号的不同来源,例如,来自不同的AP的无线信号可以即认为是不同种的无线信号,“种”的区分维度可以根据具体实际情况而定,例如,在某种情况下,划分为定位信号和通行信号,或者,在某种情况,对于同一类型信号的不同发送端即认为是不同种的信号。
类似地,关于任务类型的“种类”的划分也可以结合具体情况而定,例如,农业用途与工业用途为不同种类的任务类型,例如,定位和通信为不同的任务类型。
在220中,获取起始位置和目标位置。
在230中,根据通过该每个第一区域的该通行代价进行路径规划,确定从该起始位置到达该目标位置的通行路径,该通行路径包括从该起始位置到达该目标位置经过的区域。
可选地,在本发明实施例中,可以利用信号质量地图,确定从起始位置到目标位置的路径。
其中,在利用信号质量地图进行路径规划时,可以采用多种算法,例如,Dijksra算法、A*算法等。
为了便于理解,以下将结合A*搜索算法描述如何实现路径的规划。
其中,在A*算法中,需要用到以下公式1:
F(n)=G(n)+H(n)           公式1
其中,F(n)是从初始节点经由中间节点n到目标节点估计的通行代价;G(n)是从起始节点到中间节点n的实际获取的通行代价;H(n)是从中间节点n到目标节点的最佳路径的通行代价的估计。
其中,H(n)计算可以通过曼哈顿算法或其算法,在此不再具体限定。
其中,找到最优路径的条件,关键在于估价函数F(n)的选取。为了更加清楚地理解该算法,以下将具体描述该算法的执行方式。
步骤一、将起始节点添加到开启列表中。
步骤二、重复如下的操作:
a)寻找开启列表中F值最低的节点,也即当前节点;
b)将当前节点切换到关闭列表;
c)对当前节点的每个相邻节点执行以下操作:
(1)如果相邻节点不可通过或者已经在关闭列表中,忽略该节点,反之如下:
(2)如果不在开启列表中,将该相邻节点添加进去,把当前节点作为该节点的回溯节点,记录该节点的F、G和H值;
(3)如果该相邻节点已经在开启列表中,用G值为参考检查新的路径是否更好。如果是这样,将该相邻节点的回溯节点作为当前节点,并且重新计算该节点的G和F值。
d)存在以下两种情况停止:
(1)把目标节点添加至关闭列表,这时候路径已经被找到;
(2)没有找到目标路径,这时开启列表已经空了,此时表示没有找到路径。
步骤三、保存路径。从目标节点,从目标节点开始,沿着每一节点的回溯节点移动至起始节点,即为选择的路径。
为了更加清楚地理解A*算法的实现方式,以下将结合图3-6进行描述。
其中,图3所示的为起始节点,障碍物与目标节点的位置关系。
图4、图5和图6所示为仅以节点的通行距离对应的通行代价计算路径,其中,假设各个节点的直行和斜行距离分别一致,可以将各个节点的直行距离对应的通行代价记为10,将各个节点的斜行距离对应的通行代价记为14。
图7所示是以节点的通行距离和无线信号的信号质量对应的通行代价计算路径。
其中,在图4-7所示的图示中,左下方是G值,右下方是H值,左上方是F值,以及
Figure PCTCN2018073113-appb-000001
指向表示当前节点的回溯节点。
其中,如图3所示,节点A为起始节点,节点B为目标节点,节点A、节点B之间的三个节点O为障碍物,也即不可通行的节点。
如图4所示,在起始节点被切换到关闭列表之后,在开启列表中,查找F值最低的节点,也即与起始节点A右侧紧邻的节点C。将该节点C放入关闭列表中,然后检查节点C相邻的节点,由于左侧的节点是起始节点,右侧的节点是障碍物,可以忽略该两个节点。将节点的另外两个相邻节点放入开启列表中,然后检查开启列表中,用G值为参考检查新的路径是否更好,发现从C节点的上下节点直接与起始节点相通,路径更优。由于C节点的上下节点的F值一致,可以选择最后添加进列表的节点,或者可以随机选择。例如,可如图5所示,选择了节点D。并继续进行选择,直到找到最优路径。最终得到的路径可以如图6所示,也即从起始节点A到终止节点B需要途径的节点包括节点D、节点E、节点F、节点G和节点H。
图7是在结合无线信号质量和区域的通行距离得到的从起始节点A到终止节点B的最优路径。其中,图7所示的信号质量地图中障碍物左边的三个节点的信号质量差,通行代价被修改为100和140。从图中可以看出,信号质量差的三个节点的上下的两个节点的回溯节点已经发生改变,按照A*算法以及更新后的代价,从节点A到节点B的最优路径需要途径的节点包括节点I,节点E,节点F,节点G和节点H。
因此,从图3-图7可以看出,使用基于无线信号的信号质量和通行距离得到的信号质量地图和使用仅基于通行距离得到的信号质量地图,最终规划的路径不一样,由此在基于无线信号的信号质量和通行距离生成的信号质量地图进行路径规划,可以考虑更多的因素,使得规划出的路径更优质。
图8是根据本发明实施例的地图生成方法300的示意性流程图。如图8所示,该方法300包括以下内容。
在310中,根据多个第一区域中每个第一区域的通行距离,以及所述每个第一区域的无线信号的信号质量,获取通过所述每个第一区域的通行代价。
在320中,根据通过所述每个第一区域的通行代价,生成信号质量地图,所述信号质量地图包括通过所述每个第一区域的通行代价,用于标示所述多个第一区域覆盖范围内 所述每个第一区域的信号质量。
可选地,图8所示的地图生成方法的具体实现可以参考方法300中的描述,为了简洁,在此不再赘述。
图9是根据本发明实施例的路径规划方法400的示意性流程图。如图9所示,该方法400包括以下内容。
在410中,获取信号质量地图,所述信号质量地图包括通过多个第一区域中每个第一区域的通行代价,用于标示所述多个第一区域覆盖范围内所述每个第一区域的信号质量,其中,所述,每个第一区域的通行代价是所述每个第一区域的通行距离,以及所述每个第一区域的无线信号的信号质量确定的。
在420中,利用所述信号质量地图,进行路径规划。
在一种实现方式中,在所述当前位置的无线信号的信号质量小于等于预定值时,根据所述地图,从所述多个位置中选择待运行至的位置。
由此,机器人不会主动运动到无线信号的信号质量较差的区域,从而提高了无线信号输入的稳定性,提高了机器人相应功能的鲁棒性,并且,机器人发现无线信号的信号质量不好时,能根据地图主动运行到无线信号的信号质量较好的区域,提高了机器人使用的稳定性和用户体验。
在另一种实现方式中,获取起始位置和目标位置;利用所述地图,确定从所述起始位置到所述目标位置的路径。
可选地,图9所示的路径规划方法的具体实现可以参考方法200中的描述,为了简洁,在此不再赘述。
图10是根据本发明实施例的路径规划装置500的示意性框图。如图10所示,该路径规划装置500包括:第一获取单元510,用于根据多个第一区域中每个第一区域的通行距离,以及所述每个第一区域的无线信号的信号质量,获取通过所述每个第一区域的通行代价;第二获取单元520,用于获取起始位置和目标位置;路径规划单元530,用于根据通过所述每个第一区域的所述通行代价进行路径规划,确定从所述起始位置到达所述目标位置的通行路径,所述通行路径包括从所述起始位置到达所述目标位置经过的区域。
可选地,所述装置600还包括地图生成单元540,用于:根据通过所述每个第一区域的通行代价,生成信号质量地图,所述信号质量地图包括通过所述每个第一区域的通行代价,用于标示所述多个第一区域覆盖范围内所述每个第一区域的信号质量;所述路径规划单元530进一步用于:基于所述信号质量地图,根据通过所述多个区域覆盖范围内每个所述区域的通行代价确定所述通行路径。
可选地,所述第一获取单元510进一步用于:根据所述每个第一区域的通行距离,确定所述每个第一区域的所述通行距离对应的第一通行代价分量;根据所述每个第一区域的无线信号的信号质量,确定所述每个第一区域的所述无线信号的信号质量对应的第二通行代价分量;根据所述每个第一区域的所述第一通行代价分量和所述第二通行代价分量,计算通过所述每个第一区域的通行代价。
可选地,所述第一获取单元510进一步用于:获取通过所述通行路径时待执行的至少一种任务类型;根据所述至少一种任务类型中每种任务类型可用的至少一种无线信号在所述每个第一区域处的信号质量,获取所述每种任务类型在所述每个第一位置处对应的第 二通行代价分量;根据所述每个第一区域的所述第一通行代价分量,和所述每种任务类型在所述每个第一区域对应的第二通行代价分量,计算执行所述每种任务类型时通过所述每个第一区域的通行代价;所述路径规划单元530进一步用于:根据执行所述每种任务类型时通过所述每个第一区域的通行代价,确定用于执行所述每种任务类型的所述通行路径。
可选地,所述至少一种任务类型包括第一任务类型,所述第一获取单元510进一步用于:根据在所述每个第一区域处,所述第一任务类型可用的无线信号中信号质量满足预定条件的至少一种无线信号的信号质量,确定所述第一任务类型在所述每个第一区域处对应的第二通行代价分量。
可选地,所述第一获取单元510进一步用于:根据在所述每个第一区域处,所述第一任务类型可用的无线信号中信号质量最优的至少一种无线信号的信号质量,确定所述第一任务类型在所述每个第一区域处对应的第二通行代价分量;其中,所述第一区域为满足以下条件的区域:在所述第一区域处,所述第一任务类型可用的无线信号中信号质量最优的所述至少一种无线信号,满足所述第一任务类型对无线信号的要求。
可选地,所述第一获取单元510进一步用于:确定至少一个第二区域,其中,在所述第二区域处,所述第一任务类型可用的无线信号的信号质量最优的至少一种无线信号的信号质量,不满足所述第一任务类型对无线信号的要求;所述路径规划单元530进一步用于:在进行路径规划时,将所述至少一个第二区域中每个第二区域视为障碍物。
可选地,所述第一获取单元510进一步用于:获取通过所述通行路径时待执行的多种任务类型;根据所述多种任务类型中每种任务类型可用的至少一种无线信号的信号质量,获取所述多种任务类型作为整体在所述每个第一区域处对应的第二通行代价分量;根据所述每个第一区域的所述第一通行代价分量,和所述多种任务类型作为整体在每个第一区域处对应的第二通行代价分量,计算所述多种任务类型作为整体在所述每个第一区域处对应的通行代价;所述路径规划单元530进一步用于:根据所述多种任务类型作为整体在所述每个第一区域处对应的通行代价,确定用于执行所述多种任务类型的所述通行路径。
可选地,所述第一获取单元510进一步用于:根据所述每个第一区域处,所述多种任务类型中每种任务类型可用的至少一种无线信号的信号质量,得到所述每种任务类型在所述每个第一区域处对应的第二通行代价分量;对所述多种任务类型在所述每个第一区域处对应的多个第二通行代价分量进行加权处理,以得到所述多种任务类型作为整体在所述第一区域处对应的所述第二通行代价分量。
可选地,所述第一区域为满足以下条件的区域:在所述每个第一区域处,所述多种任务类型中每种任务类型可用的无线信号的信号质量满足所述每种任务类型对无线信号的要求。
可选地,所述第一获取单元510进一步用于:确定至少一个第三区域,其中,在所述第三区域处,所述多种任务类型中的至少一种任务类型对应的无线信号的信号质量不满足所述至少一种任务类型对信号质量的要求;所述路径规划单元530进一步用于:在进行路径规划时,将所述至少一个第三区域中每个第三区域视为障碍物。
可选地,所述第一获取单元510进一步用于:根据无线信号的信号质量区间与通行代价分量的对应关系,以及所述每个区域的无线信号的信号质量,确定所述获取所述每个第一区域的所述第二通行代价分量。
可选地,所述第一获取单元510进一步用于:根据所述每个第一区域的通行距离,以及多次获取的所述每个第一区域的无线信号的信号质量,以统计的方式获取通过所述每个第一区域的通行代价;或,根据所述每个第一区域的通行距离,以及实时获取的所述每个第一区域的无线信号的信号质量,实时获取通过所述每个第一区域的通行代价;或,根据所述每个第一区域的通行距离,以及预测的所述每个第一区域的无线信号的信号质量,获取通过所述每个第一区域处的通行代价。
可选地,所述第一获取单元510进一步用于:在所述每个第一区域的无线信号的方向和/或强度的变化率小于等于第一阈值的情况下,根据所述每个第一区域的通行距离,以及多次获取的所述每个第一区域的无线信号的信号质量,以统计的方式获取通过所述每个第一区域的通行代价。
可选地,所述第一获取单元510进一步用于:在所述每个第一区域的无线信号方向和/或强度的变化率大于第二阈值的情况下,根据所述每个第一区域的通行距离,以及实时获取的所述每个第一区域的所述无线信号的信号质量,实时获取通过所述每个第一区域的通行代价。
可选地,所述无线信号为卫星信号,所述无线信号的信号质量包括所述无线信号的定位精度,所述第一获取单元510进一步用于:在根据所述每个第一区域的通行距离,以及预测的所述每个第一区域的无线信号的信号质量,获取通过所述每个第一区域的通行代价之前,根据在所述每个第一区域之外的其他区域接收到的第一时刻发射的卫星信号,确定在所述其他区域处的所述第一时刻的卫星排布;根据在所述其他区域处的所述第一时刻的卫星排布,所述每个第一区域与所述其他区域的位置关系,以及卫星的运行规律,确定在所述每个第一区域处的第二时刻的卫星排布;根据在所述每个第一区域处的第二时刻的卫星排布,预测在所述每个第一区域的所述第二时刻的卫星信号的定位精度。
应理解,该路径规划装置500可以执行图2所示的方法,为了简洁,在此不再赘述。
图11是根据本发明实施例的地图生成设备600的示意性框图。如图11所示,该设备600包括获取单元610和地图生成单元620。获取单元610用于,根据多个第一区域中每个第一区域的通行距离,以及所述每个第一区域的无线信号的信号质量,获取通过所述每个第一区域的通行代价;地图生成单元620用于根据通过所述每个第一区域的通行代价,生成信号质量地图,所述信号质量地图包括通过所述每个第一区域的通行代价,用于标示所述多个第一区域覆盖范围内所述每个第一区域的信号质量。
应理解,该获取单元610获取通行代价的方式,以及地图生成单元620生成地图的方式,可以参考上文方法的描述,为了简洁,在此不再赘述。
图12是根据本发明实施例的路径规划装置700的示意性框图。如图12所示,该装置700包括获取单元710和路径规划单元720。其中,获取单元710用于获取信号质量地图,所述信号质量地图包括通过所述每个第一区域的通行代价,用于标示所述多个第一区域覆盖范围内所述每个第一区域的信号质量,其中,所述,每个第一区域的通行代价是根据多个第一区域中每个第一区域的通行距离,以及所述每个第一区域的无线信号的信号质量确定的。所述路径规划单元720用于利用所述信号质量地图,进行路径规划。
应理解,该获取单元710获取信号质量地图的方式,以及路径规划单元720进行路径规划的方式,可以参考上文方法的描述,为了简洁,在此不再赘述。
图13是根据本发明实施例的智能执行装置800的示意性框图。该智能执行装置800可以是指自动执行工作的机器装置,例如,可以为机器人,无人驾驶汽车,或无人机等。
如图13所示,该智能执行装置800可以包括控制系统810、驱动机构820、传感器830、执行机构840和对外输出装置850。
其中,控制系统810可以向驱动机构820发送指令,驱动机构820可以根据控制系统810发出的指令,驱动执行机构840执行相应的动作。
控制系统810可以通过对外输出装置850对外输出信号。可选地,该对外输出装置850可以包括显示器、语音输出装置或无线发送器等,其中,显示器可以显示电量,或者显示规划的路径等,语音输出装置可以配合检测语音的传感器实现与用户的对话等,无线发送器可以发送无线信号等。
传感器830可以包括内部信息传感器和外部信息传感器。其中,内部信息传感器可以检测智能执行装置的各部分的工作状况,例如,执行机构840包括的各关节的位置,速度和加速度等;外部信息传感器可以检测外界信息,例如,可以获取本发明实施例提到的无线信号等,还可以获取其他信息,例如,获取用户输入的语音指令号等。
传感器830可以将获取的信息提供给控制系统810,控制系统810可以根据传感器的信息,向驱动机构820发出指令和/或通过对外输出装置850对外输出信号。
可选地,驱动机构820可以是电力驱动装置,例如步进电机或伺服电机等。
可选地,执行机构840用于按照驱动机构820的驱动执行相应的动作。执行机构840可以采用空间开链连杆机构,其中的转动副可以称为关节,关节的数量可以决定智能执行机构的自由度。以智能执行机构800为机器人为例,执行机构可以包括手部,腕部,臂部和行走部等,各部分之间可选地可以由关节相连。
可选地,控制系统810可以包括处理器814和存储器812。其中,该存储器812可以存储有程序代码,该处理器814可以执行该存储器812中存储的程序代码。所述处理器814和所述存储器812之间通过内部连接通路互相通信。
可选地,在处理器814可以调用存储器812中存储的程序代码,执行图2、图8或图9所示的方法。以及,可选地,处理器814可以调用存储器812中存储的程序代码,向驱动机构820发出指令。以及,可选地,处理器814可以调用存储器812中存储的程序代码,通过对外输出装置850对外输出信号。
应理解,图13所示的智能执行机构800仅是本发明的一种可选实施例,本发明实施例的智能执行装置还可以有其他机构,例如,该智能执行装置800可以不包括对外输出装置,或者,对外输出装置中包括的无线收发器可以与传感器中的接收器集成在一起等。本发明可以理解,本发明实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory, ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明实施例的具体实施方式,但本发明实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到变 化或替换,都应涵盖在本发明实施例的保护范围之内。因此,本发明实施例的保护范围应所述以权利要求的保护范围为准。

Claims (32)

  1. 一种路径规划方法,其特征在于,包括:
    根据多个第一区域中每个第一区域的通行距离,以及所述每个第一区域的无线信号的信号质量,获取通过所述每个第一区域的通行代价;
    获取起始位置和目标位置;
    根据通过所述每个第一区域的所述通行代价进行路径规划,确定从所述起始位置到达所述目标位置的通行路径,所述通行路径包括从所述起始位置到达所述目标位置经过的区域。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据通过所述每个第一区域的通行代价,生成信号质量地图,所述信号质量地图包括通过所述每个第一区域的通行代价,用于标示所述每个第一区域的信号质量;
    所述根据通过所述每个第一区域的所述通行代价进行路径规划,确定从所述起始位置到达所述目标位置的通行路径,包括:
    基于所述信号质量地图,根据通过所述每个第一区域的通行代价确定所述通行路径。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据多个第一区域中每个第一区域的通行距离,以及所述每个第一区域的无线信号的信号质量,获取通过所述每个第一区域的通行代价,包括:
    根据所述每个第一区域的通行距离,确定所述每个第一区域的所述通行距离对应的第一通行代价分量;
    根据所述每个第一区域的无线信号的信号质量,确定所述每个第一区域的所述无线信号的信号质量对应的第二通行代价分量;
    根据所述每个第一区域的所述第一通行代价分量和所述第二通行代价分量,计算通过所述每个第一区域的通行代价。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    获取通过所述通行路径时待执行的至少一种任务类型;
    所述根据所述每个第一区域的无线信号的信号质量,获取所述每个第一区域的所述通行距离对应的第二通行代价分量,包括:
    根据所述至少一种任务类型中每种任务类型可用的至少一种无线信号在所述每个第一区域处的信号质量,获取所述每种任务类型在所述每个第一位置处对应的第二通行代价分量;
    所述根据所述每个第一区域的所述第一通行代价分量和所述第二通行代价分量,计算通过所述每个第一区域的通行代价,包括:
    根据所述每个第一区域的所述第一通行代价分量,和所述每种任务类型在所述每个第一区域对应的第二通行代价分量,计算执行所述每种任务类型时通过所述每个第一区域的通行代价;
    所述根据通过所述每个第一区域的所述通行代价进行路径规划,包括:
    根据执行所述每种任务类型时通过所述每个第一区域的通行代价,确定用于执行所 述每种任务类型的所述通行路径。
  5. 根据权利要求4所述的方法,其特征在于,所述至少一种任务类型包括第一任务类型,所述获取所述每种任务类型在所述每个第一区域处对应的所述第二通行代价分量,包括:
    根据在所述每个第一区域处,所述第一任务类型可用的无线信号中信号质量满足预定条件的至少一种无线信号的信号质量,确定所述第一任务类型在所述每个第一区域处对应的第二通行代价分量。
  6. 根据权利要求5所述的方法,其特征在于,所述确定所述第一任务类型在所述每个第一区域处对应的第二通行代价分量,包括:
    根据在所述每个第一区域处,所述第一任务类型可用的无线信号中信号质量最优的至少一种无线信号的信号质量,确定所述第一任务类型在所述每个第一区域处对应的第二通行代价分量;其中,
    所述第一区域为满足以下条件的区域:在所述第一区域处,所述第一任务类型可用的无线信号中信号质量最优的所述至少一种无线信号,满足所述第一任务类型对无线信号的要求。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    确定至少一个第二区域,其中,在所述第二区域处,所述第一任务类型可用的无线信号的信号质量最优的至少一种无线信号的信号质量,不满足所述第一任务类型对无线信号的要求;
    在进行路径规划时,将所述至少一个第二区域中每个第二区域视为障碍物。
  8. 根据权利要求3所述的方法,所述方法还包括:
    获取通过所述通行路径时待执行的多种任务类型;
    所述根据所述每个第一区域的无线信号的信号质量,获取所述每个第一区域的所述无线信号的信号质量对应的第二通行代价分量,包括:
    根据所述多种任务类型中每种任务类型可用的至少一种无线信号的信号质量,获取所述多种任务类型作为整体在所述每个第一区域处对应的第二通行代价分量;
    所述根据所述每个第一区域的所述第一通行代价分量和所述第二通行代价分量,计算通过所述每个第一区域的通行代价,包括:
    根据所述每个第一区域的所述第一通行代价分量,和所述多种任务类型作为整体在每个第一区域处对应的第二通行代价分量,计算所述多种任务类型作为整体在所述每个第一区域处对应的通行代价;
    所述根据通过所述每个第一区域的所述通行代价进行路径规划,包括:
    根据所述多种任务类型作为整体在所述每个第一区域处对应的通行代价,确定用于执行所述多种任务类型的所述通行路径。
  9. 根据权利要求8所述的方法,其特征在于,所述获取所述多种任务类型作为整体在所述每个第一区域处对应的第二通行代价分量,包括:
    根据所述每个第一区域处,所述多种任务类型中每种任务类型可用的至少一种无线信号的信号质量,得到所述每种任务类型在所述每个第一区域处对应的第二通行代价分量;
    对所述多种任务类型在所述每个第一区域处对应的多个第二通行代价分量进行加权处理,以得到所述多种任务类型作为整体在所述第一区域处对应的所述第二通行代价分量。
  10. 根据权利要求9所述的方法,其特征在于,其中,所述第一区域为满足以下条件的区域:在所述每个第一区域处,所述多种任务类型中每种任务类型可用的无线信号的信号质量满足所述每种任务类型对无线信号的要求。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    确定至少一个第三区域,其中,在所述第三区域处,所述多种任务类型中的至少一种任务类型对应的无线信号的信号质量不满足所述至少一种任务类型对信号质量的要求;
    在进行路径规划时,将所述至少一个第三区域中每个第三区域视为障碍物。
  12. 根据权利要求3至11中任一项所述的方法,其特征在于,所述根据所述每个第一区域的无线信号的信号质量,确定所述每个第一区域的所述无线信号的信号质量对应的第二通行代价分量,包括:
    根据无线信号的信号质量区间与通行代价分量的对应关系,以及所述每个区域的无线信号的信号质量,确定所述获取所述每个第一区域的所述第二通行代价分量。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述根据多个第一区域中每个第一区域的通行距离,以及所述每个第一区域的无线信号的信号质量,获取通过所述每个第一区域的通行代价,包括:
    根据所述每个第一区域的通行距离,以及多次获取的所述每个第一区域的无线信号的信号质量,以统计的方式获取通过所述每个第一区域的通行代价;或,
    根据所述每个第一区域的通行距离,以及实时获取的所述每个第一区域的无线信号的信号质量,实时获取通过所述每个第一区域的通行代价;或,
    根据所述每个第一区域的通行距离,以及预测的所述每个第一区域的无线信号的信号质量,获取通过所述每个第一区域处的通行代价。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述每个第一区域的通行距离,以及多次获取的所述每个第一区域的无线信号的信号质量,以统计的方式获取通过所述每个第一区域的通行代价,包括:
    在所述每个第一区域的无线信号的方向和/或强度的变化率小于等于第一阈值的情况下,根据所述每个第一区域的通行距离,以及多次获取的所述每个第一区域的无线信号的信号质量,以统计的方式获取通过所述每个第一区域的通行代价。
  15. 根据权利要求13所述的方法,其特征在于,所述根据所述每个第一区域的通行距离,以及实时获取的所述每个第一区域的无线信号的信号质量,实时获取通过所述每个第一区域的通行代价,包括:
    在所述每个第一区域的无线信号方向和/或强度的变化率大于第二阈值的情况下,根据所述每个第一区域的通行距离,以及实时获取的所述每个第一区域的所述无线信号的信号质量,实时获取通过所述每个第一区域的通行代价。
  16. 根据权利要求13所述的方法,其特征在于,所述无线信号为卫星信号,所述无线信号的信号质量包括所述无线信号的定位精度,在根据所述每个第一区域的通行距离,以及预测的所述每个第一区域的无线信号的信号质量,获取通过所述每个第一区域的通行 代价之前,所述方法还包括:
    根据在所述每个第一区域之外的其他区域接收到的第一时刻发射的卫星信号,确定在所述其他区域处的所述第一时刻的卫星排布;
    根据在所述其他区域处的所述第一时刻的卫星排布,所述每个第一区域与所述其他区域的位置关系,以及卫星的运行规律,确定在所述每个第一区域处的第二时刻的卫星排布;
    根据在所述每个第一区域处的第二时刻的卫星排布,预测在所述每个第一区域的所述第二时刻的卫星信号的定位精度。
  17. 一种路径规划装置,其特征在于,包括:
    第一获取单元,用于根据多个第一区域中每个第一区域的通行距离,以及所述每个第一区域的无线信号的信号质量,获取通过所述每个第一区域的通行代价;
    第二获取单元,用于获取起始位置和目标位置;
    路径规划单元,用于根据通过所述每个第一区域的所述通行代价进行路径规划,确定从所述起始位置到达所述目标位置的通行路径,所述通行路径包括从所述起始位置到达所述目标位置经过的区域。
  18. 根据权利要求17所述的装置,其特征在于,所述装置还包括地图生成单元,用于:
    根据通过所述每个第一区域的通行代价,生成信号质量地图,所述信号质量地图包括通过所述每个第一区域的通行代价,用于标示所述每个第一区域的信号质量;
    所述路径规划单元进一步用于:
    基于所述信号质量地图,根据通过所述每个第一区域的通行代价确定所述通行路径。
  19. 根据权利要求17或18所述的装置,其特征在于,所述第一获取单元进一步用于:
    根据所述每个第一区域的通行距离,确定所述每个第一区域的所述通行距离对应的第一通行代价分量;
    根据所述每个第一区域的无线信号的信号质量,确定所述每个第一区域的所述无线信号的信号质量对应的第二通行代价分量;
    根据所述每个第一区域的所述第一通行代价分量和所述第二通行代价分量,计算通过所述每个第一区域的通行代价。
  20. 根据权利要求19所述的装置,其特征在于,所述第一获取单元进一步用于:
    获取通过所述通行路径时待执行的至少一种任务类型;
    根据所述至少一种任务类型中每种任务类型可用的至少一种无线信号在所述每个第一区域处的信号质量,获取所述每种任务类型在所述每个第一位置处对应的第二通行代价分量;
    根据所述每个第一区域的所述第一通行代价分量,和所述每种任务类型在所述每个第一区域对应的第二通行代价分量,计算执行所述每种任务类型时通过所述每个第一区域的通行代价;
    所述路径规划单元进一步用于:
    根据执行所述每种任务类型时通过所述每个第一区域的通行代价,确定用于执行所 述每种任务类型的所述通行路径。
  21. 根据权利要求20所述的装置,其特征在于,所述至少一种任务类型包括第一任务类型,所述第一获取单元进一步用于:
    根据在所述每个第一区域处,所述第一任务类型可用的无线信号中信号质量满足预定条件的至少一种无线信号的信号质量,确定所述第一任务类型在所述每个第一区域处对应的第二通行代价分量。
  22. 根据权利要求21所述的装置,其特征在于,所述第一获取单元进一步用于:
    根据在所述每个第一区域处,所述第一任务类型可用的无线信号中信号质量最优的至少一种无线信号的信号质量,确定所述第一任务类型在所述每个第一区域处对应的第二通行代价分量;其中,
    所述第一区域为满足以下条件的区域:在所述第一区域处,所述第一任务类型可用的无线信号中信号质量最优的所述至少一种无线信号,满足所述第一任务类型对无线信号的要求。
  23. 根据权利要求22所述的装置,其特征在于,所述第一获取单元进一步用于:
    确定至少一个第二区域,其中,在所述第二区域处,所述第一任务类型可用的无线信号的信号质量最优的至少一种无线信号的信号质量,不满足所述第一任务类型对无线信号的要求;
    所述路径规划单元进一步用于:
    在进行路径规划时,将所述至少一个第二区域中每个第二区域视为障碍物。
  24. 根据权利要求19所述的装置,所述第一获取单元进一步用于:
    获取通过所述通行路径时待执行的多种任务类型;
    根据所述多种任务类型中每种任务类型可用的至少一种无线信号的信号质量,获取所述多种任务类型作为整体在所述每个第一区域处对应的第二通行代价分量;
    根据所述每个第一区域的所述第一通行代价分量,和所述多种任务类型作为整体在每个第一区域处对应的第二通行代价分量,计算所述多种任务类型作为整体在所述每个第一区域处对应的通行代价;
    所述路径规划单元进一步用于:
    根据所述多种任务类型作为整体在所述每个第一区域处对应的通行代价,确定用于执行所述多种任务类型的所述通行路径。
  25. 根据权利要求24所述的装置,其特征在于,所述第一获取单元进一步用于:
    根据所述每个第一区域处,所述多种任务类型中每种任务类型可用的至少一种无线信号的信号质量,得到所述每种任务类型在所述每个第一区域处对应的第二通行代价分量;
    对所述多种任务类型在所述每个第一区域处对应的多个第二通行代价分量进行加权处理,以得到所述多种任务类型作为整体在所述第一区域处对应的所述第二通行代价分量。
  26. 根据权利要求25所述的装置,其特征在于,其中,所述第一区域为满足以下条件的区域:在所述每个第一区域处,所述多种任务类型中每种任务类型可用的无线信号的信号质量满足所述每种任务类型对无线信号的要求。
  27. 根据权利要求26所述的装置,其特征在于,所述第一获取单元进一步用于:
    确定至少一个第三区域,其中,在所述第三区域处,所述多种任务类型中的至少一种任务类型对应的无线信号的信号质量不满足所述至少一种任务类型对信号质量的要求;
    所述路径规划单元进一步用于:
    在进行路径规划时,将所述至少一个第三区域中每个第三区域视为障碍物。
  28. 根据权利要求19至27中任一项所述的装置,其特征在于,所述第一获取单元进一步用于:
    根据无线信号的信号质量区间与通行代价分量的对应关系,以及所述每个区域的无线信号的信号质量,确定所述获取所述每个第一区域的所述第二通行代价分量。
  29. 根据权利要求17至28中任一项所述的装置,其特征在于,所述第一获取单元进一步用于:
    根据所述每个第一区域的通行距离,以及多次获取的所述每个第一区域的无线信号的信号质量,以统计的方式获取通过所述每个第一区域的通行代价;或,
    根据所述每个第一区域的通行距离,以及实时获取的所述每个第一区域的无线信号的信号质量,实时获取通过所述每个第一区域的通行代价;或,
    根据所述每个第一区域的通行距离,以及预测的所述每个第一区域的无线信号的信号质量,获取通过所述每个第一区域处的通行代价。
  30. 根据权利要求29所述的装置,其特征在于,所述第一获取单元进一步用于:
    在所述每个第一区域的无线信号的方向和/或强度的变化率小于等于第一阈值的情况下,根据所述每个第一区域的通行距离,以及多次获取的所述每个第一区域的无线信号的信号质量,以统计的方式获取通过所述每个第一区域的通行代价。
  31. 根据权利要求29所述的装置,其特征在于,所述第一获取单元进一步用于:
    在所述每个第一区域的无线信号方向和/或强度的变化率大于第二阈值的情况下,根据所述每个第一区域的通行距离,以及实时获取的所述每个第一区域的所述无线信号的信号质量,实时获取通过所述每个第一区域的通行代价。
  32. 根据权利要求29所述的装置,其特征在于,所述无线信号为卫星信号,所述无线信号的信号质量包括所述无线信号的定位精度,所述第一获取单元进一步用于:
    在根据所述每个第一区域的通行距离,以及预测的所述每个第一区域的无线信号的信号质量,获取通过所述每个第一区域的通行代价之前,根据在所述每个第一区域之外的其他区域接收到的第一时刻发射的卫星信号,确定在所述其他区域处的所述第一时刻的卫星排布;
    根据在所述其他区域处的所述第一时刻的卫星排布,所述每个第一区域与所述其他区域的位置关系,以及卫星的运行规律,确定在所述每个第一区域处的第二时刻的卫星排布;
    根据在所述每个第一区域处的第二时刻的卫星排布,预测在所述每个第一区域的所述第二时刻的卫星信号的定位精度。
PCT/CN2018/073113 2017-01-18 2018-01-18 路径规划方法和装置 WO2018133804A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18742359.5A EP3567447B1 (en) 2017-01-18 2018-01-18 Path planning method and device
US16/515,491 US20190339080A1 (en) 2017-01-18 2019-07-18 Path Planning Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710035221.6 2017-01-18
CN201710035221.6A CN108334062B (zh) 2017-01-18 2017-01-18 路径规划方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/515,491 Continuation US20190339080A1 (en) 2017-01-18 2019-07-18 Path Planning Method and Apparatus

Publications (2)

Publication Number Publication Date
WO2018133804A1 true WO2018133804A1 (zh) 2018-07-26
WO2018133804A9 WO2018133804A9 (zh) 2019-01-24

Family

ID=62908503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073113 WO2018133804A1 (zh) 2017-01-18 2018-01-18 路径规划方法和装置

Country Status (4)

Country Link
US (1) US20190339080A1 (zh)
EP (1) EP3567447B1 (zh)
CN (1) CN108334062B (zh)
WO (1) WO2018133804A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355926A (zh) * 2021-12-29 2022-04-15 深圳市云鼠科技开发有限公司 一种路径规划方法、装置、机器人及存储介质
CN114866460A (zh) * 2022-04-27 2022-08-05 抖动科技(深圳)有限公司 基于人工智能的路径规划方法及相关设备

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109358497B (zh) * 2018-09-14 2020-04-21 北京航空航天大学 一种基于b样条函数的卫星路径规划和预测控制的跟踪方法
US11256261B1 (en) * 2018-10-16 2022-02-22 Amazon Technologies, Inc. System for movement of autonomous mobile device
CN109506654B (zh) * 2018-11-14 2020-10-20 飞牛智能科技(南京)有限公司 低空航路规划方法及装置、飞行器
CN110493760B (zh) * 2019-07-23 2020-07-24 恒大智慧充电科技有限公司 一种充电桩、导航方法、计算机设备以及计算机可读存储介质
CN112556704B (zh) * 2019-09-10 2024-03-05 华为技术有限公司 路径规划方法及通信装置
WO2021114984A1 (zh) * 2019-12-09 2021-06-17 苏州宝时得电动工具有限公司 一种地图数据发送、显示方法、装置、设备及存储介质
CN111341136A (zh) * 2020-02-11 2020-06-26 浙江吉利汽车研究院有限公司 一种基于车路协同的代客泊车方法、系统及存储介质
CN111578954A (zh) * 2020-05-29 2020-08-25 北京百度网讯科技有限公司 导航提示方法、装置、设备及可读存储介质
CN111664861B (zh) * 2020-06-02 2023-02-28 阿波罗智联(北京)科技有限公司 导航提示方法、装置、设备及可读存储介质
CN112969976A (zh) * 2020-08-03 2021-06-15 深圳市大疆创新科技有限公司 可移动平台的控制方法、可移动平台及存储介质
CN112787914B (zh) * 2021-02-24 2021-10-08 深圳市云特科技有限公司 一种5g工业物联网网关及其控制方法
CN114363815B (zh) * 2021-12-23 2023-10-20 北京三快在线科技有限公司 网络质量确定方法、设备控制方法、装置、介质及设备
CN115014333B (zh) * 2022-08-08 2022-11-22 智道网联科技(北京)有限公司 信号地图构建方法、装置及电子设备、存储介质
WO2024036529A1 (en) * 2022-08-17 2024-02-22 Intel Corporation System for path-aware mobility management and mobility-management-aware path planning for robots

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140195049A1 (en) * 2013-01-04 2014-07-10 Electronics And Telecommunications Research Institute Apparatus and method for creating probability-based radio map for cooperative intelligent robots
US20150312774A1 (en) * 2014-04-25 2015-10-29 The Hong Kong University Of Science And Technology Autonomous robot-assisted indoor wireless coverage characterization platform
CN204904349U (zh) * 2015-09-07 2015-12-23 丹阳伦图电子技术有限公司 一种基于Wi-Fi技术的ESL系统
CN105223950A (zh) * 2015-08-31 2016-01-06 联想(北京)有限公司 一种信息处理方法及电子设备
CN105869512A (zh) * 2016-05-31 2016-08-17 北京云迹科技有限公司 多信息的混杂度量地图建图方法和装置
CN106199498A (zh) * 2015-04-21 2016-12-07 金宝电子工业股份有限公司 定位辅助方法及其电子移动装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100965656B1 (ko) * 2003-04-24 2010-06-23 삼성전자주식회사 네비게이션시스템에서 경로 이탈지로부터 이탈 전경로까지의 최적 경로를 계산하는 리-라우팅 장치 및방법과 이를 이용한 네비게이션시스템
KR100745975B1 (ko) * 2004-12-30 2007-08-06 삼성전자주식회사 그리드 맵을 사용하여 최소 이동 경로로 이동하는 방법 및장치
JP4661838B2 (ja) * 2007-07-18 2011-03-30 トヨタ自動車株式会社 経路計画装置及び方法、コスト評価装置、並びに移動体
US20090198505A1 (en) * 2008-02-05 2009-08-06 Peter Gipps Interactive path planning with dynamic costing
CN101964941A (zh) * 2010-08-25 2011-02-02 吉林大学 基于动态信息的智能导航与位置服务系统及方法
US8645060B2 (en) * 2010-09-07 2014-02-04 Qualcomm Incorporated Positioning network availability and reliability based routing
CN102538807A (zh) * 2010-12-27 2012-07-04 宇达电脑(上海)有限公司 导航路径规划方法和装置
US10375594B2 (en) * 2013-02-12 2019-08-06 Samsung Electronics Co., Ltd. Apparatus and method for generating an alert based on signal strength
CN103139812B (zh) * 2013-03-01 2015-06-03 哈尔滨工业大学 基于无线传感器网络的移动节点编队避障方法
CN104162894B (zh) * 2013-05-17 2016-03-02 光宝电子(广州)有限公司 清扫机器人及清扫机器人的定位方法
CN103327607B (zh) * 2013-06-28 2016-06-29 赵忠厚 无线传感器网络多锚节点组移动路径规划方法
US9216508B2 (en) * 2014-01-14 2015-12-22 Qualcomm Incorporated Connectivity maintenance using a quality of service-based robot path planning algorithm
JP6430747B2 (ja) * 2014-08-06 2018-11-28 公立大学法人岩手県立大学 通信システム及びそれを用いた移動装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140195049A1 (en) * 2013-01-04 2014-07-10 Electronics And Telecommunications Research Institute Apparatus and method for creating probability-based radio map for cooperative intelligent robots
US20150312774A1 (en) * 2014-04-25 2015-10-29 The Hong Kong University Of Science And Technology Autonomous robot-assisted indoor wireless coverage characterization platform
CN106199498A (zh) * 2015-04-21 2016-12-07 金宝电子工业股份有限公司 定位辅助方法及其电子移动装置
CN105223950A (zh) * 2015-08-31 2016-01-06 联想(北京)有限公司 一种信息处理方法及电子设备
CN204904349U (zh) * 2015-09-07 2015-12-23 丹阳伦图电子技术有限公司 一种基于Wi-Fi技术的ESL系统
CN105869512A (zh) * 2016-05-31 2016-08-17 北京云迹科技有限公司 多信息的混杂度量地图建图方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3567447A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355926A (zh) * 2021-12-29 2022-04-15 深圳市云鼠科技开发有限公司 一种路径规划方法、装置、机器人及存储介质
CN114355926B (zh) * 2021-12-29 2022-10-14 深圳市云鼠科技开发有限公司 一种路径规划方法、装置、机器人及存储介质
CN114866460A (zh) * 2022-04-27 2022-08-05 抖动科技(深圳)有限公司 基于人工智能的路径规划方法及相关设备
CN114866460B (zh) * 2022-04-27 2024-06-04 抖动科技(深圳)有限公司 基于人工智能的路径规划方法及相关设备

Also Published As

Publication number Publication date
US20190339080A1 (en) 2019-11-07
CN108334062B (zh) 2020-12-04
EP3567447B1 (en) 2023-01-11
WO2018133804A9 (zh) 2019-01-24
CN108334062A (zh) 2018-07-27
EP3567447A4 (en) 2020-01-01
EP3567447A1 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
WO2018133804A1 (zh) 路径规划方法和装置
WO2018133805A1 (zh) 路径规划方法和装置
Li et al. Toward location-enabled IoT (LE-IoT): IoT positioning techniques, error sources, and error mitigation
CN103926925B (zh) 一种基于改进的vfh算法的定位与避障方法及机器人
CN106023210A (zh) 无人车、无人车定位方法、装置和系统
CN110549339A (zh) 一种导航方法、装置、导航机器人和存储介质
Caccamo et al. RCAMP: A resilient communication-aware motion planner for mobile robots with autonomous repair of wireless connectivity
Lu et al. Robot indoor location modeling and simulation based on Kalman filtering
Hernández et al. WiFi-based indoor localization and tracking of a moving device
Li et al. Location-Enabled IoT (LE-IoT): A survey of positioning techniques, error sources, and mitigation
Pham et al. A multi-robot, cooperative, and active slam algorithm for exploration
Montero et al. Dynamic warning zone and a short-distance goal for autonomous robot navigation using deep reinforcement learning
Benelmir et al. An efficient autonomous vehicle navigation scheme based on LiDAR sensor in vehicular network
Yadav et al. Unveiling the cutting edge: A comprehensive survey of localization techniques in WSN, leveraging optimization and machine learning approaches
Nieuwenhuisen et al. Local multiresolution path planning in soccer games based on projected intentions
Souli et al. Adaptive frequency band selection for accurate and fast positioning utilizing SOPs
AU2021273605B2 (en) Multi-agent map generation
Li et al. An enhanced direction calibration based on reinforcement learning for indoor localization system
Watthanawisuth et al. Design of mobile robot for real world application in path planning using ZigBee localization
Hsu et al. An improved minimum-cost pathfinding algorithm for mobile robot navigation
Ahmad et al. A meta-tracking approach for predicting the driver or passenger intent
Thilagavathi et al. RSSI based tree climbing mechanism for dynamic path planning in WSN
CN114355911B (zh) 机器人的充电方法、装置、机器人和存储介质
Magrisso et al. Local Trajectory Planning For UAV Autonomous Landing
Bawane et al. A Review on Wireless Sensor Network Localization Techniques: Deployment and Challenges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18742359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018742359

Country of ref document: EP

Effective date: 20190805