WO2018133599A1 - 一种轮盘式多材料激光选区熔化成型装置与方法 - Google Patents
一种轮盘式多材料激光选区熔化成型装置与方法 Download PDFInfo
- Publication number
- WO2018133599A1 WO2018133599A1 PCT/CN2017/116388 CN2017116388W WO2018133599A1 WO 2018133599 A1 WO2018133599 A1 WO 2018133599A1 CN 2017116388 W CN2017116388 W CN 2017116388W WO 2018133599 A1 WO2018133599 A1 WO 2018133599A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- cylinder
- spreading
- selective melting
- cylinders
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/70—Recycling
- B22F10/73—Recycling of powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/22—Driving means
- B22F12/226—Driving means for rotary motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/49—Scanners
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the invention relates to the field of rapid prototyping of laser-selective melt-molded metal parts, in particular to a roulette type multi-material laser selective melting forming device and method.
- Laser Selective Melting (SLM) forming technology is one of additive manufacturing technologies and the latest development in rapid prototyping technology.
- the technology is based on the principle of discrete material layer-by-layer stacking.
- the high-energy laser beam is used to directly produce the functional parts by powder-by-point, line-by-line and layer-by-layer melting of the raw material powder.
- metal additive manufacturing techniques such as electron beam selective melting and laser selective sintering
- laser selective melting forming technology has the characteristics of high molding precision, high density and simple post-processing, and can directly form high precision with complex geometric space structure.
- Functional components The technology is an advanced manufacturing method for rapid manufacturing of complex components with the advantages of structural and functional integration design, short manufacturing cycle, near-final shape, no mold, no tool, etc. It is one of the most promising technologies for metal additive manufacturing technology.
- laser selective melting technology has developed rapidly, it has been widely used in industries, transportation, molds, aerospace and medical fields.
- laser selective melting equipment can only select one material at a time, and can only form a single sheet.
- the material properties of the parts which can not meet the direct forming requirements of a variety of materials integrated parts, severely limit the application range of laser selection melting technology.
- a roulette type multi-material laser selective melting and forming device comprising a molding chamber 16, a molding cylinder 12 in a molding chamber 16, a powder distributing mechanism, a powder supplying device, a laser selective melting device, and a control system;
- the powder feeding mechanism is arranged along the longitudinal direction of the molding chamber 16 below the plane of the substrate of the molding chamber 16;
- the powder supply device is a rotatable roulette type powder cylinder, and the roulette type powder cylinder has a cylindrical structure, and the inside thereof is divided into four equally divided powder cylinders through the partition plate 8, that is, the first powder cylinder 11. a second powder cylinder 5, a third powder cylinder 7 and a fourth powder cylinder 9; the four powder cylinders can be used for powders of different materials;
- the four powder cylinders are driven to alternate and the powdering station 13 of the positive forming chamber 16 is arranged, so that the powder in the powder cylinder is tiled by the spreading mechanism.
- the powdering station 13 of the positive forming chamber 16 is arranged, so that the powder in the powder cylinder is tiled by the spreading mechanism.
- the dusting mechanism comprises a powder-laying guide 2 and a powder-laying arm 3 mounted thereon, and the powder-laying arm 3 is driven by the powder-spreading motor 4 to linearly reciprocate on the powder-laying guide 2; the powder-spreading brush 19 is installed on the powder-spreading On the lower side of the arm 3, the initial position of the movement of the powder-laying arm 3 is located on the left side of the rotating shaft 6, above the partition 8; the powder-spreading drive motor 4 drives it from the initial position to the end of the powder-laying guide 2 for paving
- the powder in the powder cylinder is laid flat on the molding cylinder 12 during the powder operation.
- the powder spreading rail 2 is disposed in a separate compartment 23 on one side of the molding chamber 16; the longitudinal direction of the powder spreading arm 3 is perpendicular to a line connecting the center point of the molding chamber 16 and the axis of the rotating shaft 6 to each other.
- the cross-sectional shape of the first powder cylinder 11, the second powder cylinder 5, the third powder cylinder 7 and the fourth powder cylinder 9 is an equal and symmetrical sector structure; two end points of the arc side of the sector
- the straight length of the continuous formation is larger than the diameter of the molding chamber 16.
- the lower end of the spreading brush 19 is in contact with the upper edge of the partition 8.
- the left side of the forming cylinder 12 is provided with a powder recovery cylinder 14 for collecting the remaining powder during the spreading process.
- the rotation of the rotating shaft 6 of the roulette type powder cylinder is driven by the roulette driving motor 22;
- a flexible sealing rubber ring 10 is disposed at a joint between the outer peripheral wall surface of the roulette type powder cylinder and the substrate of the molding chamber 16; and the pre-compression force of the flexible sealing rubber ring 10 and the substrate of the molding chamber 16 is maintained at 50-100N.
- the first powder cylinder 11, the second powder cylinder 5, the third powder cylinder 7 and the fourth powder cylinder 9 are each provided with an independent lifting mechanism.
- the method for operating a rotatable multi-material laser selective melting and forming device of the present invention comprises the following steps:
- Step 1 According to the process requirements of the parts to be processed 15, the powders of different materials are respectively loaded into the corresponding four powder cylinders, namely: the first powder cylinder 11, the second powder cylinder 5, and the third powder cylinder 7 And a fourth powder cylinder 9;
- Step 2 According to the attribute requirement of the part 15, the control system issues a command to the wheel drive motor 22 to drive the rotation shaft 6 to rotate, and drive one of the powder cylinders containing the required material powder to rotate to the dusting station 13; control system control The lifting mechanism of the powder cylinder pushes the powder to a height of the powder layer, and the powder driving motor 4 drives the powdering arm 3 in the initial position, and the powder in the powder cylinder is laid along the starting end of the powdering station 13 The working position 13 is laid on the molding cylinder 12; a layer of paving operation is completed; the scanning galvanometer 18 of the laser selective melting device scans the molten powder by the laser beam 17 according to the contour information of the part 15, and starts the laser processing operation;
- the control system controls the powder cylinders containing the required material powder to alternately and cyclically rotate to the dusting station 13, until the powder layering and laser processing operations of the parts 15 are completed.
- the excess powder is scraped off into the powder recovery cylinder 14 by the spreading brush 19 on the spreading arm 3.
- the present invention has the following advantages and effects:
- the powder cylinder of the invention adopts a cylindrical wheel supply mode, and the wheel is divided into four identical powder cylinders, and each powder cylinder is separated by a partition; during the processing, according to the part 15
- the attribute requires that the control system issues a command to the wheel drive motor 22 to drive the rotating shaft 6 to rotate, and drive one of the powder cylinders containing the required material powder to rotate to the spreading station 13; the control system controls the lifting mechanism of the powder cylinder Pushing the powder up to a height of the powder layer, the powder driving motor 4 drives the powdering arm 3 in the initial position, and the powder in the powder cylinder is laid flat along the spreading station 13 from the starting end of the powder discharging station 13
- the cylinder 12 is finished; a layer of paving operation is completed; the scanning galvanometer 18 of the laser selective melting device scans the molten powder by the laser beam 17 according to the contour information of the part 15 to start the laser processing operation; thus, according to the attribute requirements of the part 15,
- the control system controls the powder cylinders containing
- the invention is provided with a flexible sealing rubber ring 10 at the joint between the outer peripheral wall surface of the roulette type powder cylinder and the substrate of the molding chamber 16; the flexible sealing rubber ring 10 and the forming chamber 16 are maintained at a pre-compression force of 50-100N.
- the flexible sealing rubber ring 10 not only prevents metal rigid friction between the two, but also ensures a sealed environment in the molding chamber 16 and an unobstructed passage of the powder.
- the invention skillfully adopts a roulette type powder cylinder, and can rotate and can select a powder cylinder containing a required material to meet the material requirements of different processing layers of the complete part.
- the roulette type powder cylinder of the invention is divided into four equal parts, and the rotation thereof can be rotated clockwise or counterclockwise, so the rotation angle is small, and the problem that the rotation of the roulette drive motor is wound on the rotating shaft is avoided. It simplifies the complexity of the mechanism, and it is easy and safe to realize laser selective melting of multi-materials.
- the four powder cylinders of the invention can respectively hold powders of different materials, have the advantages of large flexibility, simple structure, small occupied space and low cost, realize the molding requirements of a plurality of powder processing parts, and greatly improve the molding efficiency and quality, During the processing, it is not necessary to open the molding chamber to replace the powder, thereby greatly improving the good metallurgical bonding performance between the dissimilar materials of the parts.
- FIG. 1 is a schematic view showing the structure of a disc-type multi-material laser selective melting and forming apparatus of the present invention.
- Figure 2 is a schematic cross-sectional view of the A-A of Figure 1.
- the invention discloses a roulette type multi-material laser selective melting forming device, comprising a forming chamber 16, a forming cylinder 12 in a forming chamber 16, a powder laying mechanism, a powder supplying device, a laser selective melting device and a control system;
- the molding cylinder 12 and the powder supply mechanism are arranged along the longitudinal direction of the molding chamber 16 below the plane of the substrate of the molding chamber 16;
- the powder supply device is a rotatable roulette type powder cylinder, and the roulette type powder cylinder has a cylindrical structure, and the inside thereof is divided into four equally divided powder cylinders through the partition plate 8, that is, the first powder cylinder 11. a second powder cylinder 5, a third powder cylinder 7 and a fourth powder cylinder 9; the four powder cylinders can be used for powders of different materials;
- the four powder cylinders are driven to alternate and the powdering station 13 of the positive forming chamber 16 is arranged, so that the powder in the powder cylinder is tiled by the spreading mechanism.
- the powdering station 13 of the positive forming chamber 16 is arranged, so that the powder in the powder cylinder is tiled by the spreading mechanism.
- the dusting mechanism comprises a powder-laying guide 2 and a powder-laying arm 3 mounted thereon, and the powder-laying arm 3 is driven by the powder-spreading motor 4 to linearly reciprocate on the powder-laying guide 2; the powder-spreading brush 19 is installed on the powder-spreading On the lower side of the arm 3, the initial position of the movement of the powder-laying arm 3 is located on the left side of the rotating shaft 6, above the partition 8; the powder-spreading drive motor 4 drives it from the initial position to the end of the powder-laying guide 2 for paving
- the powder in the powder cylinder is laid flat on the molding cylinder 12 during the powder operation.
- the powder spreading rail 2 is disposed in a separate compartment 23 on one side of the molding chamber 16; the longitudinal direction of the powder spreading arm 3 is perpendicular to a line connecting the center point of the molding chamber 16 and the axis of the rotating shaft 6 to each other.
- the cross-sectional shape of the first powder cylinder 11, the second powder cylinder 5, the third powder cylinder 7 and the fourth powder cylinder 9 is an equal and symmetrical sector structure; two end points of the arc side of the sector
- the straight length of the continuous formation is larger than the diameter of the molding chamber 16.
- the present invention employs four powder cylinders that are symmetrically distributed, but depending on the process requirements of the particular part, the number can be increased and the latter reduced.
- the lower end of the spreading brush 19 is in contact with the upper edge of the partition 8. Preventing the powder in the powder cylinder from entering the adjacent powder cylinder through the partition 8 during the dusting process.
- the left side of the forming cylinder 12 is provided with a powder recovery cylinder 14 for collecting the remaining powder during the spreading process and periodically cleaning it.
- the rotation of the rotating shaft 6 of the roulette type powder cylinder is driven by the roulette driving motor 22;
- a flexible sealing rubber ring 10 is disposed at a joint between the outer peripheral wall surface of the roulette type powder cylinder and the substrate of the molding chamber 16; and the pre-compression force of the flexible sealing rubber ring 10 and the substrate of the molding chamber 16 is maintained at 50-100N.
- the flexible sealing rubber ring 10 not only prevents metal rigid friction between the two, but also ensures a sealed environment in the molding chamber 16 and an unobstructed passage of the powder.
- the first powder cylinder 11, the second powder cylinder 5, the third powder cylinder 7 and the fourth powder cylinder 9 are each provided with an independent lifting mechanism.
- the method for operating a rotatable multi-material laser selective melting and forming device of the present invention comprises the following steps:
- Step 1 According to the attribute requirements of the parts to be processed 15, the powders of different materials are respectively loaded into the corresponding four powder cylinders, namely: the first powder cylinder 11, the second powder cylinder 5, and the third powder cylinder 7 And a fourth powder cylinder 9;
- Step 2 According to the attribute requirement of the part 15, the control system issues a command to the wheel drive motor 22 to drive the rotation shaft 6 to rotate, and drive one of the powder cylinders containing the required material powder to rotate to the dusting station 13; control system control The lifting mechanism of the powder cylinder pushes the powder to a height of the powder layer, and the powder driving motor 4 drives the powdering arm 3 in the initial position, and the powder in the powder cylinder is laid along the starting end of the powdering station 13 The working position 13 is laid on the molding cylinder 12; a layer of paving operation is completed; the scanning galvanometer 18 of the laser selective melting device scans the molten powder by the laser beam 17 according to the contour information of the part 15, and starts the laser processing operation;
- the control system controls the powder cylinders containing the required material powder to alternately and cyclically rotate to the dusting station 13, until the powder layering and laser processing operations of the parts 15 are completed.
- the excess powder is scraped off into the powder recovery cylinder 14 by the spreading brush 19 on the spreading arm 3.
- the present invention can be preferably implemented.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Sustainable Development (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
Abstract
一种轮盘式多材料激光选区熔化成型装置,包括成型室(16)、供粉装置;供粉装置为可转动的轮盘式粉料缸,轮盘式粉料缸呈圆筒形结构,其内部通过隔板(8)分为四个等分的粉料缸(11,5,7,9),四个粉料缸用于盛装不同材质的粉末;轮盘式粉料缸的转轴(6)转动时,驱动这四个粉料缸分别交替、并对正成型室(16)的铺粉工位(13),以使该粉料缸内的粉末由铺粉机构平铺至成型缸(12)上。还涉及一种该装置的运行方法。本装置灵活性大,结构简单,占用空间小,造价低廉,实现了由多种粉末加工一个零件的成型要求,大大提高了成型效率及品质,加工过程中,无需打开成型室更换粉末,大大提高了零件的异种材料之间良好冶金结合性能。
Description
本发明涉及激光选区熔化成型金属零件的快速成型领域,尤其涉及一种轮盘式多材料激光选区熔化成型装置与方法。
激光选区熔化(SLM)成形技术是增材制造技术的一种,是快速成型技术的最新发展技术。该技术基于离散材料逐层堆积成型原理,依据三维设计软件设计的数字化零件的三维数据,采用高能激光束对原材料粉末逐点、逐线、逐层熔化直接制造出功能零件。与电子束选区熔化、激光选区烧结等金属增材制造技术相比,激光选区熔化成形技术具有成型精度高、致密度高以及后处理简单的特点,可以直接成型出具有复杂几何空间结构的高精度功能零部件。该技术以结构功能一体化设计、制造周期短、近终形、无模具、无刀具等技术优势成为复杂构件快速制造的先进制造手段,是金属增材制造技术最有发展前景的技术之一。
虽然激光选区熔化技术发展迅速,已开始广泛应用于工业、运输、模具、航空航天以及医疗等领域,但是目前激光选区熔化成型设备每次成型时只能选择一种材料,只能够成型出具有单材料性能的零件产品,这无法满足人们对多种材料一体化零件的直接成型要求,严重限制了激光选区熔化技术的应用范围。
本发明的目的在于克服上述现有技术的缺点和不足,提供一种轮盘式多材料激光选区熔化成型装置与方法。能够根据零件的属性要求,在一次成型过程中,同时选择多种不同材质的粉末材料。
本发明通过下述技术方案实现:
一种轮盘式多材料激光选区熔化成型装置,包括成型室16,设置成型室16内的成型缸12、铺粉机构、供粉装置、激光选区熔化装置、控制系统;所述成型缸12和供粉机构沿成型室16的长度方向,排列在成型室16基板平面下方;
供粉装置为可转动的轮盘式粉料缸,轮盘式粉料缸呈圆筒形结构,其内部通过隔板8分为四个等分的粉料缸,即:第一粉料缸11、第二粉料缸5、第三粉料缸7和第四粉料缸9;这四个粉料缸可用于盛装不同材质的粉末;
轮盘式粉料缸的转轴6转动时,驱动这四个粉料缸分别交替、并对正成型室16的铺粉工位13,以使该粉料缸内的粉末由铺粉机构平铺至成型缸12上。
所述铺粉机构包括铺粉导轨2及安装在其上的铺粉臂3,铺粉臂3由铺粉驱动电机4驱动其在铺粉导轨2上直线往复运动;铺粉刷19安装在铺粉臂3的下侧,铺粉臂3运动的初始位置位于转轴6的左侧、隔板8的上方;铺粉驱动电机4驱动其由初始位置运动至铺粉导轨2的末端,用于在铺粉作业过程中将该粉料缸内的粉末平铺在成型缸12上。
所述铺粉导轨2设置在成型室16一侧独立隔仓23内;所述铺粉臂3的长度方向与成型室16的中心点和转轴6轴心连成的直线彼此垂直。
所述第一粉料缸11、第二粉料缸5、第三粉料缸7和第四粉料缸9的截面形状为均等、且对称的扇面结构;扇面的圆弧边的两个端点连成的直线长度大于成型室16的直径。
所述铺粉刷19的下端与隔板8的上边缘相接触。
所述成型缸12的左侧设有粉末回收缸14,用于在铺粉过程中收集剩余的粉末。
所述轮盘式粉料缸的转轴6的转动由轮盘驱动电机22带动;
所述轮盘式粉料缸的外周壁面与成型室16基板衔接处设有柔性密封胶圈10;柔性密封胶圈10与成型室16基板衔接处保持50-100N的预压紧力。
所述第一粉料缸11、第二粉料缸5、第三粉料缸7和第四粉料缸9均设有独立的升降机构。
本发明轮盘式多材料激光选区熔化成型装置的运行方法,包括如下步骤:
步骤一:根据待加工零件15的工艺要求,将不同材质的粉末分别装入相应的四个粉料缸,即:第一粉料缸11、第二粉料缸5、第三粉料缸7和第四粉料缸9;
步骤二:根据零件15的属性要求,控制系统对轮盘驱动电机22发出指令,驱动转轴6转动,带动其中一个装有所需材质粉末的粉料缸转动至铺粉工位13;控制系统控制该粉料缸的升降机构推动粉末上升一个粉层高度,铺粉驱动电机4驱动处于初始位置的铺粉臂3,从铺粉工位13的起始端将该粉料缸内的粉末沿铺粉工位13平铺在成型缸12上;完成一层铺粉作业;激光选区熔化装置的扫描振镜18根据零件15的轮廓信息,通过激光束17扫描熔化粉末,开始激光加工作业;
如此循环,根据零件15的属性要求,并由控制系统控制装有所需材质粉末的粉料缸交替、循环转动至铺粉工位13,直至完成零件15各层铺粉、激光加工作业。
上述步骤二铺粉作业过程中,多余的粉末被铺粉臂3上的铺粉刷19刮落至粉末回收缸14内。
本发明相对于现有技术,具有如下的优点及效果:
本发明粉料缸采用了圆筒形轮盘供粉模式,将轮盘均分为四个相同的粉料缸,各粉料缸之间由隔板隔离;在加工过程中,根据零件15的属性要求,控制系统对轮盘驱动电机22发出指令,驱动转轴6转动,带动其中一个装有所需材质粉末的粉料缸转动至铺粉工位13;控制系统控制该粉料缸的升降机构推动粉末上升一个粉层高度,铺粉驱动电机4驱动处于初始位置的铺粉臂3,从铺粉工位13的起始端将该粉料缸内的粉末沿铺粉工位13平铺在成型缸12上;完成一层铺粉作业;激光选区熔化装置的扫描振镜18根据零件15的轮廓信息,通过激光束17扫描熔化粉末,开始激光加工作业;如此循环,根据零件15的属性要求,并由控制系统控制装有所需材质粉末的粉料缸交替、循环转动至铺粉工位13,直至完成零件15各层铺粉、激光加工作业。进而,能够根据零件15的属性要求,在一次成型过程中,同时选择多种不同材质的粉末材料。
本发明在轮盘式粉料缸的外周壁面与成型室16基板衔接处设有柔性密封胶圈10;柔性密封胶圈10与成型室16基板衔接处保持50-100N的预压紧力。柔性密封胶圈10既防止两者之间的金属刚性摩擦,又保证成型室16内密封环境以及粉末的无障碍通过。
本发明巧妙地采用轮盘式粉料缸,可以通过转动,可任意选择装有所需材料的粉料缸,来完整零件不同加工层的材质要求。
本发明轮盘式粉料缸,分为了四个等分,并且其可顺时针或者逆时针旋转,因此转动角度小,避免了多圈转动出现轮盘驱动电机接线缠绕在转轴上的问题,大大简化了机构的额复杂性,轻松安全实现多材料的激光选区熔化成型。
本发明四个粉料缸可分别盛装不同材质的粉末,灵活性大,结构简单,占用空间小,造价低廉,实现了一个零件多种粉末加工的成型要求,大大提高了成型效率及品质,由于加工过程中,无需打开成型室更换粉末,因此大大提高了零件的异种材料之间良好冶金结合性能。
图1为本发明轮盘式多材料激光选区熔化成型装置结构示意图。
图2为图1中A-A剖面结构示意图。
下面结合具体实施例对本发明作进一步具体详细描述。
实施例
如图1和2所示。本发明公开了一种轮盘式多材料激光选区熔化成型装置,包括成型室16,设置成型室16内的成型缸12、铺粉机构、供粉装置、激光选区熔化装置、控制系统;所述成型缸12和供粉机构沿成型室16的长度方向,排列在成型室16基板平面下方;
供粉装置为可转动的轮盘式粉料缸,轮盘式粉料缸呈圆筒形结构,其内部通过隔板8分为四个等分的粉料缸,即:第一粉料缸11、第二粉料缸5、第三粉料缸7和第四粉料缸9;这四个粉料缸可用于盛装不同材质的粉末;
轮盘式粉料缸的转轴6转动时,驱动这四个粉料缸分别交替、并对正成型室16的铺粉工位13,以使该粉料缸内的粉末由铺粉机构平铺至成型缸12上。
所述铺粉机构包括铺粉导轨2及安装在其上的铺粉臂3,铺粉臂3由铺粉驱动电机4驱动其在铺粉导轨2上直线往复运动;铺粉刷19安装在铺粉臂3的下侧,铺粉臂3运动的初始位置位于转轴6的左侧、隔板8的上方;铺粉驱动电机4驱动其由初始位置运动至铺粉导轨2的末端,用于在铺粉作业过程中将该粉料缸内的粉末平铺在成型缸12上。
所述铺粉导轨2设置在成型室16一侧独立隔仓23内;所述铺粉臂3的长度方向与成型室16的中心点和转轴6轴心连成的直线彼此垂直。
所述第一粉料缸11、第二粉料缸5、第三粉料缸7和第四粉料缸9的截面形状为均等、且对称的扇面结构;扇面的圆弧边的两个端点连成的直线长度大于成型室16的直径。本发明采用对称分布的四个粉料缸,但根据具体零件的工艺要求,数量可以增加增加后者减少。
所述铺粉刷19的下端与隔板8的上边缘相接触。防止在刮粉过程中,该粉料缸内的粉末越过隔板8进入相邻粉料缸内。
所述成型缸12的左侧设有粉末回收缸14,用于在铺粉过程中收集剩余的粉末,并定期对其进行清理。
所述轮盘式粉料缸的转轴6的转动由轮盘驱动电机22带动;
所述轮盘式粉料缸的外周壁面与成型室16基板衔接处设有柔性密封胶圈10;柔性密封胶圈10与成型室16基板衔接处保持50-100N的预压紧力。柔性密封胶圈10既防止两者之间的金属刚性摩擦,又保证成型室16内密封环境以及粉末的无障碍通过。
所述第一粉料缸11、第二粉料缸5、第三粉料缸7和第四粉料缸9均设有独立的升降机构。
本发明轮盘式多材料激光选区熔化成型装置的运行方法,包括如下步骤:
步骤一:根据待加工零件15的属性要求,将不同材质的粉末分别装入相应的四个粉料缸,即:第一粉料缸11、第二粉料缸5、第三粉料缸7和第四粉料缸9;
步骤二:根据零件15的属性要求,控制系统对轮盘驱动电机22发出指令,驱动转轴6转动,带动其中一个装有所需材质粉末的粉料缸转动至铺粉工位13;控制系统控制该粉料缸的升降机构推动粉末上升一个粉层高度,铺粉驱动电机4驱动处于初始位置的铺粉臂3,从铺粉工位13的起始端将该粉料缸内的粉末沿铺粉工位13平铺在成型缸12上;完成一层铺粉作业;激光选区熔化装置的扫描振镜18根据零件15的轮廓信息,通过激光束17扫描熔化粉末,开始激光加工作业;
如此循环,根据零件15的属性要求,并由控制系统控制装有所需材质粉末的粉料缸交替、循环转动至铺粉工位13,直至完成零件15各层铺粉、激光加工作业。
上述步骤二铺粉作业过程中,多余的粉末被铺粉臂3上的铺粉刷19刮落至粉末回收缸14内。
如上所述,便可较好地实现本发明。
本发明的实施方式并不受上述实施例的限制,其他任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
- 一种轮盘式多材料激光选区熔化成型装置,包括成型室(16),设置成型室(16)内的成型缸(12)、铺粉机构、供粉装置、激光选区熔化装置、控制系统;其特征在于:所述成型缸(12)和供粉机构沿成型室(16)的长度方向,排列在成型室(16)基板平面下方;供粉装置为可转动的轮盘式粉料缸,轮盘式粉料缸呈圆筒形结构,其内部通过隔板(8)分为四个等分的粉料缸,即:第一粉料缸(11)、第二粉料缸(5)、第三粉料缸(7)和第四粉料缸(9);这四个粉料缸可用于盛装不同材质的粉末;轮盘式粉料缸的转轴(6)转动时,驱动这四个粉料缸分别交替、并对正成型室(16)的铺粉工位(13),以使该粉料缸内的粉末由铺粉机构平铺至成型缸(12)上。
- 根据权利要求1所述轮盘式多材料激光选区熔化成型装置,其特征在于:所述铺粉机构包括铺粉导轨(2)及安装在其上的铺粉臂(3),铺粉臂(3)由铺粉驱动电机(4)驱动其在铺粉导轨(2)上直线往复运动;铺粉刷(19)安装在铺粉臂(3)的下侧,铺粉臂(3)运动的初始位置位于转轴(6)的左侧、隔板(8)的上方;铺粉驱动电机(4)驱动其由初始位置运动至铺粉导轨(2)的末端,用于在铺粉作业过程中将该粉料缸内的粉末平铺在成型缸(12)上。
- 根据权利要求1所述轮盘式多材料激光选区熔化成型装置,其特征在于:所述铺粉导轨(2)设置在成型室(16)一侧独立隔仓(23)内;所述铺粉臂(3)的长度方向与成型室(16)的中心点和转轴(6)轴心连成的直线彼此垂直。
- 根据权利要求1至3中任一项所述轮盘式多材料激光选区熔化成型装置,其特征在于:所述第一粉料缸(11)、第二粉料缸(5)、第三粉料缸(7)和第四粉料缸(9)的截面形状为均等、且对称的扇面结构;扇面的圆弧边的两个端点连成的直线长度大于成型室(16)的直径。
- 根据权利要求2所述轮盘式多材料激光选区熔化成型装置,其特征在于:所述铺粉刷(19)的下端与隔板(8)的上边缘相接触。
- 根据权利要求4所述轮盘式多材料激光选区熔化成型装置,其特征在于:所述成型缸(12)的左侧设有粉末回收缸(14),用于在铺粉过程中收集剩余的粉末。
- 根据权利要求4所述轮盘式多材料激光选区熔化成型装置,其特征在于:所述轮盘式粉料缸的转轴(6)的转动由轮盘驱动电机(22)带动;所述轮盘式粉料缸的外周壁面与成型室(16)基板衔接处设有柔性密封胶圈(10)。
- 根据权利要求4所述轮盘式多材料激光选区熔化成型装置,其特征在于:所述第一粉料缸(11)、第二粉料缸(5)、第三粉料缸(7)和第四粉料缸(9)均设有独立的升降机构。
- 权利要求1至8中任一项所述轮盘式多材料激光选区熔化成型装置的运行方法,其特征在于包括如下步骤:步骤一:根据待加工零件(15)的属性要求,将不同材质的粉末分别装入相应的四个粉料缸,即:第一粉料缸(11)、第二粉料缸(5)、第三粉料缸(7)和第四粉料缸(9);步骤二:根据零件(15)的属性要求,控制系统对轮盘驱动电机(22)发出指令,驱动转轴(6)转动,带动其中一个装有所需材质粉末的粉料缸转动至铺粉工位(13);控制系统控制该粉料缸的升降机构推动粉末上升一个粉层高度,铺粉驱动电机(4)驱动处于初始位置的铺粉臂(3),从铺粉工位(13)的起始端将该粉料缸内的粉末沿铺粉工位(13)平铺在成型缸(12)上;完成一层铺粉作业;激光选区熔化装置的扫描振镜(18)根据零件(15)的轮廓信息,通过激光束(17)扫描熔化粉末,开始激光加工作业;如此循环,根据零件(15)的属性要求,并由控制系统控制装有所需材质粉末的粉料缸交替、循环转动至铺粉工位(13),直至完成零件(15)各层铺粉、激光加工作业。
- 根据权利要求9所述轮盘式多材料激光选区熔化成型装置的运行方法,其特征在于,步骤二铺粉作业过程中,多余的粉末被铺粉臂(3)上的铺粉刷(19)刮落至粉末回收缸(14)内。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710035666.4A CN106735219A (zh) | 2017-01-17 | 2017-01-17 | 一种轮盘式多材料激光选区熔化成型装置与方法 |
CN201710035666.4 | 2017-01-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018133599A1 true WO2018133599A1 (zh) | 2018-07-26 |
Family
ID=58944353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/116388 WO2018133599A1 (zh) | 2017-01-17 | 2017-12-15 | 一种轮盘式多材料激光选区熔化成型装置与方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106735219A (zh) |
WO (1) | WO2018133599A1 (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109365814A (zh) * | 2018-12-24 | 2019-02-22 | 天津镭明激光科技有限公司 | 一种单振镜大幅面增材制造激光成形设备及成形方法 |
CN110315079A (zh) * | 2019-07-31 | 2019-10-11 | 西安增材制造国家研究院有限公司 | 一种增材制造装置及成形方法 |
CN110369726A (zh) * | 2019-08-16 | 2019-10-25 | 深圳光韵达光电科技股份有限公司 | 选择性激光熔化成型双向往返铺粉装置及其控制方法 |
CN112238609A (zh) * | 2020-09-17 | 2021-01-19 | 广州海鑫无纺布实业有限公司 | 一种增材制造激光成型设备 |
CN113751728A (zh) * | 2021-09-02 | 2021-12-07 | 湖北华程三维科技有限公司 | 一种用于多材料增材制造的三维打印设备 |
CN114535613A (zh) * | 2022-03-18 | 2022-05-27 | 中北大学 | 基于选区激光熔化设备的智能铺粉规划方法 |
CN114905052A (zh) * | 2022-04-08 | 2022-08-16 | 江苏科技大学 | 一种激光3d打印多金属材料成型装置及其工作方法 |
CN115484746A (zh) * | 2021-05-31 | 2022-12-16 | 宏启胜精密电子(秦皇岛)有限公司 | 电路板及其制造方法 |
CN116160024A (zh) * | 2023-01-07 | 2023-05-26 | 福州大学 | 选区激光熔化刮刀-辊筒联合铺粉装置及工作方法 |
CN116550996A (zh) * | 2023-05-19 | 2023-08-08 | 江苏大学 | 一种用于激光粉末床熔融空间异质结构成形的方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106735219A (zh) * | 2017-01-17 | 2017-05-31 | 华南理工大学 | 一种轮盘式多材料激光选区熔化成型装置与方法 |
CN107599383B (zh) * | 2017-10-31 | 2020-03-31 | 陕西聚高增材智造科技发展有限公司 | 一种激光选区融化/烧结二元粉末铺粉系统 |
CN108480630B (zh) | 2018-03-30 | 2019-03-12 | 北京科技大学 | 一种基于选区激光熔化技术制备梯度材料的装置及方法 |
CN111070683B (zh) * | 2018-12-20 | 2021-05-07 | 上海微电子装备(集团)股份有限公司 | 一种3d打印铺粉系统、3d打印装置及3d打印铺粉方法 |
CN111906305A (zh) * | 2020-05-25 | 2020-11-10 | 淮阴工学院 | 一种选区激光熔化连续梯度材料粉末铺设装置及方法 |
CN111873421A (zh) * | 2020-06-29 | 2020-11-03 | 北京科技大学 | 下送粉式梯度粉层铺放装置及铺放粉层方法 |
CN113664225B (zh) * | 2020-08-06 | 2022-11-22 | 南京中科煜宸激光技术有限公司 | 激光选区熔化成型控制系统 |
CN112620650A (zh) * | 2020-12-14 | 2021-04-09 | 太原理工大学 | 一种成分可调控的金属激光选区熔化制备装置及制备方法 |
CN113681030B (zh) * | 2021-07-26 | 2022-08-12 | 华南理工大学 | 一种激光选区熔化的控制系统、方法及装置 |
CN113664224A (zh) * | 2021-08-24 | 2021-11-19 | 山东大学 | 一种用于激光选区熔化成形的送粉装置、方法及打印设备 |
CN113927048B (zh) * | 2021-09-16 | 2023-04-14 | 首都航天机械有限公司 | 一种用于激光选区熔化成形大型薄壁件的选择性铺粉装置 |
CN114433880B (zh) * | 2022-02-10 | 2023-04-11 | 安徽艾密克电联科技有限责任公司 | 一种多粉末复合使用的选区激光熔融送粉铺粉设备 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104260357A (zh) * | 2014-10-17 | 2015-01-07 | 北京化工大学 | 醋酸纤维素制品的3d打印成形装置及方法 |
WO2015120168A1 (en) * | 2014-02-06 | 2015-08-13 | United Technologies Corporation | An additive manufacturing system with a multi-energy beam gun and method of operation |
CN105034360A (zh) * | 2009-12-30 | 2015-11-11 | 斯恩蒂斯有限公司 | 集成的多材料植入件以及制造方法 |
CN105383059A (zh) * | 2015-12-02 | 2016-03-09 | 吉林大学 | 多材料铺粉及成型的3d打印方法和打印装置 |
CN105397088A (zh) * | 2015-12-16 | 2016-03-16 | 吉林大学 | 激光烧结和3dp综合的3d打印加工系统及打印方法 |
CN205272601U (zh) * | 2015-12-02 | 2016-06-01 | 吉林大学 | 多材料铺粉及成型的3d打印装置 |
CN106079451A (zh) * | 2016-08-10 | 2016-11-09 | 西安交通大学 | 旋转换槽式多材料面曝光增材制造装置及方法 |
CN106141177A (zh) * | 2015-04-10 | 2016-11-23 | 东北林业大学 | 双轴铺粉式选择性激光烧结工作台 |
CN106735219A (zh) * | 2017-01-17 | 2017-05-31 | 华南理工大学 | 一种轮盘式多材料激光选区熔化成型装置与方法 |
CN206415602U (zh) * | 2017-01-17 | 2017-08-18 | 华南理工大学 | 一种轮盘式多材料激光选区熔化成型装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202239627U (zh) * | 2011-03-29 | 2012-05-30 | 华南理工大学 | 一种使用多种材料直接制造多个零件的装置 |
DE102014010934A1 (de) * | 2014-07-28 | 2016-01-28 | Cl Schutzrechtsverwaltungs Gmbh | Vorrichtung zur Herstellung dreidimensionaler Objekte durch sukzessives Verfestigen von Schichten |
CN205310848U (zh) * | 2016-01-29 | 2016-06-15 | 吉林大学 | 一种适用于多材料多工艺3d打印装置 |
CN105817622B (zh) * | 2016-03-28 | 2018-04-17 | 西安交通大学 | 一种粉床增材制造单层多材料的面铺层系统 |
CN105945280B (zh) * | 2016-05-05 | 2018-06-22 | 清华大学 | 一种多材料非均质零件的增材制造方法 |
-
2017
- 2017-01-17 CN CN201710035666.4A patent/CN106735219A/zh active Pending
- 2017-12-15 WO PCT/CN2017/116388 patent/WO2018133599A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105034360A (zh) * | 2009-12-30 | 2015-11-11 | 斯恩蒂斯有限公司 | 集成的多材料植入件以及制造方法 |
WO2015120168A1 (en) * | 2014-02-06 | 2015-08-13 | United Technologies Corporation | An additive manufacturing system with a multi-energy beam gun and method of operation |
CN104260357A (zh) * | 2014-10-17 | 2015-01-07 | 北京化工大学 | 醋酸纤维素制品的3d打印成形装置及方法 |
CN106141177A (zh) * | 2015-04-10 | 2016-11-23 | 东北林业大学 | 双轴铺粉式选择性激光烧结工作台 |
CN105383059A (zh) * | 2015-12-02 | 2016-03-09 | 吉林大学 | 多材料铺粉及成型的3d打印方法和打印装置 |
CN205272601U (zh) * | 2015-12-02 | 2016-06-01 | 吉林大学 | 多材料铺粉及成型的3d打印装置 |
CN105397088A (zh) * | 2015-12-16 | 2016-03-16 | 吉林大学 | 激光烧结和3dp综合的3d打印加工系统及打印方法 |
CN106079451A (zh) * | 2016-08-10 | 2016-11-09 | 西安交通大学 | 旋转换槽式多材料面曝光增材制造装置及方法 |
CN106735219A (zh) * | 2017-01-17 | 2017-05-31 | 华南理工大学 | 一种轮盘式多材料激光选区熔化成型装置与方法 |
CN206415602U (zh) * | 2017-01-17 | 2017-08-18 | 华南理工大学 | 一种轮盘式多材料激光选区熔化成型装置 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109365814A (zh) * | 2018-12-24 | 2019-02-22 | 天津镭明激光科技有限公司 | 一种单振镜大幅面增材制造激光成形设备及成形方法 |
CN109365814B (zh) * | 2018-12-24 | 2023-10-27 | 天津镭明激光科技有限公司 | 一种单振镜大幅面增材制造激光成形设备及成形方法 |
CN110315079A (zh) * | 2019-07-31 | 2019-10-11 | 西安增材制造国家研究院有限公司 | 一种增材制造装置及成形方法 |
CN110315079B (zh) * | 2019-07-31 | 2024-03-26 | 西安增材制造国家研究院有限公司 | 一种增材制造装置及成形方法 |
CN110369726A (zh) * | 2019-08-16 | 2019-10-25 | 深圳光韵达光电科技股份有限公司 | 选择性激光熔化成型双向往返铺粉装置及其控制方法 |
CN112238609A (zh) * | 2020-09-17 | 2021-01-19 | 广州海鑫无纺布实业有限公司 | 一种增材制造激光成型设备 |
CN115484746A (zh) * | 2021-05-31 | 2022-12-16 | 宏启胜精密电子(秦皇岛)有限公司 | 电路板及其制造方法 |
CN113751728A (zh) * | 2021-09-02 | 2021-12-07 | 湖北华程三维科技有限公司 | 一种用于多材料增材制造的三维打印设备 |
CN113751728B (zh) * | 2021-09-02 | 2023-03-14 | 湖北华程三维科技有限公司 | 一种用于多材料增材制造的三维打印设备 |
CN114535613B (zh) * | 2022-03-18 | 2023-10-17 | 中北大学 | 基于选区激光熔化设备的智能铺粉规划方法 |
CN114535613A (zh) * | 2022-03-18 | 2022-05-27 | 中北大学 | 基于选区激光熔化设备的智能铺粉规划方法 |
CN114905052A (zh) * | 2022-04-08 | 2022-08-16 | 江苏科技大学 | 一种激光3d打印多金属材料成型装置及其工作方法 |
CN114905052B (zh) * | 2022-04-08 | 2024-03-19 | 江苏科技大学 | 一种激光3d打印多金属材料成型装置及其工作方法 |
CN116160024A (zh) * | 2023-01-07 | 2023-05-26 | 福州大学 | 选区激光熔化刮刀-辊筒联合铺粉装置及工作方法 |
CN116160024B (zh) * | 2023-01-07 | 2024-07-12 | 福州大学 | 选区激光熔化刮刀-辊筒联合铺粉装置及工作方法 |
CN116550996A (zh) * | 2023-05-19 | 2023-08-08 | 江苏大学 | 一种用于激光粉末床熔融空间异质结构成形的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106735219A (zh) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018133599A1 (zh) | 一种轮盘式多材料激光选区熔化成型装置与方法 | |
US10675655B2 (en) | Device and method for powder distribution and additive manufacturing method using the same | |
CN106735220A (zh) | 一种多材料激光选区熔化成型装置与方法 | |
CN105398053B (zh) | 3d打印系统 | |
CN106513680B (zh) | 一种双激光四工位转盘式激光选区熔化成型装置与方法 | |
CN1678448B (zh) | 使用创成制造方法制造三维物体的设备和方法 | |
WO2017215641A1 (zh) | 多喷嘴3d打印喷头及打印方法及3d打印系统 | |
TWI535554B (zh) | 立體成型物以及立體成型物的製造設備與製造方法 | |
CN106735218B (zh) | 一种旋转式多缸多材料激光选区熔化成型装置与方法 | |
CN206415603U (zh) | 一种多材料激光选区熔化成型装置 | |
TWI596000B (zh) | 立體列印裝置以及列印頭模組 | |
CN111070683B (zh) | 一种3d打印铺粉系统、3d打印装置及3d打印铺粉方法 | |
CN103658646A (zh) | 一种激光选区熔化slm设备双向铺粉装置及铺粉方法 | |
CN206215913U (zh) | 一种3d打印的粉末离心供给、振动紧实装置 | |
JP2019532848A (ja) | モジュール式積層造形システム | |
CN106273509A (zh) | 振动成型的材料挤压式3d打印机 | |
CN112317746B (zh) | 一种基于随动粉缸的ebsm设备的成型方法 | |
WO2019055343A2 (en) | METAL ADDITIVE MANUFACTURING APPARATUS WITH MULTIPLE NOZZLES | |
CN206186375U (zh) | 振动成型的材料挤压式3d打印机 | |
TW201522019A (zh) | 立體列印裝置及其列印頭模組 | |
CN112475320B (zh) | 一种多螺旋切片方法 | |
KR20160109099A (ko) | 3d 프린팅 장치 | |
CN211840137U (zh) | 一种铺粉装置及3d打印设备 | |
CN206561118U (zh) | 一种旋转式多缸多材料激光选区熔化成型装置 | |
CN108312506A (zh) | 一种粉末粘接3d打印机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17892425 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 30/08/2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17892425 Country of ref document: EP Kind code of ref document: A1 |