WO2018131960A1 - 전주가공법에 의하여 제작되는 금형과 그 제작방법 - Google Patents

전주가공법에 의하여 제작되는 금형과 그 제작방법 Download PDF

Info

Publication number
WO2018131960A1
WO2018131960A1 PCT/KR2018/000666 KR2018000666W WO2018131960A1 WO 2018131960 A1 WO2018131960 A1 WO 2018131960A1 KR 2018000666 W KR2018000666 W KR 2018000666W WO 2018131960 A1 WO2018131960 A1 WO 2018131960A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
pole
electroforming
space
circuit board
Prior art date
Application number
PCT/KR2018/000666
Other languages
English (en)
French (fr)
Inventor
성낙훈
Original Assignee
성낙훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170005936A external-priority patent/KR102714262B1/ko
Priority claimed from KR1020170007928A external-priority patent/KR20180084386A/ko
Priority claimed from KR1020170010926A external-priority patent/KR102714261B1/ko
Priority claimed from KR1020170013669A external-priority patent/KR20180089068A/ko
Application filed by 성낙훈 filed Critical 성낙훈
Publication of WO2018131960A1 publication Critical patent/WO2018131960A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/20Separation of the formed objects from the electrodes with no destruction of said electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a mold made by a pole casting method, a manufacturing method thereof, and a workpiece made using a die produced by the pole casting method.
  • die in this invention initially manufactures a metal mold
  • the die is manufactured by making a shape through electroplating on the three-dimensional shape obtained using the photosensitive material.
  • the molds in the present invention have protrusions and recesses.
  • the protrusions are in most cases tapered to facilitate demolding of the workpiece processed in the mold.
  • the mold produced in this way is repeatedly used to produce a copper-like workpiece, and may also be used as a jeonju mold that is injected into the plating bath.
  • a UV mold using a mold manufactured by the electroforming method, a UV mold, an epoxy mold, a polyimide mold, a silicone mold, and other resin molds having three-dimensional shapes are made, and the mold is filled with a conductive material such as silver paste.
  • a conductive material such as silver paste.
  • workpieces which harden and harden to constitute various circuits include chip-on films, FPCBs, ultra-precision circuits, transparent hot wires, electromagnetic shielding, and other electronic circuits.
  • the electroplated workpiece having a three-dimensional shape can be obtained by putting the mold manufactured by the electroplating method into a plating bath to perform electroplating.
  • the product can be manufactured by bonding a sheet-like film to the electroformed workpiece manufactured by the second method, or filling the electroformed workpiece produced by the second method with a liquid resin and demolding the product.
  • Molds and workpieces produced by the method of the present invention can be mainly used as a manufacturing method having a breakthrough productivity in mesh, microcircuit, chip-on film, MEMS processing, three-dimensional component processing.
  • the present invention is also the object of the present invention to the production method of the pole pole processed material and the pole pole obtained by the method.
  • the electroforming mold and its manufacturing method for enabling vertical growth are also subject of the present invention.
  • the present invention also includes a method for processing a workpiece made of vertical growth and a result made of the method.
  • representative examples of the result are meshes, filters, circuits, and the like.
  • the mold used in the present invention has a protrusion and a recess.
  • the starting point of the machining of the electroforming mold is to laminate a photosensitive material on a conductor substrate, and to give the photosensitive material a tapered exposure mainly through an exposure technique. Thereafter, a tapered space portion is formed through a developing process.
  • the production of the electroforming mold in the tapered shape is to facilitate the release of the workpiece.
  • the present invention is mainly applied to the production of a thick workpiece. If no taper is formed, it is practically impossible to demould a small pitch and thick workpiece. In most cases, the application of the present invention is based on the premise of using a tapered exposure technique, but of course also includes the case where no taper is provided.
  • the electric pole workpiece has been made and used. This is to place the electroplating mold in the plating solution and to plate the electroplating mold to make a desired plated body.
  • the electric pole workpiece when electric pole machining is performed on a conductor pole mold, the electric pole workpiece simultaneously grows in the horizontal direction (width direction) and vertical direction (height direction).
  • the present invention provides a pole mold that induces growth in the vertical direction and suppresses growth in the horizontal direction.
  • a stagnant region is formed in which the flow of the plating solution hardly occurs in the space formed in the electroforming mold.
  • the stagnant region is also increased together in the vertical direction.
  • the present invention obtains a tapered three-dimensional shape using a photosensitive material, and performs electroforming on the three-dimensional shape to obtain a mold or electroforming mold.
  • the technique mainly for vertical growth of the metal structure is the core.
  • a 3D three-dimensional electroformed workpiece can be manufactured and utilized in many industrial areas.
  • the electroforming mold of the present invention may itself be a product or a material of the product.
  • the electroplating mold in the present invention may be used as a electroplating work by itself. Therefore, throughout the present invention including the claims, the electroforming mold may be a electroforming work, or may be a mold for electroforming.
  • the electroforming mold of the present invention can be used as a mold capable of producing a large amount of electrophoretic workpiece by repeatedly performing electroforming.
  • the electroforming mold has a protrusion and a recess, and the recess is filled with silicon having a parabolic shape.
  • the electroforming mold of the present invention can be used as a mold that can be pressed or molded using a resin or the like.
  • the object of the present invention is a variety of mesh, circuit, chip-on-film, FPCB, MEMS parts, transparent hot wire, printing mesh, filter, electromagnetic shielding, TSP.
  • the environment should be created so that the vertical growth is maintained even if the processed pole is grown.
  • the present invention uses a method of processing the electroformed workpiece to induce vertical growth.
  • the electroforming mold is composed of a conductor mold.
  • the conductor mold is provided with a protrusion and a space.
  • the space portion is filled or coated with a non-conductive material in a parabolic shape.
  • a stagnant region is formed in the space portion.
  • the electroplating process is carried out to the electroplating mold to enable vertical growth.
  • Growing Jeonju processed products, and demolding Jeonju processed products from Jeonju mold make Jeonju processed products induced by vertical growth.
  • the electric pole workpiece when electric pole machining is performed on a conductor mold, the electric pole workpiece simultaneously grows in the height direction at the same time as the width direction.
  • the present invention is characterized in that the growth in the height direction allows free growth, and the growth in the horizontal direction occurs in the stagnant region of the plating solution.
  • the stagnant area is also increased in proportion to the vertical growth.
  • the electroformed workpiece made by the present invention has a feature of making a mesh having a large opening.
  • it has a feature that the opening is large and the thickness of the mesh can be made thick.
  • the electroformed workpiece produced by the present invention is also used for the production of extremely fine mesh. It is almost impossible with current technology to make the pitch of the mesh less than 70 micrometers, the width of the mesh less than 15 micrometers, the thickness of the mesh more than 30 micrometers, and the size of the mesh more than 1 meter each.
  • the basic process is to produce a mold through electroplating on a three-dimensional shape formed by exposing and developing a photosensitive material. Through this process, the shape of the tapered exposed portion is utilized for the mold.
  • a thick photosensitive layer is basically formed.
  • a pattern or a circuit having a fine line width and pitch is exposed to such a thick photosensitive layer, and a developing process is performed, most of them cannot be developed to the bottom.
  • the present invention provides a method capable of manufacturing a nearly intact mold.
  • the present invention by utilizing such a mold makes the electroforming mold.
  • the electroplating mold to be produced is characterized by making the electroforming mold to enable vertical growth.
  • the protrusion and the space are formed in the present invention to allow vertical growth.
  • the stagnant region which serves to supply metal ions in the horizontal direction, continues to grow, thereby achieving vertical growth continuously.
  • the present invention is not the subject of the line light source generator is not described in detail. However, in the manufacture of the mold of the present invention, an exposure machine having a line light source generator is very usefully used.
  • etching proceeds in the vertical direction (height direction, depth direction) and at the same time in the width direction (horizontal direction, width direction).
  • plating proceeds simultaneously in the vertical direction (height direction, depth direction) and the width direction (horizontal direction, width direction).
  • the present invention makes it possible to manufacture various types of electroformed workpieces, in particular extremely fine three-dimensional electroformed workpieces.
  • the present invention can be produced.
  • the metal to be plated to achieve vertical growth when the electroplating process in the electroforming mold.
  • the reason for having a tapered shape is to facilitate demolding.
  • non-conductive material is filled in the space in order to make the electroforming mold for vertical growth of the present invention.
  • the nonconductive material allows it to be constructed in a parabolic shape.
  • parabolic non-conductive material The reason for filling parabolic non-conductive material is to induce vertical growth with little horizontal growth. Jeonju processed products with vertical growth are demolded and used as products such as mesh and filters.
  • the term "extremely fine” generally refers to a size of several tens of micrometers or less and several micrometers or less.
  • the present invention provides a technique for smoothly supplying the plating solution forming the electroformed workpiece in the vertical direction but limited in the horizontal direction.
  • the electroplating does not control growth in the height direction, but growth in the width direction is controlled.
  • the reason for controlling the growth in the width direction is that a place called a stagnant region is formed in the electroforming mold. In the stagnant region, the movement of the plating solution is stagnated, thereby preventing the original activity plating activity.
  • the plating in the height direction is grown and the stagnant region is also grown by the same height. Therefore, the plating is actively grown in the height direction, but growth is limited due to the stagnant region in the width direction.
  • plating does not mean that it is ZERO.
  • the plating solution is also present in the stagnant region, but the growth of the plating solution is extremely limited because the plating solution is newly introduced.
  • the plating solution collected in the present invention serves as a stagnant region.
  • the space part is filled with silicon as a representative example of the non-conductive material.
  • the parabolic silicon filler controlling the growth direction of the pole pole product enables the pole pole to be actively grown in the vertical direction and suppresses the growth in the width direction. Through this, the vertical growth pole processed product of the present invention is produced.
  • 1 is a plan view of a mesh.
  • FIG 5 is an explanatory view showing the fluidity of the plating solution for the electroforming mold of the present invention.
  • 6 and 7 are explanatory views illustrating that vertical plating is performed so that plating is not formed in the stagnant area when plating is started on the electroforming mold.
  • FIG. 8 is an explanatory diagram illustrating an intermediate process in which the vertical plating 11 proceeds and the stagnant region 12 also rises vertically at the same time.
  • FIG. 11 is an explanatory diagram for explaining a growth state of a pole pole work in a typical pole pole mold.
  • FIG. 12 is an explanatory view of a vertically grown electroformed workpiece by the electroplated mold of the present invention.
  • Figure 13 is an embodiment of the vertical growth pole mold of the present invention.
  • FIG. 15 is an explanatory diagram illustrating that vertical growth is determined depending on the depth of the parabola even in the electroforming mold having the same parabola.
  • FIG. 17 is an explanatory view of a removing process of removing a downward growth portion or a maximum width horizontal growth portion formed in the electroformed workpiece of the present invention.
  • Fig. 21, Fig. 22 and Fig. 23 are examples of the shapes of the patterns constituting the 5-type electroforming mold.
  • Fig. 25 is an explanatory diagram of a pole mold filled with a parabolic non-conductive material.
  • Method for processing a mold forming a photosensitive layer on the substrate; Forming a protrusion and a space in the photosensitive layer through an exposure and development process, wherein the lower width of the space is developed in a tapered shape than the upper width of the space; Spattering the protrusion and the space; Forming an electroplated workpiece through electroplating on the spattering part; The substrate and the photosensitive material are removed from the electroformed workpiece so as to form a one-shaped mold.
  • the present invention is basically a method for making a mold using a three-dimensional shape obtained by applying a photosensitive material to a conductive substrate or a non-conductive substrate, and by exposing and developing the photosensitive material, and a mold manufactured through the method.
  • the mold of the present invention includes a pole mold. Jeonju processed material produced using this is the object of the present invention.
  • the electroforming mold refers to a metal mold that applies electric power to the metal mold to form the electroplated product in the plating bath.
  • the present invention describes a method of making a pole casting mold that enables vertical growth, especially among the pole casting mold, which is also the core of the present invention.
  • the most typical electro-working products of the present invention include a printing mesh for forming a solar circuit, an ultrafine filter, and the like.
  • a printing mesh for forming a solar circuit
  • an ultrafine filter and the like.
  • not only mesh but also extremely fine circuits and circuit boards, transparent heating wires, flexible circuit boards, chip-on films, three-dimensional MEMS parts and processing techniques for processing them are included.
  • the electroplated article in the present invention mainly deals with ultra-fine ones. Line widths and heights typically range from a few micrometers to tens of micrometers.
  • a substrate is composed of a conductor.
  • the electroforming mold is formed on the conductor substrate by protrusions and spaces.
  • the space is filled or coated or coated with a non-conductive material.
  • the non-conductive material serves to create a stagnant region and is mainly manufactured in a parabolic shape.
  • the pole casting mold having a stagnant region by using the pole casting mold having a stagnant region, it is possible to grow the pole pole to be grown almost vertically.
  • the non-conductive material constituting the stagnant region is ideally an elastic body. In the most representative embodiment, silicon is used as the main material.
  • the mesh used here has fine line width and pitch, and is thick to have durability. If the thickness is thick, the line width becomes thick, and the opening degree is small.
  • the opening must be large and thick. Due to these characteristics, it is hardly manufactured by the etching method, and in the past, a wire mesh having a diameter of several micrometers was woven to make a square mesh.
  • a vertical growth pole casting mold is made, and the pole pole is made of four-, six-, or six-hundred pole poles to manufacture a mesh. They are thinner and can form a thicker and larger opening. Alternatively, the force of the mesh can make a tapered shape so that it can be easily ejected when printing silver paste.
  • Jeonju processed material produced by the present invention has a variety of uses in addition to the mesh and filter.
  • the mesh is produced in various forms such as circular mesh, quadrangular mesh, hexagonal mesh (honeycomb). Conventionally, weaving a thin metal wire to produce a square mesh has been used.
  • the electroplated article in the present invention is described based on such a mesh, but the practical application can be made not only the mesh, but also a three-dimensional electroformed workpiece, a two-dimensional electroformed workpiece of various fine shapes in various products.
  • the line width and thickness of the electroformed workpiece is processed into a precision electroformed workpiece of several micrometers to several tens of micrometers.
  • vertical growth does not mean only growing vertically.
  • Vertical and horizontal growth of the pole pole work.
  • Vertical growth means that horizontal growth is allowed to grow a little while suppressed, but there is no limit to growth in the vertical direction.
  • the growth of the electroformed workpiece in the height direction is larger than the growth in the horizontal direction (width direction) is defined as vertical growth in the present invention.
  • Jeonju mold for vertical growth in the present invention means a jeonju mold to enable vertical growth.
  • the electroforming mold mainly uses a conductive substrate 4 through which a plate-shaped electricity passes.
  • a plurality of protrusions 2 are formed on the conductor substrate.
  • the protrusions are, of course, conductors and are generally composed of the same as the substrate.
  • a space 3 is formed between the protrusion and the protrusion.
  • the protrusions and spaces in the present invention range in size from a few micrometers to tens of micrometers. Numerous protrusions and spaces are formed on a large substrate.
  • the upper portion of the protruding portion has a homogeneous flat portion or a homogeneous line shape.
  • the protruding portion becomes a start surface or start line on which the plating solution is grown.
  • FIG. 3 is an explanatory view illustrating the formation of a stagnant region by filling a non-conductive material with a space portion of the electroforming mold.
  • the material filled in the space is a non-conductive material.
  • the space can be filled, coated or coated with a non-conductive material.
  • non-conductive material examples include silicone and fluororesin.
  • the non-conductive material is elastic. If it does not have elasticity, as the coating or filling or applied non-conductive material is subjected to electroforming, cracking occurs. Therefore, durability of the electroforming mold is a problem.
  • the most representative nonconductive elastomer in the present invention is a silicon material.
  • the nonconductive material filled in the space part consists mainly of parabolic shape.
  • parabolic shape does not necessarily mean only a parabola. It is roughly in the form of a parabola.
  • the application of the non-conductive material in the form of a parabolic shape is a word expressing a comprehensive description of filling, coating or applying the non-conductive material to the space. If only one projection is observed, it can be expressed that it is filled in a parabolic shape even if it is thinly coated with a non-conductive material on the side wall of the projection and the lower surface of the space. This is because both lower corners of the protrusions are automatically filled with a large amount of nonconductive material and applied roundly to the porcelain.
  • silicon when silicon is applied to both side surfaces and the bottom surface of the space portion thinly, silicon is filled in rounded shapes at both corners of the bottom surface of the space portion.
  • the non-conductive material is not applied to the upper surface of the protrusion. Since both sides of the protrusion are coated with a non-conductive material, plating does not proceed. Only plating starts at the upper horizontal plane of the protrusion.
  • the sides of the protrusions are coated, applied or filled with a non-conductive material in various ways. The most representative example is the filling of silicon in a parabolic shape.
  • both edges of the upper plane of the protrusion have to be precise and clean at the boundary so that the workpiece can be grown cleanly and uniformly.
  • non-conductive material begins to fill at both corners of the upper plane of the protrusion.
  • the parabolic lines here must be steeply sloped so that the workpiece can grow vertically.
  • the plating solution 7 surrounds the upper surface of the protrusion and the space made of a non-conductive material.
  • the plating solution is forced to flow in the plating bath in order to make the plating uniform and active.
  • the electroforming mold it is desirable to allow the electroforming mold to rotate or move from side to side in the plating bath.
  • the electroforming mold may be stopped and the plating solution may be flowed.
  • FIG. 5 is an explanatory diagram for the stagnant region of the vertical growth pole mold of the present invention.
  • the electroforming mold When the electroforming mold is moved in the plating bath, the upper surface of the protruding portion of the electroforming mold is in contact with the flowing plating solution and always comes in contact with the new plating solution. However, the plating solution in the space portion filled with the non-conductive material in the form of a parabola remains stagnant without flow.
  • the stagnant region 8 is defined as a region in which the plating solution in the space portion filled with the non-conductive material is stagnant.
  • the plating solution in the parabolic space portion is trapped.
  • the plating solution is in a state in which the flow is almost stopped or in a restricted state such that the flow is inactive.
  • the distance between the protrusions and the protrusions is extremely small, and the height of the protrusions is often higher than the distance.
  • the plating solution is confined in the parabola and there is little movement. In other words, a stagnant region is formed. This stagnant region is formed more reliably as the parabolic depth is deeper.
  • FIGS. 6 to 9 are explanatory views for explaining that the vertical plating is performed in the stagnant region. Plating is started on the vertical growth electroforming mold in which the stagnant regions of FIGS. 6 and 7 are formed.
  • Plating continues to grow vertically until the pole is grown to the desired height. As the pole-shaped workpiece grows vertically, the height of the stagnant region also increases, and the lateral growth is considerably suppressed due to the stagnant region.
  • the stagnant region is formed by layered non-conductive material, but as vertical growth occurs, the vertically grown plated body automatically plays a role of forming the stagnant region. In other words, when the height of the vertical growth increases, the height of the stagnant region automatically increases.
  • FIG 9 illustrates the vertical growth.
  • the pole processing is performed until the height of the pole pole 13 which is vertically grown reaches the height of the product.
  • the stagnant region 14 also rises by the height of the electroformed workpiece.
  • the finer the number of protrusions and spaces formed in the electroforming mold the finer the vertical growth. That is, the congestion area is well done.
  • the environment inducing the stagnant region is advantageous as the size of the protrusion and the space portion is fine and the depth of the space portion is deep. The narrower the width of the space portion and the deeper the space portion, the easier the formation of the stagnant region.
  • FIG. 10 is a cross-sectional view of a vertically grown product demolding the electroform processed grown with the vertically grown electroforming mold of the present invention.
  • a release layer is formed on the vertical growth pole for convenience of demolding.
  • the release layer formed on the upper surface of the protrusion facilitates demoulding of the grown electroformed workpiece.
  • the vertical growth in the present invention means that as the pole processing proceeds, the growth in the vertical direction is large and the growth in the horizontal direction is small, and does not mean that there is no growth in the lateral direction or the horizontal direction.
  • the growth of the electroformed workpiece is not said to occur linearly.
  • the growth of the electroformed workpieces includes the direction and speed of the metal solution, the component of the metal solution, the presence of additives, the height of the protrusions, the size of the space, the shape and depth of the non-conductor filled in the space, and the components of the non-conductor filled in the space.
  • Various results are shown by various variables such as temperature of plating solution.
  • the size of growth in pole direction growth is suppressed, and the size of growth in the vertical direction (height direction) is increased. will be.
  • the growth in the width direction (horizontal direction, width direction) is made in various forms with various influences rather than being made in a straight line.
  • the workpieces grow depending on the degree of stagnant zone effect, depending on the flow rate, temperature and direction of the metal solution, and other environmental and physical factors.
  • Jeonju's processed products grow vertically upward and then decrease in width.
  • FIG. 12 is an explanatory diagram of a pole pole growth product grown in a vertical direction by the vertical growth pole die of the present invention.
  • the cross-sectional shape of the electroforming workpiece varies depending on the shape of the non-conductive material filled in the space between the protrusions and the protrusions.
  • the shape of the electroformed workpiece can vary depending on the height of the protrusion, the width of the space, the shape of the parabola, the depth of the parabola, the direction and flow velocity of the plating solution, the strength of the current, and the composition and temperature of the plating solution.
  • the biggest influence on the stagnant area is the height of the protrusion, the width of the space, the shape of the parabola, and the depth of the parabola.
  • the depth of the parabola has the most influence.
  • the stagnant region when the stagnant region is formed, it is commonly grown so that the growth in the vertical direction is superior to the growth in the horizontal direction.
  • the electroformed workpieces 18 are obtained in various forms.
  • the shape of the electroformed workpiece obtained according to the shape of the stagnant region can be in various forms such as (A), (B), (C), (D), (E), and (F). Of course, shapes other than those shown are also possible.
  • the electroplated products of (D) and (F) have a portion grown below the upper surface of the protrusion of the electroforming mold. In the present invention, this is referred to as a downward growth portion 19.
  • the inlet growth is partially progressed downward along the shape of the parabola of silicon. It grows only in the vertical direction at the center of the upper surface of the protrusion. However, at both corners of the upper surface of the protrusion, growth in the lateral direction is simultaneously performed along the parabolic shape of silicon.
  • the opening degree of the mesh becomes smaller.
  • (E) does not have a downward growth section, but has experienced a maximal growth in horizontal growth relatively early in the beginning of the pole processing.
  • the portion forming the maximum value of the horizontal growth in the pole-shaped workpiece is defined as the maximum width horizontal growth portion.
  • the maximum width horizontal growth portion may be formed in the downward growth portion as in (D). (F). All pole stocks have the largest horizontal growth anywhere.
  • the maximum width horizontal growth portion is usually formed at the initial point of starting the pole processing.
  • (E) is an embodiment in which the horizontal growth portion having the maximum width occurs at an initial time of starting the pole rolling and gradually decreases in line width.
  • the maximum width horizontal growth portion is an embodiment formed below the surface of the protrusion of the electroforming mold.
  • growth in the height direction proceeds in the center of the upper surface of the protrusion, but growth may occur along the non-conductive material at both edges of the upper surface of the protrusion. Metal growth proceeds to some point downward along the non-conductive material. After a while, growth to the bottom stops.
  • the pole edge is processed in the lower and horizontal directions along the non-conductive material at the upper surface edge of the protrusion.
  • the pole pole workpieces When the pole pole processing is performed with the vertical growth pole mold of the present invention, the pole pole workpieces often have a downward growth portion. Changing the shape of the filling, the depth of the filling, the speed of the plating solution, the width of the space, the height of the protrusions, the depth of the parabola, etc. allows some control of the downward growth or the maximum width horizontal growth. By controlling these conditions well, you can control the congestion area.
  • the stagnant region is where the electroplating is hardly performed because the flow of the plating solution is stopped.
  • the stagnant region of the present invention there is a method of coating, filling or applying a non-conductive material to the space part.
  • the non-conductive material is easy to apply or fill in a parabolic form.
  • Figure 13 is an embodiment of the vertical growth pole mold of the present invention.
  • a protrusion and a space are formed in a conductor substrate in a standard form.
  • the space is filled with a non-conductive material.
  • nonconductive material is silicon. Other materials such as fluorocarbon resins can also be substituted.
  • the most representative shape of the non-conductive material coated or applied or filled is parabolic. The deeper the parabola, the greater the effect of vertical growth.
  • the nonconducting material to be filled in the present invention is not necessarily to be parabolic.
  • the term "constitution in a parabolic shape" is a concept including a parabolic-like shape, including a parabola.
  • FIG. (A) shows that the space 21 is filled in a parabolic shape 22.
  • the upper surface of the protrusion 20 is generally planar.
  • the upper surface of the protrusion maintains the same height and shape as a whole to achieve uniform vertical growth.
  • the upper surface of the protrusion is configured in the form of a smooth plane or a smooth line.
  • (B). (C) indicates that the non-conductive material is applied, coated or filled with the space part. These shapes are difficult to express in a form other than parabolic, but the function can function as a stagnant region consisting of parabolic shapes.
  • the entire wall surface and the bottom surface of the space part are coated, coated, and filled with a non-conductive material so as not to expose the conductor.
  • a non-conductive material so as not to expose the conductor.
  • FIG. (B) illustrates that horizontal portions 23 are formed at both corners of the upper surface of the protrusion to keep the non-conductive material horizontally at the same height.
  • the non-conductive material forms a steep slope to form a stagnant region.
  • the non-conductive material is uniformly coated on the entire surface of the protrusion and the space, and the upper surface of the protrusion is polished horizontally.
  • the non-conductive material does not immediately form a sharp inclination angle at both edge ends of the upper surface of the protrusion, but a small amount of the middle portion 23 exists.
  • a sharp inclination angle is formed at the end of the intermediate portion.
  • FIG. (C) illustrates that the non-conductive material applied, filled or coated in the space portion rapidly forms the inclination angle 25 at both corners of the upper surface of the protrusion.
  • the inclination angle of the filling formed in the space portion in the vertical growth electroforming mold of the present invention plays an important role.
  • 15 is an explanatory diagram illustrating that the form of vertical growth is determined according to the depth of the parabola. If the parabolic depth is shallow, no stagnant region is formed. In the case of FIG. (A), since the depth of parabola 29 is shallow, the plating solution is actively flowed, and thus there is no stagnant region. This means that horizontal growth and downward growth are also active.
  • the nonconductive material applied or filled is an arbitrary shape 31 rather than a parabolic shape.
  • vertical growth does not occur when stagnant areas are created, even if they are not parabolic.
  • non-conductive materials can be filled or coated in various forms. In the present invention, such a form is also included within the term parabolic form.
  • FIG. 16 is an explanatory diagram for explaining a vertical rising effect depending on the height of the protrusion of the vertically rising pole mold and the width of the space;
  • Numerous protrusions are formed on the conductor substrate, and a space portion is formed between the protrusions. Both walls and the bottom of the space are coated with a non-conductive material. No plating is formed in the coated space.
  • the plating is not executed and the stagnant region is formed in the space part.
  • the space portion In order for the electroplated workpiece plated on the upper surface of the protrusion to rise vertically, the space portion must be coated with a non-conductive material, and the space portion must also have a stagnant area due to the non-conductive material.
  • Vertical rising pole mold of the present invention to form a stagnant region in the space portion to suppress the horizontal and downward growth as possible.
  • the upper surface of the protrusion is intended to actively form vertical growth.
  • the stagnant region of the vertically rising pole is also raised upward.
  • FIG. 17 is an explanatory diagram illustrating a process of removing the downwardly grown portion or the largest horizontally grown portion.
  • a vertically grown electroforming product can be obtained.
  • the vertically rising pole workpiece may have a downward growth portion or a maximum width horizontal growth portion.
  • the lower growth portion can be removed and the width of the maximum horizontal growth portion can be reduced. This proceeds through post processing. This post-processing can remove the downward growth, making the surface flat or smooth, and greatly increasing the aperture.
  • the workpiece By removing the downwardly grown portion or the maximum width horizontally grown portion, the workpiece has much improved opening degree. If the pole pole grows in the downward direction, lateral growth occurs at the same time. Therefore, the opening degree is narrowed.
  • the downward growth portion or the maximum width horizontal growth portion is a protruding portion with a sharp shape, electricity is concentrated. Therefore, this part is actively etched or electrolyzed.
  • Fig. (B) is a cross-sectional view of a demoulded electroformed workpiece having a lower growth portion 34 formed at the upper surface edge of the projecting portion of the vertically rising electroforming mold.
  • Fig. (D) is a description of an embodiment for performing an etching process, an electrolytic process or mechanical polishing. Downward growths with sharp ends are removed by etching or electrolysis or by mechanical polishing. Since current is concentrated at the sharp end, the downward growth portion is easily removed in the etching or electropolishing process. After the removal step is completed, the electroformed workpiece 38 having a large opening is obtained.
  • the blocking plate 37 is removed after processing.
  • (E) is sectional drawing of the electroformed material 39 in which the big opening was formed. Removing the shield plate after removing the downward growth portion can obtain a workpiece having a large opening. The electroplated workpiece made through such a process becomes the electroplated workpiece with a large opening degree. This has a great effect in the fabrication of a mesh or filter or mesh with a large opening.
  • the mesh can be manufactured in a honeycomb shape, which is the most ideal structure of the printing mesh.
  • Third, the line width of the mesh can be made as small as possible.
  • Fourth, the thickness representing the durability of the mesh can be thickened.
  • Fifth, the cross section of the mesh has a tapered shape so that ink or silver paste can be easily ejected during printing.
  • Sixth, the conventional woven mesh has a disadvantage of moving the mesh of the mesh, but the mesh of the present invention does not occur such a disadvantage.
  • the mesh of the present invention exerts an excellent effect in many parts.
  • a photosensitive material mainly uses a dry film.
  • the thickness of the photosensitive material is usually various, such as 10 micrometers, 20 micrometers, 30 micrometers, 40 micrometers.
  • substrate is apply
  • the photosensitive material is exposed through various types of patterns.
  • Normal pitches are 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 micrometers.
  • the line width is usually 5, 10, 15, 20, 25, 30 micrometers.
  • Form 1 mold is characterized in that a three-dimensional shape is formed using a photosensitive material on the substrate, and after the spattering with the conductive metal on the three-dimensional shape, electroforming is performed to produce a mold.
  • a three-dimensional shape is produced by the exposure part.
  • the shape of the exposed portion is tapered to facilitate demolding.
  • the photosensitive layer 41 is applied to the substrate 40 mainly made of a flat plate.
  • the photosensitive layer is exposed to light through a pattern.
  • the photosensitive member is formed with an exposed portion 42 and a non-exposed portion 43.
  • the exposure unit in the exposure process forms a taper (TAPE) shape to facilitate demolding in the subsequent process. That is, exposure is performed so that the upper width of the exposure portion is narrower than the lower width.
  • TAPE taper
  • the inventors use a patented line light source generator.
  • the exposure is performed such that the upper width of the exposed portion is smaller than the lower width.
  • the exposed portion is formed in a tapered shape.
  • the protrusion formed of the exposed portion has a shape where the upper portion is narrower than the lower portion.
  • an exposure machine having a line light source generator developed by the present inventor is used for exposure of such a tapered shape.
  • Taper-shaped processing is possible using the characteristics of the lenticular lens used in the linear light source generator.
  • the thickness of the photosensitive layer is thin, a few micrometers or less, exposure and development can be performed so that a residual photosensitive layer does not occur. However, if the thickness of the photosensitive layer is too thick, the phenomenon of developing without the remaining photosensitive layer is too likely to fail. If the size of the mold is to be made large, this phenomenon is a failure even if the remaining photoresist layer remains in at least one or two places in the total area.
  • the protrusion is formed on the substrate by the exposed portion.
  • a space portion is formed between the protrusion and the protrusion. The remaining photosensitive material remains in the partial space.
  • a sputtering process 47 is performed on the upper surface of the protrusion, the space portion and the remaining photosensitive material with a conductive metal. Through the spattering process, the upper surface of the protruding portion, the space portion, and the remaining photosensitive member are provided with conductivity.
  • the release layer is formed on the substrate after the spattering.
  • the obtained electroplated product 48 is demolded.
  • a demolded electroformed workpiece is defined as a type 1 mold.
  • die is a shape in which many protrusion part was formed in the conductive substrate.
  • the space 50 is formed between the protrusion 49 and the protrusion.
  • This type 1 mold is a breakthrough method that can be produced as a complete mold even if there is a residual photosensitive material.
  • the remaining photosensitive material makes a slight change in the height of the protrusion, and the upper surface of the protrusion may become rough due to the influence of the remaining photosensitive material.
  • the substrate to which the photosensitive layer is first applied is a conductive substrate
  • electricity is supplied to the substrate so that the electroplating is not performed immediately.
  • a sputtering layer is formed of a conductive metal, a two-layered layer is formed, and then electric current is applied to the spattering layer to perform electroforming.
  • the upper surface of the protrusion forms an unclean surface under the influence of the remaining photosensitizer.
  • the bottom of the space has a surface roughness of the photoresist, so it is smooth and clean.
  • the height of the bottom of the space portion is uniform.
  • the bottom of the space part has the surface roughness of the photosensitive material as it is, and the height is all uniform.
  • the part which preserves the surface roughness and height of a photosensitive material is defined as a storage surface.
  • One type mold is comprised from the protrusion part 49 and the space part 50,
  • the bottom part of a space part is characterized by being a storage surface. Even if there exists a residual exposure material, the 1st form metal mold
  • die is the outstanding metal mold
  • the manufacturing method of the one-type mold can be made simpler. But this is impossible to hope.
  • the substrate is used as the conductive substrate.
  • a release layer is formed without sputtering.
  • electricity is applied to the conductive substrate to perform electroforming.
  • the portion causes plating failure and the mold of one type fails. If any of the remaining photoresist remains on a part of the substrate, plating failure is caused, and thus the electroplated workpiece is not formed or scratched. This results in a failed mold with flaws that cannot be improved even if made well.
  • a mold release layer is formed in the said single mold.
  • the pole pole is executed to form a new pole pole 52.
  • a new electroformed product is demolded from a one-type mold, it becomes a two-type mold.
  • a bimodal mold is the same as that formed in the board
  • the upper surface of the protrusion of the bimodal mold is composed of a preservation surface. That is, the upper surface of the protrusion of the two-type mold is smooth and all the same height.
  • a conductive metal is sputtered on a bimodal flexible mold and a release layer is formed thereon.
  • the electric pole is applied to the spattering layer to perform electric pole machining.
  • the pole casting is demolded from the elastic mold. Since the silicone mold is elastic, it is easy to demould the electroformed workpiece.
  • the demolded electroformed workpiece becomes a two-type mold.
  • the electroformed workpiece has a protrusion and a space. The upper surface of the protrusion is formed of a preservation surface.
  • a vertical growth die is made using a two-type mold.
  • a flexible circuit board can be manufactured.
  • a release layer is formed on the one-type flexible mold or one-type mold.
  • a liquid resin is injected above the release layer.
  • a film on a flat film or a roll is placed on the liquid resin.
  • liquid resin examples include UV resins, epoxy resins, and polyimide resins.
  • the liquid resin is bonded to the film while being molded and dried.
  • the liquid resin is molded and cured and film-bonded to demold from the monomorphic elastic mold or monomodal mold.
  • the demolded flexible circuit board becomes a circuit board on which protrusions and recesses are formed.
  • the upper surface of the protruding portion is smooth and the same level of storage surface.
  • a conductive material such as silver paste is injected into the recess of the circuit board and cured, a flexible circuit board having a circuit is formed.
  • the liquid resin is a liquid resin of various forms such as epoxy resin, polyimide resin, UV resin.
  • the elastic mold of various forms can be manufactured by the method described above.
  • the retention surface is on the upper surface of the protrusion or on the lower surface of the space.
  • the electroplated workpiece may be manufactured from the elastic mold, and the electroplated workpiece may be demolded to be used as a product.
  • the elastic mold is manufactured in consideration of the demoulding of the product.
  • the final product is made by using a mold, a pole mold, and an elastic mold.
  • the upper surface of the protrusion formed in the final product is a preservation surface so that the surface of the product is smooth and the height of the protrusion is the same.
  • the 3 form die and 4 form die of this invention have the same pitch as the pitch of a 1 form die or a 2 form die.
  • the size of the protruding portion and the space portion can be different from that of the one-type mold or the two-type mold.
  • Fig. 19 illustrates a process of making a three-type mold and a four-type mold in the one-type mold of the present invention. Further electroforming is performed on the one-shaped mold 58 composed of the protrusion 54 and the space 55. When additional electroforming is carried out, a plating layer of almost uniform thickness is formed on the upper surface of the protrusion of the one-type mold and on both side portions of the protrusion. At the same time, the plating layer is formed on the bottom of the space part with almost the same thickness. This plating layer increases the size of the protrusions and at the same time reduces the size of the spaces. However, the pitch is immutable.
  • a new plating layer 59 is added to the one-form die.
  • the new plating layer increases the height and width of the protrusions.
  • the width of the space portion is reduced. But the pitch is kept the same. In this way, the size of the protrusion and the size of the space can be precisely controlled.
  • a new mold is manufactured by making the size of the protrusion and the space into a desired size.
  • the triaxial mold 60 is obtained in which the size of the protrusion and the space is adjusted while maintaining the pitch.
  • the lower surface of the recess becomes a storage surface like the form 1 mold.
  • a mold release layer is formed on the three-shaped mold 62 again, and electroplating is performed on the mold-shaped layer to make the electroformed workpiece 61, and when the mold is demolded, a four-shaped mold 66 is obtained. In the four-shaped mold, the upper surface of the protruding portion 63 becomes a storage surface.
  • the 5th and 6th molds are produced in the 2nd mold.
  • the mold manufactured by the present invention can be used as a mold or a product as it is.
  • the electroforming mold used by this invention is produced using the metal mold
  • the electroforming mold means a metal mold capable of executing electroforming.
  • the electroforming mold is produced by a completely different method without using the above-mentioned one-type mold, two-type mold, and three-type mold.
  • This embodiment uses a conductive substrate.
  • a photosensitive layer is formed on the conductive substrate 68. It is preferable to make photosensitive layer into thin thickness.
  • the exposure part 67 of the required shape and size is comprised through the exposure process to the said photosensitive layer through a pattern.
  • the non-exposure part is removed through a developing process. In order to completely remove the non-exposed part, a thin photosensitive layer is preferable. The place where the non-exposed part is removed is called a space part.
  • the release layer is formed in the space portion and the exposure portion of the conductive substrate.
  • the electroconductive substrate is energized in the plating bath to produce the electroformed workpiece on the release layer.
  • the plating layer is initially formed only in the space portion. When the plating layer grows above the height of the photosensitive layer in the space portion, the plating layer gradually diffuses on the exposed portion and proceeds.
  • the plating layer proceeds by diffusing the upper portion of the exposed portion at a substantially uniform speed.
  • the thickness of the plating layer becomes thicker.
  • Each plating layer is diffused in the upper portion of the exposed portion while growing in the horizontal and vertical directions.
  • the gap between the plating layer and the neighboring plating layer gradually decreases.
  • the electroplating stops. This is called the base plating layer 69.
  • the spacing between the plating layer and the neighboring plating layer in the base plating insect is the size of the protrusion of the vertically grown electroforming mold to be completed later.
  • the base plating layer started to grow from the space portion of the conductive substrate.
  • the plating layer grows above the height of the photosensitive layer in the space portion, the plating layer diffuses over the exposed portion. At this time, the plating layer grows simultaneously in the horizontal direction and the vertical direction.
  • Jeonju processing proceeds at a uniform speed and finally grows to the base plating layer 69.
  • the base plating layer is an aggregate of a myriad plating layers.
  • the plating layer and the plating layer are configured at regular intervals. The gap between the plating layers becomes a new space part.
  • the bottom surface of the new space portion is the surface of the exposed portion.
  • the demolded electroformed workpiece 72 is provided with a protrusion and a space 71.
  • the space is filled with a non-conductive material having elasticity such as silicon.
  • the pole processed workpiece in which the stagnant region is formed becomes a vertical growth pole mold.
  • the shape of the non-conductive material is parabolic to form a stagnant region.
  • the filled shape of the non-conductive material becomes parabola 73.
  • the vertical growth pole is composed of a protrusion 74 and a non-conductive region filled with a parabola. Care should be taken not to cover the non-conductive material on the upper surface of the protrusions.
  • FIG. 21 are examples of the pattern shapes constituting the vertical growth electroforming mold of FIG.
  • Vertical growth pole molds can be configured in various patterns.
  • the pattern can be composed of regular and irregular patterns such as round, square and hexagon.
  • various circuits, meshes and other three-dimensional workpieces of various forms can be obtained.
  • FIG. 21 illustrates that a circular space 77 is formed in the middle of the exposed photosensitive layer 76.
  • the photosensitive layer is uniformly applied to the conductive substrate.
  • the release layer is formed on the conductive substrate, and the electroplating is performed by energizing the conductive substrate.
  • a plating layer starts to form in the circular space 77.
  • the plating layer is gradually diffused to the exposed portion 76.
  • Electroplating is grown simultaneously in the upper direction and in the side direction. When the shape and size to be made are reached, the pole processing is stopped.
  • the gap between the circular plating layers becomes a new space part.
  • the bottom surface of the new space portion is the surface of the exposed portion.
  • a release layer is formed on the base plated layer and the new space portion, and the electroplated material is formed again by electroplating. Demolding the electroplated workpiece.
  • the demolded electroformed workpiece is provided with a protrusion and a space.
  • the space is filled with a non-conductive material having elasticity such as silicon.
  • the pole processed workpiece in which the stagnant region is formed becomes a vertical growth pole mold.
  • the shape of the non-conductive material is parabolic to form a stagnant region. Typically the filled shape of the nonconductive material becomes a parabola.
  • the vertical growth pole is composed of a nonconductive region filled with protrusions and parabola. Care should be taken not to cover the non-conductive material on the upper surface of the protrusions. This is another embodiment of the vertical growth pole mold of the present invention.
  • FIG. 22 illustrates that the rectangular space portion 80 is formed in the middle of the exposed photosensitive layer 81.
  • the photosensitive layer is uniformly applied to the conductive substrate.
  • FIG. 23 illustrates that the hexagonal space portion 84 is formed in the middle of the exposed photosensitive layer 85.
  • the photosensitive layer is uniformly applied to the conductive substrate.
  • FIG. 24 is an explanatory diagram of a pole mold filled with a parabolic non-conductive material.
  • FIG. This is an explanatory view for explaining the manufacture of the electroforming mold capable of vertical growth by filling a non-conductive material into a mold having a protrusion and a space.
  • the non-conductive material 89 is filled in the space formed between the protrusion 88 and the protrusion of the mold.
  • Resilient, non-conductive materials are ideal.
  • the use of non-conductive materials with elasticity increases the durability of the mold.
  • the conductive layer is easily destroyed by the dog layer when the plating layer is formed.
  • fill with elastic non-conductive material is a silicon material.
  • the base material is silicone, and various additives are added to improve the function.
  • the most important core technology in the vertical growth pole mold of the present invention is to fill the elastic non-conductive material into the space, but the filling material should be filled to have a steep slope at the corner of the upper surface of the protrusion, and the parabolic depth should be deep. .
  • the vertical growth electroforming mold of the present invention it is one of the core technologies to induce the electroplating layer to vertically grow.
  • the filling material must be inclined to have a steep inclination. The most representative shape for this is parabolic.
  • the vertical plating 90 is grown on the protrusion. Strictly speaking, it will not grow completely vertically, but will produce vertical growth that cannot be achieved with other platings. This vertical plating part is demolded and used as a product.
  • the vertically grown plated portion 92 is adhered to the rolled film or the sheet-like film 91 by using an adhesive in a state of not being demolded from the vertically grown electroforming mold. Thereafter, the plating part bonded to the film is demolded to make a product with the circuit 93 attached to the film 94.
  • a non-conductive material 95 may be filled between the circuit and the circuit to further stabilize the circuit.
  • 25 is an explanatory diagram for explaining a process of making a flexible circuit board using various molds of the present invention.
  • a mold having a maintenance surface at the bottom of the space portion is used.
  • a liquid resin 97 such as a liquid epoxy resin, a UV adhesive, and a polyimide is injected between the mold and the film substrate 96.
  • FIG. 26 is an explanatory diagram of an embodiment of manufacturing a mesh using the vertically grown electroforming mold of the present invention.
  • the non-conductive material is filled in the space of the electroforming mold 104 having the protrusion 105 and the space 106.
  • the non-conductive material filled in the space part forms parabolic silicon 107 to form a stagnant region.
  • a release layer is formed on the vertical growth electroforming mold in which stagnant regions are formed. Carry out machining on the upper part of the protrusion. On the upper surface of the protruding portion, the vertically processed pole pole 108 is formed.
  • the electroplated workpiece is demolded to produce a mesh 109.
  • This mesh is used as a mesh for drawing a circuit of a light collecting plate that converts sunlight into electricity. Printing silver paste through the mesh has many advantages.
  • the opening is large and the line width of the force can be reduced.
  • the thickness of the product is durable, there is an advantage that the taper is formed to facilitate the discharge of the silver paste.
  • a photosensitive layer is formed on a substrate, and an exposure part is formed on the photosensitive layer by a pattern, and a substrate is provided with a protrusion and a space part through a developing process.
  • a mold in which protrusions and spaces are formed.
  • the elastic mold formed with a protrusion and a space.
  • Protruding portions and space portions are formed in the conductive mold, and the space portion is filled, coated or coated with a non-conductive material to form a stagnant region to manufacture a vertical growth electroforming mold.
  • the upper surface of the electroformed workpiece is bonded to a film substrate on a roll or a film on a sheet through an adhesive.
  • a flexible circuit board is manufactured by demolding the film substrate to which the vertically grown electroformed workpiece is bonded in the electroforming mold.
  • the liquid resin may be filled in the space portion of the flexible circuit board, and the liquid resin may be cured.
  • a tapered exposure portion having an upper width narrower than a lower width is formed through the pattern on the photosensitive layer.
  • the non-exposure portion is removed through the developing process to form a space portion on the substrate.
  • the remaining photosensitive material which may not be removed may remain in the space part.
  • the present invention discloses a technique for sputtering conductive metal on protrusions, spaces, and remaining photosensitive materials.
  • the electroplating is performed to fabricate the electroplating product.
  • the die casting is demolded to produce a die mold.
  • a mold release layer is formed on the mold of one type, a liquid resin is filled on the mold release layer, and a roll or sheet film substrate is placed on the liquid resin.
  • the liquid base may be an epoxy resin, a UV resin or a polyimide resin.
  • the film substrate is demolded from the one-type mold to form a film substrate having protrusions and spaces formed thereon.
  • a release layer is formed on the upper surface of the protruding portion of the circuit board, and the space part is filled with silver paste to manufacture a flexible circuit board.
  • the upper part of the protruding part of the flexible circuit board manufactured as such becomes a storage surface, and a flat and clean upper surface can be obtained. This is a unique technique that eliminates the influence of the remaining photosensitive layer.
  • the flexible circuit board may be manufactured using an elastic mold.
  • a photosensitive layer is formed on a substrate, and an exposure portion is formed through the pattern on the photosensitive layer. Through the development process, protrusions and spaces are formed on the substrate.
  • a release layer is formed on the protrusion and the space, and the elastic liquid material is thickly filled on the upper part of the release layer to prepare an elastic molding. After the elastic molding is cured, it is demolded to produce an elastic mold.
  • the liquid resin is molded while being cured, and is bonded to the film substrate at the same time.
  • the film substrate is demolded from the flexible mold.
  • the silver paste is filled into the space of the film substrate.
  • the liquid liquor is made of epoxy resin, UV resin or polyimide resin, and forms a release layer on the upper surface of the protrusion formed on the film substrate and then fills the silver paste in the space.
  • the upper width of an exposure part comprises the taper-shaped exposure part narrower than a lower width. This serves to facilitate demolding in subsequent processes.
  • the upper width of the exposed portion is tapered to be narrower than the lower width, so that the mold can be easily demolded.
  • the elastic mold is used in the present invention, it is mainly used when the protrusion is difficult to manufacture in a tape shape. If the protrusion is tapered, a resin mold using ordinary resin is manufactured without using an elastic material.
  • a product can also be manufactured by forming a mold release layer in a resin mold.
  • a release layer may be formed to fabricate the electroformed workpiece.
  • a die when the exposure developing process is complete and no residual photosensitive layer is left, a die may be formed by immediately performing electroplating using a conductive substrate.
  • the mold can be used to make a flexible circuit board.
  • the photoresist should be 20 micrometers or less in thickness and the product size is small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

본 발명은 피치의 크기가 수십 마이크로미터, 선 폭의 크기가 수 마이크로미터가 되는 3차원 전주가공물 또는 회로, 플렉시블 회로기판, 메쉬, 필터, 3차원 멤스 부품, 3차원 회로, 3차원 초정밀 구조물, 투명 열선, 칩온 필름, 전자파 차단시트 등을 제작하는 기술에 대한 것이다. 이들은 주로 금형을 만들어 생산을 한다. 금형이 전주도금이 가능하도록 만들어진 것을 본 발명에서는 전주금형이라 칭한다. 본 발명에서는 전주금형을 사용하면 성장하는 전주가공물이 수직방향으로 성장을 하도록 하는 수직성장 전주도금을 개시한다. 본 발명은 제품과 제품을 만드는 금형과 그 제작방법 및 그 방법으로 이루어진 물품에 대한 내용을 청구범위로 한다. 본 발명에서 가장 기본적인 전주금형을 제작하는 방법으로 가장 먼저, 기판에 감광층을 형성한다. 상기 감광층에 노광 및 현상공정을 통하여 기판에 돌출부와 공간부를 형성하되, 돌출부의 상부폭은 돌출부의 하부폭에 비하여 좁은 형태로 되어 탈형이 용이하게 되도록 하는 테이퍼 형상이 되도록 한다. 본 발명에서 사용되는 전주금형은 돌출부와 공간부를 갖는다. 상기 공간부에는 비도전성 물질로 충진 또는 코팅 또는 도포를 한다. 상기 충진 또는 코팅 또는 도포된 비도전성 물질은 공간부의 저부와 측면벽면에 도금이 형성되지 않도록 한다. 비도전성 물질은 주로 공간부에서 포물선 형태로 구성된다. 깊은 포물선 형태로 구성되면 도금용액이 포물선 형태 내부에 갇히어 정체영역이 형성된다. 본 발명의 수직성장 전주금형은 이러한 정체영역을 구성하는 것이 특징이다. 본 발명의 수직성장 전주금형을 통하여 전주가공을 실행하면, 전주가공물은 수직성장을 위주로 하며, 수평성장은 조금씩 이루어진다. 전주가공물이 수직성장이 됨에 따라 정체영역도 상부로 함께 상승하는 것을 특징으로 한다.

Description

전주가공법에 의하여 제작되는 금형과 그 제작방법
본 발명은 전주가공법에 의하여 제작되는 금형과 그 제작방법 그리고 전주가공법으로 제작한 금형을 사용하여 만든 가공물에 대한 것이다.
본 발명에서의 금형은 최초에는 주로 감광재를 사용하여, 노광 및 현상을 하는 공정을 사용하여 금형을 제작한다. 감광재를 사용하여 얻어진 3차원 형태에 전주가공을 통하여 형상을 만들어 금형을 제작한다.
본 발명에서의 금형은 대부분 돌출부와 오목부를 갖는다. 상기 돌출부는 대부분의 경우에 테이퍼를 형성하도록 하여, 금형에서 가공된 가공물의 탈형을 용이하게 한다.
이렇게 하여 제작이 된 금형은 반복적으로 동이란 가공물을 제작하는 데 사용이되며, 도금욕조에 투입을 하는 전주금형으로 사용이 되기도 한다.
본 발명의 금형에 의하여 만들어지는 가공물에는 수많은 종류가 있다.
첫째는, 전주가공법에 의하여 제작되는 금형을 사용하여, 3차원 형상이 이루어 지는 UV형틀, 에폭시 형틀, 폴리이미드 형틀, 실리콘 형틀, 기타 수지형틀을 만들고, 상기 형틀에 실버페이스트와 같은 도전성 물질을 충진하고 경화시키어 각종회로를 구성하는 가공물이 있다. 이러한 가공물에는 칩온 필름, FPCB, 초정밀 회로, 투명 열선, 전자파 차폐, 기타 전자회로 등을 들 수가 있다.
둘째는, 전주가공법의 의하여 제작되는 금형을 도금욕조에 넣어서 전주가공을 실행하여 3차원 형상이 이루어지는 전주가공물을 얻을 수가 있다.
이러한 전주가공물에는 각종 인쇄용 메쉬, 스크린 메쉬, 필터, 3차원 멤스 부품 등이 있다. 특히 전주가공물을 수직으로 성장시켜서 두께가 두꺼운 메쉬를 만들거나 3차원 초정밀 가공물을 제작할 수가 있다. 전주금형에 전주가공을 실행하여 3차원 형상을 갖는 전주가공물을 만들되, 상기 전주가공물이 수직으로 성장하도록 하여 두께가 두껍고 개구도가 큰 제품을 만들 수가 있는 큰 장점이 있다.
세째는, 상기 둘째 방법에 의하여 제작이 된 전주가공물에 시트상의 필름을 접합하여 제품을 만들거나, 상기 둘째 방법에 의하여 제작이 된 전주가공물에 액상 수지를 충진하고, 탈형시켜 제품을 만들 수가 있다.
본 발명의 방법으로 만들어지는 금형과 가공물, 전주금형과 전주가공물은 주로 메쉬, 미세회로, 칩온 필름, 멤스 가공, 3차원 부품가공에 획기적인 생산성을 가진 제작방법으로 사용이 될 수가 있다.
가공물이 비교적 초 정밀한 마이크로미터 단위의 크기로 목적물 제작되는 것에 큰 효과가 있다. 본 발명에서 만들어지는 금형을 전주가공용 금형으로 만들어 사용이 되는 경우에, 3차원 형상을 가지는 부품가공용으로 사용이 되므로 일반적으로 행해지는 도금 기술과는 구분된다. 도금 기술은 표면에 도금물질을 형성시키는 것이라면, 본 발명은 필요한 부품을 형성시키는 가공기술이다.
본 발명을 이용하여 전주금형을 만들 경우, 본 발명의 전주금형을 사용하여 수직성장이 가능한 전주가공물을 만들 수가 있는 특징이 있다.
본 발명은 이러한 수직성장을 이루는 전주가공물의 제작방법과 그 방법으로 얻어진 전주가공물도 본 발명의 대상으로 한다.
수직성장을 가능하도록 하는 전주금형과 그 제조방법도 본 발명의 대상이다.
일반적으로 도금에 의하여 성장되는 전주가공물은 전주금형에 의하여 도금용액 안에서 성장한다. 본 발명은 수직성장이 가능하도록 하는 전주금형과 상기 전주금형을 통하여 수직 성장된 전주가공물을 형성하도록 하는 것이 핵심이다.
본 발명은 수직성장을 하도록 만든 전주가공물의 가공방법과 그 방법으로 이루어진 결과물도 포함한다. 특히 그 결과물의 대표적인 실시예로는 메쉬, 필터, 회로 등이다.
본 발명에서 사용되는 금형은 돌출부와 오목부를 가진다.
본 발명에서 사용되는 금형은 일반금형와 전주금형의 2가지 종류가 있다.
전주금형에서는 오목부에는 주로 비도전성 탄력체로 충진을 한다.
전주금형의 가공의 시작점은 도전체 기판에 감광재를 적층하며, 상기 감광재에 노광기술을 통하여 테이퍼 형상의 노광을 주로 시행한다. 이후 현상공정을 통하여 테이퍼 형상의 공간부를 형성한다. 테이퍼 형상으로 전주금형이 제작하는 것은 가공물의 이형을 용이하게 하기 위함이다.
본 발명은 주로 두께가 두꺼운 가공물의 제작에 많이 응용이 된다. 만약 테이퍼가 형성되지 않는다면, 피치는 작고 두께가 두꺼운 가공물을 탈형시키는 것은 현실적으로 불가능한 상황이다. 대부분의 경우, 본 발명을 적용하는 것은 테이퍼가 형성된 노광공법을 사용하는 것을 전제로 하나, 특수한 경우에는 테이퍼를 주지 않을 경우도 물론 포함한다.
종래에도 전주가공물을 만들어 사용해 왔다. 이는 도금용액 속에 전주금형을 넣고, 상기 전주금형에 도금을 하여 원하는 도금체를 만드는 것이다.
일반적으로 전기가 통하는 도전체로 이루어진 전주금형을 넣고, 상기 도전체 전주금형에 전기를 부가하면 금속이온이 이동하여 전주가공물이 형성된다. 상기 전주가공물을 상기 금형에서 탈형하여 전주가공물을 만든다.
일반적으로 도전체 전주금형에 전주가공을 실행하게 되면, 전주 가공물은 수평방향(폭방향), 수직방향(높이방향)으로 동시 성장한다.
도금의 성장방향을 인위적으로 제어를 한다는 것은 용이한 일이 아니다.
본 발명에서는 수직방향의 성장을 유도하고, 수평방향의 성장을 억제하는 전주금형을 제공한다.
수평방향으로의 성장을 억제하는 방법으로, 전주금형에 형성되는 공간부에 도금용액의 유동이 거의 발생하지 않도록 하는 정체영역을 형성하게 한다.
본 발명의 전주금형을 사용하면, 전주가공이 수직방향으로 성장됨에 따라 상기 정체영역도 함께 수직방향으로 함께 높아지는 것이 특징이다.
본 발명은 감광재를 사용하여 테이퍼가 형성된 3차원 형상을 얻고, 상기 3차원 형상에 전주가공을 실행하여 금형 또는 전주금형을 얻는다.
상기 금형 또는 전주금형을 사용하여 3차원 형상을 지닌 가공물 또는 전주가공물을 제작한다.
본 발명에서는 먼저, 본 발명의 전주금형을 사용하여 전주가공을 실행하는 경우를 설명한다. 그 뒤에 본 발명의 금형을 제작하는 기술을 설명하기로 한다.
본 발명의 전주금형으로 전주가공을 행할 때, 금속조직을 주로 수직 성장시키는 기술을 핵심으로 한다. 본 발명의 전주금형을 사용하여 3차원 입체 형상의 전주가공물은 제작하여 많은 산업영역에 활용될 수가 있다.
본 발명의 전주금형의 특징은 다음과 같다.
첫째, 본 발명의 전주금형은, 그 자체로 하나의 제품 또는 제품의 소재가 될 수가 있다. 본 발명에서의 전주금형은 그 자체로 전주가공물로 사용될 수도 있다. 따라서 청구범위를 포함하는 본 발명의 전반에 걸쳐서 전주금형은 전주가공물이 될 수도 있고, 전주가공을 위한 금형이 될 수도 있다.
둘째, 본 발명의 전주금형은 반복적으로 전주가공을 실시하여 다량의 전주가공물을 생산할 수가 있는 금형으로 사용할 수가 있다. 이때는 전주금형이 돌출부와 오목부를 갖도록 하며, 상기 오목부는 포물선 형상을 가지는 실리콘을 충진한다.
오목부에 비도전체를 충진하되, 포물선 형상으로 충진하여 성장되는 전주가공물은 수직으로 성장을 하게 된다.
세째, 본 발명의 전주금형은 수지 등을 사용하여 프레스 하거나, 성형할 수가 있는 금형으로 사용될 수가 있다.
본 발명의 대상이 되는 물품은 메쉬, 회로, 칩온필름, FPCB, 멤스 부품, 투명 열선, 인쇄용 메쉬, 필터, 전자파 차폐물, TSP 등의 다양한 것이다.
본 발명의 전주금형이 사용이 될 때, 또는 이와 같은 목적으로 전주금형이 만들어지는 과정에서 공간부는 탈형을 용이하게 하기 위하여 테이퍼 진 형상으로 구성된다.
전주금형을 사용하여 도금을 할때, 수직성장을 시키기 위하여서는 수직방향으로는 성장하되, 수평방향으로는 성장이 되지 않도록 하여야 한다. 이를 위하여 수직방향으로는 새로운 금속이온이 공급되게 하고, 수평방향으로는 새로운 금속이온이 공급되지 않도록 하여야 한다. 본 발명에서는 전주가공물이 성장하더라도 이러한 수직성장이 유지가 되도록 환경이 조성되게 하여야 한다.
본 발명은 수직성장을 유도하는 전주가공물의 가공 방법을 사용한다.
이는 수직성장을 하게 하는 본 발명의 전주금형을 사용하면 된다.
전주금형은 도전체 금형으로 구성된다. 상기 도전체 금형에는 돌출부와 공간부가 형성된다. 상기 공간부에는 포물선 형상으로 비도전성 물질을 충진 또는 코팅한다.
상기 공간부에는 정체영역이 형성된다.
본 발명에서 수직성장이 가능토록 하는 전주금형에 전주가공을 실행한다. 전주가공물을 성장시키고, 전주금형에서 전주가공물을 탈형하면 수직성장으로 유도된 전주가공물이 만들어진다.
상기 전주가공물은 메쉬, 인쇄용 메쉬, 실버 페이스트를 사용하는 회로 형성용 메쉬, 필터, 전자파 차폐물 등을 들 수가 있다.
일반적으로 도전체 금형에 전주가공을 실행하게 되면, 전주 가공물은 폭방향의 성장과 동시에 높이방향으로 동시 성장을 하게 된다.
본 발명은 높이방향의 성장은 자유성장을 하게 하며, 수평방향의 성장은 도금용액의 정체영역에서 일어나게 하는 것을 특징으로 한다.
상기 수직성장이 일어남과 비례하여 상기 정체영역도 높아진다.
본 발명으로 만들어진 전주가공물은 개구도가 큰 메쉬를 만들 수가 있는 특징이 있다. 특히 개구도가 크고 메쉬의 두께가 두꺼운 형상으로 만들 수가 있는 특징이 있다.
이는 본 발명인이 발명한 선광원 발생장치를 사용하면 대면적의 제품을 만들수가 있으며, 테이퍼진 형상으로 감광재를 노광시킬 수가 있다.
본 발명에 의하여 제작된 전주가공물은 두께를 두껍게 만들 수가 있다.
이것은 도금의 성장방향을 제어함으로써 얻을 수가 있다. 폭 방향으로의 성장은 작게 하며, 높이 방향으로의 성장은 극대화하면 가공결과물의 두께를 두껍게 할 수가 있게 된다.
본 발명에 의하여 제작되는 전주가공물은 극히 미세한 메쉬의 제작에도 사용된다. 메쉬의 피치를 70마이크로미터 이하, 메쉬의 선폭 두께를 15마이크로미터 이하, 메쉬의 두께를 30마이크로미터 이상, 메쉬의 크기가 각각 가로세로 1미터 이상의 크기로 만든다는 것을 현재의 기술로서는 거의 불가능하돠.
그러나, 본 발명을 이용하면 용이하게 생산 가능하게 된다.
본 발명은 감광재를 노광 및 현상하여 만들어진 3차원 형상에 전주가공을 통하여 금형을 제작하는 것을 기본적인 과정으로 한다. 이 과정을 통하여 테이퍼가 형성된 노광부의 형상을 금형에 활용한다.
본 발명을 활용하여, 극히 미세한 피치와 미세한 선폭 그리고 두께가 두꺼운 형상의 회로 또는 3차원 가공물을 만드는 금형을 제작하는 데 큰 기여를 할 수가 있다.
두꺼운 두께를 얻으려면 기본적으로 두꺼운 감광층을 형성한다. 이러한 두꺼운 감광층에 미세한 선폭과 피치의 패턴 또는 회로를 노광을 시키고, 현상공정을 실행하면 대부분 밑바닥까지 깨끗하게 현상이 되지 못한다.
부분적으로는 현상이 원하는 수준이 된다 하더라도 넓은 면적에 걸쳐서 완전한 현상이 되는 경우가 거의 없다.
이러한 경우에도 거의 온전한 형태의 금형을 제작할 수가 있는 방법을 본 발명에서 제시한다. 이러한 금형을 활용하여 본 발명에서는 전주금형을 만든다.
본 발명에서는 만들어 지는 전주금형은 수직성장이 가능하도록 하는 전주금형을 만드는 것에 특징이 있다.
본 발명의 전주금형으로 전주가공을 실행할 때, 수직성장을 하도록 하게 하기 위하여 본 발명에서는 돌출부와 공간부를 형성한다.
상기 공간부에는 비도전체를 포물선 형상으로 충진을 시킨다.
전주금형의 돌출부에서 도금이 시작되어 금속이 성장을 하게 되면, 수직방향으로는 계속 새로운 금속이온이 공급된다. 그러나 수평방향으로는 금속이온의 이동이 정지되어 도금이 일어나지 못하게 하여 수직성장을 하게 한다.
금속층이 성장함에 따라서 수평방향으로 금속이온을 공급하는 역할을 하는 정체영역도 계속 성장하게 하여 계속적으로 수직성장을 이루게 한다.
본 발명에서는 노광부를 테이퍼 진 형상으로 노광을 시키는 것이 필요하다.
일반적인 평행광 노광기로는 경사도를 갖도록 노광을 시키는 것은 어렵다. 그러나 본 발명가가 발명한 렌티큐라를 사용한 선광원 발생장치를 사용하면, 렌티큐라의 기능를 통하여 노광시키는 빛에 각도를 줄 수가 있다. 또한 대면적의 노광을 용이하게 할 수가 있다.
본 발명은 선광원 발생장치가 주제가 아니므로 이에 대하여 상세한 설명은 하지 않는다. 그러나 본 발명의 금형의 제작에서는 선광원 발생장치를 가진 노광기가 매우 유용하게 사용이 된다.
종래에는 극히 미세한 회로, 극히 미세한 메쉬 등과 같이 제품을 얻고자 할 때, 주로 에칭으로 가공을 하였다. 그러나 에칭공법으로 제품을 만들면 에칭되는 방향을 인위적으로 제어를 할 수가 없기 때문에 가공의 한계를 갖게 된다.
미세회로에 있어서, 가공되는 모재의 두께가 두껍고, 가공하고자 하는 회로의 선 폭이 가늘며, 또한 회로의 피치가 작을 경우에는 에칭공법으로 제작이 불가하다. 에칭은 수직방향(높이방향, 깊이방향)으로 에칭이 진행됨과 동시에 폭방향(수평방향, 폭방향)으로도 동시에 에칭이 진행되기 때문이다.
물론 일반적인 전주가공에서도 동일한 문제가 발생한다. 전주금형에서 도금이 시작이 되면, 수직방향(높이방향, 깊이방향)과 폭방향 (수평방향, 폭방향)으로도 동시에 도금이 진행된다.
본 발명은 다양한 형태의 전주가공물 특히 극히 미세한 3차원 형상의 전주가공물을 제작할 수가 있게 한다.
전주가공물이 극히 미세회로인 경우, 가공되는 회로의 두께가 두껍고, 가공하고자 하는 회로의 선 폭이 가늘며, 또한 회로의 피치가 작은 경우에도 본 발명으로는 제작 가능하다.
이것이 가능한 이유론, 미세회로를 제작하는 전주금형으로부터 성장되는 전주가공물을 폭 방향의 성장은 제어하고, 높이 방향으로만 성장하도록 하기 때문이다.
본 발명을 통하여, 전주금형에 전주가공을 실행할 때 도금되는 금속이 수직성장을 이루도록 한다. 이러한 전주금형을 만들기 위하여서 테이퍼 형상의 노광부를 만드는 것이 필요하다.
테이퍼 형상을 갖는 이유는 탈형을 용이하게 하기 위함이다.
또한 본 발명의 수직성장을 하게 하는 전주금형을 만들기 위해서는 공간부에 비전도성 물질을 충진한다. 상기 비전도성 물질은 포물선 형상으로 구성되게 한다.
포물선 형상의 비도전성 물질을 충진하는 이유는 수평성장은 거의 하지 않고 수직성장을 유도하기 위함이다. 수직성장을 한 전주가공물은 탈형하여 메쉬, 필터 등의 제품으로 사용한다.
본 발명을 사용하면 극히 미세한 회로의 형성과 극히 미세한 3차원 구조물을 만드는 멤스 기술에 용이하게 적용된다. 본 발명에서 극히 미세하다고 칭하는 것은 일반적으로 수십 마이크로미터 이하, 수 마이크로미터 이하의 크기를 지칭하는 것으로 한다.
그러나 전주가공물의 형상에 따라서 수백 마이크로미터 이상의 가공물에도 적용 가능함은 물론이다.
본 발명은 전주가공물을 형성하는 도금용액이 수직방향으로는 원활하게 공급이 되나, 수평방향으로는 원활한 공급이 제한되도록 하는 기술을 제공한다.
본 발명에서, 전주도금은 높이 방향으로 성장은 제어를 하지 않으나, 폭방향으로의 성장은 제어를 한다.
이러한 폭 방향으로의 성장을 제어하는 원인은 전주금형에서 정체영역이라고 하는 곳이 구성되기 때문인데, 상기 정체영역에서는 도금용액의 이동이 정체되어 원활동 도금활동이 억제되는 것이다.
본 발명에서는 높이 방향으로의 도금이 성장됨과 함께 정체영역도 동일한 높이만큼 성장을 하는 것이 특징이다. 따라서 도금은 높이 방향으로 활발하게 성장하지만 폭 방향으로는 정체영역으로 인하여 성장이 제한되게 된다.
정체영역은 도금물의 성장에 따라서 계속적으로 상부방향으로 성장되는 것이 본 발명의 특징이다.
정체영역이 형성되면 도금이 ZERO라는 의미는 아니다. 정체영역에도 도금용액은 존재하나, 새로 유입되는 도금용액이 제한되므로 성장이 극히 제한되는 것이다. 본 발명에서 고여지는 도금용액이 정체영역 역할을 감당한다.
본 발명에서는 전주금형에서 최초성장되는 스타트 형상이 결정적인 역할을 한다. 본 발명에서는 스타트 형상을 제어하기 위하여 전주금형의 공간부를 포물선 형상으로 구성한다.
이러한 포물선 형상을 이루기 위하여 공간부에는 비도전성 물질 대표적인 예로는 실리콘을 충진한다. 전주가공물의 성장방향 제어하는 포물선 형상의 실리콘 충진재는 성장되는 전주가공물이 수직방향으로는 활발하게 성장하게 하고, 폭 방향으로는 성장을 억제시킨다. 이를 통하여 본 발명의 수직성장 전주가공물이 제작된다.
도 1은 메쉬의 평면도이다.
도 2는 본 발명이 전주금형에 대한 설명도이다.
도 3은 전주금형의 공간부에 포물선 형태로 비도전성 물질이 충진된 것을 설명하는 설명도이다.
도 4는 본 발명의 전주금형으로 도금을 시행하는 초기의 형상을 설명하는 설명도이다.
도 5는 본 발명의 전주금형에 대한 도금용액의 유동성을 나타내는 설명도이다.
도 6, 도 7은 전주금형에 도금이 시작되면 정체역역에는 도금이 형성되지 않게 수직성장을 이루는 것을 설명하는 설명도이다.
도 8은 수직도금(11)이 진행됨과 동시에 정체영역(12)도 동시에 수직으로 높아지는 중간 과정을 설명하는 설명도이다.
도 9는 수직성장을 설명한다.
도 10은 본 발명의 수직성장 전주금형에서 성장된 전주가공물을 탈형시킨 제품의 단면도이다.
도 11은 일반적인 전주금형에서의 전주가공물의 성장상태를 설명하는 설명도이다.
도 12는 본 발명의 전주금형에 의한 수직성장한 전주가공물의 설명도이다.
도 13은 본 발명의 수직성장 전주금형에 대한 실시예이다.
도 14는 공간부에 형성된 충진물의 경사각에 대한 설명이다.
도 15는 같은 포물선을 가진 전주금형에서도 포물선의 깊이에 따라서 수직성장의 유무가 결정되는 것을 설명하는 설명도이다.
도 16은 돌출부의 높이, 돌출부와 이웃하는 돌출부와의 간격에 의한 수직상승에 대한 것을 설명하는 설명도이다.
도 17은 본 발명의 전주가공물에 생긴 하부방향 성장부 또는 최대폭 수평성장부를 제거하는 제거공정에 대한 설명도이다.
도 18은 본 발명의 1형태와 2형태 전주금형의 가공방법에 대한 설명이다.
도 19는 본 발명의 3형태와 4형태의 전주금형에 대한 설명도이다.
도 20은 본 발명의 5형태의 전주금형의 설명도이다.
도 21, 도 22, 도 23은 5형태 전주금형을 구성하는 패턴의 형상에 대한 실시예이다.
도 25은 포물선형의 비도전성 물질을 충진한 전주금형에 대한 설명도이다.
도 26은 본 발명의 전주금형을 사용하여 회로가 형성된 필름을 제작하는 공정의 설명도이다.
본 발명에 따른 금형의 가공방법은, 기판에 감광층을 형성하는 단계; 상기 감광층에 노광 및 현상공정을 통하여 돌출부와 공간부를 형성하되, 공간부의 하부폭이 공간부의 상부폭에 비하여 넓은 테이퍼 형상으로 현상하는 단계; 상기 돌출부와 공간부에 스파터링을 하는 단계; 상기 스파트링부에 전주가공을 통하여 전주가공물을 형성하는 단계; 상기 전주가공물로부터 기판과 감광재를 제거하여 1형태 금형을 형성하여 이루어지도록 한다.
본 발명은 기본적으로 도전성 기판 또는 비도전성 기판에 감광재를 도포하고, 상기 감광재를 노광 및 현상하여 얻은 3 차원 형상을 사용하여 금형을 만드는 방법과 이를 통하여 제작된 금형을 대상으로 한다.
그러나 다른 형태로 금형을 제작하는 방법도 포함한다.
본 발명의 금형은 전주금형을 포함한다. 이를 사용하여 제작된 전주가공물을 본 발명의 대상으로 한다. 전주금형이란 금형에 전기를 가하여, 도금욕조에서 전주가공물을 형성시키는 금형을 의미한다. 본 발명에서는 전주금형 중에서도 특히 수직성장을 가능케 하는 전주금형을 만드는 방법을 설명하며, 이는 본 발명의 핵심이기도 하다.
본 발명의 가장 대표적인 전주가공물로는 태양광 회로 형성을 위한 인쇄용 메쉬, 극미세 필터 등을 들 수가 있다. 물론 메쉬 뿐만 아니라 극히 미세한 미세 회로와 회로기판, 투명열선, 플렉시블 회로기판, 칩온 필름, 3차원 멤스부품 및 이들을 가공하는 가공기술도 포함한다.
본 발명에서의 전주가공물은 초정밀한 것을 주로 다룬다. 선폭과 높이가 주로 수 마이크로미터에서 수십 마이크로미터에 해당하는 것이 일반적이다.
본 발명에 사용되는 전주금형은 도전체로 기판이 구성된다. 상기 도전체 기판에 돌출부와 공간부로 전주금형이 구성된다. 상기 공간부에는 비도전성 물질로 충진 또는 코팅 또는 도포한다. 상기 비도전성 물질은 정체영역을 만드는 역할을 하며 주로 포물선 형상으로 제작된다.
본 발명에서 정체영역을 구성한 전주금형을 사용하면, 성장되는 전주가공물을 거의 수직으로 성장시킬 수가 있다. 정체영역을 구성하는 비도전성 물질은 탄성체가 이상적이다. 가장 대표적인 실시예로 실리콘을 주재료로 사용한다. 이하에서는 도면을 바탕으로 자세히 설명한다.
도 1은 메쉬의 평면도이다. 정밀한 메쉬(1)는 메쉬의 선폭은 작고, 개구도는 크다. 이들은 주로 미세 인쇄에 많이 사용된다. 근래에는 태양광을 전기에너지로 만드는 기판에서 미세한 통전회로를 만드는 것에 많이 활용된다. 이들은 메쉬를 통하여 실버페이스트를 사용하여 미세한 통전회로를 구성하는 데 주로 사용된다.
여기에 사용되는 메쉬는 선폭과 피치가 미세하며, 두께는 두꺼워야 내구성을 가지게 된다. 두께가 두꺼우면 선폭은 굵어지고, 개구도가 작게 마련이다.
그러나 제품의 특성상 개구도는 크면서 두께는 두껍게 만들어야 한다. 이러한 특성으로 인하여 에칭공법으로는 거의 제작을 하지 못하며, 종래에는 수 마이크로미터의 직경을 갖는 선재를 직조하여 4각 메쉬를 만들어 사용하고 있었다.
그러나 본 발명에서는 수직성장 전주금형을 만들고, 전주가공을 통하여 4각 또는 6각 또는 원형의 전주가공물을 만들어 메쉬를 제작한다. 이들은 선폭을 가늘게 하며 두께가 두껍고 개구도가 큰 형태를 만들 수가 있다. 또는 메쉬의 힘살이 테이퍼 진 형태를 만들 수가 있어서 실버페이스트를 인쇄할 때 용이하게 토출될 수 있게 한다.
본 발명에 의하여 제작이 되는 전주가공물은 메쉬와 필터 이외에도 그 활용되는 용도가 다양하다. 본 발명에서 메쉬는 원형메쉬, 4각 메쉬, 6각 메쉬 (하니컴) 등의 다양한 형태로 제작이 된다. 종래에는 가는 금속 선을 직조하여 4각형 메쉬를 제작하여 사용이 되고 있다.
일반적으로 정밀 메쉬는 개구도를 좋게 하기 위하여 제품의 힘살, 즉 선 폭을 가늘게 한다. 메쉬의 두께는 두껍게 하여 내구성을 가지도록 한다.
본 발명에서의 전주가공물은 이러한 메쉬를 기준으로 설명을 하나, 실제 적용은 메쉬 뿐 아니라, 다양한 제품에서 다양한 미세 형상의 3차원 전주가공물, 2차원 전주가공물을 제작할 수가 있다. 본 발명에서는 전주가공물의 선 폭과 두께는 수 마이크로미터에서 수십 마이크로미터 정도의 정밀한 전주가공물로 가공을 한다.
도 2는 본 발명의 전주금형에 대한 설명도이다. 본 발명에서의 전주금형은 수직성장을 하도록 하는 전주금형을 대상으로 한다.
본 발명에서 수직성장이란 수직으로만 성장하는 것만을 의미하지 않는다. 전주가공물의 수직, 수평 성장을 한다. 수직성장이란 수평성장은 억제된 상태로 조금의 성장을 하게 하나, 수직방향으로는 성장의 제한을 두지 않는 것을 의미한다.
즉, 수평방향(폭방향)의 성장에 비하여, 높이 방향(수직방향)으로 전주가공물의 성장이 큰 것을 본 발명에서는 수직성장이라 정의한다. 본 발명에서의 수직성장을 위한 전주금형은 수직성장이 가능하도록 하는 전주금형을 의미한다.
본 발명에서 전주금형은 주로 평판 형상의 전기가 통하는 도전체 기판(4)을 사용한다. 상기 도전체 기판에는 다수의 돌출부(2)가 형성된다. 돌출부도 물론 도전체이며 기판과 동일체로 구성되는 것이 일반적이다. 상기 돌출부와 돌출부 사이 사이에는 공간부(3)가 형성된다. 본 발명에서의 돌출부와 공간부의 크기는 수 마이크로미터에서 수십 마이크로미터의 크기이다. 큰 기판 위에 돌출부와 공간부가 무수히 형성되어 져 있다. 상기 돌출부의 상부는 균질한 평면부 또는 균질한 선(LINE) 형상으로 이루어진다. 상기 돌출부는 도금용액이 성장되는 스타트 면 또는 스타트 라인이 된다.
도 3은 전주금형의 공간부에 비도전성 물질이 충진되어 정체영역을 형성한 것을 설명하는 설명도이다. 공간부에 충진되는 물질은 비도전성 물질이다. 공간부에 비도전성 물질을 충진하거나 코팅하거나 도포할 수가 있다.
비도전성 물질의 대표적인 실시예는 실리콘과 불소수지 등을 들 수가 있다.
본 발명에서는 비도전성 물질이 탄력성이 있는 소재를 사용하는 것이 바람직하다. 만약 탄성을 갖지 않는다면, 코팅 또는 충진 또는 도포된 비전도성 물질이 전주가공이 진행됨에 따라, 깨어지는 현상이 생긴다. 따라서 전주금형의 내구성이 문제된다.
본 발명에서 가장 대표적인 비전도성 탄성물질은 실리콘 소재이다. 공간부에 충진되는 비전도성 물질은 주로 포물선 형상으로 구성된다. 본 발명에서 포물선 형상이라는 용어는 반드시 포물선만을 의미하는 것은 아니다. 대략적으로 포물선의 형태로 구성된다는 것을 의미한다.
본 발명에서는 비전도성 물질을 포물선 형상으로 도포를 시킨다는 의미는, 공간부에 비전도성 물질을 충진하거나 코팅하거나 도포하는 것을 포괄적으로 표현하는 단어이다. 한 개의 돌출부만 관찰하면, 돌출부의 측벽과 공간부의 하부면에 비전도성 물질로 얇게 도포만 되더라도 포물선 형상으로 충진된다고 표현할 수가 있다. 왜냐하면 돌출부의 양쪽 하부 코너는 자동으로 많은 량의 비전도성 물질로 채워져서 자도으로 라운드지게 도포가 되기 때문이다.
실시예로, 공간부의 양측면과 하부면에는 실리콘을 얇게 도포를 하면 공간부의 하부면 양쪽 코너에는 라운드 진 형태로 실리콘이 충진되는 것을 알 수가 있다.
전주금형에서 돌출부 상부면의 양 모서리 부분에는 포물선의 기울기가 급격할 수록 공간부의 중앙 부위는 깊이가 깊을수록 정체영역이 활성화 된다.
본 발명에선 돌출부의 상부표면은 도금이 진행되는 부분이므로, 돌출부의 상부표면에는 비도전성 물질이 도포되지 않도록 한다. 돌출부의 양 측면에는 비전도성 물질이 도포되어져 있음으로 도금이 진행되지 않는다. 오직 돌출부의 상부 수평면에서만 도금이 시작되게 한다. 돌출부의 측면에는 다양한 방법으로 비도전성 물질로 코팅 또는 도포 또는 충진한다. 가장 대표적인 실시예로는 포물선 형상으로 실리콘을 충진시키는 것을 들 수가 있다.
가장 중요한 요소는, 도 3에서 보는 바와 같이, 돌출부의 상부평면의 양 모서리부는 경계가 정확하며 깨끗하여야만 전주가공물이 깨끗하고 균일하게 성장을 한다. 그리고 돌출부의 상부평면의 양 모서리부에서 비도전성 물질이 충진되기 시작한다. 이곳의 포물선은 급격한 경사도가 이루어져야만 전주가공물이 수직성장을 할 수가 있게 된다.
도 4는 본 발명의 수직성장 전주금형에 전주가공을 시행하는 초기형상을 설명하는 설명도이다. 도금욕조에서 본 발명의 전주금형을 넣으면, 도금용액(7)이 돌출부의 상부표면과 비전도성 물질로 이루어 지는 공간부를 에워싸게 된다.
본 발명에서, 도금이 균일하고 활발하게 이루어지도록 하기 위하여 도금욕조 내에서 도금용액을 강제로 유동시킨다. 이를 위하여 도금욕조 내에서 전주금형이 회전을 하거나 좌우로 움직일 수 있도록 하는 것이 바람직하다. 다른 방법으로는 전주금형은 정지하고 도금용액을 유동시킬 수도 있다.
도 5는 본 발명의 수직성장 전주금형의 정체영역에 대한 설명도이다. 도금욕조 내에서 전주금형을 움직이면, 전주금형의 돌출부의 상부표면에는 유동하는 도금용액과 맞닿아 항상 새로운 도금용액을 접하게 된다. 그러나 포물선 형태로 비도전성 물질이 충진된 공간부의 도금용액은 유동없이 정체한 상태로 있게 된다.
이 같이 비도전성 물질이 충진된 공간부의 도금용액이 정체한 상태로 있게 된 영역을 본 발명에서는 정체영역(8)정의한다.
포물선 형상의 공간부에 있는 도금용액은 갇혀 있게 된다. 도금용액은 흐름이 거의 정지된 상태 또는 흐름이 활발하지 않도록 제한된 상태가 된다.
본 발명에서는 돌출부와 돌출부의 간격이 극히 미소하며, 돌출부의 높이가 간격에 비하여 높은 경우가 대부분이다. 이러한 상황에서, 공간부를 포물선 형상으로 도전성 물질로 충진하면 도금용액은 포물선 안에 갇혀서 움직임이 적을 수밖에 없다. 즉 정체영역이 형성된다. 이러한 정체영역은 포물선의 깊이가 깊을 수록 확실하게 형성이 된다.
도 6에서 도 9까지는 정체영역에서 수직도금이 진행된는 것을 설명하는 설명도이다. 도 6, 도 7의 정체영역이 형성된 수직성장 전주금형에 도금이 시작된다.
정체영역에는 도금이 이루어지지 않고, 돌출부의 상부표면에서는 수직성장이 이루어진다. 돌출부의 상부표면의 수평방향으로는 금속의 성장이 거의 이루어 지지 않고, 수직방향으로는 금속의 성장이 활발하게 일어난다. 이를 본 발명에서는 수직성장이라 정의한다.
엄밀하게 분석하면, 돌출부의 상부표면의 양 모서리 부위에서는 포물선의 모양을 따라서 하부방향으로 약간의 도금이 진행될 수가 있다. 그러나 돌출부의 상부표면에서 수직방향으로는 도금용액의 유동이 원활하므로 수직도금(9)이 활발하게 진행된다.
전반적으로 수직성장은 활발하나 수평방향으로는 성장은 제한되게 된다. 수직도금에 의하여 도금 성장부가 상부로 성장하면 할수록, 동시에 정체영역(10)도 상부로 높아지게 되는 특징이 있다. 성장하는 수직 도금부가 위로 벽을 쌓아 주게 되는 효과가 생기므로 자동으로 정체영역도 함께 올라간다.
원하는 높이만큼 전주가공물이 성장할 때까지 도금은 계속 수직성장 한다. 상기 전주가공물이 수직 성장을 함에 따라서, 정체영역의 높이도 함께 높아지며, 상기 정체영역으로 인하여 측면성장은 상당히 억제된다.
도 8은 수직 성장부(11)에 의하여 정체영역(12)도 동시에 높아지는 과정을 설명하는 설명도이다. 수직도금이 진행되면, 자동으로 정체영역도 상부로 높아지게 된다. 정체영역에서는 도금이 활성화되지 못하는 이유는 새로운 도금용액의 유입이 없기 때문이다. 원래 정체영역에 있던 금속이온은 초기에 모두 소진된 상태가 된다. 새로운 금속이온의 유입이 없으므로 자동으로 수평방향의 성장은 억제가 된다.
정체영역에서는 금속이온이 희박하게 되며, 새로운 도금용액이 유입되지 못하는 상태가 된다. 이로 인하여 정체영역에서는 도금성장이 거의 없다. 따라서 수평방향으로의 도금성장은 조금밖에 일어나지 않게 된다.
수직 성장된 도금체는 정체영역을 높이는 구실을 한다. 초기에는 정체영역이 층진된 비도전성 물질에 의하여 형성되나, 수직성장이 일어나면 날수록 수직성장된 도금체가 정체영역을 형성하게 하는 역할을 자동으로 수행하게 된다. 즉 수직성장의 높이가 높아지면 자동으로 정체영역의 높이도 높아지게 된다.
도 9는 수직성장을 설명한다. 수직으로의 성장되는 전주가공물(13)의 높이가 제품의 높이에 이를 때까지 전주가공을 진행한다. 전주가공물의 높이만큼 정체영역(14)도 상승한다.
본 발명에서, 전주금형에 형성된 수많은 갯수의 돌출부와 공간부의 크기가 미세할 수록 수직성장은 잘 이루어진다. 즉 정체영역이 잘 이루어진다. 정체영역을 유도하는 환경은, 돌출부와 공간부의 크기가 미세할수록 그리고 공간부의 깊이가 깊을수록 유리하다. 공간부의 폭이 좁을수록, 공간부의 깊이가 깊을수록, 정체영역의 형성이 용이하게 된다.
도 10은 본 발명의 수직성장 전주금형으로 성장시킨 전주가공물을 탈형시킨 수직성장된 제품의 단면도이다.
전주가공을 시작할 때, 탈형의 편리함을 위하여 수직성장 전주금형에 이형층을 형성한다. 돌출부의 상부표면에 형성된 이형층은 성장된 전주가공물의 탈형을 용이하게 한다.
수직성장 전주금형을 사용한다고 하더라도, 수평성장(측면 방향 성장)이 완전히 없다는 것은 결코 아니다. 본 발명에서의 수직성장의 의미는 전주가공이 진행됨에 따라, 수직방향의 성장이 크고, 수평방향의 성장이 작다는 것을 의미하며, 측면방향 즉 수평방향의 성장이 없다는 것은 아니다.
본 발명에서 전주가공물의 성장은 직선상으로 일어난다고 하지 않는다. 전주가공물의 성장은 금속용액의 방향과 속도, 금속용액의 성분, 첨가제의 유무, 돌출부의 높이, 공간부의 크기, 공간부에 충진된 비도전체의 형상과 깊이, 공간부에 충진된 비도전체의 성분, 도금용액의 온도 등 다양한 변수에 의하여 다양한 결과가 나타난다.
본 발명의 수직성장 전주가공물의 성장에 영향을 미치는 여러 환경과 조건에도 불구하고, 전주가공이 수평방향으로 성장하는 성장의 크기는 억제를 하고, 수직방향(높이방향)으로 성장하는 크기가 크게 한 것이다.
결과물의 개구도를 크게 하면서, 선 폭을 작게 하면서, 결과물의 두께는 두텁게 한 제품을 생산할 수 있게 하는 핵심기술은 정체영역의 형성이라 할 수가 있다.
수직 성장된 전주가공물의 단면도를 보면, 전주가공이 진행됨에 따라, 폭 방향(수평방향, 넓이방향)의 성장은 직선으로 이루어지기보다는 다양한 영향을 받으면서 다양한 형태로 이루어지는 것을 알 수가 있다. 가장 크게는 정체영역 효과의 정도에 따라서, 금속용액의 유동속도와 온도와 방향에 따라서, 기타의 환경적 요인과 물리적 요인에 따라서 영향을 받으면서 전주가공물은 성장을 한다. 따라서 전주가공물은 상부로 수직성장을 하면서 그 폭은 늘었다가 줄었다가 할 수가 있다.
도 11은 종래의 일반적인 전주금형으로 전주가공물을 만들 때의 전주가공물의 성장상태를 설명하는 설명도이다. 일반적으로 돌출부 사이의 공간부는 비도전체(17)로 채우되, 주로 수평하게 충진한다. 수평하게 충진을 하려고 하였지만 경우에 따라서 완만한 포물선 형태로 충진이 되는 경우가 많다.
종래의 이러한 경우, 전주가공물(16)은 수평 및 수직방향으로 동시 성장을 한다. 종래에는 전주가공물이 성장할 때 수평성장을 억제하지 않는다. 따라서 전주가공은 조금만 진행되더라도 성장된 도금체가 서로 만나게 된다.
도 12는 본 발명의 수직성장 전주금형에 의하여 수직방향으로 성장한 전주가공물의 설명도이다.
돌출부와 돌출부 사이의 공간부에 충진된 비도전성 물질의 형상에 따라 전주가공물의 단면모양은 다양하게 변한다. 물론 돌출부의 높이, 공간부의 폭, 포물선의 형상, 포물선의 깊이, 도금용액의 방향과 유속, 전류의 세기, 도금용액의 성분과 온도에 따라서 전주가공물의 형상은 다양한 변화를 할 수가 있다.
정체영역에 가장 큰 영향을 미치는 것은 돌출부의 높이, 공간부의 폭, 포물선의 형상, 포물선의 깊이이며 그 중에서 포물선의 깊이가 가장 영향을 많이 미친다.
그러나 정체영역이 형성되면, 공통적으로는 수평방향의 성장보다 수직방향의 성장이 우세하도록 성장시킨다. 정체영역의 환경에 따라서 다양한 형태로 전주가공물(18)들이 얻어진다.
전주가공물의 형상 변화에 가장 많은 영향을 미치는 것은 공간부에 충진된 충진물의 형상과 깊이이다.
수직성장을 이루기 위하여 가장 바람직한 형태는 깊이가 깊은 포물선 형태이다. 물론 포물선 형태란 엄밀한 의미의 포물선으로 형태만을 의미하지 않는다. 전체적으로 포물선 비슷한 형태를 이루며 비도전 물질이 도포, 충진, 코팅되는 것을 의미한다.
본 발명의 전주금형에서 정체영역의 형태에 따라서 얻어지는 전주가공물의 형상은 (A),(B),(C),(D),(E),(F) 등 다양한 형태가 있다. 물론 도시된 형태 외의 형태도 가능하다.
본 발명에서는 이들 모두를 수직 성장한 전주가공물이라 정의한다.
물론 이들은 수직으로만 성장을 한 것이 아니다.
이들은 일반적인 전주가공에서 제어하지 못하였던 수평방향으로의 성장이 어느정도 통제를 받으면서 수직방향으로의 성장을 이룬 것들이다. 본 발명에서는 이들을 수직 성장 전주가공물이라 칭한다.
이곳에서 본 발명의 하부방향 성장부에 대한 용어를 정의한다.
하부방향 성장부란 수직성장 전주금형에서 전주가공이 진행될 때, 돌출부의 상부표면보다 아랫방향으로 도금이 진행된 영역으로 정의한다.
(A),(B),(C)에서는 전주가공물(18)에서는 하부방향 성장부는 없다. 이들은 모두 모두 수직성장을 하면서 제한된 범주 내에서 수평성장을 하였다.
그러나, (D)와 (F)의 전주가공물은 전주금형의 돌출부의 상부표면보다 하부로 성장된 부분이 있다. 본 발명에서는 이를 하부방향 성장부(19)라 칭한다.
하부방향 성장부는 돌출부의 상부표면에서 전주가공이 시작되는 초기단계에서, 전주가공이 실리콘의 포물선의 형상을 따라서 하부방향으로 일부 진행된 것이다. 돌출부의 상부표면의 중앙에는 수직방향으로만 성장한다. 그러나 돌출부의 상부표면의 양 모서리 부분에서는 실리콘의 포물선형상을 따라서 하부방향으로 성장이 진행되면서 측면방향의 성장도 동시에 진행된다.
돌출부의 상부표면의 중앙에서는 수직성장이 진행된다. 점차 수직성장이 위쪽으로 계속하여 이루어지게 되면, 정체영역도 위쪽으로 높아지게 된다. 정체영역에서 공급되던 금속이온의 보급이 점차 사라지게 되므로 하부방향 성장은 자동으로 멈춘다.
전주가공물이 수평방향 성장을 하게 되면 메쉬의 개구도가 작아지게 된다.
수직 성장된 전주가공물의 개구도를 개선하기 위하여 하부방향 성장부가 생기지 않도록 하는 것이 바람직하다. 물론 수평방향의 성장도 억제하여야만 개구도가 크게 되는 것이다. 하부방향 및 수평방향의 성장을 억제하려면 가장 중요한 요소는 포물선의 깊이를 깊게 하며, 시작되는 포물선의 경사도를 크게 한다.
(E)는 하부방향 성장부는 갖고 있지 않지만, 전주가공이 시작되는 비교적 초기에 수평성장이 극대치를 이루는 과정을 겪은 것이다. 전주가공물에서 수평성장의 극대치를 이루는 부분을 본 발명에서는 최대폭 수평 성장부라 정의한다.
최대폭 수평성장부는 (D).(F)에서와 같이 하부방향 성장부에서 형성되기도 한다. 모든 전주가공물은 어딘 가에서 최대폭 수평 성장부를 갖는다.
본 발명에서, 특이한 경우를 제외하면 보통은 최대폭 수평 성장부는 대부분 전주가공을 시작할 초기의 시점에 형성된다.
(E)는 최대폭을 가지는 수평 성장부가 전주가공을 시작할 초기의 시점에 생기었다가 점차 선 폭이 줄어드는 형상을 보인 실시예이다.
(D)와 (F)에서는 최대폭 수평성장부가 전주금형의 돌출부 표면보다 하부에 형성된 실시예이다.
전주가공이 시작될 때, 돌출부 상부표면의 중앙부에서는 높이방향의 성장이 진행이 되나, 돌출부 상부표면의 양 모서리에서는 비도전 물질을 따라 성장이 이루어 질 수도 있다. 금속성장이 비도전 물질을 따라 하부방향으로 어느 정도의 시점까지 진행된다. 어느 정도 지나면 하부로의 성장은 멈추게 된다.
전주가공물이 성장을 시작할 때, 돌출부의 상부표면 모서리에서는 비전도성 물질을 따라 하부방향 및 수평 방향으로도 전주가공이 진행된다.
본 발명의 수직성장 전주금형으로 전주가공을 진행할 때, 전주가공물은 하부방향 성장부를 갖는 경우가 많다. 충전물의 형상, 충진물의 깊이, 도금용액의 속도, 공간부의 폭, 돌출부의 높이, 포물선의 깊이 등을 변경하면 하부방향 성장부 또는 최대폭 수평 성장부의 통제가 어느 정도 가능하다. 이러한 조건들을 잘 조절하여 정체영역에 대한 제어를 할 수가 있게된다.
이론적으로는 정체영역은 도금용액의 유동이 정지되어 전주가공이 거의 이루어 지지 않는 곳이다. 그러나 실무에서 도금용액의 유입이 미량 생기는 것은 당연한 일이다. 정체영역의 내부에 있었던 금속이온이 도금으로 석출되는 것을 막을 수가 없다.
본 발명의 정체영역을 만들기 위하여, 공간부에 비도전성 물질을 코팅하거나 충진하거나 도포시키는 공법이 있다. 비도전성 물질은 포물선 형태로 도포 또는 충진 시키는 것이 용이하다.
도 13은 본 발명의 수직성장 전주금형에 대한 실시예이다.
본 발명의 수직성장 전주금형은, 도전체 기판에 돌출부와 공간부가 형성되는 것이 표준형태이다. 상기 공간부에 비도전성 물질로 충진한다.
비도전성 물질의 가장 대표적인 실시예로는 실리콘을 들 수가 있다. 기타 불소수지 등의 다른 물질도 대체 가능하다. 코팅 또는 도포 또는 충진된 비도전성 물질의 가장 대표적인 형상은 포물선 형상이다. 포물선의 깊이가 깊을수록 수직성장의 효과는 탁월하다.
본 발명에서 충진되는 비전도체 물질은 반드시 포물선 형상으로만 되어야 하는 것은 아니다. 본 발명에서 포물선 형상으로 구성을 하다는 용어는 포물선을 포함하여 포물선과 유사한 형태까지 포함하는 개념이다.
공간부의 양 벽면과 하부면에 대하여 얇게 비전도체가 도포되는 것도 포함하는 개념이다.
도 (A)는 포물선 형상(22)으로 공간부(21)가 충진된 것을 나타낸다. 포물선의 중앙부의 깊이가 깊을수록 정체영역이 명확시 성립되며, 수직성장의 효과는 탁월하다.
돌출부(20)의 상부표면은 일반적으로 평면을 이룬다. 돌출부의 상부표면은 전체적으로 같은 높이, 같은 형상을 유지하게 하여 균일한 수직성장을 이루도록 한다. 돌출부의 상부표면은 매끈한 평면 또는 매끈한 선(LINE)의 형태로 구성된다.
도 (B). (C)는 비도전성 물질이 공간부에 도포되거나 코팅되거나 충진된 된을 나타낸다. 이들의 형상은 포물선이라고 이외의 형태로 표현하기 어렵지만 기능은 포물선 형상으로 이루어진 정체영역의 기능을 수행할 수가 있다.
공간부의 전체벽면과 바닥면에는 도전체가 노출이 되지 않도록 비도전성 물질로 도포, 코팅, 충진(24,26)된다. 이때도 도포 또는 충진된 공간부의 깊이가 깊을수록 수직성장 효과가 탁월하다.
도 (B)는 돌출부의 상부표면의 양 모서리부에 비도전성 물질이 같은 높이로 수평하게 유지되는 수평부(23)가 형성된 것을 설명한다. 수평부의 끝에서 비도전성 물질은 급격한 경사부를 형성하여 정체영역을 형성한다. 이러한 경우는 비도전성 물질로 돌출부와 공간부의 전체면에 균일도포를 하고, 돌출부의 상부표면을 수평으로 연마한 경우이다.
이 경우에는 돌출부 상부표면의 양 모서리 끝에서 비도전성 물질이 바로 급격한 경사각을 형성하는 것이 아니라, 미량의 중간부(23)가 존재한다. 상기 중간부의 끝에서 급격하게 경사각을 형성시킨다.
도 (C)는 공간부에 도포 또는 충진 또는 코팅되는 비전도성 물질이 돌출부의 상부표면의 양 모서리에서 급격하게 경사각(25)을 형성 한 것을 설명한다.
도 14는 본 발명의 수직성장 전주금형에서 공간부에 형성된 충진물의 경사각에 대한 설명이다. 돌출부와 돌출부 사이에 형성되는 공간부에 비도전성 물질을 충진함에 있어서, 경사각은 중요한 역할을 한다.
경사각이 너무 완만하면, 돌출부 상부표면의 양 모서리에서는 하부방향 성장과 수평방향 성장이 활발하게 이루어진다. 이는 경사각이 완만하면 도금용액의 유동이 공간부에서도 활발하게 진행되기 때문이다. 이 경우에는 정체영역이 형성되지 못한 것이 된다.
본 발명에서는 공간부를 충진하거나 도포를 할 때, 공간부의 중앙지점이 포물선의 가장 깊은 부분이 된다. 포물선의 중심의 깊이가 깊을수록 수직성장에 도움된다. 이 말은 곧 정체영역이 확실하게 성립하는 것을 의미한다.
도 (A)는 돌출부의 상부표면의 양 모서리에서 비도전성 물질이 급격한 경사각(27)을 형성하는 것을 나타내며, 도 (B)는 중간부를 거쳐서 급격한 경사각(28)을 이룸을 설명한다.
도 15는 포물선의 깊이에 따라 수직성장의 형태가 결정되는 것을 설명하는 설명도이다. 포물선의 깊이가 얕으면 정체영역이 형성되지 못한다. 도 (A)의 경우는 포물선(29)의 깊이가 얕아서 도금용액이 활발하게 유동이 되므로 정체영역이 없는 형상이다. 이곳에서는 수평성장도 하부방향 성장도 활발하게 발생 되는 것을 의미한다.
(B)의 경우에는 포물선(30)의 깊이가 깊어서, 정체영역이 형성되어 도금용액이 유동하지 않게 되며, 이로 인하여 수평성장이 억제되는 것을 설명한다.
(C)의 경우에는 도포되거나 충진된 비전도성 물질이 포물선의 형상이 아닌 임의형상(31)인 것을 나타낸다. 포물선 형상이 아닐지라도 정체영역이 만들어지면 수직성장이 생기지 않는 것을 설명한다. 다양한 형태로 비도전성 물질이 충진 또는 코팅 가능함을 설명한다. 본 발명에서는 이러한 형태도 포물선 형태란 용어 안에 포함시킨다.
도 16은 수직상승 전주금형의 돌출부의 높이, 공간부의 넓이에 따른 수직상승 효과를 설명하는 설명도이다. 도전체 기판에 돌출부가 무수히 형성되고, 돌출부 사이 사이에는 공간부가 형성된다. 공간부의 양 벽면과 바닥면에는 비도전성 물질로 코팅한다. 코팅된 공간부에는 도금이 형성되지 않는다.
그러나 도금이 실행은 되지 않는 것과 상기 공간부에 정체영역이 형성된다는 것과는 별개의 문제이다. 돌출부의 상부표면에 도금되는 전주가공물이 수직상승을 하려면, 공간부는 비도전성 물질로 코팅되고, 또한 공간부에는 비도전성 물질로 인하여 정체영역이 형성되어야만 한다.
본 발명의 수직상승 전주금형은 공간부에 정체영역을 형성시켜 수평 및 하부방향 성장을 최대한 억제한다. 그리고 돌출부의 상부표면에서는 수직성장이 활발하게 형성되도록 하는 것이 목적이다.
정체영역은 공간부의 폭(b)이 작고, 돌출부의 높이(h)가 높다면 용이하게 형성된다. 본 발명에서 공간부의 폭(b)은 주로 수 마이크로미터~ 수십 마이크로미터의 크기이다. 좁은 간격의 공간부에 도금용액이 갇히면, 도금용액은 유동을 할 수 없는 정체영역이 된다. 정체영역을 이루기 위하여, 간격(b)과 높이 (h)는 일의적으로 한정 지을 수 없다. 도금용액의 흐름 속도를 비롯한 요소가 관련되어 진다.
본 발명에서는 전주가공물이 수직성장이 됨에 따라, 수직상승 전주금형의 정체영역도 상부로 함께 상승하는 것을 특징으로 한다.
도 17은 하부방향 성장부 또는 최대폭 수평 성장부를 제거하는 공정에 대한 설명도이다. 본 발명의 수직상승 전주금형에 전주가공을 실시하면, 수직성장 전주가공물을 얻을 수 있다. 상기 수직상승 전주가공물에는 하부방향 성장부 또는 최대폭 수평 성장부가 생길 수도 있다.
여러 환경적 요인을 조절하여, 하부방향 성장부가 억제되도록 한다. 또한 최대폭 수평 성장부의 폭을 가능한 작게 만든다. 이렇게 하여야만 전주가공물의 개구도를 크게 할 수가 있다.
수직상승 전주가공물에서 개구도의 개선이 필요할 경우에는 하부방향 성장부를 제거하며, 최대폭 수평 성장부의 폭을 줄일 수가 있다. 이는 후 가공을 통하여 진행한다. 이러한 후 가공은 하부방향 성장부를 제거하여 표면을 평탄하게 하거나 매끄럽게 하며, 개구도를 크게 증가 시킬 수가 있다.
하부방향 성장부 또는 최대폭 수평성장부를 제거하기 위한 공정은 다양하다. 가장 대표적인 방법으로는 전해공정을 사용하거나, 에칭공정을 사용하거나, 기계적 연마공정을 사용한다.
상기 하부방향 성장부 또는 최대폭 수평성장부를 제거하면, 전주가공물은 개구도가 훨씬 개선된다. 하부방향으로 전주가공물이 성장하면 측면성장도 동시에 이루어진다. 따라서 개구도를 좁아지게 된다.
일반적으로 하부방향 성장부 또는 최대폭 수평성장부는 대부분 뾰쪽한 형상으로 돌출된 부분이므로 전기가 집중된다. 따라서 이 부분은 에칭 또는 전해가 활발하게 진행된다.
도 (A)는 본 발명의 수직상승 전주금형(33)의 돌출부의 상부표면에 수직 성장된 전주가공물(32)이 제작된 실시예이다.
도 (B)는 본 발명의 수직상승 전주금형의 돌출부 상부표면 모서리에 형성된 하부방향 성장부(34)를 가진 전주가공물을 탈형시킨 것의 단면도이다.
도 (C)는 하부방향 성장부(34)를 가진 전주가공물(36)의 하부방향 성장부를 갖는 평면과 반대쪽의 평면에 차단판(35)를 위치시킨다. 상기 차단판은 하부방향 성장부를 제거하는 데 요긴하게 사용되며, 전주가공물(36)의 윗면을 안전하게 보호할 수 있게 된다.
도 (D)는 에칭공정 또는 전해공정 또는 기계연마를 실행하는 실시예에 대한 설명이다. 예리한 단부를 갖는 하부방향 성장부를 에칭이나 전해를 통하여 또는 기계연마를 통하여 제거한다. 예리한 단부에 전류가 집중되므로 에칭 또는 전해연마공정에서 하부방향 성장부는 용이하게 제거된다. 제거공정을 마치면 큰 개구가 형성된 전주가공물(38)이 얻어진다.
가공 후에 차단판(37)을 제거한다.
기계적 연마시에는 전주가공물의 공간부에 임시 충진물을 채워서 전주가공물에 손상이 없도록 하는 것이 바람직하다.
도 (E)는 큰 개구가 형성된 전주가공물(39)의 단면도이다. 하부방향 성장부를 제거한 이후에 차판판을 제거하면 개구가 큰 전주가공물을 얻을 수가 있다. 이러한 공정을 거쳐서 만들어진 전주가공물은 큰 개구도를 전주가공물이 된다. 이는 개구도가 큰 메쉬 또는 필터 또는 그물망의 제작에 큰 효과가 있다.
전주가공물이 메쉬로 사용될 때, 정밀인쇄용 메쉬, 실버 페이스트를 사용하여 회로를 인쇄하는 메쉬 등의 용도로 광범위하게 사용이 된다. 본 발명을 통하여 제작된 전주가공물은 정밀인쇄용 메쉬로 가장 이상적인 특성을 지닌다.
첫째, 인쇄 메쉬의 가장 이상적인 구조인 벌집모양 형상으로 메쉬의 제작이 가능하다. 둘째, 개구도가 큰 메쉬의 제작이 가능하다. 세째, 메쉬의 선폭을 최대한으로 작게 할 수가 있다. 네째, 메쉬의 내구성을 대표하는 두께를 두껍게 할 수가 있다. 다섯째, 메쉬의 단면은 테이퍼 형상을 가지고 있어서 인쇄시에 잉크 또는 실버페이스트의 토출이 용이하다. 여섯째, 종래에 사용되는 직조형태의 메쉬는 메쉬의 올이 움직이는 단점이 있으나 본 발명의 메쉬는 그러한 단점이 발생하지 않는다. 본 발명의 메쉬는 많은 부분에서 탁월한 효과를 발휘한다.
도 18은 본 발명의 1형태와 2형태 금형의 가공방법에 대한 설명이다. 본 발명에서 설명하는 1형태, 2형태, 3형태, 4형태 금형은 본 발명에서 사용하는 수직성장 전주금형을 만들기 위하여 사용되는 금형들이다. 이들은 모두 기판에 감광층을 형성하고, 상기 감광층에 노광공정과 현상공정을 행한다. 현상과정을 거쳐서 기판에는 노광부에 의한 3차원 구조가 만들어진다. 본 발명의 1형태, 2형태, 3형태, 4형태 금형은 상기 노광부에 의한 3차원 구조를 갖는 기판을 공통적으로 사용한다.
본 발명에서는 주로 감광재는 드리이 필름을 사용한다. 이러한 감광재의 두께는 보통 10마이크로미터, 20마이크로미처, 30마이크로미터, 40마이크로미터 등의 다양한 종류가 있다. 기판에 이들 감광재를 도포한 표면은 매끈하며 균일한 상태로 도포가 된다.
본 발명에서는 다양한 형태의 패턴을 통하여 상기 감광재를 노광시킨다.
보통 피치의 크기는 10, 20, 30, 40, 50, 60 ,70, 80, 90, 100 마이크로미터로 한다.
회로에서 선폭은 보통 5, 10, 15, 20, 25, 30 마이크로미터로 한다.
본 발명에서 재료 선택을 실시예로서, 만약 감광재의 두께가 40마이크로미터이고, 피치가 30마이크로미터, 선 폭이 10마이크로미터, 제품의 가로X세로 크기가 40센티 X 80센티로 한다고 가정한다. 이러한 데이타로 노광 및 현성을 가능케 할 노광비와 현상기는 종래에는 존재하지 않는다. 그러나 본 발명에서는 이를 가능하게 한다. 가장 중요한 것이 대형면적의 노광을 가능케하며, 미세 노광을 가능케 하는 본 발명자가 특허출원한 선광원 발생장치를 가지는 노광기를 사용하여야 한다.
그러나 본 발명의 선광원 발생장치를 사용하여 실싱예에서 제시한 노광 및 현상을 성공한다고 하더라도 대면적에 적용하면, 항상 부분적으로 한 두 곳에 현상의 미숙이 발생하여 온전한 제품을 만드는데 무척 힘이 든다.
본 발명에서는 이러한 현상의 미숙이 한두 곳에 발생한다 하더라도 원하는 금형을 만드는데 어려움을 주지 않도록 하는 기술을 제시한다. 이것은 현상공정이 불완전 하더라도, 도전성 금속을 스파터링하여 전주가공을 실행하여 현상의 미숙을 완전히 커버하는 획기적 기술이다.
도 18은 1형태 금형과 2형태 금형의 제작방법을 설명한다. 1형태 금형은 기판에 감광재를 사용하여 3차원 형상을 만들고, 상기 3차원 형상에 도전성 금속으로 스파터링을 한 뒤, 전주가공을 실시하여 금형을 제작하는 것을 특징으로 한다.
노광부에 의하여 3차원 형상을 제작한다. 상기 노광부의 형상은 탈형을 용이하게 하기 위하여 테이퍼 형상으로 한다.
주로 평판으로 만들어진 기판(40)에 감광층(41)을 도포한다. 상기 감광층에 패턴을 통하여 노광을 시킨다. 감광재에는 노광부(42)와 비노광부(43)가 형성된다.
본 발명에서 노광공정에서 노광부가 테이퍼(TAPE) 형상을 이루어 후 공정에서 탈형이 용이하도록 한다. 즉 노광부의 상부폭이 하부폭보다 좁도록 노광을 한다. 이러한 노광을 위하여 본 발명자가 특허출원한 선광원 발생장치를 사용한다.
만약 노광부의 상부폭이 하부폭보다 넓게 되면 추후 탈형 과정이 불가능하게 된다. 노광부의 상부폭이 하부폭과 같을 경우에도 탈형 과정은 거의 불가능하게 된다. 왜냐하면 감광층의 두께가 두껍기 때문에, 경사면이 없다면 탈형은 거의 불가능하게 된다.
이러한 이유로 본 발명에서는 노광부의 상부폭이 하부폭보다 좁도록 노광이 진행된다. 즉 노광부는 테이퍼진 형상으로 형성되게 한다.
현상과정을 거쳐서 비노광부를 제거하면 기판에는 테이퍼 진 형상의 노광부만 남게 된다. 기판에 3차원 형상을 지닌 돌출부가 만들어지게 된다.
기판에는 노광부에 의하여 돌출부(45)와 공간부(44)가 형성된다.
노광부로 이루어진 돌출부는 상부가 하부보다 좁은 형상이다. 이러한 테이퍼 형상의 노광을 위하여 본 발명자가 개발한 선광원 발생장치를 갖는 노광기를 사용한다.
이를 사용하면 테이퍼 형상의 노광을 용이하게 할 수가 있다. 선광원 발생장치에서 사용되는 렌티큐라 렌즈의 특성을 이용하여 테이퍼 형상의 가공이 가능하다.
기판에서 현상공정을 통하여 비노광부를 제거하면, 돌출부(45)만 남게 된다. 돌출부와 돌출부 사이에는 공간부(44)가 형성된다. 현상을 마치더라도 공간부에는 완전히 제거되지 아니한 잔존 감광재(46)가 흔히 남는다. 주로 기판의 바닥면에 잔존 감광재가 얇게 남는 경우가 흔히 있다.
감광층의 두께가 수 마이크로미터 이하로 얇다면, 잔존 감광층이 생기지 않도록 노광 및 현상을 할 수가 있다. 그러나 감광층의 두께가 두껍다면, 잔존 감광층이 없도록 현상을 한다는 것은 실패할 확률이 너무나 높다. 만약 금형의 크기를 대형으로 제작하고자 할 경우, 전체 면적에서 적어도 한두 곳에는 잔존 감광층이 남더라도 이러한 현상은 실패로 결론이 난다.
본 발명에서는 주로 수십 마이크로미터의 두께의 감광재를 사용하여 3차원 형상의 금형을 제작한다. 게다가 제작하고자 하는 금형의 크기를 대형으로 만드는 경우가 많다.
정밀금형을 제작하는 경우, 공간부의 폭이 매우 좁고 감광층의 두께가 두꺼우므로 아무리 미세현상을 한다고 하더라도, 일반적인 현상기술로는 잔존 감광재를 완전히 제거하는 것은 불가능한 것이 현실이다. 따라서 잔존 감광재를 완전히 제거한다는 전제하에서 금형을 제작한다면 실패할 확률이 너무나 높다.
이러한 이유로, 본 발명에서는 잔존 감광재가 존재를 한다는 것을 전제로 ㅎ한다. 잔존 감광재가 있음에도 불구하고 우수한 금형을 제작하는 기술을 개시한다.
현상공정을 마치면, 기판 위에는 노광부에 의하여 돌출부가 형성된다. 그리고 돌출부와 돌출부 사이에는 공간부가 형성된다. 상기 일부 공간부에는 잔존 감광재가 남아 있다.
이러한 현실 속에서, 돌출부의 상부표면과 공간부와 잔존 감광재에 도전성 금속으로 스파터링 공정(47)을 행한다. 상기 스파터링 공정을 통하여 돌출부의 상부표면과 공간부와 잔존 감광재는 도전성이 부여된다.
스파터링을 마친 기판에 다시 이형층을 형성한다.
상기 통전이 가능한 스파터링층에 전기를 통하게 하고 전주가공을 실행하여 전주가공물을 성장시킨다.
얻어진 전주가공물(48)을 탈형한다.
탈형된 전주가공물을 1형태 금형이라 정의한다. 1형태 금형은 도전성 기판에 다수의 돌출부가 형성된 형상이다. 돌출부(49)와 돌출부 사이에는 공간부(50)가 형성된다.
상기 돌출부 상부표면의 높이는 잔존 감광재의 영향으로 다를 수가 있다. 잔존 감광재가 영향을 미치지 아니한 부분은 공간부의 밑바닥면이다. 상기 공간부의 밑바닥면은 깨끗한 평면이며, 이는 감광재의 표면조도를 그대로 보존하고 있다.
이같이 제작된 1형태 금형은 잔존 감광재가 존재한다 하더라도 완전한 금형으로 제작할 수가 있는 획기적 공법이다. 잔존 감광재는 돌출부의 높이에 미세한 변화를 주며, 잔존 감광재의 영향으로 돌출부 상부표면은 거칠어 질 수가 있다.
본 발명에서는 최초에 감광층을 도포한 기판이 비록 도전성 기판이라 할지라도 상기 기판에 전기를 통전시켜 바로 전주가공을 하지 않는다. 그 대신 도전성 금속으로 스파터링 층을 형성하고, 이층층을 만든 다음, 상기 스파터링 층에 통전을 시키어 전주가공을 실시한다.
스파터링 하지 않고 도전성 기판에 바로 전기를 통전시키어 전주가공을 실시하면, 잔존 감광재가 있는 부분에서 불량이 생긴다. 그러나 상기 잔존 감광재에 도전성 금속을 스파터링을 한 다음, 상기 스파터링 된 부분에 전기를 통전시키어 전주가공을 실행하면, 잔존 감광재가 있더라도 흠 없이 전주가공이 이루어진다.
1형태 금형(51)에는 돌출부(49)와 공간부(50)가 형성된다.
잔존 감광재의 영향으로 인하여 돌출부들의 높이는 미세한 차이가 난다.
돌출부의 상부표면은 잔존 광감재의 영향으로 깨끗하지 못한 면을 형성한다. 그러나 공간부의 밑바닥은 감광재의 표면조도를 가지고 있어서 매끈하며 깨끗하다.
공간부의 밑바닥의 높이는 균일하다. 공간부의 밑바닥은 감광재의 표면조도를 그대로 갖고 있으며, 높이가 모두 균일하다. 본 발명에서는 감광재의 표면조도와 높이를 보존하고 있는 부분을 보존면이라 정의한다.
1형태 금형은 돌출부(49)와 공간부(50)로 구성되며, 공간부의 밑바닥은 보존면으로 되는 것이 특징이다. 1형태 금형은 잔존 노광재가 있다 하더라도, 공간부이 밑다닥은 보존면으로 형성된 휼륭한 금형이다.
그러나 만약 잔존 감광재가 전혀 남지 않는 이상적인 현상공정이 가능하다면, 1형태 금형의 제작방법은 더욱 단순하게 될 수가 있다. 그러나 이것은 희망에 불가하다. 그러나 이론적으로 잔존 감광재를 남기지 않는 노광이 가능한 것을 전제로 하면, 기판은 도전성 기판으로 사용한다.
노광, 현상을 거친 후, 스파터링을 하지 않고 이형층을 형성한다. 그리고 바로 도전성 기판에 통전 시키어 전주가공을 시행한다. 얻어진 전주가공물을 탈형하면 1형태 금형과 동일한 금형을 얻을 수가 있다. 그러나 이때, 잔존 감광재가 조금이라도 남아 있게 되면, 그 부분은 도금불량이 야기되어 1형태 금형이 실패하게 된다. 기판의 일부에 조금이라도 잔존 감광재가 남으면 도금불량이 야기되어 그 부분에는 전주가공물이 형성되지 않거나 흠이 생기게 된다. 따라서, 잘 만들어진다 하더라도 개선할 수 없는 흠이 있는 실패한 금형이 된다.
2형태 금형을 제작하기 위하여, 상기 1형태 금형에 이형층을 형성한다. 전주가공을 실행하여 새로운 전주가공물(52)을 형성한다. 새로운 전주가공물을 1형태 금형에서 탈형하면, 2형태 금형이 된다.
2형태 금형은 도전체 기판에 돌출부와 공간부로 형성된 것과 같다. 2형태 금형의 돌출부의 상부표면은 보존면으로 구성된다. 즉 2형태 금형의 돌출부의 상부표면은 매끈하며 모두 높이가 동일하다. 상기 2형태 금형의 공간부에 비도전성 물질을 충진하여 정체영역을 만들면 수직성장을 가능케 하는 전주금형이 된다.
본 발명의 금형에서 돌출부의 테이퍼 각도가 없거나 각도가 너무 약하면, 전주가공물의 탈형이 어렵다. 돌출부에 테이퍼를 형성하는 것이 어려울 경우에는 탈형을 위하여 탄력성 몰드를 제시한다.
탄력성 몰드는 1형태 금형의 제작공정에서, 스파터링 공정을 실행하기 이전 단계에서, 3차원 형상이 만들어진 기판에 이형층을 형성힌디. 그리고 스파터링 공정을 행하지 않고 대신 실리콘과 같은 탄력성이 있는 유동성 소재를 붓고 성형물을 제작한다.
고온 고압하에서 실리콘을 성형하면, 질기고 내구성이 있는 탄력성 성형물이 제작된다. 이후에 탄력성 성형물을 탈형한다. 테이퍼가 없다 하더라도 성형물이 탄력성을 갖고 있으므로 탈형은 용이하게 진행된다. 본 발명에서는 이것을 1형태 탄력성 몰드라 정의한다. 1형태 탄력성 몰드는 1형태 금형과 동일한 형상을 갖는다.
2형태 금형을 제작하기 위하여, 1형태 탄력성 몰드에 도전성 금속을 스파터링을 하고 그 위에 이형층을 형성한다. 스파터링층에 통전하여 전주가공을 실행한다. 전주가공물이 완성되면 탄력성 몰드로부터 전주가공물을 탈형한다. 실리콘 몰드는 탄력성이 있으므로 전주가공물의 탈형이 용이하다. 탈형된 전주가공물은 2형태 금형이 된다. 상기 전주가공물은 돌출부와 공간부를 갖는다. 돌출부의 상부표면은 보존면으로 형성된다. 상기 2형태 금형의 공간부에 비도전성 물질을 충진하여 정체영역을 만들면 수직성장을 가능케 하는 전주금형이 된다.
2형태 금형을 사용하여 수직성장 전주금형을 만든다.
1형태 금형(또는 1형태 탄력성 몰드)을 사용하면, 플렉시블 회로판을 제작할 수 있다. 이를 위하여 먼저 1형태 탄력성 몰드 또는 1형태 금형에 이형층을 형성한다. 상기 이형층의 위로 액상의 수지를 주입한다. 그리고 상기 액상수지 위에 평판 필름 또는 롤 상의 필름을 위치시킨다.
액상의 수지는 UV수지, 에폭시 수지, 폴리이미드 수지 등을 들 수가 있다.
액상수지는 성형 건조되면서 필름과 접합된다. 액상수지가 성형 경화되고 필름 접착된 것을 1형태 탄력성 몰드 또는 1형태 금형으로부터 탈형한다.
탈형된 프렉시블 회로기판은 돌출부와 오목부가 형성된 회로기판이 된다. 상기 돌출부의 상부표면은 매끈하며 높이가 동일한 보존면이 된다. 이러한 회로기판의 오목부에 실버페이스트 등의 도전성 물질을 주입하여 경화시키면 회로가 형성된 플렉시블 회로기판이 된다. 액상수지는 에폭시 수지, 폴리이미드 수지, UV수지 등의 다양한 형태의 액상수지가 사용된다.
본 발명에서 상기에서 설명한 방법으로 다양한 형태의 탄력성 몰드를 제작할 수가 있다.
본 발명에서는 금형 또는 탄력성 몰드의 종류에 따라, 보존면이 돌출부의 상부표면에 있거나 공간부의 하부면에 있다. 이들 보존면은 전주가공물의 표면이 매끈하고 같은 높이를 가지도록 하는데 중요한 역할을 한다.
본 발명의 금형 또는 탄력성 몰드를 사용하여 제품을 설계할 경우, 항상 최종 제품의 표면이 매끈하며 균일하도록 설계를 하여야 한다.
이들 탄력성 몰드의 사용처는 다양하다. 먼저 탄력성 몰드로부터 전주가공물을 제작하고, 상기 전주가공물을 탈형시켜 제품으로 사용을 할 수가 있다. 또한 탄력성 몰드를 통하여 회로가 성형된 수지 필름기판을 제작할 수가 있다.
본 발명에서는 테이퍼의 형성이 어려운 경우, 제품의 탈형을 고려하여 탄력성 몰드를 제작한다. 본 발명에서는 금형, 전주금형, 탄력성 몰드를 사용하여 최종제품을 만든다. 최종제품에 형성된 돌출부의 상부면은 보존면이 되도록 하여, 제품의 표면이 매끈하며, 돌출부의 높이가 같도록 한다.
도 19는 본 발명의 3형태와 4형태의 금형에 대한 설명도이다.
이는 1형태 또는 2형태의 금형을 사용하여 제작한다. 본 발명의 3형태 금형, 4형태 금형은 1형태 금형 또는 2형태 금형의 피치와 동일한 피치를 가진다. 단, 돌출부와 공간부의 크기는 1형태 금형 또는 2형태 금형과 다르게 할 수가 있다.
도 19는 본 발명의 1형태 금형에서 3형태 금형과 4형태 금형을 만드는 공정을 설명한다. 돌출부(54)와 공간부(55)로 구성된 1형태 금형(58)에 추가적인 전주가공을 실시한다. 추가적인 전주가공을 실행하면, 1형태 금형의 돌출부의 상부표면 및 돌출부의 양 측면부에 거의 균일한 두께의 도금층이 형성된다. 동시에 공간부의 저부에도 거의 동일한 두께로 도금층이 형성된다. 이러한 도금층은 돌출부의 크기를 크게 하며, 동시에 공간부의 크기를 줄어들게 한다. 그렇지만 피치는 불변이다.
1형태 금형에 새로운 도금층(59)이 추가된다. 새로운 도금층으로 인하여 돌출부의 높이와 폭은 증가된다. 공간부의 폭은 줄어든다. 그러나 피치는 동일하게 보존된다. 이러한 방법을 통하여 돌출부의 크기와 공간부의 크기를 정밀하게 제어할 수가 있다. 이 방법을 통하여, 돌출부와 공간부의 크기를 원하는 크기로 만들어 새로운 금형을 제작한다.
1형태 금형에 추가적인 전주가공을 실행하면, 피치는 유지하되 돌출부와 공간부의 크기가 조정된 3형태 금형(60)을 얻는다. 3형태 금형은 1형태 금형과 같이 오목부의 하부면이 보존면이 된다.
3형태 금형(62)에 다시 이형층을 형성하고, 이형층 위에 전주가공을 실행하여 전주가공물(61)을 만들고, 이를 탈형하면 4형태 금형(66)을 얻는다. 4형태 금형은 돌출부(63)의 상부표면이 보존면이 된다.
1형태 금형에서 3형태 및 4형태 금형의 금형이 제작된 것과 동일한 과정으로, 2형태 금형에서 5형태 및 6형태 금형이 제작된다.
본 발명에 의하여 제작된 금형은, 그 자체로서 금형의 역할을 하거나 제품으로 사용될 수가 있다. 본 발명의 각 형태의 금형을 사용하여 본 발명에서 사용하는 전주금형을 제작한다. 본 발명에서 전주금형이란 전주가공을 실행할 수가 있도록 하는 금형이라는 의미이다.
도 20은 본 발명의 수직상승 전주금형의 실시예이다. 이 실시예는 앞에서 설명한 1형태 금형, 2형태 금형, 3형태 금형 등을 사용하지 않고 전혀 다른 방법으로 전주금형을 제작한 것이다. 본 실시예는 도전성 기판을 사용한다.
도전성 기판(68)위에 감광층을 형성한다. 감광층은 얇는 두께로 하는 것이 바람직하다. 패턴을 통하여 상기 감광층에 노광 공정을 거쳐서 필요한 형태와 크기의 노광부(67)를 구성한다. 현상공정을 거쳐서 비노광부를 제거한다. 비노광부를 완전히 제거하도록 하기 위하여 두께가 얇은 감광층이 바람직하다. 비노광부가 제거된 곳을 공간부라 칭한다. 상기 도전성 기판의 공간부와 노광부에 이형층을 형성한다.
도금욕조에서 도전성 기판에 통전을 하여, 이형층 위에 전주가공물이 생성되게 한다. 도금층은 처음에는 상기 공간부에만 형성된다. 공간부에서 감광층의 높이 이상으로 도금층이 성장되면, 도금층은 노광부 위에 점차 확산하여 진행된다.
도금층은 거의 균일한 속도로 노광부 상부를 확산하여 진행된다.
도금이 진행될수록 도금층의 두께는 두꺼워 진다.
각각의 도금층이 수평방향 및 수직방향으로 성장을 하면서 노광부의 상부에서 확산 진행된다. 도금층과 이웃하는 도금층 사이의 간격이 점차 줄어든다. 도금층과 도금층의 간격이 원하는 크기가 되었을 때 전주가공을 중지한다. 이것을 기초도금층(69)이라 칭한다. 상기 기초도금충에서 도금층과 이웃하는 도금층 사이의 간격은 나중에 완성될 수직성장 전주금형의 돌출부의 크기가 된다.
상기 기초도금층은, 도전성 기판의 공간부로부터 성장하기 시작한 것이다. 공간부에서 도금층이 감광층의 높이 이상으로 성장하게 되면, 도금층은 노광부의 상부에서 확산 진행한다. 이때 도금층은 수평방향과 수직방향으로 동시 성장을 한다.
전주가공은 균일한 속도로 진행되어 마침내 기초도금층(69)까지 성장한다.
원하는 형상과 크기의 기초도금층(69)이 형성되면 전주가공을 중지한다.
상기 기초도금층은 무수한 도금층의 집합체이다. 도금층과 도금층은 일정한 간격을 두고 구성된다. 상기 도금층들 사이의 간격은 새로운 공간부가 된다.
상기 새로운 공간부의 밑바닥면은 노광부의 표면이다. 상기 다수의 도금층들의 도금층이 두꺼워 지며 커질수록, 새로운 공간부는 자동으로 줄어든다.
상기 기초도금층(69)과 새로운 공간부에 이형층을 형성하고, 재차 전주가공하여 전주가공물(70)을 형성한다. 상기 전주가공물을 탈형한다.
상기 탈형된 전주가공물(72)에는 돌출부와 공간부(71)가 형성된다. 상기 전주가공물에 정체영역을 형성하기 위하여, 상기 공간부에 실리콘과 같은 탄성을 가진 비도전성 물질을 충진한다. 상기 정체영역이 형성된 전주가공물은 수직성장 전주금형이 된다. 상기 비도전성 물질의 형상을 포물선 형상으로 만들어 정체영역을 형성한다. 통상 비도전성 물질의 충진된 형상은 포물선(73)이 된다. 상기 수직성장 전주금형은 돌출부(74)와 포물선으로 충진된 비도전성 영역으로 구성된다. 상기 돌출부의 상부표면에 비도전성 물질이 덮히지 않도록 주의한다. 이것은 본 발명의 수직성장 전주금형(75)의 또다른 실시예이다.
도 21, 도 22, 도 23은 도 20의 수직성장 전주금형을 구성하는 패턴형상에 대한 실시예이다. 수직성장 전주금형은 다양한 패턴으로 구성을 할 수가 있다. 패턴은 원형, 사각형, 육각형 등의 규칙적인 패턴과 불규칙적인 패턴으로 구성을 할 수가 있다. 패턴의 형상에 따라, 다양한 회로, 메쉬, 기타 다양한 형태의 3차원 가공물을 얻을 수가 있다.
도 21은 노광된 감광층(76)의 중간 중간에 원형의 공간부(77)가 형성된 것을 설명한다. 상기 감광층은 도전성 기판에 균일하게 도포된 것이다.
상기 도전성 기판에 이형층을 형성하고, 상기 도전성 기판에 통전하여 전주가공을 실시한다. 도전성 기판에 전기를 가하여 도금욕조에서 도금을 실행하면, 상기 원형의 공간부(77)에 도금층이 생기기 시작한다. 상기 원형의 공간부에 도금이 완료된 뒤에는 노광부(76)에도 도금층이 점차 확산 진행된다. 더욱 도금층이 성장하면 도 21의 오른쪽 도면과 같이, 도전성 기판의 노광부는 작은 공간부만 남기고 나머지는 모두 원형 도금층으로 덮이게 된다. 전주도금은 상부방향과 측면방향으로 동시에 성장된다. 제작하고자 하는 형상과 크기가 도달되면 전주가공을 중지한다.
상기 원형 도금층들 사이의 간격은 새로운 공간부가 된다. 상기 새로운 공간부의 밑바닥면은 노광부의 표면이다. 상기 다수의 도금층들의 도금층이 두꺼워 지며 커질수록, 새로운 공간부는 자동으로 줄어든다.
상기 기초도금층과 새로운 공간부에 이형층을 형성하고, 재차 전주가공하여 전주가공물을 형성한다. 상기 전주가공물을 탈형한다. 상기 탈형된 전주가공물에는 돌출부와 공간부가 형성된다. 상기 전주가공물에 정체영역을 형성하기 위하여, 상기 공간부에 실리콘과 같은 탄성을 가진 비도전성 물질을 충진한다. 상기 정체영역이 형성된 전주가공물은 수직성장 전주금형이 된다. 상기 비도전성 물질의 형상을 포물선 형상으로 만들어 정체영역을 형성한다. 통상 비도전성 물질의 충진된 형상은 포물선이 된다. 상기 수직성장 전주금형은 돌출부와 포물선으로 충진된 비도전성 영역으로 구성된다. 상기 돌출부의 상부표면에 비도전성 물질이 덮히지 않도록 주의한다. 이것은 본 발명의 수직성장 전주금형의 또다른 실시예이다.
도 22는 노광된 감광층(81)의 중간 중간에 사각형 공간부(80)가 형성된 것을 설명한다. 상기 감광층은 도전성 기판에 균일하게 도포된 것이다.
도 23는 노광된 감광층(85)의 중간 중간에 육각형 공간부(84)가 형성된 것을 설명한다. 상기 감광층은 도전성 기판에 균일하게 도포된 것이다.
도 22와 도 23도 역시 도 21과 동일한 공정을 거쳐서 수직성장 전주금형의 또다른 실시예를 보인 것이다.
도 24는 포물선형의 비도전성 물질을 충진한 전주금형에 대한 설명도이다. 이 것은 돌출부와 공간부를 가는 금형에 비도전성 물질을 충진하여 수직성장이 가능한 전주금형을 제작하는 것을 설명하는 설명도이다.
금형의 돌출부(88)와 돌출부 사이에 형성된 공간부에 비도전성 물질(89)을 충진한다. 탄력성을 갖는 비도전성 물질이 이상적이다. 탄력성을 갖는 비도전성 물질을 사용하면 금형의 내구성이 증가된다. 탄력성이 없는 비도전성 물질로 충진된 금형의 경우에는 성장하는 도금층 형성되면, 상기 도그층에 의하여 비도전성 물질이 쉽게 파괴된다. 이를 방지하기 위하여 탄력성이 있는 비도전성 물질로 충진을 한다. 이러한 탄력성 비도전 물질의 가장 대표적인 것은 실리콘 소재이다.
본 발명에서는 실리콘을 기본 소재로 하며 다양한 첨가물을 첨가하여 기능을 개선시킨다.
본 발명의 수직성장 전주금형에서 가장 중요한 핵심기술은 탄력성 비도전성 물질을 공간부에 충진하되, 돌출부의 상부표면의 모서리에서 충진물질이 가파른 경사도를 갖도록 충진되어야 하며, 포물선의 깊이가 깊어야 한다는 것이다.
본 발명의 수직성장 전주금형에서는 전주 도금층이 수직성장을 하도록 유도하는 것이 핵심기술의 하나이다. 이를 위하여서는 반드시 충진물질이 급격한 경사도를 갖도록 기울기를 형성하도록 한다. 이를 위한 가장 대표적인 형상이 포물선 형상이 된다.
포물선 형태의 비도전성 물질을 충진한 수직성장 전주금형에 전주도금을 실행하면, 돌출부 위에 수직 도금부(90)가 성장된다. 엄밀하게 말하면 완전한 수직으로 성장하는 것은 아니지만, 다른 도금으로 얻을 수가 없는 수직성장을 하게 된다. 이러한 수직 도금부를 탈형하여 제품으로 사용한다.
제품의 제작방법으로, 수직성장 전주금형에서 탈형되지 않은 상태에서, 수직성장된 도금부(92)를 접착제를 사용하여 롤상 필름 또는 시트상 필름(91)에 접착한다. 이후 필름에 접찹된 도금부를 탈형하여 필름(94)에 부착된 회로(93)로 제품을 만든다.
추가적으로 제품의 안정성을 확보하기 위하여, 회로와 회로 사이에 비도전성 물질(95)을 충진하여 회로를 더욱 안정화시킬 수도 있다.
도 25는 본 발명의 다양한 금형을 사용하여 플렉시블 회로기판을 만드는 공정을 설명하는 설명도이다.
본 발명의 다양한 금형(98) 중에서 보전면이 공간부의 밑바닥에 있는 금형이 사용된다. 상기 금형과 필름기판(96) 사이에 액상의 에폭시 수지, 유브이 접착제, 폴리 이미드 등의 액상수지(97)를 주입한다.
상기 액상수지를 성형 및 경화시킨다. 상기 금형으로부터 성형된 수지에 의하여 음각(101)이 성형된 필름(102)을 탈형한다. 필름기판의 소재로는 폴리이미드 필름이 가장 대표적인 실시예이다.
음각은 돌출부와 돌출부 사이에서 형성된다. 돌출부의 상부(99)가 보존면이 되도록 하는 것이 바람직하다. 돌출부의 상부표면의 높이를 균일하게 하고, 제품 표면이 깨끗하도로 하기 위함이다.
공간부가 형성된 상기 필름의 공간부에, 실버 페이스트 등의 유동성 도전체(103)를 충진하고, 유동성 도전체를 경화시키어 회로를 구성한다.
실버 페이스트를 충진하기 이전에 돌출부의 상부표면에는 불소 수지와 같은 이형층을 형성하는 것이 바람직하다. 이것은 돌출부의 상부표면에는 실버 페이스트가 묻지 않고 공간부에만 실버 페이스트가 충진되도록 하기 위함이다. 불소 수지로 이형층을 형성하면 설혹 돌출부의 상부표면에 실버 페이스트가 묻어 있다하더라도 깨끗하게 정리를 할 수가 있는 장점이 생긴다.
도 26는 본 발명의 수직성장 전주금형을 사용하여 메쉬를 제작하는 실시예의 설명도이다.
돌출부(105)와 공간부(106)을 갖는 전주금형(104)의 공간부에 비도전성 물질을 충진한다. 공간부에 충진된 비도전성 물질은 포물선 형상의 실리콘(107)을 구성하여 정체영역을 형성한다.
정체영역이 형성된 상기 수직성장 전주금형에 이형층을 형성한다. 돌출부에 상부표면에 전주가공을 실행한다. 상기 돌출부 상부표면에는 수직성장의 전주가공물(108)이 구성된다.
상기 전주가공물을 탈형하여 메쉬(109)를 제작한다.
이러한 메쉬를 태양광을 전기로 바꾸는 집광판의 회로를 그리는 메쉬로 사용한다. 상기 메쉬를 통하여 실버 페이스트를 인쇄하면 많은 장점이 있다.
수직성장을 이용하였으므로 개구도가 크며, 힘살의 선 폭이 작게 될 수가 있다. 또한 제품의 두께가 두꺼워 내구성이 있으며, 테이퍼가 형성되어 실버 페이스트의 토출을 용이하게 하는 장점이 있다.
본 발명에서 소개한 다양한 형태의 금형들을 활용하여 플렉시블 회로기판을 제작할 수가 있다. 플렉시블 회로기판을 만드는 실시예를 설명한다. 본 실시예에서는 다음 3가지 형태의 기판 또는 금형 또는 몰드를 사용한다.
첫째, 기판에 감광층을 형성하고, 상기 감광층에 패턴을 통하여 노광부를 구성하며, 현상공정을 통하여 기판에는 돌출부와 공간부가 형성된 기판. 둘째, 돌출부와 공간부가 형성된 금형. 세째, 돌출부와 공간부가 형성된 탄력성 몰드.
상기 세 가지 형태 중의 하나를 사용한다. 공간부의 밑 바닥면에 보존부가 형성된 것이 바람직하다. 돌출부와 공간부의 상부에 이형층을 형성하고, 상기 이형층이 건조된 후에 액상수지를 도포한다. 상기 액상수지가 경화되기 이전에 액상수지의 상부에 폴리이미드 필름기판을 위치시킨다. 상기 액상수지는 높이가 균일하게 하며, 성형과 동시에 경화되면서 폴리이미드 필름기판에 접착된다.
상기 기판 또는 금형 또는 탄력성 몰드로부터 성형된 수지가 접합된 필름기판을 탈형시키고, 상기 탈형된 필름기판의 돌출부의 상부표면에 이형층을 형성한다. 그리고 필름기판의 공간부에는 실버페이스트를 충진하여 플렉시블 회로기판을 제작한다. 액상수지는 에폭시 수지 또는 UV수지 또는 폴리이미드 수지를 사용할 수가 있다. 돌출부의 상부표면의 높이는 균일한 높이가 되며, 깨끗하고 정리된 플렉시블 회로기판을 제작할 수가 있다.
수직으로 성장시킨 전주가공물을 회로로 사용하여 플렉시블 회로기판을 제작하는 2 실시예를 설명한다.
도전체 금형에 돌출부와 공간부를 구성하고, 상기 공간부에는 비도전성 물질을 충진 또는 코팅 또는 도포하여 정체영역을 형성시키어 수직성장 전주금형을 제작한다.
상기 수직성장 전주금형에 이형층을 형성하고 전주가공을 실행하여 수직성장 전주가공물을 제작한다.
상기 전주가공물의 위쪽 면을 접착재를 통하여 롤 상 필름기판 또는 시트 상의 필름기판과 접합시킨다.
상기 전주금형에서 수직성장 전주가공물을 접합시킨 필름기판을 탈형시켜 플렉시블 회로기판을 제작한다.
회로의 안정성을 보강하기 위하여 플렉시블 회로기판의 공간부에 액상수지를 충진하고, 상기 액상수지를 경화시킬 수도 있다.
이곳에서, 금형을 만드는 공정 중에서, 감광재에 대한 현상공정이 완전하지 못하여 잔존 감광재가 남는다 하더라도 양품의 금형을 만드는 방법에 대하여 더욱 상세히 설명을 하겠다.
기판에 감광층을 형성하고; 상기 감광층에 패턴을 통하여 상부폭이 하부폭보다 좁은 테이퍼 형상의 노광부를 구성한다. 현상공정을 통하여 비노광부를 제거하여 기판에는 공간부가 형성된다. 상기 공간부에는 제거되지 아니한 잔존 감광재가 남아 있을 수가 있다.
일반적으로 현상공정에서 조금이라도 잔존 감광재가 남아 있다면 이는 실패한 금형이 제작이 된다. 이것은 두께가 두꺼운 감광층을 사용하는 경우 극복하기 어려운 기술적 난제이다. 본 발명에서는 이러한 문제점을 해결하기 위하여, 돌출부, 공간부, 잔존 감광재에 도전성 금속을 스파터링을 하는 기술을 개시한다.
상기 스파터링 층에 이형층을 형성한 후, 전주가공을 실행하여 전주가공물을 제작한다. 상기 전주가공물을 탈형하여 1형태 금형을 제작한다.
상기의 1형태 금형을 이용하여 플렉시블 회로기판을 제작하는 공정을 추가로 설명한다. 상기 1형태 금형에 이형층을 형성하고, 이형층 상부에 액상수지를 충진하며, 상기 액상수지의 상부에는 롤 상 또는 시트 상 필름기판을 얹는다. 액상주지는 에폭시 수지 또는 UV수지 또는 폴리이미드 수지로 할 수가 있다.
액상수지가 경화된 후에 상기 필름기판을 1형태 금형으로부터 탈형시켜 돌출부와 공간부가 형성된 필름기판을 만든다.
상기 회로기판의 돌출부의 상부표면에서는 이형층을 형성하고, 공간부에는 실버페이스트를 충진하여 플렉시블 회로기판을 제작한다.
이렇게 제작된 플렉시블 회로기판의 돌출부의 상부는 보존면이 되어, 평탄하며 깨끗한 상부표면을 얻을 수가 있다. 이는 잔존 감광층의 영향을 배제시킨 독창적인 기술이라 하겠다.
본 발명에서는 플렉시블 회로기판을 탄력성 몰드를 사용하여 제작 할 수도 있다. 기판에 감광층을 형성하고, 상기 감광층에 패턴을 통하여 노광부를 구성한다. 현상공정을 통하여 기판에 돌출부와 공간부를 형성한다. 상기 돌출부와 상기 공간부에 이형층을 형성하고, 상기 이형층의 상부에 탄력성 액상소재를 두껍게 충진하여 탄성 성형물을 제작한다. 상기 탄성 성형물이 경화된 후에 탈형하여 탄력성 몰드를 제작한다.
상기 탄력성 몰드에 이형층을 형성하고, 상기 이형층 상부에 액상수지를 도포하고, 상기 액상수지 위에 롤 상 또는 시트 상 필름기판을 위치시킨다.
액상수지의 높이를 균일하게 한다. 액상수지는 경화되면서 성형되고, 동시에 상기 필름기판에 접합된다. 필름기판을 상기 탄력성 몰드로부터 탈형시킨다. 필름기판의 공간부에 실버페이스트를 충진한다.
액상주지는 에폭시 수지 또는 UV수지 또는 폴리이미드 수지로 하며, 필름기판에 형성된 돌출부의 상부표면에 이형층을 형성한 뒤에 공간부에 실버페이스트를 충진한다.
본 발명에서는 감광재를 사용하여 노광을 시킬 때, 노광부의 상부폭이 하부폭보다 좁은 테이퍼 형상의 노광부를 구성한다. 이것은 추후의 공정에서 탈형을 용이하게 하는 역할을 한다.
도전성 기판에 감광층을 형성하고, 상기 감광층에 패턴을 통하여 노광을 할 때, 노광부의 상부폭이 하부폭보다 좁은 테이퍼 형상으로 하여 탈형이 용이하도록 할 수가 있다. 본 발명에서 탄력성 몰드가 사용되는 경우는 주로 돌출부가 테이프 형상으로 제작이 어려울 경우에 사용한다. 만약 돌출부가 테이퍼 형상으로 제작이 된다면, 굳이 탄력성 소재를 사용하지 않고 일반 수지를 사용한 수지몰드를 제작한다.
수지몰드의 돌출부는 테이퍼 형상으로 형성이 되어 있으므로 탈형이 가능하다. 따라서 이러한 수지몰드는 다양한 용도로 사용이 될 수가 있다. 수지몰드에 이형층을 형성하여 제품을 제작할 수도 있다.
또한 수지몰드에 도전성 금속을 스파트링 한 후 이형층을 형성하여 전주가공물을 제작할 수도 있다.
본 발명의 또다른 실시예로, 노광 현상 공정이 완전하여 잔존 감광층이 남지 않을 경우에는 도전성 기판을 사용하여 바로 전주가공을 실시하여 금형을 만드는 것을 들 수가 있다. 상기 금형을 사용하여 플렉시블 회로기판을 만들 수가 있다.
보통 잔존 감광재가 남지 않게 하려면 감광재를 두께가 20마이크로미터 이하를 사용하며, 제품의 크기가 작은 경우이다.
본 발명은, 본 발명에 속하는 기술 분야에서 통상의 지식을 가진 자가, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서, 여러 가지 치환, 변형이 가능하므로, 본 발명은 전술한 실시예 및 첨부된 도면에만 한정되는 것은 아니다.

Claims (57)

  1. 기판에 감광층을 형성하는 단계;
    상기 감광층에 노광 및 현상공정을 통하여 돌출부와 공간부를 형성하되, 공간부의 하부폭이 공간부의 상부폭에 비하여 넓은 테이퍼 형상으로 현상하는 단계;
    상기 돌출부와 공간부에 스파터링을 하는 단계;
    상기 스파트링부에 전주가공을 통하여 전주가공물을 형성하는 단계;
    상기 전주가공물로부터 기판과 감광재를 제거하여 1형태 금형을 형성하는 것을 특징으로 하는 1형태 금형의 가공방법.
  2. 제 1항에 있어서, 일부의 공간부 하부에는 잔존 감광재가 기판표면에 남아 있는 것을 특징으로 하는 1형태 금형의 가공방법.
  3. 제 1항에 있어서, 1형태 금형에 이형층을 형성하고 전주가공을 행하여 전주가공물을 형성하며, 상기 전주가공물을 1형태 금형으로부터 분리한 것을 특징으로 하는 2형태 금형의 가공방법.
  4. 제 1항 또는 제 3항에 있어서, 1형태 금형 또는 2형태 금형에 추가적인 전주가공을 실행하여 금형의 피치는 유지하면서 돌출부와 공간부의 치수를 재조정 하는 것을 특징으로 하는 금형의 가공방법.
  5. 제 4항에 있어서, 돌출부와 공간부의 치수를 재조정한 금형에 이형층을 형성하고 전주가공을 행하여 전주가공물을 형성하며, 상기 전주가공물을 금형으로부터 분리 하여 새로운 금형으로 사용하는 것을 특징으로 하는 금형의 가공방법.
  6. 제 1항에서 제 5항의 어느 한 항으로 제작된 금형.
  7. 제 6항의 금형을 사용하여 제작한 메쉬 또는 필터 또는 열선 또는 3차원 회로, 3차원 초정밀 전주가공물.
  8. 수직성장을 유도하는 전주금형의 제조방법에 있어서,
    도전체 금형에는 돌출부와 공간부를 구성하고;
    상기 공간부에는 비도전성 물질이 충진되거나, 코팅되거나, 도포되어 정체영역을 형성하는 것을 특징으로 하는 수직성장 전주금형의 제작방법.
  9. 제 8항에 있어서, 도전체 금형은 2형태 또는 4형태 금형인 것을 특징으로 하는 수직성장 전주금형의 제작방법.
  10. 제 8항에 있어서, 도전체 금형은, 도전성 기판에 감광층을 형성하며;
    상기 감광층에 노광 및 현상공정을 통하여 돌출부와 공간부의 3차원 형상을 갖는 도전성 기판을 구성하며; 상기 도전성 기판에 전주가공을 통하여 전주가공물을 형성하며; 상기 전주가공물을 상지 도전성 기판에서 탈형하여 도전체 금형을 제작하는 것을 특징으로 하는 수직성장 전주금형의 제작방법.
  11. 제 8항에 있어서, 도전체 금형에 추가적인 전주가공을 실행하여, 피치는 동일하나 돌출부와 공간부의 크기를 재조정한 전주가공물을 새로운 도전체 금형으로 사용하는 것을 특징으로 하는 수직성장 전주금형의 제작방법.
  12. 제 8항에 있어서, 도전체 금형은, 탄력성 몰드에 도전성 금속을 스파터링하고, 상기 스파터링 면에 이형층을 형성하고, 상기 스파터링 면에 전주가공을 실행하여 얻은 전주가공물을 탈형하여 제작한 것을 특징으로 하는 수직성장 전주금형의 제작방법.
  13. 제 8항에 있어서, 비도전성 물질은 탄성체이며, 상기 탄성체는 공간부에서 포물선 형상으로 제작되는 것을 특징으로 하는 수직성장 전주금형의 제작방법.
  14. 제 8항에 있어서, 수직 성장한 전주가공물은 하부방향 성장부 또는 최대폭 수평성장부를 갖는 것을 특징으로 하는 수직성장 전주금형의 제작방법.
  15. 제 8항에 있어서, 비도전성 물질은 실리콘인 것을 특징으로 하는 수직성장 전주금형의 제작방법.
  16. 제 8항에 있어서, 상기 돌출부의 상부는 보존면인 것을 특징으로 하는 수직성장 전주금형의 제작방법.
  17. 제 8항에서 제 16항의 어느 한 항으로 제작된 전주금형.
  18. 제 17항의 전주금형에 전주가공을 실행하여 제작한 메쉬 또는 필터 또는 열선 또는 3차원 회로, 3차원 초정밀 전주가공물.
  19. 제 18항에 있어서, 수직 성장한 전주가공물의 하부방향 성장부를 전해연마 또는 에칭공정 또는 기계적 연마공정으로 제거하는 것을 특징으로 하는 전주가공물.
  20. 제 18항에 있어서, 수직 성장한 전주가공물의 최대폭 수평성장부를 전해연마 또는 에칭공정 또는 기계적 연마공정으로 제거하는 것을 특징으로 하는 전주가공물.
  21. 수직으로 성장시킨 전주가공물의 가공방법에 있어서,
    돌출부와 공간부가 형성된 도전체 전주금형을 사용하며, 상기 도전체 전주금형의 공간부는 비도전성 물질로 충진 또는 코팅 또는 도포되어 정체영역을 형성하며;
    상기 전주금형에 전주가공을 실행하여 전주가공물을 성장시키고;
    상기 성장된 전주가공물을 상기 전주금형으로부터 탈형시키어 수직 성장된 전주가공물을 제작하는 것을 특징으로 하는 수직성장 전주가공물의 가공 방법.
  22. 제 21항에 있어서, 비도전성 물질은 탄성체인 것을 특징으로 하는 수직성장 전주가공물의 가공 방법.
  23. 제 21항에 있어서, 비도전성 물질은 실리콘인 것을 특징으로 하는 수직성장 전주가공물의 가공 방법.
  24. 제 21항에 있어서, 수직 성장한 전주가공물이 하부방향 성장부 또는 최대폭 수평성장부를 갖는 것을 특징으로 하는 수직성장 전주가공물의 가공 방법.
  25. 제 24항에 있어서, 하부방향 성장부 또는 최대폭 수평 성장부를 전해 공정 또는 에칭 공정 또는 연마 공정으로 제거하는 것을 특징으로 하는 수직성장 전주가공물의 가공 방법.
  26. 제 21항에서 제 25항 사이의 어느 한 항으로 제작된 수직으로 성장된 전주가공물.
  27. 제 26항의 전주가공물은 원형 또는 사각 또는 육각의 조직으로 구성된 메쉬인 것을 특징으로 하는 전주가공물.
  28. 제 26항의 전주가공물은 원형 또는 사각 또는 육각의 조직으로 구성된 필터인 것을 특징으로 하는 전주가공물.
  29. 잔존 감광재가 있는 남아 있는 문제를 해결하는 탄력성 몰드의 제조방법에 있어서,
    기판에 감광층을 형성하고, 상기 감광층에 패턴을 통하여 노광부를 구성하며, 현상공정을 통하여 기판에 돌출부와 공간부를 형성하며, 상기 공간부에는 제거되지 아니한 잔존 감광재가 남아있으며;
    상기 돌출부와 공간부 및 잔존 감광재에 이형층을 형성하고, 상기 이형층의 상부에 탄력성 유동성 소재를 충진하고 경화시켜 탄성 성형물을 제작하며;
    상기 탄성 성형물을 탈형하여 탄력성 몰드를 제작하는 것을 특징으로 하는 탄력성 몰드의 제작방법.
  30. 제 29항에 있어서, 돌출부가 상부가 좁고, 하부가 넓은 테이퍼 진 형상으로 구성된 것을 특징으로 하는 탄력성 몰드의 제작방법.
  31. 제 29항 또는 제 30항으로 만든 탄력성 몰드.
  32. 탄력성 몰드로부터 도전체 금형을 제조하는 방법에 있어서,
    기판에 감광층을 형성하고; 상기 감광층에 패턴을 통하여 노광부를 구성하며; 현상공정을 통하여 기판에 돌출부와 공간부가 형성되며, 상기 돌출부와 공간부에 이형층을 형성하고, 상기 이형층의 상부에 탄력성 유동성 소재를 충진하여 성형물을 제작하며; 상기 성형물이 경화된 후에 탈형하여 탄력성 몰드를 제작하고, 상기 탄력성 몰드에 도전성 금속을 스파터링하며, 상기 스파터링 면 위에 이형층을 형성하며, 상기 스파터링 층에 전기가 통하게 하여 전주가공을 실행하여 전주가공물을 제작하고, 상기 전주가공물을 탄력성 몰드로부터 탈형하여 탄력성 몰드로 부터 도전체 금형을 제조하는 제조방법.
  33. 제 31항에 있어서, 돌출부는 상부가 좁고, 하부가 넓은 테이퍼 진 형상을 특징으로 하는 탄력성 몰드로 부터 도전체 금형을 제조하는 제조방법.
  34. 제 32항 또는 제 33항의 제조방법으로 만든 도전체 금형.
  35. 플렉시블 회로기판의 제조방법에 있어서,
    감광재를 사용하여 돌출부와 공간부를 형성한 기판, 또는 돌출부와 공간부가 형성된 금형, 또는 돌출부와 공간부가 형성된 탄력성 몰드에서, 돌출부와 공간부 상부에 이형층을 형성하고 액상수지를 도포하며; 상기 액상수지의 상부에는 폴리이미드 필름기판을 위치시키며; 상기 액상수지를 균일한 두께로 경화시키면서 성형과 동시에 폴리이미드 필름기판에 접착케 하며;
    상기 기판 또는 금형 또는 탄력성 몰드로부터 성형 수지가 접합된 필름기판을 탈형시키며;
    상기 탈형된 필름기판의 돌출부의 상부표면에 이형층을 형성하고, 필름기판의 공간부에는 실버페이스트를 충진하는 것을 특징으로 하는 플렉시블 회로기판의 제조방법.
  36. 제 35항에 있어서, 액상수지는 에폭시 수지 또는 UV수지 또는 폴리이미드 수지인 것을 특징으로 하는 플렉시블 회로기판의 제조방법.
  37. 수직으로 성장시킨 전주가공물을 회로로 사용하는 플렉시블 회로기판의 제조 방법에 있어서,
    도전체 금형에 돌출부와 공간부를 구성하고; 상기 공간부에는 비도전성 물질을 충진 또는 코팅 또는 도포하여 정체영역을 형성시키어 수직성장 전주금형을 제작하며;
    상기 수직성장 전주금형에 이형층을 형성하고 전주가공을 실행하여 수직성장 전주가공물을 제작하며;
    접착재를 통하여 롤 상 또는 시트 상의 필름기판을 상기 수직성장 전주가공물의 위쪽 면과 접합시키고;
    상기 전주금형에서 수직성장 전주가공물을 접합시킨 필름기판을 탈형시키는 것을 특징으로 하는 플렉시블 회로기판의 제조방법.
  38. 제 37항에 있어서, 플렉시블 회로기판의 공간부에 액상수지를 충진하고, 상기 액상수지를 경화시키는 것을 특징으로 하는 플렉시블 회로기판의 제조방법.
  39. 플렉시블 회로기판의 제조방법에 있어서,
    기판에 감광층을 형성하고; 상기 감광층에 패턴을 통하여 상부폭이 하부폭보다 좁은 테이퍼 형상의 노광부를 구성하며;
    현상공정을 통하여 기판에는 돌출부와 공간부를 형성하며, 상기 공간부에는 제거되지 아니한 잔존 감광재가 남아 있으며;
    상기 돌출부, 상기 공간부, 상기 잔존 감광재에 도전성 금속을 스파터링을 하며;
    상기 스파터링 층에 이형층을 형성한 후, 전주가공을 실행하여 전주가공물을 제작하고, 상기 전주가공물을 탈형하여 1형태 금형을 제작하며;
    상기 1형태 금형에 이형층을 형성하고, 이형층 상부에 액상수지를 충진하며, 상기 액상수지의 상부에는 롤 상 또는 시트 상 필름기판을 얹으며;
    액상수지가 경화된 후에 상기 필름기판을 1형태 금형으로부터 탈형시켜 돌출부와 공간부가 형성된 플렉시블 회로기판을 제작하며;
    상기 플렉시블 회로기판의 공간부에 실버페이스트를 충진하는 것을 특징으로 하는 플렉시블 회로기판의 제조방법.
  40. 제 39항에 있어서, 액상주지는 에폭시 수지 또는 UV수지 또는 폴리이미드 수지인 것을 특징으로 하는 플렉시블 회로기판의 제조방법.
  41. 제 39항에 있어서, 플렉시블 회로기판에 형성된 돌출부의 상부는 보존면인 것을 특징으로 하는 플렉시블 회로기판의 제조방법.
  42. 제 39항에 있어서, 플렉시블 회로기판에 형성된 돌출부의 상부표면에 이형층을 형성한 뒤, 회로기판의 공간부에 실버페이스트를 충진하는 것을 특징으로 하는 플렉시블 회로기판의 제조방법.
  43. 플렉시블 회로기판의 제조방법에 있어서,
    도전성 기판에 감광층을 형성하고, 상기 감광층에 패턴을 통하여 상부폭이 하부폭보다 좁은 테이퍼 형상의 노광부를 구성하며;
    현상공정을 통하여 도전성 기판에 돌출부와 공간부를 형성하며, 상기 도전성 기판에 이형층을 형성하고 전주가공을 두껍게 실행한 후, 상기 전주가공물을 탈형하여 금형을 제작하며;
    상기 금형에 이형층을 형성하고, 상기 이형층 상부에 액상수지를 충진하며, 상기 액상수지의 상부에는 롤 상 또는 시트 상 필름기판을 얹으며;
    액상수지가 경화된 후에 상기 금형으로부터 상기 필름기판을 탈형시키어 돌출부와 공간부가 형성된 플렉시블 회로기판을 제작하며;
    상기 플렉시블 회로기판의 공간부에 실버페이스트를 충진하는 것을 특징으로 하는 플렉시블 회로기판의 제조방법.
  44. 제 43항에 있어서, 액상주지는 에폭시 수지 또는 UV수지 또는 폴리이미드 수지인 것을 특징으로 하는 플렉시블 회로기판의 제조방법.
  45. 제 43항에 있어서, 플렉시블 회로기판에 형성된 돌출부의 상부표면에 이형층을 형성하고, 공간부에 실버페이스트를 충진하는 것을 특징으로 하는 플렉시블 회로기판의 제조방법.
  46. 플렉시블 회로기판의 제조방법에 있어서,
    기판에 감광층을 형성하고; 상기 감광층에 패턴을 통하여 노광부를 구성하며;
    현상공정을 통하여 기판에 돌출부와 공간부가 형성되며, 상기 돌출부와 상기 공간부에 이형층을 형성하고, 상기 이형층의 상부에 탄력성 액상소재를 두껍게 충진하여 탄성 성형물을 제작하며;
    상기 탄성 성형물이 경화된 후에 탈형하여 탄력성 몰드를 제작하며;
    상기 탄력성 몰드에 이형층을 형성하고, 상기 이형층 상부에 액상수지를 도포하고, 상기 액상수지 위에 롤 상 또는 시트 상 필름기판을 위치시키며;
    액상수지가 경화된 후에 상기 필름기판을 상기 탄력성 몰드로부터 탈형시키어 공간부가 형성된 플렉시블 회로기판을 제작하며;
    상기 플렉시블 회로기판의 공간부에 실버페이스트를 충진하는 것을 특징으로 하는 플렉시블 회로기판의 제조방법.
  47. 제 46항에 있어서, 액상주지는 에폭시 수지 또는 UV 수지 또는 폴리이미드 수지인 것을 특징으로 하는 플렉시블 회로기판의 제조방법.
  48. 제 46항에 있어서, 플렉시블 회로기판에 형성된 돌출부의 상부표면에 이형층을 형성한 뒤에 공간부에 실버페이스트를 충진하는 것을 특징으로 하는 플렉시블 회로기판의 제조방법.
  49. 제 35항에서 제 48항의 어느 한 항으로 제작된 플렉시블 회로기판 또는 투명 열선 또는 칩온 필름 또는 전자파 차단시트.
  50. 도전성 기판 위에 감광층을 형성하고, 상기 감광층에 노광 및 현상공정을 거쳐서 필요한 형태의 노광부와 공간부를 구성하며;
    상기 노광부와 공간부에 이형층을 형성하고 도금욕조에서 전주가공을 실행하여 도금부를 형성하며; 상기 도금부는 먼저 공간부를 채우고, 점차적으로 노광부로 균일한 속도로 확산되어 도금이 진행되며; 상기 도금부의 확산에 의하여, 도금부와 이웃하는 도금부의 간격이 원하는 크기로 형성되면 전주가공을 중지하며;
    상기 도금부와 간격부 사이에 이형층을 형성하고, 재차 전주가공하여 전주가공물을 형성하며;
    상기 전주가공물을 탈형하여 돌출부와 공간부가 형성된 전주금형을 제작하며; 상기 전주금형의 공간부에 비도전성 물질을 충진하여 정체영역을 형성하는 것을 특징으로 하는 수직성장 전주금형의 제작방법.
  51. 제 50항에 의하여 제작된 수직성장 전주금형.
  52. 제 50항에 의하여 제작된 수직성장 전주금형에 이형층을 형성하고 전주가공을 실행하여 수직성장 전주가공물을 제작하며;
    접착재를 통하여 롤 상 또는 시트 상의 필름기판을 상기 수직성장 전주가공물의 위쪽 면과 접합시키고;
    상기 전주금형에서 수직성장 전주가공물을 접합시킨 필름기판을 탈형시키는 것을 특징으로 하는 플렉시블 회로기판의 제조방법.
  53. 제 52항에 있어서, 플렉시블 회로기판의 공간부에 액상수지를 충진하고, 상기 액상수지를 경화시키는 것을 특징으로 하는 플렉시블 회로기판의 제조방법.
  54. 제 52항에 의하여 제작된 플렉시블 회로기판 또는 투명 열선 또는 칩온 필름 또는 전자파 차단시트.
  55. 제 53항에 의하여 제작된 플렉시블 회로기판 또는 투명 열선 또는 칩온 필름 또는 전자파 차단시트.
  56. 제 51항의 전주금형에 의하여 제작된 수직성장 3차원 전주가공물.
  57. 제 51항의 전주금형에 의하여 제작된 메쉬 또는 필터 또는 열선 또는 3차원 회로, 3차원 초정밀 구조물, 투명 열선, 칩온 필름, 전자파 차단시트.
PCT/KR2018/000666 2017-01-13 2018-01-15 전주가공법에 의하여 제작되는 금형과 그 제작방법 WO2018131960A1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2017-0005936 2017-01-13
KR1020170005936A KR102714262B1 (ko) 2017-01-13 2017-01-13 수직성장을 유도하는 전주가공물의 가공 방법 그 제품
KR1020170007928A KR20180084386A (ko) 2017-01-17 2017-01-17 수직성장을 유도하는 전주금형의 제작방법과 그로 인한 전주가공물
KR10-2017-0007928 2017-01-17
KR10-2017-0010926 2017-01-24
KR1020170010926A KR102714261B1 (ko) 2017-01-24 2017-01-24 수직성장을 유도하는 전주가공물의 가공방법
KR1020170013669A KR20180089068A (ko) 2017-01-31 2017-01-31 전주가공법에 의하여 제작되는 금형과 그 제작방법
KR10-2017-0013669 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018131960A1 true WO2018131960A1 (ko) 2018-07-19

Family

ID=62840119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000666 WO2018131960A1 (ko) 2017-01-13 2018-01-15 전주가공법에 의하여 제작되는 금형과 그 제작방법

Country Status (1)

Country Link
WO (1) WO2018131960A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114536652A (zh) * 2022-02-23 2022-05-27 中南大学 一种通过镍复合电铸模芯注塑成型制备微流控芯片的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040055536A (ko) * 2002-12-20 2004-06-26 김정식 전주가공에 의한 칩 온 필름과 그의 제작방법.
KR100980217B1 (ko) * 2004-12-17 2010-09-06 삼원에프에이 (주) 전주가공물의 균일성장 현상을 이용한 전주마스타를 제작하는 방법
KR20140033736A (ko) * 2012-09-10 2014-03-19 김정식 도금방식으로 성장시킨 메탈 마스크와 그 제작방법
KR20140094315A (ko) * 2013-01-22 2014-07-30 성낙훈 성형된 폴리이미드 기판에 도전체를 충진시켜 회로기판을 제작하는 방법과 그에 의한 회로기판.
KR20160092686A (ko) * 2015-01-28 2016-08-05 성낙훈 전도성 유동성 소재로 성형된 미세회로를 접착제를 사용하여 기판에 접합시킨 반도체 기판과 그 제조방법
KR20160104346A (ko) * 2015-02-26 2016-09-05 제이엔씨 주식회사 마스타금형에서 탈형시키는 것을 특징으로 하는 미세회로를 가지는 플렉시블 회로기판의 제작방법과 그 제품

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040055536A (ko) * 2002-12-20 2004-06-26 김정식 전주가공에 의한 칩 온 필름과 그의 제작방법.
KR100980217B1 (ko) * 2004-12-17 2010-09-06 삼원에프에이 (주) 전주가공물의 균일성장 현상을 이용한 전주마스타를 제작하는 방법
KR20140033736A (ko) * 2012-09-10 2014-03-19 김정식 도금방식으로 성장시킨 메탈 마스크와 그 제작방법
KR20140094315A (ko) * 2013-01-22 2014-07-30 성낙훈 성형된 폴리이미드 기판에 도전체를 충진시켜 회로기판을 제작하는 방법과 그에 의한 회로기판.
KR20160092686A (ko) * 2015-01-28 2016-08-05 성낙훈 전도성 유동성 소재로 성형된 미세회로를 접착제를 사용하여 기판에 접합시킨 반도체 기판과 그 제조방법
KR20160104346A (ko) * 2015-02-26 2016-09-05 제이엔씨 주식회사 마스타금형에서 탈형시키는 것을 특징으로 하는 미세회로를 가지는 플렉시블 회로기판의 제작방법과 그 제품

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114536652A (zh) * 2022-02-23 2022-05-27 中南大学 一种通过镍复合电铸模芯注塑成型制备微流控芯片的方法
CN114536652B (zh) * 2022-02-23 2024-05-10 中南大学 一种通过镍复合电铸模芯注塑成型制备微流控芯片的方法

Similar Documents

Publication Publication Date Title
WO2018052197A1 (ko) 증착 마스크용 금속판, 증착 마스크 및 이의 제조방법
WO2017142231A1 (ko) 금속판, 증착용마스크 및 이의 제조방법
WO2010036051A2 (en) Structure and manufacture method for multi-row lead frame and semiconductor package
WO2009088241A2 (en) Lens unit, lens assembly, camera module, method of fabricating camera module and lens assembly, method of fabricating optic member, and apparatus for fabricating optic member
WO2020242098A1 (ko) 마이크로 led 디스플레이 제작 방법 및 이를 이용한 마이크로 led 디스플레이
WO2014137192A2 (ko) 금속 세선을 포함하는 투명 기판 및 그 제조 방법
WO2019050198A2 (ko) Oled 화소 증착을 위한 금속 재질의 증착용 마스크 및 이의 제조방법
WO2018169250A1 (ko) 금속판, 증착용 마스크 및 이의 제조방법
WO2019164106A1 (ko) 손 착용형 장치 및 이의 제조 방법
WO2012087059A2 (en) Printed circuit board and method for manufacturing the same
EP2656703A2 (en) Printed circuit board and method for manufacturing the same
WO2016043572A1 (ko) 커버글라스 및 이의 제조방법
WO2018131960A1 (ko) 전주가공법에 의하여 제작되는 금형과 그 제작방법
WO2020059969A1 (ko) 엠보싱 스테인리스 파이프 제조장치 및 이를 이용한 엠보싱 스테인리스 파이프 제조방법
WO2020105910A1 (ko) 합금 금속판 및 이를 포함하는 증착용 마스크
EP2656702A2 (en) Printed circuit board and method for manufacturing the same
WO2018147678A1 (ko) 시드층을 이용한 회로형성방법 및 시드층의 선택적 에칭을 위한 에칭액 조성물
WO2018221876A1 (ko) 연성인쇄회로기판 제조 방법 및 이에 의해 제조된 연성인쇄회로기판
DK1015130T3 (da) Elektroformningsfremgangsmåde til fremstilling af et rakelblad
WO2019103320A1 (ko) 증착용 마스크
WO2019004717A1 (ko) 전주가공에 사용되는 수직성장 마스터와 그 제조방법
WO2021025460A1 (ko) 엘이디 스핀척
WO2023234564A1 (ko) 양극과 음극이 구비된 전극모듈 및 이를 구비하는 s-ecam 프린팅 장치
WO2020076021A1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크의 제조 방법
WO2018208074A1 (ko) 수직성장 전주가공물과 그 제작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18739275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18739275

Country of ref document: EP

Kind code of ref document: A1