WO2018131777A1 - 폐암의 골전이 특이적 변이 유전자 마커 - Google Patents

폐암의 골전이 특이적 변이 유전자 마커 Download PDF

Info

Publication number
WO2018131777A1
WO2018131777A1 PCT/KR2017/011771 KR2017011771W WO2018131777A1 WO 2018131777 A1 WO2018131777 A1 WO 2018131777A1 KR 2017011771 W KR2017011771 W KR 2017011771W WO 2018131777 A1 WO2018131777 A1 WO 2018131777A1
Authority
WO
WIPO (PCT)
Prior art keywords
lung cancer
seq
nucleotide sequence
gene variant
bone
Prior art date
Application number
PCT/KR2017/011771
Other languages
English (en)
French (fr)
Inventor
서성욱
Original Assignee
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사회복지법인 삼성생명공익재단 filed Critical 사회복지법인 삼성생명공익재단
Publication of WO2018131777A1 publication Critical patent/WO2018131777A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to a marker composition for diagnosing bone metastatic lung cancer comprising a specific gene variant, a diagnostic composition / kit using the same, and a diagnostic method.
  • cancer cells such as lung cancer, breast cancer, prostate cancer and colon cancer are known to metastasize to bone (bone), and bone is the third most common site of metastasis after lung and liver. Bone metastasis of these cancers not only causes metastasis, but also affects osteoblasts involved in bone formation in bone marrow and osteoclasts involved in bone resorption, ultimately leading to excessive bone resorption. This in turn affects cancer cells, leading to a series of vicious processes that promote the proliferation of cancer cells.
  • SRE Skeletal Related Events
  • K-ras mutations are known to be highly expressed in bone, brain and lung metastases of colorectal cancer, and overexpression of CXCR4 is known to cause bone metastasis by interacting with the bone microenvironment in breast cancer. Understanding the mechanism by identifying the link between the mutant gene and its metastatic site could be used to identify patients at high risk in clinical situations. In other words, identifying specific genetic markers that contribute to metastasis will play a pivotal role in finding new therapeutic alternatives for refractory bone metastasis.
  • GNAQ , ARID1A , MET, PTCH1 was confirmed to be a signature gene specific for bone metastasis of non-small cell lung cancer to complete the present invention.
  • an object of the present invention is to provide a marker composition for diagnosing bone metastasized non-small cell lung cancer comprising at least one of the above gene variants, a diagnostic composition / kit using the same, and a diagnostic method.
  • the present invention at least one gene variant selected from the group consisting of G Protein Subunit Alpha Q (GNAQ), AT-Rich Interaction Domain 1A (ARID1A), mesenchymal-epithelial transition factor (MET) and Protein Patched Homolog 1 (PTCH1) It provides, comprising a marker composition for diagnosing bone metastasis lung cancer.
  • GNAQ G Protein Subunit Alpha Q
  • ARID1A AT-Rich Interaction Domain 1A
  • MET mesenchymal-epithelial transition factor
  • PTCH1 Protein Patched Homolog 1
  • GNAQ G Protein Subunit Alpha Q
  • ARID1A AT-Rich Interaction Domain 1A
  • MET mesenchymal-epithelial transition factor
  • PTCH1 Protein Patched Homolog 1
  • the present invention also provides a kit for diagnosing bone metastatic lung cancer comprising the diagnostic composition.
  • the lung cancer is characterized in that the non-small cell lung cancer.
  • the GNAQ gene variant (NCBI Accession No. NM_002072.4) consists of the nucleotide sequence of SEQ ID NO: 1, and the ARID1A gene variant (NCBI Accession No. NM_006015.4) of SEQ ID NO: 2 Nucleotide sequence, the MET gene variant (NCBI Accession No. NM_000245.3) consists of the nucleotide sequence of SEQ ID NO: 3, the PTCH1 gene variant (NCBI Accession No. NM_000264.3) is the base sequence of SEQ ID NO: 4 Characterized in that consisting of.
  • the detection agent is characterized in that the probe or primer that can specifically bind to the gene variant.
  • the present invention also relates to (a) G Protein Subunit Alpha Q (GNAQ), AT-Rich Interaction Domain 1A (ARID1A), mesenchymal-epithelial transition factor (MET) and Protein Patched Homolog 1 (PTC1) from a patient's biological sample. Detecting one or more gene variants selected from the group consisting of; And (b) provides a method for providing information for the diagnosis of bone metastasis lung cancer, comprising the step of determining the bone metastasis lung cancer when the genetic variant is detected.
  • GNAQ G Protein Subunit Alpha Q
  • ARID1A AT-Rich Interaction Domain 1A
  • MET mesenchymal-epithelial transition factor
  • PTC1 Protein Patched Homolog 1
  • the lung cancer is characterized in that the non-small cell lung cancer.
  • the detection method is characterized in that the sequencing of the gene variant.
  • the biological sample is characterized in that the tissue, cells, blood, plasma or urine.
  • the GNAQ gene variant (NCBI Accession No. NM_002072.4) consists of the nucleotide sequence of SEQ ID NO: 1, and the ARID1A gene variant (NCBI Accession No. NM_006015.4) is SEQ ID NO: 2
  • the MET gene variant (NCBI Accession No. NM_000245.3) consists of the nucleotide sequence of SEQ ID NO: 3, and the PTCH1 gene variant (NCBI Accession No. NM_000264.3) is the base of SEQ ID NO: 4 It is characterized by consisting of a sequence.
  • the genetic markers (GNAQ, ARID1A, MET, PTCH1) finally selected using the predictive model of the present invention can identify / predict bone metastasis of lung cancer with high accuracy, which is useful for early diagnosis, prevention and treatment of lung cancer. Will be able to be used.
  • FIG 1 shows the selection of genes commonly expressed in cancer by scanning the entire exon by next generation sequencing (NGS).
  • NGS next generation sequencing
  • FIG. 2 shows that the alpha value of Lasso was optimized to 1 by 10-fold cross-check in the Lasso regression model for bone metastatic lung cancer classification.
  • Figure 3 shows the coefficients of each category when the x value reaches an alpha value of 1 in the Lasso regression model for bone metastatic lung cancer classification.
  • FIG. 5 shows the results of bootstrap resampling for optimal genetic marker selection for bone metastatic lung cancer.
  • DT decision tree
  • AdaBoost AdaBoost
  • GBT Gradient boost
  • the present invention at least one gene variant selected from the group consisting of G Protein Subunit Alpha Q (GNAQ), AT-Rich Interaction Domain 1A (ARID1A), mesenchymal-epithelial transition factor (MET) and Protein Patched Homolog 1 (PTCH1) It provides, comprising a marker composition for diagnosing bone metastasis non-small cell lung cancer.
  • GNAQ G Protein Subunit Alpha Q
  • ARID1A AT-Rich Interaction Domain 1A
  • MET mesenchymal-epithelial transition factor
  • PTCH1 Protein Patched Homolog 1
  • diagnosis refers to determining the susceptibility of an object to a particular disease or condition, determining whether an object currently has a particular disease or condition, of a subject having a particular disease or condition Prognosis (eg, identifying a pre-metastatic or metastatic cancer state, determining the stage of the cancer, or determining the responsiveness of the cancer to treatment).
  • the "diagnostic marker” refers to a substance capable of diagnosing bone metastatic non-small cell lung cancer cells from normal cells, for example, nucleic acids (DNA, mRNA), polypeptides, proteins, lipids, glycolipids, glycoproteins, and the like. Such as organic biomolecules and the like.
  • the marker may be embodied as a variation due to a mutation or modification at a particular locus.
  • lung cancer The disease to be diagnosed in the present specification is lung cancer, and lung cancer is largely divided into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) according to the tissue type. Is bone metastatic non-small cell lung cancer (NSCLC).
  • SCLC small cell lung cancer
  • NSCLC non-small cell lung cancer
  • GNAQ gene variant (NCBI Accession No. NM_002072.4) is the base of SEQ ID NO: 1 Sequence or a base sequence having 70% or more homology thereto
  • ARID1A gene variant (NCBI Accession No. NM_006015.4) is a nucleotide sequence of SEQ ID NO: 2 or a base sequence having 70% or more homology thereto
  • MET gene variant NCBI Accession No.
  • NM_000245.3 is the nucleotide sequence of SEQ ID NO: 3 or a nucleotide sequence having at least 70% homology thereto, and the PTCH1 gene variant (NCBI Accession No. NM_000264.3) is the nucleotide sequence of SEQ ID NO: 4 or 70 It may be a base sequence having at least% homology.
  • GNAQ G Protein Subunit Alpha Q
  • ARID1A AT-Rich Interaction Domain 1A
  • MET mesenchymal-epithelial transition factor
  • PTCH1 Protein Patched Homolog 1
  • the detection agent is sufficient as long as it is a substance capable of specifically binding to the gene variant, and there is no particular limitation, but may be, for example, a probe or a primer.
  • probe refers to a nucleic acid fragment such as RNA or DNA, which is short to several bases to hundreds of bases capable of specific binding with a gene, and is labeled so that the presence of a specific gene or a variant thereof is present. You can check. Probes may be prepared in the form of oligonucleotide probes, single stranded DNA probes, double stranded DNA probes, RNA probes, and the like.
  • a "primer” is an oligonucleotide having a sequence complementary to a target target nucleotide or nucleic acid and hybridizing thereto, for stepwise synthesis of a polynucleotide by adding a mononucleotide at its 3 'end in the presence of a DNA or RNA polymerase.
  • the present invention also provides a kit for diagnosing bone metastatic lung cancer comprising the diagnostic composition.
  • the diagnostic kit of the present invention consists of one or more other component compositions, solutions or devices suitable for analytical methods and may be an RT-PCR kit, a DNA chip kit or a protein chip kit.
  • the RT-PCR kit includes test tubes or other suitable containers, reaction buffers, enzymes such as deoxynucleotides (dNTPs), Taq-polymerases and reverse transcriptases, DNases, RNase inhibitors, DEPC-water, sterile water, and the like. It may also comprise primer pairs specific for the genes used as quantitative controls.
  • the DNA chip kit may include a substrate to which a cDNA corresponding to a gene or a fragment thereof is attached with a probe, and the substrate may include a cDNA corresponding to a quantitative gene or a fragment thereof.
  • the present invention also relates to (a) G Protein Subunit Alpha Q (GNAQ), AT-Rich Interaction Domain 1A (ARID1A), mesenchymal-epithelial transition factor (MET) and Protein Patched Homolog 1 (PTC1) from a patient's biological sample. Detecting one or more gene variants selected from the group consisting of; And (b) provides a method for providing information for diagnosing bone metastasis non-small cell lung cancer comprising the step of determining the bone metastasis non-small cell lung cancer when the genetic variant is detected.
  • GNAQ G Protein Subunit Alpha Q
  • ARID1A AT-Rich Interaction Domain 1A
  • MET mesenchymal-epithelial transition factor
  • PTC1 Protein Patched Homolog 1
  • patient means any single individual in need of treatment, including humans, cows, dogs, guinea pigs, rabbits, chickens, insects, and the like.
  • tissue sample is meant herein a collection of similar cells obtained from a patient's tissue.
  • Sources of tissue or cell samples may include solid tissue from fresh, frozen and / or preserved organ or tissue samples or biopsies or aspirates; Blood or any blood component.
  • tissue, cells, blood, serum, plasma and urine Preferably tissue, cells, blood, serum, plasma and urine.
  • Markers of the present invention can be detected at the nucleic acid or protein level and there is no particular limitation on the detection method.
  • detection at the nucleic acid level may use conventional methods such as hybridization using a chip method, polymerase chain reaction using primers or probes, Southern blot, etc., and detection at mRNA level may be reverse transcriptase polymerase chain reaction. / Polymerase chain reaction, RNase protection assay, or Northern blot and the like can be detected.
  • Detection at the protein level can be detected through an antigen-antibody reaction, a substrate that specifically binds to the marker, a nucleic acid or peptide aptamer, or a reaction with a receptor or ligand or cofactor that specifically interacts with the marker. have.
  • non-small cell lung cancer NSCLC
  • samples after collecting a total of 77 tissue samples from non-small cell lung cancer (NSCLC) patients and classified the samples according to the site, it was confirmed that 24 of the 53 primary lung cancer (non-skeletal lung cancer) samples are bone metastases.
  • frozen tissue samples and blood were analyzed for 81 genes commonly expressed in cancer using total exon sequencing.
  • the Lasso regression method one of the penalized regression techniques, aims at an optimal predictive model for classifying metastatic bone cancers with specific minimum genes. Excavated.
  • the classifier is divided into three groups, namely 80, 32, and four gene groups, and the final four genes that can predict the occurrence of bone tumors by comparing their performance with third verification data # 2.
  • G Protein Subunit Alpha Q (GNAQ), AT-Rich Interaction Domain 1A (ARID1A), mesenchymal-epithelial transition factor (MET) and Protein Patched Homolog 1 (PTCH1) were selected.
  • GNAQ G Protein Subunit Alpha Q
  • ARID1A AT-Rich Interaction Domain 1A
  • MET mesenchymal-epithelial transition factor
  • PTCH1 Protein Patched Homolog 1
  • NSCLC non-small cell lung cancer
  • Tissue and blood samples were collected from bone metastatic patients under the following criteria to identify therapeutic targets for metastatic bone tumors.
  • the collected metastatic bone tumors were frozen sections and stained with cytokeratin.
  • the sample was considered suitable for further analysis when containing at least 50% epithelial cells (healthy bone should not contain any epithelial cells) and was excluded if more than 50% necrosis was observed in H & E staining.
  • FIG. 1 Genes commonly expressed in cancer are shown in FIG. 1 by scanning the entire exon using Next Generation Sequencing (NGS) -based Kansas Scan 1.0 (CancerScan Ver. 1.0).
  • NGS Next Generation Sequencing
  • Genomic DNA extracted from each sample was subjected to the above quantitative and qualitative confirmation before further analysis and the total exon sequence of each sample was retrieved using library reconstruction and HiSeq2500 equipment.
  • the retrieved genetic data (paired read) were filtered through data processing and aligned with the reference genome to obtain the entire genome sequence.
  • Penalty regression techniques impose penalty values on a linear regression model to distinguish between two groups. By providing the penalty value, this algorithm minimizes the overfitting problem to the training data, cross checks to find the best penalty value and optimizes the prediction model.
  • the coefficients of each variable are reduced to near zero, and only a small subset remains as an important feature used in this optimal prediction model, so that two groups can be efficiently Can be distinguished.
  • a path for identifying a minimum number of genes was established to increase the accuracy of this classification model and to classify metastatic bone cancer.
  • the first group was trained with total genetic data
  • the second group was trained with genetic features extracted by the Lasso method
  • the third group was trained with cross-checks of gradient boosting algorithms trained with the Lasso extracted feature. Trained with a number of genes. The accuracy of each group was compared with the Mann-Whitney test.
  • FIG. 3 shows the coefficient of each category when the x value reaches an alpha value of 1.
  • the GB algorithm was highly accurate for 32 signature genes, we chose this algorithm to identify a few genes that are important in identifying metastatic cancer. Therefore, the GNAQ, ARIDA1, MET, and PTCH1 genes were selected as a result of further investigation to extract genes that were frequently used to identify metastatic tumors in the GB algorithm.
  • Example 2-1 Based on the result of Example 2-1, the classifier was divided into three groups, that is, 80, 32 and 4 gene groups, and the performance of the third party test data (test DATA # 2) was compared.
  • the present invention not only finds the best classifier through stepwise verification but also establishes a new route that can continuously obtain the minimum number of genes and classifiers in a stepwise manner. By removing the noise genes in this way, we were able to create predictive models with better performance and accuracy.
  • the mutation in the last four genes GNAQ, ARID1A, MET and PTCH1 can be used as an optimal marker for identifying / predicting bone metastasis of lung cancer.
  • the genetic markers (GNAQ, ARID1A, MET, PTCH1) finally selected using the predictive model of the present invention can identify / predict lung metastasis of lung cancer with a high accuracy of 80% or more of all bone cancers. And useful for treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은, 특정 유전자 변이체를 포함하는 골전이성 폐암 진단용 마커 조성물, 이를 이용한 진단용 조성물/키트, 및 진단방법에 관한 것이다. 본 발명의 예측 모델을 이용하여 최종 선정된 유전자 마커(GNAQ, ARID1A, MET, PTCH1)는 높은 정확도로 폐암의 골전이를 확인/예측할 수 있는 바, 폐암의 조기 진단, 예방 및 치료에 유용하게 이용될 수 있을 것이다.

Description

폐암의 골전이 특이적 변이 유전자 마커
본 발명은, 특정 유전자 변이체를 포함하는 골전이성 폐암 진단용 마커 조성물, 이를 이용한 진단용 조성물/키트, 및 진단방법에 관한 것이다.
폐암, 유방암, 전립선암, 대장암 등 다양한 암세포들이 골(뼈)로 전이가 되는 것으로 알려져 있고, 골은 폐, 간에 이어서 세번째로 흔한 전이 장소이다. 이러한 암들의 골(뼈)전이는 단순한 전이뿐 아니라, 골수에서 골의 생성에 관여하는 조골세포에의 영향, 골의 흡수에 관여하는 파골세포에 영향을 미쳐, 궁극적으로는 과도한 골 흡수를 야기시키며, 이것이 다시 암세포에 영향을 주어 암세포의 증식을 촉진시키는 일련의 악순환 과정을 유도하게 된다.
화학 요법 및 방사선 요법과 같은 모든 치료가 성공하지 못한 난치성 골전이는 병적 골절을 초래하고, 이러한 골절 및 그에 따른 통증은 이병률 및 기능 손상을 증가시키며, 궁극적으로는 환자의 삶의 질을 손상시킨다. 이러한 골격계 증상(SRE; Skeletal Related Events)은 사망 위험성을 20% 내지 40% 정도 높히고, 이들 환자 중 전체 생존율은 6.2개월에 불과하다.
최근 연구에 따르면, 파골세포 형성을 표적화하는 데노수맙(denosumab)은 SRE에 대한 시간을 연장시켜 전체 생존율을 증가시키는 것으로 나타났다. EGFR 억제제는 SRE의 위험성을 감소키고, EGF 시그널링은 종양 세포 증식을 증가시키고 골의 미세 환경을 조정함으로써 골전이와 관련이 있다고 알려져 있다. 그러나 골전이에 특이적인 돌연변이(actionable mutation)에 대해 알려진 바는 없다.
단일 암 발생 내에서, 심지어 전이성 암과 원발암 사이에서 상이한 돌연변이 유전자를 갖는 이종성 암세포가 존재한다고 알려져 있는데, 최근에는 이러한 전이성 암의 특이적 돌연변이들이 종양의 이동성, 표적기관의 특이성, 화학요법에 대한 내성 등을 설명할 수 있는 근거로 대두되고 있기 때문에, 전이의 원인이 되는 이들 특이적 유전자를 발굴하는 것은 중요하다.
예를 들면, K-ras 돌연변이는 대장암의 골, 뇌 및 폐 전이에서 고도로 발현되는 것으로 알려져 있고, CXCR4의 과발현은 유방암에서 골의 미세 환경과 상호작용함으로써 골전이를 야기하는 것으로 알려져 있다. 돌연변이 유전자와 이의 전이성 부위간의 연관성을 밝혀 그 기작을 이해한다면 임상적 상황에서 고위험성의 환자를 확인하는데 이용될 수 있을 것이다. 즉, 전이의 원인이 되는 특이적 유전자 마커를 발굴하는 것이 난치성 골전이의 새로운 치료 대안을 찾는데 있어 중추적인 역할을 할 것이다.
한편, 유전자 돌연변이와 골전이와의 관련성에 대하여 거의 알려진 바가 없는 이유는 분석을 위해 골 샘플을 회수하는 것이 매우 어렵기 때문이다. 특히 파라핀화된 골 샘플은 탈회 과정(decalcification process)을 거쳐야 하고, 이는 영구적인 DNA 손상을 야기한다. 또한, 골전이는 종종 광범위한 괴사를 나타내고, 관련된 병소는 파골 세포를 포함한 다량의 정상적인 간엽 세포 및 혈액 세포와 함께 산재되어 있기 때문에, 세침 흡입으로 상당량의 종양 조직을 수득하는 것은 불가능하다는 문제가 있다.
이에, 본 발명자들은 비소세포폐암(non-small cell lung cancer)의 골전이를 진단/예측할 수 있는 바이오마커를 개발하고자 예의 노력한 결과, 최적의 모델로서 라소 회귀법을 이용하여 최종적으로 4종의 유전자 변이체(GNAQ , ARID1A , MET, PTCH1)가 비소세포폐암의 골전이에 특이적인 시그니처 유전자임을 확인하고 본 발명을 완성하게 되었다.
따라서, 본 발명은 하나 이상의 상기 유전자 변이체를 포함하는 골전이성 비소세포폐암 진단용 마커 조성물, 이를 이용한 진단용 조성물/키트, 및 진단방법을 제공하는 것을 목적으로 한다.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명은, GNAQ(G Protein Subunit Alpha Q), ARID1A(AT-Rich Interaction Domain 1A), MET(mesenchymal-epithelial transition factor) 및 PTCH1(Protein Patched Homolog 1)로 이루어진 군에서 선택되는 하나 이상의 유전자 변이체를 포함하는, 골전이성 폐암 진단용 마커 조성물을 제공한다.
또한, 본 발명은, GNAQ(G Protein Subunit Alpha Q), ARID1A(AT-Rich Interaction Domain 1A), MET(mesenchymal-epithelial transition factor) 및 PTCH1(Protein Patched Homolog 1)로 이루어진 군에서 선택되는 하나 이상의 유전자 변이체를 검출할 수 있는 물질을 포함하는, 골전이성 폐암 진단용 조성물을 제공한다.
또한, 본 발명은, 상기 진단용 조성물을 포함하는 골전이성 폐암 진단용 키트를 제공한다.
본 발명의 일 구체예로서, 상기 폐암은 비소세포페암인 것을 특징으로 한다.
본 발명의 다른 구체예로서, 상기 GNAQ 유전자 변이체(NCBI Accession No. NM_002072.4)는 서열번호 1의 염기서열로 이루어지고, 상기 ARID1A 유전자 변이체(NCBI Accession No. NM_006015.4)는 서열번호 2의 염기서열로 이루어지고, 상기 MET 유전자 변이체(NCBI Accession No. NM_000245.3)는 서열번호 3의 염기서열로 이루어지고, 상기 PTCH1 유전자 변이체(NCBI Accession No. NM_000264.3)는 서열번호 4의 염기서열로 이루어진 것을 특징으로 한다.
본 발명의 또 다른 구체예로서, 상기 검출 물질은 상기 유전자 변이체에 특이적으로 결합할 수 있는 프로브 또는 프라이머인 것을 특징으로 한다.
또한, 본 발명은, (a) 환자의 생물학적 시료로부터 GNAQ(G Protein Subunit Alpha Q), ARID1A(AT-Rich Interaction Domain 1A), MET(mesenchymal-epithelial transition factor) 및 PTCH1(Protein Patched Homolog 1)로 이루어진 군에서 선택되는 하나 이상의 유전자 변이체를 검출하는 단계; 및 (b) 상기 유전자 변이체가 검출될 경우 골전이성 폐암으로 판정하는 단계를 포함하는, 골전이성 폐암의 진단을 위한 정보제공방법을 제공한다.
본 발명의 일 구체예로서, 상기 폐암은 비소세포페암인 것을 특징으로 한다.
본 발명의 다른 구체예로서, 상기 검출 방법은 상기 유전자 변이체에 대한 염기서열분석인 것을 특징으로 한다.
본 발명의 또 다른 구체예로서, 상기 생물학적 시료는 조직, 세포, 혈액, 혈장 또는 뇨인 것을 특징으로 한다.
본 발명의 또 다른 구체예로서, 상기 GNAQ 유전자 변이체(NCBI Accession No. NM_002072.4)는 서열번호 1의 염기서열로 이루어지고, 상기 ARID1A 유전자 변이체(NCBI Accession No. NM_006015.4)는 서열번호 2의 염기서열로 이루어지고, 상기 MET 유전자 변이체(NCBI Accession No. NM_000245.3)는 서열번호 3의 염기서열로 이루어지고, 상기 PTCH1 유전자 변이체(NCBI Accession No. NM_000264.3)는 서열번호 4의 염기서열로 이루어진 것을 특징으로 한다.
본 발명의 골전이성 폐암 예측 모델에서는, 단계적인 검증을 통해 최적의 분류자를 발견하였을 뿐만 아니라 단계적인 방식으로 최소 개수의 유전자 및 분류자를 연속적으로 수득할 수 있는 새로운 경로를 확립하였는바, 노이즈 유전자를 제거함으로써 더욱 양호한 성능 및 정확도를 나타내는 모델을 제공할 수 있다.
또한, 본 발명의 예측 모델을 이용하여 최종 선정된 유전자 마커(GNAQ, ARID1A, MET, PTCH1)는 높은 정확도로 폐암의 골전이를 확인/예측할 수 있는 바, 폐암의 조기 진단, 예방 및 치료에 유용하게 이용될 수 있을 것이다.
도 1은, 차세대 염기서열분석(NGS)으로 전체 엑손을 스캐닝하여 암에서 흔히 발현되는 유전자들을 선정하여 나타낸 것이다.
도 2는, 골전이성 폐암 분류를 위한 라소 회귀 모델에서 10배 교차 확인에 의해 라소의 알파값을 1로 최적화한 것을 나타낸 것이다.
도 3은, 골전이성 폐암 분류를 위한 라소 회귀 모델에서 x값이 1의 알파값에 이를 때 각 카테고리의 계수를 나타낸 것이다.
도 4는, 그 발현이 종양 전이와 상관관계가 있고 GNAC가 가장 큰 계수를 갖는 32개의 유전자를 동정한 것이다.
도 5는, 골전이성 폐암에 대한 최적의 유전자 마커 선별을 위하여 bootstrap resampling을 수행한 결과이다.
도 6은, 골전이성 폐암에 대한 최적의 유전자 마커 선별을 위하여 Decision tree(DT), AdaBoost(ABst), Gradient boost(GBT) 방법을 적용한 결과이다.
도 7은, 골전이성 폐암에 대한 최적의 유전자 마커 선별을 위하여 검증 데이터와의 성능을 비교한 결과이다.
도 8은, 모델 성능을 최종 평가하기 위하여 ROC 곡선 분석을 실시한 결과이다.
본 발명은, GNAQ(G Protein Subunit Alpha Q), ARID1A(AT-Rich Interaction Domain 1A), MET(mesenchymal-epithelial transition factor) 및 PTCH1(Protein Patched Homolog 1)로 이루어진 군에서 선택되는 하나 이상의 유전자 변이체를 포함하는, 골전이성 비소세포폐암 진단용 마커 조성물을 제공한다.
본 명세서에서 "진단"은 특정 질병 또는 질환에 대한 객체의 감수성(susceptibility)을 판정하는 것, 한 객체가 특정 질병 또는 질환을 현재 가지고 있는지 여부를 판정하는 것, 특정 질병 또는 질환에 걸린 한 객체의 예후(prognosis)(예컨대, 전-전이성 또는 전이성 암 상태의 동정, 암의 단계 결정 또는 치료에 대한 암의 반응성 결정)을 포함한다.
본 명세서에서 "진단용 마커"란 골전이성 비소세포폐암 세포를 정상 세포와 구분하여 진단할 수 있는 물질을 의미하고, 예를 들면 핵산(DNA, mRNA), 폴리펩티드, 단백질, 지질, 당지질, 당단백질 등과 같은 유기 생체 분자 등을 포함한다. 또한, 상기 마커는 특정 유전자 좌위에서의 돌연변이나 변형에 기인하는 변이(variation)로 구체화될 수 있다.
본 명세서에서 진단의 대상이 되는 질환은 폐암이며, 폐암은 조직형에 따라 크게 소세포폐암(small cell lung cancer, SCLC)과 비소세포폐암(non-small cell lung cancer, NSCLC)으로 구분되며, 바람직하게는 골전이성 비소세포 폐암(NSCLC)이다.
본 명세서에서 "유전자 변이체"는 야생형 유전자의 염기가 치환, 제거 또는 삽입되어 있으면 족하고 그 서열에 특별한 제한은 없으나, 예를 들면 GNAQ 유전자 변이체(NCBI Accession No. NM_002072.4)는 서열번호 1의 염기서열 또는 이와 70% 이상의 상동성을 갖는 염기서열이고, ARID1A 유전자 변이체(NCBI Accession No. NM_006015.4)는 서열번호 2의 염기서열 또는 이와 70% 이상의 상동성을 갖는 염기서열이고, MET 유전자 변이체(NCBI Accession No. NM_000245.3)는 서열번호 3의 염기서열 또는 이와 70% 이상의 상동성을 갖는 염기서열이고, PTCH1 유전자 변이체(NCBI Accession No. NM_000264.3)는 서열번호 4의 염기서열 또는 이와 70% 이상의 상동성을 갖는 염기서열일 수 있다.
또한, 본 발명은, GNAQ(G Protein Subunit Alpha Q), ARID1A(AT-Rich Interaction Domain 1A), MET(mesenchymal-epithelial transition factor) 및 PTCH1(Protein Patched Homolog 1)로 이루어진 군에서 선택되는 하나 이상의 유전자 변이체를 검출할 수 있는 물질을 포함하는, 골전이성 폐암 진단용 조성물을 제공한다.
본 발명에서, 상기 검출 물질은 상기 유전자 변이체에 특이적으로 결합할 수 있는 물질이면 족하고 특별한 제한은 없으나, 예를 들면 프로브 또는 프라이머일 수 있다.
본 명세서에서 "프로브"란 유전자와 특이적 결합을 이룰 수 있는 짧게는 수 염기 내지 길게는 수백 염기에 해당하는 RNA 또는 DNA 등의 핵산 단편을 의미하며, 라벨링되어 있어서 특정 유전자 또는 그 변이체의 존재 유무를 확인할 수 있다. 프로브는 올리고뉴클레오티드 프로브, 단쇄 DNA(single straned DNA) 프로브, 이중쇄 DNA(double stranded DNA) 프로브, RNA 프로브 등의 형태로 제작될 수 있다.
본 명세서에서 "프라이머"란 표적 타겟 뉴클레오티드 또는 핵산에 상보적인 서열을 가지며 이에 혼성화하는 올리고뉴클레오티드로서, DNA 또는 RNA 중합효소 존재 하에서 자신의 3' 말단에 모노뉴클레오티드를 부가함으로서 폴리뉴클레오티드의 단계적 합성을 위한 출발점으로 기능하는 서열을 의미하며, 펩티드 핵산 프라이머, 표지된 프라이머, DNA 분자의 포스포디에스터 결합이 포스포로티오에이트 등과 같은 것으로 수식된 프라이머 등을 포함한다.
또한, 본 발명은, 상기 진단용 조성물을 포함하는 골전이성 폐암 진단용 키트를 제공한다.
본 발명의 진단용 키트는 분석 방법에 적합한 한 종류 또는 그 이상의 다른 구성 성분 조성물, 용액 또는 장치로 구성되고, RT-PCR 키트, DNA 칩 키트 또는 단백질 칩 키트일 수 있다. RT-PCR 키트는 마커 유전자에 대한 특이적인 각각의 프라이머 쌍 외에도 테스트 튜브 또는 다른 적절한 컨테이너, 반응 완충액, 데옥시뉴클레오타이드(dNTPs), Taq-폴리머라아제 및 역전사 효소와 같은 효소, DNase, RNase 억제제, DEPC-수, 멸균수 등을 포함할 수 있다. 또한, 정량 대조구로 사용되는 유전자에 특이적인 프라이머 쌍을 포함할 수 있다. DNA 칩 키트는 유전자 또는 그의 단편에 해당하는 cDNA가 프로브로 부착되어 있는 기판을 포함하고, 기판은 정량구조 유전자 또는 그의 단편에 해당하는 cDNA를 포함할 수 있다.
또한, 본 발명은, (a) 환자의 생물학적 시료로부터 GNAQ(G Protein Subunit Alpha Q), ARID1A(AT-Rich Interaction Domain 1A), MET(mesenchymal-epithelial transition factor) 및 PTCH1(Protein Patched Homolog 1)로 이루어진 군에서 선택되는 하나 이상의 유전자 변이체를 검출하는 단계; 및 (b) 상기 유전자 변이체가 검출될 경우 골전이성 비소세포폐암으로 판정하는 단계를 포함하는, 골전이성 비소세포폐암의 진단을 위한 정보제공방법을 제공한다.
본 명세서에서 "환자"는 인간, 소, 개, 기니아 피그, 토끼, 닭, 곤충 등을 포함하여 치료가 요구되는 임의의 단일 개체를 의미한다.
본 명세서에서 "생물학적 시료"는 환자의 조직으로부터 얻은 유사한 세포의 집합체를 의미한다. 조직 또는 세포 샘플의 공급원은 신선한, 동결된 및/또는 보존된 장기 또는 조직 샘플 또는 생검 또는 흡인물로부터의 고형 조직; 혈액 또는 임의의 혈액 구성분일 수 있다. 바람직하게는 조직, 세포, 혈액, 혈청, 혈장 및 뇨이다.
본 발명의 마커는 핵산 또는 단백질 수준에서 검출될 수 있으며 검출방법에 특별한 제한은 없다.
예를 들면, 핵산 수준에서의 검출은 칩 방식을 이용한 혼성화법, 프라이머 또는 프로브를 이용한 중합효소연쇄반응, 서던블롯 등의 기존의 방식을 이용할 수 있고, mRNA 수준에서의 검출은 역전사 중합효소연쇄반응/중합효소연쇄반응, RNase 보호 분석법, 또는 노던 블롯 등을 이용한 방식으로 검출될 수 있다.
단백질 수준에서의 검출은 항원-항체반응, 상기 마커에 특이적으로 결합하는 기질, 핵산 또는 펩타이드 앱타머, 상기 마커와 특이적으로 상호작용하는 수용체 또는 리간드 또는 보조인자와의 반응을 통해 검출될 수 있다.
본 발명에서는 비소세포 폐암(NSCLC) 환자로부터 총 77개의 조직샘플을 수집한 후 샘플을 부위에 따라 분류한 결과, 53개의 원발성 폐암(비골성 폐암) 샘플 중에서 24개가 골전이됨을 확인하였다. 또한, 전체 엑손 염기서열분석법(exon sequencing)을 이용하여 암에서 흔히 발현되는 81개의 유전자에 대해 냉동 조직 샘플 및 혈액을 분석하였다.
또한, 특정의 최소 유전자를 갖는 전이성 골암을 분류하기 위한 최적의 예측 모델을 목표로 하여 벌점화 회귀(penalized regression) 기법들 중 하나인 라소 회귀(Lasso regression) 방법으로 골전이와 관련된 특정의 유전자를 발굴하였다.
라소 회귀 모델에서는 전이성 폐암을 분류하기 위해 32개의 유전적 돌연변이를 선별하고, 특정의 최소 유전자를 동정한 후 본 발명의 분류 타당성에 미치는 영향을 최소화하기 위해, bootstrap sample을 train data로서 6개의 상이한 분류자(classifier) 내에 적용하였으며, 검증 데이터 #1과 정확도를 비교하였다.
상기 결과에 기초하여, 분류자를 3개의 그룹, 즉 80, 32 및 4개의 유전자 그룹으로 나누고, 제3의 검증 데이터 #2와 이들의 성능을 비교한 결과, 골종양 발생을 예측할 수 있는 최종 4개의 유전자 GNAQ(G Protein Subunit Alpha Q), ARID1A(AT-Rich Interaction Domain 1A), MET(mesenchymal-epithelial transition factor) 및 PTCH1(Protein Patched Homolog 1)를 선정하였다. 종래, 이들 유전자는 종양 형성 및 암의 공격성과 관련있다고 알려져 있었으나, 비소세포폐암의 골전이 관련성에 대하여는 본 발명에서 최초로 밝힌 것이다.
따라서, 본 발명에서 최종 선정한 상기 유전자 마커를 이용할 경우, 전체 골암 중 80% 이상의 높은 정확도로 비소세포폐암의 골전이 가능성(예후)을 예측할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[ 실시예 ]
실시예 1: 실험방법
1-1. 연구 개체
2012년 1월부터 2014년 12월까지 치료를 받은 비소세포폐암(NSCLC) 환자로부터 총 77개의 조직을 수집하였다. 이들 중 53개의 샘플은 원발성 폐암(비골성 폐암)이고, 24개의 샘플은 전이된 골에서 유래한 조직이었다. 전체 엑손 염기서열분석법을 이용하여 암에서 흔히 발현되는 81개의 유전자에 대해 냉동 조직 샘플 및 혈액을 분석하였다.
1-2. 데이터 수집 및 유전적 분석
전이성 골종양에 대한 치료용 표적을 동정하기 위해 조직 및 혈액 샘플은 하기의 기준 하에 골 전이성 환자로부터 수집하였다.
즉, 2012년 1월과 2014년 12월 사이에 전이된 골종양으로 인해 외과적 치료를 필요로 하는 환자 중 연구 목적을 이해하고 이들의 조직 샘플의 사용에 동의한 환자로서, 샘플은 적어도 30%가 생존 가능한 종양으로 이루어지고, DNA의 양이 엑손 연구에 정량적 및 정성적으로 적합한 샘플을 선정하였다.
따라서, 동의하지 않거나 수술 전 4개월 이내에 수혈을 받은 환자, 그리고 50% 이상의 괴사를 함유하거나 70% 이상의 정상 조직을 함유하는 등 부적절하게 샘플링된 조직은 배제하였으며, 헤모글로빈 수치가 8 미만이거나 HBV 보균자이면서 기타 혈액 질환을 갖는 혈액 샘플도 배제하였다.
또한, 샘플링을 위한 품질 관리를 위해, 수집된 전이 골종양을 냉동 절편하고 사이토케라틴(cytokeratin)으로 염색하였다. 샘플은 50% 이상의 상피 세포(건강한 골은 어떠한 상피 세포도 함유하지 않아야 함)를 함유하는 경우에 추가의 분석용으로 적합한 것으로 보았으며, H&E 염색에서 50% 이상의 괴사가 관측되는 경우에는 배제시켰다.
1-3. 유전자 발현 분석 및 정보 추출
exon scanning
차세대 염기서열분석(NGS) 기반의 캔서스캔 1.0 버전(CancerScan Ver.1.0)을 이용 전체 엑손을 스캐닝하여, 암에서 흔히 발현되는 유전자들을 도 1에 나타내었다.
각 샘플로부터 추출된 게놈 DNA는 추가 분석 전에 상기 정량적 및 정성적 확인을 거쳤으며, 라이브러리 reconstruction 및 HiSeq2500 장비를 이용하여 각 샘플의 총 엑손 서열을 검색하였다. 검색된 유전적 데이터(paired read)는 데이터 가공을 통해 필터링하였으며, 레퍼런스 게놈과 배열하여 전체 게놈 서열을 수득하였다.
② 전이성 골의 유전적 변이 및 생물학적 정보
정상 대조군(혈액)과는 상이한 체세포 변이를 확인한 후, 구조적 변이를 분석하기 위해 정상 세포와 종양 세포 사이에 pair-wise analysis를 실시하였다. 각 샘플링 단계에서 상이한 유전자 변이 및 발현 패턴을 분석하여 종양 진행과 관련있는 유전자들을 동정하였다.
1-4. 골전이와 관련된 최소 개수의 특정 유전자 마커 동정
벌점화 회귀 기법들(penalized regression techniques) 중 하나인 라소 회귀 법(Lasso regression method)은 광범위한 데이터 세트를 이용한 유전체 연구에 다양하게 이용된다. 벌점화 회귀 기법에서는 2개의 그룹 사이를 구별하기 위한 선형 회귀 모델에 대해 페널티 값(penalty value)이 부과된다. 상기 페널티 값을 제공함으로써 이러한 알고리즘은 훈련 데이터에 대한 과적응(overfitting) 문제를 최소화하고, 교차 확인을 통해 최고의 페널티 값을 찾고 예측 모델을 최적화한다.
상기 알고리즘을 최적화하는 동안에 각 변수의 계수는 0에 가까워지도록 작아지고, 소형의 부분집합만이 이러한 최적의 예측 모델에 사용된 중요한 특징으로서 남게 되므로, 최소의 특징을 이용하여 2개의 그룹을 효율적으로 구별할 수 있다. 본 발명에서는 본 분류 모델의 정확도를 높이고 전이성 골암을 분류하기 위해 최소 개수의 유전자를 동정하기 위한 경로를 구축하였다.
구체적으로, 최소 개수의 유전자 마커를 갖는 전이성 골암을 분류하는 최적의 예측 모델을 찾기 위해, 3개의 상이한 그룹의 분류 모델을 구축하였다. 제 1 그룹은 총 유전자 데이터로 트레이닝되었고, 제 2 그룹은 라소 방법에 의해 추출된 유전적 특징으로 트레이닝되었으며, 제 3 그룹은 라소 추출된 특징으로 트레이닝된 gradient boosting 알고리즘의 교차 확인에 의해 얻어진 더욱 적은 개수의 유전자로 트레이닝되었다. 각 그룹의 정확도는 Mann-Whitney test로 비교하였다.
실시예 2: 실험결과
2-1. 전이성 폐암 분류 : 라소 회귀 모델
적절한 수의 유전자 변이를 컷오프하는 threshold를 결정하는 동시에 테스트 및 트레이닝 에러를 최소화하기 위해, 도 2에 나타낸 바와 같이 10배 교차 확인에 의해 라소의 알파값은 1로 최적화하였다.
또한, 상기 과정에서 로지스틱 회귀에서 0의 계수를 갖지 않는 유전자 변이를 선택하였으며, 도 3은 x값이 1의 알파값에 이를 때 각 카테고리의 계수를 보여준다.
그 결과, 도 4에 나타낸 바와 같이, 그 발현이 종양 전이와 상관관계가 있고 GNAC가 가장 큰 계수를 갖는 32개의 유전자를 동정하였으며, 이때 수치는 각 유전자 변이 계수를 의미한다.
2-2. 최적의 유전자 마커 선별
가장 정확한 분류자를 동정하기 위해, bootstrap resampling을 수행하였으며, 각 분류자의 성능을 비교하였다.
구체적으로, 도 5에 나타낸 바와 같이, 최소 개수의 유전자를 갖는 전이성 골암을 분류하는 최적의 예측 모델을 찾기 위해, 데이터를 임의로 85% study set와 15% test set(test data #2)로 나누고, 상기 study set 데이터는 bootstrap resampling(N = 100)을 이용함으로써 80% train set와 20% test set(test data #1)로 무작위로 나누었다.
또한, 도 6에 나타낸 바와 같이, Decision tree(DT), AdaBoost(ABst), Gradient boost(GBT) 방법에 따르면, 총 80개의 변이 유전자로 분석한 경우에 다른 분류자들에 비해 정확도가 우수한 것으로 나타났다. 이때, 6개의 상이한 분류자는 train data set로 트레이닝되었으며, 이들의 정확도는 test data #1로 검증되었다.
또한, 라소 방법에 의해 동정된 32개 signature 유전자를 ecision tree(DT), AdaBoost(ABst), Gradient boost(GBT) 방법에 적용시 정확도가 우수하였으며, 이는 80개의 유전자로 분석된 정확도와는 유의하게 다르지 않았다.
GB 알고리즘은 32개 signature 유전자에 대해 정확도가 우수하였기 때문에, 전이성 암을 확인하는데 있어 중요한 소수의 유전자를 동정하기 위해 이러한 알고리즘을 선택하였다. 따라서 GB 알고리즘에서 전이성 종양을 확인하기 위해 많이 사용되었던 유전자를 추출하기 위해 추가의 조사를 수행한 결과, GNAQ, ARIDA1, MET 및 PTCH1 유전자를 선정하였다.
상기 세번째 결과에서 동정된 4개의 유전자에 대하여 6개의 분류자의 예측 가능성을 분석한 결과, 이들의 정확도가 특히 SVM(Support Vector Machine) 알고리즘에서 향상되었다는 것을 알 수 있었다.
2-3. 신규한 검증 데이터와의 성능 비교
상기 실시예 2-1의 결과에 기초하여, 분류자를 3개의 그룹 즉 80개, 32개 및 4개의 유전자 그룹으로 나누고, 제3자 test data (test DATA #2)와 그 성능을 비교하였다.
그 결과, 최종 검증 결과에 따르면, 도 7에 나타낸 바와 같이, 단지 4개의 유전자를 이용한 경우에 6개 분류자의 평균 정확도는 유의하게 높은 것으로 나타났다. 또한, 4개의 유전자 지문은 각 분류자 사이에서 표준 편차를 감소시킬 수 있었다.
또한, 모델 성능을 최종 평가하기 위하여 ROC 곡선 분석을 실시한 결과, 도 8에 나타낸 바와 같이, ROC 곡선에서 SVM(L), SVM(R) 및 GB의 AUC는 각각 0.95, 0.86 및 0.81를 보였다.
이상, 본 발명에서는 단계적인 검증을 통해 최적의 분류자를 발견하였을 뿐만 아니라 단계적인 방식으로 최소 개수의 유전자 및 분류자를 연속적으로 수득할 수 있는 새로운 경로를 확립하였다. 이같은 방법에서 노이즈 유전자를 제거함으로써 더욱 양호한 성능 및 정확도를 나타내는 예측 모델을 만들 수 있었다.
그 결과, 최종 4개의 유전자 GNAQ, ARID1A, MET 및 PTCH1에서의 변이가 폐암의 골전이를 확인/예측할 수 있는 최적의 마커로 이용될 수 있음을 확인하였다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야 한다.
본 발명의 예측 모델을 이용하여 최종 선정된 유전자 마커(GNAQ, ARID1A, MET, PTCH1)는 전체 골암 중 80% 이상의 높은 정확도로 폐암의 골전이를 확인/예측할 수 있는 바, 폐암의 조기 진단, 예후 및 치료에 유용하게 이용될 수 있다.

Claims (14)

  1. GNAQ(G Protein Subunit Alpha Q), ARID1A(AT-Rich Interaction Domain 1A), MET(mesenchymal-epithelial transition factor) 및 PTCH1(Protein Patched Homolog 1)로 이루어진 군에서 선택되는 하나 이상의 유전자의 변이체를 포함하는, 골전이성 폐암 진단용 마커 조성물.
  2. 제 1 항에 있어서, 상기 폐암은 비소세포페암인 것을 특징으로 하는, 마커 조성물.
  3. 제 1 항에 있어서, 상기 GNAQ 유전자 변이체는 서열번호 1의 염기서열, 상기 ARID1A 유전자 변이체는 서열번호 2의 염기서열, 상기 MET 유전자 변이체는 서열번호 3의 염기서열, 및/또는 상기 PTCH1 유전자 변이체는 서열번호 4의 염기서열로 이루어진 것을 특징으로 하는, 마커 조성물.
  4. GNAQ(G Protein Subunit Alpha Q), ARID1A(AT-Rich Interaction Domain 1A), MET(mesenchymal-epithelial transition factor) 및 PTCH1(Protein Patched Homolog 1)로 이루어진 군에서 선택되는 하나 이상의 유전자의 변이체를 검출할 수 있는 물질을 포함하는, 골전이성 폐암 진단용 조성물.
  5. 제 4 항에 있어서, 상기 폐암은 비소세포페암인 것을 특징으로 하는, 진단용 조성물.
  6. 제 4 항에 있어서, 상기 검출 물질은 상기 유전자 변이체에 특이적으로 결합할 수 있는 프로브 또는 프라이머인 것을 특징으로 하는, 진단용 조성물.
  7. 제 4 항에 있어서, 상기 GNAQ 유전자 변이체는 서열번호 1의 염기서열, 상기 ARID1A 유전자 변이체는 서열번호 2의 염기서열, 상기 MET 유전자 변이체는 서열번호 3의 염기서열, 및/또는 상기 PTCH1 유전자 변이체는 서열번호 4의 염기서열로 이루어진 것을 특징으로 하는, 진단용 조성물.
  8. 제 4 항 내지 제 7 항 중 어느 한 항에 따른 조성물을 포함하는, 골전이성 폐암 진단용 키트.
  9. 제 8 항에 있어서, 상기 폐암은 비소세포페암인 것을 특징으로 하는, 진단용 키트.
  10. (a) 환자의 생물학적 시료로부터 GNAQ(G Protein Subunit Alpha Q), ARID1A(AT-Rich Interaction Domain 1A), MET(mesenchymal-epithelial transition factor) 및 PTCH1(Protein Patched Homolog 1)로 이루어진 군에서 선택되는 하나 이상의 유전자의 변이체를 검출하는 단계; 및
    (b) 상기 유전자의 변이체가 검출될 경우 골전이성 폐암으로 판정하는 단계를 포함하는, 골전이성 폐암의 진단을 위한 정보제공방법.
  11. 제 10 항에 있어서, 상기 폐암은 비소세포페암인 것을 특징으로 하는, 정보제공방법.
  12. 제 10 항에 있어서, 상기 검출 방법은 상기 유전자 변이체에 대한 염기서열분석인 것을 특징으로 하는, 정보제공방법.
  13. 제 10 항에 있어서, 상기 생물학적 시료는 조직, 세포, 혈액, 혈장 또는 뇨인 것을 특징으로 하는, 정보제공방법.
  14. 제 10 항에 있어서, 상기 GNAQ 유전자 변이체는 서열번호 1의 염기서열, 상기 ARID1A 유전자 변이체는 서열번호 2의 염기서열, 상기 MET 유전자 변이체는 서열번호 3의 염기서열, 및/또는 상기 PTCH1 유전자 변이체는 서열번호 4의 염기서열로 이루어진 것을 특징으로 하는, 정보제공방법.
PCT/KR2017/011771 2017-01-10 2017-10-24 폐암의 골전이 특이적 변이 유전자 마커 WO2018131777A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170003286 2017-01-10
KR10-2017-0003286 2017-01-10

Publications (1)

Publication Number Publication Date
WO2018131777A1 true WO2018131777A1 (ko) 2018-07-19

Family

ID=62840537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011771 WO2018131777A1 (ko) 2017-01-10 2017-10-24 폐암의 골전이 특이적 변이 유전자 마커

Country Status (1)

Country Link
WO (1) WO2018131777A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080750A1 (ko) * 2014-11-18 2016-05-26 사회복지법인 삼성생명공익재단 암 유전체 돌연변이 검출용 유전자 패널

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080750A1 (ko) * 2014-11-18 2016-05-26 사회복지법인 삼성생명공익재단 암 유전체 돌연변이 검출용 유전자 패널

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DATABASE Nucleotide [O] 2 June 2016 (2016-06-02), "PREDICTED: Pan troglodytes G protein subunit alpha q (GNAQ), transcript variant X1, mRNA", XP055514901, retrieved from NCBI Database accession no. XM_016960988.1 *
DATABASE Nucleotide [O] 6 June 2016 (2016-06-06), "Homo sapiens MET proto-oncogene, receptor tyrosine kinase (MET), transcript variant X1, mRNA", XP055514909, retrieved from NCBI Database accession no. XM_011516223.1 *
HONG, Z. ET AL.: "Activation of Hedgehog Signaling Pathway in Human Non-small Cell Lung Cancers", PATHOLOGY ONCOLOGY RESEARCH, vol. 20, no. 4, 9 April 2014 (2014-04-09), pages 917 - 922, XP035399188 *
SADIQ, A. A. ET AL.: "MET as a Possible Target for Non-small- cell Lung Cancer", JOURNAL OF CLINICAL ONCOLOGY, vol. 31, no. 8, 10 March 2013 (2013-03-10), pages 1089 - 1096, XP009174131 *
SEO, S. ET AL.: "Signature Genetic Mutations Related to Refractory Bone Metastasis in Non-small Cell Lung Cancers", ORS 2017 ANNUAL MEETING POSTER 1292., 20 March 2017 (2017-03-20), San Diego, California, USA, XP055514899 *
SOCCA, G. ET AL.: "Mutational Profile of Non-small Cell Lung Cancer by Targeted Next-generation Sequencing in the Mexican Population", JOURNAL OF THORACIC ONCOLOGY, vol. 11, no. 2, February 2016 (2016-02-01), pages S24 - S25, XP055514894 *
ZHANG, Y. ET AL.: "ARID 1A Is Downregulated in Non-small Cell Lung Cancer and Regulates Cell Proliferation and Apoptosis", TUMOUR BIOLOGY, vol. 35, no. 6, June 2014 (2014-06-01), pages 5701 - 5707 *

Similar Documents

Publication Publication Date Title
CN109825586B (zh) 用于肺癌检测的DNA甲基化qPCR试剂盒及使用方法
CN108866192B (zh) 基于甲基化修饰的肿瘤标记物stamp-ep1
CN109504780B (zh) 用于肺癌检测的DNA甲基化qPCR试剂盒及使用方法
CN110387421A (zh) 用于肺癌检测的DNA甲基化qPCR试剂盒及使用方法
BRPI0709397A2 (pt) propagação de células primárias
CN110257525B (zh) 对肿瘤诊断具有显著性的标记物及其用途
CN109852672B (zh) 一种筛选急性髓系白血病dna甲基化预后标志物的方法
WO2020135859A1 (zh) 基于甲基化修饰的肿瘤标记物stamp-ep3
CN113355415B (zh) 用于食管癌诊断或辅助诊断的检测试剂及试剂盒
CN108342477A (zh) 基于多个基因诊断肺癌患者的检测试剂盒
CN109112216A (zh) 三重qPCR检测DNA甲基化的试剂盒和方法
WO2020135862A1 (zh) 基于甲基化修饰的肿瘤标记物stamp-ep5
CN107630093B (zh) 用于诊断肝癌的试剂、试剂盒、检测方法及用途
WO2022124717A1 (ko) 인공지능을 이용하여 도출된 리보좀 유전자 세트를 이용한 유방암 예후 예측방법
CN115896281A (zh) 甲基化生物标记物、试剂盒及用途
CN109371138A (zh) 基于甲基化修饰的肿瘤标记物stamp-ep4
WO2020209590A1 (ko) 신경교종의 진단 또는 예후 예측용 조성물 및 이에 관한 정보를 제공하는 방법
WO2022124718A1 (ko) 인공지능을 이용하여 도출된 미토콘드리아 리보좀 유전자 세트를 이용한 유방암 예후 예측방법
WO2018131777A1 (ko) 폐암의 골전이 특이적 변이 유전자 마커
KR20240021975A (ko) 종양 평가를 위한 물질 및 방법
CN115851923A (zh) 用于检测结直肠癌淋巴结转移的甲基化生物标记物及其应用
WO2020096247A1 (ko) 유방암 조직 내 세포 유래 돌연변이를 검출하기 위한 프로브 제조 및 검출 방법
CN109988844A (zh) 基于甲基化修饰的肿瘤标记物stamp-ep7及其应用
CN110055330A (zh) 基于甲基化修饰的肿瘤标记物stamp-ep9及其应用
CN110117660A (zh) 可用于肿瘤鉴定的标志物stamp-ep11及其检测试剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891554

Country of ref document: EP

Kind code of ref document: A1