WO2018131234A1 - ピエゾ抵抗素子、力学量検知センサおよびマイクロフォン - Google Patents

ピエゾ抵抗素子、力学量検知センサおよびマイクロフォン Download PDF

Info

Publication number
WO2018131234A1
WO2018131234A1 PCT/JP2017/036747 JP2017036747W WO2018131234A1 WO 2018131234 A1 WO2018131234 A1 WO 2018131234A1 JP 2017036747 W JP2017036747 W JP 2017036747W WO 2018131234 A1 WO2018131234 A1 WO 2018131234A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoresistive element
field effect
effect transistor
strain
layer
Prior art date
Application number
PCT/JP2017/036747
Other languages
English (en)
French (fr)
Inventor
雅信 野村
義治 芳井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018131234A1 publication Critical patent/WO2018131234A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors

Definitions

  • the present invention relates to a piezoresistive element, and more particularly to a piezoresistive element having a dramatically higher gauge factor and higher detection sensitivity than conventional ones.
  • the present invention also relates to a mechanical quantity detection sensor such as a pressure sensor, a strain gauge, an acceleration sensor, and an angular velocity sensor using the piezoresistive element of the present invention. Furthermore, the present invention relates to a microphone using the piezoresistive element of the present invention.
  • Piezoresistive elements are used for mechanical quantity detection sensors such as pressure sensors, strain gauges, acceleration sensors, angular velocity sensors, and microphones.
  • the piezoresistive element may be formed by implanting ions into a membrane or beam made of Si or the like.
  • FIG. 10 shows a pressure sensor 1000 disclosed in Patent Document 1.
  • the pressure sensor 1000 includes an SOI (Silicon on Insulator) substrate 104 composed of a Si substrate 101, a SiO 2 layer 102, and a surface Si film 103.
  • An opening 105 is formed in the Si substrate 101 by etching, and the displacement portion 106 of the membrane structure is configured by the SiO 2 layer 102 and the surface Si film 103 in this portion.
  • a piezoresistive element 107 is formed in the displacement portion 106 by ion implantation.
  • the displacement portion 106 bends according to the pressure to be detected, and the resistance value of the piezoresistive element 107 changes accordingly.
  • the pressure sensor 1000 detects the magnitude of pressure from the magnitude of change in the resistance value of the piezoresistive element 107.
  • the gauge factor K which is a figure of merit of the piezoresistive element, is obtained by the following relational expression (Formula 1).
  • a piezoresistive element made of a single material is said to have a limit in detection sensitivity. Since the piezoresistive element 107 of the pressure sensor 1000 uses a piezoresistive material made of a single material doped with Si, the detection sensitivity is limited.
  • the gauge factor K of a piezoresistive element using a piezoresistive material doped with Si which is commercially available at the time of filing of the present application, is considered to be about 180 at most.
  • An object of the present invention is to provide a piezoresistive element having a high gauge factor and high detection sensitivity.
  • Another object of the present invention is to provide a mechanical quantity detection sensor such as a pressure sensor, a strain gauge, an acceleration sensor, an angular velocity sensor, and a microphone with high detection sensitivity by using the piezoresistive element of the present invention. To do.
  • a piezoresistive element of the present invention includes a field effect transistor and a piezoelectric capacitor, and the piezoelectric capacitor is connected in series to the gate electrode of the field effect transistor, and the piezoelectric element
  • the charge generated when strain is applied to the body capacitor varies the gate voltage of the field effect transistor, changes the resistance value between the source electrode and the drain electrode of the field effect transistor, and the magnitude of the change in resistance value
  • the magnitude of strain is detected, and the resistance value has an area that changes exponentially with respect to the magnitude of the strain, and an area that changes exponentially detects the magnitude of strain. I was going to use it.
  • a field effect transistor having a pn junction inside can be used.
  • a highly reliable piezoresistive element can be manufactured with high productivity by using a widely used Si semiconductor processing technique.
  • a field effect transistor having no pn junction can be used as the field effect transistor.
  • the piezoresistive element (field effect transistor) can be realized with a simple structure. Further, since there is no pn junction, there is an advantage that noise caused by the pn junction is not superimposed on the detection signal.
  • a mechanical quantity detection sensor such as a pressure sensor, a strain gauge, an acceleration sensor, or an angular velocity sensor can be produced using the piezoresistive element of the present invention.
  • a microphone can be manufactured using the piezoresistive element of the present invention.
  • the piezoresistive element of the present invention has a markedly higher gauge factor and higher detection sensitivity than conventional ones.
  • the mechanical quantity detection sensor of the present invention uses the piezoresistive element of the present invention having a high gauge factor, the detection sensitivity is high.
  • the mechanical quantity detection sensor of the present invention uses the piezoresistive element of the present invention having a high gauge factor, it can detect extremely small strain. Therefore, the mechanical quantity detection sensor of the present invention can be designed to operate the mechanical structure with a small load, and can be more reliable than the conventional one. Specifically, since it is possible to design the displacement amount of the displacement portion with respect to the strain to be small, it is possible to provide a highly reliable mechanical quantity detection sensor that does not break the displacement portion even when used for a long period of time. .
  • the mechanical quantity detection sensor of the present invention uses the piezoresistive element of the present invention having a high gauge factor, it can be designed to have a large dynamic range that detects a small strain to a large strain. is there.
  • the microphone of the present invention uses the piezoresistive element of the present invention having a high gauge factor, the sensitivity is high.
  • the microphone of the present invention can be a highly reliable microphone that does not break even when used for a long period of time, or a microphone with a large dynamic range.
  • FIG. 1A is a cross-sectional view showing a pressure sensor 100 according to the first embodiment.
  • FIG. 1B is a cross-sectional view showing the piezoresistive element 200 according to the first embodiment.
  • 2 is a circuit diagram of a piezoresistive element 200.
  • FIG. 3 (A) is a I DS -V G characteristic diagram of the piezoresistive element 200.
  • Figure 3 (B) is a Log (I DS) -V G characteristic diagram of the piezoresistive element 200.
  • 3 is an explanatory diagram showing a field effect transistor according to model X.
  • FIG. 4 is a Log (R DS ) - ⁇ characteristic diagram of a piezoresistive element 200.
  • FIG. FIG. 7A is a cross-sectional view showing a pressure sensor 300 according to the second embodiment.
  • FIG. 7B is a cross-sectional view showing a piezoresistive element 400 according to the second embodiment. It is explanatory drawing which shows the field effect transistor concerning Model Y. 6 is a Log (R DS ) - ⁇ characteristic diagram of a piezoresistive element 400.
  • each embodiment shows an embodiment of the present invention by way of example, and the present invention is not limited to the content of the embodiment. Moreover, it is also possible to implement combining the content described in different embodiment, and the implementation content in that case is also included in this invention. Further, the drawings are for helping understanding of the embodiment, and may not be drawn strictly. For example, a drawn component or a dimensional ratio between the components may not match the dimensional ratio described in the specification. In addition, the constituent elements described in the specification may be omitted in the drawings or may be drawn with the number omitted.
  • FIG. 1A shows a pressure sensor 100 according to the first embodiment.
  • FIG. 1B shows the piezoresistive element 200 according to the first embodiment formed in the pressure sensor 100.
  • 1A and 1B are both cross-sectional views.
  • FIG. 2 shows a circuit diagram of the piezoresistive element 200.
  • the pressure sensor 100 includes a membrane 1 and a support 2 that supports the membrane 1.
  • the membrane 1 is a portion that is displaced (curved) when pressure is applied to the pressure sensor 100.
  • a Si substrate made of Si is prepared, and the surface of the Si substrate is oxidized to produce a membrane forming substrate 5 in which the Si layer 3 and the SiO 2 layer 4 are laminated. It is produced by forming the opening 6 on the back surface of the Si layer 3 of the substrate 5 by etching. That is, the Si layer 3 and the SiO 2 layer 4 in the region where the opening 6 of the membrane forming substrate 5 is formed correspond to the membrane 1.
  • the thickness of the Si layer 3 is 10 ⁇ m.
  • the thickness of the SiO 2 layer 4 is 20 nm.
  • the Si layer 3 and the SiO 2 layer 4 in the region where the opening 6 of the membrane forming substrate 5 is not formed correspond to the support 2.
  • the pressure sensor 100 is formed with four piezoresistive elements 200 which are not understood from FIG. Each of the piezoresistive elements 200 is formed at a boundary portion between the membrane 1 and the support 2.
  • the piezoresistive element 200 includes a field effect transistor 20A and a piezoelectric capacitor 20B.
  • the field effect transistor 20A is formed on the support 2.
  • the field effect transistor 20A is formed on a p-type Si substrate 7 in which a pair of n-type Si regions 7a and 7b are formed apart from each other.
  • the p-type Si substrate 7 is manufactured by the FZ method (floating zone method) or the CZ method (Czochralski method).
  • the n-type Si regions 7 a and 7 b are formed by implanting ions into the Si layer 3 constituting the support 2.
  • the carrier concentration of the p-type Si substrate 7 is 1E15 cm ⁇ 3 .
  • the carrier concentration of the n-type Si regions 7a and 7b is 1E16 cm ⁇ 3 .
  • the n-type Si region 7a is in contact with the drain electrode 10 described later, and the region on the side of the n-type Si region 7a in contact with the drain electrode 10 has a high concentration of 1E19 cm ⁇ 3 in order to make ohmic contact with the drain electrode 10. Has been.
  • the n-type Si region 7b is in contact with the source electrode 11 described later, and the region on the side of the n-type Si region 7b in contact with the source electrode 11 has a high level of 1E19 cm ⁇ 3 in order to make ohmic contact with the source electrode 11. It is in concentration.
  • a gate insulating film 8 made of SiO 2 is formed on the p-type Si substrate 7 between the separated n-type Si regions 7a and 7b.
  • the thickness of the gate insulating film 8 is 20 nm.
  • a gate electrode 9 made of polysilicon is formed on the gate insulating film 8.
  • the thickness of the gate electrode 9 is 200 nm.
  • a pair of openings is provided between the gate insulating film 8 and the SiO 2 layers 4 on both sides thereof, and a drain electrode 10 made of Al is formed on the n-type Si region 7a exposed from the opening, and is exposed from the opening.
  • a source electrode 11 made of Al is formed on the n-type Si region 7b.
  • Each of the drain electrode 10 and the source electrode 11 has a thickness of 200 nm.
  • a first protective layer 12 made of SiO 2 is formed so as to cover the gate electrode 9, the drain electrode 10, and the source electrode 11.
  • the thickness of the first protective layer 12 is 500 nm.
  • an opening is provided in the first protective layer 12, and an extraction electrode 13 is extracted from the gate electrode 9 exposed from the opening.
  • the extraction electrode 13 is formed in a two-layer structure of an Al layer having a thickness of 100 nm and a Pt layer having a thickness of 50 nm formed thereon.
  • the extraction electrode 13 is connected to the piezoelectric capacitor 20B.
  • the piezoelectric capacitor 20B is formed on the membrane 1 (Si layer 3 and SiO 2 layer 4) of the pressure sensor 100.
  • the piezoelectric capacitor 20B includes a lower electrode 14.
  • the lower electrode 14 is formed integrally with the extraction electrode 13 extracted from the gate electrode 9 of the field effect transistor 20A, and although not shown, a 100 nm thick Al layer and a 50 nm Pt formed thereon are formed. It consists of a two-layer structure with layers.
  • a piezoelectric body 15 made of AlN is formed on the lower electrode 14.
  • the thickness of the piezoelectric body 15 is 100 nm.
  • An upper electrode 16 made of Al is formed on the piezoelectric body 15.
  • the thickness of the upper electrode 16 is 100 nm.
  • a second protective layer 17 made of SiO 2 is formed so as to cover the field effect transistor 20A and the piezoelectric capacitor 20B.
  • the thickness of the second protective layer 17 is 500 nm.
  • Each of the four piezoresistive elements 200 formed in the pressure sensor 100 includes a circuit shown in FIG. That is, the piezoresistive element 200 includes a circuit in which the piezoelectric capacitor 20B is connected in series to the gate electrode of the field effect transistor 20A.
  • the pressure sensor 100 detects the magnitude of the pressure applied to the membrane 1 based on the magnitude of the change in resistance value between the source electrode 11 and the drain electrode 10 of the field effect transistor 20A of the piezoresistive element 200.
  • I DS -V G characteristics of the field effect transistor 20A - source-drain current gate voltage characteristic
  • FIG. 3 (A) the vertical axis I DS is a linear representation the I DS -V G characteristics.
  • FIG. 3 (B), the vertical axis I DS log scale was Log (I DS) is -V G characteristics.
  • 3A and 3B are simulation values and are calculated using the model X of the field effect transistor shown in FIG. 4 matched with the field effect transistor 20A. The channel width corresponding to the depth in FIG. 4 was set to 1 mm.
  • I DS -V G characteristics, and a semiconductor carrier concentration is adjusted by a gate electrode species.
  • model X the work function of the gate electrode was set to 4.25 eV.
  • the piezoelectric capacitor 20 ⁇ / b> B of the piezoresistive element 200 generates a charge Q when a strain is applied to the piezoelectric body 15.
  • the generated charge Q can be obtained by the following relational expression (Formula 2)
  • the capacitance Cp of the piezoelectric capacitor 20B can be obtained by the following relational expression (Formula 3).
  • the gate voltage V G can be obtained by the following (formula 4).
  • the piezoresistive element 200, the piezoelectric body and the charge Q on the piezoelectric layer 15 strain ⁇ is applied in the capacitor 20B is generated, the gate voltage V G of the field effect transistor 20A is varied by the generated charge Q . Then, by the gate voltage V G of the field effect transistor 20A is changed, the source of the field effect transistor 20A - drain resistance R DS is changed.
  • FIG. 6 shows Log (R DS ) - ⁇ characteristics of the piezoresistive element 200 according to the present embodiment.
  • the pressure sensor 100 uses a region (region indicated by a thick solid line) in which the Log (R DS ) - ⁇ characteristic of the piezoresistive element 200 is linear in FIG.
  • the magnitude of the strain ⁇ (pressure) applied to the piezoelectric capacitor 20B) is detected.
  • the pressure sensor 100 detects the magnitude of the strain ⁇ applied to the piezoresistive element 200 in the region of ⁇ 3E-4 ⁇ ⁇ ⁇ 1E-4.
  • the gauge factor K of the piezoresistive element 200 according to the present embodiment is estimated.
  • the gauge factor K the following (Equation 1) described above is applied.
  • the gauge factor K varies greatly depending on whether the initial resistance value is R or R + ⁇ R. Therefore, in such a case, it is preferable to obtain by the following (Expression 5) in which (Expression 1) is replaced with a differential form.
  • the piezoresistive element 200 according to the present embodiment has a gauge factor K that is about two orders of magnitude higher than that of a conventional piezoresistive element using Si material, and has extremely high detection sensitivity.
  • the pressure sensor 100 according to the present embodiment using the piezoresistive element 200 having a dramatically higher gauge factor K than the conventional one also has extremely high detection sensitivity.
  • a Si substrate made of Si is prepared.
  • the Si substrate is formed by the FZ method and exhibits p-type conductivity.
  • the surface of the Si substrate is oxidized to produce a membrane-forming substrate 5 in which the Si layer 3 and the SiO 2 layer 4 are laminated.
  • ions are implanted into each of the four regions of the Si layer 3 in the membrane forming substrate 5 where the field effect transistor 20A is to be formed, thereby forming n-type Si regions 7a and 7b, respectively.
  • the SiO 2 layer 4 of the membrane forming substrate 5 is processed to form a gate insulating film 8. That is, a pair of openings is formed on both sides of the gate insulating film 8 to separate the gate insulating film 8 from the SiO 2 layer 4.
  • One opening is an opening for forming the source electrode 11, and the other opening is an opening for forming the drain electrode 10.
  • the gate electrode 9 is formed on the gate insulating film 8
  • the drain electrode 10 is formed on the n-type Si region 7a
  • the source electrode 11 is formed on the n-type Si region 7b, thereby completing the field effect transistor 20A.
  • the first protective layer 12 is formed on the field effect transistor 20A. Subsequently, an opening necessary for wiring is formed in the first protective layer 12.
  • the extraction electrode 13 that connects the field effect transistor 20A and the piezoelectric capacitor 20B is formed.
  • One end of the extraction electrode 13 is connected to the gate electrode 9 of the field effect transistor 20A.
  • the other end of the extraction electrode 13 is extracted to the region of the SiO 2 layer 4 of the membrane forming substrate 5 where the piezoelectric capacitor 20B is to be formed. This portion becomes the lower electrode 14.
  • the piezoelectric body 15 is formed on the lower electrode 14 in the region where the piezoelectric capacitor 20B is to be formed. Subsequently, the upper electrode 16 is formed on the piezoelectric body 15 to complete the piezoelectric capacitor 20B.
  • the second protective layer 17 is formed on the field effect transistor 20A and the piezoelectric capacitor 20B. Subsequently, an opening necessary for wiring is formed in the second protective layer 17.
  • an opening 6 is formed on the back surface of the Si layer 3 of the membrane forming substrate 5 by etching to form the membrane 1 to complete the pressure sensor 100 including the four piezoresistive elements 200.
  • FIG. 7A shows a pressure sensor 300 according to the second embodiment.
  • FIG. 7B shows a piezoresistive element 400 according to the second embodiment formed in the pressure sensor 300.
  • the configurations of the pressure sensor 300 and the piezoresistive element 400 that are not changed from the pressure sensor 100 and the piezoresistive element 200 according to the first embodiment are the same. The symbol is attached.
  • four piezoresistive elements 400 are formed in the pressure sensor 300.
  • Each piezoresistive element 400 has a structure in which a field effect transistor 40A and a piezoelectric capacitor 40B are connected to each other.
  • a membrane forming substrate 5 in which a Si substrate is prepared for the membrane 1, the surface of the Si substrate is oxidized, and the Si layer 3 and the SiO 2 layer 4 are laminated. And an opening 6 is formed on the back surface of the Si layer 3 of the membrane-forming substrate 5 by etching.
  • the membrane 31 is an SOI substrate in which a first Si layer 41, a first SiO 2 layer 42, and a second Si layer 43 are laminated.
  • a substrate having a p-type Si active layer is prepared, the surface of the second Si layer 43 is oxidized to form a second SiO 2 layer 44, and the first Si layer 41, the first SiO 2 layer 42, the first A membrane forming substrate 45 in which two Si layers 43 and a second SiO 2 layer 44 are laminated is formed, and an opening 6 is formed on the back surface of the first Si layer 41 of the membrane forming substrate 45 by etching. It was produced by.
  • the piezoresistive element 200 ions are implanted into the Si layer 3 of the support 2 part to form a pair of n-type Si regions 7b and 7c.
  • a pair of p ++ type Si regions 37b and 37c having a doping amount larger than that of the p type Si active layer 37a is formed instead.
  • the gate insulating film 8 and the gate electrode 9 are formed on the p-type Si active layer 37a
  • the drain electrode 10 is formed on the p ++-type Si region 37b
  • p The source electrode 11 was formed on the ++ type Si region 37c.
  • the field effect transistor 20A of the piezoresistive element 200 has a pn junction inside, but the field effect transistor 40A of the piezoresistive element 400 does not have a pn junction inside.
  • the piezoelectric capacitor 40B of the piezoresistive element 400 has the same structure as the piezoelectric capacitor 20B of the piezoresistive element 200. However, for the sake of convenience, different symbols (“20B” and “40B”) are given to both.
  • the field effect transistor 40A of the piezoresistive element 400 will be further described.
  • the carrier concentration of the p-type Si active layer 37a is 1E16 cm ⁇ 3 .
  • the carrier concentration of the p ++ type Si regions 37b and 37c is 1E19 cm ⁇ 3 .
  • the p-type Si active layer 37a and the p ++-type Si regions 37b and 37c have a thickness of 55 nm.
  • a gate insulating film 8 made of SiO 2 is formed on the p-type Si active layer 37a between the p ++-type Si regions 37b and 37c which are separated from each other.
  • the thickness of the gate insulating film 8 is 20 nm.
  • a gate electrode 9 made of Ni is formed on the gate insulating film 8.
  • the thickness of the gate electrode 9 is 200 nm.
  • a pair of openings is provided between the gate insulating film 8 and the second SiO 2 layers 44 on both sides thereof, and the drain electrode 10 made of Al is formed on the p ++ type Si region 37b exposed from the opening.
  • the source electrode 11 made of Al is formed on the p ++ type Si region 37c exposed from the opening.
  • Each of the drain electrode 10 and the source electrode 11 has a thickness of 200 nm.
  • a first protective layer 12 made of SiO 2 is formed so as to cover the gate electrode 9, the drain electrode 10, and the source electrode 11.
  • the thickness of the first protective layer 12 is 500 nm.
  • an opening is provided in the first protective layer 12, and an extraction electrode 13 is extracted from the gate electrode 9 exposed from the opening.
  • the extraction electrode 13 is formed in a two-layer structure of an Al layer having a thickness of 100 nm and a Pt layer having a thickness of 50 nm formed thereon.
  • the extraction electrode 13 is connected to the piezoelectric capacitor 40B.
  • the piezoelectric capacitor 40B of the piezoresistive element 400 is the same as the piezoelectric capacitor 20B of the piezoresistive element 200, the description thereof is omitted.
  • the piezoresistive element 400 having the above structure has the Log (R DS ) - ⁇ characteristic shown in FIG.
  • Log (R DS) -V G characteristics of Figure 9 were matched to the field effect transistor 40A, it is obtained by calculation using a model Y of the field effect transistor shown in FIG.
  • the channel width corresponding to the depth of FIG. 8 was set to 1 mm.
  • the work function of the gate electrode was set to 4.85 eV.
  • the pressure sensor 300 is applied to the piezoresistive element 400 using a region (region indicated by a thick solid line) in which the Log (RDS) - ⁇ characteristic of the piezoresistive device 400 has a linear relationship in FIG.
  • the magnitude of the applied strain ⁇ (pressure) is detected.
  • the piezoresistive element 400 according to the present embodiment including the field effect transistor 40A that does not have a pn junction therein is also about two digits compared to the conventional piezoresistive element using Si material. It has a high gauge factor K and extremely high detection sensitivity.
  • the pressure sensor 300 according to this embodiment using the piezoresistive element 400 having a dramatically higher gauge factor K than the conventional one also has extremely high detection sensitivity. Note that the piezoresistive element 400 (pressure sensor 300) has an advantage that noise caused by the pn junction does not overlap the detection signal because the field-effect transistor 40A does not have a pn junction.
  • the gate insulating film 8 is formed on the p-type Si substrate 7, the drain electrode 10 is formed on the n-type Si region 7a, and the n-type Si region 7b is formed.
  • the source electrode 11 is formed, the p-type and the n-type are interchanged, the gate insulating film 8 is formed on the n-type Si substrate, the drain electrode 10 is formed on the p-type Si region, and the p-type Si is formed.
  • the source electrode 11 may be formed on the region.
  • the pressure sensors 100 and 300 are manufactured as the mechanical quantity detection sensors.
  • the type of the mechanical quantity detection sensor is arbitrary, for example, a strain gauge, an acceleration sensor, an angular velocity sensor, or the like. It may be.
  • a microphone may be constituted by the piezoresistive element (pressure sensor) of the present invention.

Abstract

ゲージ率が高く、検知感度が高いピエゾ抵抗素子を提供する。 電界効果トランジスタ20Aと圧電体キャパシタ20Bとを備え、電界効果トランジスタ20Aのゲート電極9に、圧電体キャパシタ20Bが直列に接続され、圧電体キャパシタ20Bに歪が印加された際に発生する電荷により、電界効果トランジスタ20Aのゲート電極9の電圧(ゲート電圧)を変動させ、ソース電極11とドレイン電極10との間の抵抗値を変化させ、抵抗値の変化の大きさから歪の大きさを検知し、抵抗値は歪の大きさに対して指数関数的に変化する領域を有し、指数関数的に変化する領域を歪の大きさを検知するのに使用するようにした。

Description

ピエゾ抵抗素子、力学量検知センサおよびマイクロフォン
 本発明は、ピエゾ抵抗素子に関し、さらに詳しくは、従来に比べて飛躍的にゲージ率が高く、検知感度が高いピエゾ抵抗素子に関する。
 また、本発明は、本発明のピエゾ抵抗素子を使用した圧力センサ、歪ゲージ、加速度センサ、角速度センサなどの力学量検知センサに関する。さらに、本発明は、本発明のピエゾ抵抗素子を使用したマイクロフォンに関する。
 圧力センサ、歪ゲージ、加速度センサ、角速度センサなどの力学量検知センサや、マイクロフォンに、ピエゾ抵抗素子が使用されている。
 ピエゾ抵抗素子は、Siなどからなるメンブレンや梁などに、イオンを注入して形成される場合がある。
 そのようなピエゾ抵抗素子を備えた圧力センサ(ピエゾ抵抗型MEMSセンサ)が、特許文献1(WO2014/088020A1号公報)に開示されている。図10に、特許文献1に開示された圧力センサ1000を示す。
 圧力センサ1000は、Si基板101、SiO層102、表面Si膜103からなるSOI(Silicon on Insulator)基板104を備えている。Si基板101には、エッチングによって開口105が形成され、この部分のSiO層102および表面Si膜103によって、メンブレン構造の変位部106が構成されている。変位部106には、イオン注入によってピエゾ抵抗素子107が形成されている。
 圧力センサ1000は、変位部106が、検知されるべき圧力に応じて湾曲し、それにともなってピエゾ抵抗素子107の抵抗値が変化する。圧力センサ1000は、ピエゾ抵抗素子107の抵抗値の変化の大きさから、圧力の大きさを検知する。
 一般的に、ピエゾ抵抗素子の性能指数であるゲージ率Kは、下記(式1)の関係式によって求められる。
Figure JPOXMLDOC01-appb-M000001
 ピエゾ抵抗素子のゲージ率Kは、大きいほど、検知感度が高く、歪の大きさを正確に検知することができるため好ましい。
WO2014/088020A1号公報
 単一材料からなるピエゾ抵抗素子は、検知感度に限界があるといわれている。圧力センサ1000のピエゾ抵抗素子107は、Siにドーピングをした単一材料からなるピエゾ抵抗材料を用いたものであるため、検知感度に限界があった。
 本願の出願時点において商用化されている、Siにドーピングをしたピエゾ抵抗材料を用いたピエゾ抵抗素子のゲージ率Kは、大きくても180程度に留まるものと考えられる。
 本発明は、ゲージ率が高く、検知感度の高いピエゾ抵抗素子を提供することを目的とする。また、本発明は、本発明のピエゾ抵抗素子を使用することによって、検知感度の高い、圧力センサ、歪ゲージ、加速度センサ、角速度センサなどの力学量検知センサや、マイクロフォンを提供することを目的とする。
 上述した従来の課題を解決するために、本発明のピエゾ抵抗素子は、電界効果トランジスタと、圧電体キャパシタと、を備え、電界効果トランジスタのゲート電極に、圧電体キャパシタが直列に接続され、圧電体キャパシタに歪が印加された際に発生する電荷により、電界効果トランジスタのゲート電圧を変動させ、電界効果トランジスタのソース電極とドレイン電極との間の抵抗値を変化させ、抵抗値の変化の大きさから、歪の大きさを検知し、抵抗値は、歪の大きさに対して、指数関数的に変化する領域を有し、指数関数的に変化する領域を、歪の大きさを検知するのに使用するようにした。
 電界効果トランジスタとして、p-n接合を内部に有する電界効果トランジスタを使用することができる。この場合には、広く汎用されているSi半導体の加工技術を使って、信頼性の高いピエゾ抵抗素子を、高い生産性で製造することができる。
 また、電界効果トランジスタとして、p-n接合を内部に有さない電界効果トランジスタを使用することができる。この場合には、ピエゾ抵抗素子(電界効果トランジスタ)を、簡素な構造で実現することができる。また、p-n接合が存在しないため、p-n接合に起因するノイズが検知信号に重畳しないという利点がある。
 本発明のピエゾ抵抗素子を使用して、圧力センサ、歪ゲージ、加速度センサ、角速度センサなどの力学量検知センサを作製することができる。また、本発明のピエゾ抵抗素子を使用して、マイクロフォンを作製することができる。
 本発明のピエゾ抵抗素子は、従来に比べて飛躍的にゲージ率が高く、検知感度が高い。
 本発明の力学量検知センサは、ゲージ率が高い本発明のピエゾ抵抗素子を使用しているため、検知感度が高い。
 また、本発明の力学量検知センサは、ゲージ率が高い本発明のピエゾ抵抗素子を使用しているため、極めて小さい歪を検知することができる。そのため、本発明の力学量検知センサは、機械的構造を小さな負荷で作動するように設計することができ、従来よりも信頼性の高いものとすることができる。具体的には、歪に対する変位部の変位量を小さなものに設計することが可能であるため、長期間使用しても変位部が破損しない、信頼性の高い力学量検知センサとすることができる。
 また、本発明の力学量検知センサは、ゲージ率が高い本発明のピエゾ抵抗素子を使用しているため、小さな歪から大きな歪までを検知する、ダイナミックレンジの大きなものに設計することも可能である。
 また、本発明のマイクロフォンは、ゲージ率が高い本発明のピエゾ抵抗素子を使用しているため、感度が高い。また、本発明のマイクロフォンは、長期間使用しても破損しない信頼性の高いマイクロフォンや、ダイナミックレンジの大きなマイクロフォンにすることができる。
図1(A)は、第1実施形態にかかる圧力センサ100を示す断面図である。図1(B)は、第1実施形態にかかるピエゾ抵抗素子200を示す断面図である。 ピエゾ抵抗素子200の回路図である。 図3(A)は、ピエゾ抵抗素子200のIDS-V特性図である。図3(B)は、ピエゾ抵抗素子200のLog(IDS)-V特性図である。 モデルXにかかる電界効果トランジスタを示す説明図である。 ピエゾ抵抗素子200のLog(RDS)-V特性図である。 ピエゾ抵抗素子200のLog(RDS)-ε特性図である。 図7(A)は、第2実施形態にかかる圧力センサ300を示す断面図である。図7(B)は、第2実施形態にかかるピエゾ抵抗素子400を示す断面図である。 モデルYにかかる電界効果トランジスタを示す説明図である。 ピエゾ抵抗素子400のLog(RDS)-ε特性図である。 特許文献1に記載された圧力センサ1000を示す断面図である。
 以下、図面とともに、本発明を実施するための形態について説明する。
 なお、各実施形態は、本発明の実施の形態を例示的に示したものであり、本発明が実施形態の内容に限定されることはない。また、異なる実施形態に記載された内容を組合せて実施することも可能であり、その場合の実施内容も本発明に含まれる。また、図面は、実施形態の理解を助けるためのものであり、必ずしも厳密に描画されていない場合がある。たとえば、描画された構成要素ないし構成要素間の寸法の比率が、明細書に記載されたそれらの寸法の比率と一致していない場合がある。また、明細書に記載されている構成要素が、図面において省略されている場合や、個数を省略して描画されている場合などがある。
 [第1実施形態]
 図1(A)に、第1実施形態にかかる圧力センサ100を示す。また、図1(B)に、圧力センサ100に形成した同じく第1実施形態にかかるピエゾ抵抗素子200を示す。なお、図1(A)、(B)は、いずれも断面図である。また、図2に、ピエゾ抵抗素子200の回路図を示す。
 第1実施形態にかかる圧力センサ100は、メンブレン1と、メンブレン1を支える支持体2を備えている。メンブレン1は、圧力センサ100に圧力が印加されたときに、変位(湾曲)する部分である。
 メンブレン1は、SiからなるSi基材を用意し、Si基材の表面を酸化させて、Si層3とSiO層4とが積層されたメンブレン形成用基材5を作製し、メンブレン形成用基材5のSi層3の裏面にエッチングによって開口6を形成することによって作製されたものである。すなわち、メンブレン形成用基材5の開口6を形成した領域の、Si層3およびSiO層4がメンブレン1に該当する。メンブレン1部分において、Si層3の厚みは10μmである。SiO層4の厚みは20nmである。
 メンブレン形成用基材5の開口6を形成していない領域の、Si層3およびSiO層4が支持体2に該当する。
 圧力センサ100には、図1(A)からは分からないが、4個のピエゾ抵抗素子200が形成されている。ピエゾ抵抗素子200は、それぞれ、メンブレン1と支持体2との境界部分に形成されている。
 ピエゾ抵抗素子200は、電界効果トランジスタ20Aと圧電体キャパシタ20Bとを備える。
 電界効果トランジスタ20Aは、支持体2上に形成されている。
 電界効果トランジスタ20Aは、内部に離間して1対のn型Si領域7a、7bが形成された、p型Si基板7に形成されている。p型Si基板7は、FZ法(フローティングゾーン法)、またはCZ法(チョクラルスキー法)により製造されたものである。n型Si領域7a、7bは、支持体2を構成するSi層3に、イオンを注入して形成したものである。
 p型Si基板7のキャリア濃度は1E15cm-3である。また、n型Si領域7a、7bのキャリア濃度は1E16cm-3である。ただし、n型Si領域7aは後述するドレイン電極10と接しており、n型Si領域7aのドレイン電極10と接する側の領域は、ドレイン電極10とオーミックコンタクトをとるために1E19cm-3の高濃度にされている。同様に、n型Si領域7bは後述するソース電極11と接しており、n型Si領域7bのソース電極11と接する側の領域は、ソース電極11とオーミックコンタクトをとるために1E19cm-3の高濃度にされている。
 離間しているn型Si領域7a、7b間の、p型Si基板7上に、SiOからなるゲート絶縁膜8が形成されている。ゲート絶縁膜8の厚みは20nmである。
 ゲート絶縁膜8上に、ポリシリコンからなるゲート電極9が形成されている。ゲート電極9の厚みは200nmである。
 ゲート絶縁膜8と、その両側のSiO層4との間に、1対の開口が設けられ、開口から露出したn型Si領域7a上にAlからなるドレイン電極10が形成され、開口から露出したn型Si領域7b上にAlからなるソース電極11が形成されている。ドレイン電極10、ソース電極11の厚みは、それぞれ、200nmである。
 ゲート電極9、ドレイン電極10、ソース電極11を覆うように、SiOからなる第1保護層12が形成されている。第1保護層12の厚みは500nmである。
 第1保護層12に開口を設け、開口から露出したゲート電極9から、引出電極13が引き出されている。図示しないが、引出電極13は、100nmの厚みのAl層と、その上に形成された50nmのPt層との2層構造に形成されている。引出電極13は、圧電体キャパシタ20Bに接続されている。
 圧電体キャパシタ20Bは、圧力センサ100のメンブレン1(Si層3およびSiO層4)上に形成されている。
 圧電体キャパシタ20Bは、下部電極14を備える。下部電極14は、電界効果トランジスタ20Aのゲート電極9から引き出された引出電極13と一体的に形成されており、図示しないが、100nmの厚みのAl層と、その上に形成された50nmのPt層との2層構造からなる。
 下部電極14上に、AlNからなる圧電体15が形成されている。圧電体15の厚みは100nmである。
 圧電体15上に、Alからなる上部電極16が形成されている。上部電極16の厚みは100nmである。
 電界効果トランジスタ20Aおよび圧電体キャパシタ20Bを覆うように、SiOからなる第2保護層17が形成されている。第2保護層17の厚みは500nmである。
 圧力センサ100に形成された4個のピエゾ抵抗素子200は、それぞれ、図2に示す回路を備える。すなわち、ピエゾ抵抗素子200は、電界効果トランジスタ20Aのゲート電極に、圧電体キャパシタ20Bが直列に接続された回路を備える。
 圧力センサ100に圧力が印加されると、メンブレン1が変位(湾曲)する。
 メンブレン1が変位すると、圧電体キャパシタ20Bのピエゾ抵抗素子200の圧電体15に歪が発生する。圧電体15に歪が発生すると、圧電体15に電荷が発生する。その電荷が引出電極13を経由して、電界効果トランジスタ20Aのゲート電極9の電圧(ゲート電圧)を変動させ、ソース電極11とドレイン電極10との間の抵抗値を変化させる。
 圧力センサ100は、メンブレン1に印加された圧力の大きさを、ピエゾ抵抗素子200の電界効果トランジスタ20Aのソース電極11とドレイン電極10との間の抵抗値の変化の大きさによって検知する。
 次に、ピエゾ抵抗素子200の電界効果トランジスタ20Aの特性について説明する。
 本実施形態における、電界効果トランジスタ20AのIDS‐V特性(ソース・ドレイン間電流‐ゲート電圧特性)を、図3(A)、図3(B)に示す。ただし、図3(A)は、縦軸IDSを線形表示したIDS-V特性である。図3(B)は、縦軸IDSを対数表示したLog(IDS)-V特性である。なお、図3(A)、図3(B)は、シミュレーション値であり、電界効果トランジスタ20Aに合致させた、図4に示す電界効果トランジスタのモデルXを用いて計算したものである。なお、図4の奥行に相当するチャンネル幅は1mmに設定した。IDS‐V特性は、半導体のキャリア濃度や、ゲート電極種などにより調整される。モデルXにおいては、ゲート電極の仕事関数を4.25eVに設定した。
 図3(B)に示すように、Log(IDS)-V特性においては、Log(IDS)とVとが直線関係になる領域(太い実線で示す領域)が存在し、この領域は一般にVが閾値電圧Vtよりも低いところに存在する。
 図3(B)の縦軸を抵抗値に変換すると、図5に示すLog(RDS)-V特性となり、Log(RDS)-V特性においても、Log(RDS)とV特性とが直線関係になる領域(太い実線で示す領域)が存在する。本実施形態においては、この直線領域がV=0Vを含むように設計している。なお、電界効果トランジスタ20Aのゲート容量Cは、ゲート絶縁膜8の形状、大きさなどから、8.9E-12Fと試算される。
 一方、ピエゾ抵抗素子200の圧電体キャパシタ20Bは、圧電体15に歪が印加されると電荷Qが発生する。AlNからなる圧電体15を、圧電定数d31=2.78pm/V、比誘電率ε=10.7、ヤング率Y=300GPa、膜厚t=100nmとし、キャパシタ面積Sを100μm×100μmとすると、発生する電荷Qは下記(式2)の関係式によって求めることができ、圧電体キャパシタ20Bの容量Cpは下記(式3)の関係式によって求めることができる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 圧電体15に発生した電荷Qは、圧電体キャパシタ20Bの圧電体キャパシタ容量Cpと電界効果トランジスタ20Aのゲート容量Cとの間で分配関係をもちながら、ゲート電極9側に流入してゲート電圧Vを変動させる。したがって、ゲート電圧Vは下記の(式4)で求めることができる。
Figure JPOXMLDOC01-appb-M000004
 以上のように、ピエゾ抵抗素子200は、圧電体キャパシタ20Bの圧電体15に歪εが印加されると電荷Qが発生し、発生した電荷Qによって電界効果トランジスタ20Aのゲート電圧Vが変動する。そして、電界効果トランジスタ20Aのゲート電圧Vが変動することによって、電界効果トランジスタ20Aのソース-ドレイン間抵抗RDSが変
化する。
 図6に、本実施形態にかかるピエゾ抵抗素子200のLog(RDS)-ε特性を示す。
 本実施形態にかかる圧力センサ100は、図6において、ピエゾ抵抗素子200のLog(RDS)-ε特性が直線関係にある領域(太い実線で示す領域)を使用して、ピエゾ抵抗素子200(圧電体キャパシタ20B)に印加された歪ε(圧力)の大きさを検知する。具体的には、圧力センサ100は、-3E-4≦ε≦1E-4の領域において、ピエゾ抵抗素子200に印加された歪εの大きさを検知する。直線部は、R=99660×exp(16100×ε)の関係式となり、印加された歪εに対して、ソース-ドレイン間抵抗RDSが大きく変化する。
 本実施形態にかかるピエゾ抵抗素子200のゲージ率Kを試算する。ゲージ率Kについては、既出の下記(式1)を適用するが、抵抗変化ΔRが大きい場合は、初期抵抗値をRでとるか、R+ΔRでとるかによって、ゲージ率Kが大きく異なってしまう。そこで、このような場合は、(式1)を微分形式に置換えた、下記(式5)で求めることが好ましい。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 (式5)に、本実施形態のR=99660×exp(16100×ε)を代入すると、ゲージ率Kは16100になる。本実施形態にかかるピエゾ抵抗素子200は、Si材料を使用した従来のピエゾ抵抗素子に比べて2桁程度高いゲージ率Kを備えており、極めて高い検知感度を備えている。そして、従来よりも飛躍的にゲージ率Kの高いピエゾ抵抗素子200を使用した本実施形態にかかる圧力センサ100も、極めて高い検知感度を備えている。
 次に、本実施形態にかかる圧力センサ100およびピエゾ抵抗素子200の製造方法の一例について、簡潔に説明する。なお、以下の各工程は、従来から電界効果トランジスタや薄膜キャパシタなどを作製するのに広く一般的に使用されている、成膜技術、フォトリソグラフィ技術、エッチング技術などを応用しておこなう。
 まず、メンブレン1を形成するために、SiからなるSi基材を用意する。Si基材はFZ法により形成されており、p型の伝導性を示す。
 次に、Si基材の表面を酸化させて、Si層3とSiO層4とが積層されたメンブレン形成用基材5を作製する。
 次に、メンブレン形成用基材5における、電界効果トランジスタ20Aを形成する4つの領域のSi層3に、それぞれイオンを注入して、n型Si領域7a、7bを、それぞれ形成する。
 次に、メンブレン形成用基材5のSiO層4を加工し、ゲート絶縁膜8を形成する。すなわち、ゲート絶縁膜8の両側に1対の開口を形成し、ゲート絶縁膜8をSiO層4から分離する。なお、一方の開口はソース電極11を形成するための開口となり、他方の開口はドレイン電極10を形成するための開口となる。
 次に、ゲート絶縁膜8上にゲート電極9、n型Si領域7a上にドレイン電極10、n型Si領域7b上にソース電極11を、それぞれ形成し、電界効果トランジスタ20Aを完成させる。
 次に、電界効果トランジスタ20A上に、第1保護層12を形成する。続いて、第1保護層12に、配線のために必要な開口を形成する。
 次に、電界効果トランジスタ20Aと圧電体キャパシタ20Bとを接続する引出電極13を形成する。なお、引出電極13の一端は、電界効果トランジスタ20Aのゲート電極9に接続される。引出電極13の他端は、メンブレン形成用基材5のSiO層4の、圧電体キャパシタ20Bを形成する領域上にまで引き出される。この部分は下部電極14となる。
 次に、圧電体キャパシタ20Bを形成する領域の下部電極14に、圧電体15を形成する。続いて、圧電体15上に、上部電極16を形成し、圧電体キャパシタ20Bを完成させる。
 次に、電界効果トランジスタ20Aおよび圧電体キャパシタ20B上に、第2保護層17を形成する。続いて、第2保護層17に、配線のために必要な開口を形成する。
 最後に、メンブレン形成用基材5のSi層3の裏面にエッチングによって開口6を形成し、メンブレン1を形成して、4つのピエゾ抵抗素子200を備えた圧力センサ100を完成させる。
 [第2実施形態]
 図7(A)に、第2実施形態にかかる圧力センサ300を示す。また、図7(B)に、圧力センサ300に形成した同じく第2実施形態にかかるピエゾ抵抗素子400を示す。なお、以下の説明および図7(A)、(B)において、第1実施形態にかかる圧力センサ100、ピエゾ抵抗素子200から変更していない圧力センサ300、ピエゾ抵抗素子400の構成については、同一の符号を付している。なお、圧力センサ300には、4個のピエゾ抵抗素子400が形成されている。また、各ピエゾ抵抗素子400は、それぞれ、電界効果トランジスタ40Aと圧電体キャパシタ40Bとが接続された構造からなる。
 第2実施形態にかかる圧力センサ300、ピエゾ抵抗素子400は、第1実施形態にかかる圧力センサ100、ピエゾ抵抗素子200の構成の一部に変更を加えた。
 具体的には、圧力センサ100では、メンブレン1を、Si基材を用意し、Si基材の表面を酸化させて、Si層3とSiO層4とが積層されたメンブレン形成用基材5を作製し、メンブレン形成用基材5のSi層3の裏面にエッチングによって開口6を形成することによって作製していた。圧力センサ300では、これに代えて、メンブレン31を、第1のSi層41、第1のSiO層42、第2のSi層43が積層されたSOI基板であり、前記のSi層43はp型Si活性層を有する基板を用意し、第2のSi層43の表面を酸化させて第2のSiO層44を形成し、第1のSi層41、第1のSiO2層42、第2のSi層43、第2のSiO2層44が積層されたメンブレン形成用基材45を作製し、メンブレン形成用基材45の第1のSi層41の裏面にエッチングによって開口6を形成することによって作製した。
 また、ピエゾ抵抗素子200では、支持体2部分のSi層3に、イオンを注入して、1対のn型Si領域7b、7cを形成していた。ピエゾ抵抗素子400では、これに代えて、p型Si活性層37aよりもドーピング量の多い1対のp++型Si領域37b、37cを形成した。そして、ピエゾ抵抗素子400の電界効果トランジスタ40Aは、p型Si活性層37a上にゲート絶縁膜8およびゲート電極9を形成し、p++型Si領域37b上にドレイン電極10を形成し、p++型Si領域37c上にソース電極11を形成した。ピエゾ抵抗素子200の電界効果トランジスタ20Aは内部にp-n接合を有していたが、ピエゾ抵抗素子400の電界効果トランジスタ40Aは内部にp-n接合を有していない。
 なお、ピエゾ抵抗素子400の圧電体キャパシタ40Bは、ピエゾ抵抗素子200の圧電体キャパシタ20Bと同一の構造からなる。ただし、便宜上、両者には異なる符号(「20B」と「40B」)を付した。
 ピエゾ抵抗素子400の電界効果トランジスタ40Aについて、さらに説明を進める。
 p型Si活性層37aのキャリア濃度は1E16cm-3である。p++型Si領域37b、37cのキャリア濃度は1E19cm-3である。p型Si活性層37a、p++型Si領域37b、37cの厚みは55nmである。
 離間しているp++型Si領域37b、37c間の、p型Si活性層37a上に、SiOからなるゲート絶縁膜8が形成されている。ゲート絶縁膜8の厚みは20nmである。
 ゲート絶縁膜8上に、Niからなるゲート電極9が形成されている。ゲート電極9の厚みは200nmである。
 ゲート絶縁膜8と、その両側の第2のSiO層44との間に、1対の開口が設けられ、開口から露出したp++型Si領域37b上にAlからなるドレイン電極10が形成され、開口から露出したp++型Si領域37c上にAlからなるソース電極11が形成されている。ドレイン電極10、ソース電極11の厚みは、それぞれ、200nmである。
 ゲート電極9、ドレイン電極10、ソース電極11を覆うように、SiOからなる第1保護層12が形成されている。第1保護層12の厚みは500nmである。
 第1保護層12に開口を設け、開口から露出したゲート電極9から、引出電極13が引き出されている。図示しないが、引出電極13は、100nmの厚みのAl層と、その上に形成された50nmのPt層との2層構造に形成されている。引出電極13は、圧電体キャパシタ40Bに接続されている。
 上述したとおり、ピエゾ抵抗素子400の圧電体キャパシタ40Bは、ピエゾ抵抗素子200の圧電体キャパシタ20Bと同一であるため、その説明を省略する。
 以上の構造からなるピエゾ抵抗素子400は、図9に示すLog(RDS)-ε特性を備える。なお、図9のLog(RDS)-V特性は、電界効果トランジスタ40Aに合致させた、図8に示す電界効果トランジスタのモデルYを用いて計算したものである。なお、図8の奥行に相当するチャンネル幅は1mmに設定した。モデルYにおいては、ゲート電極の仕事関数を4.85eVに設定した。
 ピエゾ抵抗素子400は、圧電体15に歪がない場合(ε=0)の抵抗値と、歪が印加された場合(ε=x)の抵抗値とが、大きく変化する。
 本実施形態にかかる圧力センサ300は、図9において、ピエゾ抵抗素子400のLog(RDS)-ε特性が直線関係にある領域(太い実線で示す領域)を使用して、ピエゾ抵抗素子400に印加された歪ε(圧力)の大きさを検知する。なお、直線部は、R=420000×exp(16800×ε)の関係式となり、印加された歪εに対して、ソース-ドレイン間抵抗RDSが大きく変化する。上述した(式5)にR=420000×exp(16800×ε)を代入してゲージ率Kを計算すると、ピエゾ抵抗素子400のゲージ率Kは16800になる。
 以上のように、内部にp-n接合を有していない電界効果トランジスタ40Aを備えた本実施形態にかかるピエゾ抵抗素子400も、Si材料を使用した従来のピエゾ抵抗素子に比べて2桁程度高いゲージ率Kを備えており、極めて高い検知感度を備えている。そして、従来よりも飛躍的にゲージ率Kの高いピエゾ抵抗素子400を使用した本実施形態にかかる圧力センサ300も、極めて高い検知感度を備えている。なお、ピエゾ抵抗素子400(圧力センサ300)は、電界効果トランジスタ40Aがp-n接合を有していないため、p-n接合に起因するノイズが検知信号に重畳しないという利点を備えている。
 以上、第1実施形態にかかる圧力センサ100、ピエゾ抵抗素子200、第2実施形態にかかる圧力センサ300、ピエゾ抵抗素子400について説明した。しかしながら、本発明が上述した内容に限定されることはなく、発明の趣旨に沿って、種々の変更が可能である。
 たとえば、第1実施形態にかかるピエゾ抵抗素子200では、p型Si基板7上にゲート絶縁膜8を形成し、n型Si領域7a上にドレイン電極10を形成し、n型Si領域7b上にソース電極11を形成したが、これらのp型とn型とを入れ替えて、n型Si基板上にゲート絶縁膜8を形成し、p型Si領域上にドレイン電極10を形成し、p型Si領域上にソース電極11を形成するようにしても良い。
 また、第1実施形態、第2実施形態では、力学量検知センサとして圧力センサ100、300を作製したが、力学量検知センサの種類は任意であり、たとえば、歪ゲージ、加速度センサ、角速度センサなどであっても良い。
 また、本発明のピエゾ抵抗素子(圧力センサ)により、マイクロフォンを構成しても良い。
1、31・・・メンブレン
2、32・・・支持体
3、41、43・・・Si層
4、42、44・・・SiO
5、45・・・メンブレン形成用基材
6、36・・・開口
7・・・p型Si基板
7b、7c・・・n型Si領域
8・・・ゲート絶縁膜
9・・・ゲート電極
10・・・ドレイン電極
11・・・ソース電極
12・・・第1保護層
13・・・引出電極
14・・・下部電極
15・・・圧電体
16・・・上部電極
17・・・第2保護層
20A、40A・・・電界効果トランジスタ
20B、40B・・・圧電体キャパシタ
100、300・・・圧力センサ
200、400・・ピエゾ抵抗素子

Claims (5)

  1.  電界効果トランジスタと、
     圧電体キャパシタと、を備え、
     前記電界効果トランジスタのゲート電極に、前記圧電体キャパシタが直列に接続され、
     前記圧電体キャパシタに歪が印加された際に発生する電荷によって、前記電界効果トランジスタのゲート電圧を変動させ、前記電界効果トランジスタのソース電極とドレイン電極との間の抵抗値を変化させ、
     前記抵抗値の変化の大きさから、前記歪の大きさを検知するピエゾ抵抗素子であって、
     前記抵抗値は、前記歪の大きさに対して、指数関数的に変化する領域を有し、
     前記指数関数的に変化する領域を、前記歪の大きさを検知するのに使用したピエゾ抵抗素子。
  2.  前記電界効果トランジスタが、p-n接合を内部に有する電界効果トランジスタである、請求項1に記載されたピエゾ抵抗素子。
  3.  前記電界効果トランジスタが、p-n接合を内部に有さない電界効果トランジスタである、請求項1に記載されたピエゾ抵抗素子。
  4.  請求項1ないし3のいずれか1項に記載されたピエゾ抵抗素子を使用した、力学量検知センサ。
  5.  請求項1ないし3のいずれか1項に記載されたピエゾ抵抗素子を使用した、マイクロフォン。
PCT/JP2017/036747 2017-01-16 2017-10-11 ピエゾ抵抗素子、力学量検知センサおよびマイクロフォン WO2018131234A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017005445 2017-01-16
JP2017-005445 2017-01-16

Publications (1)

Publication Number Publication Date
WO2018131234A1 true WO2018131234A1 (ja) 2018-07-19

Family

ID=62839692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036747 WO2018131234A1 (ja) 2017-01-16 2017-10-11 ピエゾ抵抗素子、力学量検知センサおよびマイクロフォン

Country Status (1)

Country Link
WO (1) WO2018131234A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021110817A1 (en) 2019-12-06 2021-06-10 Ablynx Nv Polypeptides comprising immunoglobulin single variable domains targeting tnfa and ox40l
WO2022129572A1 (en) 2020-12-18 2022-06-23 Ablynx Nv Polypeptides comprising immunoglobulin single variable domains targeting il-6 and tnf-alpha

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060413A1 (fr) * 1998-05-19 1999-11-25 Matsushita Electric Industrial Co., Ltd. Detecteur d'acceleration et appareil d'acceleration comprenant ce detecteur d'acceleration
JP2011522456A (ja) * 2008-04-28 2011-07-28 ネーデルランデ オルガニサティー ヴール トゥーヘパストナツールウェテンスハペライク オンデルズーク テーエヌオー 複合材料マイクロフォン、マイクロフォン・アセンブリ、およびそれらの製造方法
JP2015179074A (ja) * 2014-02-25 2015-10-08 パナソニックIpマネジメント株式会社 衝撃記憶装置
WO2016207751A1 (en) * 2015-06-26 2016-12-29 Sabic Global Technologies B.V. Integrated piezoelectric cantilever actuator and transistor for touch input and haptic feedback applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060413A1 (fr) * 1998-05-19 1999-11-25 Matsushita Electric Industrial Co., Ltd. Detecteur d'acceleration et appareil d'acceleration comprenant ce detecteur d'acceleration
JP2011522456A (ja) * 2008-04-28 2011-07-28 ネーデルランデ オルガニサティー ヴール トゥーヘパストナツールウェテンスハペライク オンデルズーク テーエヌオー 複合材料マイクロフォン、マイクロフォン・アセンブリ、およびそれらの製造方法
JP2015179074A (ja) * 2014-02-25 2015-10-08 パナソニックIpマネジメント株式会社 衝撃記憶装置
WO2016207751A1 (en) * 2015-06-26 2016-12-29 Sabic Global Technologies B.V. Integrated piezoelectric cantilever actuator and transistor for touch input and haptic feedback applications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021110817A1 (en) 2019-12-06 2021-06-10 Ablynx Nv Polypeptides comprising immunoglobulin single variable domains targeting tnfa and ox40l
WO2022129572A1 (en) 2020-12-18 2022-06-23 Ablynx Nv Polypeptides comprising immunoglobulin single variable domains targeting il-6 and tnf-alpha
US11897951B2 (en) 2020-12-18 2024-02-13 Ablynx N.V. Polypeptides comprising immunoglobulin single variable domains targeting IL-6 and TNF-α

Similar Documents

Publication Publication Date Title
US11604104B2 (en) Integrated piezoresistive and piezoelectric fusion force sensor
US9438979B2 (en) MEMS sensor structure for sensing pressure waves and a change in ambient pressure
US8614492B2 (en) Nanowire stress sensors, stress sensor integrated circuits, and design structures for a stress sensor integrated circuit
TWI286383B (en) Semiconductor piezoresistive sensor and operation method thereof
JP2011031385A (ja) Memsセンサ
CN105222931B (zh) Mems电容式压力传感器及其制造方法
KR102278929B1 (ko) 피에조 저항형 센서
TW201140013A (en) Pressure sensor
WO2018131234A1 (ja) ピエゾ抵抗素子、力学量検知センサおよびマイクロフォン
US20110057236A1 (en) Inertial sensor having a field effect transistor
US10079355B2 (en) Thin film device with protective layer
US8067811B2 (en) MEMS device, MEMS device module and acoustic transducer
CN107577366B (zh) 一种显示面板及显示装置
JP2586432B2 (ja) 半導体圧力センサの製造方法
US11814283B2 (en) Microelectromechanical systems device having a mechanically robust anti-stiction/outgassing structure
CN102442636B (zh) 具有由划片槽限定的薄片的半导体结构
US9972723B2 (en) Piezoelectric thin-film based flexible sensing device, method for fabrication thereof and method for operating the same
WO2007004258A1 (ja) 半導体装置、およびその製造方法
CN113678472B (zh) Mems电容传感器及其制备方法、电子设备
KR102143909B1 (ko) 쇼트키 장벽 변화 기반 스트레인 센서
JPH07140166A (ja) 加速度センサおよびその製造方法
WO2018131170A1 (ja) 歪抵抗素子、力学量検知センサおよびマイクロフォン
JP2007073667A (ja) 電気機械変換器の製造方法
JPH05180866A (ja) 力学量センサ
JPH09113386A (ja) 融接された変形可能部を備えた半導体素子センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP