WO2018129927A1 - 一种多功能复合型微生物菌群落污水处理工艺 - Google Patents

一种多功能复合型微生物菌群落污水处理工艺 Download PDF

Info

Publication number
WO2018129927A1
WO2018129927A1 PCT/CN2017/098959 CN2017098959W WO2018129927A1 WO 2018129927 A1 WO2018129927 A1 WO 2018129927A1 CN 2017098959 W CN2017098959 W CN 2017098959W WO 2018129927 A1 WO2018129927 A1 WO 2018129927A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
bacteria
sewage treatment
medium
bacterial culture
Prior art date
Application number
PCT/CN2017/098959
Other languages
English (en)
French (fr)
Inventor
温尚龙
石键韵
张浩纯
卢恒
张艳芳
陈欣义
Original Assignee
广州市广深环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市广深环保科技有限公司 filed Critical 广州市广深环保科技有限公司
Publication of WO2018129927A1 publication Critical patent/WO2018129927A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to a multi-functional composite microbial community sewage treatment process, belonging to the technical field of wastewater treatment.
  • the existing sewage biochemical treatment technology belongs to a wide range, the precision is not high, and the extensive cultivation and domestication treatment methods, such as the anaerobic bacteria cultured in the anaerobic tank, are acid hydrolysis, acid production and methanogenesis, without intentional or Specially designed for the growth environment of certain strains that can be used to specifically treat specific sewage; such as aerobic bacteria, it is only for the organic matter in the water, ammonia nitrogen or total phosphorus, and the technology is relatively extensive. Ammonia denitrification combined technology for ammonia nitrogen is also anoxic and aerobic. Therefore, the establishment of different concentrations of different types of strains of the growing environment is conducive to the treatment of target pollutants; the establishment of high and low concentrations of cross-use, is also conducive to microbial tolerance shock load, improve processing capacity.
  • the extensive cultivation and domestication treatment methods such as the anaerobic bacteria cultured in the anaerobic tank, are acid hydrolysis, acid production and methanogenesis, without intentional or Specially designed for the growth environment
  • the object of the present invention is to provide a multi-functional composite microbial community sewage treatment process.
  • a multifunctional composite microbial community sewage treatment process is a sewage treatment process through a system consisting of a high concentration bacterial culture zone, a medium concentration bacterial culture zone, a medium and low concentration bacterial culture zone and a low concentration bacterial culture zone;
  • the concentration of bacteria is in the range of 8000 ⁇ 10000mg/L, the concentration of the medium concentration bacteria is 4000 ⁇ 8000mg/L, and the concentration of the medium and low concentration bacteria is 1500 ⁇ 4000mg/L, the low concentration
  • the concentration of bacteria ranges from 500 to 1500 mg/L.
  • the high concentration bacterial culture zone is filled with a soft filler.
  • the high concentration bacteria are facultative bacteria.
  • the medium concentration bacterial culture zone is filled with a hydroformylated fiber or a polyester filament soft composite filler.
  • the medium concentration bacteria are denitrifying bacteria.
  • the medium and low concentration bacterial culture zone is filled with an elastic filler.
  • the medium-low concentration bacteria are at least one of Pseudomonas and Bacillus.
  • the low concentration bacterial culture zone is filled with a modified fiber silk high fiber filler prepared by copolymer spinning.
  • the low concentration bacteria are at least one of nitrifying bacteria, pseudomonas, and bacillus.
  • the system controls the growth of bacteria by aeration amount, which is automatically controlled by an electric valve and executed by a PLC program.
  • the refractory organic wastewater for high-concentration organic wastewater, heavy metal toxic waste water, chemical waste water and the like has very high tolerance to impact, especially for heavy metal organic wastewater, chemical wastewater, printing and dyeing wastewater, etc.
  • the organic wastewater has good application and treatment effects, and the implementation of the present invention will bring about great environmental and socio-economic effects.
  • the whole system of the invention adopts different combinations of fillers and different aeration amounts of the automatic aeration system, and controls the types and amounts of bacteria in each aeration tank to be different, and can deal with many organic wastewaters.
  • kind of substance The organic matter that ensures the wastewater can be digested in different environments in the multiple zones. And to prevent the growth of bacteria in the wastewater too fast and affect the cultivation of other dominant bacteria, to achieve the diversity and effectiveness of bacterial culture.
  • the whole system can form an effective and diverse biological growth environment to prevent the excessive reproduction of some bacteria and affect the biochemical system effect, ensuring the effective and efficient biochemical system. run.
  • FIG. 1 is a schematic view of a sewage treatment process of a multi-functional composite microbial community.
  • a multifunctional composite microbial community sewage treatment process is a sewage treatment process through a system consisting of a high concentration bacterial culture zone, a medium concentration bacterial culture zone, a medium and low concentration bacterial culture zone and a low concentration bacterial culture zone;
  • the concentration of bacteria is in the range of 8000 ⁇ 10000mg/L, the concentration of the medium concentration bacteria is 4000 ⁇ 8000mg/L, and the concentration of the medium and low concentration bacteria is 1500 ⁇ 4000mg/L, the low concentration
  • the concentration of bacteria ranges from 500 to 1500 mg/L.
  • the high concentration bacterial culture zone is filled with a soft filler.
  • the high concentration bacteria are facultative bacteria; further preferably, the high concentration bacteria are sulfurized bacteria.
  • the medium concentration bacterial culture zone is filled with a hydroformylated fiber or a polyester filament soft composite filler.
  • the medium concentration bacteria is a denitrifying bacteria; further preferably, the medium concentration bacteria is at least one of Denitrifying bacteria, Streptococcus, and Bacillus fluorescens.
  • the medium and low concentration bacterial culture zone is filled with an elastic filler.
  • the medium and low concentration bacteria are at least one of Pseudomonas and Bacillus.
  • the low concentration bacterial culture zone is filled with a modified fiber filament high fiber filler prepared by copolymer spinning.
  • the low concentration bacteria are at least one of nitrifying bacteria, pseudomonas, and bacillus.
  • FIG. 1 is a schematic view of a sewage treatment process of a multifunctional composite microbial community.
  • a multi-functional composite microbial community sewage treatment process specializing in the cultivation of combined multi-sewage bacteria classification and culture technology, high-concentration bacterial culture zone in zone A, medium-concentration bacterial culture zone in zone B, medium-low concentration in zone C Concentration of bacterial culture zone, D zone low concentration bacterial culture zone.
  • the membrane is easy to hang, the bacterial culture concentration is high (8000-10000mg/L), and there are not many bacteria (generally some species mainly composed of bacteria and fungi), but the amount is 8000-10000mg/ L, bacteria can remove high-concentration substances in wastewater; fill the composite filler in zone B, the film is easy to hang, the bacteria are more kinds, and the bacterial culture concentration is higher, the bacteria can remove the medium-high concentration substances in the wastewater; Elastic filler, packing film is difficult, bacterial culture concentration is low, bacteria can remove medium and low concentration substances in wastewater; filling high fiber filler in D area, packing film is difficult, easy to fall off, only some bacteria can survive, the Bacterial culture is low in concentration, and bacteria can remove low- and medium-concentration substances in wastewater and difficult-to-handle organic matter.
  • the conditions such as the culture temperature of the microorganism in the present invention are temperatures suitable for the growth of microorganisms, and are common knowledge in the art.
  • the biochemical treatment of printing and dyeing wastewater is divided into four regions, as shown in Figure 1.
  • the first region (A zone, the same below) uses a high concentration microbial culture zone
  • the second zone (B zone, the same below) uses a medium concentration bacterial culture zone
  • the third zone (C zone, the same below) uses a medium to low
  • the concentration of the bacterial culture zone (D zone, the same below) uses a low concentration bacterial culture zone. Due to its high concentration and high impact strength, the high-concentration culture zone can effectively resist the impact load of raw water. Especially in the case of high concentration, the effect is particularly obvious.
  • the first region of microorganisms is mainly facultative strains such as sulfurized bacteria.
  • the dissolved oxygen concentration in the wastewater decreased significantly, as low as 0.5 ⁇ 1.0mg/L, and the concentration of organic matter in the wastewater also decreased sharply.
  • the indicators of sulfides and other toxic effects on the microbial strains were also greatly reduced.
  • the test results show that the sulfide index can be reduced from 10mg/L to less than 1mg/L); the second region is mainly denitrifying bacteria, and the dissolved oxygen in wastewater is between 1.0 ⁇ 1.5mg/L, denitrification The effect is obvious.
  • the removal rate of ammonia nitrogen is the highest (test results show that the ammonia nitrogen index can be reduced from 50 mg/L to less than 5 mg/L, and the removal rate is as high as 90%); in the third region, dissolved oxygen in wastewater Between 1.5 and 2.0 mg/L, at this moment, the microbial species in the third region belong to the conventional strains (mainly some bacteria, such as Pseudomonas, Bacillus, etc.), and pollutants (especially organic matter) to wastewater. The removal efficiency is the highest; in the fourth region, the microorganisms are mainly nitrifying bacteria and common bacteria, and the dissolved oxygen of the wastewater is above 2.0 mg/L, which plays a decisive role in the degradation of trace organic substances, such as organic matter.
  • the first region uses a high concentration microbial culture zone
  • the second region uses a medium concentration bacterial culture zone
  • the third region uses a medium and low concentration bacterial culture zone
  • the fourth region uses a low concentration bacterial culture zone.
  • the species of the microorganism was the same as in Example 1. Due to its high concentration and high impact strength, the high-concentration culture zone can effectively resist the impact load of raw water. Especially in the case of high concentration, the effect is particularly obvious.
  • the dissolved oxygen concentration in the wastewater is significantly reduced, low. At 0.5 ⁇ 1.0mg/L, the concentration of wastewater organic matter also drops sharply.
  • dissolved oxygen in wastewater is 1.0 ⁇ Between 1.5mg/L, denitrification is obvious, and the removal rate of ammonia nitrogen is the highest in the four regions.
  • the dissolved oxygen in the wastewater is between 1.5 and 2.0 mg/L.
  • the third region The microbial strains belong to the conventional strains, and the removal efficiency of the pollutants (especially organic matter) of the wastewater is the highest; in the fourth region, the dissolved oxygen of the wastewater is above 2.0 mg/L, which is decisive for the degradation of trace organic substances. Role, such as organic matter, ammonia nitrogen and other indicators.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种多功能复合型微生物菌群落污水处理工艺,其通过高浓度细菌培养区,中浓度细菌培养区,中低浓度细菌培养区和低浓度细菌培养区组成的系统进行污水处理;高浓度细菌其浓度范围为8000〜10000mg/L,中浓度细菌其浓度范围为4000〜8000mg/L,中低浓度细菌其浓度范围为1500〜4000mg/L,低浓度细菌其浓度范围为500〜1500mg/L。本工艺具有非常高的耐受冲击能力。

Description

一种多功能复合型微生物菌群落污水处理工艺
技术领域
本发明涉及一种多功能复合型微生物菌群落污水处理工艺,属于废水处理技术领域。
背景技术
现有的传统的厌氧、缺氧、好氧等组合工艺,这些工艺均应用于传统的污水处理行业中,无法针对特定的污染物进行去除,且生物菌群落难以分清。现有的生化处理污水技术,没有对微生物菌种做出更加明晰的区分或者筛选,仅仅是在工艺上分为厌氧菌、兼性菌及好氧菌,没有特定地建立适应不同类型的菌群生长的特定环境。现有污水生化处理技术属于范围比较广,精确度不高,粗放式的培养驯化处理方式,比如厌氧池中培养的厌氧菌,就是起到酸化水解、产酸产甲烷,没有特意地或者专门的针对某些能专门处理特定污水所需要的菌种生长环境进行建设;比如好氧菌也如此,仅仅是针对水中的有机物,氨氮或者总磷,技术也比较粗放。针对氨氮也是缺氧好氧的硝化反硝化组合技术。因此,建立不同浓度不同类型菌种的生长环境,有利于目标污染物的处理;建立高低浓度交叉使用,也有利于微生物的耐受冲击负荷,提高处理的能力。
发明内容
本发明的目的在于提供一种多功能复合型微生物菌群落污水处理工艺。
本发明所采取的技术方案是:
一种多功能复合型微生物菌群落污水处理工艺,是通过高浓度细菌培养区,中浓度细菌培养区,中低浓度细菌培养区和低浓度细菌培养区组成的系统进行污水处理;所述的高浓度细菌其浓度范围为8000~10000mg/L,所述的中浓度细菌其浓度范围为4000~8000mg/L,所述的中低浓度细菌其浓度范围为1500~4000mg/L,所述的低浓度细菌其浓度范围为500~1500mg/L。
所述的高浓度细菌培养区填充软性填料。
所述的高浓度细菌为兼性细菌。
所述的中浓度细菌培养区填充醛化纤维或涤纶丝软性组合填料。
所述的中浓度细菌为反硝化细菌。
所述的中低浓度细菌培养区填充弹性填料。
所述的中低浓度细菌为假单胞菌、芽孢杆菌中的至少一种。
所述的低浓度细菌培养区填充共聚物纺丝制得的改性纤维丝高纤维填料。
所述的低浓度细菌为硝化菌、假单胞菌、芽孢杆菌中的至少一种。
所述的系统通过曝气量控制细菌的生长,曝气方式由电动阀门自动控制,由PLC程序执行。
本发明的有益效果是:
本发明用于高浓度有机废水、重金属毒性废水、化工废水等各种疑难杂症的难降解有机废水具有非常高的耐受冲击能力,特别是针对重金属有机废水、化工废水、印染废水等高浓度的有机废水具有良好的应用及处理效果,通过本发明的实施将带来巨大的环境及社会经济效应。
具体如下:
1)本发明整个系统通过填料的组合方式的不同,及自动曝气系统的曝气量的不一样,控制每个曝气池中的细菌种类及数量各不相同,可以处理有机废水中的多种物质。保证废水的有机物可以在该多区中的不同环境中消化掉。并且防止废水的细菌生长过快而影响另外优势细菌的培养,达到细菌培养的多样性及有效性。
2)分为四个区,每个区的微生物浓度、菌群落等均有不同,因此每个区的微生物所针对的污染物所处理的污染物均不一样了,从而确保废水中的污染物能通过本工艺一一去除。
3)整个系统通过多变的曝气及曝气池内部结构的多样性,行成一个有效的多样的生物生长环境,防止部分细菌的过分繁殖而影响生化系统效果,保证生化系统的有效及高效运行。
附图说明
附图1是多功能复合型微生物菌群落污水处理工艺的示意图。
具体实施方式
一种多功能复合型微生物菌群落污水处理工艺,是通过高浓度细菌培养区,中浓度细菌培养区,中低浓度细菌培养区和低浓度细菌培养区组成的系统进行污水处理;所述的高浓度细菌其浓度范围为8000~10000mg/L,所述的中浓度细菌其浓度范围为4000~8000mg/L,所述的中低浓度细菌其浓度范围为1500~4000mg/L,所述的低浓度细菌其浓度范围为500~1500mg/L。
优选的,所述的高浓度细菌培养区填充软性填料。
优选的,所述的高浓度细菌为兼性细菌;进一步优选的,所述的高浓度细菌为硫化菌。
优选的,所述的中浓度细菌培养区填充醛化纤维或涤纶丝软性组合填料。
优选的,所述的中浓度细菌为反硝化细菌;进一步优选的,所述的中浓度细菌为反硝化杆菌、斯氏杆菌、萤气极毛杆菌中的至少一种。
优选的,所述的中低浓度细菌培养区填充弹性填料。
优选的,所述的中低浓度细菌为假单胞菌、芽孢杆菌中的至少一种。
优选的,所述的低浓度细菌培养区填充共聚物纺丝制得的改性纤维丝高纤维填料。
优选的,所述的低浓度细菌为硝化菌、假单胞菌、芽孢杆菌中的至少一种。
附图1为多功能复合型微生物菌群落污水处理工艺的示意图。如图所示,一种多功能复合型微生物菌群落污水处理工艺,专门培养组合型多污水菌种分类培养技术,A区高浓度细菌培养区,B区中浓度细菌培养区,C区中低浓度细菌培养区,D区低浓度细菌培养区。在A区填充软性填料,填料挂膜容易,细菌培养浓度高(8000-10000mg/L),细菌种类不多(大致是一些以细菌和真菌为主的种类),但是量大8000-10000mg/L,细菌可以去除废水中的高浓度物质;在B区填充组合填料,填料挂膜较容易,细菌种类多,并且细菌培养浓度较高,细菌可以去除废水中的中高浓度物质;在C区填充弹性填料,填料挂膜较难,细菌培养浓度较低,细菌可以去除废水中的中低浓度物质;在D区填充高纤维填料,填料挂膜较难,容易脱落,只有部分细菌可以存活,该细菌培养浓度较低,细菌可以去除废水中的中低浓度物质及较难处理的有机物。
本发明中微生物的培养温度等条件为适宜微生物生长的温度,属本领域的公知常识。
以下通过具体的实施例对本发明的内容作进一步详细的说明。
实施例1:
针对印染废水的生化处理,分为四个区域,如附图1所示。第一个区域(A区,下同)采用高浓度微生物培养区,第二个区域(B区,下同)采用中浓度细菌培养区,第三个区域(C区,下同)采用中低浓度细菌培养区,第四个区域(D区,下同)采用低浓度细菌培养区。高浓度培养区由于浓度高,耐受冲击负荷,能有效地抵抗原水的冲击负荷,特别是浓度比较高的情况下,效果特别明显,第一个区域微生物主要是以硫化菌等兼性菌种为主,废水中的溶解氧浓度明显下降,低到0.5~1.0mg/L,废水有机物浓度也急剧下降,同时检测的硫化物等对微生物菌种有一定毒害作用的指标也在此处大幅下降(试验结果表明硫化物指标可以从10mg/L降低到1mg/L以下);第二个区域微生物主要是反硝化菌为主,废水中的溶解氧在1.0~1.5mg/L之间,反硝化作用明显,在四个区域中,氨氮的去除率最高(试验结果表明氨氮指标可以从50mg/L降低到5mg/L以下,去除率高达90%);第三个区域,废水中的溶解氧在1.5~2.0mg/L之间,此刻,第三个区域的微生物菌种属于常规菌种(主要是一些细菌,如假单胞菌,芽孢杆菌等),对废水的污染物(特别是有机物)去除效率最高;第四个区域微生物主要以硝化菌、普通细菌为主,废水的溶解氧在2.0mg/L以上,此时对痕量有机物的降解起到决定性作用,如有机物等。
实施例2:
针对重金属中的有机废水的生化处理,在进入四个区域前,废水中大部分重金属已经去除。分为四个区域,第一个区域采用高浓度微生物培养区,第二个区域采用中浓度细菌培养区,第三个区域采用中低浓度细菌培养区,第四个区域采用低浓度细菌培养区。所述微生物的菌种与实施例1相同。高浓度培养区由于浓度高,耐受冲击负荷,能有效地抵抗原水的冲击负荷,特别是浓度比较高的情况下,效果特别明显,第一个区域,废水中的溶解氧浓度明显下降,低到0.5~1.0mg/L,废水有机物浓度也急剧下降,同时检测的重金属等对微生物菌种有一定毒害作用的指标也在此处大幅下降;第二个区域,废水中的溶解氧在1.0~1.5mg/L之间,反硝化作用明显,在四个区域中,氨氮的去除率最高;第三个区域,废水中的溶解氧在1.5~2.0mg/L之间,此刻,第三个区域的微生物菌种属于常规菌种,对废水的污染物(特别是有机物)去除效率最高;第四个区域,废水的溶解氧在2.0mg/L以上,此时对痕量有机物的降解起到决定性作用,如有机物、氨氮等指标。

Claims (10)

  1. 一种多功能复合型微生物菌群落污水处理工艺,其特征在于:是通过高浓度细菌培养区,中浓度细菌培养区,中低浓度细菌培养区和低浓度细菌培养区组成的系统进行污水处理;所述的高浓度细菌其浓度范围为8000~10000mg/L,所述的中浓度细菌其浓度范围为4000~8000mg/L,所述的中低浓度细菌其浓度范围为1500~4000mg/L,所述的低浓度细菌其浓度范围为500~1500mg/L。
  2. 根据权利要求1所述的一种多功能复合型微生物菌群落污水处理工艺,其特征在于:所述的高浓度细菌培养区填充软性填料。
  3. 根据权利要求2所述的一种多功能复合型微生物菌群落污水处理工艺,其特征在于:所述的高浓度细菌为兼性细菌。
  4. 根据权利要求1所述的一种多功能复合型微生物菌群落污水处理工艺,其特征在于:所述的中浓度细菌培养区填充醛化纤维或涤纶丝软性组合填料。
  5. 根据权利要求4所述的一种多功能复合型微生物菌群落污水处理工艺,其特征在于:所述的中浓度细菌为反硝化细菌。
  6. 根据权利要求1所述的一种多功能复合型微生物菌群落污水处理工艺,其特征在于:所述的中低浓度细菌培养区填充弹性填料。
  7. 根据权利要求6所述的一种多功能复合型微生物菌群落污水处理工艺,其特征在于:所述的中低浓度细菌为假单胞菌、芽孢杆菌中的至少一种。
  8. 根据权利要求1所述的一种多功能复合型微生物菌群落污水处理工艺,其特征在于:所述的低浓度细菌培养区填充共聚物纺丝制得的改性纤维丝高纤维填料。
  9. 根据权利要求8所述的一种多功能复合型微生物菌群落污水处理工艺,其特征在于:所述的低浓度细菌为硝化菌、假单胞菌、芽孢杆菌中的至少一种。
  10. 根据权利要求1~9任一项所述的一种多功能复合型微生物菌群落污水处理工艺,其特征在于:所述的系统通过曝气量控制细菌的生长,曝气方式由电动阀门自动控制,由PLC程序执行。
PCT/CN2017/098959 2017-01-16 2017-08-25 一种多功能复合型微生物菌群落污水处理工艺 WO2018129927A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710032334.0 2017-01-16
CN201710032334.0A CN106830352B (zh) 2017-01-16 2017-01-16 一种多功能复合型微生物菌群落污水处理工艺

Publications (1)

Publication Number Publication Date
WO2018129927A1 true WO2018129927A1 (zh) 2018-07-19

Family

ID=59123584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098959 WO2018129927A1 (zh) 2017-01-16 2017-08-25 一种多功能复合型微生物菌群落污水处理工艺

Country Status (2)

Country Link
CN (1) CN106830352B (zh)
WO (1) WO2018129927A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109294906A (zh) * 2018-11-21 2019-02-01 中南大学 一种多功能嗜酸微生物菌剂输出装置及其使用方法
CN111995050A (zh) * 2020-07-22 2020-11-27 董英良 一种电镀废水生化处理装置及其应用
CN114212888A (zh) * 2022-01-18 2022-03-22 北京赛富威环境工程技术有限公司 一种高浓度工业废水的处理方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106830352B (zh) * 2017-01-16 2019-07-02 广州市广深环保科技有限公司 一种多功能复合型微生物菌群落污水处理工艺
CN110358706A (zh) * 2019-07-03 2019-10-22 东莞市顶盛环保科技有限公司 一种去除工业污水中总氮生物菌剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318739A (zh) * 2008-07-11 2008-12-10 浙江商达环保有限公司 一种制革废水氨氮处理方法
CN102424478A (zh) * 2011-10-28 2012-04-25 宝钢工程技术集团有限公司 微生物增生器废水处理系统
CN102559489A (zh) * 2012-01-18 2012-07-11 北京工业大学 一种快速富集氨氧化菌的方法和装置
CN202688328U (zh) * 2012-01-18 2013-01-23 北京工业大学 一种快速富集氨氧化菌的装置
JP2016107219A (ja) * 2014-12-08 2016-06-20 株式会社日立製作所 窒素処理方法及び窒素処理装置
CN106830352A (zh) * 2017-01-16 2017-06-13 广州市广深环保科技有限公司 一种多功能复合型微生物菌群落污水处理工艺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876603A (en) * 1995-08-10 1999-03-02 Hitachi Plant Engineering & Construction Co., Ltd. Method of biologically removing nitrogen and system therefor
CN1210214C (zh) * 2002-10-22 2005-07-13 中国石化集团齐鲁石油化工公司 干法腈纶废水的处理工艺
CN100361908C (zh) * 2005-09-01 2008-01-16 华中科技大学 一种污水脱氮处理方法
GB0722486D0 (en) * 2007-11-16 2007-12-27 Javel Ltd Treatment of wastewater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318739A (zh) * 2008-07-11 2008-12-10 浙江商达环保有限公司 一种制革废水氨氮处理方法
CN102424478A (zh) * 2011-10-28 2012-04-25 宝钢工程技术集团有限公司 微生物增生器废水处理系统
CN102559489A (zh) * 2012-01-18 2012-07-11 北京工业大学 一种快速富集氨氧化菌的方法和装置
CN202688328U (zh) * 2012-01-18 2013-01-23 北京工业大学 一种快速富集氨氧化菌的装置
JP2016107219A (ja) * 2014-12-08 2016-06-20 株式会社日立製作所 窒素処理方法及び窒素処理装置
CN106830352A (zh) * 2017-01-16 2017-06-13 广州市广深环保科技有限公司 一种多功能复合型微生物菌群落污水处理工艺

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109294906A (zh) * 2018-11-21 2019-02-01 中南大学 一种多功能嗜酸微生物菌剂输出装置及其使用方法
CN109294906B (zh) * 2018-11-21 2023-07-07 中南大学 一种多功能嗜酸微生物菌剂输出装置及其使用方法
CN111995050A (zh) * 2020-07-22 2020-11-27 董英良 一种电镀废水生化处理装置及其应用
CN114212888A (zh) * 2022-01-18 2022-03-22 北京赛富威环境工程技术有限公司 一种高浓度工业废水的处理方法

Also Published As

Publication number Publication date
CN106830352B (zh) 2019-07-02
CN106830352A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
WO2018129927A1 (zh) 一种多功能复合型微生物菌群落污水处理工艺
Chartrain et al. Microbial ecophysiology of whey biomethanation: characterization of bacterial trophic populations and prevalent species in continuous culture
CN107201325A (zh) 假单胞菌菌株及其培养方法和应用
CN109055282B (zh) 一株肺炎克雷伯氏菌新菌株及其分离方法和应用
EP3800243B1 (en) Bacterium degrading las and n and use thereof
Lu et al. Identification and nitrogen removal characteristics of Thauera sp. FDN-01 and application in sequencing batch biofilm reactor
CN104891678B (zh) 用于治理氨基酸发酵产生的高浓度废水的生物制剂
CN103540544B (zh) 一株可降解吡啶的根瘤杆菌、选育方法及其应用
Ishak et al. Isolation and Identification of Bacteria from Activated Sludge and Compostfor Municipal Solid Waste Treatment System
CN114395505B (zh) 一种低温反硝化菌及其应用
CN102864098B (zh) 一株反硝化聚磷细菌H-hrb02及其筛选方法和应用
CN102373191B (zh) 一种用于降解城市废水的优势菌群及其制备方法
Kumar et al. Bioremediation of sewage using specific consortium of microorganisms
CN107058136A (zh) 一株地霉Fh5及其应用
Britz et al. Acidogenic microbial species diversity in anaerobic digesters treating different substrates
CN104891677B (zh) 一种修复氨基酸发酵废水的复合菌剂的制备工艺
CN105087429A (zh) 一株邻二甲苯降解菌及其应用
CN205603431U (zh) 一种强化生物降解预处理印染退浆废水pva的装置
CN109650531B (zh) 一种东方伊萨酵母菌株zt-c2结合mabr工艺及其应用
CN113816503A (zh) 一种生活污水微生物处理复合菌剂
CN103613203B (zh) 利用邻苯二甲酸二丁酯降解菌降低炼油废水中cod的方法
CN107312715A (zh) 一种两相法快速筛选反硝化聚磷菌的方法
Yang et al. Denitrification with Thiobacillus denitrificans in the ANANOX® process
CN111606509A (zh) 一种用于污水处理的低温菌配比培养方法
Joshi et al. Isolation and characterization of Psedomonas Syringae for nitrate removal under aerobic conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891431

Country of ref document: EP

Kind code of ref document: A1