WO2018129830A1 - 电动汽车的主驱电机的双向驱动装置 - Google Patents

电动汽车的主驱电机的双向驱动装置 Download PDF

Info

Publication number
WO2018129830A1
WO2018129830A1 PCT/CN2017/081632 CN2017081632W WO2018129830A1 WO 2018129830 A1 WO2018129830 A1 WO 2018129830A1 CN 2017081632 W CN2017081632 W CN 2017081632W WO 2018129830 A1 WO2018129830 A1 WO 2018129830A1
Authority
WO
WIPO (PCT)
Prior art keywords
main drive
drive motor
electric vehicle
output shaft
driving device
Prior art date
Application number
PCT/CN2017/081632
Other languages
English (en)
French (fr)
Inventor
吴雄良
娄珍申
Original Assignee
上海瑞昱汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海瑞昱汽车有限公司 filed Critical 上海瑞昱汽车有限公司
Publication of WO2018129830A1 publication Critical patent/WO2018129830A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention mainly relates to the field of electric vehicle power technology, and more particularly to a bidirectional driving device for a main drive motor of an electric vehicle.
  • pure electric vehicles As green new energy technologies, have gradually attracted people's attention because of their zero emissions and low noise.
  • pure electric vehicles also have many disadvantages.
  • the main drive motor of the existing pure electric vehicle drives the reducer, the transmission and the clutch in a one-way shaft transmission manner.
  • In-vehicle functional components such as electric drive air conditioner compressors, electric drive water pumps, electric drive vacuum pumps, hydraulic pumps, air compressors, etc. are all driven by separate motors.
  • the technical problem to be solved by the present invention is to provide a bidirectional driving device for a main drive motor of an electric vehicle, which can save energy consumption.
  • the present invention provides a bidirectional driving device for a main drive motor of an electric vehicle, comprising a main drive motor and a transmission assembly, the main drive motor including a front output shaft and a rear output shaft, the transmission assembly including a bushing flange, a driving pulley, a belt and one or more driven pulleys; the sleeve flange is coupled to the front output shaft, and the driving pulley is coupled to the rear output shaft, the one or more The driven pulleys are connected to the driving pulley through a driving belt and are used to drive the corresponding one or more in-vehicle functional components to operate.
  • the transmission assembly further includes a positioning guide wheel disposed on the transmission belt.
  • the transmission assembly further includes a positioning tensioner disposed on the transmission belt.
  • the sleeve flange is used to drive a gearbox.
  • the in-vehicle functional component is one or more of the following: an air conditioner compressor, a water pump, a hydraulic pump, a vacuum pump, an air pump, and a low voltage generator.
  • the ratio of the diameter of the driving pulley to the diameter of each driven pulley satisfies the rotational speed ratio of each of the in-vehicle functional components during normal operation.
  • the primary pulley connects one or more of the driven pulleys in the same plane by a single of the drive belts.
  • the number of the primary pulleys is two, and each of the primary pulleys connects one or more of the driven pulleys located in one plane by one of the transmission belts.
  • the transmission assembly further includes another sleeve flange and a universal joint, the other sleeve flange is coupled to the rear output shaft, and the universal joint is mounted on the On the other sleeve flange, the driving pulley connects the rear output shaft through the universal joint.
  • At least a part of the inner box of the driven pulley corresponding to the in-vehicle functional component is connected to an electromagnetic clutch for controlling separation and engagement transmission of the corresponding driven pulley and the transmission belt.
  • the operation of the electromagnetic clutch is controlled by the controller of the electric vehicle.
  • the invention utilizes the way that the rotor shaft of the main drive motor bidirectionally drives the speed and torque, and the combination of the transmission function components can save more than 25% of the electric energy compared with the sum of the electric power consumption of the respective electric drive vehicle functional components.
  • FIG. 1 is a schematic view showing the overall structure of a bidirectional driving device of a main drive motor of an electric vehicle according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view showing the rear output shaft transmission structure of the bidirectional driving device of the main drive motor of the electric vehicle according to the first embodiment of the present invention.
  • FIG. 3 is a schematic view showing the rear output shaft transmission structure of the bidirectional driving device of the main drive motor of the electric vehicle according to the second embodiment of the present invention.
  • FIG. 4 is an overall junction of a bidirectional driving device of a main drive motor of an electric vehicle according to a third embodiment of the present invention. Schematic diagram.
  • Fig. 5 is a schematic view showing the combination of the active pulleys on the rear output shaft of the bidirectional driving device of the main drive motor of the electric vehicle according to the third embodiment of the present invention.
  • 6A and 6B are schematic diagrams showing the rear output shaft transmission structure of the bidirectional driving device of the main drive motor of the electric vehicle according to the third embodiment of the present invention.
  • Embodiments of the present invention describe a bidirectional drive for a main drive motor of an electric vehicle.
  • an electric vehicle may be a purely electric vehicle powered entirely by batteries, or a hybrid vehicle partially powered by a battery.
  • the main drive motor is powered by a battery and provides the motor for the vehicle's travel power. It can be understood that the main drive motor needs to finally drive the wheels through devices such as a reducer, a gearbox and a clutch.
  • the bidirectional driving device 100 of the main drive motor of the electric vehicle of the present embodiment includes a main drive motor 110 and a transmission assembly 120.
  • the main drive motor 110 has a front output shaft 111 and a rear output shaft 112.
  • the front output shaft 111 is disposed on the front end cover 113 of the main drive motor 110.
  • the rear output shaft 112 is disposed on the rear end cover 114 of the main drive motor 110.
  • the transmission assembly 120 can include a series of components, such as a bushing flange 121, a drive pulley 122, a drive belt 123, and a driven pulley 124.
  • the sleeve flange 121 is connected to the front output shaft 111 for outputting the power supply steam The power of the car to walk.
  • the driving pulley 122 is connected to the output shaft 112.
  • the driven pulley 124 is connected to the driving pulley 122 via the transmission belt 123, and is used to drive the corresponding in-vehicle functional component to operate.
  • the transmission belt 123 is driven to drive the in-vehicle functional components that need to be driven.
  • the moving pulley synchronous drive rotates.
  • the ratio of the diameter of the driving pulley 122 to the diameter of the driven pulley 124 satisfies the rotational speed ratio of the in-vehicle functional component during normal operation. Therefore, under the set transmission conditions, the normal operation of the vehicle-mounted functional components is satisfied.
  • the main drive motor 110 is matched to the operating speed range of the on-board functional component, such as 600-4000 rpm.
  • the driven pulley 124 may be disposed on the outer peripheral base of the main drive motor 110.
  • the transmission belt 123 may be a composite rubber belt for a vehicle.
  • the in-vehicle functional component may be an air conditioner compressor, a water pump, a hydraulic pump, a vacuum pump, an air pump, or a low voltage generator.
  • the transmission assembly 120 can also include a positioning guide wheel 125 disposed on the belt 123.
  • the front end of the inner casing of the driven pulley 124 corresponding to the in-vehicle functional component is connected to an electromagnetic clutch (not shown) for controlling the separation of the corresponding driven pulley 124 from the transmission belt 123, the engagement transmission, and the electromagnetic clutch.
  • the work is controlled by the controller of the electric vehicle.
  • the electromagnetic clutch in its driven pulley controls the separation and engagement transmission.
  • the controller will collect its working status and control the signal according to temperature, vacuum degree, voltage value, current value, air pressure value, oil pressure value, etc., through relay, electronic switch or CAN communication. Its working status. This process can be controlled by software according to the design requirements of the vehicle control unit (VCU) for real-time management.
  • VCU vehicle control unit
  • the positive effect of the electric energy greater than 25% can be saved by using the method of bidirectionally transmitting the rotational speed and torque of the rotor shaft of the main drive motor and the combination of the transmission functional components and the power consumption of the respective electric drive vehicle functional components.
  • FIG. 3 is a schematic view showing the rear output shaft transmission structure of the bidirectional driving device of the main drive motor of the electric vehicle according to the second embodiment of the present invention.
  • the transmission assembly 120 can include a plurality of driven pulleys 124 (exemplified by five in the figure).
  • Drive pulley 124 The driving belt 123 is connected to the driving pulley 122 and is used to drive the corresponding plurality of in-vehicle functional components to operate.
  • the drive belt 123 is driven to drive the on-vehicle functional components that need to be driven.
  • the driven pulley synchronous drive rotates.
  • the ratio of the diameter of the driving pulley 122 to the diameter of each of the driven pulleys 124 satisfies the rotational speed ratio of each of the in-vehicle functional components during normal operation. Therefore, under the set transmission conditions, the normal operation of each vehicle functional component is satisfied.
  • the transmission belt 123 may be a composite rubber belt for a vehicle.
  • the plurality of in-vehicle functional components may be a combination of components such as an air conditioner compressor, a water pump, a hydraulic pump, a vacuum pump, an air pump, and a low voltage generator.
  • the transmission assembly 120 is provided with a positioning guide wheel 125 between the two pulleys on the belt 123. Also, the transmission assembly 120 can further include a positioning tensioner 126 disposed on the drive belt 123.
  • the front end of the inner casing of the driven pulley 124 corresponding to each in-vehicle functional component is connected to an electromagnetic clutch (not shown) for controlling the separation and engagement of the corresponding driven pulley 124 and the transmission belt 123, and the electromagnetic clutch.
  • the work is controlled by the controller of the electric car.
  • the electromagnetic clutch in its driven pulley controls the separation and engagement transmission.
  • the controller will collect its working status and control the signal according to temperature, vacuum degree, voltage value, current value, air pressure value, oil pressure value, etc., through relay, electronic switch or CAN communication. Its working status. This process can be controlled by software according to the design requirements of the vehicle control unit (VCU) for real-time management.
  • VCU vehicle control unit
  • the positive effect of the electric energy greater than 25% can be saved by using the method of bidirectionally transmitting the rotational speed and torque of the rotor shaft of the main drive motor and the combination of the transmission functional components and the power consumption of the respective electric drive vehicle functional components.
  • the primary pulleys 122 are each coupled to one or more driven pulleys 124 in the same plane by a single drive belt 123.
  • the number of the primary pulleys can be varied, and an embodiment will be described below.
  • Fig. 4 is a view showing the overall configuration of a bidirectional driving device of a main drive motor of an electric vehicle according to a third embodiment of the present invention.
  • 5 is a bidirectional driving device of a main drive motor of an electric vehicle according to a third embodiment of the present invention; Schematic diagram of the active pulley combination on the rear output shaft.
  • 6A and 6B are schematic diagrams showing the rear output shaft transmission structure of the bidirectional driving device of the main drive motor of the electric vehicle according to the third embodiment of the present invention.
  • the bidirectional driving device 100 of the main drive motor of the electric vehicle of the present embodiment includes a main drive motor 110 and a transmission assembly 120.
  • the main drive motor 110 has a front output shaft 111 and a rear output shaft 112.
  • the transmission assembly 120 can include a series of components, such as a bushing flange 121, two drive pulleys 122a, 122b, two drive belts 123a, 123b, and a plurality of driven pulleys 124 (six illustrated in the figures).
  • the sleeve flange 121 is connected to the front output shaft 111 for outputting power for driving the vehicle to travel.
  • the primary pulleys 122a and 122b are combined and connected to the rear output shaft 112, as shown in FIGS. 4 and 5.
  • Each of the drive pulleys 122a or 122b is coupled to one or more driven pulleys 124 located in a plane by a drive belt 123a or 123b, respectively.
  • the primary pulley 122a is coupled to a driven pulley 124 located in a plane by a belt 123a; as shown in FIG. 6B, the other pulley 122b is connected to the other plane by another belt 123b. 5 driven pulleys 124.
  • Each of the driven pulleys 124 is used to drive the corresponding in-vehicle functional components to operate.
  • the drive pulleys 122a and 122b respectively drive the belts 123a and 123b to drive the belts 123a and 123b respectively.
  • the driven pulley of the drive's on-board features rotates synchronously.
  • the ratio of the diameter of the primary pulleys 122a, 122b to the diameter of the driven pulley 124 satisfies the rotational speed ratio of the in-vehicle functional components during normal operation. Therefore, under the set transmission conditions, the normal operation of the vehicle-mounted functional components is satisfied.
  • the belts 123a, 123b may be composite rubber belts for vehicles.
  • the in-vehicle functional components corresponding to the six driven pulleys 124 may be an air conditioner compressor, a water pump, a hydraulic pump, a vacuum pump, an air pump, and a low voltage generator, respectively.
  • the transmission assembly 120 can also include a positioning guide wheel 125a disposed on the belt 123a.
  • the transmission assembly 120 is provided with a positioning guide wheel 125b between the two pulleys on the belt 123b. Also, the transmission assembly 120 can further include a positioning tensioner 126 disposed on the drive belt 123.
  • the transmission assembly 120 of the present embodiment further includes another sleeve flange 127 and a universal joint 128.
  • the sleeve flange 127 is connected to the output shaft 112
  • the universal joint 128 is mounted on the sleeve flange 127
  • the drive pulley 122 is coupled to the output shaft 112 via the universal joint 128.
  • the rear output shaft 112 of the main drive motor 110 The in-vehicle functional components are driven by a combination of the sleeve flange 127 and the universal joint 128 drive pulley.
  • the front end of the inner casing of the driven pulley 124 corresponding to each in-vehicle functional component is connected to an electromagnetic clutch (not shown) for controlling the separation and engagement transmission of the corresponding driven pulley 124 and the transmission belt 123a or 123b.
  • the operation of the electromagnetic clutch is controlled by the controller of the electric vehicle.
  • the electromagnetic clutch in its driven pulley controls the separation and engagement transmission.
  • the controller will collect its working status and control the signal according to temperature, vacuum degree, voltage value, current value, air pressure value, oil pressure value, etc., through relay, electronic switch or CAN communication. Its working status. This process can be controlled by software according to the design requirements of the vehicle control unit (VCU) for real-time management.
  • VCU vehicle control unit
  • the bidirectional driving device of each embodiment of the present invention can save more than 25% of electric energy, and the practice proves that the operation is stable and reliable, the control is simple, the cost is controllable, and the maintenance is convenient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Pulleys (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)

Abstract

一种电动汽车的主驱电机的双向驱动装置,包括主驱电机(110)和传动组件,主驱电机包括前输出轴(111)和后输出轴(112),传动组件包括轴套法兰(121)、主动带轮(122)、传动带(123)和一个或多个从动带轮(124);轴套法兰连接前输出轴,主动带轮连接后输出轴,一个或多个从动带轮通过传动带连接主动带轮,且用于带动对应的一个或多个车载功能部件运转。该驱动装置可以节省能源消耗。

Description

电动汽车的主驱电机的双向驱动装置 技术领域
本发明主要涉及电动汽车动力技术领域,尤其是涉及电动汽车的主驱电机的双向驱动装置。
背景技术
目前由于内燃机汽车严重污染环境的现状,纯电动汽车作为绿色新能源技术,以其零排放、噪声低,逐渐为人们所关注。但是纯电动汽车也存在很多缺点,例如现有的纯电动汽车的主驱电机以单向轴传动方式驱动减速器、变速箱和离合器。车载功能部件如电驱空调压缩机、电驱水泵、电驱真空泵、液力泵、空压机等都由另外的电机各自传动。
由于纯电动汽车使用的是车载电池,其容量、重量受标准所限,因此格外珍贵。现有的各个电机各自电驱动功能部件的技术方案中,功能部件所耗电能之和还大大影响电动汽车的正常续航里程,成为影响纯电动汽车自身发展及推广的主要瓶颈之一。因而如何节省有限的车载电能,是纯电动汽车面临的主要难题。
发明内容
本发明要解决的技术问题是提供一种电动汽车的主驱电机的双向驱动装置,可以节省能源消耗。
为解决上述技术问题,本发明提供了一种电动汽车的主驱电机的双向驱动装置,包括主驱电机和传动组件,所述主驱电机包括前输出轴和后输出轴,所述传动组件包括轴套法兰、主动带轮、传动带和一个或多个从动带轮;所述轴套法兰连接所述前输出轴,所述主动带轮连接所述后输出轴,所述一个或多个从动带轮通过传动带连接所述主动带轮,且用于带动对应的一个或多个车载功能部件运转。
在本发明的一实施例中,所述传动组件还包括设于所述传动带上的定位导向轮。
在本发明的一实施例中,所述传动组件还包括设于所述传动带上的定位张紧器。
在本发明的一实施例中,所述轴套法兰用于驱动变速箱。
在本发明的一实施例中,所述车载功能部件为以下的一种或几种:空调压缩机、水泵、液压泵、真空泵、气泵和低压发电机。
在本发明的一实施例中,所述主动带轮的直径与各从动带轮的直径之比满足各车载功能部件的正常运行时的转速比。
在本发明的一实施例中,所述主动带轮通过单根所述传动带连接位于同一平面的一个或多个所述从动带轮。
在本发明的一实施例中,所述主动带轮的数量为2个,每个主动带轮分别通过一根所述传动带连接位于一个平面的一个或多个所述从动带轮。
在本发明的一实施例中,所述传动组件还包括另一轴套法兰和万向节,所述另一轴套法兰连接所述后输出轴,所述万向节安装在所述另一轴套法兰上,所述主动带轮通过所述万向节连接所述后输出轴。
在本发明的一实施例中,至少部分车载功能部件对应的从动带轮的内盒前端连接一电磁离合器,用于控制对应的从动带轮与所述传动带的分离、接合传动,所述电磁离合器的工作受控于所述电动汽车的控制器。
与现有技术相比,本发明利用主驱电机的转子轴双向传动转速、转矩的装置和组合传动功能部件的方式与各自电驱动车载功能部件电耗之和相比可节约电能大于25%以上的积极效果。
附图说明
图1是本发明第一实施例的电动汽车的主驱电机的双向驱动装置的整体结构示意图。
图2是本发明第一实施例的电动汽车的主驱电机的双向驱动装置的后输出轴传动结构示意图。
图3是本发明第二实施例的电动汽车的主驱电机的双向驱动装置的后输出轴传动结构示意图。
图4是本发明第三实施例的电动汽车的主驱电机的双向驱动装置的整体结 构示意图。
图5是本发明第三实施例的电动汽车的主驱电机的双向驱动装置的后输出轴上的主动带轮组合示意图。
图6A、6B是本发明第三实施例的电动汽车的主驱电机的双向驱动装置的后输出轴传动结构示意图。
具体实施方式
为让本发明的上述目的、特征和优点能更明显易懂,以下结合附图对本发明的具体实施方式作详细说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其它不同于在此描述的其它方式来实施,因此本发明不受下面公开的具体实施例的限制。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。
本发明的实施例描述电动汽车的主驱电机的双向驱动装置。在本发明的上下文中,电动汽车可以是完全依靠电池供电的纯电动汽车,或者是部分依靠电池供电的混合动力汽车。主驱电机由电池供电,提供汽车行走动力的电机。可以理解,主驱电机需要通过减速器、变速箱和离合器等装置来最终驱动车轮。
第一实施例
图1是本发明第一实施例的电动汽车的主驱电机的双向驱动装置的整体结构示意图。图2是本发明第一实施例的电动汽车的主驱电机的双向驱动装置的后输出轴传动结构示意图。参考图1和图2所示,本实施例的电动汽车的主驱电机的双向驱动装置100,包括主驱电机110和传动组件120。主驱电机110具有前输出轴111和后输出轴112。前输出轴111设置在主驱电机110的前端盖113上。后输出轴112设置在主驱电机110的后端盖114上。传动组件120可包括一系列部件,例如一个轴套法兰121、一个主动带轮122、一条传动带123和一个从动带轮124。轴套法兰121连接前输出轴111,用于输出供电动汽 车行走的动力。主动带轮122连接后输出轴112。从动带轮124通过传动带123连接主动带轮122,且用于带动对应的车载功能部件运转。
当主驱电机110运转时,通过前输出轴111驱动车辆行驶时,并且主驱电机的后端盖的后输出轴112固接联动的主动带轮会传动带123,带动需要传动的车载功能部件的从动带轮同步传动旋转工作。
可以理解,主动带轮122的直径与从动带轮124的直径之比满足车载功能部件的正常运行时的转速比。从而在设定的传动条件下,满足车载功能部件正常运行。主驱电机110与车载功能部件的工作转速范围相匹配,这一范围例如是600-4000转/分。
在本实施例中,从动带轮124可以设置在主驱电机110的外圆周边基座上。
在本实施例中,传动带123可以是车用复合胶质传动带。
在本实施例中,车载功能部件可以是空调压缩机、水泵、液压泵、真空泵、气泵或者低压发电机。
如图2所示,传动组件120还可包括设于传动带123上的定位导向轮125。
较佳地,车载功能部件对应的从动带轮124的内盒前端连接一电磁离合器(图未示),用于控制对应的从动带轮124与传动带123的分离、接合传动,电磁离合器的工作受控于电动汽车的控制器。当车载功能部件无需连续传动工作,改变为间歇工作时,由其从动带轮中的电磁离合器控制分离、接合传动。如空调压缩机、气泵等,控制器会采集其工作状态并根据温度、真空度、电压值、电流值、气压值、油压值等传感器信号,通过可以是继电器、电子开关或者CAN通信实时控制其工作状态。这一过程可以视整车控制单元(VCU)设计要求由软件进行控制,实现实时管理。
本实施例利用主驱电机的转子轴双向传动转速、转矩的装置和组合传动功能部件的方式与各自电驱动车载功能部件电耗之和相比可节约电能大于25%以上的积极效果。
第二实施例
图3是本发明第二实施例的电动汽车的主驱电机的双向驱动装置的后输出轴传动结构示意图。参考图3所示,本实施例中与前一实施例不同之处在于,传动组件120可包括多个从动带轮124(图中示例为5个)。从动带轮124通 过传动带123连接主动带轮122,且用于带动对应的多个车载功能部件运转。
当主驱电机110运转时,通过前输出轴111驱动车辆行驶时,并且主驱电机的后端盖的后输出轴112固接联动的主动带轮122会带动传动带123,带动需要传动的车载功能部件的从动带轮同步传动旋转工作。
可以理解,主动带轮122的直径与各从动带轮124的直径之比满足各车载功能部件的正常运行时的转速比。从而在设定的传动条件下,满足各车载功能部件正常运行。
在本实施例中,传动带123可以是车用复合胶质传动带。
在本实施例中,多个车载功能部件可以是空调压缩机、水泵、液压泵、真空泵、气泵和低压发电机等部件的组合。
如图3所示,传动组件120在传动带123上的两个带轮之间设置定位导向轮125。并且,传动组件120还可包括设于传动带123上的定位张紧器126。
较佳地,各车载功能部件对应的从动带轮124的内盒前端连接一电磁离合器(图未示),用于控制对应的从动带轮124与传动带123的分离、接合传动,电磁离合器的工作受控于电动汽车的控制器。当某一车载功能部件无需连续传动工作,改变为间歇工作时,由其从动带轮中的电磁离合器控制分离、接合传动。如空调压缩机、气泵等,控制器会采集其工作状态并根据温度、真空度、电压值、电流值、气压值、油压值等传感器信号,通过可以是继电器、电子开关或者CAN通信实时控制其工作状态。这一过程可以视整车控制单元(VCU)设计要求由软件进行控制,实现实时管理。
本实施例利用主驱电机的转子轴双向传动转速、转矩的装置和组合传动功能部件的方式与各自电驱动车载功能部件电耗之和相比可节约电能大于25%以上的积极效果。
在第一和第二实施例中,主动带轮122都通过单根传动带123连接位于同一平面的一个或多个从动带轮124。然而,主动带轮的数量是可以变化的,下面再举一实施例加以说明。
第三实施例
图4是本发明第三实施例的电动汽车的主驱电机的双向驱动装置的整体结构示意图。图5是本发明第三实施例的电动汽车的主驱电机的双向驱动装置的 后输出轴上的主动带轮组合示意图。图6A、6B是本发明第三实施例的电动汽车的主驱电机的双向驱动装置的后输出轴传动结构示意图。参考图4、5和6A、6B所示,本实施例的电动汽车的主驱电机的双向驱动装置100,包括主驱电机110和传动组件120。主驱电机110具有前输出轴111和后输出轴112。传动组件120可包括一系列部件,例如一个轴套法兰121、两个主动带轮122a、122b、两条传动带123a、123b和多个从动带轮124(图中示例为6个)。轴套法兰121连接前输出轴111,用于输出供电动汽车行走的动力。主动带轮122a和122b为组合,分别连接后输出轴112,如图4和图5所示。每个主动带轮122a或122b分别通过一根传动带123a或123b连接位于一个平面的一个或多个从动带轮124。例如图6A所示,主动带轮122a通过一根传动带123a连接位于一个平面的一个从动带轮124;如图6B所示,另一主动带轮122b通过另一根传动带123b连接位于另一个平面的5个从动带轮124。各从动带轮124用于带动对应的车载功能部件运转。
当主驱电机110运转时,通过前输出轴111驱动车辆行驶时,并且主驱电机的后端盖的后输出轴112固接联动的主动带轮122a、122b会分别带动传动带123a、123b,带动需要传动的车载功能部件的从动带轮同步传动旋转工作。
可以理解,主动带轮122a、122b的直径与从动带轮124的直径之比满足车载功能部件的正常运行时的转速比。从而在设定的传动条件下,满足车载功能部件正常运行。
在本实施例中,传动带123a、123b可以是车用复合胶质传动带。
在本实施例中,6个从动带轮124对应的车载功能部件可以分别是空调压缩机、水泵、液压泵、真空泵、气泵和低压发电机。
如图6A所示,传动组件120还可包括设于传动带123a上的定位导向轮125a。
如图6B所示,传动组件120在传动带123b上的两个带轮之间设置定位导向轮125b。并且,传动组件120还可包括设于传动带123上的定位张紧器126。
相应地,本实施例的传动组件120还包括另一轴套法兰127和万向节128。轴套法兰127连接后输出轴112,万向节128安装在轴套法兰127上,主动带轮122通过万向节128连接后输出轴112。由此,主驱电机110的后输出轴112 通过轴套法兰127和万向节128传动主动带轮的组合来传动车载功能部件。
较佳地,各车载功能部件对应的从动带轮124的内盒前端连接一电磁离合器(图未示),用于控制对应的从动带轮124与传动带123a或123b的分离、接合传动,电磁离合器的工作受控于电动汽车的控制器。当车载功能部件无需连续传动工作,改变为间歇工作时,由其从动带轮中的电磁离合器控制分离、接合传动。如空调压缩机、气泵等,控制器会采集其工作状态并根据温度、真空度、电压值、电流值、气压值、油压值等传感器信号,通过可以是继电器、电子开关或者CAN通信实时控制其工作状态。这一过程可以视整车控制单元(VCU)设计要求由软件进行控制,实现实时管理。
本发明的各实施例的双向驱动装置可节约电能大于25%以上,并且实践证明,运行稳定可靠,控制简单、成本可控、维护方便。
虽然本发明已参照当前的具体实施例来描述,但是本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,在没有脱离本发明精神的情况下还可作出各种等效的变化或替换,因此,只要在本发明的实质精神范围内对上述实施例的变化、变型都将落在本申请的权利要求书的范围内。

Claims (9)

  1. 一种电动汽车的主驱电机的双向驱动装置,包括主驱电机和传动组件,该主驱电机包括前输出轴和后输出轴,所述传动组件包括轴套法兰、主动带轮、传动带和一个或多个从动带轮;所述轴套法兰连接所述前输出轴,所述主动带轮连接所述后输出轴,所述一个或多个从动带轮通过传动带连接所述主动带轮,且用于带动对应的一个或多个车载功能部件运转。
  2. 如权利要求1所述的电动汽车的主驱电机的双向驱动装置,其特征在于,所述传动组件还包括设于所述传动带上的定位导向轮。
  3. 如权利要求1所述的电动汽车的主驱电机的双向驱动装置,其特征在于,所述传动组件还包括设于所述传动带上的定位张紧器。
  4. 如权利要求1所述的电动汽车的主驱电机的双向驱动装置,其特征在于,所述轴套法兰用于驱动变速箱。
  5. 如权利要求1所述的电动汽车的主驱电机的双向驱动装置,其特征在于,所述车载功能部件为以下的一种或几种:空调压缩机、水泵、液压泵、真空泵、气泵和低压发电机。
  6. 如权利要求1所述的电动汽车的主驱电机的双向驱动装置,其特征在于,所述主动带轮的直径与各从动带轮的直径之比满足各车载功能部件的正常运行时的转速比。
  7. 如权利要求1所述的电动汽车的主驱电机的双向驱动装置,其特征在于,所述主动带轮通过单根所述传动带连接位于同一平面的一个或多个所述从动带轮。
  8. 如权利要求1所述的电动汽车的主驱电机的双向驱动装置,其特征在于,所述主动带轮的数量为2个,每个主动带轮分别通过一根所述传动带连接位于一个平面的一个或多个所述从动带轮。
  9. 如权利要求1所述的电动汽车的主驱电机的双向驱动装置,其特征在于,所述传动组件还包括另一轴套法兰和万向节,所述另一轴套法兰连接所述后输出轴,所述万向节安装在所述另一轴套法兰上,所述主动带轮通过所述万向节连接所述后输出轴。
PCT/CN2017/081632 2017-01-16 2017-04-24 电动汽车的主驱电机的双向驱动装置 WO2018129830A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710032474.8 2017-01-16
CN201710032474.8A CN106816989A (zh) 2017-01-16 2017-01-16 电动汽车的主驱电机的双向驱动装置

Publications (1)

Publication Number Publication Date
WO2018129830A1 true WO2018129830A1 (zh) 2018-07-19

Family

ID=59111791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081632 WO2018129830A1 (zh) 2017-01-16 2017-04-24 电动汽车的主驱电机的双向驱动装置

Country Status (2)

Country Link
CN (1) CN106816989A (zh)
WO (1) WO2018129830A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108583256A (zh) * 2018-07-05 2018-09-28 重庆方巨科技集团有限公司 纯电动车动力驱动系统结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263461A (ja) * 2000-03-22 2001-09-26 Jatco Transtechnology Ltd ハイブリッド車両の変速機ユニット
CN2661474Y (zh) * 2003-10-13 2004-12-08 李春晓 电动轿车空调机、转向泵、发电机、助力泵的安装结构
CN201619435U (zh) * 2009-12-14 2010-11-03 李春晓 电动客车动力总成
CN102806833A (zh) * 2011-06-02 2012-12-05 解志磊 新能源客车动力机组
CN106026516A (zh) * 2016-05-19 2016-10-12 中国重汽集团成都王牌商用车有限公司 电动汽车多功能动力电机
CN206490534U (zh) * 2017-01-16 2017-09-12 上海瑞昱荣科新能源汽车有限公司 电动汽车的主驱电机的双向驱动装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202038159U (zh) * 2011-03-28 2011-11-16 北京汽车新能源汽车有限公司 一种轻度混合动力汽车的双向张紧皮带传动装置
CN205706173U (zh) * 2016-04-18 2016-11-23 深圳市民富沃能新能源汽车有限公司 一种电动车动力轮系总成

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263461A (ja) * 2000-03-22 2001-09-26 Jatco Transtechnology Ltd ハイブリッド車両の変速機ユニット
CN2661474Y (zh) * 2003-10-13 2004-12-08 李春晓 电动轿车空调机、转向泵、发电机、助力泵的安装结构
CN201619435U (zh) * 2009-12-14 2010-11-03 李春晓 电动客车动力总成
CN102806833A (zh) * 2011-06-02 2012-12-05 解志磊 新能源客车动力机组
CN106026516A (zh) * 2016-05-19 2016-10-12 中国重汽集团成都王牌商用车有限公司 电动汽车多功能动力电机
CN206490534U (zh) * 2017-01-16 2017-09-12 上海瑞昱荣科新能源汽车有限公司 电动汽车的主驱电机的双向驱动装置

Also Published As

Publication number Publication date
CN106816989A (zh) 2017-06-09

Similar Documents

Publication Publication Date Title
JP4570611B2 (ja) 自動車用空気ブロア
US8522550B2 (en) Enhanced supercharging system and an internal combustion engine having such a system
US9534531B2 (en) Supercharger assembly for regeneration of throttling losses and method of control
WO2021208263A1 (zh) 双动力车用空调压缩机及其控制方法
KR20060108003A (ko) 하이브리드 전기 자동차의 동력 전달 장치
KR20160037937A (ko) 듀얼 클러치 동력전달계통 구조
WO2018129830A1 (zh) 电动汽车的主驱电机的双向驱动装置
CN202926544U (zh) 一种空调驱动装置
CN101596853B (zh) 电动汽车的动力总成
CN108501685A (zh) 弱混动力系统及控制方法
CN100395437C (zh) 汽车鼓风机
WO2015041330A1 (ja) ハイブリッドシステムとハイブリッド車両
CN113513405B (zh) 一种混合动力汽车的发动机轮系及混合动力汽车
CN206490534U (zh) 电动汽车的主驱电机的双向驱动装置
CN107415631B (zh) 一种空调压缩机的驱动系统及方法
KR20120055882A (ko) 일체형 트윈차저 시스템
CN204077290U (zh) 适用于混合动力车辆的空调驱动装置
CN209539553U (zh) 一种用于汽车空调压缩机的动力转换装置
CN202954937U (zh) 一种空调驱动装置
CN108005768B (zh) 主动抽气式排气系统及汽车
KR20070084657A (ko) 하이브리드 전기 자동차 및 그 제어방법
CN205478174U (zh) 一种带有双离合器的混合动力汽车空调压缩机系统
CN217455697U (zh) 一种汽车的增程系统
CN213920656U (zh) 一种集成化的新能源混合动力驱动装置
WO2015041331A1 (ja) ハイブリッドシステムとハイブリッド車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891758

Country of ref document: EP

Kind code of ref document: A1