WO2018128506A2 - 저전력용 광대역 전치증폭 진폭 편이 변복조 통신 시스템 - Google Patents

저전력용 광대역 전치증폭 진폭 편이 변복조 통신 시스템 Download PDF

Info

Publication number
WO2018128506A2
WO2018128506A2 PCT/KR2018/000369 KR2018000369W WO2018128506A2 WO 2018128506 A2 WO2018128506 A2 WO 2018128506A2 KR 2018000369 W KR2018000369 W KR 2018000369W WO 2018128506 A2 WO2018128506 A2 WO 2018128506A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
peask
binary data
baseband
clock
Prior art date
Application number
PCT/KR2018/000369
Other languages
English (en)
French (fr)
Other versions
WO2018128506A3 (ko
WO2018128506A4 (ko
Inventor
윌커슨벤자민피
Original Assignee
윌커슨벤자민피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윌커슨벤자민피 filed Critical 윌커슨벤자민피
Publication of WO2018128506A2 publication Critical patent/WO2018128506A2/ko
Publication of WO2018128506A3 publication Critical patent/WO2018128506A3/ko
Publication of WO2018128506A4 publication Critical patent/WO2018128506A4/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D1/00Demodulation of amplitude-modulated oscillations
    • H03D1/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation

Definitions

  • An embodiment of the present invention provides a method and a circuit of a stable low power wideband PEASK modulation and demodulation communication system by inputting a high-frequency component of a binary data signal into a pre-amplified data signal and communicating with a PEASK modulated signal modulated to a carrier frequency. It is about the configuration.
  • Pre-Emphasis Amplitude Shift Keying (PEASK) signal is a carrier-sided bilateral band signal. Interference problems are solved using pre-emphased binary data.
  • the data signal which is the input of the existing ASK signal, is a square wave and has a high harmonic component at the rising edge and the falling edge, but the existing system has a limitation in data transmission rate due to the reduction of the high frequency component due to the bandwidth limitation generated in the communication path.
  • the low-to-carrier-frequency ratio is less than 10%.
  • the PEASK signal is a low-power asynchronous type that uses a full-wave rectifier and a first-order lowpass filter using pre-emphased binary data input.
  • the detector can also increase the DRCF rate to over 50%.
  • Korean Patent No. 10-0863538 describes a demodulation circuit device for generating demodulated data with a detector in a demodulator.
  • the PEASK transmission circuit which pre-amplifies the data signal, complements the communication system and improves the stability by improving the system.
  • a configuration of a PEASK modulation and demodulation method comprising: a preamplitude amplitude shift modulation transmitter configured to pre-amplify a binary data signal to generate a PEASK RF signal by placing a baseband signal, which is amplitude shift modulated, on a RF carrier; A transmitter for transmitting the PEASK RF signal through a wire channel or a wireless channel; Asynchronous envelope detection converts the received PEASK RF signal into a baseband signal through an RF carrier mixer, recovers a clock, demodulates binary data with asynchronous envelope detection, and generates recovered data by synchronizing the binary data with a restored clock.
  • a low power broadband preamplitude amplitude demodulation communication system including a receiving and clock data recovery unit may be provided.
  • the preamplitude amplitude shift modulation transmission unit pre-amplifies the high frequency components of the binary data signal, that is, Level Shifter, Invertor, a circuit that delays by one clock period Tb, and the t (n) signal and t (n -1) may comprise circuitry for synthesizing signals,
  • BPF Filter
  • the transmitter may include a wire channel or a wireless channel to which the PEASK modulated RF signal is to be transmitted.
  • the asynchronous envelope detection receiving and clock data recovery unit may include a mixer and baseband BPF converting the bandwidth-limited PEASK RF received signal to the PEASK baseband signal using the RF carrier frequency through the receiving side BPF,
  • a baseband amplitude demodulator may be configured to generate a binary data signal demodulated by a clock envelope recovered from the PEASK baseband signal and an asynchronous envelope detection and synchronized with a clock.
  • a preamplified high-frequency component of a binary data signal is loaded on an RF carrier to generate a baseband signal, which is amplitude-shifted, in a pre-amplified amplitude-shifted (PEASK) modulated PEASK RF signal through a transmitting side BPF.
  • PEASK pre-amplified amplitude-shifted
  • Pre-amplifying amplitude shift modulating transmission Transmitting the PEASK RF signal through a wire channel or a wireless channel; Asynchronously demodulating the received PEASK RF signal with a limited bandwidth through a receiving side BPF and a baseband signal converted through an RF carrier mixer and a baseband BPF, and restoring a clock;
  • a low power broadband preamplitude amplitude shift demodulation communication method may be provided.
  • SoC System on Chip
  • FIG. 1 is a circuit diagram illustrating a low power broadband preamplitude amplitude shift-modulation demodulation communication system according to an embodiment of the present invention.
  • FIG. 2 is a graph illustrating signals in a process of demodulating a signal modulated with random data into a 32 MHz baseband carrier according to an embodiment of ASK modulation and demodulation.
  • FIG. 3 is a graph illustrating signals of a process in which a random modulated signal modulated by a carrier of 32 MHz frequency is demodulated according to an embodiment of the present invention.
  • FIG. 4 is a graph illustrating preamplified data according to an embodiment of the present invention.
  • FIG. 5 is a graph illustrating signals in which signals of the graph of FIG. 2 are enlarged according to an embodiment of ASK modulation and demodulation.
  • FIG. 6 is a graph illustrating signals in which signals of FIG. 3 are enlarged according to an embodiment of the present invention.
  • FIG. 7 is a graph illustrating an eye diagram according to an embodiment of the present invention.
  • FIG. 8 is a graph illustrating an eye diagram according to an embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a low power wideband preamplitude amplitude shift key demodulation communication system according to an embodiment of the present invention.
  • the PEASK modulation and demodulation circuit includes a preamplitude amplitude shift keying transmitter 110, a transmitter 120, and an asynchronous envelope detection and clock data recovery unit 130. Can be.
  • the preamplitude amplitude shift modulation transmission unit 110 is a circuit for preamplifying a high frequency component of a binary data signal, that is, a level shifter, an inverter, a circuit delaying by one cycle Tb, And a circuit for synthesizing a t (n) signal and a t (n-1) signal, the baseband amplitude shift modulator carrying a preamplified binary data signal at a baseband frequency through the preamplifier circuits. And an RF carrier mixer circuit for transmitting the PEASK modulated signal loaded on the baseband frequency to the RF carrier to generate a PEASK RF transmission signal, and a transmitting side BPF.
  • the synthesis of the t (n) signal and the t (n-1) signal includes a preamplified binary data signal emphasizing a rising edge and a falling edge portion having a high frequency component of the binary data signal. Is a signal that emphasizes high frequency components with four level signals, and this signal is loaded with amplitude shift modulation on the baseband carrier and then transmitted with amplitude shift modulation on the RF carrier for transmission through the transmitter. Emphasis is placed on reducing the bit error by stabilizing data transmission by solving ISI (intersymbol interference) problems caused by high frequency loss and envelope detection at the transmitter.
  • ISI intersymbol interference
  • the transmitter 120 may include a wired path or a wireless channel through which the PEASK modulated RF transmission signal is to be transmitted.
  • the asynchronous envelope detection and clock data recovery unit 130 may generate an RF carrier mixer, a baseband BPF, and a baseband amplitude shift demodulator to generate a PEASK baseband signal from a bandwidth-limited PEASK RF received signal through a receiving side BPF as shown. It may be configured to include a baseband ASK Demodulator.
  • the baseband demodulator demodulates the digital binary data using a simple and low power asynchronous envelope detection, recovers a clock from the PEASK baseband signal, and synchronizes the demodulated binary data signal to the restored clock. Binary data can be restored.
  • FIG. 2 shows an embodiment of ASK modulation and demodulation, which includes a random data signal having a 16 Mbps transmission rate, a signal at the transmitting side in which baseband ASK modulation is performed on a baseband carrier having a 32 MHz frequency, and a baseband ASK at the receiving side. It is a graph showing the signals appearing during the demodulation process.
  • the graph (a) shows an embodiment of a random data signal at a 16 Mbps transmission rate
  • the graph (b) shows a baseband ASK modulation with a baseband carrier of 32 MHz. The signal of one transmitting side is shown.
  • graph (c) shows a baseband ASK modulated receive side signal of which bandwidth is limited as it passes through the transmitter
  • graph (d) shows a signal that has detected the baseband ASK receive side signal
  • graph (e) Shows an envelope detection signal generated by passing the detected signal through a first low-pass filter.
  • graph (f) shows the recovered clock signal
  • graph (g) shows the binary data signal restored in synchronization with the clock signal.
  • FIG. 3 is a diagram illustrating a random data signal having a 16 Mbps transmission rate, a signal at a transmitter side in which baseband PEASK modulation of the random data is performed on a baseband carrier having a frequency of 32 MHz, and a baseband PEASK at a receiver side. It is a graph showing the signals appearing during the demodulation process.
  • the graph (a) shows an embodiment of a random data signal at a 16 Mbps transmission rate
  • the graph (b) shows a signal obtained by preamplifying the random data
  • the graph (c) shows a signal on the transmitting side which is subjected to baseband PEASK modulation with a baseband carrier of 32 MHz.
  • graph (d) shows a baseband PEASK modulated receive side signal of which bandwidth is limited as it passes through the transmitter
  • graph (e) shows a signal that has detected the baseband PEASK receive side signal
  • graph (f) Shows an envelope detection signal generated by passing the detected signal through a first low-pass filter.
  • graph (f) shows the recovered clock signal
  • graph (g) shows the binary data signal restored in synchronization with the clock signal.
  • graph (g) shows a restored clock signal
  • graph (h) shows a binary data signal restored in synchronization with the clock signal
  • the graph shown in FIG. 2 shown as an embodiment of ASK modulation and demodulation
  • the envelope detection signal of graph (f) shown in FIG. 3 shown as an embodiment of the present invention is shown to be significantly improved and stabilized than the envelope detection signal of e).
  • FIG. 4 is a graph illustrating signals of a process of preamplifying a high frequency component of a binary data signal according to an embodiment of the present invention.
  • the graph (a) shows an embodiment of a random binary data signal at a 16 Mbps transmission rate.
  • graph (b) shows a signal obtained by level shifting the random binary data signal
  • graph (c) shows a signal inverting the random binary data signal
  • graph (d) The inverted signal is a signal delayed by one cycle Tb.
  • the graph (e) shows a signal obtained by combining the level shifted signal of the graph (b) and the delayed signal of the graph (d), and the random binary data signal is preamplified to emphasize the high frequency component of the data. It is to show the characteristics.
  • FIG. 5 is a graph illustrating signals in which signals of the graph of FIG. 2 are enlarged in the same order according to one embodiment of ASK modulation and demodulation.
  • FIG. 6 is a graph illustrating signals in which signals of FIG. 3 are enlarged in the same order according to an embodiment of the present invention.
  • FIG. 7 is an eye diagram in which an eye having a small bit error due to overlapping of the envelope detection signal of graph (e) shown in FIG. Is a graph.
  • FIG. 8 is an eye diagram in which an eye that overlaps the envelope detection signal of graph (f) shown in FIG. 3 by a clock cycle is large and bit error is small in an embodiment of the present invention. Is a graph.
  • Each signal shown is generally represented as a clean signal, and it can be confirmed that the signal is restored to a clear data signal.
  • a technique is a 0.18 ⁇ m technique, for example, a modulation and demodulation scheme that can be realized at a high speed of 16 Mbps or more, and can operate even beyond.
  • FIG. 9 is a flowchart illustrating a modulation demodulation method performed in a low power broadband PEASK modulation and demodulation communication system according to an embodiment of the present invention. Each step is illustrated through a configuration of the PEASK modulation and demodulation communication system described with reference to FIG. 1. Can be performed.
  • step 210 a t (n) signal level shifted from a binary data signal and a t (n-1) signal delayed by a period Tb, which is inverted from the binary data signal and delayed by a clock period, are synthesized. Generates a pre-emphasis data signal.
  • synthesizing the t (n) signal and the t (n-1) signal in a demodulator using a preamplified binary data signal emphasizing a rising edge and a falling edge having a high frequency component of the binary data signal. This is to reduce bit error by stabilizing data transmission by solving the ISI problem that can only occur in the existing ASK demodulation when restoring data.
  • a baseband amplitude shift modulator carrying the preamplified data signal on a baseband and a PEASK modulated signal loaded on a baseband are mounted on an RF carrier to output a PEASK RF transmission signal generated through a transmission side BPF.
  • the PEASK RF transmission signal which is the signal output in step 210, is transmitted, and may be a wired path or a wireless path according to a transmission path, and is more distorted than the PEASK RF transmission signal according to the characteristics of the transmission path.
  • a signal can be generated.
  • the signal output in step 220 receives the RF mixer and the baseband BPF from the PEASK RF received signal whose bandwidth is limited through the receiving side BPF.
  • the PEASK baseband signal is generated by restoring and outputting a clock signal by a baseband amplitude demodulator.
  • the demodulated signal is demodulated by the baseband amplitude shift demodulator.
  • the recovered data can be output by synchronizing the converted data signal.
  • an asynchronous PEASK communication circuit and a method for transmitting a wideband binary data signal and having a low power and a simple circuit.
  • it can be used for digital communication of devices requiring low power consumption, provides a demodulation method that can be applied to mobile communication devices, and is suitable for implementing a System on Chip (SoC), which is convenient and economical.
  • SoC System on Chip
  • Asynchronous PEASK modulation and demodulation method is implemented in the form of program instructions that can be executed by various computer means may be recorded in a computer readable medium.
  • the computer readable medium may include a data structure, a data file, a program instruction, or the like in combination or singly.
  • the program instructions recorded on the media may be those specially designed and constructed for the purposes of the embodiments, or they may be of the kind well-known and available to those having skill in the computer software arts.
  • Examples of computer-readable recording media include magnetic media such as floppy disks, hard disks and magnetic tape, optical media such as DVDs and CD-ROMs, and magnetic disks such as floppy disks.
  • Magneto-optical media and hardware devices specifically configured to store and execute program instructions such as RAM, ROM, flash memory, and the like.
  • program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.
  • PEASK communication circuit and a method for transmitting a wideband binary data signal, which can implement asynchronous a demodulator at high speed with low power and a simple circuit.
  • it can be used for high-speed digital communication of devices requiring low power consumption, provides a communication method that can be applied to mobile communication devices, and is suitable for implementing SoC, which is convenient and economical.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transmitters (AREA)

Abstract

저전력용 광대역 PEASK 변복조 통신 시스템의 변복조 방법과 그 회로의 구성에 관한 것이다. PEASK 변복조 회로의 구성에 있어서, 고속으로 전송할 이진 데이터 신호의 고주파 성분을 강조하기 위해 상기 이진 데이터 신호의 레벨(Level)을 키운t(n) 신호와 상기 이진 데이터 신호를 반전하여 클럭 한 주기인 Tb만큼 지연시킨 t(n-1) 신호를 합성하여 생성한 전치증폭 데이터 신호를 베이스밴드(Baseband)로 진폭 편이 변조하고, 상기 변조된 전치증폭 진폭 변조 베이스밴드(Pre-Emphasis Amplitude Shift Keying Baseband) 신호를 Radio Frequency(RF) Mixer와 송신측 BPF를 통해서 송신하고자 하는 송신주파수로 변환한 PEASK RF 신호를 송신하는 전치증폭 진폭 편이 변조 송신부; 상기 PEASK RF 송신신호가 유선 경로(Wire Channel), 또는 무선 경로(Wireless Channel)를 통해 왜곡되어 전송될 수 있는 전송부; 및 상기 전송부를 통해 왜곡될 수 있는 전송된 신호, 즉 고주파 성분을 강조되어 전송 경로에서 생길 수 있는 고주파 성분의 손실과 수신측 BPF를 통하면서 생길 수 있는 대역폭 제한과 포락선 검파에서 생기는 심볼간섭(ISI)의 문제를 해결하여 비트 에라(Bit Error)를 줄일 수 있는 PEASK RF 수신신호로부터 RF Carrier Mixer와 Baseband BPF를 통해 PEASK Baseband 신호를 생성하여 클럭을 복원하고, 상기 PEASK Baseband 신호로부터 저전력인 비동기 포락선 검파를 통해 복조된 이진 데이터를 상기 클럭에 동기시켜 이진 데이터를 복원하는 비동기 포락선 검파 수신 및 클럭 데이터 복원부를 포함하는 저전력용 광대역 전치증폭 진폭 편이 변복조 통신 시스템이 제공될 수 있다.

Description

저전력용 광대역 전치증폭 진폭 편이 변복조 통신 시스템
본 발명의 실시예는 이진 데이터 신호의 고주파 성분을 전치증폭(Pre-Emphasis)한 데이터 신호를 입력하고 캐리어 주파수에 변조한 PEASK 변조신호로 통신함으로써 안정적인 저전력용 광대역 PEASK 변복조 통신 시스템의 방법과 그 회로의 구성에 관한 것이다.
PEASK(Pre-Emphasis Amplitude Shift Keying, 전치증폭 진폭 편이 변조) 신호는 캐리어를 전송한 양측파대 신호로써 캐리어 신호로 인해 비동기식 복조가 용이하고 저전력 회로가 간단한데 시간영역 처리로 인한 심볼간 간섭(ISI:Intersymbol Interference) 문제를 전치증폭(Pre-Emphasis)한 이진 데이터를 사용하여 해결한다.
기존 ASK 신호의 입력인 데이터 신호는 구형파로써 상승엣지와 하강엣지 부분에 높은 고조파 성분을 있는데 기존 시스템은 통신경로에서 생긴 대역폭 제한 때문에 고주파 성분의 감소로 데이터 전송속도의 한계가 생겨 DRCF(Data-Rate-to-Carrier-Frequency) 비율이 10% 이하로 낮은데 본 발명의 실시예에서 PEASK 신호는 전치증폭(Pre-Emphasis)한 이진 데이터 입력을 사용하여 전파정류기와 1차 저역 통과 필터를 사용하는 저전력 비동기식 검파기로도 DRCF 비율을 50% 이상으로 높일 수 있다.
ASK 복조기와 관련하여 한국등록특허 제10-0863538에서는 복조장치에서의 검출기로 복조된 데이터를 생성하는 복조 회로 장치에 대해서 기재하고 있다.
본 발명의 실시예는 PEASK 변복조 방식에 있어서, 전송 속도와 안정성, 회로의 복잡도, 및 전력 소모에 대한 문제점을 해결하기 위해 ASK(Amplitude Shift Keying) 변복조 시스템의 전송속도의 한계와 에라비율에 큰 문제가 있는데, 전치증폭한 이진 데이터로 진폭 편이 변조하여 통신함으로써 이 같은 한계와 문제를 극복하는 PEASK 변복조 회로와 그 방법을 제공하고자 한다.
이에, 광대역 이진 데이터 신호를 전송하며 저전력용인 동시에, 회로가 간단하며 안정적인 비동기식 복조 회로와 그 방법을 제공하기 쉽게 송신측 데이터 신호를 전치증폭하여 진폭 편이 변조 함으로써, 즉 ASK 변복조 시스템의 ISI 문제를 해결하는 방법으로 데이터 신호를 전치증폭한 PEASK 송신회로로 통신 시스템을 보완하며 안정성을 높여 시스템을 개선한 회로를 구현하고자 한다.
PEASK 변복조 방식의 구성에 있어서, 이진 데이터 신호를 전치증폭하여 진폭 편이 변조한 베이스밴드(Baseband) 신호를 RF Carrier에 실어 PEASK RF 신호를 생성하여 송신하는 전치증폭 진폭 편이 변조 송신부; Wire Channel, 또는 Wireless Channel를 통해 상기 PEASK RF 신호가 전송되는 전송부; 수신된 상기 PEASK RF 신호로부터 RF Carrier Mixer를 통해 베이스밴드 신호로 변환하여, 클럭을 복원하고 비동기 포락선 검파로 이진 데이터를 복조하고 상기 이진 데이터를 복원된 클럭으로 동기시켜 복원된 데이터 생성하는 비동기 포락선 검파 수신 및 클럭 데이터 복원부를 포함하는 저전력용 광대역 전치증폭 진폭 편이 변복조 통신 시스템이 제공될 수 있다.
일측에 있어서, 전치증폭 진폭 편이 변조 송신부는 이진 데이터 신호의 고주파 성분을 전치증폭 하는 회로들, 즉 Level Shifter, Invertor, 클럭 한 주기인 Tb만큼 지연하는 회로, 및 t(n) 신호와 t(n-1) 신호를 합성하는 회로를 포함할 수 있고,
상기 전치증폭 회로들을 통해 전치증폭한 이진 데이터 신호를 베이스밴드 주파수에 실는 Baseband ASK Modulator와 베이스밴드 주파수에 실린 PEASK 변조신호를 RF Carrier에 실어 PEASK RF 송신신호를 발생하는 RF Carrier Mixer와 송신측 Band Pass Filter(BPF)를 포함할 수 있다.
또 다른 측면에 있어서, 전송부는 PEASK 변조된 RF 신호가 전송될 Wire Channel, 또는 Wireless Channel이 포함될 수 있다.
또 다른 측면에 있어서, 비동기 포락선 검파 수신 및 클럭 데이터 복원부는 수신측 BPF를 통해서 대역폭이 제한된 PEASK RF 수신신호를 RF Carrier 주파수를 이용하여 PEASK Baseband 신호로 변환하는 Mixer와 Baseband BPF를 포함할 수 있고,
상기 PEASK Baseband 신호로부터 복원된 클럭 신호와 비동기 포락선 검파로 복조되고 클럭에 동기된 이진 데이터 신호를 생성하는 베이스밴드 진폭 편이 복조기(Baseband ASK Demodulator)를 포함할 수 있다.
PEASK 변복조 방법에 있어서, 이진 데이터 신호의 고주파 성분을 전치증폭하여 진폭 편이 변조한 베이스밴드(Baseband) 신호를 RF Carrier에 실어 전치증폭 진폭 편이(PEASK) 변조된 PEASK RF 신호를 송신측 BPF를 통해 생성하여 전치증폭 진폭 편이 변조 송신하는 단계; Wire Channel, 또는 Wireless Channel를 통해 상기 PEASK RF 신호를 전송하는 단계; 수신측 BPF를 통해 대역폭이 제한되어 수신된 상기 PEASK RF 신호를 RF Carrier Mixer와 Baseband BPF를 통해 변환한 베이스밴드 신호를 비동기 복조하고 클럭을 복원하는 비동기 포락선 검파 수신 및 클럭 데이터 복원하는 단계를 포함하는 저전력용 광대역 전치증폭 진폭 편이 변복조 통신 방법이 제공될 수 있다.
본 발명의 실시예를 통해서, 광대역 데이터를 ASK 통신 시스템보다 안정적으로 빠르게 전송하며, 저전력용인 PEASK 변복조 통신 시스템과 그 방법을 제공할 수 있다.
이에 더불어 저전력용 고속 유무선 통신기기에 적용할 수 있는 변복조방식을 제공하며, System on Chip(SoC)을 구현하기에 적합하여 편리함과 경제성이 높다.
도 1은 본 발명의 일실시예에 있어서, 저전력용 광대역 전치증폭 진폭 편이 변복조 통신 시스템 구성을 설명하기 위한 회로도이다.
도 2는 ASK 변복조의 일실시예에 있어서, 랜덤 데이터(Random data)를 32MHz 베이스밴드 캐리어로 변조된 신호가 복조되는 과정의 신호들을 도시한 그래프이다.
도 3는 본 발명의 일실시예에 있어서, 랜덤 데이터(Random data)를 32MHz 주파수의 캐리어로 변조된 신호가 복조되는 과정의 신호들을 도시한 그래프이다.
도 4는 본 발명의 일실시예에 있어서, 전치증폭한 데이터를 도시한 그래프이다.
도 5는 ASK 변복조의 일실시예에 있어서, 도 2 그래프의 신호를 확대한 신호들을 도시한 그래프이다.
도 6는 본 발명의 일실시예에 있어서, 도 3 그래프의 신호를 확대한 신호들을 도시한 그래프이다.
도 7는 기존 발명의 일실시예에 있어서, Eye Diagram을 도시한 그래프이다.
도 8는 본 발명의 일실시예에 있어서, Eye Diagram을 도시한 그래프이다.
도 9는 본 발명의 일실시예에 있어서, 저전력용 광대역 전치증폭 진폭 편이 변복조 통신 시스템 방식을 설명하기 위한 흐름도이다.
이하, PEASK 변복조 통신시스템의 구성과 복조 방법에 대해서 첨부된 도면을 참조하여 자세히 설명한다.
도 1은 본 발명의 일실시예에 있어서, 저전력용 광대역 전치증폭 진폭 편이 (PEASK) 변복조 통신 시스템의 구성을 설명하기 위한 회로도를 도시한 것이다. 도 1과 같은 회로의 구성에 대해 설명하면, 상기 PEASK 변복조 회로는 전치증폭 진폭 편이 변조 송신부(110), 전송부(120), 그리고 비동기 포락선 검파 수신 및 클럭 데이터 복원부(130)를 포함하여 구성될 수 있다.
먼저, 전치증폭 진폭 편이 변조 송신부(110)는 이진 데이터 신호의 고주파 성분을 전치증폭 하기 위한 회로들, 즉 레벨시프터(Level Shifter), 반전기(Invertor), 클럭 한 주기인 Tb만큼 지연하는 회로, 및 t(n) 신호와 t(n-1) 신호를 합성하는 회로를 포함할 수 있고, 상기 전치증폭 회로들을 통해 전치증폭한 이진 데이터 신호를 베이스밴드(Baseband) 주파수에 실는 베이스밴드 진폭 편이 변조기와 베이스밴드 주파수에 실린 PEASK 변조신호를 RF Carrier에 실어 PEASK RF 송신신호를 발생하는 RF Carrier Mixer 회로와 송신측 BPF를 포함할 수 있다.
이중, 상기 전치증폭 회로들을 통해, 상기 t(n) 신호와 상기 t(n-1) 신호를 합성하는 것은 상기 이진 데이터 신호의 고주파 성분이 있는 상승 엣지와 하강 엣지 부분을 강조한 전치증폭 이진 데이터 신호는 네개의 레벨(Level) 신호로 고주파 성분을 강조한 신호인데, 이 신호를 베이스밴드 캐리어에 진폭 편이 변조로 실고 상기 전송부를 통해 전송하기 위하여 다시 RF Carrier에 진폭 편이 변조로 실은 송신신호는 데이터의 고주파 성분을 강조하여 전송부의 고주파 손실과 포락선 검파에서 생기는 ISI(심볼간 간섭) 문제를 해결하여 데이터 전송을 안정하게 함으로써 비트 에라(Bit Error)를 줄인다.
전송부(120)는 PEASK 변조된 RF 송신신호가 전송될 유선 경로(Wire Channel), 또는 무선 경로(Wireless Channel)를 포함하여 구성될 수 있다.
비동기 포락선 검파 수신 및 클럭 데이터 복원부(130)는 도시한 바와 같이 수신측 BPF를 통해 대역폭이 제한된 PEASK RF 수신신호로부터 PEASK Baseband 신호를 생성할 RF Carrier Mixer, Baseband BPF, 및 베이스밴드 진폭 편이 복조기(Baseband ASK Demodulator)를 포함하여 구성될 수 있다.
여기서, 상기 베이스밴드 복조기는 회로가 간단하고 저전력인 비동기 포락선 검파를 이용하여 디지털 이진 데이터를 복조하고, 상기 PEASK Baseband 신호로부터 클럭을 복원하여, 이 복원된 클럭에 상기 복조된 이진 데이터 신호를 동기시켜 이진 데이터를 복원할 수 있다.
도 2는 ASK 변복조의 일실시예에 있어서, 16Mbps 전송속도의 랜덤 데이터(Random data) 신호와 이 랜덤 데이터를 32MHz 주파수의 베이스밴드 캐리어로 Baseband ASK 변조한 송신측의 신호, 및 수신측의 Baseband ASK 복조 과정에서 나타나는 신호들을 도시한 그래프이다.
그래프에 대해서 위로부터 아래의 방향으로 설명하면, 그래프 (a)는 16Mbps 전송속도의 랜덤 데이터(Random data) 신호의 실시예를 도시한 것이고, 그래프 (b)는 32MHz의 베이스밴드 캐리어로 Baseband ASK 변조한 송신측의 신호를 도시한 것이다.
또한, 그래프 (c)는 전송부를 통과할 때 대역폭이 제한된 Baseband ASK 변조된 수신측 신호를 도시한 것이고, 그래프 (d)는 상기 Baseband ASK 수신측 신호를 검파한 신호를 도시한 것이며, 그래프 (e)는 상기 검파된 신호를 1차 저역 필터(1st Low-pass Filter)에 통과시켜 생성한 포락선 검파 신호를 도시한 것이다.
그리고, 그래프 (f)는 복원된 클럭 신호를 도시한 것이고, 그래프 (g)는 상기 클럭 신호에 동기되어 복원된 이진 데이터 신호를 도시한 것이다.
도 3는 본 발명의 일실시예에 있어서, 16Mbps 전송속도의 랜덤 데이터(Random data) 신호와 이 랜덤 데이터를 32MHz 주파수의 베이스밴드 캐리어로 Baseband PEASK 변조한 송신측의 신호, 및 수신측의 Baseband PEASK 복조 과정에서 나타나는 신호들을 도시한 그래프이다.
그래프에 대해서 위로부터 아래의 방향으로 설명하면, 그래프 (a)는 16Mbps 전송속도의 랜덤 데이터(Random data) 신호의 실시예를 도시한 것이고, 그래프 (b)는 상기 랜덤 데이터를 전치증폭한 신호를 도시한 것이며, 그래프 (c)는 32MHz의 베이스밴드 캐리어로 Baseband PEASK 변조한 송신측의 신호를 도시한 것이다.
또한, 그래프 (d)는 전송부를 통과할 때 대역폭이 제한된 Baseband PEASK 변조된 수신측 신호를 도시한 것이고, 그래프 (e)는 상기 Baseband PEASK 수신측 신호를 검파한 신호를 도시한 것이며, 그래프 (f)는 상기 검파된 신호를 1차 저역 필터(1st Low-pass Filter)에 통과시켜 생성한 포락선 검파 신호를 도시한 것이다.
그리고, 그래프 (f)는 복원된 클럭 신호를 도시한 것이고, 그래프 (g)는 상기 클럭 신호에 동기되어 복원된 이진 데이터 신호를 도시한 것이다.
그리고, 그래프 (g)는 복원된 클럭 신호를 도시한 것이고, 그래프 (h)는 상기 클럭 신호에 동기되어 복원된 이진 데이터 신호를 도시한 것으로, ASK 변복조의 실시예로 보인 도 2에 표기된 그래프 (e)의 포락선 검파신호보다 본 발명의 실시예로 보인 도 3에 표기된 그래프 (f)의 포락선 검파신호가 현저히 개선되어 안정되는 특징을 보이는 것이다.
도 4는 본 발명의 일실시예에 있어서, 이진 데이터 신호의 고주파 성분을 전치증폭하는 과정의 신호들을 도시한 그래프이다.
그래프에 대해서 위로부터 아래의 방향으로 설명하면, 그래프 (a)는 16Mbps 전송속도의 랜덤 이진 데이터(Random Binary Data) 신호의 실시예를 도시한 것이다.
또한, 그래프 (b)는 상기 랜덤 이진 데이터 신호를 레벨시프트(Level Shift)한 신호를 도시한 것이고, 그래프 (c)는 상기 랜덤 이진 데이터 신호를 반전한 신호를 도시한 것이며, 그래프 (d)는 상기 반전된 신호를 클럭 한 주기인 Tb만큼 지연한 신호를 도시한 것이다.
그리고, 그래프 (e)는 상기 그래프 (b)의 레벨시프트된 신호와 상기 그래프 (d)의 지연된 신호를 합성한 신호를 도시한 것으로, 상기 랜덤 이진 데이터 신호가 전치증폭 되어 데이터의 고주파 성분이 강조되는 특징을 보이는 것이다.
도 5는 ASK 변복조의 일실시예에 있어서, 도 2 그래프의 신호를 확대한 신호들을 같은 순서대로 도시한 그래프이다.
도 6는 본 발명의 일실시예에 있어서, 도 3 그래프의 신호를 확대한 신호들을 같은 순서대로 도시한 그래프이다.
도 7는 ASK 변복조의 일실시예에 있어서, 도 2에 표기된 그래프 (e)의 포락선 검파 신호를 클럭 주기로 겹쳐 표시한 아이(Eye)가 작아서 비트 에라(Bit Error)가 많은 아이다이어그램(Eye Diagram)를 도시한 그래프이다.
도 8는 본 발명의 일실시예에 있어서, 도 3에 표기된 그래프 (f)의 포락선 검파 신호를 클럭 주기로 겹쳐 표시한 아이(Eye)가 커서 비트 에라(Bit Error)가 적은 아이다이어그램(Eye Diagram)를 도시한 그래프이다.
도시된 각 신호는 대체적으로 깨끗한 신호로 나타나며, 명확한 데이터 신호로 복원됨을 확인할 수 있다. 이와 같은 기술은 0.18μm 기술로서, 예컨대 16Mbps 이상의 고속으로 실현될 수 있으며, 그 이상에서도 동작할 수 있는 변복조 방식이다.
도 9은 본 발명의 일실시예에 있어서, 저전력용 광대역 PEASK 변복조 통신 시스템에서 수행되는 변복조 방식을 설명하기 위한 흐름도를 도시한 것으로서, 도 1을 통해 설명한 PEASK 변복조 통신 시스템의 구성을 통해서 각 단계가 수행될 수 있다.
단계(210)에서는 이진 데이터 신호로부터 레벨시프트(Level Shift)한 t(n) 신호와 상기 이진 데이터 신호로부터 반전하여 클럭 한 주기인 Tb만큼 지연한 t(n-1) 신호를 합성하여 전치증폭(Pre-Emphasis)한 데이터 신호를 생성한다.
먼저, 상기 t(n) 신호와 상기 t(n-1) 신호를 합성하는 것은 상기 이진 데이터 신호의 고주파 성분이 있는 상승 엣지와 하강 엣지 부분을 강조한 전치증폭 이진 데이터 신호를 이용하여 수신측 복조기에서 데이터를 복원할 때 기존의 ASK 복조 때에 생길 수 밖에 없는 ISI 문제를 해결하여 데이터 전송을 안정하게 함으로써 비트 에라(Bit Error)를 줄이기 위함이다.
상기 전치증폭한 데이터 신호를 베이스밴드에 실는 베이스밴드 진폭 편이 변조기와 베이스밴드에 실린 PEASK 변조신호를 RF Carrier에 실어 송신측 BPF를 통해 생성한 PEASK RF 송신신호를 출력한다.
단계(220)에서는 단계(210)에서 출력된 신호인 PEASK RF 송신신호를 전송하는데 전송경로에 따라 유선 경로와 무선 경로로 될 수 있으며, 상기 전송 경로의 특성에 따라 상기 PEASK RF 송신신호보다 왜곡된 신호가 생성될 수 있다.
마지막으로 단계(230)에서 단계(220)에서 출력된 신호, 즉 대역폭(Bandwidth) 제한과 전송경로에 따라 왜곡된 신호가 수신측 BPF를 통해 대역폭이 제한된 PEASK RF 수신신호로부터 RF Mixer와 Baseband BPF를 통해서 생성된 PEASK Baseband 신호를 베이스밴드 진폭 편이 복조기(Baseband ASK Demodulator)에 의해 클럭(Clock) 신호를 복원하여 출력하고, 상기 복원된 클럭 신호에 상기 베이스밴드 진폭 편이 복조기(Baseband ASK Demodulator)를 통해 복조된 데이터 신호를 동기하여 복원된 데이터를 출력할 수 있다.
이와 같은 본 발명의 실시예를 통해서, 광대역 이진 데이터 신호를 전송하며 저전력용인 동시에, 회로가 간단한 비동기식 PEASK 통신 회로와 그 방법을 제공할 수 있다. 이에 더불어 저전력 소모가 필요한 소자의 디지털 통신에도 사용할 수 있고, 모바일 통신기기에도 적용할 수 있는 복조방식을 제공하며, System on Chip(SoC)을 구현하기에 적합하여 편리함과 경제성이 높다.
실시예에 따른 비동기식의 PEASK 변복조 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 데이터 구조, 데이터 파일, 프로그램 명령 등을 조합하여 또는 단독으로 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 플로피 디스크, 하드 디스크 및 자기 테이프와 같은 자기 매체(Magnetic media), DVD, CD-ROM와 같은 광기록 매체(Optical media), 플롭티컬 디스크(Floptical disk)와 같은 자기-광 매체(Magneto-optical media), 및 램(RAM), 롬(ROM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등한 것들에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.
광대역 이진 데이터 신호를 전송하며, 저전력이며 회로가 간단한 비동기식 복조기를 고속으로 구현할 수 있는 PEASK 통신 회로와 그 방법을 제공할 수 있다. 이에 더불어 저전력 소모가 필요한 소자의 고속 디지털 통신에도 사용할 수 있고, 모바일 통신기기에도 적용할 수 있는 통신방식을 제공하며, SoC를 구현하기에 적합하여 편리함과 경제성이 높다.

Claims (4)

  1. 저전력용 광대역 전치증폭 진폭 편이 (PEASK) 변복조 통신 시스템 구성에 있어서,
    고속으로 전송할 이진 데이터 신호의 고주파 성분을 전치증폭한 데이터 신호를 베이스밴드(Baseband)로 진폭 편이 변조하고, 상기 변조된 전치증폭 진폭 변조 베이스밴드(Pre-Emphasis Amplitude Shift Keying Baseband) 신호를 Radio Frequency(RF) Mixer를 통해서 송신하고자 하는 송신주파수로 변환한 PEASK RF 신호를 송신하는 전치증폭 진폭 편이 변조 송신부;
    상기 PEASK RF 송신신호가 유선 경로(Wire Channel), 또는 무선 경로(Wireless Channel)를 통해 왜곡되어 전송될 수 있는 전송부; 및
    상기 전송부를 통해 왜곡될 수 있는 전송된 신호, 즉 PEASK RF 수신신호로부터 PEASK Baseband 신호를 생성하여 클럭을 복원하여, 상기 PEASK Baseband 신호로부터 저전력인 비동기 포락선 검파를 통해 복조된 이진 데이터를 상기 클럭에 동기시켜 이진 데이터를 복원하는 비동기 포락선 검파 수신 및 클럭 데이터 복원부
    를 포함하고,
    상기 전치증폭 진폭 편이 변조 송신부는,
    상기 전송할 이진 데이터 신호를 전치증폭하기 위해 레벨(Level)이 크게 된 t(n) 신호를 생성하는 레벨 시프터(Level Shifter);
    상기 전송할 이진 데이터 신호를 반전하는 인버터(Inverter);
    상기 인버터를 통해 반전된 이진 데이터 신호를 클럭 한 주기인 Tb만큼 지연시킨 t(n-1) 신호를 생성하는 지연회로;
    상기 전송할 이진 데이터 신호를 전치증폭하기 위해 상기 t(n) 신호와 상기 t(n-1) 신호를 합성하여 전치증폭된 이진 데이터 신호를 생성하는 합성회로;
    상기 전치증폭된 이진 데이터 신호를 베이스밴드에 실어 PEASK Baseband 신호로 변조하는 베이스밴드 진폭 편이 복조기(Baseband ASK Demodulator);
    상기 PEASK Baseband 변조신호를 RF Carrier에 실어 PEASK RF 송신신호를 발생하는 RF Carrier Mixer; 및
    송신측 Band Pass Filter(BPF)
    를 포함하고,
    상기 전송부는,
    상기 PEASK RF 송신신호가 왜곡된 PEASK RF 수신신호로 전송될 수 있는 유선 경로(Wire Channel); 또는 무선 경로(Wireless Channel)
    를 포함하고,
    상기 비동기 포락선 검파 수신 및 클럭 데이터 복원부는,
    대역폭이 제한된 PEASK RF 수신신호를 생성하는 수신측 BPF;
    상기 PEASK RF 수신신호가 RF Carrier 주파수에 의하여 PEASK Baseband 신호가 포함된 합성신호로 변환되는 RF Carrier Mixer;
    상기 합성신호로부터 상기 PEASK Baseband 신호만 골라내는 Baseband BPF; 및
    상기 PEASK Baseband 신호로부터 복원된 클럭 신호를 출력하고, 비동기 포락선 검파로 복조된 이진 데이터를 클럭에 동기시켜 복원한 이진 데이터 신호를 생성하는 베이스밴드 진폭 편이 복조기(Baseband ASK Demodulator)
    를 포함하고,
    이진 데이터 신호의 고주파 성분을 전치증폭 하기 위한 회로들, 즉 레벨시프터(Level Shifter), 반전기(Invertor), 클럭 한 주기인 Tb만큼 지연하는 지연회로, 및 t(n) 신호와 t(n-1) 신호를 합성하는 회로에 의해, 상기 전송할 이진 데이터 신호를 전치증폭(Pre-Emphasis) 데이터 신호로 바꾸어 변조되게 함으로써 데이터 복조를 저전력용 비동기식으로 용이하게 하며,
    상기 전치증폭 회로들을 통해, 상기 t(n) 신호와 상기 t(n-1) 신호를 합성하는 것은 상기 이진 데이터 신호의 고주파 성분이 있는 상승과 하강 엣지 부분을 강조한 전치증폭 이진 데이터 신호는 네개의 레벨(Level) 신호로 고주파 성분을 강조하여 전송부의 고주파 손실과 포락선 검파에서 생기는 ISI 문제를 표시한 아이다이어그램 (Eye Diagram)이 크고 안정되게 됨으로써 비트 에라(Bit Error)를 줄이는 것
    을 특징으로 하는 저전력용 광대역 전치증폭 진폭 편이 변복조 통신 시스템.
  2. 제1항에 있어서,
    상기 전치증폭 진폭 편이 변조 송신부는 고속으로 전송할 이진 데이터 신호의 고주파 성분을 전치증폭한 데이터 신호를 생성하는 위한 전치증폭회로; 상기 전치증폭한 데이터 신호를 베이스밴드 캐리어(Baseband Carrier)로 변조하는 베이스밴드 진폭 편이 변조기; 상기 PEASK Baseband 변조신호를 RF Carrier에 실어 PEASK RF 송신신호를 발생하는 RF Carrier Mixer; 및 송신측 BPF를 포함하여 구성되며,
    상기 전치증폭회로는 상기 전송할 이진 데이터 신호의 레벨(Level)을 키운 t(n) 신호를 생성하는 레벨 시프터(Level Shifter); 상기 전송할 이진 데이터 신호를 반전하는 인버터(Inverter); 상기 반전된 이진 데이터 신호를 클럭 한 주기인 Tb만큼 지연시킨 t(n-1) 신호를 생성하는 지연회로; 및 상기 t(n) 신호와 상기 t(n-1) 신호를 합성하여 전치증폭된 이진 데이터 신호를 생성하는 합성회로를 포함하여 구성되며,
    상기 이진 데이터 신호의 고주파 성분이 강한 상승 엣지와 하강 엣지 부분에서 진폭을 크게 강조한 전치증폭 이진 데이터 신호는 네개 레벨(Level)의 신호로 고주파 성분을 강조되어 전송 경로에서 생길 수 있는 고주파 성분의 손실과 포락선 검파에서 생기는 심볼간섭(ISI)의 문제를 해결하여 비트 에라(Bit Error)를 줄여 데이터 전송을 하여 복원할 때 고속으로 안정되게 하는 것
    을 특징으로 하는 저전력용 광대역 전치증폭 진폭 편이 변복조 통신 시스템.
  3. 제1항에 있어서,
    상기 비동기 포락선 검파 수신 및 클럭 데이터 복원부는 상기 전송부의 출력신호에서 PEASK RF 수신신호만 통과시키는 수신측 BPF; 상기 PEASK RF 수신신호를 PEASK Baseband 신호가 포함된 합성신호로 변환되는 RF Carrier Mixer; 상기 합성신호로부터 상기 PEASK Baseband 신호만 골라내는 Baseband BPF; 및 상기 PEASK Baseband 신호로부터 복원된 클럭 신호와 이진 데이터를 생성해 출력하는 베이스밴드 진폭 편이 복조기(Baseband ASK Demodulator)를 포함하며,
    상기 PEASK RF 신호를 RF Carrier에 혼합(Mix)하여 PEASK Baseband 신호를 생성하고, 상기 PEASK Baseband 신호로부터 데이터를 동기시킬 클럭을 복원하고, 상기 PEASK Baseband 신호를 일반적인 반파 또는 전파 검파하여 간단한 저역 통과 필터(Low-pass Filter)를 통해서 비동기 포락선 검파하여 이진 데이터를 복조하고, 상기 복조된 이진 데이터를 상기 복원된 클럭의 엣지에 동기 시킴으로써 이진 데이터를 복원 하는 것
    을 특징으로 하는 저전력용 광대역 전치증폭 진폭 편이 변복조 통신 시스템.
  4. 저전력용 광대역 PEASK 변복조 통신 시스템에서 수행되는 변복조 통신 방법에 있어서,
    고속으로 전송할 이진 데이터 신호의 고주파 성분을 전치증폭한 데이터 신호를 베이스밴드(Baseband)로 진폭 편이 변조하고, 상기 변조된 전치증폭 진폭 변조 베이스밴드(Pre-Emphasis Amplitude Shift Keying Baseband) 신호를 Radio Frequency(RF) Mixer를 통해서 송신하고자 하는 송신주파수로 변환한 PEASK RF 신호를 송신하는 전치증폭 진폭 편이 변조 송신 단계;
    상기 PEASK RF 송신신호가 유선 경로(Wire Channel), 또는 무선 경로(Wireless Channel)를 통해 왜곡되어 전송될 수 있는 전송 단계; 및
    상기 전송부를 통해 왜곡될 수 있는 전송된 신호, 즉 PEASK RF 수신신호로부터 PEASK Baseband 신호를 생성하여 클럭을 복원하여, 상기 PEASK Baseband 신호로부터 저전력인 비동기 포락선 검파를 통해 복조된 이진 데이터를 상기 클럭에 동기시켜 이진 데이터를 복원하는 비동기 포락선 검파 수신 및 클럭 데이터 복원 단계
    를 포함하고,
    상기 전치증폭 진폭 편이 변조 송신 단계는,
    상기 전송할 이진 데이터 신호를 전치증폭하기 위해 레벨 시프터(Level Shifter)에 의해 레벨(Level)이 크게 된 t(n) 신호를 생성하는 단계;
    상기 전송할 이진 데이터 신호를 반전기(Inverter)에 의해 반전한 이진 데이터 신호로 변환하는 단계;
    상기 반전한 이진 데이터 신호를 지연회로에 의해 클럭 한 주기인 Tb만큼 지연시킨 t(n-1) 신호를 생성하는 단계;
    상기 전송할 이진 데이터 신호를 합성회로에 의해 상기 t(n) 신호와 t(n-1) 신호를 합성하여 전치증폭된 이진 데이터 신호를 생성하는 단계;
    상기 전치증폭된 이진 데이터 신호를 베이스밴드 진폭 편이 복조기(Baseband ASK Demodulator)에 의해 PEASK Baseband 신호로 변조하는 단계;
    상기 PEASK Baseband 변조신호를 RF Carrier Mixer를 통해 PEASK RF 신호가 포함된 합성신호로 변환되는 단계; 및
    상기 합성신호로부터 송신측 BPF를 통해 PEASK RF 송신신호만 골라내는 단계
    를 포함하고,
    상기 전송 단계는,
    상기 PEASK RF 송신신호가 유선 경로(Wire Channel) 또는 무선 경로(Wireless Channel)에 의해 왜곡된 PEASK RF 수신신호로 전송될 수 있는 단계
    를 포함하고,
    상기 비동기 포락선 검파 수신 및 클럭 데이터 복원 단계는,
    수신측 BPF를 통해 대역폭이 제한된 PEASK RF 수신신호를 생성하는 단계;
    상기 PEASK RF 수신신호를 RF Carrier Mixer를 통해 PEASK Baseband 신호가 포함된 합성신호로 변환되는 단계;
    상기 합성신호로부터 Baseband BPF를 통해 상기 PEASK Baseband 신호만 골라내는 단계; 및
    상기 PEASK Baseband 신호를 베이스밴드 진폭 편이 복조기(Baseband ASK Demodulator)에 의해 복원된 클럭 신호를 출력하고, 비동기 포락선 검파로 복조된 이진 데이터를 클럭에 동기시킨 이진 데이터 신호를 복원하는 단계
    를 포함하고,
    이진 데이터 신호의 고주파 성분을 전치증폭 하기 위한 회로들, 즉 레벨시프터(Level Shifter), 반전기(Invertor), 클럭 한 주기인 Tb만큼 지연하는 지연회로, 및 t(n) 신호와 t(n-1) 신호를 합성하는 회로에 의해, 상기 전송할 이진 데이터 신호를 전치증폭(Pre-Emphasis) 데이터 신호로 바꾸어 변조되게 함으로써 데이터 복조를 저전력용 비동기식으로 용이하게 하며,
    상기 전치증폭 회로들을 통해, 상기 t(n) 신호와 상기 t(n-1) 신호를 합성하는 것은 상기 이진 데이터 신호의 고주파 성분이 있는 상승과 하강 엣지 부분을 강조한 전치증폭 이진 데이터 신호는 네개의 레벨(Level) 신호로 고주파 성분을 강조하여 전송부의 고주파 손실과 포락선 검파에서 생기는 ISI 문제를 표시한 아이다이어그램 (Eye Diagram)이 크고 안정되게 됨으로써 비트 에라(Bit Error)를 줄이는 것
    을 특징으로 하는 저전력용 광대역 전치증폭 진폭 편이 변복조 통신 방법.
PCT/KR2018/000369 2017-01-08 2018-01-08 저전력용 광대역 전치증폭 진폭 편이 변복조 통신 시스템 WO2018128506A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170002678A KR101900856B1 (ko) 2017-01-08 2017-01-08 저전력용 광대역 전치증폭 진폭 편이 변복조 통신 시스템
KR10-2017-0002678 2017-01-08

Publications (3)

Publication Number Publication Date
WO2018128506A2 true WO2018128506A2 (ko) 2018-07-12
WO2018128506A3 WO2018128506A3 (ko) 2018-08-30
WO2018128506A4 WO2018128506A4 (ko) 2018-11-22

Family

ID=62791040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000369 WO2018128506A2 (ko) 2017-01-08 2018-01-08 저전력용 광대역 전치증폭 진폭 편이 변복조 통신 시스템

Country Status (2)

Country Link
KR (1) KR101900856B1 (ko)
WO (1) WO2018128506A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113360436A (zh) * 2020-03-06 2021-09-07 浙江宇视科技有限公司 PCIe设备的处理方法、装置、设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102121219B1 (ko) * 2019-01-04 2020-06-11 윌커슨벤자민 저전력용 광대역 전치증폭 이진 위상 편이 변복조 통신 시스템
KR102421478B1 (ko) * 2021-01-20 2022-07-14 연세대학교 산학협력단 변조 방법, 복조 방법 및 이들을 이용하는 변조 장치 및 복조 장치
KR102428297B1 (ko) * 2021-06-08 2022-08-03 주식회사 뉴로엑스 쿼드 밴드 인터커넥트를 이용한 3차원 재구성 가능한 메모리 io 인터페이스

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700096B2 (ja) * 2008-06-20 2011-06-15 株式会社パイチップス 受信機でデジタル・ゲイティングを用いて受信感度を調節する装置、及び、それを含む受信機
GB2475809B (en) 2008-07-09 2012-09-12 Secureall Corp Low power radio communication system
EP2608401B1 (fr) * 2011-12-21 2019-03-27 EM Microelectronic-Marin SA Circuit de transmission de signaux RF ASK avec adaptation des flancs des signaux de données
US20130215979A1 (en) 2012-01-04 2013-08-22 The Board Of Trustees Of The Leland Stanford Junior University Method and Apparatus for Efficient Communication with Implantable Devices
KR102068954B1 (ko) * 2014-03-04 2020-01-22 삼성전자 주식회사 Ask 복조기 및 상기 복조기를 포함하는 통신 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113360436A (zh) * 2020-03-06 2021-09-07 浙江宇视科技有限公司 PCIe设备的处理方法、装置、设备及存储介质
CN113360436B (zh) * 2020-03-06 2023-02-21 浙江宇视科技有限公司 PCIe设备的处理方法、装置、设备及存储介质

Also Published As

Publication number Publication date
WO2018128506A3 (ko) 2018-08-30
WO2018128506A4 (ko) 2018-11-22
KR20180081859A (ko) 2018-07-18
KR101900856B1 (ko) 2018-11-02

Similar Documents

Publication Publication Date Title
USRE38603E1 (en) Data transmitter and receiver of a spread spectrum communication system using a pilot channel
WO2018128506A2 (ko) 저전력용 광대역 전치증폭 진폭 편이 변복조 통신 시스템
JPH0746218A (ja) ディジタル復調装置
US4780884A (en) Suppressed double-sideband communication system
CN106453171A (zh) 一种同频同时全双工系统的自干扰消除方法
JPS60117946A (ja) 搬送波再生回路
DK160388B (da) Modtager til fasemodulerede baereboelgesignaler
JPS59104847A (ja) 無線通信方式
JPS6350231A (ja) 通信システムとこれに用いる受信装置
CN100499616C (zh) 数字残留单边带调制系统载波恢复装置及其恢复方法
CN111431833B (zh) 一种基于串行组合的水下电流场通信方法
EP0244057A2 (en) Communication system, receiver and transmitter and method of data retrieval
JPS6025354A (ja) 無線通信方式
KR102121219B1 (ko) 저전력용 광대역 전치증폭 이진 위상 편이 변복조 통신 시스템
JPH06261088A (ja) 復調器オフセット除去回路
JP4173846B2 (ja) トランシーバ
CN115118346A (zh) 通信方法和装置
JP2004208110A (ja) 無線通信システム、受信装置および情報受信方法
JP3457099B2 (ja) 並列組合せスペクトル拡散送受信システム
JPH09214461A (ja) ディジタル多重無線の交差偏波伝送受信機
KR950003667B1 (ko) 비.에프.에스.케이(BFSK) 복조방식을 이용한 엠.에스.케이(MSK;minimum shift keying)의 변복조 장치
JP2023092671A (ja) クロック再生方法および無線通信システム
JPS6412137B2 (ko)
JPH0514312A (ja) 無線通信方法
JPH01303938A (ja) 電力線搬送データ伝送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736374

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18736374

Country of ref document: EP

Kind code of ref document: A2