WO2018128365A1 - 무선 통신 시스템에서 물리 상향링크 제어 채널 전송 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 물리 상향링크 제어 채널 전송 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018128365A1
WO2018128365A1 PCT/KR2018/000076 KR2018000076W WO2018128365A1 WO 2018128365 A1 WO2018128365 A1 WO 2018128365A1 KR 2018000076 W KR2018000076 W KR 2018000076W WO 2018128365 A1 WO2018128365 A1 WO 2018128365A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
resource
beams
uplink
transmitting
Prior art date
Application number
PCT/KR2018/000076
Other languages
English (en)
French (fr)
Inventor
강지원
변일무
서한별
안민기
안준기
양석철
이길봄
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to EP18736133.2A priority Critical patent/EP3567781B1/en
Priority to US16/473,746 priority patent/US11229029B2/en
Priority to EP22176747.8A priority patent/EP4075886A1/en
Priority to CN201880005889.9A priority patent/CN110168995B/zh
Publication of WO2018128365A1 publication Critical patent/WO2018128365A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/247TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/248TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where transmission power control commands are generated based on a path parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for transmitting a physical uplink control channel and an apparatus for supporting the same.
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service, and the explosive increase in traffic causes shortage of resources and users require faster services. Therefore, a more advanced mobile communication system is required. .
  • An object of the present specification is to provide a method of transmitting a PUCCH using a plurality of uplink beams.
  • the present specification is to provide a method for configuring a PUCCH and PUCCH Demodulation Reference Signal (DMRS) based on at least one of the number of transmission beams of PUCCH or whether sweeping is applied to PUCCH transmission.
  • DMRS Demodulation Reference Signal
  • a method for transmitting a physical uplink control channel (PUCCH) that carries uplink control information (UCI) in a wireless communication system the method performed by a terminal, And transmitting the PUCCH to a base station using a plurality of uplink beams, wherein the PUCCH is transmitted through different uplink beams for each specific resource unit, and the specific resource unit includes one or more symbols. It is characterized in that the resource unit for transmitting the PUCCH in the same beam.
  • PUCCH physical uplink control channel
  • UCI uplink control information
  • the method may further include transmitting a reference signal (RS) for demodulation of the PUCCH to the base station using the plurality of uplink beams, wherein the reference signal (RS) is used.
  • RS reference signal
  • a resource of is mapped to each specific resource unit.
  • the resource of the reference signal may be mapped to all symbols of the specific resource unit or to a specific symbol.
  • the uplink beam used for transmitting the reference signal and the uplink beam used for transmitting the PUCCH are the same in the specific resource unit.
  • the PUCCH symbol to which the uplink control information is mapped is determined according to a coding rate used for the uplink control information.
  • the uplink control information when the coding rate used for the uplink control information is high, the uplink control information is first mapped to symbol (s) of the first specific resource unit of the PUCCH resource, and the mapped symbol (s) ) Is continuously repeated and mapped to the PUCCH resource.
  • the uplink control information when the coding rate used for the uplink control information is low, the uplink control information is mapped to all symbols of the PUCCH resource.
  • the uplink control information is interleaved in the time domain in all symbols or a specific symbol of the PUCCH resource.
  • a specific part of the uplink control information is mapped to a frequency priority starting from a predefined symbol position.
  • the resource of the PUCCH and the resource of the reference signal may be determined based on at least one of the number of beams on which the PUCCH is transmitted or whether the PUCCH is swept.
  • the resource of the PUCCH is characterized in that at least one of time resources, frequency resources or code resources to which the PUCCH is allocated.
  • the transmission power for the PUCCH is determined based on at least one of the number of beams on which the PUCCH is transmitted or whether the PUCCH is sweeped.
  • the transmission power for the PUCCH is set differently for each specific resource unit.
  • the uplink beam used for the PUCCH transmission for each specific resource unit herein is characterized by being indicated by the base station or selected by the terminal.
  • the present specification is a terminal for transmitting a Physical Uplink Control Channel (PUCCH) that carries Uplink Control Information (UCI) in a wireless communication system, RF for transmitting and receiving a radio signal A module (radio frequency module); And a processor that is functionally connected to the RF module, wherein the processor is configured to control the PUCCH to be transmitted to a base station using a plurality of uplink beams, wherein the PUCCH transmits different uplink beams for each specific resource unit.
  • the specific resource unit indicates a unit of a resource for transmitting the PUCCH in the same beam, and the specific resource unit includes one or more symbols.
  • FIG. 1 is a view showing an example of the overall system structure of the NR to which the method proposed in this specification can be applied.
  • FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present specification may be applied.
  • FIG 3 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
  • FIG. 4 shows examples of an antenna port and a neuralology-specific resource grid to which the method proposed in this specification can be applied.
  • FIG. 5 shows an example of a block diagram of a transmitter consisting of an analog beamformer and an RF chain.
  • FIG. 6 shows an example of a block diagram of a transmitting end composed of a digital beamformer and an RF chain.
  • FIG. 8 illustrates an example of a PUSCH CSI report mode.
  • FIG. 9 illustrates an example of a PUCCH CSI report mode.
  • FIG. 10 is a diagram illustrating an example of resource mapping of a multi-beam based PUCCH DMRS proposed in the present specification.
  • FIG. 11 illustrates another example of the multi-beam based PUCCH DMRS resource mapping proposed in the present specification.
  • FIG. 12 is a diagram illustrating an example of a DMRS pattern of the PUCCH proposed in the present specification.
  • FIG. 13 is a flowchart illustrating an example of a method of performing PUCCH transmission proposed in the present specification.
  • FIG. 14 is a flowchart illustrating still another example of a method of performing PUCCH transmission proposed in the present specification.
  • 15 is a flowchart illustrating still another example of a method of performing PUCCH transmission proposed in the present specification.
  • 16 is a block diagram illustrating a wireless communication device according to one embodiment of the present invention.
  • 17 is a block diagram illustrating a communication device according to one embodiment of the present invention.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • the term 'base station (BS)' refers to a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and a generation NB (gNB).
  • eNB evolved-NodeB
  • BTS base transceiver system
  • AP access point
  • gNB generation NB
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of IEEE 802, 3GPP, and 3GPP2, which are wireless access systems. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • eLTE eNB An eLTE eNB is an evolution of an eNB that supports connectivity to EPC and NGC.
  • gNB Node that supports NR as well as connection with NGC.
  • New RAN A radio access network that supports NR or E-UTRA or interacts with NGC.
  • Network slice A network slice defined by the operator to provide an optimized solution for specific market scenarios that require specific requirements with end-to-end coverage.
  • Network function is a logical node within a network infrastructure with well-defined external interfaces and well-defined functional behavior.
  • NG-C Control plane interface used for the NG2 reference point between the new RAN and NGC.
  • NG-U User plane interface used for the NG3 reference point between the new RAN and NGC.
  • Non-standalone NR A deployment configuration where a gNB requires an LTE eNB as an anchor for control plane connection to EPC or an eLTE eNB as an anchor for control plane connection to NGC.
  • Non-Standalone E-UTRA Deployment configuration in which the eLTE eNB requires gNB as an anchor for control plane connection to NGC.
  • User plane gateway The endpoint of the NG-U interface.
  • FIG. 1 is a view showing an example of the overall system structure of the NR to which the method proposed in this specification can be applied.
  • the NG-RAN consists of gNBs that provide control plane (RRC) protocol termination for the NG-RA user plane (new AS sublayer / PDCP / RLC / MAC / PHY) and UE (User Equipment).
  • RRC control plane
  • the gNBs are interconnected via an Xn interface.
  • the gNB is also connected to the NGC via an NG interface.
  • the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and to a User Plane Function (UPF) through an N3 interface.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • the numerology may be defined by subcarrier spacing and cyclic prefix overhead.
  • the plurality of subcarrier intervals may be represented by an integer N (or, Can be derived by scaling. Further, even if it is assumed that very low subcarrier spacing is not used at very high carrier frequencies, the used numerology may be selected independently of the frequency band.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM numerologies supported in the NR system may be defined as shown in Table 1.
  • the size of the various fields in the time domain Is expressed as a multiple of the time unit. From here, ego, to be.
  • Downlink and uplink transmissions It consists of a radio frame having a section of (radio frame).
  • each radio frame is It consists of 10 subframes having a section of.
  • FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present specification may be applied.
  • the transmission of an uplink frame number i from a user equipment (UE) is greater than the start of the corresponding downlink frame at the corresponding UE. You must start before.
  • slots within a subframe Numbered in increasing order of within a radio frame They are numbered in increasing order of.
  • Slot in subframe Start of OFDM symbol in the same subframe Is aligned with the beginning of time.
  • Not all terminals can transmit and receive at the same time, which means that not all OFDM symbols of a downlink slot or an uplink slot can be used.
  • Table 2 shows numerology Shows the number of OFDM symbols per slot for a normal CP in Table 3, This indicates the number of OFDM symbols per slot for the extended CP in.
  • an antenna port In relation to physical resources in the NR system, an antenna port, a resource grid, a resource element, a resource block, a carrier part, etc. Can be considered.
  • the antenna port is defined so that the channel on which the symbol on the antenna port is carried can be inferred from the channel on which another symbol on the same antenna port is carried. If the large-scale property of a channel carrying a symbol on one antenna port can be deduced from the channel carrying the symbol on another antenna port, then the two antenna ports are quasi co-located or QC / QCL. quasi co-location relationship.
  • the wide range characteristics include one or more of delay spread, Doppler spread, frequency shift, average received power, and received timing.
  • FIG 3 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
  • the resource grid is in the frequency domain
  • one subframe includes 14 x 2 u OFDM symbols, but is not limited thereto.
  • the transmitted signal is One or more resource grids composed of subcarriers, and Is described by the OFDM symbols of. From here, to be. remind Denotes the maximum transmission bandwidth, which may vary between uplink and downlink as well as numerologies.
  • the numerology And one resource grid for each antenna port p.
  • FIG. 4 shows examples of an antenna port and a neuralology-specific resource grid to which the method proposed in this specification can be applied.
  • each element of the resource grid for antenna port p is referred to as a resource element and is an index pair Uniquely identified by From here, Is the index on the frequency domain, Refers to the position of a symbol within a subframe. Index pair when referring to a resource element in a slot This is used. From here, to be.
  • Numerology Resource elements for antenna and antenna port p Is a complex value Corresponds to If there is no risk of confusion, or if no specific antenna port or numerology is specified, the indices p and Can be dropped, so the complex value is or This can be
  • the physical resource block (physical resource block) is in the frequency domain It is defined as consecutive subcarriers. On the frequency domain, the physical resource blocks can be zero Numbered until. At this time, a physical resource block number on the frequency domain And resource elements The relationship between is given by Equation 1.
  • the terminal may be configured to receive or transmit using only a subset of the resource grid.
  • the set of resource blocks set to be received or transmitted by the UE is from 0 on the frequency domain. Numbered until.
  • Physical uplink control signaling should be able to carry at least hybrid-ARQ acknowledgment, CSI report (including beamforming information if possible), and scheduling request.
  • At least two transmission methods are supported for an uplink control channel (UL control channel) supported by the NR system.
  • UL control channel uplink control channel
  • the uplink control channel may be transmitted in a short duration around the uplink symbol (s) transmitted last in the slot.
  • the uplink control channel is time-division-multiplexed and / or frequency-division-multiplexed with the UL data channel in the slot.
  • transmission of one symbol unit of a slot is supported.
  • the short uplink control information (UCI) and data are frequency-divided between the UE and the terminals when at least the physical resource block (PRB) for the short UCI and data does not overlap. -Multiplexed.
  • Whether symbol (s) in the slot for transmitting the short PUCCH are supported at least 6 GHz or more to support time division multiplexing (TDM) of short PUCCHs from different terminals in the same slot; Mechanisms for notifying the terminal are supported.
  • TDM time division multiplexing
  • the UCI and RS are multiplexed to a given OFDM symbol by frequency division multiplexing (FDM); and 2)
  • FDM frequency division multiplexing
  • At least, short-term PUCCH over a 2-symbol duration of the slot is supported.
  • the subcarrier spacing between the downlink (DL) / uplink (UL) data and the short-term PUCCH in the same slot is supported.
  • a semi-static configuration is supported in which a PUCCH resource of a given terminal in a slot, ie short PUCCHs of different terminals, can be time division multiplexed within a given duration in the slot.
  • PUCCH resources include a time domain, a frequency domain, and, if applicable, a code domain.
  • the short-term PUCCH may be extended to the end of the slot from the terminal perspective. In this case, an explicit gap symbol is unnecessary after the short-term PUCCH.
  • Frequency division multiplexing may be performed by a terminal.
  • the uplink control channel may be transmitted in long-duration over a plurality of uplink symbols to improve coverage.
  • the uplink control channel is frequency division multiplexed with the uplink data channel in the slot.
  • a UCI carried by a long duration UL control channel with at least a Peak to Average Power Ratio (PAPR) design may be transmitted in one slot or multiple slots.
  • PAPR Peak to Average Power Ratio
  • Transmission using multiple slots is allowed in at least some cases for a total duration (eg 1 ms).
  • time division multiplexing between RS and UCI is supported for DFT-S-OFDM.
  • the long UL part of the slot may be used for long time PUCCH transmission. That is, a long time PUCCH is supported for both an uplink dedicated slot (UL-only slot) and a slot having a variable number of symbols composed of at least four symbols.
  • the UCI may be repeated in N slots (N> 1), where the N slots may or may not be contiguous in slots for which a long time PUCCH is allowed. .
  • Simultaneous transmission of PUSCH and PUCCH is supported for at least long PUCCH. That is, even if data exists, uplink control on PUCCH resources is transmitted.
  • UCI in PUSCH is supported.
  • Intra-TTI slot frequency hopping is supported within TTI.
  • TDM and FDM between short-term PUCCH and long-term PUCCH are supported for other terminals in at least one slot.
  • the PRB (or multiple PRBs) is the minimum resource unit size for the uplink control channel.
  • frequency resources and hopping may not be spread over carrier bandwidth.
  • the UE specific RS is used for NR-PUCCH transmission.
  • the set of PUCCH resources is set by higher layer signaling, and the PUCCH resources in the set are indicated by downlink control information (DCI).
  • DCI downlink control information
  • the timing between the data reception and the hybrid-ARQ acknowledgment transmission should be able to be indicated dynamically (at least with the RRC).
  • the combination of a semi-static configuration and dynamic signaling (for at least some type of UCI information) is used to determine the PUCCH resources for the 'long and short PUCCH format'.
  • the PUCCH resource includes a time domain, a frequency domain, and, if applicable, a code domain.
  • uplink transmission of at least a single HARQ-ACK bit is at least supported.
  • mechanisms are supported to enable frequency diversity.
  • a time interval between scheduling request (SR) resources set for the UE may be smaller than one slot.
  • Beam management in NR is defined as follows.
  • Beam determination the TRP (s) or the UE selecting its transmit / receive beam.
  • Beam measurement an operation in which the TRP (s) or the UE measures the characteristics of the received beamforming signal.
  • Beam reporting the UE reporting information of the beamformed signal based on the beam measurement.
  • Beam sweeping an operation of covering a spatial region using beams transmitted and / or received during a time interval in a predetermined manner.
  • Tx / Rx beam correspondence (correspondence) at the TRP and the UE is defined as follows.
  • the Tx / Rx beam correspondence in the TRP is maintained if at least one of the following is met.
  • the TRP may determine the TRP receive beam for uplink reception based on downlink measurements of the UE for one or more transmit beams of the TRP.
  • the TRP may determine the TRP Tx beam for downlink transmission based on the uplink measurement of the TRP for one or more Rx beams of the TRP.
  • the Tx / Rx beam correspondence at the UE is maintained if at least one of the following is met.
  • the UE may determine the UE Tx beam for uplink transmission based on the downlink measurement of the UE for one or more Rx beams of the UE.
  • the UE may determine the UE receive beam for downlink reception based on the indication of the TRP based on uplink measurement for one or more Tx beams.
  • TRP capability indication of UE beam response related information is supported.
  • the following DL L1 / L2 beam management procedure is supported within one or multiple TRPs.
  • P-1 Used to enable UE measurement for different TRP Tx beams to support the selection of TRP Tx beams / UE Rx beam (s).
  • Beamforming in TRP generally includes intra / inter-TRP Tx beam sweeps in different beam sets.
  • Beamforming at the UE it typically includes a UE Rx beam sweep from a set of different beams.
  • P-2 UE measurements for different TRP Tx beams are used to change the inter / intra-TRP Tx beam (s).
  • P-3 UE measurement for the same TRP Tx beam is used to change the UE Rx beam when the UE uses beam forming.
  • At least aperiodic reporting triggered by the network is supported in P-1, P-2 and P-3 related operations.
  • the UE measurement based on RS for beam management (at least CSI-RS) consists of K (total number of beams) beams, and the UE reports the measurement results of the selected N Tx beams.
  • N is not necessarily a fixed number.
  • Procedures based on RS for mobility purposes are not excluded.
  • the reporting information includes information indicating the measurand for the N beam (s) and the N DL transmission beams if at least N ⁇ K.
  • the UE may report a CRI (CSI-RS resource indicator) of N'.
  • the UE may be configured with the following higher layer parameters for beam management.
  • N 1 reporting setting, M ⁇ 1 resource setting
  • the links between the report setup and the resource setup are established in the agreed CSI measurement setup.
  • CSI-RS based P-1 and P-2 are supported with resource and reporting configuration.
  • -P-3 can be supported with or without reporting settings.
  • a reporting setting that includes at least the following:
  • Time domain operations e.g., aperiodic, periodic, semi-persistent
  • a resource setting that includes at least the following:
  • RS type at least NZP CSI-RS
  • Each CSI-RS resource set includes K ⁇ 1 CSI-RS resources (some parameters of K CSI-RS resources may be the same, e.g. port number, time domain operation, density and period)
  • NR supports the next beam report considering the L group with L> 1.
  • Measurement quantity for the N1 beam (supporting L1 RSRP and CSI reporting (if CSI-RS is for CSI acquisition))
  • Group-based beam reporting as described above may be configured in units of UEs.
  • NR supports that the UE can trigger a mechanism to recover from beam failure.
  • a beam failure event occurs when the quality of the beam pair link of the associated control channel is low enough (eg compared to a threshold, timeout of the associated timer).
  • the mechanism for recovering from beam failure (or failure) is triggered when a beam failure occurs.
  • the network is explicitly configured in the UE with resources for transmitting UL signals for recovery purposes.
  • the configuration of resources is supported where the base station listens from all or part of the direction (eg, random access region).
  • the UL transmission / resource reporting a beam failure may be located at the same time instance as the PRACH (resource orthogonal to the PRACH resource) or at a different time instance (configurable for UE) than the PRACH. Transmission of the DL signal is supported so that the UE can monitor the beam to identify new potential beams.
  • the NR supports beam management regardless of beam-related indications. If a beam related indication is provided, the information about the UE side beam forming / receiving procedure used for CSI-RS based measurement may be indicated to the UE via QCL.
  • parameters for delay, doppler, average gain, etc. used in the LTE system, as well as spatial parameters for beamforming at the receiving end will be added, and angle of arrival (AOA) from the perspective of the terminal receiving beamforming.
  • AOA angle of arrival
  • Parameters of angle of departure (AOD) may be included in terms of related parameters and / or base station receive beamforming.
  • the angle of arrival related parameter is collectively called a spatial Rx (receive) parameter. That is, the fact that a specific antenna port is QCLed from another antenna port and a spatial Rx parameter point of view means that a receiver receiving the two antenna ports may use the same spatial filter. This is the same as informing the terminal that the base station applies the same or similar transmission beam when transmitting the two antenna ports from a downlink perspective.
  • NR supports the use of the same or different beams in the control channel and corresponding data channel transmissions.
  • the UE may be configured to monitor the NR-PDCCH on M beam pair links simultaneously.
  • the maximum values of M ⁇ 1 and M may depend at least on the UE capabilities.
  • the UE may be configured to monitor the NR-PDCCH on different beam pair link (s) in different NR-PDCCH OFDM symbols.
  • Parameters related to UE Rx beam setup for monitoring the NR-PDCCH on multiple beam pair links are configured by higher layer signaling or MAC CE and / or are considered in the search space design.
  • NR supports the indication of the spatial QCL assumption between the DL RS antenna port (s) and the DL RS antenna port (s) for demodulation of the DL control channel.
  • candidate signaling methods for beam indication for NR-PDCCH i.e., configuration method for monitoring NR-PDCCH
  • MAC CE signaling RRC signaling
  • DCI signaling spec transparent and / or implicit methods, and combinations of these signaling methods. to be.
  • the NR For reception of a unicast DL data channel, the NR supports the indication of the spatial QCL assumption between the DL RS antenna port and the DMRS antenna port of the DL data channel.
  • Information indicative of the RS antenna port is indicated via DCI (downlink grant). This information also indicates a DMRS antenna port and a QCL RS antenna port.
  • the different set of DMRS antenna ports for the DL data channel can be represented as QCL with another set of RS antenna ports.
  • the UL (PUCCH / PUSCH) beam indication will be briefly described.
  • the UL beam indication is a general term, and the UL beam indication in NR is spatial_relation_info.
  • the UL beam is indicated by the field setting.
  • Spatial_relation_info. field is an SRS resource ID (s) (SRI) when an SRS based UL beam pair determination procedure is performed, and DL for indicating a DL beam when beam reciprocity (or beam correspondence) exists between the DL beam and the UL beam.
  • RS may include a CSI-RS resource ID (s) (CRI) or a synchronization signal block (SSB) ID (or another ID corresponding to the SSB ID, eg, a PBCH DMRS ID).
  • the UL beam indication for the PUCCH (1) in the RRC layer is one SRI, CRI or SSB ID spatial_relation_info. It may be indicated by the field setting or (2) by setting a plurality of SRIs, CRIs, or SSB IDs in the RRC layer, and then indicating one of the IDs in the MAC layer.
  • the spatial_relation_info has the feature that a plurality of fields are set.
  • the UL beam indication for the PUSCH is also similar to the UL beam indication for the PUCCH, but the difference is that the SRS transmission (via the tailored UL beam pair) may be performed for UL link adaptation even after the determination of the UL beam pair.
  • the final PUSCH beam indication indicates a corresponding SRS resource ID (SRI) to DCI.
  • the corresponding SRI serves to indicate one of a plurality of SRS resource IDs preset in a higher layer, and the SRS resource IDs are CRI, SSB ID, or SRI and spatial_relation_info.
  • the field may be beam set.
  • NR supports semi-persistent CSI reporting not only with PUCCH but also with PUSCH.
  • a scheduling grant is performed through an RNTI separate from the C-RNTI used to perform general one-shot scheduling similar to the semi-persistent scheduling (SPS) PUSCH resource allocation scheme. Instruct.
  • the RNTI is set to an RRC message.
  • Table 4 below shows an example of RRC parameters related to PUCCH beam indication
  • Table 5 shows an example of MAC CE parameters related to PUCCH beam indication.
  • PUCCH-SpatialRelationInfo List of configurations of the spatial relation between a reference RS and PUCCH.
  • Reference RS can be SSB / CSI-RS / SRS. If the list has more than one element, MAC-CE selects a single element. Each element of the list is an SSB Index, NZP-CSI-RS-ResourceConfigId, or SRS-ResourceConfigId
  • PUCCH-SpatialRelationInfo Provides the spatial relation for a PUCCH resource PUCCH resource ID
  • Bitmap activates one of the [8] entries within the RRC parameter PUCCH-Spatial-relation-info)
  • N beams are defined for a plurality of PUCCH resources (or symbol groups) repeatedly transmitted N times in one slot.
  • each of the N beams may be divided into whether the same beam is set (or indicated or applied) or is set to another beam.
  • the above-described spatial_relation_info field is set / instructed to each of a plurality of PUCCH resources repeatedly transmitted in one slot. At this time, whether the same spatial_relation_info value is applied or PUCCH of one PUCCH resource transmitted in one slot. For each symbol group, whether the spatial_relation_info value is set identically or differently may be classified.
  • repeated transmission is performed in units of symbol groups, and may be classified according to whether or not the same SRI value is applied to different symbol groups.
  • the transmission configuration indicator (TCI) field included in the DL-related DCI in the NR system is a candidate of a plurality of QCL reference resources (eg CSI-RS resources or SSB resources) configured in a higher layer similar to the PQI field of LTE. It plays a role of indicating one dynamically.
  • QCL reference resources eg CSI-RS resources or SSB resources
  • the QCL indication may include a QCL indication for a spatial parameter. For example, it may indicate to which DL RS beam the PDSCH is transmitted through a TCI field among a plurality of DL RS resources configured in a higher layer.
  • the UE may receive the PDSCH beam by applying a reception beam trained in advance to be suitable for reception of the corresponding DL RS.
  • the analog beamforming technique is a beamforming technique applied to the initial multi-antenna structure. This is a method of branching an analog signal that has completed digital signal processing into a plurality of paths, and then applying a phase shift (PS) and power amplifier (PA) setting to each path to form a beam. Can mean.
  • PS phase shift
  • PA power amplifier
  • a structure is required in which a PA and a PS connected to each antenna process an analog signal derived from a single digital signal.
  • the PA and the PS process a complex weight.
  • FIG. 5 shows an example of a block diagram of a transmitter consisting of an analog beamformer and an RF chain. 5 is merely for convenience of description and does not limit the scope of the present invention.
  • an RF chain refers to a processing block in which a baseband (BB) signal is converted into an analog signal.
  • BB baseband
  • beam accuracy is determined according to the characteristics of the device of the PA and the PS, and may be advantageous for narrowband transmission due to the control characteristics of the device.
  • the multiplexing gain for increasing the transmission rate is relatively small.
  • beamforming for each terminal based on orthogonal resource allocation may not be easy.
  • beamforming is performed at the digital stage using a baseband (BB) process to maximize diversity and multiplexing gain in a MIMO environment.
  • BB baseband
  • 6 shows an example of a block diagram of a transmitting end composed of a digital beamformer and an RF chain. 6 is merely for convenience of description and does not limit the scope of the present invention.
  • beamforming may be performed as precoding is performed in the BB process.
  • the RF chain includes a PA. This is because, in the case of the digital beamforming technique, the complex weight derived for beamforming is applied directly to the transmission data.
  • the digital beamforming technique can maximize the maximum transmission rate of a single terminal (or user) based on the system capacity increase and the enhanced beam gain.
  • the digital beamforming-based MIMO scheme is introduced in the existing 3G / 4G (eg, LTE (-A)) system.
  • a massive MIMO environment may be considered in which the transmit / receive antenna is greatly increased.
  • the number of transmit / receive antennas may increase to tens or hundreds or more.
  • the transmitter must perform signal processing for hundreds of antennas through a BB process for digital signal processing. Accordingly, the complexity of signal processing is very large, and the complexity of hardware implementation can be very large since the number of RF chains is required as many antennas.
  • the transmitter needs independent channel estimation for all antennas.
  • the transmitting end needs feedback information for a huge MIMO channel composed of all antennas, pilot and / or feedback overhead may be very large.
  • a hybrid transmitter configuration method combining analog beamforming and digital beamforming is required, instead of exclusively selecting one of analog beamforming and digital beamforming.
  • analog beamforming may be used in a pure analog beamforming transceiver and a hybrid beamforming transceiver.
  • analog beam scanning may perform estimation on one beam at the same time. Therefore, the beam training time required for beam scanning is proportional to the total number of candidate beams.
  • Equation 2 the estimated time t s for the entire transmit / receive beam may be expressed by Equation 2 below.
  • Equation 2 t s denotes a time required for one beam scanning, K T denotes the number of transmit beams, and K R denotes the number of receive beams.
  • FIG. 7 illustrates an example of an analog beam scanning method according to various embodiments of the present disclosure. 7 is merely for convenience of description and does not limit the scope of the invention.
  • the terminal feeds back an identifier (eg, ID) of the beam having the highest signal strength to the base station. That is, as the number of individual beams increases as the number of transmit / receive antennas increases, longer training time may be required.
  • ID an identifier
  • analog beamforming changes the magnitude and phase angle of the continuous waveform in the time domain after the digital-to-analog converter (DAC), unlike digital beamforming, a training interval for individual beams needs to be guaranteed. There is. Therefore, as the length of the training interval increases, the efficiency of the system may decrease (that is, the loss of the system may increase).
  • CSI Channel state information
  • the UE receives a pilot signal (reference signal) for channel estimation from the base station, calculates channel state information (CSI), and reports it to the base station.
  • a pilot signal reference signal
  • CSI channel state information
  • the base station transmits a data signal based on the CSI information fed back from the terminal.
  • CSI information fed back by a UE includes channel quality information (CQI), a precoding matrix index (PMI), and a rank indicator (RI).
  • CQI channel quality information
  • PMI precoding matrix index
  • RI rank indicator
  • the CQI feedback is radio channel quality information provided to the base station for the purpose of providing a guide on which modulation & coding scheme (MCS) to apply when transmitting data (for link adaptation).
  • MCS modulation & coding scheme
  • the terminal feeds back a high CQI value so that the base station transmits data by applying a relatively high modulation order and a low channel coding rate. Data will be transmitted with a relatively low modulation order and a high channel coding rate.
  • the PMI feedback is preferred precoding matrix information provided to the base station for the purpose of providing a guide on which MIMO precoding scheme to apply when the base station installs multiple antennas.
  • the UE estimates the downlink MIMO channel between the base station and the terminal from the pilot signal and recommends through the PMI feedback which MIMO precoding the base station should apply.
  • the base station and the terminal share a codebook consisting of a plurality of precoding matrices, and each MIMO precoding matrix has a unique index in the codebook.
  • the terminal minimizes the amount of feedback information of the terminal by feeding back the index corresponding to the most preferred MIMO precoding matrix in the codebook as PMI.
  • PMI values do not have to consist of only one index.
  • the final 8tx MIMO precoding matrix must be combined only by combining two indices (first PMI & second PMI).
  • RI feedback is based on the preferred number of transmission layers provided to the base station for the purpose of providing a guide for the number of transmission layers preferred by the terminal when the base station and the terminal is equipped with multiple antennas to enable multi-layer transmission through spatial multiplexing. Information about this.
  • RI has a close relationship with PMI. This is because, according to the number of transport layers, the base station must know what precoding to apply to each layer.
  • PMI codebook can be defined based on single layer transmission and then PMI can be defined and fed back according to the number of layers.
  • this method has a disadvantage in that the amount of PMI / RI feedback information increases greatly as the number of transport layers increases. There is this.
  • PMI codebooks are defined according to the number of transport layers. That is, N size Nt x R matrices are defined in the codebook for R-layer transmission (where R is the number of layers, Nt is the number of transmit antenna ports, and N is the size of the codebook).
  • the size of the PMI codebook is defined regardless of the number of transport layers.
  • PMI / RI is defined as such a structure, so the number of transport layers (R) is consistent with the rank value of the precoding matrix (Nt x R matrix), and thus the term rank indicator (RI) is used.
  • PMI / RI described herein is not necessarily limited to mean the index value of the precoding matrix and the rank value of the precoding matrix represented by the Nt x R matrix like the PMI / RI in the LTE system.
  • the PMI described herein represents preferred MIMO precoder information among MIMO precoders applicable to the transmitter, and the form of the precoder is not limited to the linear precoder that can be expressed in a matrix as in the LTE system.
  • the RI described herein includes all feedback information indicating a preferred number of transport layers in a broader sense than the RI in LTE.
  • CSI information may be obtained in the entire system frequency domain, or may be obtained in some frequency domains. In particular, in a broadband system, it may be useful to obtain and feed back CSI information for some preferred frequency domain (e.g. subband) for each terminal.
  • some preferred frequency domain e.g. subband
  • CSI feedback is performed through an uplink channel.
  • periodic CSI feedback is performed through a PUCCH (physical uplink control channel)
  • aperiodic CSI feedback uses a PUSCH (physical uplink shared channel), which is an uplink data channel. Is done through.
  • Aperiodic CSI feedback means that the base station temporarily feeds back only when the CSI feedback information is desired.
  • the base station triggers CSI feedback through a downlink control channel such as PDCCH / ePDCCH.
  • FIG. 8 illustrates an example of a PUSCH CSI report mode.
  • PUCCH CSI reporting mode is also defined for periodic CSI feedback through PUCCH.
  • FIG. 9 illustrates an example of a PUCCH CSI report mode.
  • a time point for transmitting CQI and PMI and a time point for transmitting RI differ according to each CSI reporting mode.
  • reporting mode 1-0 only RI is transmitted at a specific PUCCH transmission, and wideband CQI is transmitted at another PUCCH transmission.
  • PUCCH reporting type is defined according to the type of CSI information configured at a specific PUCCH transmission time.
  • the reporting type for transmitting only RI corresponds to type3
  • the reporting type for transmitting only wideband CQI corresponds to type4.
  • the RI feedback period and offset value and the CQI / PMI feedback period and offset value are set to the UE through an upper layer message.
  • the CSI feedback information is included in uplink control information (UCI).
  • UCI uplink control information
  • Pilot or RS (reference signal) in the LTE system can be largely divided into the following.
  • Measurement RS Pilot for Channel Status Measurement
  • CSI measurement / reporting use (short term measurement): purpose of link adaptation, rank adaptation, closed loop MIMO precoding, etc.
  • Positioning RS pilot for terminal position estimation
  • MBSFN RS Pilot for Multi-cast / Broadcast Service
  • CRS Cell-specific RS
  • UE-specific RS is used for CSI measurement (use 1A) only for reception (use 2) for CSI-RS and downlink data channel (PDSCH).
  • CSI-RS is an RS designed exclusively for CSI measurement and feedback. It has a much lower RS overhead than CRS. CSI supports up to four multi-antenna ports, while CSI-RS supports up to eight multi-antenna ports. It is designed to be.
  • UE-specific RS is designed for demodulation of data channel. Unlike CRS, UE-specific RS is characterized in that MIMO precoding technique applied to data transmission to corresponding UE is RS applied to pilot signal.
  • the UE-specific RS does not need to be transmitted as many as the number of antenna ports like CRS and CSI-RS, but only as many as the number of transport layers (transmission rank).
  • the UE-specific RS is transmitted for a data channel reception purpose of the corresponding UE in the same resource region as the data channel resource region allocated to each UE through the scheduler of the base station, the UE-specific RS is characterized as a terminal-specific RS.
  • CRS is cell-specific because it is always transmitted in the same pattern within the system bandwidth so that all UEs in the cell can use it for measurement and demodulation purposes.
  • Sounding RS is designed as Measurement RS
  • DMRS Demodulation RS
  • PUSCH uplink data channel
  • PUCCH uplink control channel
  • the base station may perform periodic CSI reporting, semi-persistent CSI reporting (periodic periodic CSI reporting is activated only during a specific resource region, or perform continuous multiple CSI reporting) to the UE, or You can request an aperiodic CSI report.
  • UL (uplink) resources e.g. PUCCH in LTE
  • PUCCH uplink resources
  • DL downlink
  • RS reference signal
  • uplink control information eg CSI, ACK / NACK
  • the procedure for determining the DL beam pair includes (1) a procedure of transmitting a DL RS corresponding to a plurality of TRP Tx beams to a terminal, and (2) selecting a TRP Tx beam in which the terminal selects and / or reports one of them.
  • Procedure (3) a base station repeatedly transmitting the same RS signal corresponding to each TRP Tx beam, and (4) the UE measures the repeated Rx beams with different UE Rx beams to measure a UE Rx beam. It can consist of a combination of procedures to select.
  • the UL beam pair determination procedure includes (1) a procedure in which a base station transmits UL RSs corresponding to a plurality of UE Tx beams, and (2) a UE Tx beam selection in which a base station selects and / or signals one of them.
  • Procedure (3) the UE repeatedly transmitting the same RS signal corresponding to each UE Tx beam to the base station, and (4) the base station measuring the TRP Rx beam with different TRP Rx beams for the repeatedly transmitted signals. It may consist of a combination of procedures for selecting an Rx beam.
  • the procedure for determining the other one can be omitted if only one of the DL beam pair and the UL beam pair is determined.
  • the determination process for the DL and / or UL beam pair may be performed periodically or aperiodically.
  • the UE After the DL / UL beam pair determination process is completed, it is assumed that the UE performs periodic or semi-persistent CSI reporting.
  • the CSI-RS including a single or a plurality of antenna ports for the CSI measurement of the UE may be beamformed and transmitted as a TRP Tx beam determined as a DL beam, and the transmission period of the CSI-RS is a CSI report ( This may be the same as the reporting cycle or more often.
  • the UE may transmit an aperiodic CSI-RS in accordance with the CSI reporting period or more frequently.
  • the UE may periodically transmit the measured CSI information to the UL Tx beam determined in the UL beam pair determination process.
  • a beam mismatch problem may occur according to a set period of beam management.
  • the terminal when the terminal moves its position, the terminal rotates, or the wireless channel environment changes due to the movement of an object around the terminal (for example, a LoS (Line-of-Sight) environment, the beam is blocked and the non- When switching to a LoS environment), the optimal DL / UL beam pair may be changed.
  • an object around the terminal for example, a LoS (Line-of-Sight) environment
  • the beam is blocked and the non-
  • the optimal DL / UL beam pair may be changed.
  • the occurrence of such a beam failure event can be determined by the UE through the reception quality of the downlink RS, and a report message or a message for requesting beam recovery (hereinafter, referred to as a 'beam recovery request message') 'Shall be delivered from the terminal.
  • a report message or a message for requesting beam recovery hereinafter, referred to as a 'beam recovery request message'
  • the beam recovery request message may be variously expressed as a beam failure recovery request message, a control signal, a control message, a first message, and the like.
  • the base station receiving the beam recovery request message from the terminal may perform beam recovery through various processes such as beam RS transmission and beam reporting request to the terminal for beam recovery.
  • This series of beam recovery processes will be referred to as 'beam recovery'.
  • NR new radio or New Rat
  • NR supports that the UE can trigger a mechanism to recover from beam failure.
  • the network explicitly configures the UE for the UL transmission of signals for recovery purposes.
  • the base station supports configuration of resources that are listening from all or part of the direction (eg, random access regions).
  • Trigger conditions of recovery signals new or existing signals related to UE operation of RS / control channel / data channel monitoring (discussed later)
  • This mechanism must take into account the tradeoff between performance and DL signaling overhead.
  • beam management overhead and delay time should be considered during CSI-RS design for NR beam management.
  • CSI-RS design for NR beam management includes, for example, CSI-RS multiplexing, UE beam switch latency and UE implementation complexity (eg, AGC training time), coverage of CSI-RS, and the like. do.
  • CSI-RS supports DL Tx beam sweeping and UE Rx beam sweeping.
  • NR CSI-RS supports the following mapping structure.
  • the NP CSI-RS port may be mapped for each (sub) time unit.
  • the same CSI-RS antenna ports can be mapped over a (sub) time unit.
  • Each time unit may be partitioned in sub-time units.
  • This mapping structure can be used to support multiple panels / Tx chains.
  • the Tx beam (s) are the same over sub time units within each time unit.
  • the Tx beam (s) is time dependent.
  • the Tx beam (s) are different for each sub time unit within each time unit.
  • the Tx beam (s) are the same in time units.
  • the Tx beam (s) are the same in sub time units.
  • the Tx beam (s) are different for each sub time unit.
  • the beam failure recovery mechanism of the terminal includes the following steps (1) to (4).
  • the UE monitors the gNB's response to the beam failure recovery request.
  • the UE monitors the beam failure detection RS to evaluate whether the beam failure trigger condition is satisfied.
  • the beam failure detection RS includes at least periodic CSI-RS for beam management.
  • an SS (Synchronization Signal) block may also be used for beam management, and when an SS block is used for beam management, an SS block in a serving cell may be considered.
  • the SS block may be interpreted that the synchronization signal SS is transmitted in a slot unit or a specific resource unit.
  • the beam failure detection RS includes not only a case of measuring the quality itself of the corresponding RS, but also a case of measuring the detection / demodulation quality of a radio channel associated with the RS and a quasi co-location indicator (QCL).
  • the CSI-RS or SS block related ID indicated for (primary) PDCCH monitoring may be understood as the beam failure detection RS, and whether or not the beam failure event occurs is a detection / demodulation performance of the corresponding PDCCH is below a certain level. It can be defined as a case.
  • the beam failure event may occur when the quality of the beam pair link (s) of the associated control channel drops below a certain level.
  • the quality of the beam pair link (s) of the associated control channel may be determined by PDCCH detection performance.
  • the UE may detect a beam failure.
  • the beam failure event may be determined based on detection performance of a specific PDCCH (eg, a serving beam and an associated PDCCH). have.
  • each of the multiple PDCCHs may be transmitted and / or received for different beams in different control channel regions (eg, symbol, slot, subframe, etc.).
  • a control channel region for each beam may be predefined or transmitted and received through higher layer signaling.
  • the beam failure event occurs by the quality of the beam pair link (s) of the associated control channel
  • only the quality of the DL beam has dropped below a certain level, or only the quality of the UL beam is below a certain level It may be determined whether the beam failure event occurs according to whether it has fallen or whether the quality of both the DL beam and the UL beam has fallen below a certain level.
  • the predetermined level or less may be equal to or less than a threshold value, time-out of an associated timer, and the like.
  • BRS RS for fine timing / frequency tracking
  • SS Blocks DM-RS for PDCCH
  • DM-RS for PDSCH DM-RS for PDSCH
  • the UE monitors the beam identification RS to find a new candidate beam.
  • the beam identification RS includes 1) periodic CSI-RS for beam management, if configured by NW, and 2) periodic CSI-RS and SS block in the serving cell, if SS block is used for beam management. do.
  • the information carried by the beam failure recovery request is 1) explicit / implicit information for identifying the UE and the new gNB TX beam information, or 2) identifying the UE and new It includes at least one of explicit / implicit information on whether a candidate beam exists.
  • the transmission of the beam failure recovery request may select one of the PRACH, PUCCH, PRACH-like (eg, different parameters for the preamble sequence from the PRACH).
  • the beam failure recovery request resource / signal may be used in addition to the scheduling request.
  • the UE monitors the control channel search space to receive a gNB response to the beam failure recovery request.
  • the following triggering conditions are supported for the beam failure recovery request transmission.
  • the following channels are supported for the transmission of a beam failure recovery request.
  • a beam recovery request message is either (1) transmitted using the same symbols as the PRACH (first) or (2) transmitted using symbols other than the PRACH (two) Second, both mechanisms can be supported.
  • the beam failure situation or uplink synchronization is not lost (the beam quality is relatively low or there is an alternate beam), and / or when the beam failure event occurs and the preset PRACH resources It may be a useful mechanism when it is difficult to fast beam recovery to wait until PRACH resources (eg, symbols) due to being far in time.
  • the UE may perform a radio link failure (RRF) operation when a beam failure does not receive a response to the request from the base station after transmitting a beam recovery request message to the base station a predetermined number of times.
  • RRF radio link failure
  • the PUCCH design may include concepts such as PUCCH format definition, sequence generation, mapping to physical resources, and the like related to PUCCH transmission.
  • the wireless channel environment for the terminal changes (for example, in a line-of-ight (LoS) environment, the beam is blocked and the non-LoS is blocked).
  • LoS line-of-ight
  • an optimal DL / UL beam pair between the terminal and the base station may be changed.
  • CSI reporting can be made more frequently than the frequency of beam pair determination process, and in this case, beam quality is gradually misaligned and communication quality is degraded.
  • the following method may be applied.
  • the link quality level measured by the UE from the DL RS (Reference Signal) is (less than a predetermined level). If not, the number of UL Tx beams of the UE used for the CSI reporting UL physical channel (eg PUCCH) may be increased.
  • the link quality measured by the UE from the DL RS is measured under the assumption that DL transmission RI is 1 regardless of (1) CQI information measured for CSI reporting and (2) RI value measured for CSI reporting. CQI, (3) received power value for DL RS (eg RSRP in LTE), and (4) received quality value for DL RS (eg RSRQ in LTE).
  • the UE may apply a plurality of beams to the PUCCH transmission.
  • the number of beams for PUCCH transmission may be gradually increased whenever the link quality interval falls by multiplexing the threshold for link quality.
  • case 1 This is a case where the UE arbitrarily selects a beam set.
  • the base station does not know the beam set selected by the terminal.
  • case 2 The beam set to be applied to a part of the PUCCH resources is pre-arranged with the base station, and the terminal randomly selects the remaining beam sets.
  • case 3 A case where a beam set to be applied to a multi-beam based PUCCH transmission method is predefined or designated by a base station.
  • case 2 and case 3 above may be useful when the temporal change in the wireless channel is less rapid than in case 1.
  • the first embodiment relates to PUCCH resource mapping in a single or multi-beam based PUCCH transmission method.
  • the PUCCH resource and the PUCCH DMRS resource are mapped to a plurality of symbols, and the PUCCH Demodulation Reference Signal (DMRS) is at least 'same beam sustain time unit in the time domain. maps to one resource per time unit).
  • DMRS Demodulation Reference Signal
  • the same beam maintenance time unit may mean the number of (OFDM) symbols (N OFDM symbols, N is a natural number) for maintaining the same beam when the UE transmits the PUCCH.
  • the same beam maintenance time unit may be represented by a specific resource unit or a sub-resource.
  • the same beam maintenance time unit may be interpreted not only to indicate the number of symbols that maintain the same beam but also to indicate a resource unit (or a resource region or a resource section) in which the same beam is maintained.
  • the resource unit in which the same beam is maintained may include the concept of time and / or frequency resource unit in which the same beam is maintained. This is because the multi-RF chain terminal can change the beam even in the frequency domain. That is, the same beam keeping time unit may be interpreted as a minimum time and / or frequency resource unit for which one beam indication (or application) is possible.
  • the same beam maintaining time unit indicates the number of symbols that maintain the same beam, that is, a time interval.
  • a time and / or frequency resource for maintaining the same beam is described. It can mean a unit.
  • a relationship between a resource and a sub-resource used in the present specification may be represented by a resource group and a resource.
  • the PUCCH DMRS may be transmitted in all symbols as shown in FIG. 10.
  • FIG. 10 is a diagram illustrating an example of resource mapping of a multi-beam based PUCCH DMRS proposed in the present specification.
  • the PUCCH beams applied to each symbol are the same, and the PUCCH beams applied between the symbols may be different from each other.
  • the PUCCH DMRS resource index may be differently provided for each symbol.
  • DMRS resource indexes 1 to 6 and 1010 may be assigned to each of six symbols.
  • two PUCCH DMRSs are allocated to a frequency domain in one physical resource block (PRB), but this is an example.
  • PRB physical resource block
  • One or a maximum of three PUCCH DMRSs may be allocated to one PRB. have.
  • FIG. 11 illustrates another example of the multi-beam based PUCCH DMRS resource mapping proposed in the present specification.
  • FIG. 11A transmits a PUCCH DMRS in all symbols
  • FIG. 12B transmits only one PUCCH DMRS for each symbol.
  • 11A and 11B may apply the same UL Tx beam by combining two adjacent symbols, and the beam may be the same as the beam applied to the DMRS belonging to the symbol group.
  • one DMRS resource index may be given for every two symbols.
  • the PUCCH DMRS resource mapping of FIG. 11B may be preferably applied when a short PUCCH format is used as compared to FIG. 11A.
  • the symbols to which DMRS resource index 1 and 2 are respectively assigned are given to the front symbols 1110 and 1120 of the two symbols, and the symbols to which DMRS resource index 3 is assigned to the rear symbol 1130 of the two symbols. You can see it.
  • the DMRS resource used herein may be represented by a DMRS antenna port, a DMRS format, or the like.
  • An advantage of the above-described salping first embodiment is that the PUCCH DMRS transmission beam and the PUCCH transmission beam coincide in each time unit.
  • the UE may arbitrarily select a beam direction or a beam shape to transmit the PUCCH, and even when the BS does not know information about the PUCCH DMRS transmission beam, the UE may demodulate the PUCCH transmitted by the corresponding UE.
  • Another advantage of the first embodiment is that it is irrelevant to applying the same UE Tx beam even if they belong to different DMRS resource indexes.
  • M has a value larger than N.
  • the base station receiving the PUCCH from the terminal has a feature that the reception quality for the PUCCH varies for each beam maintenance time unit.
  • the second embodiment relates to contents related to channel coding and resource mapping for UCI (e.g. CSI) in multi-beam based PUCCH transmission.
  • UCI e.g. CSI
  • the following method may be applied to channel coding and resource mapping for UCI.
  • Method 1 is a method of coding UCI at a high coding rate and mapping to the first N symbol (s) of a PUCCH, and then repeatedly repeating the N symbol (s) to PUCCH symbols.
  • N may have the same value as the salping same beam maintaining time unit or may have a value corresponding to an integer multiple of the same beam maintaining time unit.
  • a PUCCH resource for transmitting UCI is composed of a plurality of PUCCH sub-resource, and the UCI can be repeatedly transmitted for each sub-resource through a predetermined encoding scheme (for example, encoding at a high coding rate of Method 1). .
  • the PUCCH resource may be represented by a PUCCH resource group, and in this case, the PUCCH sub-resource may be represented by a PUCCH resource.
  • the PUCCH resource is 4 symbols
  • the PUCCH sub-resource is 2 symbols
  • the PUCCH is repeatedly transmitted twice by 2 symbols.
  • the DMRS is transmitted to the same RE position for each PUCCH sub-resource.
  • PUCCH-spatial_relation_info corresponding to beam indication information on the PUCCH may be set in common for PUCCH resources or separately for each PUCCH sub-resource.
  • the same spatial_reference_info is applied to all sub-resources.
  • the UE may freely select and transmit a beam differently for each PUCCH sub-resource if the PUCCH sub-resource does not separately indicate the PUCCH-spatial_relation_info.
  • PUCCH-spatial_relation_info may be set, but if the flag is 'ON', the beam indicated by PUCCH-spatial_relation_info may be applied to only one sub-resource, and the other beam may be applied.
  • Method 2 is a method of coding UCI at a low coding rate and mapping to all PUCCH resources (or all PUCCH symbols).
  • Method 2 performs time-domain interleaving in channel coding UCI or mapping PUCCH resources.
  • the time-domain interleaving may include (i) interleaving of all symbols or (ii) interleaving of only some symbol sets.
  • the method 2 may perform frequency first mapping from the symbol position where the important information (e.g. systematic bit) among the coded bits is promised.
  • the third embodiment relates to a method of differently designing or configuring a PUCCH in at least one of the following aspects according to the number of beams or sweeping used for PUCCH transmission.
  • the first method is to configure the PUCCH differently in at least one of a time resource, a frequency resource, or a code resource of the PUCCH.
  • At least one of a time resource of the PUCCH or a frequency resource of the PUCCH may be increased.
  • the PUCCH when sweeping of the PUCCH is 'On', the PUCCH may be configured such that the number of PUCCH symbols is larger.
  • the time resource of the PUCCH may increase, but the frequency resource of the PUCCH may decrease.
  • the second is to increase the DMRS pattern of the PUCCH.
  • the time domain, the frequency domain location, and / or the density of the PUCCH DMRS may be different.
  • 'A and / or B' may be interpreted to mean the same as 'comprising at least one of A or B'.
  • FIG. 12 is a diagram illustrating an example of a DMRS pattern of the PUCCH proposed in the present specification.
  • FIG. 12A illustrates an example of a PUCCH DMRS pattern in case of PUCCH sweeping
  • FIG. 12B illustrates an example of a PUCCH DMRS pattern in case of PUCCH no-sweeping.
  • N1 subcarriers and M1 symbols may exist in a PUCCH resource, and in case of no-sweeping, N2 subcarriers and M2 symbols may exist.
  • N1 and N2 satisfies N1 ⁇ N2 and M1 ⁇ M2.
  • FIG. 12a shows that the density in the frequency domain of the PUCCH DMRS antenna port is higher than that in FIG. 12b.
  • Third is a method associated with the PUCCH channel coding chain, including mapping coded bits to resources.
  • the third method is to vary the channel coding scheme applied according to the number of beams of the PUCCH.
  • a coded UCI bit (of high code rate) is repeated symbolically, and if a sweeping is not applied to a PUCCH transmission, a coded UCI bit (of a low code rate) May be spread over and mapped to a plurality of symbols.
  • the third method may vary whether or not the channel coding chain is interleaving applied or applied according to the number of beams of the PUCCH.
  • interleaving when sweeping of the PUCCH is applied, interleaving may be applied to only some symbol sets of the PUCCH, and interleaving may be applied to all PUCCH symbols when sweeping of the PUCCH is not applied. . Since this method is the same as the content described in the second embodiment of the salping, the detailed description will be referred to the description of the second embodiment.
  • the fourth method is to increase the transmit power of the PUCCH as the number of (transmit) beams of the PUCCH increases.
  • the transmission power of the PUCCH may be increased in consideration of (in proportion to) the N / M value as compared with the case of not sweeping the PUCCH.
  • transmission power for the PUCCH may be differently set for each beam maintenance time unit.
  • the transmission power of the PUCCH applied to the time unit (s) at which the UE arbitrarily selects and transmits the beam and the time unit (s) using the beam designated or promised by the base station are differently set. Can be.
  • the PUCCH power control may be configured for each PUCCH sub-resource or the sub-resources in the PUCCH resource may all follow the same power control process.
  • the power control process is configured in units of PUCCH resources.
  • the transmission power of the PUCCH is preset for each UL beam of the terminal by the base station.
  • the PUCCH when using a plurality of beams in the PUCCH, it may be specified to follow a predetermined transmission power parameter for each symbol set (or time unit) corresponding to each beam.
  • the power between the beams of the PUCCH is set equally. This will be described in more detail in the fourth embodiment to be described later.
  • the base station compares the RS signal quality corresponding to each terminal Tx beam from RS (eg PUCCH DMRS) used for uplink channel demodulation and RS resource. It provides index information (eg best PUCCH DMRS resource / port index (es)) and / or quality information of RS (eg RSRP).
  • RS eg PUCCH DMRS
  • the transmission power of the PUCCH is the same value in all symbols.
  • the same value is defined to follow a transmission power value corresponding to a (serving) UL beam that the base station designates as a beam to be used by a base station among a plurality of UL beams to be applied to PUCCH transmission, or the transmission power used for previous PUCCH reporting. You can specify to follow the parameter value as it is.
  • the relative transmission power increase / decrease value or absolute transmission power value to be applied may be defined in advance according to the number of beams applied to the PUCCH or whether the PUCCH is sweeped.
  • this information is used for Tx beam selection or correction of a UE to be used for subsequent UL transmission. It can also be used.
  • such a UL beam correction process may allow a UE to correct a UL beam without transmitting a separate UL RS (eg Sounding RS).
  • a separate UL RS eg Sounding RS
  • the UL Tx used for the CSI reporting UL physical channel (eg PUCCH) when the link quality level measured from the DL RS falls below a certain level.
  • FIG. 13 is a flowchart illustrating an example of a method of performing PUCCH transmission proposed in the present specification.
  • the terminal transmits a Physical Uplink Control Channel (PUCCH) that carries uplink control information to the base station using a plurality of uplink beams (S1310).
  • PUCCH Physical Uplink Control Channel
  • the PUCCH is transmitted through different uplink beams for each specific resource unit.
  • the specific resource unit represents a resource unit (or resource region or resource interval) for transmitting the PUCCH in the same beam, and may include one or more symbols.
  • the specific resource unit may include a meaning of a time and / or frequency resource unit for transmitting the PUCCH in the same beam.
  • the terminal transmits a reference signal (RS) used for demodulation of the PUCCH to the base station using the plurality of uplink beams.
  • RS reference signal
  • the time point at which the terminal transmits the reference signal may be before or after step S1310.
  • resources of the reference signal RS may be mapped for each specific resource unit.
  • the resource of the reference signal may be mapped to all symbols or a specific symbol of the specific resource unit.
  • the resource of the PUCCH and the resource of the reference signal may be determined based on at least one of the number of beams on which the PUCCH is transmitted or whether the PUCCH is sweeped.
  • the resource of the PUCCH may represent at least one of time resource, frequency resource, or code resource to which the PUCCH is allocated.
  • the transmission power for the PUCCH may be determined based on at least one of the number of beams over which the PUCCH is transmitted or whether the PUCCH is sweeped.
  • the transmission power for the PUCCH may be set differently for each specific resource unit.
  • the uplink beam used for the PUCCH transmission for each specific resource unit may be indicated by the base station or selected by the terminal.
  • the uplink beam used for transmitting the reference signal and the uplink beam used for transmitting the PUCCH may be the same in the specific resource unit.
  • a PUCCH symbol to which the uplink control information is mapped may be determined according to a coding rate used for the uplink control information.
  • the uplink control information is first mapped to symbol (s) of the first specific resource unit of the PUCCH resource, and the mapped symbol (s) are continuously It may be repeated and mapped to the PUCCH resource.
  • the uplink control information may be mapped to all symbols of the PUCCH resource.
  • the uplink control information may be interleaved in the time domain in all symbols or specific symbols of the PUCCH resource.
  • a specific part of the uplink control information may be mapped to a frequency priority starting from a predefined symbol position.
  • FIG. 14 is a flowchart illustrating still another example of a method of performing PUCCH transmission proposed in the present specification.
  • FIG. 14 illustrates a method of indicating, at the base station, a resource for transmitting a PUCCH using a plurality of uplink beams in FIG. 13. Accordingly, except for procedures S1410 and S1420 of transmitting a resource for transmitting a PUCCH using a plurality of uplink beams, the contents described with reference to FIG. 13 may be equally applied to FIG. 14.
  • the terminal receives a resource for transmitting a PUCCH from the base station using a plurality of uplink beams from the base station (S1410).
  • the terminal transmits the PUCCH to the base station through the plurality of uplink beams in the received resource (S1420).
  • 15 is a flowchart illustrating still another example of a method of performing PUCCH transmission proposed in the present specification.
  • FIG. 15 illustrates a method of determining, at the UE, a resource for transmitting a PUCCH using a plurality of uplink beams in FIG. 13. Therefore, except for the procedure S1510 and S1520 of determining a resource for transmitting a PUCCH by using a plurality of uplink beams, the contents described with reference to FIG. 13 may be equally applied to FIG. 15.
  • the terminal determines a resource for transmitting a PUCCH using a plurality of uplink beams (S1510).
  • the terminal transmits the PUCCH to the base station through the plurality of uplink beams in the determined resource (1520).
  • 16 is a block diagram illustrating a wireless communication device according to one embodiment of the present invention.
  • a wireless communication system includes a base station (or network) 1610 and a terminal 1620.
  • the base station 1610 includes a processor 1611, a memory 1612, and a communication module 1613.
  • the processor 1611 implements the functions, processes, and / or methods proposed in FIGS. 1 to 15. Layers of the wired / wireless interface protocol may be implemented by the processor 1611.
  • the memory 1612 is connected to the processor 1611 and stores various information for driving the processor 1611.
  • the communication module 1613 is connected to the processor 1611 to transmit and / or receive wired / wireless signals.
  • the communication module 1613 may include an RF unit for transmitting / receiving a radio signal.
  • the terminal 1620 includes a processor 1621, a memory 1622, and a communication module (or RF unit) 1623.
  • the processor 1621 implements the functions, processes, and / or methods proposed in FIGS. 1 to 15. Layers of the air interface protocol may be implemented by the processor 1621.
  • the memory 1622 is connected to the processor 1621 and stores various information for driving the processor 1621.
  • the communication module 1623 is connected to the processor 1621 to transmit and / or receive a radio signal.
  • the memories 1612 and 1622 may be inside or outside the processors 1611 and 1621 and may be connected to the processors 1611 and 1621 by various well-known means.
  • the base station 1610 and / or the terminal 1620 may have a single antenna or multiple antennas.
  • 17 is a block diagram illustrating a communication device according to one embodiment of the present invention.
  • FIG. 17 illustrates the terminal of FIG. 16 in more detail.
  • a terminal may include a processor (or a digital signal processor (DSP) 1710, an RF module (or an RF unit) 1735, and a power management module 1705). ), Antenna 1740, battery 1755, display 1715, keypad 1720, memory 1730, SIM card Subscriber Identification Module card) 1725 (this configuration is optional), a speaker 1745 and a microphone 1750.
  • the terminal may also include a single antenna or multiple antennas. Can be.
  • the processor 1710 implements the functions, processes, and / or methods proposed in FIGS. 1 to 15.
  • the layer of the air interface protocol may be implemented by the processor 1710.
  • the memory 1730 is connected to the processor 1710 and stores information related to the operation of the processor 1710.
  • the memory 1730 may be inside or outside the processor 1710 and may be connected to the processor 1710 by various well-known means.
  • the processor 1710 receives the command information, processes the telephone number, and performs a proper function. Operational data may be extracted from the SIM card 1725 or the memory 1730. In addition, the processor 1710 may display the command information or the driving information on the display 1715 for user recognition and convenience.
  • the RF module 1735 is connected to the processor 1710 to transmit and / or receive an RF signal.
  • the processor 1710 communicates command information to the RF module 1735 to transmit, for example, a radio signal constituting voice communication data to initiate communication.
  • the RF module 1735 is comprised of a receiver and a transmitter for receiving and transmitting a radio signal.
  • the antenna 1740 functions to transmit and receive wireless signals. Upon receiving the wireless signal, the RF module 1735 may transmit the signal and convert the signal to baseband for processing by the processor 1710. The processed signal may be converted into audible or readable information output through the speaker 1745.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the beam management method in the wireless communication system of the present invention has been described with reference to the example applied to the 3GPP LTE / LTE-A system and 5G, it can be applied to various wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서는 무선 통신 시스템에서 PUCCH를 전송하는 방법을 제공한다. 본 명세서에서 단말에 의해 수행되는 PUCCH 전송 방법은, 복수의 상향링크 빔들을 이용하여 상기 PUCCH를 기지국으로 전송하는 단계를 포함하되, 상기 PUCCH는 특정 자원 단위 별로 서로 다른 상향링크 빔을 통해 전송되며, 상기 특정 자원 단위는 동일 빔으로 상기 PUCCH를 전송하는 자원 단위를 나타낼 수 있다.

Description

무선 통신 시스템에서 물리 상향링크 제어 채널 전송 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 물리 상향링크 제어 채널을 전송하는 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 복수의 상향링크 빔들을 이용하여 PUCCH를 전송하는 방법을 제공함에 목적이 있다.
또한, 본 명세서는 PUCCH의 전송 빔 수 또는 PUCCH 전송의 sweeping 적용 여부 중 적어도 하나에 기초하여 PUCCH 및 PUCCH DMRS(Demodulation Reference Signal)을 구성하는 방법을 제공함에 목적이 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서는 무선 통신 시스템에서 상향링크 제어 정보(Uplink Control Information:UCI)를 운반하는 물리 상향링크 제어 채널(Physical Uplink Control Channel:PUCCH)를 전송하는 방법에 있어서, 단말에 의해 수행되는 상기 방법은, 복수의 상향링크 빔들을 이용하여 상기 PUCCH를 기지국으로 전송하는 단계를 포함하되, 상기 PUCCH는 특정 자원 단위 별로 서로 다른 상향링크 빔을 통해 전송되며, 상기 특정 자원 단위는 하나 또는 그 이상의 심볼들을 포함하며, 동일 빔으로 상기 PUCCH를 전송하는 자원 단위를 나타내는 것을 특징으로 한다.
또한, 상기 방법은 상기 PUCCH의 복조에 사용되는 참조 신호(Reference Signal:RS)를 상기 복수의 상향링크 빔들을 이용하여 상기 기지국으로 전송하는 단계를 더 포함하되, 상기 참조 신호(Reference Signal:RS)의 자원은 상기 특정 자원 단위 별로 매핑되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 참조 신호의 자원은 상기 특정 자원 단위의 모든 심볼들에 또는 특정 심볼에 매핑되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 특정 자원 단위에서 상기 참조 신호의 전송에 사용되는 상향링크 빔과 상기 PUCCH의 전송에 사용되는 상향링크 빔은 동일한 것을 특징으로 한다.
또한, 본 명세서에서 상기 상향링크 제어 정보에 이용되는 코딩 레이트(coding rate)에 따라 상기 상향링크 제어 정보가 매핑되는 PUCCH 심볼이 결정되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 상향링크 제어 정보에 이용되는 코딩 레이트가 높은 경우, 상기 상향링크 제어 정보는 첫 번째로 PUCCH 자원의 처음 특정 자원 단위의 심볼(들)에 매핑되고, 상기 매핑된 심볼(들)이 연속적으로 반복되어 상기 PUCCH 자원에 매핑되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 상향링크 제어 정보에 이용되는 코딩 레이트가 낮은 경우, 상기 상향링크 제어 정보는 PUCCH 자원의 전체 심볼들에 매핑되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 상향링크 제어 정보는 상기 PUCCH 자원의 전체 심볼들에서 또는 특정 심볼에서 시간 영역으로 인터리빙되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 상향링크 제어 정보의 특정 파트(specific part)를 미리 정의된 심볼 위치부터 시작하여 주파수 우선으로 매핑하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 PUCCH의 자원 및 상기 참조 신호의 자원은 상기 PUCCH가 전송되는 빔의 개수 또는 상기 PUCCH의 스위핑(sweeping) 여부 중 적어도 하나에 기초하여 결정되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 PUCCH의 자원은 상기 PUCCH가 할당되는 시간 자원, 주파수 자원 또는 코드 자원 중 적어도 하나인 것을 특징으로 한다.
또한, 본 명세서에서 상기 PUCCH에 대한 전송 전력은 상기 PUCCH가 전송되는 빔의 개수 또는 상기 PUCCH의 스위핑(sweeping) 여부 중 적어도 하나에 기초하여 결정되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 복수 개의 상향링크 빔들을 이용하여 상기 PUCCH를 전송하는 경우, 특정 자원 단위 별로 상기 PUCCH에 대한 전송 전력을 다르게 설정하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 특정 자원 단위 별로 상기 PUCCH 전송에 사용되는 상향링크 빔은 상기 기지국에 의해 지시되거나 또는 상기 단말에 의해 선택되는 것을 특징으로 한다.
또한, 본 명세서는 무선 통신 시스템에서 상향링크 제어 정보(Uplink Control Information:UCI)를 운반하는 물리 상향링크 제어 채널(Physical Uplink Control Channel:PUCCH)를 전송하는 단말에 있어서, 무선 신호를 송수신하기 위한 RF 모듈(radio frequency module); 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는, 복수의 상향링크 빔들을 이용하여 상기 PUCCH를 기지국으로 전송하도록 제어하되, 상기 PUCCH는 특정 자원 단위 별로 서로 다른 상향링크 빔을 통해 전송되며, 상기 특정 자원 단위는 동일 빔으로 상기 PUCCH를 전송하는 자원의 단위를 나타내며, 상기 특정 자원 단위는 하나 또는 그 이상의 심볼들을 포함하는 것을 특징으로 한다.
본 명세서는 복수의 상향링크 빔들을 이용하여 PUCCH를 전송하기 위한 PUCCH 및 PUCCH DMRS 설계 또는 구성을 새롭게 정의함으로써 시스템 내에서의 signaling 오버헤드를 줄이고, 결과적으로 통신 지연을 감소시킬 수 있는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
도 5는 아날로그 빔포머(analog beamformer) 및 RF 체인(RF chain)으로 구성되는 송신단(transmitter)의 블록도(block diagram)의 일례를 나타낸다.
도 6은 디지털 빔포머(digital beamformer) 및 RF 체인으로 구성되는 송신단의 블록도의 일례를 나타낸다.
도 7은 아날로그 빔 스캐닝 방식의 일례를 나타낸다.
도 8은 PUSCH CSI 보고 모드의 일례를 나타낸 도이다.
도 9는 PUCCH CSI 보고 모드의 일례를 나타낸 도이다.
도 10은 본 명세서에서 제안하는 멀티-빔 기반 PUCCH DMRS의 자원 매핑의 일례를 나타낸 도이다.
도 11은 본 명세서에서 제안하는 멀티-빔 기반 PUCCH DMRS 자원 매핑의 또 다른 일례를 나타낸 도이다.
도 12는 본 명세서에서 제안하는 PUCCH의 DMRS 패턴의 일례를 나타낸 도이다.
도 13은 본 명세서에서 제안하는 PUCCH 전송을 수행하는 방법의 일례를 나타낸 순서도이다.
도 14는 본 명세서에서 제안하는 PUCCH 전송을 수행하는 방법의 또 다른 일례를 나타낸 순서도이다.
도 15는 본 명세서에서 제안하는 PUCCH 전송을 수행하는 방법의 또 다른 일례를 나타낸 순서도이다.
도 16은 본 발명의 일 실시 예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 17은 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 통상의 기술자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), gNB(generation NB) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A/NR(New RAT)를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
용어 정의
eLTE eNB: eLTE eNB는 EPC 및 NGC에 대한 연결을 지원하는 eNB의 진화(evolution)이다.
gNB: NGC와의 연결뿐만 아니라 NR을 지원하는 노드.
새로운 RAN: NR 또는 E-UTRA를 지원하거나 NGC와 상호 작용하는 무선 액세스 네트워크.
네트워크 슬라이스(network slice): 네트워크 슬라이스는 종단 간 범위와 함께 특정 요구 사항을 요구하는 특정 시장 시나리오에 대해 최적화된 솔루션을 제공하도록 operator에 의해 정의된 네트워크.
네트워크 기능(network function): 네트워크 기능은 잘 정의된 외부 인터페이스와 잘 정의된 기능적 동작을 가진 네트워크 인프라 내에서의 논리적 노드.
NG-C: 새로운 RAN과 NGC 사이의 NG2 레퍼런스 포인트(reference point)에 사용되는 제어 평면 인터페이스.
NG-U: 새로운 RAN과 NGC 사이의 NG3 레퍼런스 포인트(reference point)에 사용되는 사용자 평면 인터페이스.
비 독립형(Non-standalone) NR: gNB가 LTE eNB를 EPC로 제어 플레인 연결을 위한 앵커로 요구하거나 또는 eLTE eNB를 NGC로 제어 플레인 연결을 위한 앵커로 요구하는 배치 구성.
비 독립형 E-UTRA: eLTE eNB가 NGC로 제어 플레인 연결을 위한 앵커로 gNB를 요구하는 배치 구성.
사용자 평면 게이트웨이: NG-U 인터페이스의 종단점.
시스템 일반
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 1을 참조하면, NG-RAN은 NG-RA 사용자 평면(새로운 AS sublayer/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다.
상기 gNB는 Xn 인터페이스를 통해 상호 연결된다.
상기 gNB는 또한, NG 인터페이스를 통해 NGC로 연결된다.
보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF (Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF (User Plane Function)로 연결된다.
NR(New Rat) 뉴머롤로지(Numerology) 및 프레임(frame) 구조
NR 시스템에서는 다수의 뉴머롤로지(numerology)들이 지원될 수 있다. 여기에서, 뉴머롤로지는 서브캐리어 간격(subcarrier spacing)과 CP(Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 서브캐리어 간격은 기본 서브캐리어 간격을 정수 N(또는,
Figure PCTKR2018000076-appb-I000001
)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 뉴머롤로지는 주파수 대역과 독립적으로 선택될 수 있다.
또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM(Orthogonal Frequency Division Multiplexing) 뉴머롤로지 및 프레임 구조를 살펴본다.
NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1과 같이 정의될 수 있다.
Figure PCTKR2018000076-appb-T000001
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는
Figure PCTKR2018000076-appb-I000002
의 시간 단위의 배수로 표현된다. 여기에서,
Figure PCTKR2018000076-appb-I000003
이고,
Figure PCTKR2018000076-appb-I000004
이다. 하향링크(downlink) 및 상향링크(uplink) 전송은
Figure PCTKR2018000076-appb-I000005
의 구간을 가지는 무선 프레임(radio frame)으로 구성된다. 여기에서, 무선 프레임은 각각
Figure PCTKR2018000076-appb-I000006
의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 2에 나타난 것과 같이, 단말(User Equipment, UE)로 부터의 상향링크 프레임 번호 i의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다
Figure PCTKR2018000076-appb-I000007
이전에 시작해야 한다.
뉴머롤로지
Figure PCTKR2018000076-appb-I000008
에 대하여, 슬롯(slot)들은 서브프레임 내에서
Figure PCTKR2018000076-appb-I000009
의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서
Figure PCTKR2018000076-appb-I000010
의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은
Figure PCTKR2018000076-appb-I000011
의 연속하는 OFDM 심볼들로 구성되고,
Figure PCTKR2018000076-appb-I000012
는, 이용되는 뉴머롤로지 및 슬롯 설정(slot configuration)에 따라 결정된다. 서브프레임에서 슬롯
Figure PCTKR2018000076-appb-I000013
의 시작은 동일 서브프레임에서 OFDM 심볼
Figure PCTKR2018000076-appb-I000014
의 시작과 시간적으로 정렬된다.
모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.
표 2는 뉴머롤로지
Figure PCTKR2018000076-appb-I000015
에서의 일반(normal) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타내고, 표 3은 뉴머롤로지
Figure PCTKR2018000076-appb-I000016
에서의 확장(extended) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타낸다.
Figure PCTKR2018000076-appb-T000002
Figure PCTKR2018000076-appb-T000003
NR 물리 자원(NR Physical Resource)
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다.
이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 추론될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 3을 참고하면, 자원 그리드가 주파수 영역 상으로
Figure PCTKR2018000076-appb-I000017
서브캐리어들로 구성되고, 하나의 서브프레임이 14 x 2u OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
NR 시스템에서, 전송되는 신호(transmitted signal)는
Figure PCTKR2018000076-appb-I000018
서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및
Figure PCTKR2018000076-appb-I000019
의 OFDM 심볼들에 의해 설명된다. 여기에서,
Figure PCTKR2018000076-appb-I000020
이다. 상기
Figure PCTKR2018000076-appb-I000021
는 최대 전송 대역폭을 나타내고, 이는, 뉴머롤로지들뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다.
이 경우, 도 4와 같이, 뉴머롤로지
Figure PCTKR2018000076-appb-I000022
및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
뉴머롤로지
Figure PCTKR2018000076-appb-I000023
및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍
Figure PCTKR2018000076-appb-I000024
에 의해 고유적으로 식별된다. 여기에서,
Figure PCTKR2018000076-appb-I000025
는 주파수 영역 상의 인덱스이고,
Figure PCTKR2018000076-appb-I000026
는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍
Figure PCTKR2018000076-appb-I000027
이 이용된다. 여기에서,
Figure PCTKR2018000076-appb-I000028
이다.
뉴머롤로지
Figure PCTKR2018000076-appb-I000029
및 안테나 포트 p에 대한 자원 요소
Figure PCTKR2018000076-appb-I000030
는 복소 값(complex value)
Figure PCTKR2018000076-appb-I000031
에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 뉴머롤로지가 특정되지 않은 경우에는, 인덱스들 p 및
Figure PCTKR2018000076-appb-I000032
는 드롭(drop)될 수 있으며, 그 결과 복소 값은
Figure PCTKR2018000076-appb-I000033
또는
Figure PCTKR2018000076-appb-I000034
이 될 수 있다.
또한, 물리 자원 블록(physical resource block)은 주파수 영역 상의
Figure PCTKR2018000076-appb-I000035
연속적인 서브캐리어들로 정의된다. 주파수 영역 상에서, 물리 자원 블록들은 0부터
Figure PCTKR2018000076-appb-I000036
까지 번호가 매겨진다. 이 때, 주파수 영역 상의 물리 자원 블록 번호(physical resource block number)
Figure PCTKR2018000076-appb-I000037
와 자원 요소들
Figure PCTKR2018000076-appb-I000038
간의 관계는 수학식 1과 같이 주어진다.
Figure PCTKR2018000076-appb-M000001
또한, 캐리어 파트(carrier part)와 관련하여, 단말은 자원 그리드의 서브셋(subset)만을 이용하여 수신 또는 전송하도록 설정될 수 있다. 이 때, 단말이 수신 또는 전송하도록 설정된 자원 블록의 집합(set)은 주파수 영역 상에서 0부터
Figure PCTKR2018000076-appb-I000039
까지 번호가 매겨진다.
상향링크 제어 채널(Uplink control channel)
물리 상향링크 제어 시그널링(physical uplink control signaling)은 적어도 hybrid-ARQ acknowledgement, CSI 보고(CSI report)(가능하다면 빔포밍(beamforming) 정보 포함), 및 스케줄링 요청(scheduling request)을 운반할 수 있어야 한다.
NR 시스템에서 지원하는 상향링크 제어 채널(UL control channel)에 대해 적어도 두 가지 전송 방법이 지원된다.
상향링크 제어 채널은 슬롯(slot)의 마지막으로 전송된 상향링크 심볼(들) 주위에서 단기간(short duration)에 전송될 수 있다. 이 경우, 상향링크 제어 채널은 슬롯 내에서 상향링크 데이터 채널(UL data channel)과 시간-분할-다중화(time-division-multiplexed) 및/또는 주파수-분할-다중화(frequency-division-multiplexed)된다. 단기간의 상향링크 제어 채널에 대해, 슬롯의 1 심볼 단위 전송이 지원된다.
- 짧은 상향링크 제어 정보(Uplink Control Information, UCI) 및 데이터는 적어도 짧은 UCI 및 데이터에 대한 물리 자원 블록(Physical Resource Block, PRB)이 중첩되지 않는 경우 단말(UE) 및 단말들 사이에서 주파수-분할-다중화된다.
- 동일한 슬롯 내의 상이한 단말들로부터의 짧은 PUCCH(short PUCCH)의 시간 분할 다중화(Time Division Multiplexing, TDM)를 지원하기 위해, 짧은 PUCCH를 전송할 슬롯 내의 심볼(들)이 적어도 6GHz 이상에서 지원되는지 여부를 단말에게 알리는 메커니즘(mechanism)이 지원된다.
- 1 심볼 기간(1-symbol duration)에 대해서는 적어도 1) 참조 신호 (Reference Signal, RS)가 다중화되면 UCI와 RS는 주파수 분할 다중화(Frequency Division Multiplexing, FDM) 방식으로 주어진 OFDM 심볼에 다중화되는 점 및 2) 동일한 슬롯에서 하향링크(DL)/상향링크(UL) 데이터와 단기간의 PUCCH 사이의 서브캐리어 간격(subcarrier spacing)이 동일한 점이 지원된다.
- 적어도, 슬롯의 2 심볼 기간(2-symbol duration)에 걸친 단기간의 PUCCH가 지원된다. 이 때, 동일한 슬롯에서 하향링크(DL)/상향링크(UL) 데이터와 단기간의 PUCCH 사이의 서브캐리어 간격이 동일하다.
- 적어도, 슬롯내의 주어진 단말의 PUCCH 자원 즉, 상이한 단말들의 짧은 PUCCH들은 슬롯에서 주어진 지속 기간(duration) 내에 시분할 다중화될 수 있는 반-정적 구성(semi-static configuration)이 지원된다.
- PUCCH 자원에는 시간 영역(time domain), 주파수 영역(frequency domain), 및 적용 가능한 경우에는 코드 영역(code domain)이 포함된다.
- 단기간의 PUCCH는 단말 관점에서 슬롯의 끝까지 확장될 수 있다. 이 때, 단기 간의 PUCCH 이후 명시적인 갭 심볼(explicit gap symbol)이 불필요하다.
- 짧은 상향링크 부분(short UL part)을 갖는 슬롯(즉, DL 중심의 슬롯(DL-centric slot))에 대해, 데이터가 짧은 상향링크 부분에서 스케줄링(scheduling)되면 '짧은 UCI' 및 데이터는 하나의 단말에 의해 주파수 분할 다중화될 수 있다.
상향링크 제어 채널은 커버리지(coverage)를 개선하기 위하여 다수의 상향링크 심볼들에 걸쳐 장기간(long-duration)에 전송될 수 있다. 이 경우, 상향링크 제어 채널은 슬롯 내의 상향링크 데이터 채널과 주파수 분할 다중화된다.
- 적어도 PAPR(Peak to Average Power Ratio)이 낮은 설계로 장시간의 상향링크 제어 채널(long duration UL control channel)에 의해 운반되는 UCI는 하나의 슬롯 또는 다수의 슬롯들에서 전송될 수 있다.
- 다수의 슬롯들을 이용하는 전송은 적어도 일부의 경우에 총 지속 시간(total duration)(예: 1ms) 동안 허용된다.
- 장시간의 상향링크 제어 채널의 경우, RS와 UCI 간의 시간 분할 다중화(TDM)는 DFT-S-OFDM에 대해 지원된다.
- 슬롯의 긴 상향링크 부분(long UL part)은 장시간의 PUCCH 전송에 이용될 수 있다. 즉, 장시간의 PUCCH는 상향링크 전용 슬롯(UL-only slot)과 최소 4개의 심볼들로 구성되는 가변 개수의 심볼들을 갖는 슬롯 모두에 대해 지원된다.
- 적어도 1 또는 2 비트 UCI에 대해, 상기 UCI는 N 개의 슬롯(N>1) 내에서 반복될 수 있으며, 상기 N 개의 슬롯은 장시간의 PUCCH가 허용되는 슬롯들에서 인접하거나 또는 인접하지 않을 수 있다.
- 적어도 긴 PUCCH(long PUCCH)에 대해 PUSCH와 PUCCH의 동시 전송(simultaneous transmission)이 지원된다. 즉, 데이터가 존재하는 경우에도 PUCCH 자원에 대한 상향링크 제어가 전송된다. 또한, PUCCH-PUSCH 동시 전송 외에도, PUSCH에서의 UCI가 지원된다.
- TTI 내에서의 슬롯 주파수 호핑(intra-TTI slot frequency hopping)이 지원된다.
- DFT-s-OFDM 파형(waveform)이 지원된다.
- 전송 안테나 다이버시티(transmit antenna diversity)가 지원된다.
단기간의 PUCCH와 장기간의 PUCCH 사이의 TDM 및 FDM은 적어도 하나의 슬롯에서 다른 단말들에 대해 지원된다. 주파수 영역에서, PRB(또는 다수의 PRB들)는 상향링크 제어 채널에 대한 최소 자원 단위 크기(minimum resource unit size)이다. 호핑(hopping)이 이용되는 경우, 주파수 자원 및 호핑은 캐리어 대역폭(carrier bandwidth)으로 확산되지 않을 수 있다. 또한, 단말 특정 RS는 NR-PUCCH 전송에 이용된다. PUCCH 자원들의 집합(set)은 상위 계층 시그널링(higher layer signaling)에 의해 설정되고, 설정된 집합 내의 PUCCH 자원은 하향링크 제어 정보(Downlink Control Information, DCI)에 의해 지시된다.
DCI의 일부로서, 데이터 수신(data reception)과 hybrid-ARQ acknowledgement 전송 간의 타이밍(timing)은 다이나믹하게(dynamically) (적어도 RRC와 함께) 지시될 수 있어야 한다. 반-정적 구성(semi-static configuration) 및(적어도 일부 유형의 UCI 정보에 대한) 다이나믹한 시그널링(dynamic signaling)의 결합은 '긴 및 짧은 PUCCH 포맷'에 대한 PUCCH 자원을 결정하기 위해 이용된다. 여기에서, PUCCH 자원은 시간 영역, 주파수 영역, 및 적용 가능한 경우에는 코드 영역을 포함한다. PUSCH 상의 UCI 즉, UCI에 대한 스케줄된 자원의 일부를 사용하는 것은 UCI와 데이터의 동시 전송의 경우에 지원된다.
또한, 적어도 단일 HARQ-ACK 비트의 상향링크 전송이 적어도 지원된다. 또한, 주파수 다이버시티(frequency diversity)를 가능하게 하는 메커니즘이 지원된다. 또한, URLLC(Ultra-Reliable and Low-Latency Communication)의 경우, 단말에 대해 설정된 스케줄링 요청(SR) 자원들 간의 시간 간격(time interval)은 한 슬롯보다 작을 수 있다.
빔 관리(Beam management)
NR에서 빔 관리는 다음과 같이 정의된다.
빔 관리(Beam management): DL 및 UL 송수신에 사용될 수 있는 TRP(들) 및/또는 UE 빔들의 세트(set)를 획득하고 유지하기 위한 L1/L2 절차들의 세트로서, 적어도 다음 사항들을 포함한다:
- 빔 결정: TRP (들) 또는 UE가 자신의 송신 / 수신 빔을 선택하는 동작.
- 빔 측정: TRP (들) 또는 UE가 수신된 빔 형성 신호의 특성을 측정하는 동작.
- 빔 보고: UE가 빔 측정에 기반하여 빔 형성된 신호의 정보를 보고하는 동작.
- 빔 스위핑 (Beam sweeping): 미리 결정된 방식으로 시간 간격 동안 송신 및 / 또는 수신된 빔을 이용하여 공간 영역을 커버하는 동작.
또한, TRP 및 UE에서의 Tx / Rx 빔 대응(correspondence)는 다음과 같이 정의된다.
- TRP에서의 Tx / Rx 빔 대응은 다음 중 적어도 하나가 충족되면 유지된다.
- TRP는 TRP의 하나 이상의 송신 빔에 대한 UE의 하향링크 측정에 기초하여 상향링크 수신을 위한 TRP 수신 빔을 결정할 수 있다.
- TRP는 TRP의 하나 이상의 Rx 빔들에 대한 TRP의 상향링크 측정에 기초하여 하향링크 전송에 대한 TRP Tx 빔을 결정할 수 있다.
- UE에서의 Tx / Rx 빔 대응은 다음 중 적어도 하나가 충족되면 유지된다.
- UE는 UE의 하나 이상의 Rx 빔에 대한 UE의 하향링크 측정에 기초하여 상향링크 전송을 위한 UE Tx 빔을 결정할 수 있다.
- UE는 하나 이상의 Tx 빔에 대한 상향링크 측정에 기초한 TRP의 지시에 기초하여 하향링크 수신을 위한 UE 수신 빔을 결정할 수 있다.
- TRP로 UE 빔 대응 관련 정보의 능력 지시가 지원된다.
다음과 같은 DL L1 / L2 빔 관리 절차가 하나 또는 다수의 TRP들 내에서 지원된다.
P-1: TRP Tx 빔 / UE Rx 빔 (들)의 선택을 지원하기 위해 상이한 TRP Tx 빔에 대한 UE 측정을 가능하게 하기 위해 사용된다.
- TRP에서의 빔포밍의 경우 일반적으로 서로 다른 빔 세트에서 인트라(intra)/인터(inter)-TRP Tx 빔 스윕(sweep)을 포함한다. UE에서의 빔포밍을 위해, 그것은 통상적으로 상이한 빔들의 세트로부터의 UE Rx 빔 sweep를 포함한다.
P-2: 상이한 TRP Tx 빔에 대한 UE 측정이 인터/인트라-TRP Tx 빔(들)을 변경하도록 하기 위해 사용된다.
P-3: UE가 빔 포밍을 사용하는 경우에 동일한 TRP Tx 빔에 대한 UE 측정이 UE Rx 빔을 변경시키는데 사용된다.
적어도 네트워크에 의해 트리거된 비주기적 보고(apreiodic reporting)는 P-1, P-2 및 P-3 관련 동작에서 지원된다.
빔 관리 (적어도 CSI-RS)를 위한 RS에 기초한 UE 측정은 K (빔의 총 개수) 빔으로 구성되며, UE는 선택된 N개의 Tx 빔들의 측정 결과를 보고한다. 여기서, N은 반드시 고정된 수는 아니다. 이동성 목적을 위한 RS에 기반한 절차는 배제되지 않는다. 보고 정보는 적어도 N <K 인 경우 N 개의 빔 (들)에 대한 측정량 및 N 개의 DL 송신 빔을 나타내는 정보를 포함한다. 특히, UE가 K'> 1 논-제로-파워 (NZP) CSI- RS 자원들에 대해, UE는 N'의 CRI (CSI-RS 자원 지시자)를 보고 할 수 있다.
UE는 빔 관리를 위해 다음과 같은 상위 계층 파라미터(higher layer parameter)들로 설정될 수 있다.
- N=1 보고 설정(setting), M≥1 자원 설정
- 보고 설정과 자원 설정 간의 링크들은 합의된 CSI 측정 설정에서 설정된다.
- CSI-RS 기반 P-1 및 P-2는 자원 및 보고 설정으로 지원된다.
- P-3은 보고 설정의 유무에 관계없이 지원될 수 있다.
- 적어도 이하 사항들을 포함하는 보고 설정(reporting setting)
- 선택된 빔을 나타내는 정보
- L1 측정 보고(L1 measurement reporting)
- 시간 영역 동작(예: 비주기적(aperiodic) 동작, 주기적(periodic) 동작, 반-지속적(semi-persistent) 동작)
- 여러 주파수 세분성(frequency granularity)이 지원되는 경우의 주파수 세분성
- 적어도 이하 사항들을 포함하는 리소스 설정(resource setting)
- 시간 영역 동작(예: 비주기적 동작, 주기적 동작, 반-지속적 동작)
- RS 유형: 적어도 NZP CSI-RS
- 적어도 하나의 CSI-RS 자원 세트. 각 CSI-RS 자원 세트는 K≥1 CSI-RS 자원들을 포함(K개의 CSI-RS 자원들의 일부 파라미터들은 동일할 수 있다. 예를 들어, 포트 번호, 시간 영역 동작, 밀도 및 주기)
또한, NR은 L> 1 인 L 그룹을 고려하여 다음 빔 보고를 지원한다.
- 최소한의 그룹을 나타내는 정보
- N1 빔에 대한 측정량(measurement quantity)(L1 RSRP 및 CSI 보고 지원 (CSI-RS가 CSI 획득을 위한 경우))
- 적용 가능한 경우, Nl개의 DL 송신 빔을 나타내는 정보
상술한 바와 같은 그룹 기반의 빔 보고는 UE 단위로 구성할 수 있다. 또한, 상기 그룹 기반의 빔 보고는 UE 단위로 턴-오프(turn-off) 될 수 있다(예를 들어, L = 1 또는 Nl = 1인 경우).
NR은 UE가 빔 실패로부터 복구하는 메커니즘을 트리거할 수 있음을 지원한다.
빔 실패(beam failure) 이벤트는 연관된 제어 채널의 빔 쌍 링크(beam pair link)의 품질이 충분히 낮을 때 발생한다(예를 들어 임계 값과의 비교, 연관된 타이머의 타임 아웃). 빔 실패(또는 장애)로부터 복구하는 메커니즘은 빔 장애가 발생할 때 트리거된다.
네트워크는 복구 목적으로 UL 신호를 전송하기 위한 자원을 갖는 UE에 명시적으로 구성한다. 자원들의 구성은 기지국이 전체 또는 일부 방향으로부터(예를 들어, random access region) 청취(listening)하는 곳에서 지원된다.
빔 장애를 보고하는 UL 송신/자원은 PRACH (PRACH 자원에 직교하는 자원)와 동일한 시간 인스턴스(instance)에 또는 PRACH와 다른 시간 인스턴스(UE에 대해 구성 가능)에 위치할 수 있다. DL 신호의 송신은 UE가 새로운 잠재적인 빔들을 식별하기 위해 빔을 모니터할 수 있도록 지원된다.
NR은 빔 관련 지시(beam-related indication)에 관계 없이 빔 관리를 지원한다. 빔 관련 지시가 제공되는 경우, CSI-RS 기반 측정을 위해 사용된 UE 측 빔 형성 / 수신 절차에 관한 정보는 QCL을 통해 UE에 지시될 수 있다.
NR에서 지원할 QCL 파라미터로는 LTE 시스템에서 사용하던 delay, Doppler, average gain등에 대한 파라미터 뿐만 아니라 수신단에서의 빔포밍을 위한 공간 파라미터가 추가될 예정이며, 단말 수신 빔포밍 관점에서 angle of arrival (AOA) 관련 파라미터 및/또는 기지국 수신 빔포밍 관점에서 angle of departure (AOD) 관련 파라미터들이 포함될 수 있다.
NR에서 상기 angle of arrival 관련 파라미터를 통칭하여 spatial Rx(receive) parameter라 명칭하기로 하였다. 즉, 특정 antenna port가 다른 antenna port와 spatial Rx parameter 관점에서 QCL되어 있다고 함은 해당 두 antenna port를 수신하는 수신기가 동일한 수신 빔(spatial filter)을 사용해도 무방함을 지칭한다. 이는, 하향링크 관점에서 기지국이 해당 두 antenna port를 전송할 때 동일 혹은 유사한 전송 빔을 적용함을 단말에게 알려주는 것과 동일하다.
NR은 제어 채널 및 해당 데이터 채널 전송에서 동일하거나 다른 빔을 사용하는 것을 지원한다.
빔 쌍 링크 블로킹(beam pair link blocking)에 대한 견고성(robustness)를 지원하는 NR-PDCCH 전송을 위해, UE는 동시에 M개의 빔 쌍 링크상에서 NR-PDCCH를 모니터링하도록 구성될 수 있다. 여기서, M≥1 및 M의 최대값은 적어도 UE 능력에 의존할 수 있다.
UE는 상이한 NR-PDCCH OFDM 심볼들에서 상이한 빔 쌍 링크(들)상의 NR-PDCCH를 모니터링하도록 구성될 수 있다. 다수의 빔 쌍 링크들 상에서 NR-PDCCH를 모니터링하기 위한 UE Rx 빔 설정과 관련된 파라미터는 상위 계층 시그널링 또는 MAC CE에 의해 구성되거나 및 / 또는 탐색 공간 설계에서 고려된다.
적어도, NR은 DL RS 안테나 포트(들)과 DL 제어 채널의 복조를 위한 DL RS 안테나 포트(들) 사이의 공간 QCL 가정의 지시를 지원한다. NR-PDCCH(즉, NR-PDCCH를 모니터링하는 구성 방법)에 대한 빔 지시를 위한 후보 시그널링 방법은 MAC CE 시그널링, RRC 시그널링, DCI 시그널링, 스펙 transparent 및/또는 암시적 방법, 및 이들 시그널링 방법의 조합이다.
유니 캐스트 DL 데이터 채널의 수신을 위해, NR은 DL RS 안테나 포트와 DL 데이터 채널의 DMRS 안테나 포트 사이의 공간 QCL 가정의 지시를 지원한다.
RS 안테나 포트를 나타내는 정보는 DCI (다운 링크 허가)를 통해 표시된다. 또한, 이 정보는 DMRS 안테나 포트와 QCL 되어 있는 RS 안테나 포트를 나타낸다. DL 데이터 채널에 대한 DMRS 안테나 포트의 상이한 세트는 RS 안테나 포트의 다른 세트와 QCL로서 나타낼 수 있다.
UL(PUCCH/PUSCH) 빔 지시에 대해 간략히 살펴본다. 여기서, UL 빔 지시는 일반적인 용어이며, NR에서 UL 빔 지시는 spatial_relation_info. field 설정에 의해 UL 빔이 지시된다.
상기 spatial_relation_info. field 는 SRS 기반의 UL 빔 패어 결정 절차가 수행된 경우 SRS resource ID(s) (SRI)로, DL 빔과 UL 빔 간에 빔 호혜성(혹은 빔 대응성)이 존재하는 경우 DL 빔을 지시하기 위한 DL RS인 CSI-RS resource ID(s) (CRI) 혹은 SSB(synchronization signal block) ID (혹은 SSB ID에 상응하는 다른 ID, e.g. PBCH DMRS ID)를 포함할 수 있다.
일례로, PUCCH에 대한 UL 빔 지시는 (1) RRC layer에서 하나의 SRI, CRI 또는 SSB ID를 spatial_relation_info. field 설정에 의해 지시하거나, (2) RRC layer에서 복수의 SRIs, CRIs 또는 SSB IDs를 설정한 후 MAC layer에서 그 중 하나의 ID를 지정하는 방식으로 지시할 수 있다.
여기서, (2)의 경우, RRC layer에서 spatial_relation_info. field가 복수 개 설정되는 특징을 갖는다.
또한, PUSCH에 대한 UL 빔 지시 역시 상기 PUCCH에 대한 UL 빔 지시와 유사하나 차이점은 UL 빔 패어(beam pair) 결정이 끝난 이후에도 UL link adaptation을 위해 (맞춰진 UL 빔 패어를 통해) SRS 전송이 수행될 것이므로 최종적인 PUSCH 빔 지시는 해당 SRS resource ID (SRI)를 DCI로 지시한다.
이 때, 해당 SRI는 higher layer에서 기 설정된 복수의 SRS resource IDs 중 하나를 지시하는 역할이며, 상기 SRS resource ID들은 각각 (beam management 용도의) CRI, SSB ID, 또는 SRI와 spatial_relation_info. field로 빔 설정될 수 있다.
또한, NR에서는 반-고정적(semi-persistent) CSI 보고를 PUCCH 뿐만 아니라 PUSCH로도 지원한다.
이때, 반-고정적 CSI 보고를 PUSCH로 수행하기 위해서는 SPS(semi-persistent scheduling) PUSCH 자원 할당 방식과 유사하게 일반적인 one-shot scheduling을 수행하는 데 사용하는 C-RNTI와는 별도의 RNTI를 통해 scheduling grant를 지시한다.
이때, 상기 RNTI는 RRC message로 설정한다.
아래 표 4는 PUCCH 빔 지시 관련 RRC 파라미터의 일례를 나타내고, 표 5는 PUCCH 빔 지시 관련 MAC CE 파라미터의 일례를 나타낸다.
Parameter name in specification Parameter name in text Description Value range
PUCCH-SpatialRelationInfo PUCCH-SpatialRelationInfo List of configurations of the spatial relation between a reference RS and PUCCH. Reference RS can be SSB/CSI-RS/SRS. If the list has more than one element, MAC-CE selects a single element. Each element of the list is an SSB Index, NZP-CSI-RS-ResourceConfigId, or SRS-ResourceConfigId
Parameter Name Description Size/format
PUCCH-SpatialRelationInfo Provides the spatial relation for a PUCCH resource PUCCH resource ID | Bitmap of size [8](Bitmap activates one of the [8] entries within the RRC parameter PUCCH-Spatial-relation-info)
또한, 단일 빔을 적용하는 PUCCH와 복수 개의 빔을 적용하는 PUCCH는 한 slot에서 N번 반복 전송되는 복수의 PUCCH 자원들(혹은 심볼 그룹들)에 대해 N개의 빔들이 각각 정해진다.
이때, 각각의 N 빔들이 동일한 빔으로 설정(또는 지시 또는 적용)되는지 아니면 다른 빔으로 설정되는지로 구분될 수도 있다.
예를 들어, 상술한 spatial_relation_info field가 한 slot 내에서 반복 전송되는 복수 개의 PUCCH 자원들에 각각 설정/지시되고, 이때 동일한 spatial_relation_info 값을 적용하는지 여부, 또는 한 slot 내에서 전송되는 하나의 PUCCH 자원의 PUCCH symbol group 별로 spatial_relation_info 값을 동일하게 설정하는지 또는 다르게 설정하는지 여부로 구분될 수 있다.
PUSCH의 경우, 심볼 그룹 단위로 반복 전송을 수행하며, 서로 다른 심볼 그룹에 동일한 SRI 값을 적용하는지 아닌지에 따라 구분될 수 있다.
또한, NR 시스템에서 DL 관련 DCI에 포함된 TCI(transmission configuration indicator) field는 LTE의 PQI field와 유사하게 higher layer에서 설정된 다수의 QCL reference 자원들(e.g. CSI-RS 자원들 혹은 SSB 자원들)의 후보들 중에서 동적으로 하나를 지시하는 역할을 수행한다.
여기서, QCL 지시는 spatial parameter에 대한 QCL 지시를 포함할 수 있다. 예를 들어, higher layer에서 설정된 복수의 DL RS 자원들 중에서 TCI field를 통해 해당 PDSCH가 어느 DL RS 빔으로 전송되는지를 지시할 수 있다.
이를 수신한 단말은 해당 DL RS의 수신에 적합하도록 미리 training된 수신 빔을 적용하여 해당 PDSCH 빔을 수신할 수 있다.
하이브리드 빔포밍(Hybrid beamforming)
다중 안테나(multiple antenna)를 이용하는 기존의 빔 형성(beamforming) 기술은 빔 형성 가중치 벡터(weight vector)/프리코딩 벡터(precoding vector)를 적용하는 위치에 따라 아날로그 빔 형성(analog beamforming) 기법과 디지털 빔 형성(digital beamforming) 기법으로 구분될 수 있다.
아날로그 빔 형성 기법은 초기 다중 안테나 구조에 적용된 빔 형성 기법이다. 이는, 디지털 신호 처리가 완료된 아날로그 신호를 다수의 경로로 분기한 후, 각 경로에 대해 위상 쉬프트(Phase-Shift, PS)와 전력 증폭기(Power Amplifier, PA) 설정을 적용하여 빔을 형성하는 기법을 의미할 수 있다.
아날로그 빔 형성을 위해서는, 각 안테나에 연결된 PA와 PS가 단일 디지털 신호로부터 파생된 아날로그 신호를 처리(process)하는 구조가 요구된다. 다시 말해, 아날로그 단에서 상기 PA 및 상기 PS가 복소 가중치(complex weight를 처리한다.
도 5는 아날로그 빔포머(analog beamformer) 및 RF 체인(RF chain)으로 구성되는 송신단(transmitter)의 블록도(block diagram)의 일례를 나타낸다. 도 5는 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 5에서, RF 체인은 기저대역(baseband, BB) 신호가 아날로그 신호로 변환되는 처리 블록을 의미한다. 아날로그 빔 형성 기법은 상기 PA와 상기 PS의 소자의 특성에 따라 빔의 정확도가 결정되고, 상기 소자의 제어 특성상 협대역(narrowband) 전송에 유리할 수 있다.
또한, 아날로그 빔 형성 기법의 경우, 다중 스트림(stream) 전송을 구현하기 어려운 하드웨어 구조로 구성되므로, 전송률 증대를 위한 다중화 이득(multiplexing gain)이 상대적으로 작다. 또한, 이 경우, 직교 자원할당 기반의 단말 별 빔 형성이 용이하지 않을 수도 있다.
이와 달리, 디지털 빔 형성 기법의 경우, MIMO 환경에서 다이버시티(diversity)와 다중화 이득을 최대화하기 위해 BB(Baseband) 프로세스를 이용하여 디지털 단에서 빔 형성이 수행된다.
도 6은 디지털 빔포머(digital beamformer) 및 RF 체인으로 구성되는 송신단의 블록도의 일례를 나타낸다. 도 6은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 6의 경우, 빔 형성은 BB 프로세스에서 프리코딩이 수행됨에 따라 수행될 수 있다. 여기에서, RF 체인은 PA를 포함한다. 이는, 디지털 빔 형성 기법의 경우, 빔 형성을 위해 도출된 복소 가중치가 송신 데이터에 직접적으로 적용되기 때문이다.
또한, 단말 별로 상이한 빔 형성이 수행될 수 있으므로, 동시에 다중 사용자 빔 형성을 지원할 수 있다. 뿐만 아니라, 직교 자원이 할당된 단말 별로 독립적인 빔 형성이 가능하므로, 스케줄링의 유연성이 향상되고, 이에 따라, 시스템 목적에 부합하는 송신단의 운용이 가능하다. 또한, 광대역 전송을 지원하는 환경에서 MIMO-OFDM과 같은 기술이 적용되는 경우에, 부반송파(subcarrier) 별로 독립적인 빔이 형성될 수도 있다.
따라서, 디지털 빔 형성 기법은 시스템의 용량 증대와 강화된 빔 이득을 기반으로 하여 단일 단말(또는 사용자)의 최대 전송률을 극대화할 수 있다. 상술한 바와 같은 특징에 기반하여, 기존의 3G/4G(예: LTE(-A)) 시스템에서는 디지털 빔포밍 기반의 MIMO 기법이 도입되었다.
NR 시스템에서, 송수신 안테나가 크게 증가하는 거대(massive) MIMO 환경이 고려될 수 있다. 일반적으로 셀룰러(cellular) 통신에서는 MIMO 환경에 적용되는 최대 송수신 안테나가 8개로 가정된다. 그러나, 거대 MIMO 환경이 고려됨에 따라, 상기 송수신 안테나의 수는 수십 또는 수백 개 이상으로 증가할 수 있다.
이 때, 거대 MIMO 환경에서 앞서 설명된 디지털 빔 형성 기술이 적용되면, 송신단은 디지털 신호 처리를 위하여 BB 프로세스를 통해 수백 개의 안테나에 대한 신호 처리를 수행해야 한다. 이에 따라, 신호 처리의 복잡도가 매우 커지고, 안테나 수만큼의 RF 체인이 필요하므로 하드웨어 구현의 복잡도도 매우 커질 수 있다.
또한, 송신단은 모든 안테나에 대해 독립적인 채널 추정(channel estimation)이 필요하다. 뿐만 아니라, FDD 시스템의 경우, 송신단은 모든 안테나로 구성된 거대 MIMO 채널에 대한 피드백 정보가 필요하므로, 파일럿(pilot) 및/또는 피드백 오버헤드가 매우 커질 수 있다.
반면, 거대 MIMO 환경에서 앞서 설명된 아날로그 빔 형성 기술이 적용되면, 송신단의 하드웨어 복잡도는 상대적으로 낮다.
이에 반해, 다수 안테나를 이용한 성능의 증가 정도는 매우 작으며, 자원 할당의 유연성이 낮아질 수 있다. 특히, 광대역 전송 시, 주파수 별로 빔을 제어하는 것이 용이하지 않다.
따라서, 거대 MIMO 환경에서는 아날로그 빔 형성과 디지털 빔 형성 기법 중 한 개 만을 배타적으로 선택하는 것이 아닌, 아날로그 빔 형성과 디지털 빔 형성 구조가 결합된 하이브리드(hybrid) 형태의 송신단 구성 방식이 필요하다.
아날로그 빔 스캐닝(analog beam scanning)
일반적으로, 아날로그 빔포밍은 순수 아날로그 빔포밍 송수신단과 하이브리드 빔포밍 송수신단에서 이용될 수 있다. 이 때, 아날로그 빔 스캐닝은 동일한 시간에 한 개의 빔에 대한 추정을 수행할 수 있다. 따라서, 빔 스캐닝에 필요한 빔 트레이닝(beam training) 시간은 전체 후보 빔의 수에 비례하게 된다.
상술한 바와 같이, 아날로그 빔 포밍의 경우, 송수신단 빔 추정을 위하여 시간 영역에서의 빔 스캐닝 과정이 반드시 요구된다. 이 때, 전체 송수신 빔에 대한 추정 시간 ts는 아래 수학식 2와 같이 표현될 수 있다.
Figure PCTKR2018000076-appb-M000002
수학식 2에서, ts는 하나의 빔 스캐닝을 위해 필요한 시간을 의미하고, KT는 송신 빔의 수를 의미하고, KR은 수신 빔의 수를 의미한다.
도 7은 본 발명의 다양한 실시 예들에 따른 아날로그 빔 스캐닝 방식의 일례를 나타낸다. 도 7은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 7의 경우, 전체 송신 빔의 수 KT가 L이고, 전체 수신 빔의 수 KR가 1인 경우가 가정된다. 이 경우, 전체 후보 빔의 개수는 총 L개가 되므로, 시간 영역에서 L개의 자연 영역이 요구된다.
다시 말해, 아날로그 빔 추정을 위하여 단일 자원 영역에서 1개의 빔 추정만이 수행될 수 있으므로, 도 7에 나타난 바와 같이, 전체 L개의 빔(P1 내지 PL) 추정을 수행하기 위하여 L개의 자원 영역이 요구된다. 단말은 아날로그 빔 추정 절차가 종료된 후, 가장 높은 신호 세기를 갖는 빔의 식별자(예: ID)를 기지국으로 피드백한다. 즉, 송수신 안테나 수의 증가에 따라 개별 빔 수가 증가할 수록, 보다 긴 트레이닝 시간이 요구될 수 있다.
아날로그 빔포밍은 DAC(Digital-to-Analog Converter) 이후에 시간 영역의 연속적인 파형(continuous waveform)의 크기와 위상각을 변화시키기 때문에, 디지털 빔포밍과 달리 개별 빔에 대한 트레이닝 구간이 보장될 필요가 있다. 따라서, 상기 트레이닝 구간의 길이가 증가할수록 시스템의 효율이 감소(즉, 시스템의 손실(loss)이 증가)될 수 있다.
채널 상태 정보(Channel state information:CSI) 피드백(feedback)
LTE 시스템을 포함한 대부분의 cellular system에서 단말은 채널 추정을 위한 파일럿 신호 (reference signal)를 기지국으로부터 수신하여 CSI(channel state information)을 계산하고 이를 기지국에게 보고한다.
기지국은 단말로부터 피드백 받은 CSI 정보를 토대로 데이터 신호를 전송한다.
LTE 시스템에서 단말이 피드백하는 CSI 정보에는 CQI(channel quality information), PMI(precoding matrix index), RI(rank indicator)가 있다.
CQI 피드백은 기지국이 데이터를 전송할 때 어떤 MCS(modulation & coding scheme)을 적용할 지에 대한 가이드를 제공하려는 목적(link adaptation용도)으로 기지국에게 제공하는 무선 채널 품질 정보이다.
기지국과 단말 사이에 무선 품질이 높으면 단말은 높은 CQI 값을 피드백하여 기지국은 상대적으로 높은 modulation order와 낮은 channel coding rate을 적용하여 데이터를 전송할 것이고, 반대의 경우 단말은 낮은 CQI 값을 피드백하여 기지국은 상대적으로 낮은 modulation order와 높은 channel coding rate을 적용하여 데이터를 전송할 것이다.
PMI 피드백은 기지국이 다중 안테나를 설치한 경우, 어떠한 MIMO precoding scheme을 적용할 지에 대한 가이드를 제공하려는 목적으로 기지국에게 제공하는 preferred precoding matrix 정보이다.
단말은 파일럿 신호로부터 기지국과 단말간의 downlink MIMO channel을 추정하여 기지국이 어떠한 MIMO precoding을 적용하면 좋을 지를 PMI 피드백을 통해 추천한다.
LTE 시스템에서는 PMI 구성에 있어 행렬 형태로 표현 가능한 linear MIMO precoding만 고려한다.
기지국과 단말은 다수의 precoding 행렬들로 구성된 코드북을 공유하고 있고, 코드북 내에 각각의 MIMO precoding 행렬은 고유의 index를 갖고 있다.
따라서, 단말은 코드북 내에서 가장 선호하는 MIMO precoding 행렬에 해당하는 인덱스를 PMI로서 피드백함으로써 단말의 피드백 정보량을 최소화한다.
PMI 값이 꼭 하나의 인덱스로만 이루어져야 하는 것은 아니다. 일례로, LTE 시스템에서 송신 안테나 포트 수가 8개인 경우, 두 개의 인덱스들(first PMI & second PMI)을 결합하여야만 최종적인 8tx MIMO precoding행렬을 도출할 수 있도록 구성되어 있다.
RI 피드백은 기지국과 단말이 다중 안테나를 설치하여 spatial multiplexing을 통한 multi-layer전송이 가능한 경우, 단말이 선호하는 전송 layer의 수에 대한 가이드를 제공하려는 목적으로 기지국에게 제공하는 선호하는 전송 layer수에 대한 정보이다.
RI는 PMI와 매우 밀접한 관계를 지닌다. 그것은 전송 레이어 수에 따라 기지국은 각각의 레이어에 어떠한 precoding을 적용해야 하는지 알 수 있어야 하기 때문이다.
PMI/RI 피드백 구성에 있어 single layer 전송을 기준으로 PMI 코드북을 구성한 뒤 layer별로 PMI를 정의하여 피드백 할 수 있으나, 이러한 방식은 전송 레이어의 수의 증가에 따라 PMI/RI피드백 정보량이 크게 증가하는 단점이 있다.
따라서, LTE 시스템에서는 각각의 전송 레이어의 수에 따른 PMI 코드북을 정의하였다. 즉, R-layer전송을 위해서 크기 Nt x R 행렬 N개를 코드북 내에 정의한다 (여기서, R은 layer수, Nt는 송신안테나 포트 수, N은 코드북의 크기).
따라서, LTE에서는 전송 레이어의 수에 무관하게 PMI 코드북의 크기가 정의된다. 결국 이러한 구조로 PMI/RI를 정의하다 보니 전송 레이어 수(R)는 결국 precoding 행렬(Nt x R 행렬)의 rank값과 일치하게 되므로 rank indicator(RI)라는 용어를 사용하게 되었다.
본 명세서에서 기술되는 PMI/RI는 꼭 LTE 시스템에서의 PMI/RI처럼 Nt x R 행렬로 표현되는 precoding 행렬의 인덱스 값과 precoding 행렬의 rank값을 의미하는 것으로 제한되지는 않는다.
본 명세서에게 기술되는 PMI는 전송단에서 적용 가능한 MIMO precoder중에서 선호하는 MIMO precoder정보를 나타내는 것으로, 그 precoder의 형태가 LTE시스템에서처럼 행렬로 표현 가능한 linear precoder만으로 한정되지 않는다. 또한, 본 명세서에서 기술되는 RI는 LTE에서의 RI보다 더 넓은 의미로 선호하는 전송 레이어 수를 나타내는 피드백 정보를 모두 포함한다.
CSI 정보는 전체 시스템 주파수 영역에서 구해질 수도 있고, 일부 주파수 영역에서 구해질 수도 있다. 특히, 광대역 시스템에서는 단말 별로 선호하는 일부 주파수 영역(e.g. subband)에 대한 CSI정보를 구해서 피드백하는 것이 유용할 수 있다.
LTE시스템에서 CSI 피드백은 uplink 채널을 통해 이루어 지는데, 일반적으로 주기적인 CSI 피드백은 PUCCH(physical uplink control channel)를 통해 이루어 지고, 비주기적인 CSI피드백은 uplink data 채널인 PUSCH(physical uplink shared channel)을 통해 이루어 진다.
비주기적인 CSI 피드백은 기지국이 CSI 피드백 정보를 원할 때에만 일시적으로 피드백하는 것을 의미하는 것으로, 기지국이 PDCCH/ePDCCH와 같은 downlink control channel을 통해 CSI피드백을 trigger한다.
LTE 시스템에서는 CSI 피드백이 trigger되었을 때, 단말이 어떠한 정보를 피드백해야 하는 지가 도 8과 같이 PUSCH CSI reporting mode로 구분되어 있고, 단말이 어떠한 PUSCH CSI reporting mode로 동작해야 할지는 상위 계층 메시지를 통해 단말에게 미리 알려준다.
도 8은 PUSCH CSI 보고 모드의 일례를 나타낸 도이다.
PUCCH를 통한 주기적 CSI 피드백에 대해 PUCCH CSI reporting mode 역시 정의된다.
도 9는 PUCCH CSI 보고 모드의 일례를 나타낸 도이다.
PUCCH의 경우, PUSCH보다 한번에 보낼 수 있는 데이터 양(payload size)이 작으므로 보내고자 하는 CSI정보를 한번에 보내기가 어렵다.
따라서, 각 CSI reporting mode에 따라 CQI및 PMI를 전송하는 시점과 RI를 전송하는 시점이 다르다. 예를 들어, reporting mode 1-0에서는 특정 PUCCH전송시점에는 RI만 전송하고, 다른 PUCCH전송시점에 wideband CQI를 전송한다. 특정 PUCCH 전송 시점에 구성되는 CSI정보의 종류에 따라 PUCCH reporting type이 정의된다. 예를 들어, 상기 예에서 RI만 전송하는 reporting type은 type3에 해당하고, wideband CQI만 전송하는 reporting type은 type4에 해당한다. RI 피드백 주기 및 offset값과 CQI/PMI 피드백 주기 및 offset값은 상위 계층 메시지를 통해 단말에게 설정된다.
상기 CSI feedback 정보는 uplink control information (UCI)에 포함된다.
LTE에서 기준 신호들(Reference signals in LTE)
LTE system에서 파일럿 혹은 RS(reference signal)의 용도는 크게 다음으로 나눌 수 있다.
1. Measurement RS : 채널 상태 측정용 파일럿
A. CSI measurement/reporting 용도 (short term measurement): Link adaptation, rank adaptation, closed loop MIMO precoding 등의 목적
B. Long term measurement/reporting 용도: Handover, cell selection/reselection등의 목적
2. Demodulation RS: 물리 채널 수신용 파일럿
3. Positioning RS: 단말 위치 추정용 파일럿
4. MBSFN RS: Multi-cast/Broadcast 서비스를 위한 파일럿
LTE Rel-8에서는 대부분의 하향링크 물리 채널에 대한 measurement(용도 1A/B) 및 demodulation(용도 2)을 위해 CRS(Cell-specific RS)를 사용하였으나, 안테나 수가 많아짐에 따른 RS overhead 문제를 해결하기 위해 LTE Advanced (Rel-10) 부터는 CSI measurement(용도 1A) 전용으로 CSI-RS와 하향링크 데이터 채널(PDSCH)에 대한 수신 (용도 2) 전용으로 UE-specific RS를 사용한다.
CSI-RS는 CSI 측정 및 피드백 전용으로 설계된 RS로 CRS에 비해 매우 낮은 RS overhead를 갖는 것이 특징이며, CRS는 4개의 다중 안테나 포트까지 지원하는데 반해, CSI-RS는 8개의 다중 안테나 포트까지 지원 가능하도록 설계되었다. UE-specific RS는 데이터 채널의 demodulation전용으로 설계되어 CRS 와 달리 해당 UE에게 데이터 전송 시 적용된 MIMO precoding기법이 파일럿 신호에 동일하게 적용된 RS (precoded RS)라는 점이 특징이다.
따라서, UE-specific RS는 CRS, CSI-RS처럼 안테나 포트의 개수만큼 전송될 필요가 없고, 전송 layer의 개수 (전송 rank)만큼만 전송되면 된다.
또한, UE-specific RS는 기지국의 scheduler를 통해 각 UE에게 할당된 데이터 채널 자원 영역과 동일한 자원 영역에 해당 UE의 데이터 채널 수신 용도로 전송되므로, 단말 특정적인 RS라는 특징이 있다.
CRS는 cell 내의 모든 UE가 measurement 및 demodulation용도로 사용할 수 있도록 시스템 대역폭 내에서 동일한 패턴으로 항상 전송되므로 셀 특정적이다.
LTE 상향링크에서는 Measurement RS 로 Sounding RS(SRS)가 설계되었으며, 상향링크 데이터 채널(PUSCH)에 대한Demodulation RS (DMRS)와 ACK/NACK 및 CSI 피드백을 위한 상향링크 컨트롤 채널(PUCCH)에 대한 DMRS가 각각 설계되었다.
빔 관리 및 빔 복구(Beam management and beam recovery)
기지국은 단말에게 주기적(periodic) CSI 보고, 반-고정적(semi-persistent) CSI 보고(특정 자원 영역 동안에만 주기적 CSI 보고가 활성화(activation)되거나, 혹은 연속적인 복수 번의 CSI 보고를 수행), 또는 비주기적(aperiodic) CSI 보고를 요청할 수 있다.
여기서, 상기 주기적(periodic) 및 반-고정적(semi-persistent,SP) CSI reporting은 보고가 활성화된 기간에는 단말에게 특정 주기로 CSI 보고를 위한 UL (uplink) 자원 (e.g. PUCCH in LTE)이 할당된다.
단말의 CSI 측정을 위해서는 기지국의 downlink(DL) reference signal (RS)의 전송이 필요하다.
(아날로그) 빔포밍이 적용된 beamformed system의 경우, 상기 DL RS 전송/수신을 위한 DL transmission(Tx)/reception(Rx) 빔 쌍(beam pair)와 UCI(uplink control information: e.g. CSI, ACK/NACK) 전송/수신을 위한 UL Tx/Rx beam pair의 결정이 필요하다.
DL beam pair의 결정 절차는 (1) 복수 개의 TRP Tx beam에 해당하는 DL RS를 기지국이 단말로 전송하는 절차와, (2) 상기 단말이 이 중 하나를 선택 및/또는 보고하는 TRP Tx beam 선택 절차와, (3) 기지국이 각 TRP Tx beam에 해당하는 동일한 RS 신호를 반복 전송하는 절차와, (4) 상기 단말이 상기 반복 전송된 신호들에 서로 다른 UE Rx beam으로 측정하여 UE Rx beam을 선택하는 절차의 조합으로 구성될 수 있다.
또한, UL beam pair 결정 절차는 (1) 복수 개의 UE Tx beam에 해당하는 UL RS를 단말이 기지국이 전송하는 절차와, (2) 기지국이 이 중 하나를 선택 및/또는 signaling 하는 UE Tx beam 선택 절차와, (3) 상기 단말이 각 UE Tx beam에 해당하는 동일한 RS 신호를 기지국으로 반복 전송하는 절차와, (4) 상기 기지국이 상기 반복 전송된 신호들에 서로 다른 TRP Rx beam으로 측정하여 TRP Rx beam을 선택하는 절차의 조합으로 구성될 수 있다.
DL/UL의 beam reciprocity(혹은 beam correspondence)가 성립하는 경우, 즉 기지국과 단말 간 통신에서 기지국 DL Tx 빔과 기지국 UL Rx 빔이 일치하고, 단말 UL Tx 빔과 단말 DL Rx 빔이 일치한다고 가정할 수 있는 경우, DL beam pair와 UL beam pair 중 어느 하나만 결정하면 다른 하나를 결정하는 절차를 생략할 수 있다.
DL 및/또는 UL 빔 pair에 대한 결정 과정은 주기적 혹은 비주기적으로 수행될 수 있다.
후보(candidate) 빔 수가 많은 경우, 요구되는 RS overhead가 클 수 있기 때문에 상기 DL 및/또는 UL 빔 pair에 대한 결정 과정이 자주 발생하는 것은 바람직하지 않다.
DL/UL 빔 pair 결정 과정이 완료된 이후, 단말은 주기적(periodic) 또는 SP(Semi-Persistent) CSI reporting 을 수행한다고 가정하자.
여기서, 단말의 CSI 측정(measurement)를 위한 단일 혹은 복수 개의 antenna port를 포함하는 CSI-RS는 DL 빔으로 결정된 TRP Tx beam으로 빔포밍되어 전송될 수 있고, CSI-RS의 전송 주기는 CSI 보고(reporting) 주기와 같거나 혹은 더 자주 전송될 수 있다.
또는, 단말은 비주기적(aperiodic) CSI-RS를 CSI 보고 주기에 맞춰서 혹은 보다 자주 전송하는 것도 가능하다.
단말(예:UE)은 측정된 CSI 정보를 주기적으로 UL beam pair 결정 과정에서 기 결정된 UL Tx beam으로 전송할 수 있다.
DL/UL beam management 과정을 수행함에 있어 설정된 beam management의 주기에 따라 빔 불일치(mismatch) 문제가 발생할 수 있다.
특히, 단말이 위치를 이동하거나, 단말이 회전하거나, 혹은 상기 단말 주변 물체의 이동으로 무선 채널 환경이 바뀌는 경우(예를 들어, LoS(Line-of-Sight) 환경이다가 빔이 block되어 Non-LoS 환경으로 바뀌는 경우), 최적의 DL/UL beam pair는 바뀔 수 있다.
이러한 변화를 일반적으로 네트워크 지시에 의해 수행하는 빔 management 과정으로 tracking이 실패하였을 때 빔 실패 이벤트(beam failure event)가 발생하였다고 할 수 있다.
이러한 beam failure event의 발생 여부는 단말이 하향링크 RS의 수신 품질을 통해 판단할 수 있으며, 이러한 상황에 대한 보고 메시지 또는 빔 복구 요청을 위한 메시지(이하, '빔 복구 요청 메시지(beam recovery request message)'라 정의함)가 단말로부터 전달되어야 한다.
상기 빔 복구 요청 메시지는 빔 실패 복구 요청 메시지, 제어 신호, 제어 메시지, first message 등으로 다양하게 표현될 수 있다.
상기 단말로부터 상기 빔 복구 요청 메시지를 수신한 기지국은 빔 복구를 위해 단말로 beam RS 전송, beam reporting 요청 등 다양한 과정을 통해 beam 복구를 수행할 수 있다.
이와 같은 일련의 빔 복구 과정을 '빔 복구(beam recovery)'라 표현하기로 한다.
3GPP에서 LTE 이후 NR(new radio or New Rat)이라 명명한 새로운 통신 시스템에 대한 표준화가 진행 중이며, 빔 관리(beam management) 관련하여 아래와 같은 내용들이 포함된다.
(내용 1)
NR은 UE가 빔 실패(beam failure)로부터 복구(recovery)하는 메커니즘을 트리거할 수 있음을 지원한다.
네트워크는 복구 목적을 위해 신호들의 UL 전송에 대한 자원을 UE에 명시 적으로 구성한다.
기지국이 전체 또는 일부 방향으로부터 청취하고(listening) 있는 자원의 구성을 지원한다(예를 들어, 랜덤 액세스 영역).
(추후 논의) RS / 제어 채널 / 데이터 채널 모니터링의 UE 동작과 관련된 복구 신호 (신규 또는 기존 신호)의 트리거 조건
UE가 새로운 잠재적인 빔들을 식별하기 위해 빔을 모니터할 수 있도록 허용하는 DL 신호의 전송을 지원한다.
(추후 논의) beam sweep 제어 채널의 전송이 배제되지 않는다.
이 메커니즘은 성능과 DL 시그널링 오버헤드 사이의 균형(tradeoff)를 고려해야 한다.
(내용 2)
가능한 아래 후보 솔루션을 고려하여 빔 관리 오버헤드 및 지연 시간은 NR 빔 관리를 위한 CSI-RS 설계 중에 고려되어야 한다.
Opt1. IFDMA
Opt2. 큰 부반송파 간격(large subcarrier spacing)
NR 빔 관리를 위한 CSI-RS 설계 중에 고려되는 다른 측면들은 예를 들어, CSI-RS 멀티플렉싱, UE 빔 switch latency 및 UE 구현 복잡성 (예를 들어, AGC 트레이닝 시간), CSI-RS의 커버리지 등을 포함한다.
(내용 3)
CSI-RS는 DL Tx 빔 sweeping 및 UE Rx 빔 sweeping을 지원한다.
NR CSI-RS는 다음 매핑 구조를 지원한다.
NP CSI-RS 포트는 (서브) 시간 단위 별로 매핑될 수 있다.
(서브)시간 단위(unit)에 걸쳐 동일한 CSI-RS 안테나 포트들이 매핑될 수 있다.
여기서 "시간 단위"는 configured / reference numerology에서 n> = 1 OFDM 심볼을 나타낸다.
각 시간 단위는 서브-시간 단위로 partition될 수 있다.
이 매핑 구조는 다수의 패널들 / Tx chain을 지원하기 위해 사용될 수 있다.
(Option 1)
Tx 빔(들)은 각 시간 단위 내의 서브 시간 단위에 걸쳐 동일하다.
Tx 빔(들)은 시간 단위에 따라 다르다.
(Option 2)
Tx 빔(들)은 각 시간 단위 내에서 서브 시간 단위마다 다르다.
Tx 빔(들)은 시간 단위들에서 동일하다.
(Option 3): Option 1과 Option 2의 조합
하나의 시간 단위 내에서, Tx 빔(들)은 서브 시간 단위들에서 동일하다.
다른 시간 단위 내에서, Tx 빔(들)은 서브 시간 단위마다 다르다.
빔 실패 복구 메커니즘(Beam failure recovery mechanism)
이하, 본 명세서에서 제안하는 방법들과 관련된 단말의 빔 실패 복구 메커니즘(Beam failure recovery mechanism)에 대해 간략히 살펴본다.
상기 단말의 빔 실패 복구 메커니즘은 아래 (1) 내지 (4)의 과정들을 포함한다.
(1) 빔 실패를 감지한다.
(2) 새로운 후보 빔을 식별한다.
(3) 빔 실패 복구 요청을 전송한다.
(4) UE는 빔 실패 복구 요청에 대한 gNB의 응답을 모니터링한다.
먼저, 빔 실패 감지 과정에 대해 살펴보면, UE는 빔 실패 트리거 조건이 만족되었는지 여부를 평가하기 위해 빔 실패 감지 RS를 모니터링한다.
그리고, 빔 실패 감지 RS는 적어도 빔 관리를 위한 주기적인 CSI-RS를 포함한다. 여기서, SS(Synchronization Signal) 블록(block)도 빔 관리에 사용될 수 있으며, SS block이 빔 관리에 사용되는 경우, 서빙 셀 내 SS 블록이 고려될 수 있다.
여기서, SS block은 동기 신호(SS)가 슬롯 단위 또는 특정 자원 단위로 전송되는 것으로 해석될 수 있다.
여기서, 빔 실패 감지 RS는 해당 RS의 품질 자체를 측정하는 경우뿐만 아니라 해당 RS와 QCL(Quasi Co-Location) 지시자 등으로 연관된 무선 채널의 detection/demodulation 품질을 측정하는 경우를 포함한다. 예를 들어, (primary) PDCCH 모니터링을 위해 지시된 CSI-RS 혹은 SS block 관련 ID를 상기 빔 실패 감지 RS로 이해할 수 있으며, 이 때 빔 실패 이벤트 발생 여부는 해당 PDCCH의 detection/demodulation 성능이 일정 이하일 경우로 정의될 수 있다.
상기 빔 실패 이벤트 발생은 연관된(associated) 제어 채널의 beam pair link(s)의 품질이 일정 수준 이하로 떨어졌을 때 발생할 수 있다.
구체적으로, 상기 연관된 제어 채널의 beam pair link(s)의 품질은 PDCCH 검출 성능(detection performance)으로 결정될 수도 있다.
예를 들어, 단말이 PDCCH를 모니터링(또는 blind decoding)하는 과정에서 CRC check 결과 PDCCH detection 성능이 좋지 않은 경우, 단말은 빔 실패를 검출할 수 있게 된다.
또는, multiple PDCCHs가 multiple beams을 통해(또는 multiple PDCCHs가 각각 서로 다른 beam으로) 전송되는 경우, 특정 PDCCH(예: serving beam과 associated PDCCH)에 대한 검출 성능으로 상기 빔 실패 이벤트 발생 여부를 판단할 수 있다.
여기서, multiple PDCCHs 각각은 서로 다른 control channel 영역(예: symbol, slot, subframe 등)에서 서로 다른 beam 별로 전송 및/또는 수신될 수 있다.
이 경우, beam 별 control channel 영역이 미리 정의될 수 있거나 higher layer signaling을 통해 송수신될 수 있다.
또한, 상기 연관된 제어 채널의 beam pair link(s)의 품질로 상기 빔 실패 이벤트 발생 여부를 판단할 때, DL beam의 품질만이 일정 수준 이하로 떨어졌는지, 또는 UL beam의 품질만이 일정 수준 이하로 떨어졌는지, 또는 DL beam과 UL beam의 품질 모두가 일정 수준 이하로 떨어졌는지에 따라 상기 빔 실패 이벤트 발생 여부가 결정될 수 있다.
여기서, 상기 일정 수준 이하는 임계값 이하, 연관된 타이머의 time-out 등일 수 있다.
또한, 상기 빔 실패를 검출하는 signal로 BRS, fine timing/frequency tracking을 위한 RS, SS Blocks, PDCCH를 위한 DM-RS, PDSCH를 위한 DM-RS 등이 사용될 수 있다.
다음, 새로운 후보 빔 식별 과정에 대해 살펴보면, UE는 빔 식별 RS를 모니터링하여 새로운 후보 빔을 찾는다.
- 빔 식별 RS는 1) NW에 의해 구성된 경우, 빔 관리를 위한 주기적 CSI-RS, 2) SS 블록이 빔 관리에 사용되는 경우, 서빙 셀 내의 주기적인 CSI-RS 및 SS 블록에 대한 정보를 포함한다.
다음, 빔 실패 복구 요청 전송 과정에 대해 살펴보면, 빔 실패 복구 요청에 의해 운반되는 정보는 1) UE 및 새로운 gNB TX 빔 정보를 식별하기 위한 명시적 / 암시적 정보, 또는 2) UE를 식별하고 새로운 후보 빔이 존재하는지 여부에 대한 명시적 / 암시적 정보 중 적어도 하나를 포함한다.
또한, 빔 실패 복구 요청의 전송은 PRACH, PUCCH, PRACH-like(예를 들어, PRACH로부터의 프리앰블 시퀀스에 대한 상이한 파라미터) 중 하나를 선택할 수 있다.
- 빔 실패 복구 요청 자원 / 신호는 스케줄링 요청에 추가적으로 사용될 수 있다.
다음, UE는 빔 실패 복구 요청에 대한 gNB 응답을 수신하기 위해 제어 채널 검색 공간을 모니터링한다.
또한, 빔 실패 복구 요청 전송에 대해 아래 트리거링 조건을 지원한다.
- 조건: CSI-RS만이 새로운 후보 빔 식별을 위해 사용되는 경우 빔 실패가 검출되고 후보 빔이 식별되는 경우
또한, 빔 실패 복구 요청 전송을 위해 아래와 같은 채널을 지원한다.
- PRACH에 기반한 비-경쟁 기반 채널, FDM에 대해 적어도 다른 PRACH 전송의 자원에 직교하는 자원을 사용한다.
- 빔 실패 복구 요청 전송을 위한 PUCCH를 지원한다.
앞서 살핀 것처럼, NR의 경우, 빔 복구 요청 메시지(beam recovery request message)는 (1) PRACH와 동일 심볼들을 이용하여 전송되거나(첫 번째), (2) PRACH 이외의 심볼들을 이용하여 전송하는(두 번째) 두 가지 mechanism이 모두 지원될 수 있다.
첫 번째는, 빔 실패(failure)로 인해 상향링크 동기까지 잃어버린 경우(빔 품질이 상대적으로 많이 떨어졌거나, 대체 빔이 없는 경우), 그리고/또는 빔 실패 이벤트(beam failure event) 발생 시점과 기 설정된 PRACH 자원이 시간적으로 가까운 경우 유용한 mechanism일 수 있다.
두 번째는, 빔 실패(failure) 상황이나 상향링크 동기는 잃어버리지 않은 경우(빔 품질이 상대적으로 조금 떨어졌거나, 대체 빔이 있는 경우), 그리고/또는 beam failure event 발생 시점과 기 설정된 PRACH 자원이 시간적으로 멀어서 PRACH 자원(예: 심볼)까지 기다리기에는 빠른 빔 복구가 어려운 경우에 유용한 mechanism일 수 있다.
또한, 단말은 빔 실패(beam failure) 시, 기지국으로 빔 복구 요청 메시지를 소정 횟수 전송한 후 상기 기지국으로부터 상기 요청에 대한 응답을 수신하지 못한 경우, RLF(Radio Link Failure) 동작을 수행할 수 있다.
이하, 본 명세서에서 제안하는 멀티-빔(Multi-Beam)을 이용한 PUCCH 설계(또는 구성) 방법에 대해 살펴본다.
여기서, PUCCH 설계는 PUCCH 전송과 관련된 PUCCH format 정의, 시퀀스 생성(sequence generation), 물리 자원 매핑(mapping to physical resources) 등의 개념을 포함할 수 있다.
또한, 이하에서는 멀티-빔을 이용하여 PUCCH를 설계하는 방법에 대해 구체적으로 설명하나, 본 명세서에서 제안하는 내용은 이에 한정되지 않고 하나의 beam을 이용하여 PUCCH를 전송하는 방법에도 동일하게 적용될 수 있다.
본 명세서에서 제안하는 멀티-빔 기반의 PUCCH 구성 방법을 살펴보기에 앞서, 빔포밍 시스템(beamformed system)에서 단말의 이동 등에 따라 빔 불일치(misalign) 등이 발생하여 통신 품질이 저하되는 현상에 대해 간략히 살펴본다.
즉, 단말이 위치를 이동하거나, 회전하거나, 또는 주변 물체의 이동으로 단말에 대한 무선 채널 환경이 바뀌는 경우(예를 들어, LoS(Line-Of-Sight) 환경이다가 빔이 block되어 Non-LoS 환경으로 바뀜), 단말과 기지국 사이의 최적의 DL/UL beam pair가 바뀔 수 있다.
이 경우, 단말이 기지국과 매 CSI 보고 시점(CSI reporting instance)마다 DL/UL beam을 보정하는 절차를 수행할 경우, RS(Reference Signal) 및 시그널링(signaling)에 대한 overhead가 너무 크다는 문제가 있다.
특히, periodic 또는 SP(Semi-Persistent) CSI 보고는 단말에게 전송할 데이터 트래픽(data traffic)이 존재하지 않는 경우에도 링크 유지 및 traffic 발생 시 신속한 scheduling을 위해 활성화될 수 있다는 점을 고려할 때, 단말과 기지국의 전력 소모 관점에서도 잦은 빔 pair에 대한 결정 과정을 수행하는 것은 바람직하지 않다.
결론적으로, 빔 pair 결정 과정의 빈도보다 더 자주 CSI 보고가 이루어 질 수 있고, 이 경우 점차적으로 빔이 misalign되어 통신 품질이 떨어지게 된다.
이처럼 통신 품질이 저하되는 것을 해결하기 위해 아래와 같은 방법이 적용될 수 있다.
단말이 기지국으로 주기적(periodic) 또는 반-고정적(semi-persistent)으로 CSI(Channel State Information)을 보고할 때, 단말이 DL RS(Reference Signal)로부터 측정한 링크 품질 수준이 (일정 수준 이하로) 떨어지면 CSI 보고용 UL 물리채널(e.g. PUCCH)에 사용하는 단말의 UL Tx 빔의 수를 증가시킬 수 있다.
여기서, 단말이 DL RS로부터 측정한 링크 품질은 (1) CSI 보고 용도로 측정한 CQI 정보, (2) CSI 보고용으로 측정한 RI값과 무관하게 DL 전송 RI를 1로 가정한 상태에서 측정한 CQI, (3) DL RS에 대한 수신 전력 값 (e.g. RSRP in LTE), (4) DL RS에 대한 수신 품질 값 (e.g. RSRQ in LTE)일 수 있다.
예를 들어, 단말이 DL RS로부터 측정한 링크 품질이 일정 수준 이상이면 단말은 PUCCH 전송에 단일 빔을 적용하고, 해당 링크 품질이 일정 수준 이하이면, 단말은 PUCCH 전송에 복수 빔들을 적용할 수 있다.
또 다른 일례로서, 링크 품질에 대한 threshold를 다중화하여 링크 품질 구간이 떨어질 때마다 PUCCH 전송에 대한 빔의 수를 점차로 증가시킬 수도 있다.
다음으로, 본 명세서에서 제안하는 멀티-빔(Multi-Beam) 기반의 PUCCH 전송을 위한 PUCCH 구성 방법에 대해 구체적으로 살펴본다.
본 명세서에서 제안하는 멀티-빔(또는 복수-빔) 기반의 PUCCH 전송 방법을 적용할 때, 단말(예:UE)이 전송 빔(Tx beam)을 선택하는데 있어서 다음 3가지 상황들(case 1 내지 case 3)을 고려할 수 있다.
(case 1): 단말이 임의로 빔 집합을 선택하는 경우이다.
이 경우, 기지국은 단말이 선택한 빔 집합을 모른다.
(case 2): PUCCH 자원의 일부에 적용될 빔 집합은 기지국과 사전에 약속되고, 나머지 빔 집합에 대해서는 단말이 임의로 선택하는 경우이다.
(case 3): 멀티-빔 기반 PUCCH 전송 방법에 적용될 빔 집합이 미리 규정되거나 또는 기지국이 지정하는 경우이다.
여기서, 위의 case 2와 case 3은 case 1에 비해 무선 채널에서의 시간적 변화가 보다 급격하지 않은 경우에 유용할 수 있다.
위의 3가지 case들과 관련된 다양한 실시 예들에 대해 살펴본다.
(제 1 실시 예)
제 1 실시 예는 단일 또는 멀티-빔 기반 PUCCH 전송 방법에서 PUCCH 자원 매핑(resource mapping)에 관한 것이다.
구체적으로, PUCCH 자원(resource) 및 PUCCH DMRS 자원(resource)는 복수 개의 심볼들로 매핑(mapping)하고, PUCCH DMRS(Demodulation Reference Signal)은 시간 영역(time domain)으로 적어도 '동일 빔 유지 시간 유닛(time unit)'마다 하나의 자원에 mapping한다.
상기 동일 빔 유지 time unit은 단말이 PUCCH를 전송하는 경우, 동일 빔을 유지하는 (OFDM) 심볼 수(N개의 OFDM symbol 수, N은 자연수)를 의미할 수 있다.
상기 동일 빔 유지 time unit은 특정 자원 단위 또는 sub-resource 등으로 표현될 수 있다.
그리고, 상기 동일 빔 유지 time unit은 동일 빔을 유지하는 심볼의 개수를 나타내는 의미뿐만 아니라 동일 빔이 유지되는 자원 단위(또는 자원 영역 또는 자원 구간)을 나타내는 의미로 해석될 수도 있다.
또한, 상기 동일 빔이 유지되는 자원 단위는 동일 빔이 유지되는 시간 및/또는 주파수 자원 단위의 개념을 포함할 수 있다. 그 이유는 multi-RF chain 단말은 주파수 영역으로도 beam을 바꿀 수 있기 때문이다. 즉, 동일 빔 유지 time unit은 하나의 빔 지시(또는 적용) 가능한 최소 시간 및/또는 주파수 자원 단위로 해석될 수 있다.
본 명세서에서 표현하는 'A 및/또는 B'는 'A 또는 B 중 적어도 하나'와 동일하게 해석될 수 있다.
이하에서는 설명의 편의를 위해 동일 빔 유지 time unit은 동일 빔을 유지하는 심볼의 개수 즉, 시간 구간을 나타내는 것으로 예를 들어 설명하나, 앞서 설명한 바와 같이, 동일 빔을 유지하는 시간 및/또는 주파수 자원 단위를 의미할 수 있다.
또한, 본 명세서에서 사용하는 resource와 sub-resource의 관계는 resource group과 resource로 표현될 수도 있다.
예를 들어, 상기 동일 빔 유지 time unit이 '1'인 경우(N=1), PUCCH DMRS는 도 10과 같이 모든 심볼들에서 전송될 수 있다.
도 10은 본 명세서에서 제안하는 멀티-빔 기반 PUCCH DMRS의 자원 매핑의 일례를 나타낸 도이다.
도 10을 참조하면, 각 심볼에 적용되는 PUCCH 빔은 동일하며, 심볼들 간에 적용되는 PUCCH 빔은 서로 다를 수 있다.
따라서, 후술할 제 5 실시 예에서의 PUCCH DMRS 자원 인덱스 기반 UL 빔 선택(또는 보정)을 수행하기 위해서는 매 심볼마다 PUCCH DMRS 자원 인덱스가 다르게 부여될 수 있다.
즉, 도 10에 도시된 바와 같이, DMRS 자원 인덱스들(1 내지 6,1010)이 6개의 심볼들 각각에 부여될 수 있다.
그리고, 도 10에서 1 PRB(Physical Resource Block)에 주파수 영역(frequency domain)으로 2개의 PUCCH DMRS가 할당되어 있으나, 이는 일례이며, 1 PRB에 1개 또는 최대 3개까지의 PUCCH DMRS가 할당될 수 있다.
도 11은 본 명세서에서 제안하는 멀티-빔 기반 PUCCH DMRS 자원 매핑의 또 다른 일례를 나타낸 도이다.
즉, 도 11은 N=2인 경우의 실시 예로, 도 11a는 PUCCH DMRS를 모든 심볼들에서 전송하고, 도 12b는 PUCCH DMRS를 두 심볼마다 하나씩만 전송한다.
도 11a 및 도 11b 모두 인접 두 심볼씩 묶어서 동일한 UL Tx 빔을 적용할 수 있고, 이 빔은 해당 심볼 그룹에 속한 DMRS에 적용되는 빔과 동일할 수 있다.
따라서, 이 경우, DMRS 자원 인덱스(resource index)는 두 심볼마다 하나씩 부여될 수 있다.
또한, 도 11b의 PUCCH DMRS 자원 매핑은 도 11a에 비해 짧은 PUCCH format이 사용되는 경우에 적용되는 것이 바람직할 수 있다.
또한, 도 11b에서 DMRS resource index 1 및 2가 각각 부여되는 심볼은 두 심볼 중 앞쪽 심볼(1110,1120)에 부여되며, DMRS resource index 3이 부여되는 심볼은 두 심볼 중 뒤쪽 심볼(1130)에 부여되는 것을 볼 수 있다.
이는 도플러(Doppler) 효과 등을 고려할 때, 동일한 DMRS resource를 사용하지 않는 것이 더 효율적일 수 있기 때문이다.
또한, 본 명세서에서 사용되는 DMRS resource는 DMRS antenna port, DMRS format 등으로 표현될 수도 있다.
앞서 살핀 제 1 실시 예의 장점은 PUCCH DMRS 전송 빔과 PUCCH 전송 빔이 각 time unit에서 일치한다는 점이다.
따라서, 단말이 임의로 빔 방향 또는 빔 모양을 선택하여 PUCCH를 전송할 수 있고, 상기 기지국이 상기 PUCCH DMRS 전송 빔에 대한 정보를 모르는 경우에도 해당 단말이 전송하는 PUCCH를 복조할 수 있다.
상기 제 1 실시 예의 또 다른 장점은, 서로 다른 DMRS 자원 인덱스에 속하더라도 동일한 UE Tx beam을 적용하여도 무관하다는 점이다.
예를 들어, PUCCH 및 PUCCH DMRS 설계를 N=1 경우에 맞춰서 하고, PUCCH DMRS 자원 index를 매 심볼마다 부여하되, 단말은 모든 PUCCH 심볼들에 동일 빔을 적용할 수도 있고, 또는 인접 M개의 심볼마다 서로 다른 빔을 적용할 수도 있다.
여기서, M은 N보다 큰 값을 가지는 것으로 가정한다.
다음으로, 앞서 살핀 case 1 내지 case 3에 대한 UCI(Uplink Control Information)의 채널 코딩(channel coding) 방법에 대해 살펴보기로 한다.
먼저, case 1 내지 case 3에서, 단말로부터 PUCCH를 수신하는 기지국 입장에서는 빔 유지 time unit마다 PUCCH에 대한 수신 품질이 달라지는 특징을 갖게 된다.
특히, case 1의 경우, 기지국은 PUCCH의 일부 time unit에서의 수신 감도가 매우 떨어져 PUCCH에 대한 복조를 수행하기가 어려울 수 있다.
따라서, 이런 문제를 해결하기 위해 단말의 피드백 정보(예:PUCCH)를 모든 time unit에 균등하게 매핑하는 방법에 대해 살펴본다(아래 방법 1과 방법 2-1-1에 해당함).
case 2 또는 case 3에 대해서도, 피드백 정보를 모든 time unit에 균등하게 매핑하는 방식을 적용할 수도 있으나, 특정 약속된 빔(들)이 적용되는 time unit(s)은 어느 정도 수신 품질이 보장된다고 가정하는 경우, 해당 time unit(s)에 상대적으로 중요한 정보(e.g. systematic bits)를 매핑하는 방법(아래 방법 2-2)를 고려할 수 있다.
또는, case 2와 같이, 단말이 임의로 선택하는 빔(들)이 적용된 일부 time unit(s)에서의 수신 품질에 대한 안정성이 불확실하거나 또는 case 3에서 빔 집합이 수신 품질로 분류(sorting)된 경우 상대적으로 낮은 수신 품질을 가질 것으로 예상되는 일부 time unit(s)에만 인터리빙(interleaving)을 수행할 수 있다(아래 방법 2-1-2).
(제 2 실시 예)
제 2 실시 예는 멀티-빔 기반 PUCCH 전송 시 UCI (e.g. CSI)에 대한 채널 코딩(channel coding) 및 자원 매핑과 관련된 내용에 관한 것이다.
멀티-빔 기반 PUCCH 전송에서, UCI에 대한 채널 코딩 및 자원 매핑에는 아래와 같은 방법이 적용될 수 있다.
(방법 1)
방법 1은, UCI를 높은 코딩 레이트(high coding rate)으로 코딩하고 PUCCH의 첫 N 심볼(들)에 매핑한 후, 상기 N 심볼(들)을 반복하여 PUCCH 심볼들에 연속적으로 매핑하는 방법이다.
여기서, N은 앞서 살핀 동일 빔 유지 time unit과 동일한 값을 같거나 또는 상기 동일 빔 유지 time unit의 정수 배에 해당하는 값을 가질 수 있다.
즉, UCI를 전송하는 PUCCH resource는 복수의 PUCCH sub-resource들로 구성되고, 상기 UCI를 정해진 encoding 방식(예를 들어, 방법 1의 높은 코딩 레이트로 인코딩)을 통해 sub-resource마다 반복 전송할 수 있다.
여기서, 상기 PUCCH resource는 PUCCH resource group으로 표현될 수 있고, 이 경우, PUCCH sub-resource는 PUCCH resource로 표현될 수 있다.
예를 들어, PUCCH resource가 4 심볼인 경우, PUCCH sub-resource가 2 심볼이면 2 심볼씩 2번 반복하여 PUCCH를 전송한다.
그리고, 상기 PUCCH sub-resource마다 동일 RE 위치에 DMRS를 전송한다.
또한, 복수 빔 기반 PUCCH 전송의 경우, PUCCH에 대한 빔 지시 정보에 해당하는 PUCCH-spatial_relation_info는 PUCCH resource에 공통으로 설정되거나 또는 PUCCH sub-resource별로 별도로 설정될 수 있다.
만약 단일 빔 기반 PUCCH 전송의 경우, 모든 sub-resource들에 동일한 spatial_reference_info를 적용한다.
또는, PUCCH sub-resource별로 PUCCH-spatial_relation_info를 별도로 지시하는 방식이 아닌 sweeping 여부에 대한 지시만 주면 단말은 자유롭게 PUCCH sub-resource별로 빔을 다르게 선택하여 전송할 수 있다.
또는, PUCCH-spatial_relation_info는 하나만 설정하되, sweeping flag를 두어 flag가 'ON'이면 하나의 sub-resource에만 PUCCH-spatial_relation_info로 지시된 빔을 적용하고, 나머지는 다른 빔을 적용할 수 있다.
(방법 2)
방법 2는, UCI를 낮은 코딩 레이트(low coding rate)로 코딩하고, 전체 PUCCH 자원(또는 전체 PUCCH 심볼)에 매핑하는 방법이다.
구체적으로, 상기 방법 2는 UCI를 채널 코딩하는 과정 또는 PUCCH 자원에 매핑하는 과정에서 시간-영역 인터리빙(time-domain interleaving)을 수행한다.
여기서, 상기 시간-영역 인터리빙(time-domain interleaving)은 (i) 전체 심볼에 대해 interleaving을 수행하거나 또는 (ii) 일부 심볼 집합에 대해서만 interleaving을 수행할 수 있다.
또는, 상기 방법 2는 coded bits 중 중요 정보(e.g. systematic bit)을 약속된 심볼(symbol) 위치부터 주파수 첫 번째 매핑(frequency first mapping)을 수행할 수 있다.
여기서, PUCCH의 빔 수 또는 스위핑(sweeping) 여부와 무관하게 PUCCH를 설계 또는 구성하는 경우, 앞서 살핀 제 1 실시 예 및 제 2 실시 예를 적용하는 것이 보다 바람직할 수 있다.
PUCCH의 빔 수 또는 sweeping 여부에 따라 PUCCH를 다르게 설계 또는 구성하는 방법에 대해 아래 제 3 실시 예를 통해 살펴본다.
(제 3 실시 예)
제 3 실시 예는 PUCCH 전송에 사용되는 빔 수 또는 sweeping 여부에 따라 다음 중 적어도 하나의 측면에서 PUCCH를 다르게 설계 또는 구성하는 방법에 관한 것이다.
첫 번째는, PUCCH의 시간(time) 자원, 주파수(frequency) 자원 또는 코드(code) 자원 중 적어도 하나의 측면에서 PUCCH를 다르게 구성하는 방법이다.
일례로, PUCCH의 빔 수가 늘어날수록 PUCCH의 시간 자원(time resource) 또는 PUCCH의 주파수 자원(frequency resource) 중 적어도 하나를 증가시킬 수 있다.
또는, PUCCH의 sweeping이 'On'일 때, PUCCH 심볼의 개수가 더 크도록 PUCCH를 구성할 수 있다.
또 다른 일례로, PUCCH의 빔 수가 늘어나면 PUCCH의 time resource는 증가시키되, PUCCH의 frequency resource는 감소시킬 수 있다.
두 번째는, PUCCH의 DMRS 패턴(pattern)을 증가시키는 것이다.
예를 들어, PUCCH의 빔 수가 늘어날수록 PUCCH DMRS의 시간 영역, 주파수 영역의 위치 그리고/또는 밀도를 다르게 할 수 있다.
본 명세서에서 사용되는 'A 그리고/또는 B'는 'A 또는 B 중 적어도 하나를 포함한다'와 동일한 의미로 해석될 수 있다.
도 12는 본 명세서에서 제안하는 PUCCH의 DMRS 패턴의 일례를 나타낸 도이다.
도 12a는 PUCCH sweeping의 경우 PUCCH DMRS 패턴의 일례를 나타내고, 도 12b는 PUCCH no-sweeping의 경우 PUCCH DMRS 패턴의 일례를 나타낸다.
도 12를 참조하면, sweeping의 경우 PUCCH 자원 내에 N1개의 subcarrier들과 M1 개의 symbol들이 존재하고, no-sweeping의 경우에 N2개의 subcarrier들과 M2개의 symbol들이 존재하도록 구성할 수 있다.
여기서, N1과 N2와의 관계는 N1≤N2, M1≥M2를 만족한다.
도 12a가 도 12b보다 PUCCH DMRS antenna port의 주파수 영역에서의 density가 더 높은 것을 볼 수 있다.
세 번째는, coded bits를 resource에 매핑하는 것을 포함하여 PUCCH channel coding chain과 관련된 방법이다.
일례로, 세 번째 방법은 PUCCH의 빔 수에 따라 적용하는 channel coding 방식을 다르게 하는 것이다.
예를 들어, PUCCH 전송에 sweeping이 적용된 경우, (높은 코드 레이트의) coded UCI 비트가 심볼 단위로 반복(repetition)되고, PUCCH 전송에 sweeping이 적용되지 않은 경우, (낮은 code rate의) coded UCI 비트가 복 수의 심볼들에 퍼져서 mapping될 수 있다.
또는, 세 번째 방법은 PUCCH의 빔 수에 따라 channel coding chain의 interleaving 적용 여부 혹은 적용 방식을 다르게 할 수 있다.
예를 들어, PUCCH의 sweeping이 적용된 경우, PUCCH의 일부 symbol set에 대해서만 인터리빙(interleaving)을 적용하고, PUCCH의 sweeping이 적용되지 않은 경우, 모든 PUCCH symbol들에 대해서 인터리빙(interleaving)을 적용할 수 있다. 이 방법은 앞서 살핀 제 2 실시 예에서 언급한 내용과 동일하므로, 구체적인 설명은 제 2 실시 예에의 설명을 참고하기로 한다.
네 번째는, PUCCH의 전송 전력에 관한 방법이다.
일례로, 네 번째 방법은 PUCCH의 (전송) 빔 수가 많을수록 PUCCH의 전송 전력을 증가시키는 것이다.
예를 들어, N개의 심볼을 통해 PUCCH를 전송하고, M개의 빔으로 sweeping하는 경우는 PUCCH를 sweeping하지 않는 경우에 비하여 N/M 값을 고려(비례)하여 PUCCH의 전송 전력을 높일 수 있다.
또 다른 일례로, 네 번째 방법은 멀티-빔 기반 PUCCH 전송의 경우, 빔 유지 time unit별로 PUCCH에 대한 전송 전력을 상이하게 설정할 수 있다.
예를 들어, case 2의 경우, 단말이 임의로 빔을 선택하여 전송하는 time unit(s)와 기지국이 지정한 혹은 약속된 빔을 사용하는 time unit(s)에 적용하는 PUCCH의 전송 전력을 상이하게 설정할 수 있다.
즉, PUCCH power control은 PUCCH sub-resource별로 설정될 수도 있거나 또는 PUCCH resource 내의 sub-resource들은 모두 동일한 power control process를 따를 수 있다.
PUCCH resource 내의 sub-resource들이 모두 동일한 power control process를 따르는 경우, PUCCH resource 단위로 power control process가 설정된다.
상기 PUCCH의 전송 전력과 관련하여, 기지국에 의해 단말의 UL 빔 별로 전송 전력이 미리 설정되어 있는 경우도 고려할 수 있다.
이러한 경우, PUCCH에 복수 개의 빔을 사용할 때 각 빔에 해당하는 symbol set(또는 time unit)마다 기 설정된 전송 전력 파라미터를 따르도록 규정할 수 있다.
하지만, 이 방법은 time unit이 너무 짧은 경우, 너무 잦은 전송 전력의 변경에 의해 power transient loss가 발생할 수 있다.
또한, 아래 설명하는 특정 방법에 의해 빔이 선택되는 경우, PUCCH의 빔 간 전력이 균등하게 설정되는 것이 더 바람직할 수 있다. 이에 대해서는 후술하는 제 4 실시 예에서 보다 구체적으로 살펴보기로 한다.
상기 특정 방법은 단말이 상향링크 채널 전송에 복수의 빔들을 활용한 경우, 기지국은 상향링크 채널 복조에 사용되는 RS(e.g. PUCCH DMRS)로부터 각 단말 Tx beam에 해당하는 RS 신호 품질을 비교해서 RS 자원 인덱스 정보 (e.g. best PUCCH DMRS resource/port index(es)) 및/또는 RS의 품질 정보(e.g. RSRP)를 제공하는 것을 말한다.
(제 4 실시 예)
제 4 실시 예는 단말의 UL 빔 별 전송 전력이 기 설정되어 있는 경우, PUCCH 전송에 복수 개의 빔들을 사용하는 경우에도 모든 심볼에서 PUCCH의 전송 전력을 동일한 값으로 사용하는 방법이다.
상기 동일한 값은 예를 들어, PUCCH 전송에 적용할 복수 개의 UL 빔들 중 기지국이 사용할 빔으로 지정했었던 (서빙) UL 빔에 해당하는 전송 전력 값을 따르도록 규정하거나, 또는 이전 PUCCH reporting에 사용한 전송 전력 파라미터 값을 그대로 따르도록 규정할 수 있다.
또는, 제 3 실시 예에서 살핀 바와 같이, PUCCH의 적용 빔 수 또는 PUCCH의 sweeping 여부에 따라 적용할 상대적인 전송 전력 증가값/감소값 또는 절대적인 전송 전력 값을 미리 규정할 수 있다.
앞서 살핀 것처럼, 복수 개의 빔들을 이용해 PUCCH를 전송하고, (제 1 실시 예에서와 같이) PUCCH DMRS 자원을 빔 별로 매핑하는 경우, 이러한 내용을 후속하는 UL 전송에 사용할 UE의 Tx beam 선택 혹은 보정에 활용할 수도 있다.
특히, 아래에 언급하는 특정 방법과 같이, 빔 품질이 떨어져서 복수 개의 빔을 사용하는 경우 이러한 UL beam 보정 과정은 단말이 별도의 UL RS(e.g. Sounding RS)를 전송하지 않고도 UL beam을 보정할 수 있다는 점에서 signaling overhead를 줄이고, 통신 지연을 감소시킬 수 있는 효과가 있다.
상기 특정 방법은 단말이 주기적 또는 semi-persistent CSI를 기지국으로 보고하는 경우, DL RS로부터 측정한 링크 품질 수준이 (일정 수준 이하로) 떨어지면 CSI 보고용 UL 물리채널(e.g. PUCCH)에 사용하는 UL Tx 빔의 수를 증가시키는 것을 말한다.
도 13은 본 명세서에서 제안하는 PUCCH 전송을 수행하는 방법의 일례를 나타낸 순서도이다.
먼저, 단말은 복수의 상향링크 빔들을 이용하여 상향링크 제어 정보를 운반하는 PUCCH(Physical Uplink Control Channel)을 기지국으로 전송한다(S1310).
여기서, 상기 PUCCH는 특정 자원 단위 별로 서로 다른 상향링크 빔을 통해 전송된다.
또한, 상기 특정 자원 단위는 동일 빔으로 상기 PUCCH를 전송하는 자원 단위(또는 자원 영역 또는 자원 구간)을 나타내며, 하나 또는 그 이상의 심볼들을 포함할 수 있다.
또한, 상기 특정 자원 단위는 동일 빔으로 상기 PUCCH를 전송하는 시간 및/또는 주파수 자원 단위의 의미를 포함할 수 있다.
그리고, 상기 단말은 상기 PUCCH의 복조에 사용되는 참조 신호(Reference Signal:RS)를 상기 복수의 상향링크 빔들을 이용하여 상기 기지국으로 전송한다.
상기 단말이 상기 참조 신호를 전송하는 시점은 S1310 단계 이전이거나 또는 이후일 수 있다.
여기서, 상기 참조 신호(Reference Signal:RS)의 자원은 상기 특정 자원 단위 별로 매핑될 수 있다.
또한, 상기 참조 신호의 자원은 상기 특정 자원 단위의 모든 심볼들에 또는 특정 심볼에 매핑될 수 있다.
상기 PUCCH의 자원 및 상기 참조 신호의 자원은 상기 PUCCH가 전송되는 빔의 개수 또는 상기 PUCCH의 스위핑(sweeping) 여부 중 적어도 하나에 기초하여 결정될 수 있다.
여기서, 상기 PUCCH의 자원은 상기 PUCCH가 할당되는 시간 자원, 주파수 자원 또는 코드 자원 중 적어도 하나를 나타낼 수 있다.
또한, 상기 PUCCH에 대한 전송 전력은 상기 PUCCH가 전송되는 빔의 개수 또는 상기 PUCCH의 스위핑(sweeping) 여부 중 적어도 하나에 기초하여 결정될 수 있다.
그리고, 상기 PUCCH가 상기 복수 개의 상향링크 빔들을 이용하여 전송되는 경우, 특정 자원 단위 별로 상기 PUCCH에 대한 전송 전력은 다르게 설정될 수 있다.
그리고, 상기 특정 자원 단위 별로 상기 PUCCH 전송에 사용되는 상향링크 빔은 상기 기지국에 의해 지시되거나 또는 상기 단말에 의해 선택될 수 있다.
여기서, 상기 특정 자원 단위에서 상기 참조 신호의 전송에 사용되는 상향링크 빔과 상기 PUCCH의 전송에 사용되는 상향링크 빔은 동일할 수 있다.
또한, 상기 상향링크 제어 정보에 이용되는 코딩 레이트(coding rate)에 따라 상기 상향링크 제어 정보가 매핑되는 PUCCH 심볼이 결정될 수 있다.
만약 상기 상향링크 제어 정보에 이용되는 코딩 레이트가 높은 경우, 상기 상향링크 제어 정보는 첫 번째로 PUCCH 자원의 처음 특정 자원 단위의 심볼(들)에 매핑되고, 상기 매핑된 심볼(들)이 연속적으로 반복되어 상기 PUCCH 자원에 매핑될 수 있다.
이와 반대로, 상기 상향링크 제어 정보에 이용되는 코딩 레이트가 낮은 경우, 상기 상향링크 제어 정보는 PUCCH 자원의 전체 심볼들에 매핑될 수 있다.
그리고, 상기 상향링크 제어 정보에 이용되는 코딩 레이트가 낮은 경우, 상기 상향링크 제어 정보는 상기 PUCCH 자원의 전체 심볼들에서 또는 특정 심볼에서 시간 영역으로 인터리빙될 수 있다.
또한, 상기 상향링크 제어 정보에 이용되는 코딩 레이트가 낮은 경우, 상기 상향링크 제어 정보의 특정 파트(specific part)는 미리 정의된 심볼 위치부터 시작하여 주파수 우선으로 매핑될 수 있다.
도 14는 본 명세서에서 제안하는 PUCCH 전송을 수행하는 방법의 또 다른 일례를 나타낸 순서도이다.
구체적으로, 도 14는 도 13에서 복수의 상향링크 빔들을 이용하여 PUCCH를 전송하기 위한 자원을 기지국에서 지시하는 방법을 나타낸다. 따라서, 기지국이 복수의 상향링크 빔들을 이용하여 PUCCH를 전송하기 위한 자원을 전송하는 절차(S1410 및 S1420)를 제외하고 도 13에서 언급한 내용들이 도 14에도 동일하게 적용될 수 있다.
도 14를 참고하면, 단말은 기지국으로부터 복수의 상향링크 빔들을 이용하여 PUCCH를 전송하기 위한 자원을 기지국으로부터 수신한다(S1410).
이후, 상기 단말은 상기 수신된 자원에서 상기 복수의 상향링크 빔들을 통해 상기 PUCCH를 기지국으로 전송한다(S1420).
도 15는 본 명세서에서 제안하는 PUCCH 전송을 수행하는 방법의 또 다른 일례를 나타낸 순서도이다.
구체적으로, 도 15는 도 13에서 복수의 상향링크 빔들을 이용하여 PUCCH를 전송하기 위한 자원을 단말에서 결정하는 방법을 나타낸다. 따라서, 단말이 복수의 상향링크 빔들을 이용하여 PUCCH를 전송하기 위한 자원을 결정하는 절차(S1510 및 S1520)를 제외하고, 도 13에서 언급한 내용들이 도 15에도 동일하게 적용될 수 있다.
도 15를 참고하면, 단말은 복수의 상향링크 빔들을 이용하여 PUCCH를 전송하기 위한 자원을 결정한다(S1510).
이후, 상기 단말은 상기 결정된 자원에서 상기 복수의 상향링크 빔들을 통해 상기 PUCCH를 기지국으로 전송한다(1520).
본 발명이 적용될 수 있는 장치 일반
도 16은 본 발명의 일 실시 예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 16을 참조하면, 무선 통신 시스템은 기지국(또는 네트워크)(1610)와 단말(1620)을 포함한다.
기지국(1610)는 프로세서(processor, 1611), 메모리(memory, 1612) 및 통신 모듈(communication module, 1613)을 포함한다.
프로세서(1611)는 앞서 도 1 내지 도 15에서 제안된 기능, 과정 및/또는 방법을 구현한다. 유/무선 인터페이스 프로토콜의 계층들은 프로세서(1611)에 의해 구현될 수 있다. 메모리(1612)는 프로세서(1611)와 연결되어, 프로세서(1611)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1613)은 프로세서(1611)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다.
상기 통신 모듈(1613)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(1620)은 프로세서(1621), 메모리(1622) 및 통신 모듈(또는 RF부)(1623)을 포함한다. 프로세서(1621)는 앞서 도 1 내지 도 15에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(1621)에 의해 구현될 수 있다. 메모리(1622)는 프로세서(1621)와 연결되어, 프로세서(1621)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1623)는 프로세서(1621)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(1612, 1622)는 프로세서(1611, 1621) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1611, 1621)와 연결될 수 있다.
또한, 기지국(1610) 및/또는 단말(1620)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 17은 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 17에서는 앞서 도 16의 단말을 보다 상세히 예시하는 도면이다.
도 17을 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(1710), RF 모듈(RF module)(또는 RF 유닛)(1735), 파워 관리 모듈(power management module)(1705), 안테나(antenna)(1740), 배터리(battery)(1755), 디스플레이(display)(1715), 키패드(keypad)(1720), 메모리(memory)(1730), 심카드(SIM(Subscriber Identification Module) card)(1725)(이 구성은 선택적임), 스피커(speaker)(1745) 및 마이크로폰(microphone)(1750)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(1710)는 앞서 도 1 내지 도 15에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서(1710)에 의해 구현될 수 있다.
메모리(1730)는 프로세서(1710)와 연결되고, 프로세서(1710)의 동작과 관련된 정보를 저장한다. 메모리(1730)는 프로세서(1710) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1710)와 연결될 수 있다.
사용자는 예를 들어, 키패드(1720)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(1750)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서(1710)는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(1725) 또는 메모리(1730)로부터 추출할 수 있다. 또한, 프로세서(1710)는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(1715) 상에 디스플레이할 수 있다.
RF 모듈(1735)는 프로세서(1710)에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서(1710)는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈(1735)에 전달한다. RF 모듈(1735)은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(1740)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈(1735)은 프로세서(1710)에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(1745)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 빔 관리 방법은 3GPP LTE/LTE-A 시스템, 5G에 적용되는 예를 중심으로 설명하였으나, 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (15)

  1. 무선 통신 시스템에서 상향링크 제어 정보(Uplink Control Information:UCI)를 운반하는 물리 상향링크 제어 채널(Physical Uplink Control Channel:PUCCH)를 전송하는 방법에 있어서, 단말에 의해 수행되는 상기 방법은,
    복수의 상향링크 빔들을 이용하여 상기 PUCCH를 기지국으로 전송하는 단계를 포함하되,
    상기 PUCCH는 특정 자원 단위 별로 서로 다른 상향링크 빔을 통해 전송되며,
    상기 특정 자원 단위는 동일 빔으로 상기 PUCCH를 전송하는 자원 단위를 나타내는 것을 특징으로 하는 방법.
  2. 제 1항에 있어서,
    상기 PUCCH의 복조에 사용되는 참조 신호(Reference Signal:RS)를 상기 복수의 상향링크 빔들을 이용하여 상기 기지국으로 전송하는 단계를 더 포함하되,
    상기 참조 신호(Reference Signal:RS)의 자원은 상기 특정 자원 단위 별로 매핑되는 것을 특징으로 하는 방법.
  3. 제 2항에 있어서,
    상기 참조 신호의 자원은 상기 특정 자원 단위의 모든 자원들에 또는 특정 자원에 매핑되는 것을 특징으로 하는 방법.
  4. 제 2항에 있어서,
    상기 특정 자원 단위에서 상기 참조 신호의 전송에 사용되는 상향링크 빔과 상기 PUCCH의 전송에 사용되는 상향링크 빔은 동일한 것을 특징으로 하는 방법.
  5. 제 1항에 있어서,
    상기 상향링크 제어 정보에 이용되는 코딩 레이트(coding rate)에 따라 상기 상향링크 제어 정보가 매핑되는 PUCCH 심볼이 결정되는 것을 특징으로 하는 방법.
  6. 제 5항에 있어서,
    상기 상향링크 제어 정보에 이용되는 코딩 레이트가 높은 경우, 상기 상향링크 제어 정보는 첫 번째로 PUCCH 자원의 처음 특정 자원 단위의 심볼(들)에 매핑되고, 상기 매핑된 심볼(들)이 연속적으로 반복되어 상기 PUCCH 자원에 매핑되는 것을 특징으로 하는 방법.
  7. 제 5항에 있어서,
    상기 상향링크 제어 정보에 이용되는 코딩 레이트가 낮은 경우, 상기 상향링크 제어 정보는 PUCCH 자원의 전체 심볼들에 매핑되는 것을 특징으로 하는 방법.
  8. 제 7항에 있어서,
    상기 상향링크 제어 정보는 상기 PUCCH 자원의 전체 심볼들에서 또는 특정 심볼에서 시간 영역으로 인터리빙되는 것을 특징으로 하는 방법.
  9. 제 7항에 있어서,
    상기 상향링크 제어 정보의 특정 파트(specific part)를 미리 정의된 심볼 위치부터 시작하여 주파수 우선으로 매핑하는 것을 특징으로 하는 방법.
  10. 제 2항에 있어서,
    상기 PUCCH의 자원 및 상기 참조 신호의 자원은 상기 PUCCH가 전송되는 빔의 개수 또는 상기 PUCCH의 스위핑(sweeping) 여부 중 적어도 하나에 기초하여 결정되는 것을 특징으로 하는 방법.
  11. 제 10항에 있어서,
    상기 PUCCH의 자원은 상기 PUCCH가 할당되는 시간 자원, 주파수 자원 또는 코드 자원 중 적어도 하나인 것을 특징으로 하는 방법.
  12. 제 1항에 있어서,
    상기 PUCCH에 대한 전송 전력은 상기 PUCCH가 전송되는 빔의 개수 또는 상기 PUCCH의 스위핑(sweeping) 여부 중 적어도 하나에 기초하여 결정되는 것을 특징으로 하는 방법.
  13. 제 12항에 있어서,
    상기 복수 개의 상향링크 빔들을 이용하여 상기 PUCCH를 전송하는 경우, 특정 자원 단위 별로 상기 PUCCH에 대한 전송 전력을 다르게 설정하는 것을 특징으로 하는 방법.
  14. 제 1항에 있어서,
    상기 특정 자원 단위 별로 상기 PUCCH 전송에 사용되는 상향링크 빔은 상기 기지국에 의해 지시되거나 또는 상기 단말에 의해 선택되는 것을 특징으로 하는 방법.
  15. 무선 통신 시스템에서 상향링크 제어 정보(Uplink Control Information:UCI)를 운반하는 물리 상향링크 제어 채널(Physical Uplink Control Channel:PUCCH)를 전송하는 단말에 있어서,
    무선 신호를 송수신하기 위한 RF 모듈(radio frequency module); 및
    상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는,
    복수의 상향링크 빔들을 이용하여 상기 PUCCH를 기지국으로 전송하도록 제어하되,
    상기 PUCCH는 특정 자원 단위 별로 서로 다른 상향링크 빔을 통해 전송되며,
    상기 특정 자원 단위는 동일 빔으로 상기 PUCCH를 전송하는 자원 단위를 나타내는 것을 특징으로 하는 단말.
PCT/KR2018/000076 2017-01-05 2018-01-03 무선 통신 시스템에서 물리 상향링크 제어 채널 전송 방법 및 이를 위한 장치 WO2018128365A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18736133.2A EP3567781B1 (en) 2017-01-05 2018-01-03 Method for transmitting physical uplink control channel in wireless communication system, and device therefor
US16/473,746 US11229029B2 (en) 2017-01-05 2018-01-03 Method for transmitting physical uplink control channel in wireless communication system, and device therefor
EP22176747.8A EP4075886A1 (en) 2017-01-05 2018-01-03 Method for uplink power control of physical uplink control channel in wireless communication system, and devices therefor
CN201880005889.9A CN110168995B (zh) 2017-01-05 2018-01-03 在无线通信系统中发送物理上行链路控制信道的方法及其装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762442951P 2017-01-05 2017-01-05
US62/442,951 2017-01-05

Publications (1)

Publication Number Publication Date
WO2018128365A1 true WO2018128365A1 (ko) 2018-07-12

Family

ID=62791138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000076 WO2018128365A1 (ko) 2017-01-05 2018-01-03 무선 통신 시스템에서 물리 상향링크 제어 채널 전송 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US11229029B2 (ko)
EP (2) EP4075886A1 (ko)
CN (1) CN110168995B (ko)
WO (1) WO2018128365A1 (ko)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110769502A (zh) * 2018-07-25 2020-02-07 维沃移动通信有限公司 用于多波束发送上行信道的方法、终端设备和网络侧设备
WO2020060300A1 (en) * 2018-09-21 2020-03-26 Samsung Electronics Co., Ltd. Method and apparatus for uplink control information transmission and reception
WO2020063806A1 (en) * 2018-09-27 2020-04-02 Mediatek Inc. Enhancements on qcl frameworks for multiple trp operation
WO2020063958A1 (zh) * 2018-09-28 2020-04-02 中兴通讯股份有限公司 信号发送、资源确定方法、装置、终端、基站和存储介质
WO2020069381A1 (en) * 2018-09-28 2020-04-02 Intel Corporation Spatial relation configuration for new radio (nr) uplink transmission
CN111278128A (zh) * 2019-04-25 2020-06-12 维沃移动通信有限公司 指示空间关系信息的方法及装置、通信设备
CN111818643A (zh) * 2019-07-19 2020-10-23 维沃移动通信有限公司 Pucch发送、信息配置方法和设备
CN112314027A (zh) * 2018-09-26 2021-02-02 索尼公司 网络侧设备、用户设备、无线通信方法和存储介质
CN113228780A (zh) * 2019-04-23 2021-08-06 Oppo广东移动通信有限公司 一种上行控制信道传输方法、用户设备及网络设备
CN113273094A (zh) * 2018-10-31 2021-08-17 株式会社Ntt都科摩 用户终端
CN114208247A (zh) * 2019-08-14 2022-03-18 株式会社Ntt都科摩 终端以及通信方法
RU2780827C1 (ru) * 2018-11-12 2022-10-04 Панасоник Интеллекчуал Проперти Корпорейшн Оф Америка Пользовательское оборудование, сетевой узел и способ связи
US11818721B2 (en) 2018-11-12 2023-11-14 Panasonic Intellectual Property Corporation Of America User equipment and network node involved in the transmission of signals using transmission parameters determined according to transmission configuration indication
US12003287B2 (en) 2019-01-11 2024-06-04 Vivo Mobile Communication Co., Ltd. Uplink channel configuration method, uplink channel transmission method, network-side device, and terminal

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL267295B (en) * 2016-12-13 2022-08-01 Guangdong Oppo Mobile Telecommunications Corp Ltd Method and device for satellite power control
US11019544B2 (en) * 2017-02-02 2021-05-25 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in mobile communication system
BR112019015947A2 (pt) * 2017-02-03 2020-03-24 Ntt Docomo, Inc. Terminal e método de radiocomunicação
IL269438B2 (en) * 2017-03-24 2023-09-01 Ericsson Telefon Ab L M Device, method, and computer software product for transmitting semi-continuous channel state data (csi) over a physical uplink shared channel (pusch)
CN108633045A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种链路重建方法及设备
CN108633043B (zh) * 2017-03-24 2021-06-29 中兴通讯股份有限公司 波束恢复的处理方法及装置
US11696287B2 (en) * 2017-04-27 2023-07-04 Ntt Docomo, Inc. User terminal and radio communication method
KR102439425B1 (ko) * 2017-12-21 2022-09-05 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 안테나 빔 추적 방법 및 장치
US20200358577A1 (en) * 2018-01-12 2020-11-12 Ntt Docomo, Inc. User terminal and radio communication method
KR20200118817A (ko) * 2018-02-08 2020-10-16 가부시키가이샤 엔티티 도코모 유저단말 및 무선 통신 방법
WO2020031387A1 (ja) * 2018-08-10 2020-02-13 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN110830203B (zh) * 2018-08-10 2022-08-30 中国移动通信有限公司研究院 一种准共址信息指示的方法和设备
US11812449B2 (en) * 2018-08-10 2023-11-07 Qualcomm Incorporated Active beam management, configuration, and capability signaling
US11291006B2 (en) * 2018-10-11 2022-03-29 Qualcomm Incorporated Techniques for configuring active spatial relations in wireless communications
EP3900214A1 (en) * 2018-12-21 2021-10-27 Qualcomm Incorporated State-based beam switching
CN111181710B (zh) * 2019-12-31 2022-11-22 展讯通信(上海)有限公司 通信方法及装置
WO2021159490A1 (en) * 2020-02-14 2021-08-19 Lenovo (Beijing) Limited Method and apparatus for uci repetitions with multiple beams
WO2021176697A1 (ja) * 2020-03-06 2021-09-10 三菱電機株式会社 時分割多重通信システム、時分割多重通信方法及びプログラム
EP4150782A2 (en) * 2020-05-14 2023-03-22 Nokia Technologies Oy Enabling beam diversity for uplink control information transmission on a physical uplink control channel
US20220312392A1 (en) * 2020-10-02 2022-09-29 Apple Inc. Receiving Channel State Information from a UE for Multi-TRP Operation
US11425721B2 (en) 2020-12-04 2022-08-23 Qualcomm Incorporated Methods and apparatus to facilitate duplex mode per uplink control channel resource
US20240032022A1 (en) * 2021-08-05 2024-01-25 Apple Inc. Prioritizing transmissions by user equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130315321A1 (en) * 2012-04-09 2013-11-28 Samsung Electronics Co., Ltd. Methods and apparatus for cyclic prefix reduction in mmwave mobile communication systems

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102035631B (zh) * 2009-10-08 2014-12-10 中兴通讯股份有限公司 上行接入链路信道质量指示的反馈方法及装置
CN101800620A (zh) * 2009-12-25 2010-08-11 中兴通讯股份有限公司 一种发送物理上行控制信道的方法及装置
DK2622779T3 (da) * 2010-10-01 2015-04-27 Interdigital Patent Holdings Fremgangsmåde og apparat til at sende pilot fra flere antenner
CN102083181B (zh) * 2010-11-09 2013-11-20 大唐移动通信设备有限公司 一种功率控制方法和设备
CN102281593B (zh) 2011-07-06 2014-09-10 电信科学技术研究院 上行控制信息发送及接收方法、系统和设备
US9215650B2 (en) * 2011-10-19 2015-12-15 Samsung Electronics Co., Ltd. Uplink control method and apparatus in wireless communication system
JP2015527026A (ja) 2012-08-28 2015-09-10 インターデイジタル パテント ホールディングス インコーポレイテッド 1次ビームを使用する通信リンクのハンドオーバのための方法
WO2017022870A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
CN109792347B (zh) * 2016-09-26 2022-08-09 三星电子株式会社 用于在下一代移动通信系统中通信的方法和装置
WO2018064327A1 (en) * 2016-09-28 2018-04-05 Idac Holdings, Inc. Systems and methods for beam management

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130315321A1 (en) * 2012-04-09 2013-11-28 Samsung Electronics Co., Ltd. Methods and apparatus for cyclic prefix reduction in mmwave mobile communication systems

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"UL Control Channel Design with Short Duration", R1-1611994, 3GPP TSG RAN WG1 MEETING #87, 6 November 2016 (2016-11-06), Reno, USA, XP051190804 *
LG ELECTRONICS: "Overall Structure of UL Control Channel for NR", R1-1611 840, 3GPP TSG RAN WG1 MEETING #87, 5 November 2016 (2016-11-05), Reno, USA, XP051190187 *
NOKIA ET AL.: "On the PUCCH Structure for NR", R1-1612238, 3GPP TSG RAN WG1 MEETING #87, 5 November 2016 (2016-11-05), Reno, USA, XP051190352 *
See also references of EP3567781A4 *
ZTE CORPORATION ET AL.: "Discussion on Control Channel Design for NR MIMO", R1-166217, 3GPP TSG RAN WG1 MEETING #86, 13 August 2016 (2016-08-13), Gothenburg, Sweden, XP051142295 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11974305B2 (en) 2018-07-25 2024-04-30 Vivo Mobile Communication Co., Ltd. Method for transmitting uplink channel via multi-beams, terminal device and network-side device
JP2021532662A (ja) * 2018-07-25 2021-11-25 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. マルチビームによるアップリンクチャネルの送信のための方法、端末装置及びネットワーク側装置
JP7301122B2 (ja) 2018-07-25 2023-06-30 維沃移動通信有限公司 マルチビームによるアップリンクチャネルの送信のための方法、端末装置及びネットワーク側装置
EP3829238A4 (en) * 2018-07-25 2021-09-29 Vivo Mobile Communication Co., Ltd. PROCESS, TERMINAL DEVICE AND NETWORK SIDE DEVICE FOR TRANSMITTING A UPRIGHT LINK CHANNEL THROUGH MULTIPLE BEAMS
CN110769502B (zh) * 2018-07-25 2022-03-18 维沃移动通信有限公司 用于多波束发送上行信道的方法、终端设备和网络侧设备
CN110769502A (zh) * 2018-07-25 2020-02-07 维沃移动通信有限公司 用于多波束发送上行信道的方法、终端设备和网络侧设备
US11632759B2 (en) 2018-09-21 2023-04-18 Samsung Electronics Co., Ltd. Method and apparatus for signaling in support of uplink multi-beam operation
US10887884B2 (en) 2018-09-21 2021-01-05 Samsung Electronics Co., Ltd. Method and apparatus for signaling in support of uplink multi-beam operation
WO2020060300A1 (en) * 2018-09-21 2020-03-26 Samsung Electronics Co., Ltd. Method and apparatus for uplink control information transmission and reception
CN112314027A (zh) * 2018-09-26 2021-02-02 索尼公司 网络侧设备、用户设备、无线通信方法和存储介质
CN111226414A (zh) * 2018-09-27 2020-06-02 联发科技股份有限公司 多发送接收点操作的准同位框架的增强
US11025457B2 (en) 2018-09-27 2021-06-01 Mediatek Inc. Enhancements on QCL frameworks for multiple TRP operation
WO2020063806A1 (en) * 2018-09-27 2020-04-02 Mediatek Inc. Enhancements on qcl frameworks for multiple trp operation
WO2020069381A1 (en) * 2018-09-28 2020-04-02 Intel Corporation Spatial relation configuration for new radio (nr) uplink transmission
WO2020063958A1 (zh) * 2018-09-28 2020-04-02 中兴通讯股份有限公司 信号发送、资源确定方法、装置、终端、基站和存储介质
CN113273094A (zh) * 2018-10-31 2021-08-17 株式会社Ntt都科摩 用户终端
CN113273094B (zh) * 2018-10-31 2024-05-14 株式会社Ntt都科摩 终端、基站、系统以及无线通信方法
US12063663B2 (en) 2018-11-12 2024-08-13 Panasonic Intellectual Property Corporation Of America User equipment and network node involved in the transmission of signals using transmission parameters determined according to transmission configuration indication
RU2780827C1 (ru) * 2018-11-12 2022-10-04 Панасоник Интеллекчуал Проперти Корпорейшн Оф Америка Пользовательское оборудование, сетевой узел и способ связи
US11818721B2 (en) 2018-11-12 2023-11-14 Panasonic Intellectual Property Corporation Of America User equipment and network node involved in the transmission of signals using transmission parameters determined according to transmission configuration indication
US12003287B2 (en) 2019-01-11 2024-06-04 Vivo Mobile Communication Co., Ltd. Uplink channel configuration method, uplink channel transmission method, network-side device, and terminal
EP3937563A4 (en) * 2019-04-23 2022-03-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. UPLINK CONTROL CHANNEL TRANSMISSION METHOD, USER EQUIPMENT AND NETWORK DEVICE
CN113228780A (zh) * 2019-04-23 2021-08-06 Oppo广东移动通信有限公司 一种上行控制信道传输方法、用户设备及网络设备
US12074677B2 (en) 2019-04-25 2024-08-27 Vivo Mobile Communication Co., Ltd. Method and apparatus for indicating spatial relation information, and communications device
CN111278128A (zh) * 2019-04-25 2020-06-12 维沃移动通信有限公司 指示空间关系信息的方法及装置、通信设备
CN111818643A (zh) * 2019-07-19 2020-10-23 维沃移动通信有限公司 Pucch发送、信息配置方法和设备
CN111818643B (zh) * 2019-07-19 2023-05-09 维沃移动通信有限公司 Pucch发送、信息配置方法和设备
EP3986058A4 (en) * 2019-07-19 2022-07-27 Vivo Mobile Communication Co., Ltd. METHOD AND DEVICE FOR SENDING PUCCH AND CONFIGURING INFORMATION
CN114208247A (zh) * 2019-08-14 2022-03-18 株式会社Ntt都科摩 终端以及通信方法

Also Published As

Publication number Publication date
EP4075886A1 (en) 2022-10-19
EP3567781A1 (en) 2019-11-13
EP3567781B1 (en) 2022-08-17
CN110168995A (zh) 2019-08-23
CN110168995B (zh) 2022-01-11
US20210136768A1 (en) 2021-05-06
EP3567781A4 (en) 2020-09-02
US11229029B2 (en) 2022-01-18

Similar Documents

Publication Publication Date Title
WO2018128365A1 (ko) 무선 통신 시스템에서 물리 상향링크 제어 채널 전송 방법 및 이를 위한 장치
WO2018164332A1 (ko) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치
WO2018203704A1 (ko) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치
WO2018128376A1 (ko) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2018174413A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치
WO2018199704A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
WO2018203680A1 (ko) 무선 통신 시스템에서 빔을 통해 신호를 송수신하는 방법 및 이를 위한 장치
WO2019098798A1 (ko) 무선 통신 시스템에서 빔 실패 복구를 수행하는 방법 및 이를 위한 장치
WO2018128351A1 (ko) 무선 통신 시스템에서 빔을 이용하여 신호를 송수신하는 방법 및 이를 위한 장치
WO2018230975A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
WO2018199703A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
WO2018203679A1 (ko) 무선 통신 시스템에서 빔을 이용하여 신호를 송수신하는 방법 및 이를 위한 장치
WO2018143665A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치
WO2019107873A1 (en) Method for reporting channel state information in wireless communication system and apparatus for the same
WO2019108048A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
WO2019066618A1 (ko) 무선 통신 시스템에서 qcl에 기초하여 데이터를 송수신하기 위한 방법 및 이를 위한 장치
WO2019103562A1 (en) Method for reporting channel state information in wireless communication system and apparatus for the same
WO2018143721A1 (ko) 무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치
WO2019050380A1 (ko) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치
WO2019139288A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
WO2018203728A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
WO2018182256A1 (ko) 무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치
WO2018147676A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치
WO2018128504A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
WO2019098762A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018736133

Country of ref document: EP

Effective date: 20190805